Unified Digital Image Display And Processing System
NASA Astrophysics Data System (ADS)
Horii, Steven C.; Maguire, Gerald Q.; Noz, Marilyn E.; Schimpf, James H.
1981-11-01
Our institution like many others, is faced with a proliferation of medical imaging techniques. Many of these methods give rise to digital images (e.g. digital radiography, computerized tomography (CT) , nuclear medicine and ultrasound). We feel that a unified, digital system approach to image management (storage, transmission and retrieval), image processing and image display will help in integrating these new modalities into the present diagnostic radiology operations. Future techniques are likely to employ digital images, so such a system could readily be expanded to include other image sources. We presently have the core of such a system. We can both view and process digital nuclear medicine (conventional gamma camera) images, positron emission tomography (PET) and CT images on a single system. Images from our recently installed digital radiographic unit can be added. Our paper describes our present system, explains the rationale for its configuration, and describes the directions in which it will expand.
Code of Federal Regulations, 2012 CFR
2012-01-01
... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the storage of digital images, the system must provide accessibility to any digital image in the system. The...
Code of Federal Regulations, 2011 CFR
2011-01-01
... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the storage of digital images, the system must provide accessibility to any digital image in the system. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the storage of digital images, the system must provide accessibility to any digital image in the system. The...
Code of Federal Regulations, 2014 CFR
2014-01-01
... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the storage of digital images, the system must provide accessibility to any digital image in the system. The...
Code of Federal Regulations, 2013 CFR
2013-01-01
... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the storage of digital images, the system must provide accessibility to any digital image in the system. The...
Low-cost conversion of the Polaroid MD-4 land camera to a digital gel documentation system.
Porch, Timothy G; Erpelding, John E
2006-04-30
A simple, inexpensive design is presented for the rapid conversion of the popular MD-4 Polaroid land camera to a high quality digital gel documentation system. Images of ethidium bromide stained DNA gels captured using the digital system were compared to images captured on Polaroid instant film. Resolution and sensitivity were enhanced using the digital system. In addition to the low cost and superior image quality of the digital system, there is also the added convenience of real-time image viewing through the swivel LCD of the digital camera, wide flexibility of gel sizes, accurate automatic focusing, variable image resolution, and consistent ease of use and quality. Images can be directly imported to a computer by using the USB port on the digital camera, further enhancing the potential of the digital system for documentation, analysis, and archiving. The system is appropriate for use as a start-up gel documentation system and for routine gel analysis.
Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6
NASA Technical Reports Server (NTRS)
Lee, George
1993-01-01
A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.
Advanced digital image archival system using MPEG technologies
NASA Astrophysics Data System (ADS)
Chang, Wo
2009-08-01
Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.
The AAPM/RSNA physics tutorial for residents: digital fluoroscopy.
Pooley, R A; McKinney, J M; Miller, D A
2001-01-01
A digital fluoroscopy system is most commonly configured as a conventional fluoroscopy system (tube, table, image intensifier, video system) in which the analog video signal is converted to and stored as digital data. Other methods of acquiring the digital data (eg, digital or charge-coupled device video and flat-panel detectors) will become more prevalent in the future. Fundamental concepts related to digital imaging in general include binary numbers, pixels, and gray levels. Digital image data allow the convenient use of several image processing techniques including last image hold, gray-scale processing, temporal frame averaging, and edge enhancement. Real-time subtraction of digital fluoroscopic images after injection of contrast material has led to widespread use of digital subtraction angiography (DSA). Additional image processing techniques used with DSA include road mapping, image fade, mask pixel shift, frame summation, and vessel size measurement. Peripheral angiography performed with an automatic moving table allows imaging of the peripheral vasculature with a single contrast material injection.
Image compression system and method having optimized quantization tables
NASA Technical Reports Server (NTRS)
Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)
1998-01-01
A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.
Simulation of digital mammography images
NASA Astrophysics Data System (ADS)
Workman, Adam
2005-04-01
A number of different technologies are available for digital mammography. However, it is not clear how differences in the physical performance aspects of the different imaging technologies affect clinical performance. Randomised controlled trials provide a means of gaining information on clinical performance however do not provide direct comparison of the different digital imaging technologies. This work describes a method of simulating the performance of different digital mammography systems. The method involves modifying the imaging performance parameters of images from a small field of view (SFDM), high resolution digital imaging system used for spot imaging. Under normal operating conditions this system produces images with higher signal-to-noise ratio (SNR) over a wide spatial frequency range than current full field digital mammography (FFDM) systems. The SFDM images can be 'degraded" by computer processing to simulate the characteristics of a FFDM system. Initial work characterised the physical performance (MTF, NPS) of the SFDM detector and developed a model and method for simulating signal transfer and noise properties of a FFDM system. It was found that the SNR properties of the simulated FFDM images were very similar to those measured from an actual FFDM system verifying the methodology used. The application of this technique to clinical images from the small field system will allow the clinical performance of different FFDM systems to be simulated and directly compared using the same clinical image datasets.
Schiffman, Rhett M; Jacobsen, Gordon; Nussbaum, Julian J; Desai, Uday R; Carey, J David; Glasser, David; Zimmer-Galler, Ingrid E; Zeimer, Ran; Goldberg, Morton F
2005-01-01
Because patients with diabetes mellitus may visit their primary care physician regularly but not their ophthalmologist, a retinal risk assessment in the primary care setting could improve the screening rate for diabetic retinopathy. An imaging system for use in the primary care setting to identify diabetic retinopathy requiring referral to an ophthalmologist was evaluated. In a masked prospective study, images were obtained from 11 patients with diabetes mellitus using both the digital retinal imaging system and seven-field stereo color fundus photography. The ability to obtain gradable images and to identify diabetic retinal lesions was compared. Of all images, 85% of digital retinal imaging system images and 88% of seven-field images were gradable. Agreement based on "no retinopathy" versus "any retinopathy" was excellent (Kappa = 0.96). Agreement based on "microaneurysms or less retinopathy" versus "retinal hemorrhages or worse retinopathy" was very good (Kappa = 0.83). The agreement between the digital retinal imaging system and seven-field photography indicates that the digital retinal imaging system may be useful to screen for diabetic retinopathy.
Training system for digital mammographic diagnoses of breast cancer
NASA Astrophysics Data System (ADS)
Thomaz, R. L.; Nirschl Crozara, M. G.; Patrocinio, A. C.
2013-03-01
As the technology evolves, the analog mammography systems are being replaced by digital systems. The digital system uses video monitors as the display of mammographic images instead of the previously used screen-film and negatoscope for analog images. The change in the way of visualizing mammographic images may require a different approach for training the health care professionals in diagnosing the breast cancer with digital mammography. Thus, this paper presents a computational approach to train the health care professionals providing a smooth transition between analog and digital technology also training to use the advantages of digital image processing tools to diagnose the breast cancer. This computational approach consists of a software where is possible to open, process and diagnose a full mammogram case from a database, which has the digital images of each of the mammographic views. The software communicates with a gold standard digital mammogram cases database. This database contains the digital images in Tagged Image File Format (TIFF) and the respective diagnoses according to BI-RADSTM, these files are read by software and shown to the user as needed. There are also some digital image processing tools that can be used to provide better visualization of each single image. The software was built based on a minimalist and a user-friendly interface concept that might help in the smooth transition. It also has an interface for inputting diagnoses from the professional being trained, providing a result feedback. This system has been already completed, but hasn't been applied to any professional training yet.
42 CFR 37.51 - Interpreting and classifying chest radiographs-digital radiography systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... chest radiographic images provided for use with the Guidelines for the Use of the ILO International... standard digital images may be used for classifying digital chest images for pneumoconiosis. Modification of the appearance of the standard images using software tools is not permitted. (d) Viewing systems...
Integrating Digital Images into the Art and Art History Curriculum.
ERIC Educational Resources Information Center
Pitt, Sharon P.; Updike, Christina B.; Guthrie, Miriam E.
2002-01-01
Describes an Internet-based image database system connected to a flexible, in-class teaching and learning tool (the Madison Digital Image Database) developed at James Madison University to bring digital images to the arts and humanities classroom. Discusses content, copyright issues, ensuring system effectiveness, instructional impact, sharing the…
Omniview motionless camera orientation system
NASA Technical Reports Server (NTRS)
Martin, H. Lee (Inventor); Kuban, Daniel P. (Inventor); Zimmermann, Steven D. (Inventor); Busko, Nicholas (Inventor)
2010-01-01
An apparatus and method is provided for converting digital images for use in an imaging system. The apparatus includes a data memory which stores digital data representing an image having a circular or spherical field of view such as an image captured by a fish-eye lens, a control input for receiving a signal for selecting a portion of the image, and a converter responsive to the control input for converting digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. Various methods include the steps of storing digital data representing an image having a circular or spherical field of view, selecting a portion of the image, and converting the stored digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. In various embodiments, the data converter and data conversion step may use an orthogonal set of transformation algorithms.
NASA Astrophysics Data System (ADS)
Sakano, Toshikazu; Furukawa, Isao; Okumura, Akira; Yamaguchi, Takahiro; Fujii, Tetsuro; Ono, Sadayasu; Suzuki, Junji; Matsuya, Shoji; Ishihara, Teruo
2001-08-01
The wide spread of digital technology in the medical field has led to a demand for the high-quality, high-speed, and user-friendly digital image presentation system in the daily medical conferences. To fulfill this demand, we developed a presentation system for radiological and pathological images. It is composed of a super-high-definition (SHD) imaging system, a radiological image database (R-DB), a pathological image database (P-DB), and the network interconnecting these three. The R-DB consists of a 270GB RAID, a database server workstation, and a film digitizer. The P-DB includes an optical microscope, a four-million-pixel digital camera, a 90GB RAID, and a database server workstation. A 100Mbps Ethernet LAN interconnects all the sub-systems. The Web-based system operation software was developed for easy operation. We installed the whole system in NTT East Kanto Hospital to evaluate it in the weekly case conferences. The SHD system could display digital full-color images of 2048 x 2048 pixels on a 28-inch CRT monitor. The doctors evaluated the image quality and size, and found them applicable to the actual medical diagnosis. They also appreciated short image switching time that contributed to smooth presentation. Thus, we confirmed that its characteristics met the requirements.
Digital document imaging systems: An overview and guide
NASA Technical Reports Server (NTRS)
1990-01-01
This is an aid to NASA managers in planning the selection of a Digital Document Imaging System (DDIS) as a possible solution for document information processing and storage. Intended to serve as a manager's guide, this document contains basic information on digital imaging systems, technology, equipment standards, issues of interoperability and interconnectivity, and issues related to selecting appropriate imaging equipment based upon well defined needs.
NASA Technical Reports Server (NTRS)
1986-01-01
System One, a digital radiography system, incorporates a reusable image medium (RIM) which retains an image. No film is needed; the RIM is read with a laser scanner, and the information is used to produce a digital image on an image processor. The image is stored on an optical disc. System allows the radiologist to "dial away" unwanted images to compare views on three screens. It is compatible with existing equipment and cost efficient. It was commercialized by a Stanford researcher from energy selective technology developed under a NASA grant.
Invited Article: Digital beam-forming imaging riometer systems
NASA Astrophysics Data System (ADS)
Honary, Farideh; Marple, Steve R.; Barratt, Keith; Chapman, Peter; Grill, Martin; Nielsen, Erling
2011-03-01
The design and operation of a new generation of digital imaging riometer systems developed by Lancaster University are presented. In the heart of the digital imaging riometer is a field-programmable gate array (FPGA), which is used for the digital signal processing and digital beam forming, completely replacing the analog Butler matrices which have been used in previous designs. The reconfigurable nature of the FPGA has been exploited to produce tools for remote system testing and diagnosis which have proven extremely useful for operation in remote locations such as the Arctic and Antarctic. Different FPGA programs enable different instrument configurations, including a 4 × 4 antenna filled array (producing 4 × 4 beams), an 8 × 8 antenna filled array (producing 7 × 7 beams), and a Mills cross system utilizing 63 antennas producing 556 usable beams. The concept of using a Mills cross antenna array for riometry has been successfully demonstrated for the first time. The digital beam forming has been validated by comparing the received signal power from cosmic radio sources with results predicted from the theoretical beam radiation pattern. The performances of four digital imaging riometer systems are compared against each other and a traditional imaging riometer utilizing analog Butler matrices. The comparison shows that digital imaging riometer systems, with independent receivers for each antenna, can obtain much better measurement precision for filled arrays or much higher spatial resolution for the Mills cross configuration when compared to existing imaging riometer systems.
NASA Technical Reports Server (NTRS)
Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.
1973-01-01
Digital image processing, image recorders, high-density digital data recorders, and data system element processing for use in an Earth Resources Survey image data processing system are studied. Loading to various ERS systems is also estimated by simulation.
CR digital mammography: an affordable entry.
Fischer, Cathy
2006-01-01
CR full-field digital mammography (FFDM) has been used extensively in other countries, and it was one of the 4 digital mammography technologies employed in the Digital Mammographic Imaging Screening Trial. Affordability and easy integration with pre-existing mammography systems makes CR FFDM an attractive way to secure the advantages of filmless mammography imaging. CR mammography is true digital mammography--it is merely a different way of acquiring the image. The FDA has recently approved the first CR FFDM system for sale in the United States. At Gundersen Lutheran Health System (La Crosse, Wisconsin), CR FFDM is the most practical technology for realizing the potential everyday clinical benefits of filmless mammography imaging.
Bochmann, Monika; Ludewig, E; Pees, M
2011-01-01
A conventional high-resolution screen-film system (Film Kodak MIN-R S, Kodak MIN-R 2000) was compared with an indirect digital detector system (Varian PaxScan 4030E) for use in radiography of lizards. A total of 20 bearded dragons (Pogona vitticeps ) with body masses between 123 g and 487 g were investigated by using conventional and digital image acquisition techniques. The digital image was taken with the same dose as well as half the dose of the conventional radiograph. The study was conducted semi-blinded as the x-ray images were encoded and randomised. Five veterinarians with clinical experience in reptile medicine served as observers. Exactly defined structures in three anatomical regions were assessed using a three-step scale. Furthermore, the overall quality of the respective region was evaluated using a five-step scale. Evaluation of the data was done by visual grading analysis. None of the structures examined was assessed to be of significantly inferior quality on the digital images in comparison to the conventional radiographs. The majority of the results demonstrated an equal quality of both systems. For assessment of the lung tissue and the pulmonary vessels as well as the overall assessment of the lung, the digital radiographs with full dose were rated to be significantly superior in comparison to the film-screen system. Furthermore, the joint contours of the shoulder and cubital joints and the overall assessments of the humerus and the caudal coelomic cavity were rated significantly better on digital images with full dose compared to those with reduced dose. The digital flat panel detector technique examined in this study is equal or superior to the conventional high-resolution screen-film system used. Nevertheless, the practicability of a dose reduction is limited in bearded dragons. Digital imaging systems are progressively being used in veterinary practice. The results of the study demonstrate the useful application of the digital detector systems in lizards.
Design of a laser scanner for a digital mammography system.
Rowlands, J A; Taylor, J E
1996-05-01
We have developed a digital readout system for radiographic images using a scanning laser beam. In this system, electrostatic charge images on amorphous selenium (alpha-Se) plates are read out using photo-induced discharge (PID). We discuss the design requirements of a laser scanner for the PID system and describe its construction from commercially available components. The principles demonstrated can be adapted to a variety of digital imaging systems.
Multimodal digital color imaging system for facial skin lesion analysis
NASA Astrophysics Data System (ADS)
Bae, Youngwoo; Lee, Youn-Heum; Jung, Byungjo
2008-02-01
In dermatology, various digital imaging modalities have been used as an important tool to quantitatively evaluate the treatment effect of skin lesions. Cross-polarization color image was used to evaluate skin chromophores (melanin and hemoglobin) information and parallel-polarization image to evaluate skin texture information. In addition, UV-A induced fluorescent image has been widely used to evaluate various skin conditions such as sebum, keratosis, sun damages, and vitiligo. In order to maximize the evaluation efficacy of various skin lesions, it is necessary to integrate various imaging modalities into an imaging system. In this study, we propose a multimodal digital color imaging system, which provides four different digital color images of standard color image, parallel and cross-polarization color image, and UV-A induced fluorescent color image. Herein, we describe the imaging system and present the examples of image analysis. By analyzing the color information and morphological features of facial skin lesions, we are able to comparably and simultaneously evaluate various skin lesions. In conclusion, we are sure that the multimodal color imaging system can be utilized as an important assistant tool in dermatology.
System for objective assessment of image differences in digital cinema
NASA Astrophysics Data System (ADS)
Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek
2014-09-01
There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.
42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... image acquisition, digitization, processing, compression, transmission, display, archiving, and... quality digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object... digital radiographic image files from six or more sample chest radiographs that are of acceptable quality...
42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... image acquisition, digitization, processing, compression, transmission, display, archiving, and... quality digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object... digital radiographic image files from six or more sample chest radiographs that are of acceptable quality...
Abrisham, Seyed Mohammad J.; Bouzarjomehri, Fathollah; Nafisi-Moghadam, Reza; Sobhan, Mohammad R.; Gadimi, Mahdie; Omidvar, Fereshte
2017-01-01
Background: This study has aimed to measure the patient dose in entire spine radiography by EOS system in comparison with the digital radiography. Methods: EOS stereo-radiography was used for frontal and lateral view spine imaging in 41 patients in a prospective analytical study. A calibrated dose area product (DAP) meter was used for calibration of the DAP in EOS system. The accuracy and precision of the system was confirmed according to the acceptance testing. The same procedure was used for 18 patients referred for lumbar spine digital radiology (overall 36 images). Results: Although radiation fields in the EOS were almost twice of that in digital radiology, and the average peak tube voltage (kVp), current supply to the tube (mA), and the average size and age of the patients referred for EOS imaging were greater than digital radiology, however, the average DAP in EOS was 1/5 of that in digital radiology system. Also, the average dose in the EOS was about 1/20 of that in digital radiology. Conclusion: The patient dose in EOS imaging system was lower in comparison with digital radiology (1/20). PMID:28656161
Abrisham, Seyed Mohammad J; Bouzarjomehri, Fathollah; Nafisi-Moghadam, Reza; Sobhan, Mohammad R; Gadimi, Mahdie; Omidvar, Fereshte
2017-05-01
This study has aimed to measure the patient dose in entire spine radiography by EOS system in comparison with the digital radiography. EOS stereo-radiography was used for frontal and lateral view spine imaging in 41 patients in a prospective analytical study. A calibrated dose area product (DAP) meter was used for calibration of the DAP in EOS system. The accuracy and precision of the system was confirmed according to the acceptance testing. The same procedure was used for 18 patients referred for lumbar spine digital radiology (overall 36 images). Although radiation fields in the EOS were almost twice of that in digital radiology, and the average peak tube voltage (kV p ), current supply to the tube (mA), and the average size and age of the patients referred for EOS imaging were greater than digital radiology, however, the average DAP in EOS was 1/5 of that in digital radiology system. Also, the average dose in the EOS was about 1/20 of that in digital radiology. The patient dose in EOS imaging system was lower in comparison with digital radiology (1/20).
Video Imaging System Particularly Suited for Dynamic Gear Inspection
NASA Technical Reports Server (NTRS)
Broughton, Howard (Inventor)
1999-01-01
A digital video imaging system that captures the image of a single tooth of interest of a rotating gear is disclosed. The video imaging system detects the complete rotation of the gear and divide that rotation into discrete time intervals so that each tooth of interest of the gear is precisely determined when it is at a desired location that is illuminated in unison with a digital video camera so as to record a single digital image for each tooth. The digital images are available to provide instantaneous analysis of the tooth of interest, or to be stored and later provide images that yield a history that may be used to predict gear failure, such as gear fatigue. The imaging system is completely automated by a controlling program so that it may run for several days acquiring images without supervision from the user.
42 CFR 37.51 - Interpreting and classifying chest radiographs-digital radiography systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... standard digital chest radiographic images provided for use with the Guidelines for the Use of the ILO... NIOSH-approved standard digital images may be used for classifying digital chest images for pneumoconiosis. Modification of the appearance of the standard images using software tools is not permitted. (d...
Digital radiographic imaging: is the dental practice ready?
Parks, Edwin T
2008-04-01
Digital radiographic imaging is slowly, but surely, replacing film-based imaging. It has many advantages over traditional imaging, but the technology also has some drawbacks. The author presents an overview of the types of digital image receptors available, image enhancement software and the range of costs for the new technology. PRACTICE IMPLICATIONS. The expenses associated with converting to digital radiographic imaging are considerable. The purpose of this article is to provide the clinician with an overview of digital radiographic imaging technology so that he or she can be an informed consumer when evaluating the numerous digital systems in the marketplace.
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
Storage and distribution of pathology digital images using integrated web-based viewing systems.
Marchevsky, Alberto M; Dulbandzhyan, Ronda; Seely, Kevin; Carey, Steve; Duncan, Raymond G
2002-05-01
Health care providers have expressed increasing interest in incorporating digital images of gross pathology specimens and photomicrographs in routine pathology reports. To describe the multiple technical and logistical challenges involved in the integration of the various components needed for the development of a system for integrated Web-based viewing, storage, and distribution of digital images in a large health system. An Oracle version 8.1.6 database was developed to store, index, and deploy pathology digital photographs via our Intranet. The database allows for retrieval of images by patient demographics or by SNOMED code information. The Intranet of a large health system accessible from multiple computers located within the medical center and at distant private physician offices. The images can be viewed using any of the workstations of the health system that have authorized access to our Intranet, using a standard browser or a browser configured with an external viewer or inexpensive plug-in software, such as Prizm 2.0. The images can be printed on paper or transferred to film using a digital film recorder. Digital images can also be displayed at pathology conferences by using wireless local area network (LAN) and secure remote technologies. The standardization of technologies and the adoption of a Web interface for all our computer systems allows us to distribute digital images from a pathology database to a potentially large group of users distributed in multiple locations throughout a large medical center.
Chalazonitis, A N; Koumarianos, D; Tzovara, J; Chronopoulos, P
2003-06-01
Over the past decade, the technology that permits images to be digitized and the reduction in the cost of digital equipment allows quick digital transfer of any conventional radiological film. Images then can be transferred to a personal computer, and several software programs are available that can manipulate their digital appearance. In this article, the fundamentals of digital imaging are discussed, as well as the wide variety of optional adjustments that the Adobe Photoshop 6.0 (Adobe Systems, San Jose, CA) program can offer to present radiological images with satisfactory digital imaging quality.
Digital image processing of bone - Problems and potentials
NASA Technical Reports Server (NTRS)
Morey, E. R.; Wronski, T. J.
1980-01-01
The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.
Processing, mosaicking and management of the Monterey Bay digital sidescan-sonar images
Chavez, P.S.; Isbrecht, J.; Galanis, P.; Gabel, G.L.; Sides, S.C.; Soltesz, D.L.; Ross, Stephanie L.; Velasco, M.G.
2002-01-01
Sidescan-sonar imaging systems with digital capabilities have now been available for approximately 20 years. In this paper we present several of the various digital image processing techniques developed by the U.S. Geological Survey (USGS) and used to apply intensity/radiometric and geometric corrections, as well as enhance and digitally mosaic, sidescan-sonar images of the Monterey Bay region. New software run by a WWW server was designed and implemented to allow very large image data sets, such as the digital mosaic, to be easily viewed interactively, including the ability to roam throughout the digital mosaic at the web site in either compressed or full 1-m resolution. The processing is separated into the two different stages: preprocessing and information extraction. In the preprocessing stage, sensor-specific algorithms are applied to correct for both geometric and intensity/radiometric distortions introduced by the sensor. This is followed by digital mosaicking of the track-line strips into quadrangle format which can be used as input to either visual or digital image analysis and interpretation. An automatic seam removal procedure was used in combination with an interactive digital feathering/stenciling procedure to help minimize tone or seam matching problems between image strips from adjacent track-lines. The sidescan-sonar image processing package is part of the USGS Mini Image Processing System (MIPS) and has been designed to process data collected by any 'generic' digital sidescan-sonar imaging system. The USGS MIPS software, developed over the last 20 years as a public domain package, is available on the WWW at: http://terraweb.wr.usgs.gov/trs/software.html.
Digital Image Analysis System for Monitoring Crack Growth at Elevated Temperature
1988-05-01
The objective of the research work reported here was to develop a new concept, based on Digital Image Analysis , for monitoring the crack-tip position...a 512 x 512 pixel frame. c) Digital Image Analysis software developed to locate and digitize the position of the crack-tip, on the observed image
Enhancement of digital radiography image quality using a convolutional neural network.
Sun, Yuewen; Li, Litao; Cong, Peng; Wang, Zhentao; Guo, Xiaojing
2017-01-01
Digital radiography system is widely used for noninvasive security check and medical imaging examination. However, the system has a limitation of lower image quality in spatial resolution and signal to noise ratio. In this study, we explored whether the image quality acquired by the digital radiography system can be improved with a modified convolutional neural network to generate high-resolution images with reduced noise from the original low-quality images. The experiment evaluated on a test dataset, which contains 5 X-ray images, showed that the proposed method outperformed the traditional methods (i.e., bicubic interpolation and 3D block-matching approach) as measured by peak signal to noise ratio (PSNR) about 1.3 dB while kept highly efficient processing time within one second. Experimental results demonstrated that a residual to residual (RTR) convolutional neural network remarkably improved the image quality of object structural details by increasing the image resolution and reducing image noise. Thus, this study indicated that applying this RTR convolutional neural network system was useful to improve image quality acquired by the digital radiography system.
The x-ray light valve: a low-cost, digital radiographic imaging system-spatial resolution
NASA Astrophysics Data System (ADS)
MacDougall, Robert D.; Koprinarov, Ivaylo; Webster, Christie A.; Rowlands, J. A.
2007-03-01
In recent years, new x-ray radiographic systems based on large area flat panel technology have revolutionized our capability to produce digital x-ray radiographic images. However, these active matrix flat panel imagers (AMFPIs) are extraordinarily expensive compared to the systems they are replacing. Thus there is a need for a low cost digital imaging system for general applications in radiology. Different approaches have been considered to make lower cost, integrated x-ray imaging devices for digital radiography, including: scanned projection x-ray, an integrated approach based on computed radiography technology and optically demagnified x-ray screen/CCD systems. These approaches suffer from either high cost or high mechanical complexity and do not have the image quality of AMFPIs. We have identified a new approach - the X-ray Light Valve (XLV). The XLV has the potential to achieve the immediate readout in an integrated system with image quality comparable to AMFPIs. The XLV concept combines three well-established and hence lowcost technologies: an amorphous selenium (a-Se) layer to convert x-rays to image charge, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. Here we investigate the spatial resolution possible with XLV systems. Both a-Se and LC cells have both been shown separately to have inherently very high spatial resolution. Due to the close electrostatic coupling in the XLV, it can be expected that the spatial resolution of this system will also be very high. A prototype XLV was made and a typical office scanner was used for image digitization. The Modulation Transfer Function was measured and the limiting factor was seen to be the optical scanner. However, even with this limitation the XLV system is able to meet or exceed the resolution requirements for chest radiography.
Interactive Digital Image Manipulation System (IDIMS)
NASA Technical Reports Server (NTRS)
Fleming, M. D.
1981-01-01
The implementation of an interactive digital image manipulation system (IDIMS) is described. The system is run on an HP-3000 Series 3 minicomputer. The IDIMS system provides a complete image geoprocessing capability for raster formatted data in a self-contained system. It is easily installed, documentation is provided, and vendor support is available.
Digital adaptive optics line-scanning confocal imaging system.
Liu, Changgeng; Kim, Myung K
2015-01-01
A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.
Image processing techniques for digital orthophotoquad production
Hood, Joy J.; Ladner, L. J.; Champion, Richard A.
1989-01-01
Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.
Digital image transformation and rectification of spacecraft and radar images
Wu, S.S.C.
1985-01-01
Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.
To zoom or not to zoom: do we have enough pixels?
NASA Astrophysics Data System (ADS)
Youngworth, Richard N.; Herman, Eric
2015-09-01
Common lexicon in imaging systems includes the frequently used term digital zoom. Of course this term is somewhat of a misnomer as there is no actual zooming in such systems. Instead, digital zoom describes the zoom effect that comes with an image rewriting or reprinting that perhaps can be more accurately described as cropping and enlarging an image (a pixel remapping) for viewing. If done properly, users of the overall hybrid digital-optical system do not know the methodology employed. Hence the essential question, pondered and manipulated since the advent of mature digital image science, really becomes "do we have enough pixels to avoid optical zoom." This paper discusses known imaging factors for hybrid digital-optical systems, most notably resolution considerations. The paper is fundamentally about communication, and thereby includes information useful to the greater consumer, technical, and business community who all have an interest in understanding the key technical details that have driven the amazing technology and development of zoom systems.
Levine, Betty A; Ingeholm, Mary Lou; Prior, Fred; Mun, Seong K; Freedman, Matthew; Weissman, David; Attfield, Michael; Wolfe, Anita; Petsonk, Edward
2009-01-01
To protect the health of active U.S. underground coal miners, the National Institute for Occupational Safety and Health (NIOSH) has a mandate to carry out surveillance for coal workers' pneumoconiosis, commonly known as Black Lung (PHS 2001). This is accomplished by reviewing chest x-ray films obtained from miners at approximately 5-year intervals in approved x-ray acquisition facilities around the country. Currently, digital chest images are not accepted. Because most chest x-rays are now obtained in digital format, NIOSH is redesigning the surveillance program to accept and manage digital x-rays. This paper highlights the functional and security requirements for a digital image management system for a surveillance program. It also identifies the operational differences between a digital imaging surveillance network and a clinical Picture Archiving Communication Systems (PACS) or teleradiology system.
NASA Astrophysics Data System (ADS)
Kimpe, Tom; Rostang, Johan; Avanaki, Ali; Espig, Kathryn; Xthona, Albert; Cocuranu, Ioan; Parwani, Anil V.; Pantanowitz, Liron
2014-03-01
Digital pathology systems typically consist of a slide scanner, processing software, visualization software, and finally a workstation with display for visualization of the digital slide images. This paper studies whether digital pathology images can look different when presenting them on different display systems, and whether these visual differences can result in different perceived contrast of clinically relevant features. By analyzing a set of four digital pathology images of different subspecialties on three different display systems, it was concluded that pathology images look different when visualized on different display systems. The importance of these visual differences is elucidated when they are located in areas of the digital slide that contain clinically relevant features. Based on a calculation of dE2000 differences between background and clinically relevant features, it was clear that perceived contrast of clinically relevant features is influenced by the choice of display system. Furthermore, it seems that the specific calibration target chosen for the display system has an important effect on the perceived contrast of clinically relevant features. Preliminary results suggest that calibrating to DICOM GSDF calibration performed slightly worse than sRGB, while a new experimental calibration target CSDF performed better than both DICOM GSDF and sRGB. This result is promising as it suggests that further research work could lead to better definition of an optimized calibration target for digital pathology images resulting in a positive effect on clinical performance.
A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.
Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo
2015-01-01
The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images.
A flexible, open, decentralized system for digital pathology networks.
Schuler, Robert; Smith, David E; Kumaraguruparan, Gowri; Chervenak, Ann; Lewis, Anne D; Hyde, Dallas M; Kesselman, Carl
2012-01-01
High-resolution digital imaging is enabling digital archiving and sharing of digitized microscopy slides and new methods for digital pathology. Collaborative research centers, outsourced medical services, and multi-site organizations stand to benefit from sharing pathology data in a digital pathology network. Yet significant technological challenges remain due to the large size and volume of digitized whole slide images. While information systems do exist for managing local pathology laboratories, they tend to be oriented toward narrow clinical use cases or offer closed ecosystems around proprietary formats. Few solutions exist for networking digital pathology operations. Here we present a system architecture and implementation of a digital pathology network and share results from a production system that federates major research centers.
A Flexible, Open, Decentralized System for Digital Pathology Networks
SMITH, David E.; KUMARAGURUPARAN, Gowri; CHERVENAK, Ann; LEWIS, Anne D.; HYDE, Dallas M.; KESSELMAN, Carl
2014-01-01
High-resolution digital imaging is enabling digital archiving and sharing of digitized microscopy slides and new methods for digital pathology. Collaborative research centers, outsourced medical services, and multi-site organizations stand to benefit from sharing pathology data in a digital pathology network. Yet significant technological challenges remain due to the large size and volume of digitized whole slide images. While information systems do exist for managing local pathology laboratories, they tend to be oriented toward narrow clinical use cases or offer closed ecosystems around proprietary formats. Few solutions exist for networking digital pathology operations. Here we present a system architecture and implementation of a digital pathology network and share results from a production system that federates major research centers. PMID:22941985
A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture
NASA Astrophysics Data System (ADS)
Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.
2017-12-01
This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.
Picture archiving and communication system--Part one: Filmless radiology and distance radiology.
De Backer, A I; Mortelé, K J; De Keulenaer, B L
2004-01-01
Picture archiving and communication system (PACS) is a collection of technologies used to carry out digital medical imaging. PACS is used to digitally acquire medical images from the various modalities, such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and digital projection radiography. The image data and pertinent information are transmitted to other and possibly remote locations over networks, where they may be displayed on computer workstations for soft copy viewing in multiple locations, thus permitting simultaneous consultations and almost instant reporting from radiologists at a distance. Data are secured and archived on digital media such as optical disks or tape, and may be automatically retrieved as necessary. Close integration with the hospital information system (HIS)--radiology information system (RIS) is critical for system functionality. Medical image management systems are maturing, providing access outside of the radiology department to images throughout the hospital via the Ethernet, at different hospitals, or from a home workstation if teleradiology has been implemented.
Imagers for digital still photography
NASA Astrophysics Data System (ADS)
Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge
2006-04-01
This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.
Fink, Christian; Hallscheidt, Peter J; Noeldge, Gerd; Kampschulte, Annette; Radeleff, Boris; Hosch, Waldemar P; Kauffmann, Günter W; Hansmann, Jochen
2002-02-01
The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.
NASA Astrophysics Data System (ADS)
Green, John R.; Robinson, Timothy
2015-05-01
There is a growing interest in developing helmet-mounted digital imaging systems (HMDIS) for integration into military aircraft cockpits. This interest stems from the multiple advantages of digital vs. analog imaging such as image fusion from multiple sensors, data processing to enhance the image contrast, superposition of non-imaging data over the image, and sending images to remote location for analysis. There are several properties an HMDIS must have in order to aid the pilot during night operations. In addition to the resolution, image refresh rate, dynamic range, and sensor uniformity over the entire Focal Plane Array (FPA); the imaging system must have the sensitivity to detect the limited night light available filtered through cockpit transparencies. Digital sensor sensitivity is generally measured monochromatically using a laser with a wavelength near the peak detector quantum efficiency, and is generally reported as either the Noise Equivalent Power (NEP) or Noise Equivalent Irradiance (NEI). This paper proposes a test system that measures NEI of Short-Wave Infrared (SWIR) digital imaging systems using a broadband source that simulates the night spectrum. This method has a few advantages over a monochromatic method. Namely, the test conditions provide spectrum closer to what is experienced by the end-user, and the resulting NEI may be compared directly to modeled night glow irradiance calculation. This comparison may be used to assess the Technology Readiness Level of the imaging system for the application. The test system is being developed under a Cooperative Research and Development Agreement (CRADA) with the Air Force Research Laboratory.
42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... effective management, safety, and proper performance of chest image acquisition, digitization, processing... digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object (e.g... radiographic image files from six or more sample chest radiographs that are of acceptable quality to one or...
Gennaro, G; Ballaminut, A; Contento, G
2017-09-01
This study aims to illustrate a multiparametric automatic method for monitoring long-term reproducibility of digital mammography systems, and its application on a large scale. Twenty-five digital mammography systems employed within a regional screening programme were controlled weekly using the same type of phantom, whose images were analysed by an automatic software tool. To assess system reproducibility levels, 15 image quality indices (IQIs) were extracted and compared with the corresponding indices previously determined by a baseline procedure. The coefficients of variation (COVs) of the IQIs were used to assess the overall variability. A total of 2553 phantom images were collected from the 25 digital mammography systems from March 2013 to December 2014. Most of the systems showed excellent image quality reproducibility over the surveillance interval, with mean variability below 5%. Variability of each IQI was 5%, with the exception of one index associated with the smallest phantom objects (0.25 mm), which was below 10%. The method applied for reproducibility tests-multi-detail phantoms, cloud automatic software tool to measure multiple image quality indices and statistical process control-was proven to be effective and applicable on a large scale and to any type of digital mammography system. • Reproducibility of mammography image quality should be monitored by appropriate quality controls. • Use of automatic software tools allows image quality evaluation by multiple indices. • System reproducibility can be assessed comparing current index value with baseline data. • Overall system reproducibility of modern digital mammography systems is excellent. • The method proposed and applied is cost-effective and easily scalable.
An automated system for whole microscopic image acquisition and analysis.
Bueno, Gloria; Déniz, Oscar; Fernández-Carrobles, María Del Milagro; Vállez, Noelia; Salido, Jesús
2014-09-01
The field of anatomic pathology has experienced major changes over the last decade. Virtual microscopy (VM) systems have allowed experts in pathology and other biomedical areas to work in a safer and more collaborative way. VMs are automated systems capable of digitizing microscopic samples that were traditionally examined one by one. The possibility of having digital copies reduces the risk of damaging original samples, and also makes it easier to distribute copies among other pathologists. This article describes the development of an automated high-resolution whole slide imaging (WSI) system tailored to the needs and problems encountered in digital imaging for pathology, from hardware control to the full digitization of samples. The system has been built with an additional digital monochromatic camera together with the color camera by default and LED transmitted illumination (RGB). Monochrome cameras are the preferred method of acquisition for fluorescence microscopy. The system is able to digitize correctly and form large high resolution microscope images for both brightfield and fluorescence. The quality of the digital images has been quantified using three metrics based on sharpness, contrast and focus. It has been proved on 150 tissue samples of brain autopsies, prostate biopsies and lung cytologies, at five magnifications: 2.5×, 10×, 20×, 40×, and 63×. The article is focused on the hardware set-up and the acquisition software, although results of the implemented image processing techniques included in the software and applied to the different tissue samples are also presented. © 2014 Wiley Periodicals, Inc.
High-speed laser photoacoustic imaging system combined with a digital ultrasonic imaging platform
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Liu, Guodong; Ji, Xuanrong; Ren, Zhong; Huang, Zhen
2009-07-01
As a new field of combined ultrasound/photoacoustic imaging in biomedical photonics research, we present and demonstrate a high-speed laser photoacoustic imaging system combined with digital ultrasound imaging platform. In the prototype system, a new B-mode digital ultrasonic imaging system is modified as the hardware platform with 384 vertical transducer elements. The centre resonance frequency of the piezoelectric transducer is 5.0 MHz with greater than 70% pulse-echo -6dB fractional bandwidth. The modular instrument of PCI-6541 is used as the hardware control centre of the testing system, which features 32 high-speed channels to build low-skew and multi-channel system. The digital photoacoustic data is transported into computer for subsequent reconstruction at 25 MHz clock frequency. Meantime, the software system for controlling and analyzing is correspondingly explored with LabVIEW language on virtual instrument platform. In the breast tissue experiment, the reconstructed image agrees well with the original sample, and the spatial resolution of the system can reach 0.2 mm with multi-element synthetic aperture focusing technique. Therefore, the system and method may have a significant value in improving early detecting level of cancer in the breast and other organs.
Hanna, Matthew G; Monaco, Sara E; Cuda, Jacqueline; Xing, Juan; Ahmed, Ishtiaque; Pantanowitz, Liron
2017-09-01
Whole-slide imaging in cytology is limited when glass slides are digitized without z-stacks for focusing. Different vendors have started to provide z-stacking solutions to overcome this limitation. The Panoptiq imaging system allows users to create digital files combining low-magnification panoramic images with regions of interest (ROIs) that are imaged with high-magnification z-stacks. The aim of this study was to compare such panoramic images with conventional whole-slide images and glass slides for the tasks of screening and interpretation in cytopathology. Thirty glass slides, including 10 ThinPrep Papanicolaou tests and 20 nongynecologic cytology cases, were digitized with an Olympus BX45 integrated microscope with an attached Prosilica GT camera. ViewsIQ software was used for image acquisition and viewing. These glass slides were also scanned on an Aperio ScanScope XT at ×40 (0.25 μm/pixel) with 1 z-plane and were viewed with ImageScope software. Digital and glass sides were screened and dotted/annotated by a cytotechnologist and were subsequently reviewed by 3 cytopathologists. For panoramic images, the cytotechnologist manually created digital maps and selected representative ROIs to generate z-stacks at a higher magnification. After 3-week washout periods, panoramic images were compared with Aperio digital slides and glass slides. The Panoptiq system permitted fine focusing of thick smears and cell clusters. In comparison with glass slides, the average screening times were 5.5 and 1.8 times longer with Panoptiq and Aperio images, respectively, but this improved with user experience. There was no statistical difference in diagnostic concordance between all 3 modalities. Users' diagnostic confidence was also similar for all modalities. The Aperio whole-slide scanner with 1 z-plane scanning and the Panoptiq imaging system with z-stacking are both suitable for cytopathology screening and interpretation. However, ROI z-stacks do offer a superior mechanism for overcoming focusing problems commonly encountered with digital cytology slides. Unlike whole-slide imaging, the acquisition of representative z-stack images with the Panoptiq system requires a trained cytologist to create digital files. Cancer Cytopathol 2017;125:701-9. © 2017 American Cancer Society. © 2017 American Cancer Society.
Image Acquisition and Quality in Digital Radiography.
Alexander, Shannon
2016-09-01
Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. ©2016 American Society of Radiologic Technologists.
[Improvement of Digital Capsule Endoscopy System and Image Interpolation].
Zhao, Shaopeng; Yan, Guozheng; Liu, Gang; Kuang, Shuai
2016-01-01
Traditional capsule image collects and transmits analog image, with weak anti-interference ability, low frame rate, low resolution. This paper presents a new digital image capsule, which collects and transmits digital image, with frame rate up to 30 frames/sec and pixels resolution of 400 x 400. The image is compressed in the capsule, and is transmitted to the outside of the capsule for decompression and interpolation. A new type of interpolation algorithm is proposed, which is based on the relationship between the image planes, to obtain higher quality colour images. capsule endoscopy, digital image, SCCB protocol, image interpolation
Update Of The ACR-NEMA Standard Committee
NASA Astrophysics Data System (ADS)
Wang, Yen; Best, D. E.; Morse, R. R.; Horii, S. C.; Lehr, J. L.; Lodwick, G. S.; Fuscoe, C.; Nelson, O. L.; Perry, J. R.; Thompson, B. G.; Wessell, W. R.
1988-06-01
In January, 1984, the American College of Radiology (ACR) representing the users of imaging equipment and the National Electrical Manufacturers Association (NEMA) representing the manufacturers of imaging equipment joined forces to create a committee that could solve the compatibility issues surrounding the exchange of digital medical images. This committee, the ACR-NEMA Digital Imaging and Communication Standards Committee was composed of radiologists and experts from industry who addressed the problems involved in interfacing different digital imaging modalities. In just two years, the committee and three of its working groups created an industry standard interface, ACR-NEMA Digital Imaging and Communications Standard, Publication No. 300-1985. The ACR-NEMA interface allows digital medical images and related information to be communicated between different imaging devices, regardless of manufacturer or use of differing image formats. The interface is modeled on the International Standards Organization's Open Systems Interconnection sever-layer reference model. It is believed that the development of the Interface was the first step in the development of standards for Medical Picture Archiving and Communications Systems (PACS). Developing the interface Standard has required intensive technical analysis and examination of the future trends for digital imaging in order to design a model which would not be quickly outmoded. To continue the enhancement and future development of image management systems, various working groups have been created under the direction of the ACR-NEMA Committee.
An exposure indicator for digital radiography: AAPM Task Group 116 (executive summary).
Shepard, S Jeff; Wang, Jihong; Flynn, Michael; Gingold, Eric; Goldman, Lee; Krugh, Kerry; Leong, David L; Mah, Eugene; Ogden, Kent; Peck, Donald; Samei, Ehsan; Wang, Jihong; Willis, Charles E
2009-07-01
Digital radiographic imaging systems, such as those using photostimulable storage phosphor, amorphous selenium, amorphous silicon, CCD, and MOSFET technology, can produce adequate image quality over a much broader range of exposure levels than that of screen/film imaging systems. In screen/film imaging, the final image brightness and contrast are indicative of over- and underexposure. In digital imaging, brightness and contrast are often determined entirely by digital postprocessing of the acquired image data. Overexposure and underexposures are not readily recognizable. As a result, patient dose has a tendency to gradually increase over time after a department converts from screen/film-based imaging to digital radiographic imaging. The purpose of this report is to recommend a standard indicator which reflects the radiation exposure that is incident on a detector after every exposure event and that reflects the noise levels present in the image data. The intent is to facilitate the production of consistent, high quality digital radiographic images at acceptable patient doses. This should be based not on image optical density or brightness but on feedback regarding the detector exposure provided and actively monitored by the imaging system. A standard beam calibration condition is recommended that is based on RQA5 but uses filtration materials that are commonly available and simple to use. Recommendations on clinical implementation of the indices to control image quality and patient dose are derived from historical tolerance limits and presented as guidelines.
An exposure indicator for digital radiography: AAPM Task Group 116 (Executive Summary)
Shepard, S. Jeff; Wang, Jihong; Flynn, Michael; Gingold, Eric; Goldman, Lee; Krugh, Kerry; Leong, David L.; Mah, Eugene; Ogden, Kent; Peck, Donald; Samei, Ehsan; Wang, Jihong; Willis, Charles E.
2009-01-01
Digital radiographic imaging systems, such as those using photostimulable storage phosphor, amorphous selenium, amorphous silicon, CCD, and MOSFET technology, can produce adequate image quality over a much broader range of exposure levels than that of screen/film imaging systems. In screen/film imaging, the final image brightness and contrast are indicative of over- and underexposure. In digital imaging, brightness and contrast are often determined entirely by digital postprocessing of the acquired image data. Overexposure and underexposures are not readily recognizable. As a result, patient dose has a tendency to gradually increase over time after a department converts from screen/film-based imaging to digital radiographic imaging. The purpose of this report is to recommend a standard indicator which reflects the radiation exposure that is incident on a detector after every exposure event and that reflects the noise levels present in the image data. The intent is to facilitate the production of consistent, high quality digital radiographic images at acceptable patient doses. This should be based not on image optical density or brightness but on feedback regarding the detector exposure provided and actively monitored by the imaging system. A standard beam calibration condition is recommended that is based on RQA5 but uses filtration materials that are commonly available and simple to use. Recommendations on clinical implementation of the indices to control image quality and patient dose are derived from historical tolerance limits and presented as guidelines. PMID:19673189
Digital processing of radiographic images from PACS to publishing.
Christian, M E; Davidson, H C; Wiggins, R H; Berges, G; Cannon, G; Jackson, G; Chapman, B; Harnsberger, H R
2001-03-01
Several studies have addressed the implications of filmless radiologic imaging on telemedicine, diagnostic ability, and electronic teaching files. However, many publishers still require authors to submit hard-copy images for publication of articles and textbooks. This study compares the quality digital images directly exported from picture archive and communications systems (PACS) to images digitized from radiographic film. The authors evaluated the quality of publication-grade glossy photographs produced from digital radiographic images using 3 different methods: (1) film images digitized using a desktop scanner and then printed, (2) digital images obtained directly from PACS then printed, and (3) digital images obtained from PACS and processed to improve sharpness prior to printing. Twenty images were printed using each of the 3 different methods and rated for quality by 7 radiologists. The results were analyzed for statistically significant differences among the image sets. Subjective evaluations of the filmless images found them to be of equal or better quality than the digitized images. Direct electronic transfer of PACS images reduces the number of steps involved in creating publication-quality images as well as providing the means to produce high-quality radiographic images in a digital environment.
Spectrally Adaptable Compressive Sensing Imaging System
2014-05-01
signal recovering [?, ?]. The time-varying coded apertures can be implemented using micro-piezo motors [?] or through the use of Digital Micromirror ...feasibility of this testbed by developing a Digital- Micromirror -Device-based Snapshot Spectral Imaging (DMD-SSI) system, which implements CS measurement...Y. Wu, I. O. Mirza, G. R. Arce, and D. W. Prather, ”Development of a digital- micromirror - device- based multishot snapshot spectral imaging
Digital imaging for dental caries.
Wenzel, A
2000-04-01
Laboratory studies show that digital intraoral radiography systems are as accurate as dental film for the detection of caries when a good-quality image is obtained, although more re-takes might be necessary because of positioning errors with the digital systems, particularly the charge-coupled device sensors. The phosphor plate is more comfortable for the patient than nondigital systems, and the dose can be further reduced with the storage phosphors. Cross-contamination does not pose a problem with digital systems if simple hygiene procedures are observed.
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Freedman, Matthew T.; Gelish, Anthony; de Treville, Robert E.; Sheehy, Monet R.; Hansen, Mark; Hill, Mac; Zacharia, Elisabeth; Sullivan, Michael J.; Sebera, C. Wayne
1993-01-01
Image management and communications (IMAC) network, also known as picture archiving and communication system (PACS) consists of (1) digital image acquisition, (2) image review station (3) image storage device(s), image reading workstation, and (4) communication capability. When these subsystems are integrated over a high speed communication technology, possibilities are numerous in improving the timeliness and quality of diagnostic services within a hospital or at remote clinical sites. Teleradiology system uses basically the same hardware configuration together with a long distance communication capability. Functional characteristics of components are highlighted. Many medical imaging systems are already in digital form. These digital images constitute approximately 30% of the total volume of images produced in a radiology department. The remaining 70% of images include conventional x-ray films of the chest, skeleton, abdomen, and GI tract. Unless one develops a method of handling these conventional film images, global improvement in productivity in image management and radiology service throughout a hospital cannot be achieved. Currently, there are two method of producing digital information representing these conventional analog images for IMAC: film digitizers that scan the conventional films, and computed radiography (CR) that captures x-ray images using storage phosphor plate that is subsequently scanned by a laser beam.
Wilson, A J; Hodge, J C
1995-08-01
To evaluate the diagnostic performance of a teleradiology system in skeletal trauma. Radiographs from 180 skeletal trauma patients were digitized (matrix, 2,000 x 2,500) and transmitted to a remote digital viewing console (1,200-line monitor). Four radiologists interpreted both the original film images and digital images. Each reader was asked to identify, locate, and characterize fractures and dislocations. Receiver operating characteristic curves were generated, and the results of the original and digitized film readings were compared. All readers performed better with the original film when interpreting fractures. Although the patterns varied between readers, all had statistically significant differences (P < .01) for the two image types. There was no statistically significant difference in performance with the two images when dislocations were diagnosed. The system tested is not a satisfactory alternative to the original radiograph for routine reading of fracture films.
Clegg, G; Roebuck, S; Steedman, D
2001-01-01
Objectives—To develop a computer based storage system for clinical images—radiographs, photographs, ECGs, text—for use in teaching, training, reference and research within an accident and emergency (A&E) department. Exploration of methods to access and utilise the data stored in the archive. Methods—Implementation of a digital image archive using flatbed scanner and digital camera as capture devices. A sophisticated coding system based on ICD 10. Storage via an "intelligent" custom interface. Results—A practical solution to the problems of clinical image storage for teaching purposes. Conclusions—We have successfully developed a digital image capture and storage system, which provides an excellent teaching facility for a busy A&E department. We have revolutionised the practice of the "hand-over meeting". PMID:11435357
The application of digital image plane holography technology to identify Chinese herbal medicine
NASA Astrophysics Data System (ADS)
Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui
2012-03-01
In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.
Track analysis of laser-illuminated etched track detectors using an opto-digital imaging system
NASA Astrophysics Data System (ADS)
Eghan, Moses J.; Buah-Bassuah, Paul K.; Oppon, Osborne C.
2007-11-01
An opto-digital imaging system for counting and analysing tracks on a LR-115 detector is described. One batch of LR-115 track detectors was irradiated with Am-241 for a determined period and distance for linearity test and another batch was exposed to radon gas. The laser-illuminated etched track detector area was imaged, digitized and analysed by the system. The tracks that were counted on the opto-digital system with the aid of media cybernetics software as well as spark gap counter showed comparable track density results ranging between 1500 and 2750 tracks cm-2 and 65 tracks cm-2 in the two different batch detector samples with 0.5% and 1% track counts, respectively. Track sizes of the incident alpha particles from the radon gas on the LR-115 detector demonstrating different track energies are statistically and graphically represented. The opto-digital imaging system counts and measures other track parameters at an average process time of 3-5 s.
Digital Image Processing in Private Industry.
ERIC Educational Resources Information Center
Moore, Connie
1986-01-01
Examines various types of private industry optical disk installations in terms of business requirements for digital image systems in five areas: records management; transaction processing; engineering/manufacturing; information distribution; and office automation. Approaches for implementing image systems are addressed as well as key success…
A study for watermark methods appropriate to medical images.
Cho, Y; Ahn, B; Kim, J S; Kim, I Y; Kim, S I
2001-06-01
The network system, including the picture archiving and communication system (PACS), is essential in hospital and medical imaging fields these days. Many medical images are accessed and processed on the web, as well as in PACS. Therefore, any possible accidents caused by the illegal modification of medical images must be prevented. Digital image watermark techniques have been proposed as a method to protect against illegal copying or modification of copyrighted material. Invisible signatures made by a digital image watermarking technique can be a solution to these problems. However, medical images have some different characteristics from normal digital images in that one must not corrupt the information contained in the original medical images. In this study, we suggest modified watermark methods appropriate for medical image processing and communication system that prevent clinically important data contained in original images from being corrupted.
Digital video system for on-line portal verification
NASA Astrophysics Data System (ADS)
Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott
1990-07-01
A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.
Digital radiography: spatial and contrast resolution
NASA Astrophysics Data System (ADS)
Bjorkholm, Paul; Annis, M.; Frederick, E.; Stein, J.; Swift, R.
1981-07-01
The addition of digital image collection and storage to standard and newly developed x-ray imaging techniques has allowed spectacular improvements in some diagnostic procedures. There is no reason to expect that the developments in this area are yet complete. But no matter what further developments occur in this field, all the techniques will share a common element, digital image storage and processing. This common element alone determines some of the important imaging characteristics. These will be discussed using one system, the Medical MICRODOSE System as an example.
Pisano, Etta D.; Acharyya, Suddhasatta; Cole, Elodia B.; Marques, Helga S.; Yaffe, Martin J.; Blevins, Meredith; Conant, Emily F.; Hendrick, R. Edward; Baum, Janet K.; Fajardo, Laurie L.; Jong, Roberta A.; Koomen, Marcia A.; Kuzmiak, Cherie M.; Lee, Yeonhee; Pavic, Dag; Yoon, Sora C.; Padungchaichote, Wittaya; Gatsonis, Constantine
2009-01-01
Purpose: To determine which factors contributed to the Digital Mammographic Imaging Screening Trial (DMIST) cancer detection results. Materials and Methods: This project was HIPAA compliant and institutional review board approved. Seven radiologist readers reviewed the film hard-copy (screen-film) and digital mammograms in DMIST cancer cases and assessed the factors that contributed to lesion visibility on both types of images. Two multinomial logistic regression models were used to analyze the combined and condensed visibility ratings assigned by the readers to the paired digital and screen-film images. Results: Readers most frequently attributed differences in DMIST cancer visibility to variations in image contrast—not differences in positioning or compression—between digital and screen-film mammography. The odds of a cancer being more visible on a digital mammogram—rather than being equally visible on digital and screen-film mammograms—were significantly greater for women with dense breasts than for women with nondense breasts, even with the data adjusted for patient age, lesion type, and mammography system (odds ratio, 2.28; P < .0001). The odds of a cancer being more visible at digital mammography—rather than being equally visible at digital and screen-film mammography—were significantly greater for lesions imaged with the General Electric digital mammography system than for lesions imaged with the Fischer (P = .0070) and Fuji (P = .0070) devices. Conclusion: The significantly better diagnostic accuracy of digital mammography, as compared with screen-film mammography, in women with dense breasts demonstrated in the DMIST was most likely attributable to differences in image contrast, which were most likely due to the inherent system performance improvements that are available with digital mammography. The authors conclude that the DMIST results were attributable primarily to differences in the display and acquisition characteristics of the mammography devices rather than to reader variability. PMID:19703878
Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J A
2008-03-01
New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed-the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks.
Comprehensive Digital Imaging Network Project At Georgetown University Hospital
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert
1987-10-01
The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.
Clinical performance of a prototype flat-panel digital detector for general radiography
NASA Astrophysics Data System (ADS)
Huda, Walter; Scalzetti, Ernest M.; Roskopf, Marsha L.; Geiger, Robert
2001-08-01
Digital radiographs obtained using a prototype Digital Radiography System (Stingray) were compared with those obtained using conventional screen-film. Forty adult volunteers each had two identical radiographs taken at the same level of radiation exposure, one using screen-film and the other the digital detector. Each digital image was processed by hand to ensure that the printed quality was optimal. Ten radiologists compared the diagnostic image quality of the digital images with the corresponding film radiographs using a seven point ranking scheme.
Yanagita, Satoshi; Imahana, Masato; Suwa, Kazuaki; Sugimura, Hitomi; Nishiki, Masayuki
2016-01-01
Japanese Society of Radiological Technology (JSRT) standard digital image database contains many useful cases of chest X-ray images, and has been used in many state-of-the-art researches. However, the pixel values of all the images are simply digitized as relative density values by utilizing a scanned film digitizer. As a result, the pixel values are completely different from the standardized display system input value of digital imaging and communications in medicine (DICOM), called presentation value (P-value), which can maintain a visual consistency when observing images using different display luminance. Therefore, we converted all the images from JSRT standard digital image database to DICOM format followed by the conversion of the pixel values to P-value using an original program developed by ourselves. Consequently, JSRT standard digital image database has been modified so that the visual consistency of images is maintained among different luminance displays.
Texture Analysis and Cartographic Feature Extraction.
1985-01-01
Investigations into using various image descriptors as well as developing interactive feature extraction software on the Digital Image Analysis Laboratory...system. Originator-supplied keywords: Ad-Hoc image descriptor; Bayes classifier; Bhattachryya distance; Clustering; Digital Image Analysis Laboratory
What Is A Picture Archiving And Communication System (PACS)?
NASA Astrophysics Data System (ADS)
Marceau, Carla
1982-01-01
A PACS is a digital system for acquiring, storing, moving and displaying picture or image information. It is an alternative to film jackets that has been made possible by recent breakthroughs in computer technology: telecommunications, local area nets and optical disks. The fundamental concept of the digital representation of image information is introduced. It is shown that freeing images from a material representation on film or paper leads to a dramatic increase in flexibility in our use of the images. The ultimate goal of a medical PACS system is a radiology department without film jackets. The inherent nature of digital images and the power of the computer allow instant free "copies" of images to be made and thrown away. These copies can be transmitted to distant sites in seconds, without the "original" ever leaving the archives of the radiology department. The result is a radiology department with much freer access to patient images and greater protection against lost or misplaced image information. Finally, images in digital form can be treated as data for the computer in image processing, which includes enhancement, reconstruction and even computer-aided analysis.
Image processing for a tactile/vision substitution system using digital CNN.
Lin, Chien-Nan; Yu, Sung-Nien; Hu, Jin-Cheng
2006-01-01
In view of the parallel processing and easy implementation properties of CNN, we propose to use digital CNN as the image processor of a tactile/vision substitution system (TVSS). The digital CNN processor is used to execute the wavelet down-sampling filtering and the half-toning operations, aiming to extract important features from the images. A template combination method is used to embed the two image processing functions into a single CNN processor. The digital CNN processor is implemented on an intellectual property (IP) and is implemented on a XILINX VIRTEX II 2000 FPGA board. Experiments are designated to test the capability of the CNN processor in the recognition of characters and human subjects in different environments. The experiments demonstrates impressive results, which proves the proposed digital CNN processor a powerful component in the design of efficient tactile/vision substitution systems for the visually impaired people.
Digital Longitudinal Tomosynthesis
NASA Astrophysics Data System (ADS)
Rimkus, Daniel Steven
1985-12-01
The purpose of this dissertation was to investigate the clinical utility of digital longitudinal tomosynthesis in radiology. By acquiring a finite group of digital images during a longitudinal tomographic exposure, and processing these images, tomographic planes, other than the fulcrum plane, can be reconstructed. This process is now termed "tomosynthesis". A prototype system utilizing this technique was developed. Both phantom and patient studies were done with this system. The phantom studies were evaluated by subjective, visual criterion and by quantitative analysis of edge sharpness and noise in the reconstructions. Two groups of patients and one volunteer were studied. The first patient group consisted of 8 patients undergoing intravenous urography (IVU). These patients had digital tomography and film tomography of the abdomen. The second patient group consisted of 4 patients with lung cancer admitted to the hospital for laser resection of endobronchial tumor. These patients had mediastinal digital tomograms to evaluate the trachea and mainstem bronchi. The knee of one volunteer was imaged by film tomography and digital tomography. The results of the phantom studies showed that the digital reconstructions accurately produced images of the desired planes. The edge sharpness of the reconstructions approached that of the acquired images. Adequate reconstructions were achieved with as few as 5 images acquired during the exposure, with the quality of the reconstructions improving as the number of images acquired increased. The IVU patients' digital studies had less contrast and spatial resolution than the film tomograms. The single renal lesion visible on the film tomograms was also visible in the digital images. The digital mediastinal studies were felt by several radiologists to be superior to a standard chest xray in evaluating the airways. The digital images of the volunteer's knee showed many of the same anatomic features as the film tomogram, but the digital images had less spatial and contrast resolution. With the equipment improvements discussed in the thesis, digital tomography may have an important role in radiology.
78 FR 78959 - Privacy Act of 1974; System of Records Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... allergies i. History of present illness and reported past medical history j. Digital Images of patient and non-medical attendant for Identification k. Digital images, audio or video used for medical assessment.... Patient Acuity, health status f. Digital Images of patient and non-medical attendant for Identification g...
Digital image analysis: improving accuracy and reproducibility of radiographic measurement.
Bould, M; Barnard, S; Learmonth, I D; Cunningham, J L; Hardy, J R
1999-07-01
To assess the accuracy and reproducibility of a digital image analyser and the human eye, in measuring radiographic dimensions. We experimentally compared radiographic measurement using either an image analyser system or the human eye with digital caliper. The assessment of total hip arthroplasty wear from radiographs relies on both the accuracy of radiographic images and the accuracy of radiographic measurement. Radiographs were taken of a slip gauge (30+/-0.00036 mm) and slip gauge with a femoral stem. The projected dimensions of the radiographic images were calculated by trigonometry. The radiographic dimensions were then measured by blinded observers using both techniques. For a single radiograph, the human eye was accurate to 0.26 mm and reproducible to +/-0.1 mm. In comparison the digital image analyser system was accurate to 0.01 mm with a reproducibility of +/-0.08 mm. In an arthroplasty model, where the dimensions of an object were corrected for magnification by the known dimensions of a femoral head, the human eye was accurate to 0.19 mm, whereas the image analyser system was accurate to 0.04 mm. The digital image analysis system is up to 20 times more accurate than the human eye, and in an arthroplasty model the accuracy of measurement increases four-fold. We believe such image analysis may allow more accurate and reproducible measurement of wear from standard follow-up radiographs.
Weinstein, Ronald S; Graham, Anna R; Lian, Fangru; Braunhut, Beth L; Barker, Gail R; Krupinski, Elizabeth A; Bhattacharyya, Achyut K
2012-04-01
Telepathology, the distant service component of digital pathology, is a growth industry. The word "telepathology" was introduced into the English Language in 1986. Initially, two different, competing imaging modalities were used for telepathology. These were dynamic (real time) robotic telepathology and static image (store-and-forward) telepathology. In 1989, a hybrid dynamic robotic/static image telepathology system was developed in Norway. This hybrid imaging system bundled these two primary pathology imaging modalities into a single multi-modality pathology imaging system. Similar hybrid systems were subsequently developed and marketed in other countries as well. It is noteworthy that hybrid dynamic robotic/static image telepathology systems provided the infrastructure for the first truly sustainable telepathology services. Since then, impressive progress has been made in developing another telepathology technology, so-called "virtual microscopy" telepathology (also called "whole slide image" telepathology or "WSI" telepathology). Over the past decade, WSI has appeared to be emerging as the preferred digital telepathology digital imaging modality. However, recently, there has been a re-emergence of interest in dynamic-robotic telepathology driven, in part, by concerns over the lack of a means for up-and-down focusing (i.e., Z-axis focusing) using early WSI processors. In 2010, the initial two U.S. patents for robotic telepathology (issued in 1993 and 1994) expired enabling many digital pathology equipment companies to incorporate dynamic-robotic telepathology modules into their WSI products for the first time. The dynamic-robotic telepathology module provided a solution to the up-and-down focusing issue. WSI and dynamic robotic telepathology are now, rapidly, being bundled into a new class of telepathology/digital pathology imaging system, the "WSI-enhanced dynamic robotic telepathology system". To date, six major WSI processor equipment companies have embraced the approach and developed WSI-enhanced dynamic-robotic digital telepathology systems, marketed under a variety of labels. Successful commercialization of such systems could help overcome the current resistance of some pathologists to incorporate digital pathology, and telepathology, into their routine and esoteric laboratory services. Also, WSI-enhanced dynamic robotic telepathology could be useful for providing general pathology and subspecialty pathology services to many of the world's underserved populations in the decades ahead. This could become an important enabler for the delivery of patient-centered healthcare in the future. © 2012 The Authors APMIS © 2012 APMIS.
Axial Tomography from Digitized Real Time Radiography
DOE R&D Accomplishments Database
Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.
1985-01-18
Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.
Patterson, Emily S.; Rayo, Mike; Gill, Carolina; Gurcan, Metin N.
2011-01-01
Background: Adoption of digital images for pathological specimens has been slower than adoption of digital images in radiology, despite a number of anticipated advantages for digital images in pathology. In this paper, we explore the factors that might explain this slower rate of adoption. Materials and Method: Semi-structured interviews on barriers and facilitators to the adoption of digital images were conducted with two radiologists, three pathologists, and one pathologist's assistant. Results: Barriers and facilitators to adoption of digital images were reported in the areas of performance, workflow-efficiency, infrastructure, integration with other software, and exposure to digital images. The primary difference between the settings was that performance with the use of digital images as compared to the traditional method was perceived to be higher in radiology and lower in pathology. Additionally, exposure to digital images was higher in radiology than pathology, with some radiologists exclusively having been trained and/or practicing with digital images. The integration of digital images both improved and reduced efficiency in routine and non-routine workflow patterns in both settings, and was variable across the different organizations. A comparison of these findings with prior research on adoption of other health information technologies suggests that the barriers to adoption of digital images in pathology are relatively tractable. Conclusions: Improving performance using digital images in pathology would likely accelerate adoption of innovative technologies that are facilitated by the use of digital images, such as electronic imaging databases, electronic health records, double reading for challenging cases, and computer-aided diagnostic systems. PMID:21383925
NASA Astrophysics Data System (ADS)
MacMahon, Heber; Vyborny, Carl; Powell, Gregory; Doi, Kunio; Metz, Charles E.
1984-08-01
In digital radiography the pixel size used determines the potential spatial resolution of the system. The need for spatial resolution varies depending on the subject matter imaged. In many areas, including the chest, the minimum spatial resolution requirements have not been determined. Sarcoidosis is a disease which frequently causes subtle interstitial infiltrates in the lungs. As the initial step in an investigation designed to determine the minimum pixel size required in digital chest radiographic systems, we have studied 1 mm pixel digitized images on patients with early pulmonary sarcoidosis. The results of this preliminary study suggest that neither mild interstitial pulmonary infiltrates nor other abnormalities such as pneumothoraces may be detected reliably with 1 mm pixel digital images.
Migration of the digital interactive breast-imaging teaching file
NASA Astrophysics Data System (ADS)
Cao, Fei; Sickles, Edward A.; Huang, H. K.; Zhou, Xiaoqiang
1998-06-01
The digital breast imaging teaching file developed during the last two years in our laboratory has been used successfully at UCSF (University of California, San Francisco) as a routine teaching tool for training radiology residents and fellows in mammography. Building on this success, we have ported the teaching file from an old Pixar imaging/Sun SPARC 470 display system to our newly designed telemammography display workstation (Ultra SPARC 2 platform with two DOME Md5/SBX display boards). The old Pixar/Sun 470 system, although adequate for fast and high-resolution image display, is 4- year-old technology, expensive to maintain and difficult to upgrade. The new display workstation is more cost-effective and is also compatible with the digital image format from a full-field direct digital mammography system. The digital teaching file is built on a sophisticated computer-aided instruction (CAI) model, which simulates the management sequences used in imaging interpretation and work-up. Each user can be prompted to respond by making his/her own observations, assessments, and work-up decisions as well as the marking of image abnormalities. This effectively replaces the traditional 'show-and-tell' teaching file experience with an interactive, response-driven type of instruction.
Wang, Yingbing; Ebuoma, Lilian; Saksena, Mansi; Liu, Bob; Specht, Michelle; Rafferty, Elizabeth
2014-08-01
Use of mobile digital specimen radiography systems expedites intraoperative verification of excised breast specimens. The purpose of this study was to evaluate the performance of a such a system for verifying targets. A retrospective review included 100 consecutive pairs of breast specimen radiographs. Specimens were imaged in the operating room with a mobile digital specimen radiography system and then with a conventional digital mammography system in the radiology department. Two expert reviewers independently scored each image for image quality on a 3-point scale and confidence in target visualization on a 5-point scale. A target was considered confidently verified only if both reviewers declared the target to be confidently detected. The 100 specimens contained a total of 174 targets, including 85 clips (49%), 53 calcifications (30%), 35 masses (20%), and one architectural distortion (1%). Although a significantly higher percentage of mobile digital specimen radiographs were considered poor quality by at least one reviewer (25%) compared with conventional digital mammograms (1%), 169 targets (97%), were confidently verified with mobile specimen radiography; 172 targets (98%) were verified with conventional digital mammography. Three faint masses were not confidently verified with mobile specimen radiography, and conventional digital mammography was needed for confirmation. One faint mass and one architectural distortion were not confidently verified with either method. Mobile digital specimen radiography allows high diagnostic confidence for verification of target excision in breast specimens across target types, despite lower image quality. Substituting this modality for conventional digital mammography can eliminate delays associated with specimen transport, potentially decreasing surgical duration and increasing operating room throughput.
Gross, G W
1992-10-01
The highlight of recent articles published on pediatric chest imaging is the potential advantage of digital imaging of the infant's chest. Digital chest imaging allows accurate determination of functional residual capacity as well as manipulation of the image to highlight specific anatomic features. Reusable photostimulable phosphor imaging systems provide wide imaging latitude and lower patient dose. In addition, digital radiology permits multiple remote-site viewing on monitor displays. Several excellent reviews of the imaging features of various thoracic abnormalities and the application of newer imaging modalities, such as ultrafast CT and MR imaging to the pediatric chest, are additional highlights.
Digital image compression for a 2f multiplexing optical setup
NASA Astrophysics Data System (ADS)
Vargas, J.; Amaya, D.; Rueda, E.
2016-07-01
In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.
Evaluation Of The Diagnostic Performance Of A Multimedia Medical Communications System.
NASA Astrophysics Data System (ADS)
Robertson, John G.; Coristine, Marjorie; Goldberg, Morris; Beeton, Carolyn; Belanger, Garry; Tombaugh, Jo W.; Hickey, Nancy M.; Millward, Steven F.; Davis, Michael; Whittingham, David
1989-05-01
The central concern of radiologists when evaluating Picture Archiving Communication System (PACS) is the diagnostic performance of digital images compared to the original analog versions of the same images. Considerable work has been done comparing the ROC curves of various types of digital systems to the corresponding analog systems for the detection of specific phantoms or diseases. Although the studies may notify the radiologists that for a specific lesion a digital system may perform as well as the analog system, it tells the radiologists very little about the impact on diagnostic performance of a digital system in the general practice of radiology. We describe in this paper an alternative method for evaluating the diagnostic performance of a digital system and a preliminary experiment we conducted to test the methodology.
NASA Astrophysics Data System (ADS)
Cusma, Jack T.; Spero, Laurence A.; Groshong, Bennett R.; Cho, Teddy; Bashore, Thomas M.
1993-09-01
An economical and practical digital solution for the replacement of 35 mm cine film as the archive media in the cardiac x-ray imaging environment has remained lacking to date due to the demanding requirements of high capacity, high acquisition rate, high transfer rate, and a need for application in a distributed environment. A clinical digital image library and network based on the D2 digital video format has been installed in the Duke University Cardiac Catheterization Laboratory. The system architecture includes a central image library with digital video recorders and robotic tape retrieval, three acquisition stations, and remote review stations connected via a serial image network. The library has a capacity for over 20,000 Gigabytes of uncompressed image data, equivalent to records for approximately 20,000 patients. Image acquisition in the clinical laboratories is via a real-time digital interface between the digital angiography system and a local digital recorder. Images are transferred to the library over the serial network at a rate of 14.3 Mbytes/sec and permanently stored for later review. The image library and network are currently undergoing a clinical comparison with cine film for visual and quantitative assessment of coronary artery disease. At the conclusion of the evaluation, the configuration will be expanded to include four additional catheterization laboratories and remote review stations throughout the hospital.
Ethical Implications of Digital Imaging in Photojournalism.
ERIC Educational Resources Information Center
Terry, Danal; Lasorsa, Dominic L.
Arguing that the news media are about to adopt digital imaging systems that will have far-reaching implications for the practice of journalism, this paper discusses how the news media is expected to adopt the new technology and explains why the marriage of journalism and digital imaging will create ethical issues with respect to photo manipulation…
Software Graphical User Interface For Analysis Of Images
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.; Nolf, Scott R.; Avis, Elizabeth L.; Stacy, Kathryn
1992-01-01
CAMTOOL software provides graphical interface between Sun Microsystems workstation and Eikonix Model 1412 digitizing camera system. Camera scans and digitizes images, halftones, reflectives, transmissives, rigid or flexible flat material, or three-dimensional objects. Users digitize images and select from three destinations: work-station display screen, magnetic-tape drive, or hard disk. Written in C.
Chen, Y-J; Chen, S-K; Huang, H-W; Yao, C-C; Chang, H-F
2004-09-01
To compare the cephalometric landmark identification on softcopy and hardcopy of direct digital cephalography acquired by a storage-phosphor (SP) imaging system. Ten digital cephalograms and their conventional counterpart, hardcopy on a transparent blue film, were obtained by a SP imaging system and a dye sublimation printer. Twelve orthodontic residents identified 19 cephalometric landmarks on monitor-displayed SP digital images with computer-aided method and on their hardcopies with conventional method. The x- and y-coordinates for each landmark, indicating the horizontal and vertical positions, were analysed to assess the reliability of landmark identification and evaluate the concordance of the landmark locations in softcopy and hardcopy of SP digital cephalometric radiography. For each of the 19 landmarks, the location differences as well as the horizontal and vertical components were statistically significant between SP digital cephalometric radiography and its hardcopy. Smaller interobserver errors on SP digital images than those on their hardcopies were noted for all the landmarks, except point Go in vertical direction. The scatter-plots demonstrate the characteristic distribution of the interobserver error in both horizontal and vertical directions. Generally, the dispersion of interobserver error on SP digital cephalometric radiography is less than that on its hardcopy with conventional method. The SP digital cephalometric radiography could yield better or comparable level of performance in landmark identification as its hardcopy, except point Go in vertical direction.
The application of digital techniques to the analysis of metallurgical experiments
NASA Technical Reports Server (NTRS)
Rathz, T. J.
1977-01-01
The application of a specific digital computer system (known as the Image Data Processing System) to the analysis of three NASA-sponsored metallurgical experiments is discussed in some detail. The basic hardware and software components of the Image Data Processing System are presented. Many figures are presented in the discussion of each experimental analysis in an attempt to show the accuracy and speed that the Image Data Processing System affords in analyzing photographic images dealing with metallurgy, and in particular with material processing.
NASA Astrophysics Data System (ADS)
Moore, Craig S.; Wood, Tim J.; Saunderson, John R.; Beavis, Andrew W.
2017-09-01
The use of computer simulated digital x-radiographs for optimisation purposes has become widespread in recent years. To make these optimisation investigations effective, it is vital simulated radiographs contain accurate anatomical and system noise. Computer algorithms that simulate radiographs based solely on the incident detector x-ray intensity (‘dose’) have been reported extensively in the literature. However, while it has been established for digital mammography that x-ray beam quality is an important factor when modelling noise in simulated images there are no such studies for diagnostic imaging of the chest, abdomen and pelvis. This study investigates the influence of beam quality on image noise in a digital radiography (DR) imaging system, and incorporates these effects into a digitally reconstructed radiograph (DRR) computer simulator. Image noise was measured on a real DR imaging system as a function of dose (absorbed energy) over a range of clinically relevant beam qualities. Simulated ‘absorbed energy’ and ‘beam quality’ DRRs were then created for each patient and tube voltage under investigation. Simulated noise images, corrected for dose and beam quality, were subsequently produced from the absorbed energy and beam quality DRRs, using the measured noise, absorbed energy and beam quality relationships. The noise images were superimposed onto the noiseless absorbed energy DRRs to create the final images. Signal-to-noise measurements in simulated chest, abdomen and spine images were within 10% of the corresponding measurements in real images. This compares favourably to our previous algorithm where images corrected for dose only were all within 20%.
Objective analysis of image quality of video image capture systems
NASA Astrophysics Data System (ADS)
Rowberg, Alan H.
1990-07-01
As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. Currently, virtually all installed systems use methods of digitizing the video signal that is produced for display on the scanner viewing console itself. A series of digital test images have been developed for display on either a GE CT9800 or a GE Signa MRI scanner. These images have been captured with each of five commercially available image capture systems, and the resultant images digitally transferred on floppy disk to a PC1286 computer containing Optimast' image analysis software. Here the images can be displayed in a comparative manner for visual evaluation, in addition to being analyzed statistically. Each of the images have been designed to support certain tests, including noise, accuracy, linearity, gray scale range, stability, slew rate, and pixel alignment. These image capture systems vary widely in these characteristics, in addition to the presence or absence of other artifacts, such as shading and moire pattern. Other accessories such as video distribution amplifiers and noise filters can also add or modify artifacts seen in the captured images, often giving unusual results. Each image is described, together with the tests which were performed using them. One image contains alternating black and white lines, each one pixel wide, after equilibration strips ten pixels wide. While some systems have a slew rate fast enough to track this correctly, others blur it to an average shade of gray, and do not resolve the lines, or give horizontal or vertical streaking. While many of these results are significant from an engineering standpoint alone, there are clinical implications and some anatomy or pathology may not be visualized if an image capture system is used improperly.
Yap, Timothy E; Archer, Timothy J; Gobbe, Marine; Reinstein, Dan Z
2016-02-01
To compare corneal thickness measurements between three imaging systems. In this retrospective study of 81 virgin and 58 post-laser refractive surgery corneas, central and minimum corneal thickness were measured using optical coherence tomography (OCT), very high-frequency digital ultrasound (VHF digital ultrasound), and a Scheimpflug imaging system. Agreement between methods was analyzed using mean differences (bias) (OCT - VHF digital ultrasound, OCT - Scheimpflug, VHF digital ultrasound - Scheimpflug) and Bland-Altman analysis with 95% limits of agreement (LoA). Virgin cornea mean central corneal thickness was 508.3 ± 33.2 µm (range: 434 to 588 µm) for OCT, 512.7 ± 32.2 µm (range: 440 to 587 µm) for VHF digital ultrasound, and 530.2 ± 32.6 µm (range: 463 to 612 µm) for Scheimpflug imaging. OCT and VHF digital ultrasound showed the closest agreement with a bias of -4.37 µm, 95% LoA ±12.6 µm. Least agreement was between OCT and Scheimpflug imaging with a bias of -21.9 µm, 95% LoA ±20.7 µm. Bias between VHF digital ultrasound and Scheimpflug imaging was -17.5 µm, 95% LoA ±19.0 µm. In post-laser refractive surgery corneas, mean central corneal thickness was 417.9 ± 47.1 µm (range: 342 to 557 µm) for OCT, 426.3 ± 47.1 µm (range: 363 to 563 µm) for VHF digital ultrasound, and 437.0 ± 48.5 µm (range: 359 to 571 µm) for Scheimpflug imaging. Closest agreement was between OCT and VHF digital ultrasound with a bias of -8.45 µm, 95% LoA ±13.2 µm. Least agreement was between OCT and Scheimpflug imaging with a bias of -19.2 µm, 95% LoA ±19.2 µm. Bias between VHF digital ultrasound and Scheimpflug imaging was -10.7 µm, 95% LoA ±20.0 µm. No relationship was observed between difference in central corneal thickness measurements and mean central corneal thickness. Results were similar for minimum corneal thickness. Central and minimum corneal thickness was measured thinnest by OCT and thickest by Scheimpflug imaging in both groups. A clinically significant bias existed between Scheimpflug imaging and the other two modalities. Copyright 2016, SLACK Incorporated.
Desktop publishing and medical imaging: paper as hardcopy medium for digital images.
Denslow, S
1994-08-01
Desktop-publishing software and hardware has progressed to the point that many widely used word-processing programs are capable of printing high-quality digital images with many shades of gray from black to white. Accordingly, it should be relatively easy to print digital medical images on paper for reports, instructional materials, and in research notes. Components were assembled that were necessary for extracting image data from medical imaging devices and converting the data to a form usable by word-processing software. A system incorporating these components was implemented in a medical setting and has been operating for 18 months. The use of this system by medical staff has been monitored.
Continuous-wave terahertz digital holography by use of a pyroelectric array camera.
Ding, Sheng-Hui; Li, Qi; Li, Yun-Da; Wang, Qi
2011-06-01
Terahertz (THz) digital holography is realized based on a 2.52 THz far-IR gas laser and a commercial 124 × 124 pyroelectric array camera. Off-axis THz holograms are obtained by recording interference patterns between light passing through the sample and the reference wave. A numerical reconstruction process is performed to obtain the field distribution at the object surface. Different targets were imaged to test the system's imaging capability. Compared with THz focal plane images, the image quality of the reconstructed images are improved a lot. The results show that the system's imaging resolution can reach at least 0.4 mm. The system also has the potential for real-time imaging application. This study confirms that digital holography is a promising technique for real-time, high-resolution THz imaging, which has extensive application prospects. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu
To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.
European dental students' opinions about visual and digital tooth colour determination systems.
Dozic, Alma; Kharbanda, Aron K; Kamell, Hassib; Brand, Henk S
2011-12-01
The aim of the study was to investigate students' opinion about visual and digital tooth colour determination education at different European dental schools. A cross-sectional web-based survey was created, containing nine dichotomous, multiple choice and 5-point Likert scale questions. The questionnaire was distributed amongst students of 40 European dental schools. Seven hundred and ninety-nine completed questionnaires from students of 15 dental schools were analysed statistically. Vitapan Classical and Vitapan 3D-Master are the most frequently used visual determination systems at European dental schools. Most students responded with "neutral" regarding whether they find it easy to identify the colour of teeth with a visual determination system (range 2.8-3.6). A minority of the dental students had received education in digital imaging systems (2-47%). The Easyshade was the most frequently mentioned digital system. The majority of the students who did not receive education on digital systems would like to see this topic added to the curriculum (77-100%). The dental students who had worked with both methods found it significantly easier to determine tooth colour with a digital system than with a visual system (mean score 3.5 ± 0.8 vs. 3.0 ± 0.8). Tooth colour determination programmes show a considerable variation across European dental schools. Based upon the outcomes of this study, students prefer digital imaging systems over visual systems, and like to have (more) education about digital tooth colour imaging. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry
NASA Technical Reports Server (NTRS)
Hong, Yie-Ming
1973-01-01
Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.
Digital diagnosis of medical images
NASA Astrophysics Data System (ADS)
Heinonen, Tomi; Kuismin, Raimo; Jormalainen, Raimo; Dastidar, Prasun; Frey, Harry; Eskola, Hannu
2001-08-01
The popularity of digital imaging devices and PACS installations has increased during the last years. Still, images are analyzed and diagnosed using conventional techniques. Our research group begun to study the requirements for digital image diagnostic methods to be applied together with PACS systems. The research was focused on various image analysis procedures (e.g., segmentation, volumetry, 3D visualization, image fusion, anatomic atlas, etc.) that could be useful in medical diagnosis. We have developed Image Analysis software (www.medimag.net) to enable several image-processing applications in medical diagnosis, such as volumetry, multimodal visualization, and 3D visualizations. We have also developed a commercial scalable image archive system (ActaServer, supports DICOM) based on component technology (www.acta.fi), and several telemedicine applications. All the software and systems operate in NT environment and are in clinical use in several hospitals. The analysis software have been applied in clinical work and utilized in numerous patient cases (500 patients). This method has been used in the diagnosis, therapy and follow-up in various diseases of the central nervous system (CNS), respiratory system (RS) and human reproductive system (HRS). In many of these diseases e.g. Systemic Lupus Erythematosus (CNS), nasal airways diseases (RS) and ovarian tumors (HRS), these methods have been used for the first time in clinical work. According to our results, digital diagnosis improves diagnostic capabilities, and together with PACS installations it will become standard tool during the next decade by enabling more accurate diagnosis and patient follow-up.
A Web-Based Video Digitizing System for the Study of Projectile Motion.
ERIC Educational Resources Information Center
Chow, John W.; Carlton, Les G.; Ekkekakis, Panteleimon; Hay, James G.
2000-01-01
Discusses advantages of a video-based, digitized image system for the study and analysis of projectile motion in the physics laboratory. Describes the implementation of a web-based digitized video system. (WRM)
Consequences of "going digital" for pathology professionals - entering the cloud.
Laurinavicius, Arvydas; Raslavicus, Paul
2012-01-01
New opportunities and the adoption of digital technologies will transform the way pathology professionals and services work. Many areas of our daily life as well as medical professions have experienced this change already which has resulted in a paradigm shift in many activities. Pathology is an image-based discipline, therefore, arrival of digital imaging into this domain promises major shift in our work and required mentality. Recognizing the physical and digital duality of the pathology workflow, we can prepare for the imminent increase of the digital component, synergize and enjoy its benefits. Development of a new generation of laboratory information systems along with seamless integration of digital imaging, decision-support, and knowledge databases will enable pathologists to work in a distributed environment. The paradigm of "cloud pathology" is proposed as an ultimate vision of digital pathology workstations plugged into the integrated multidisciplinary patient care systems.
Shaw, S L; Salmon, E D; Quatrano, R S
1995-12-01
In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.
Accurate color images: from expensive luxury to essential resource
NASA Astrophysics Data System (ADS)
Saunders, David R.; Cupitt, John
2002-06-01
Over ten years ago the National Gallery in London began a program to make digital images of paintings in the collection using a colorimetric imaging system. This was to provide a permanent record of the state of paintings against which future images could be compared to determine if any changes had occurred. It quickly became apparent that such images could be used not only for scientific purposes, but also in applications where transparencies were then being used, for example as source materials for printed books and catalogues or for computer-based information systems. During the 1990s we were involved in the development of a series of digital cameras that have combined the high color accuracy of the original 'scientific' imaging system with the familiarity and portability of a medium format camera. This has culminated in the program of digitization now in progress at the National Gallery. By the middle of 2001 we will have digitized all the major paintings in the collection at a resolution of 10,000 pixels along their longest dimension and with calibrated color; we are on target to digitize the whole collection by the end of 2002. The images are available on-line within the museum for consultation and so that Gallery departments can use the images in printed publications and on the Gallery's web- site. We describe the development of the imaging systems used at National Gallery and how the research we have conducted into high-resolution accurate color imaging has developed from being a peripheral, if harmless, research activity to becoming a central part of the Gallery's information and publication strategy. Finally, we discuss some outstanding issues, such as interfacing our color management procedures with the systems used by external organizations.
Biwasaka, Hitoshi; Saigusa, Kiyoshi; Aoki, Yasuhiro
2005-03-01
In this study, the applicability of holography in the 3-dimensional recording of forensic objects such as skulls and mandibulae, and the accuracy of the reconstructed 3-D images, were examined. The virtual holographic image, which records the 3-dimensional data of the original object, is visually observed on the other side of the holographic plate, and reproduces the 3-dimensional shape of the object well. Another type of holographic image, the real image, is focused on a frosted glass screen, and cross-sectional images of the object can be observed. When measuring the distances between anatomical reference points using an image-processing software, the average deviations in the holographic images as compared to the actual objects were less than 0.1 mm. Therefore, holography could be useful as a 3-dimensional recording method of forensic objects. Two superimposition systems using holographic images were examined. In the 2D-3D system, the transparent virtual holographic image of an object is directly superimposed onto the digitized photograph of the same object on the LCD monitor. On the other hand, in the video system, the holographic image captured by the CCD camera is superimposed onto the digitized photographic image using a personal computer. We found that the discrepancy between the outlines of the superimposed holographic and photographic dental images using the video system was smaller than that using the 2D-3D system. Holography seemed to perform comparably to the computer graphic system; however, a fusion with the digital technique would expand the utility of holography in superimposition.
A Macintosh-Based Scientific Images Video Analysis System
NASA Technical Reports Server (NTRS)
Groleau, Nicolas; Friedland, Peter (Technical Monitor)
1994-01-01
A set of experiments was designed at MIT's Man-Vehicle Laboratory in order to evaluate the effects of zero gravity on the human orientation system. During many of these experiments, the movements of the eyes are recorded on high quality video cassettes. The images must be analyzed off-line to calculate the position of the eyes at every moment in time. To this aim, I have implemented a simple inexpensive computerized system which measures the angle of rotation of the eye from digitized video images. The system is implemented on a desktop Macintosh computer, processes one play-back frame per second and exhibits adequate levels of accuracy and precision. The system uses LabVIEW, a digital output board, and a video input board to control a VCR, digitize video images, analyze them, and provide a user friendly interface for the various phases of the process. The system uses the Concept Vi LabVIEW library (Graftek's Image, Meudon la Foret, France) for image grabbing and displaying as well as translation to and from LabVIEW arrays. Graftek's software layer drives an Image Grabber board from Neotech (Eastleigh, United Kingdom). A Colour Adapter box from Neotech provides adequate video signal synchronization. The system also requires a LabVIEW driven digital output board (MacADIOS II from GW Instruments, Cambridge, MA) controlling a slightly modified VCR remote control used mainly to advance the video tape frame by frame.
NASA Astrophysics Data System (ADS)
Wang, Ximing; Edwardson, Matthew; Dromerick, Alexander; Winstein, Carolee; Wang, Jing; Liu, Brent
2015-03-01
Previously, we presented an Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) imaging informatics system that supports a large-scale phase III stroke rehabilitation trial. The ePR system is capable of displaying anonymized patient imaging studies and reports, and the system is accessible to multiple clinical trial sites and users across the United States via the web. However, the prior multicenter stroke rehabilitation trials lack any significant neuroimaging analysis infrastructure. In stroke related clinical trials, identification of the stroke lesion characteristics can be meaningful as recent research shows that lesion characteristics are related to stroke scale and functional recovery after stroke. To facilitate the stroke clinical trials, we hope to gain insight into specific lesion characteristics, such as vascular territory, for patients enrolled into large stroke rehabilitation trials. To enhance the system's capability for data analysis and data reporting, we have integrated new features with the system: a digital brain template display, a lesion quantification tool and a digital case report form. The digital brain templates are compiled from published vascular territory templates at each of 5 angles of incidence. These templates were updated to include territories in the brainstem using a vascular territory atlas and the Medical Image Processing, Analysis and Visualization (MIPAV) tool. The digital templates are displayed for side-by-side comparisons and transparent template overlay onto patients' images in the image viewer. The lesion quantification tool quantifies planimetric lesion area from user-defined contour. The digital case report form stores user input into a database, then displays contents in the interface to allow for reviewing, editing, and new inputs. In sum, the newly integrated system features provide the user with readily-accessible web-based tools to identify the vascular territory involved, estimate lesion area, and store these results in a web-based digital format.
NASA Technical Reports Server (NTRS)
Masuoka, E.; Rose, J.; Quattromani, M.
1981-01-01
Recent developments related to microprocessor-based personal computers have made low-cost digital image processing systems a reality. Image analysis systems built around these microcomputers provide color image displays for images as large as 256 by 240 pixels in sixteen colors. Descriptive statistics can be computed for portions of an image, and supervised image classification can be obtained. The systems support Basic, Fortran, Pascal, and assembler language. A description is provided of a system which is representative of the new microprocessor-based image processing systems currently on the market. While small systems may never be truly independent of larger mainframes, because they lack 9-track tape drives, the independent processing power of the microcomputers will help alleviate some of the turn-around time problems associated with image analysis and display on the larger multiuser systems.
Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W
2015-08-01
This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.
Patient-generated Digital Images after Pediatric Ambulatory Surgery.
Miller, Matthew W; Ross, Rachael K; Voight, Christina; Brouwer, Heather; Karavite, Dean J; Gerber, Jeffrey S; Grundmeier, Robert W; Coffin, Susan E
2016-07-06
To describe the use of digital images captured by parents or guardians and sent to clinicians for assessment of wounds after pediatric ambulatory surgery. Subjects with digital images of post-operative wounds were identified as part of an on-going cohort study of infections after ambulatory surgery within a large pediatric healthcare system. We performed a structured review of the electronic health record (EHR) to determine how digital images were documented in the EHR and used in clinical care. We identified 166 patients whose parent or guardian reported sending a digital image of the wound to the clinician after surgery. A corresponding digital image was located in the EHR in only 121 of these encounters. A change in clinical management was documented in 20% of these encounters, including referral for in-person evaluation of the wound and antibiotic prescription. Clinical teams have developed ad hoc workflows to use digital images to evaluate post-operative pediatric surgical patients. Because the use of digital images to support follow-up care after ambulatory surgery is likely to increase, it is important that high-quality images are captured and documented appropriately in the EHR to ensure privacy, security, and a high-level of care.
Patient-Generated Digital Images after Pediatric Ambulatory Surgery
Ross, Rachael K.; Voight, Christina; Brouwer, Heather; Karavite, Dean J.; Gerber, Jeffrey S.; Grundmeier, Robert W.; Coffin, Susan E.
2016-01-01
Summary Objective To describe the use of digital images captured by parents or guardians and sent to clinicians for assessment of wounds after pediatric ambulatory surgery. Methods Subjects with digital images of post-operative wounds were identified as part of an ongoing cohort study of infections after ambulatory surgery within a large pediatric healthcare system. We performed a structured review of the electronic health record (EHR) to determine how digital images were documented in the EHR and used in clinical care. Results We identified 166 patients whose parent or guardian reported sending a digital image of the wound to the clinician after surgery. A corresponding digital image was located in the EHR in only 121 of these encounters. A change in clinical management was documented in 20% of these encounters, including referral for in-person evaluation of the wound and antibiotic prescription. Conclusion Clinical teams have developed ad hoc workflows to use digital images to evaluate post-operative pediatric surgical patients. Because the use of digital images to support follow-up care after ambulatory surgery is likely to increase, it is important that high-quality images are captured and documented appropriately in the EHR to ensure privacy, security, and a high-level of care. PMID:27452477
Goldszal, A F; Brown, G K; McDonald, H J; Vucich, J J; Staab, E V
2001-06-01
In this work, we describe the digital imaging network (DIN), picture archival and communication system (PACS), and radiology information system (RIS) currently being implemented at the Clinical Center, National Institutes of Health (NIH). These systems are presently in clinical operation. The DIN is a redundant meshed network designed to address gigabit density and expected high bandwidth requirements for image transfer and server aggregation. The PACS projected workload is 5.0 TB of new imaging data per year. Its architecture consists of a central, high-throughput Digital Imaging and Communications in Medicine (DICOM) data repository and distributed redundant array of inexpensive disks (RAID) servers employing fiber-channel technology for immediate delivery of imaging data. On demand distribution of images and reports to clinicians and researchers is accomplished via a clustered web server. The RIS follows a client-server model and provides tools to order exams, schedule resources, retrieve and review results, and generate management reports. The RIS-hospital information system (HIS) interfaces include admissions, discharges, and transfers (ATDs)/demographics, orders, appointment notifications, doctors update, and results.
A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT
NASA Astrophysics Data System (ADS)
Yuxia, Zhao; Jingbo, Fan
A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.
Using digital watermarking to enhance security in wireless medical image transmission.
Giakoumaki, Aggeliki; Perakis, Konstantinos; Banitsas, Konstantinos; Giokas, Konstantinos; Tachakra, Sapal; Koutsouris, Dimitris
2010-04-01
During the last few years, wireless networks have been increasingly used both inside hospitals and in patients' homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.
Design and testing of a 750MHz CW-EPR digital console for small animal imaging.
Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G
2017-11-01
This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.
Design and testing of a 750 MHz CW-EPR digital console for small animal imaging
NASA Astrophysics Data System (ADS)
Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.
2017-11-01
This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.
Apple Image Processing Educator
NASA Technical Reports Server (NTRS)
Gunther, F. J.
1981-01-01
A software system design is proposed and demonstrated with pilot-project software. The system permits the Apple II microcomputer to be used for personalized computer-assisted instruction in the digital image processing of LANDSAT images. The programs provide data input, menu selection, graphic and hard-copy displays, and both general and detailed instructions. The pilot-project results are considered to be successful indicators of the capabilities and limits of microcomputers for digital image processing education.
Identifying images of handwritten digits using deep learning in H2O
NASA Astrophysics Data System (ADS)
Sadhasivam, Jayakumar; Charanya, R.; Kumar, S. Harish; Srinivasan, A.
2017-11-01
Automatic digit recognition is of popular interest today. Deep learning techniques make it possible for object recognition in image data. Perceiving the digit has turned into a fundamental part as far as certifiable applications. Since, digits are composed in various styles in this way to distinguish the digit it is important to perceive and arrange it with the assistance of machine learning methods. This exploration depends on supervised learning vector quantization neural system arranged under counterfeit artificial neural network. The pictures of digits are perceived, prepared and tried. After the system is made digits are prepared utilizing preparing dataset vectors and testing is connected to the pictures of digits which are separated to each other by fragmenting the picture and resizing the digit picture as needs be for better precision.
Method for acquiring, storing and analyzing crystal images
NASA Technical Reports Server (NTRS)
Gester, Thomas E. (Inventor); Rosenblum, William M. (Inventor); Christopher, Gayle K. (Inventor); Hamrick, David T. (Inventor); Delucas, Lawrence J. (Inventor); Tillotson, Brian (Inventor)
2003-01-01
A system utilizing a digital computer for acquiring, storing and evaluating crystal images. The system includes a video camera (12) which produces a digital output signal representative of a crystal specimen positioned within its focal window (16). The digitized output from the camera (12) is then stored on data storage media (32) together with other parameters inputted by a technician and relevant to the crystal specimen. Preferably, the digitized images are stored on removable media (32) while the parameters for different crystal specimens are maintained in a database (40) with indices to the digitized optical images on the other data storage media (32). Computer software is then utilized to identify not only the presence and number of crystals and the edges of the crystal specimens from the optical image, but to also rate the crystal specimens by various parameters, such as edge straightness, polygon formation, aspect ratio, surface clarity, crystal cracks and other defects or lack thereof, and other parameters relevant to the quality of the crystals.
2010-11-05
The Food and Drug Administration (FDA) is announcing the reclassification of the full-field digital mammography (FFDM) system from class III (premarket approval) to class II (special controls). The device type is intended to produce planar digital x-ray images of the entire breast; this generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component parts, and accessories. The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Full-Field Digital Mammography System." FDA is reclassifying the device into class II (special controls) because general controls along with special controls will provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.
Using digital photo technology to improve visualization of gastric lumen CT images
NASA Astrophysics Data System (ADS)
Pyrgioti, M.; Kyriakidis, A.; Chrysostomou, S.; Panaritis, V.
2006-12-01
In order to evaluate the gastric lumen CT images better, a new method is being applied to images using an Image Processing software. During a 12-month period, 69 patients with various gastric symptoms and 20 normal (as far as it concerns the upper gastrointestinal system) volunteers underwent computed tomography of the upper gastrointestinal system. Just before the examination the patients and the normal volunteers underwent preparation with 40 ml soda water and 10 ml gastrografin. All the CT images were digitized with an Olympus 3.2 Mpixel digital camera and further processed with an Image Processing software. The administration per os of gastrografin and soda water resulted in the distension of the stomach and consequently better visualization of all the anatomic parts. By using an Image Processing software in a PC, all the pathological and normal images of the stomach were better diagnostically estimated. We believe that the photo digital technology improves the diagnostic capacity not only of the CT image but also in MRI and probably many other imaging methods.
An automated digital imaging system for environmental monitoring applications
Bogle, Rian; Velasco, Miguel; Vogel, John
2013-01-01
Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.
Visually enhanced CCTV digital surveillance utilizing Intranet and Internet.
Ozaki, Nobuyuki
2002-07-01
This paper describes a solution for integrated plant supervision utilizing closed circuit television (CCTV) digital surveillance. Three basic requirements are first addressed as the platform of the system, with discussion on the suitable video compression. The system configuration is described in blocks. The system provides surveillance functionality: real-time monitoring, and process analysis functionality: a troubleshooting tool. This paper describes the formulation of practical performance design for determining various encoder parameters. It also introduces image processing techniques for enhancing the original CCTV digital image to lessen the burden on operators. Some screenshots are listed for the surveillance functionality. For the process analysis, an image searching filter supported by image processing techniques is explained with screenshots. Multimedia surveillance, which is the merger with process data surveillance, or the SCADA system, is also explained.
System design and implementation of digital-image processing using computational grids
NASA Astrophysics Data System (ADS)
Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping
2005-06-01
As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.
Bell, M R; Britson, P J; Chu, A; Holmes, D R; Bresnahan, J F; Schwartz, R S
1997-01-01
We describe a method of validation of computerized quantitative coronary arteriography and report the results of a new UNIX-based quantitative coronary arteriography software program developed for rapid on-line (digital) and off-line (digital or cinefilm) analysis. The UNIX operating system is widely available in computer systems using very fast processors and has excellent graphics capabilities. The system is potentially compatible with any cardiac digital x-ray system for on-line analysis and has been designed to incorporate an integrated database, have on-line and immediate recall capabilities, and provide digital access to all data. The accuracy (mean signed differences of the observed minus the true dimensions) and precision (pooled standard deviations of the measurements) of the program were determined x-ray vessel phantoms. Intra- and interobserver variabilities were assessed from in vivo studies during routine clinical coronary arteriography. Precision from the x-ray phantom studies (6-In. field of view) for digital images was 0.066 mm and for digitized cine images was 0.060 mm. Accuracy was 0.076 mm (overestimation) for digital images compared to 0.008 mm for digitized cine images. Diagnostic coronary catheters were also used for calibration; accuracy.varied according to size of catheter and whether or not they were filled with iodinated contrast. Intra- and interobserver variabilities were excellent and indicated that coronary lesion measurements were relatively user-independent. Thus, this easy to use and very fast UNIX based program appears to be robust with optimal accuracy and precision for clinical and research applications.
The design and characterization of a digital optical breast cancer imaging system.
Flexman, Molly L; Li, Yang; Bur, Andres M; Fong, Christopher J; Masciotti, James M; Al Abdi, Rabah; Barbour, Randall L; Hielscher, Andreas H
2008-01-01
Optical imaging has the potential to play a major role in breast cancer screening and diagnosis due to its ability to image cancer characteristics such as angiogenesis and hypoxia. A promising approach to evaluate and quantify these characteristics is to perform dynamic imaging studies in which one monitors the hemodynamic response to an external stimulus, such as a valsalva maneuver. It has been shown that the response to such stimuli shows MARKED differences between cancerous and healthy tissues. The fast imaging rates and large dynamic range of digital devices makes them ideal for this type of imaging studies. Here we present a digital optical tomography system designed specifically for dynamic breast imaging. The instrument uses laser diodes at 4 different near-infrared wavelengths with 32 sources and 128 silicon photodiode detectors.
NASA Astrophysics Data System (ADS)
Esbrand, C.; Royle, G.; Griffiths, J.; Speller, R.
2009-07-01
The integration of technology with healthcare has undoubtedly propelled the medical imaging sector well into the twenty first century. The concept of digital imaging introduced during the 1970s has since paved the way for established imaging techniques where digital mammography, phase contrast imaging and CT imaging are just a few examples. This paper presents a prototype intelligent digital mammography system designed and developed by a European consortium. The final system, the I-ImaS system, utilises CMOS monolithic active pixel sensor (MAPS) technology promoting on-chip data processing, enabling the acts of data processing and image acquisition to be achieved simultaneously; consequently, statistical analysis of tissue is achievable in real-time for the purpose of x-ray beam modulation via a feedback mechanism during the image acquisition procedure. The imager implements a dual array of twenty 520 pixel × 40 pixel CMOS MAPS sensing devices with a 32μm pixel size, each individually coupled to a 100μm thick thallium doped structured CsI scintillator. This paper presents the first intelligent images of real breast tissue obtained from the prototype system of real excised breast tissue where the x-ray exposure was modulated via the statistical information extracted from the breast tissue itself. Conventional images were experimentally acquired where the statistical analysis of the data was done off-line, resulting in the production of simulated real-time intelligently optimised images. The results obtained indicate real-time image optimisation using the statistical information extracted from the breast as a means of a feedback mechanisms is beneficial and foreseeable in the near future.
NASA Astrophysics Data System (ADS)
Gaona, Enrique; Alfonso, Beatriz Y. Álvarez; Castellanos, Gustavo Casian; Enríquez, Jesús Gabriel Franco
2008-08-01
The goal of the study was to evaluate the first CR digital mammography system (® Konica-Minolta) in Mexico in clinical routine for cancer detection in a screening population and to determine if high resolution CR digital imaging is equivalent to state-of-the-art screen-film imaging. The mammograms were evaluated by two observers with cytological or histological confirmation for BIRADS 3, 4 and 5. Contrast, exposure and artifacts of the images were evaluated. Different details like skin, retromamillary space and parenchymal structures were judged. The detectability of microcalcifications and lesions were compared and correlated to histology. The difference in sensitivity of CR Mammography (CRM) and Screen Film Mammography (SFM) was not statistically significant. However, CRM had a significantly lower recall rate, and the lesion detection was equal or superior to conventional images. There is no significant difference in the number of microcalcifications and highly suspicious calcifications were equally detected on both film-screen and digital images. Different anatomical regions were better detectable in digital than in conventional mammography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaona, Enrique; Enriquez, Jesus Gabriel Franco; Alfonso, Beatriz Y. Alvarez
2008-08-11
The goal of the study was to evaluate the first CR digital mammography system ( registered Konica-Minolta) in Mexico in clinical routine for cancer detection in a screening population and to determine if high resolution CR digital imaging is equivalent to state-of-the-art screen-film imaging. The mammograms were evaluated by two observers with cytological or histological confirmation for BIRADS 3, 4 and 5. Contrast, exposure and artifacts of the images were evaluated. Different details like skin, retromamillary space and parenchymal structures were judged. The detectability of microcalcifications and lesions were compared and correlated to histology. The difference in sensitivity of CRmore » Mammography (CRM) and Screen Film Mammography (SFM) was not statistically significant. However, CRM had a significantly lower recall rate, and the lesion detection was equal or superior to conventional images. There is no significant difference in the number of microcalcifications and highly suspicious calcifications were equally detected on both film-screen and digital images. Different anatomical regions were better detectable in digital than in conventional mammography.« less
42 CFR 37.42 - Chest radiograph specifications-digital radiography systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... resolution, modulation transfer function (MTF), image signal-to-noise and detective quantum efficiency must... Information Object Definitions, sections: Computed Radiography Image Information Object Definition; Digital X...
Sedgewick, Gerald J.; Ericson, Marna
2015-01-01
Obtaining digital images of color brightfield microscopy is an important aspect of biomedical research and the clinical practice of diagnostic pathology. Although the field of digital pathology has had tremendous advances in whole-slide imaging systems, little effort has been directed toward standardizing color brightfield digital imaging to maintain image-to-image consistency and tonal linearity. Using a single camera and microscope to obtain digital images of three stains, we show that microscope and camera systems inherently produce image-to-image variation. Moreover, we demonstrate that post-processing with a widely used raster graphics editor software program does not completely correct for session-to-session inconsistency. We introduce a reliable method for creating consistent images with a hardware/software solution (ChromaCal™; Datacolor Inc., NJ) along with its features for creating color standardization, preserving linear tonal levels, providing automated white balancing and setting automated brightness to consistent levels. The resulting image consistency using this method will also streamline mean density and morphometry measurements, as images are easily segmented and single thresholds can be used. We suggest that this is a superior method for color brightfield imaging, which can be used for quantification and can be readily incorporated into workflows. PMID:25575568
Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C
2013-06-01
Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.
NASA Astrophysics Data System (ADS)
Seeram, Euclid
2006-03-01
The large volumes of digital images produced by digital imaging modalities in Radiology have provided the motivation for the development of picture archiving and communication systems (PACS) in an effort to provide an organized mechanism for digital image management. The development of more sophisticated methods of digital image acquisition (Multislice CT and Digital Mammography, for example), as well as the implementation and performance of PACS and Teleradiology systems in a health care environment, have created challenges in the area of image compression with respect to storing and transmitting digital images. Image compression can be reversible (lossless) or irreversible (lossy). While in the former, there is no loss of information, the latter presents concerns since there is a loss of information. This loss of information from diagnostic medical images is of primary concern not only to radiologists, but also to patients and their physicians. In 1997, Goldberg pointed out that "there is growing evidence that lossy compression can be applied without significantly affecting the diagnostic content of images... there is growing consensus in the radiologic community that some forms of lossy compression are acceptable". The purpose of this study was to explore the opinions of expert radiologists, and related professional organizations on the use of irreversible compression in routine practice The opinions of notable radiologists in the US and Canada are varied indicating no consensus of opinion on the use of irreversible compression in primary diagnosis, however, they are generally positive on the notion of the image storage and transmission advantages. Almost all radiologists are concerned with the litigation potential of an incorrect diagnosis based on irreversible compressed images. The survey of several radiology professional and related organizations reveals that no professional practice standards exist for the use of irreversible compression. Currently, the only standard for image compression is stated in the ACR's Technical Standards for Teleradiology and Digital Image Management.
Experiences with semiautomatic aerotriangulation on digital photogrammetric stations
NASA Astrophysics Data System (ADS)
Kersten, Thomas P.; Stallmann, Dirk
1995-12-01
With the development of higher-resolution scanners, faster image-handling capabilities, and higher-resolution screens, digital photogrammetric workstations promise to rival conventional analytical plotters in functionality, i.e. in the degree of automation in data capture and processing, and in accuracy. The availability of high quality digital image data and inexpensive high capacity fast mass storage offers the capability to perform accurate semi- automatic or automatic triangulation of digital aerial photo blocks on digital photogrammetric workstations instead of analytical plotters. In this paper, we present our investigations and results on two photogrammetric triangulation blocks, the OEEPE (European Organisation for Experimental Photogrammetric Research) test block (scale 1;4'000) and a Swiss test block (scale 1:12'000) using digitized images. Twenty-eight images of the OEEPE test block were scanned on the Zeiss/Intergraph PS1 and the digital images were delivered with a resolution of 15 micrometer and 30 micrometer, while 20 images of the Swiss test block were scanned on the Desktop Publishing Scanner Agfa Horizon with a resolution of 42 micrometer and on the PS1 with 15 micrometer. Measurements in the digital images were performed on the commercial Digital photogrammetric Station Leica/Helava DPW770 and with basic hard- and software components of the Digital Photogrammetric Station DIPS II, an experimental system of the Institute of Geodesy and Photogrammetry, ETH Zurich. As a reference, the analog images of both photogrammetric test blocks were measured at analytical plotters. On DIPS II measurements of fiducial marks, signalized and natural tie points were performed by least squares template and image matching, while on DPW770 all points were measured by the cross correlation technique. The observations were adjusted in a self-calibrating bundle adjustment. The comparisons between these results and the experiences with the functionality of the commercial and the experimental system are presented.
Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron
2018-01-01
As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products.
Burns, Clare L; Keir, Benjamin; Ward, Elizabeth C; Hill, Anne J; Farrell, Anna; Phillips, Nick; Porter, Linda
2015-08-01
High-quality fluoroscopy images are required for accurate interpretation of videofluoroscopic swallow studies (VFSS) by speech pathologists and radiologists. Consequently, integral to developing any system to conduct VFSS remotely via telepractice is ensuring that the quality of the VFSS images transferred via the telepractice system is optimized. This study evaluates the extent of change observed in image quality when videofluoroscopic images are transmitted from a digital fluoroscopy system to (a) current clinical equipment (KayPentax Digital Swallowing Workstation, and b) four different telepractice system configurations. The telepractice system configurations consisted of either a local C20 or C60 Cisco TelePresence System (codec unit) connected to the digital fluoroscopy system and linked to a second remote C20 or C60 Cisco TelePresence System via a network running at speeds of either 2, 4 or 6 megabits per second (Mbit/s). Image quality was tested using the NEMA XR 21 Phantom, and results demonstrated some loss in spatial resolution, low contrast detectability and temporal resolution for all transferred images when compared to the fluoroscopy source. When using higher capacity codec units and/or the highest bandwidths to support data transmission, image quality transmitted through the telepractice system was found to be comparable if not better than the current clinical system. This study confirms that telepractice systems can be designed to support fluoroscopy image transfer and highlights important considerations when developing telepractice systems for VFSS analysis to ensure high-quality radiological image reproduction.
The comparative effectiveness of conventional and digital image libraries.
McColl, R I; Johnson, A
2001-03-01
Before introducing a hospital-wide image database to improve access, navigation and retrieval speed, a comparative study between a conventional slide library and a matching image database was undertaken to assess its relative benefits. Paired time trials and personal questionnaires revealed faster retrieval rates, higher image quality, and easier viewing for the pilot digital image database. Analysis of confidentiality, copyright and data protection exposed similar issues for both systems, thus concluding that the digital image database is a more effective library system. The authors suggest that in the future, medical images will be stored on large, professionally administered, centrally located file servers, allowing specialist image libraries to be tailored locally for individual users. The further integration of the database with web technology will enable cheap and efficient remote access for a wide range of users.
The effects of gray scale image processing on digital mammography interpretation performance.
Cole, Elodia B; Pisano, Etta D; Zeng, Donglin; Muller, Keith; Aylward, Stephen R; Park, Sungwook; Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Walsh, Ruth; Baker, Jay; Gimenez, Edgardo I; Freimanis, Rita
2005-05-01
To determine the effects of three image-processing algorithms on diagnostic accuracy of digital mammography in comparison with conventional screen-film mammography. A total of 201 cases consisting of nonprocessed soft copy versions of the digital mammograms acquired from GE, Fischer, and Trex digital mammography systems (1997-1999) and conventional screen-film mammograms of the same patients were interpreted by nine radiologists. The raw digital data were processed with each of three different image-processing algorithms creating three presentations-manufacturer's default (applied and laser printed to film by each of the manufacturers), MUSICA, and PLAHE-were presented in soft copy display. There were three radiologists per presentation. Area under the receiver operating characteristic curve for GE digital mass cases was worse than screen-film for all digital presentations. The area under the receiver operating characteristic for Trex digital mass cases was better, but only with images processed with the manufacturer's default algorithm. Sensitivity for GE digital mass cases was worse than screen film for all digital presentations. Specificity for Fischer digital calcifications cases was worse than screen film for images processed in default and PLAHE algorithms. Specificity for Trex digital calcifications cases was worse than screen film for images processed with MUSICA. Specific image-processing algorithms may be necessary for optimal presentation for interpretation based on machine and lesion type.
Development of a digital-micromirror-device-based multishot snapshot spectral imaging system.
Wu, Yuehao; Mirza, Iftekhar O; Arce, Gonzalo R; Prather, Dennis W
2011-07-15
We report on the development of a digital-micromirror-device (DMD)-based multishot snapshot spectral imaging (DMD-SSI) system as an alternative to current piezostage-based multishot coded aperture snapshot spectral imager (CASSI) systems. In this system, a DMD is used to implement compressive sensing (CS) measurement patterns for reconstructing the spatial/spectral information of an imaging scene. Based on the CS measurement results, we demonstrated the concurrent reconstruction of 24 spectral images. The DMD-SSI system is versatile in nature as it can be used to implement independent CS measurement patterns in addition to spatially shifted patterns that piezostage-based systems can offer. © 2011 Optical Society of America
Intrahospital teleradiology from the emergency room
NASA Astrophysics Data System (ADS)
Fuhrman, Carl R.; Slasky, B. S.; Gur, David; Lattner, Stefanie; Herron, John M.; Plunkett, Michael B.; Towers, Jeffrey D.; Thaete, F. Leland
1993-09-01
Off-hour operations of the modern emergency room presents a challenge to conventional image management systems. To assess the utility of intrahospital teleradiology systems from the emergency room (ER), we installed a high-resolution film digitizer which was interfaced to a central archive and to a workstation at the main reading room. The system was designed to allow for digitization of images as soon as the films were processed. Digitized images were autorouted to both destinations, and digitized images could be laser printed (if desired). Almost real time interpretations of nonselected cases were performed at both locations (conventional film in the ER and a workstation in the main reading room), and an analysis of disagreements was performed. Our results demonstrate that in spite of a `significant' difference in reporting, `clinically significant differences' were found in less than 5% of cases. Folder management issues, preprocessing, image orientation, and setting reasonable lookup tables for display were identified as the main limitations to the systems' routine use in a busy environment. The main limitation of the conventional film was the identification of subtle abnormalities in the bright regions of the film. Once identified on either system (conventional film or soft display), all abnormalities were visible and detectable on both display modalities.
Precise color images a high-speed color video camera system with three intensified sensors
NASA Astrophysics Data System (ADS)
Oki, Sachio; Yamakawa, Masafumi; Gohda, Susumu; Etoh, Takeharu G.
1999-06-01
High speed imaging systems have been used in a large field of science and engineering. Although the high speed camera systems have been improved to high performance, most of their applications are only to get high speed motion pictures. However, in some fields of science and technology, it is useful to get some other information, such as temperature of combustion flame, thermal plasma and molten materials. Recent digital high speed video imaging technology should be able to get such information from those objects. For this purpose, we have already developed a high speed video camera system with three-intensified-sensors and cubic prism image splitter. The maximum frame rate is 40,500 pps (picture per second) at 64 X 64 pixels and 4,500 pps at 256 X 256 pixels with 256 (8 bit) intensity resolution for each pixel. The camera system can store more than 1,000 pictures continuously in solid state memory. In order to get the precise color images from this camera system, we need to develop a digital technique, which consists of a computer program and ancillary instruments, to adjust displacement of images taken from two or three image sensors and to calibrate relationship between incident light intensity and corresponding digital output signals. In this paper, the digital technique for pixel-based displacement adjustment are proposed. Although the displacement of the corresponding circle was more than 8 pixels in original image, the displacement was adjusted within 0.2 pixels at most by this method.
Full range line-field parallel swept source imaging utilizing digital refocusing
NASA Astrophysics Data System (ADS)
Fechtig, Daniel J.; Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A.
2015-12-01
We present geometric optics-based refocusing applied to a novel off-axis line-field parallel swept source imaging (LPSI) system. LPSI is an imaging modality based on line-field swept source optical coherence tomography, which permits 3-D imaging at acquisition speeds of up to 1 MHz. The digital refocusing algorithm applies a defocus-correcting phase term to the Fourier representation of complex-valued interferometric image data, which is based on the geometrical optics information of the LPSI system. We introduce the off-axis LPSI system configuration, the digital refocusing algorithm and demonstrate the effectiveness of our method for refocusing volumetric images of technical and biological samples. An increase of effective in-focus depth range from 255 μm to 4.7 mm is achieved. The recovery of the full in-focus depth range might be especially valuable for future high-speed and high-resolution diagnostic applications of LPSI in ophthalmology.
Digital hand atlas and computer-aided bone age assessment via the Web
NASA Astrophysics Data System (ADS)
Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente
1999-07-01
A frequently used assessment method of bone age is atlas matching by a radiological examination of a hand image against a reference set of atlas patterns of normal standards. We are in a process of developing a digital hand atlas with a large standard set of normal hand and wrist images that reflect the skeletal maturity, race and sex difference, and current child development. The digital hand atlas will be used for a computer-aided bone age assessment via Web. We have designed and partially implemented a computer-aided diagnostic (CAD) system for Web-based bone age assessment. The system consists of a digital hand atlas, a relational image database and a Web-based user interface. The digital atlas is based on a large standard set of normal hand an wrist images with extracted bone objects and quantitative features. The image database uses a content- based indexing to organize the hand images and their attributes and present to users in a structured way. The Web-based user interface allows users to interact with the hand image database from browsers. Users can use a Web browser to push a clinical hand image to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, will be extracted and compared with patterns from the atlas database to assess the bone age. The relevant reference imags and the final assessment report will be sent back to the user's browser via Web. The digital atlas will remove the disadvantages of the currently out-of-date one and allow the bone age assessment to be computerized and done conveniently via Web. In this paper, we present the system design and Web-based client-server model for computer-assisted bone age assessment and our initial implementation of the digital atlas database.
NASA Technical Reports Server (NTRS)
1998-01-01
Positive Systems has worked in conjunction with Stennis Space Center to design the ADAR System 5500. This is a four-band airborne digital imaging system used to capture multispectral imagery similar to that available from satellite platforms such as Landsat, SPOT and the new generation of high resolution satellites. Positive Systems has provided remote sensing services for the development of digital aerial camera systems and software for commercial aerial imaging applications.
Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E
2010-01-01
Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.
A model for a PC-based, universal-format, multimedia digitization system: moving beyond the scanner.
McEachen, James C; Cusack, Thomas J; McEachen, John C
2003-08-01
Digitizing images for use in case presentations based on hardcopy films, slides, photographs, negatives, books, and videos can present a challenging task. Scanners and digital cameras have become standard tools of the trade. Unfortunately, use of these devices to digitize multiple images in many different media formats can be a time-consuming and in some cases unachievable process. The authors' goal was to create a PC-based solution for digitizing multiple media formats in a timely fashion while maintaining adequate image presentation quality. The authors' PC-based solution makes use of off-the-shelf hardware applications to include a digital document camera (DDC), VHS video player, and video-editing kit. With the assistance of five staff radiologists, the authors examined the quality of multiple image types digitized with this equipment. The authors also quantified the speed of digitization of various types of media using the DDC and video-editing kit. With regard to image quality, the five staff radiologists rated the digitized angiography, CT, and MR images as adequate to excellent for use in teaching files and case presentations. With regard to digitized plain films, the average rating was adequate. As for performance, the authors recognized a 68% improvement in the time required to digitize hardcopy films using the DDC instead of a professional quality scanner. The PC-based solution provides a means for digitizing multiple images from many different types of media in a timely fashion while maintaining adequate image presentation quality.
Yang, X; Liu, H; Li, D; Zhou, X; Jung, W C; Deans, A E; Cui, Y; Cheng, L
2001-04-01
To investigate the feasibility of using a sensitive digital optical imaging technique to detect green fluorescent protein (GFP) expressed in rabbit vasculature and human arterial smooth muscle cells. A GFP plasmid was transfected into human arterial smooth muscle cells to obtain a GFP-smooth muscle cell solution. This solution was imaged in cell phantoms by using a prototype digital optical imaging system. For in vivo validation, a GFP-lentivirus vector was transfected during surgery into the carotid arteries of two rabbits, and GFP-targeted vessels were harvested for digital optical imaging ex vivo. Optical imaging of cell phantoms resulted in a spatial resolution of 25 microm/pixel. Fluorescent signals were detected as diffusely distributed bright spots. At ex vivo optical imaging of arterial tissues, the average fluorescent signal was significantly higher (P <.05) in GFP-targeted tissues (mean +/- SD, 9,357.3 absolute units of density +/- 1,001.3) than in control tissues (5,633.7 absolute units of density +/- 985.2). Both fluorescence microscopic and immunohistochemical findings confirmed these differences between GFP-targeted and control vessels. The digital optical imaging system was sensitive to GFPs and may potentially provide an in vivo imaging tool to monitor and track vascular gene transfer and expression in experimental investigations.
The impact of the condenser on cytogenetic image quality in digital microscope system.
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.
Fundamentals of image acquisition and processing in the digital era.
Farman, A G
2003-01-01
To review the historic context for digital imaging in dentistry and to outline the fundamental issues related to digital imaging modalities. Digital dental X-ray images can be achieved by scanning analog film radiographs (secondary capture), with photostimulable phosphors, or using solid-state detectors (e.g. charge-coupled device and complementary metal oxide semiconductor). There are four characteristics that are basic to all digital image detectors; namely, size of active area, signal-to-noise ratio, contrast resolution and the spatial resolution. To perceive structure in a radiographic image, there needs to be sufficient difference between contrasting densities. This primarily depends on the differences in the attenuation of the X-ray beam by adjacent tissues. It is also depends on the signal received; therefore, contrast tends to increase with increased exposure. Given adequate signal and sufficient differences in radiodensity, contrast will be sufficient to differentiate between adjacent structures, irrespective of the recording modality and processing used. Where contrast is not sufficient, digital images can sometimes be post-processed to disclose details that would otherwise go undetected. For example, cephalogram isodensity mapping can improve soft tissue detail. It is concluded that it could be a further decade or two before three-dimensional digital imaging systems entirely replace two-dimensional analog films. Such systems need not only to produce prettier images, but also to provide a demonstrable evidence-based higher standard of care at a cost that is not economically prohibitive for the practitioner or society, and which allows efficient and effective workflow within the business of dental practice.
Evolution of digital angiography systems.
Brigida, Raffaela; Misciasci, Teresa; Martarelli, Fabiola; Gangitano, Guido; Ottaviani, Pierfrancesco; Rollo, Massimo; Marano, Pasquale
2003-01-01
The innovations introduced by digital subtraction angiography in digital radiography are briefly illustrated with the description of its components and functioning. The pros and cons of digital subtraction angiography are analyzed in light of present and future imaging technologies. In particular, among advantages there are: automatic exposure, digital image subtraction, digital post-processing, high number of images per second, possible changes in density and contrast. Among disadvantages there are: small round field of view, geometric distortion at the image periphery, high sensitivity to patient movements, not very high spatial resolution. At present, flat panel detectors represent the most suitable substitutes for digital subtraction angiography, with the introduction of novel solutions for those artifacts which for years have hindered its diagnostic validity. The concept of temporal artifact, reset light and possible future evolutions of this technology that may afford both diagnostic and protectionist advantages, are analyzed.
Development of a digital impression procedure using photogrammetry for complete denture fabrication.
Matsuda, Takashi; Goto, Takaharu; Kurahashi, Kosuke; Kashiwabara, Toshiya; Ichikawa, Tetsuo
We developed an innovative procedure for digitizing maxillary edentulous residual ridges with a photogrammetric system capable of estimating three-dimensional (3D) digital forms from multiple two-dimensional (2D) digital images. The aim of this study was to validate the effectiveness of the photogrammetric system. Impressions of the maxillary residual ridges of five edentulous patients were taken with four kinds of procedures: three conventional impression procedures and the photogrammetric system. Plaster models were fabricated from conventional impressions and digitized with a 3D scanner. Two 3D forms out of four forms were superimposed with 3D inspection software, and differences were evaluated using a least squares best fit algorithm. The in vitro experiment suggested that better imaging conditions were in the horizontal range of ± 15 degrees and at a vertical angle of 45 degrees. The mean difference between the photogrammetric image (Form A) and the image taken from conventional preliminarily impression (Form C) was 0.52 ± 0.22 mm. The mean difference between the image taken of final impression through a special tray (Form B) and Form C was 0.26 ± 0.06 mm. The mean difference between the image taken from conventional final impression (Form D) and Form C was 0.25 ± 0.07 mm. The difference between Forms A and C was significantly larger than the differences between Forms B and C and between Forms D and C. The results of this study suggest that obtaining digital impressions of edentulous residual ridges using a photogrammetric system is feasible and available for clinical use.
Digital radiography and caries diagnosis.
Wenzel, A
1998-01-01
Direct digital acquisition of intra-oral radiographs has been possible only in the last decade. Several studies have shown that, theoretically, there are a number of advantages of direct digital radiography compared with conventional film. Laboratory as well as controlled clinical studies are needed to determine whether new digital imaging systems alter diagnosis, treatment and prognosis compared with conventional methods. Most studies so far have evaluated their diagnostic performance only in laboratory settings. This review concentrates on what evidence we have for the diagnostic efficacy of digital systems for caries detection. Digital systems are compared with film and those studies which have evaluated the effects on diagnostic accuracy of contrast and edge enhancement, image size, variations in radiation dose and image compression are reviewed together with the use of automated image analysis for caries diagnosis. Digital intra-oral radiographic systems seem to be as accurate as the currently available dental films for the detection of caries. Sensitivities are relatively high (0.6-0.8) for detection of occlusal lesions into dentine with false positive fractions of 5-10%. A radiolucency in dentine is recognised as a good predictor for demineralisation. Radiography is of no value for the detection of initial (enamel) occlusal lesions. For detection of approximal dentinal lesions, sensitivities, specificities as well as the predictive values are fair, but are very poor for lesions known to be confined to enamel. Very little documented information exists, however, on the utilization of digital systems in the clinic. It is not known whether dose is actually reduced with the storage phosphor system, or whether collimator size is adjusted to fit sensor size in the CCD-based systems. There is no evidence that the number of retakes have been reduced. It is not known how many images are needed with the various CCD systems when compared with a conventional bitewing, nor how stable these systems are in the daily clinical use or whether proper cross-infection control can be maintained in relation to scanning the storage phosphor plates and the sensors and the cable. There is only sparse evidence that the enhancement facilities are used when interpreting images, and none that this has changed working practices or treatment decisions. The economic consequences for the patient, dentist and society require examination.
Going fully digital: Perspective of a Dutch academic pathology lab
Stathonikos, Nikolas; Veta, Mitko; Huisman, André; van Diest, Paul J.
2013-01-01
During the last years, whole slide imaging has become more affordable and widely accepted in pathology labs. Digital slides are increasingly being used for digital archiving of routinely produced clinical slides, remote consultation and tumor boards, and quantitative image analysis for research purposes and in education. However, the implementation of a fully digital Pathology Department requires an in depth look into the suitability of digital slides for routine clinical use (the image quality of the produced digital slides and the factors that affect it) and the required infrastructure to support such use (the storage requirements and integration with lab management and hospital information systems). Optimization of digital pathology workflow requires communication between several systems, which can be facilitated by the use of open standards for digital slide storage and scanner management. Consideration of these aspects along with appropriate validation of the use of digital slides for routine pathology can pave the way for pathology departments to go “fully digital.” In this paper, we summarize our experiences so far in the process of implementing a fully digital workflow at our Pathology Department and the steps that are needed to complete this process. PMID:23858390
NASA Astrophysics Data System (ADS)
Cline, Julia Elaine
2011-12-01
Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.
Stationary Digital Tomosynthesis System for Early Detection of Breast Tumors
2011-05-01
selenium flat panel detector. Proc. SPIE 2005. 5745: p. 529-540 4. Kopans, D.B., Breast Imaging. 2 ed. 1997, New York Lippincott Williams and...same. 2005. 8. M. Bissonnette, et al. Digital breast tomosynthesis using an amorphous selenium flat panel detector. in Medical Imaging 2005...tomosynthesis system with selenium based flat panel detector. Proc of SPIE, Physics of Medical Imaging, 2005. 5745. 12
Telemedicine optoelectronic biomedical data processing system
NASA Astrophysics Data System (ADS)
Prosolovska, Vita V.
2010-08-01
The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.
NASA Astrophysics Data System (ADS)
Arruda, D. C. S.; Sobral, J. H. A.; Abdu, M. A.; Castilho, V. M.; Takahashi, H.
The zonal drift velocities of the ionospheric plasma bubbles over the Brazilian region are analyzed in this study that is based on OI630nm airglow digital images. These digital images were obtained by an all-sky imager system between October 1998 and August 2000, at Cachoeira Paulista (22.5°S, 45°W), a low latitude region. In this period, 138 nights of OI 630 nm airglow experiments were carried out of which 30 nights detected the ionospheric plasma bubbles. These 30 nights correspond to magnetically quiet days (ΣK_P<24+) and were grouped according approximately to their season. KEY WORDS: Imager System, Ionospheric Plasma Bubbles, Zonal drift velocities, OI630nm.
A high-resolution multimode digital microscope system.
Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry
2013-01-01
This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.
Digital repeat analysis; setup and operation.
Nol, J; Isouard, G; Mirecki, J
2006-06-01
Since the emergence of digital imaging, there have been questions about the necessity of continuing reject analysis programs in imaging departments to evaluate performance and quality. As a marketing strategy, most suppliers of digital technology focus on the supremacy of the technology and its ability to reduce the number of repeats, resulting in less radiation doses given to patients and increased productivity in the department. On the other hand, quality assurance radiographers and radiologists believe that repeats are mainly related to positioning skills, and repeat analysis is the main tool to plan training needs to up-skill radiographers. A comparative study between conventional and digital imaging was undertaken to compare outcomes and evaluate the need for reject analysis. However, digital technology still being at its early development stages, setting a credible reject analysis program became the major task of the study. It took the department, with the help of the suppliers of the computed radiography reader and the picture archiving and communication system, over 2 years of software enhancement to build a reliable digital repeat analysis system. The results were supportive of both philosophies; the number of repeats as a result of exposure factors was reduced dramatically; however, the percentage of repeats as a result of positioning skills was slightly on the increase for the simple reason that some rejects in the conventional system qualifying for both exposure and positioning errors were classified as exposure error. The ability of digitally adjusting dark or light images reclassified some of those images as positioning errors.
A safety monitoring system for taxi based on CMOS imager
NASA Astrophysics Data System (ADS)
Liu, Zhi
2005-01-01
CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.
Interactive display system having a digital micromirror imaging device
Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin
2006-04-11
A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.
NASA Technical Reports Server (NTRS)
Hazra, Rajeeb; Viles, Charles L.; Park, Stephen K.; Reichenbach, Stephen E.; Sieracki, Michael E.
1992-01-01
Consideration is given to a model-based method for estimating the spatial frequency response of a digital-imaging system (e.g., a CCD camera) that is modeled as a linear, shift-invariant image acquisition subsystem that is cascaded with a linear, shift-variant sampling subsystem. The method characterizes the 2D frequency response of the image acquisition subsystem to beyond the Nyquist frequency by accounting explicitly for insufficient sampling and the sample-scene phase. Results for simulated systems and a real CCD-based epifluorescence microscopy system are presented to demonstrate the accuracy of the method.
State of the art and trends for digital pathology.
García Rojo, Marcial
2012-01-01
Anatomic pathology is a medical specialty where both information management systems and digital images systems paly a most important role. Digital pathology is a new concept that considers all uses of this information, including diagnosis, biomedical research and education. Virtual microscopy or whole slide imaging, resulting in digital slides, is an outreaching technology in anatomic pathology. Limiting factors in the expansion of virtual microscopy are formidable storage dimension, scanning speed, quality of image and cultural change. Anatomic pathology data and images should be an important part of the patient electronic health records as well as of clinical data warehouse, epidemiological or biomedical research databases, and platforms dedicated to translational medicine. Integrating anatomic pathology to the "healthcare enterprise" can only be achieved using existing and emerging medical informatics standards like Digital Imaging and Communications in Medicine (DICOM®1), Health Level Seven (HL7®), and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT®), following the recommendations of Integrating the Healthcare Enterprise (IHE®). The consequences of the full digitalization of pathology departments are hard to foresee, but short term issues have arisen that imply interesting challenges for health care standards bodies.
The precision-processing subsystem for the Earth Resources Technology Satellite.
NASA Technical Reports Server (NTRS)
Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.
1972-01-01
Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.
Automated daily quality control analysis for mammography in a multi-unit imaging center.
Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli
2018-01-01
Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.
de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell
2007-01-10
We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.
[Assessment of precision and accuracy of digital surface photogrammetry with the DSP 400 system].
Krimmel, M; Kluba, S; Dietz, K; Reinert, S
2005-03-01
The objective of the present study was to evaluate the precision and accuracy of facial anthropometric measurements obtained through digital 3-D surface photogrammetry with the DSP 400 system in comparison to traditional 2-D photogrammetry. Fifty plaster casts of cleft infants were imaged and 21 standard anthropometric measurements were obtained. For precision assessment the measurements were performed twice in a subsample. Accuracy was determined by comparison of direct measurements and indirect 2-D and 3-D image measurements. Precision of digital surface photogrammetry was almost as good as direct anthropometry and clearly better than 2-D photogrammetry. Measurements derived from 3-D images showed better congruence to direct measurements than from 2-D photos. Digital surface photogrammetry with the DSP 400 system is sufficiently precise and accurate for craniofacial anthropometric examinations.
Display nonlinearity in digital image processing for visual communications
NASA Astrophysics Data System (ADS)
Peli, Eli
1992-11-01
The luminance emitted from a cathode ray tube (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image property represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. The effect of this nonlinear transformation on a variety of image-processing applications used in visual communications is described.
Display nonlinearity in digital image processing for visual communications
NASA Astrophysics Data System (ADS)
Peli, Eli
1991-11-01
The luminance emitted from a cathode ray tube, (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image properly represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. This paper describes the effect of this nonlinear transformation on a variety of image-processing applications used in visual communications.
López, Carlos; Lejeune, Marylène; Escrivà, Patricia; Bosch, Ramón; Salvadó, Maria Teresa; Pons, Lluis E.; Baucells, Jordi; Cugat, Xavier; Álvaro, Tomás; Jaén, Joaquín
2008-01-01
This study investigates the effects of digital image compression on automatic quantification of immunohistochemical nuclear markers. We examined 188 images with a previously validated computer-assisted analysis system. A first group was composed of 47 images captured in TIFF format, and other three contained the same images converted from TIFF to JPEG format with 3×, 23× and 46× compression. Counts of TIFF format images were compared with the other three groups. Overall, differences in the count of the images increased with the percentage of compression. Low-complexity images (≤100 cells/field, without clusters or with small-area clusters) had small differences (<5 cells/field in 95–100% of cases) and high-complexity images showed substantial differences (<35–50 cells/field in 95–100% of cases). Compression does not compromise the accuracy of immunohistochemical nuclear marker counts obtained by computer-assisted analysis systems for digital images with low complexity and could be an efficient method for storing these images. PMID:18755997
DIGITAL CARTOGRAPHY OF THE PLANETS: NEW METHODS, ITS STATUS, AND ITS FUTURE.
Batson, R.M.
1987-01-01
A system has been developed that establishes a standardized cartographic database for each of the 19 planets and major satellites that have been explored to date. Compilation of the databases involves both traditional and newly developed digital image processing and mosaicking techniques, including radiometric and geometric corrections of the images. Each database, or digital image model (DIM), is a digital mosaic of spacecraft images that have been radiometrically and geometrically corrected and photometrically modeled. During compilation, ancillary data files such as radiometric calibrations and refined photometric values for all camera lens and filter combinations and refined camera-orientation matrices for all images used in the mapping are produced.
NASA Astrophysics Data System (ADS)
Tanguay, Jesse; Benard, Francois; Celler, Anna; Ruth, Thomas; Schaffer, Paul
2017-03-01
Attaching alpha-emitting radionuclides to cancer-targeting agents increases the anti-tumor effects of targeted cancer therapies. The success of alpha therapy for treating bone metastases has increased interest in using targeted alpha therapy (TAT) to treat a broad spectrum of metastatic cancers. Estimating radiation doses to targeted tumors, including small (<250 μm) clusters of cancer cells, and to non-targeted tissues is critical in the pre-clinical development of TATs. However, accurate quantification of heterogeneous distributions of alpha-emitters in small metastases is not possible with existing pre-clinical in-vivo imaging systems. Ex-vivo digital autoradiography using a scintillator in combination with an image intensifier and a charged coupled device (CCD) has gained interest for pre-clinical ex-vivo alpha particle imaging. We present a simulation-based analysis of the fundamental spatial resolution limits of digital autoradiography systems. Spatial resolution was quantified in terms of the modulation transfer function (MTF) and Wagner's equivalent aperture. We modeled systems operating in either particle-counting (PC) or energy-integrating (EI) mode using a cascaded systems approach that accounts for: 1) the stopping power of alpha particles; 2) the distance alpha particles travel within the scintillator; 3) optical blur, and; 4) binning in detector elements. We applied our analysis to imaging of astatine-211 using an LYSO scintillator with thickness ranging from 10 μm to 20 μm. Our analysis demonstrates that when these systems are operated in particle-counting mode with a centroid-calculation algorithm, the effective apertures of 35 μm can be achieved, which suggests that digital autoradiography may enable quantifying the uptake of alpha emitters in tumors consisting of a few cancer cells. Future work will investigate the image noise and energy-resolution properties of digital autoradiography systems.
Photography/Digital Imaging: Parallel & Paradoxical Histories.
ERIC Educational Resources Information Center
Witte, Mary Stieglitz
With the introduction of photography and photomechanical printing processes in the 19th century, the first age of machine pictures and reproductions emerged. The 20th century introduced computer image processing systems, creating a digital imaging revolution. Rather than concentrating on the adversarial aspects of the computer's influence on…
Low-cost space-varying FIR filter architecture for computational imaging systems
NASA Astrophysics Data System (ADS)
Feng, Guotong; Shoaib, Mohammed; Schwartz, Edward L.; Dirk Robinson, M.
2010-01-01
Recent research demonstrates the advantage of designing electro-optical imaging systems by jointly optimizing the optical and digital subsystems. The optical systems designed using this joint approach intentionally introduce large and often space-varying optical aberrations that produce blurry optical images. Digital sharpening restores reduced contrast due to these intentional optical aberrations. Computational imaging systems designed in this fashion have several advantages including extended depth-of-field, lower system costs, and improved low-light performance. Currently, most consumer imaging systems lack the necessary computational resources to compensate for these optical systems with large aberrations in the digital processor. Hence, the exploitation of the advantages of the jointly designed computational imaging system requires low-complexity algorithms enabling space-varying sharpening. In this paper, we describe a low-cost algorithmic framework and associated hardware enabling the space-varying finite impulse response (FIR) sharpening required to restore largely aberrated optical images. Our framework leverages the space-varying properties of optical images formed using rotationally-symmetric optical lens elements. First, we describe an approach to leverage the rotational symmetry of the point spread function (PSF) about the optical axis allowing computational savings. Second, we employ a specially designed bank of sharpening filters tuned to the specific radial variation common to optical aberrations. We evaluate the computational efficiency and image quality achieved by using this low-cost space-varying FIR filter architecture.
A low-power small-area ADC array for IRFPA readout
NASA Astrophysics Data System (ADS)
Zhong, Shengyou; Yao, Libin
2013-09-01
The readout integrated circuit (ROIC) is a bridge between the infrared focal plane array (IRFPA) and image processing circuit in an infrared imaging system. The ROIC is the first part of signal processing circuit and connected to detectors directly, so its performance will greatly affect the detector or even the whole imaging system performance. With the development of CMOS technologies, it's possible to digitalize the signal inside the ROIC and develop the digital ROIC. Digital ROIC can reduce complexity of the whole system and improve the system reliability. More importantly, it can accommodate variety of digital signal processing techniques which the traditional analog ROIC cannot achieve. The analog to digital converter (ADC) is the most important building block in the digital ROIC. The requirements for ADCs inside the ROIC are low power, high dynamic range and small area. In this paper we propose an RC hybrid Successive Approximation Register (SAR) ADC as the column ADC for digital ROIC. In our proposed ADC structure, a resistor ladder is used to generate several voltages. The proposed RC hybrid structure not only reduces the area of capacitor array but also releases requirement for capacitor array matching. Theory analysis and simulation show RC hybrid SAR ADC is suitable for ADC array applications
Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System
NASA Astrophysics Data System (ADS)
Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin
2008-09-01
The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.
Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindran, V. R.; Sreelakshmi, C.; Vibin
2008-09-26
The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CTmore » image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.« less
A data base of ASAS digital imagery. [Advanced Solid-state Array Spectroradiometer
NASA Technical Reports Server (NTRS)
Irons, James R.; Meeson, Blanche W.; Dabney, Philip W.; Kovalick, William M.; Graham, David W.; Hahn, Daniel S.
1992-01-01
The Advanced Solid-State Array Spectroradiometer (ASAS) is an airborne, off-nadir tilting, imaging spectroradiometer that acquires digital image data for 29 spectral bands in the visible and near-infrared. The sensor is used principally for studies of the bidirectional distribution of solar radiation scattered by terrestial surfaces. ASAS has acquired data for a number of terrestial ecosystem field experiments and investigators have received over 170 radiometrically corrected, multiangle, digital image data sets. A database of ASAS digital imagery has been established in the Pilot Land Data System (PLDS) at the NASA/Goddard Space Flight Center to provide access to these data by the scientific community. ASAS, its processed data, and the PLDS are described, together with recent improvements to the sensor system.
Study of signal-to-noise ratio in digital mammography
NASA Astrophysics Data System (ADS)
Kato, Yuri; Fujita, Naotoshi; Kodera, Yoshie
2009-02-01
Mammography techniques have recently advanced from those using analog systems (the screen-film system) to those using digital systems; for example, computed radiography (CR) and flat-panel detectors (FPDs) are nowadays used in mammography. Further, phase contrast mammography (PCM)-a digital technique by which images with a magnification of 1.75× can be obtained-is now available in the market. We studied the effect of the air gap in PCM and evaluated the effectiveness of an antiscatter x-ray grid in conventional mammography (CM) by measuring the scatter fraction ratio (SFR) and relative signal-to-noise ratio (rSNR) and comparing them between PCM and the digital CM. The results indicated that the SFRs for the CM images obtained with a grid were the lowest and that these ratios were almost the same as those for the PCM images. In contrast, the rSNRs for the PCM images were the highest, which means that the scattering of x-rays was sufficiently reduced by the air gap without the loss of primary x-rays.
Idoate, Miguel A; García-Rojo, Marcial
2016-01-01
Digital technology is progressively changing our vision of the practice of neuropathology. There are a number of facts that support the introduction of digital neuropathology. With the development of wholeslide imaging (WSI) systems the difficulties involved in implementing a neuropathology network have been solved. A relevant difficulty has been image standardization, but an open digital image communication protocol defined by the Digital Imaging and Communications in Medicine (DICOM) standard is already a reality. The neuropathology network should be established in Europe because it is the expected geographic context for relationships among European neuropathologists. There are several limitations in the implementation of a digital neuropathology consultancy network such as financial support, operational costs, legal issues, and technical assistance of clients. All of these items have been considered and should be solved before implementing the proposal. Finally, the authors conclude that a European digital neuropathology network should be created for patients' benefit.
Java-based cryptosystem for PACS and tele-imaging
NASA Astrophysics Data System (ADS)
Tjandra, Donny; Wong, Stephen T. C.; Yu, Yuan-Pin
1998-07-01
Traditional PACS systems are based on two-tier client server architectures, and require the use of costly, high-end client workstations for image viewing. Consequently, PACS systems using the two-tier architecture do not scale well as data increases in size and complexity. Furthermore, use of dedicated viewing workstations incurs costs in deployment and maintenance. To address these issues, the use of digital library technologies, such as the World Wide Web, Java, and CORBA, is being explored to distribute PACS data to serve a broader range of healthcare providers in an economic and efficient manner. Integration of PACS systems with digital library technologies allows access to medical information through open networks such as the Internet. However, use of open networks to transmit medical data introduces problems with maintaining privacy and integrity of patient information. Cryptography and digital timestamping is used to protect sensitive information from unauthorized access or tampering. A major concern when using cryptography and digital timestamping is the performance degradation associated with the mathematical calculations needed to encrypt/decrypt an image dataset, or to calculate the hash value of an image. The performance issue is compounded by the extra layer associated with the CORBA middleware, and the use of programming languages interpreted at the client side, such as Java. This paper study the extent to which Java-based cryptography and digital timestamping affects performance in a PACS system integrated with digital library technologies.
Fast digital zooming system using directionally adaptive image interpolation and restoration.
Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki
2014-01-01
This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.
Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.
Feng, Wei; Zhang, Fumin; Wang, Weijing; Xing, Wei; Qu, Xinghua
2017-05-01
In this paper, we overcome the limited dynamic range of the conventional digital camera, and propose a method of realizing high dynamic range imaging (HDRI) from a novel programmable imaging system called a digital micromirror device (DMD) camera. The unique feature of the proposed new method is that the spatial and temporal information of incident light in our DMD camera can be flexibly modulated, and it enables the camera pixels always to have reasonable exposure intensity by DMD pixel-level modulation. More importantly, it allows different light intensity control algorithms used in our programmable imaging system to achieve HDRI. We implement the optical system prototype, analyze the theory of per-pixel coded exposure for HDRI, and put forward an adaptive light intensity control algorithm to effectively modulate the different light intensity to recover high dynamic range images. Via experiments, we demonstrate the effectiveness of our method and implement the HDRI on different objects.
Programmed database system at the Chang Gung Craniofacial Center: part II--digitizing photographs.
Chuang, Shiow-Shuh; Hung, Kai-Fong; de Villa, Glenda H; Chen, Philip K T; Lo, Lun-Jou; Chang, Sophia C N; Yu, Chung-Chih; Chen, Yu-Ray
2003-07-01
The archival tools used for digital images in advertising are not to fulfill the clinic requisition and are just beginning to develop. The storage of a large amount of conventional photographic slides needs a lot of space and special conditions. In spite of special precautions, degradation of the slides still occurs. The most common degradation is the appearance of fungus flecks. With the recent advances in digital technology, it is now possible to store voluminous numbers of photographs on a computer hard drive and keep them for a long time. A self-programmed interface has been developed to integrate database and image browser system that can build and locate needed files archive in a matter of seconds with the click of a button. This system requires hardware and software were market provided. There are 25,200 patients recorded in the database that involve 24,331 procedures. In the image files, there are 6,384 patients with 88,366 digital pictures files. From 1999 through 2002, NT400,000 dollars have been saved using the new system. Photographs can be managed with the integrating Database and Browse software for database archiving. This allows labeling of the individual photographs with demographic information and browsing. Digitized images are not only more efficient and economical than the conventional slide images, but they also facilitate clinical studies.
NASA Astrophysics Data System (ADS)
Renken, Hartmut; Oelze, Holger W.; Rath, Hans J.
1998-04-01
The design and application of a digital high sped image data capturing system with a following image processing system applied to the Bremer Hochschul Hyperschallkanal BHHK is the content of this presentation. It is also the result of the cooperation between the departments aerodynamic and image processing at the ZARM-institute at the Drop Tower of Brennen. Similar systems are used by the combustion working group at ZARM and other external project partners. The BHHK, camera- and image storage system as well as the personal computer based image processing software are described next. Some examples of images taken at the BHHK are shown to illustrate the application. The new and very user-friendly Windows 32-bit system is capable to capture all camera data with a maximum pixel clock of 43 MHz and to process complete sequences of images in one step by using only one comfortable program.
Digital mammography: physical principles and future applications.
Gambaccini, Mauro; Baldelli, Paola
2003-01-01
Mammography is currently considered the best tool for the detection of breast cancer, pathology with a rate of incidence in constant increase. To produce the radiological picture a screen film combination is conventionally used. One of the inherent limitations of screen- film combination is the fact that the detection, display and storage processes are one and the same, making it impossible to separately optimize each stage. These limitations can be overcome with digital systems. In this work we evaluate the main characteristics of digital detectors available on the market and we compare the performance of digital and conventional systems. Digital mammography, due to the possibility to process images, offers many potential advantages, among these the possibility to introduce the dual-energy technique which employs the composition of two digital images obtained with two different energies to enhance the inherent contrast of pathologies by removing the uniform background. This technique was previously tested by using synchrotron monochromatic beam and a digital detector, and then the Senographe 2000D full-field digital system manufactured by GE Medical Systems. In this work we present preliminary results and the future applications of this technique.
NASA Astrophysics Data System (ADS)
Jantzen, Connie; Slagle, Rick
1997-05-01
The distinction between exposure time and sample rate is often the first point raised in any discussion of high speed imaging. Many high speed events require exposure times considerably shorter than those that can be achieved solely by the sample rate of the camera, where exposure time equals 1/sample rate. Gating, a method of achieving short exposure times in digital cameras, is often difficult to achieve for exposure time requirements shorter than 100 microseconds. This paper discusses the advantages and limitations of using the short duration light pulse of a near infrared laser with high speed digital imaging systems. By closely matching the output wavelength of the pulsed laser to the peak near infrared response of current sensors, high speed image capture can be accomplished at very low (visible) light levels of illumination. By virtue of the short duration light pulse, adjustable to as short as two microseconds, image capture of very high speed events can be achieved at relatively low sample rates of less than 100 pictures per second, without image blur. For our initial investigations, we chose a ballistic subject. The results of early experimentation revealed the limitations of applying traditional ballistic imaging methods when using a pulsed infrared lightsource with a digital imaging system. These early disappointing results clarified the need to further identify the unique system characteristics of the digital imager and pulsed infrared combination. It was also necessary to investigate how the infrared reflectance and transmittance of common materials affects the imaging process. This experimental work yielded a surprising, successful methodology which will prove useful in imaging ballistic and weapons tests, as well as forensics, flow visualizations, spray pattern analyses, and nocturnal animal behavioral studies.
Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron
2018-01-01
As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products. PMID:29619278
Nair, Madhu K; Pettigrew, James C; Loomis, Jeffrey S; Bates, Robert E; Kostewicz, Stephen; Robinson, Boyd; Sweitzer, Jean; Dolan, Teresa A
2009-06-01
The implementation of digital radiography in dentistry in a large healthcare enterprise setting is discussed. A distinct need for a dedicated dental picture archiving and communication systems (PACS) exists for seamless integration of different vendor products across the system. Complex issues are contended with as each clinical department migrated to a digital environment with unique needs and workflow patterns. The University of Florida has had a dental PACS installed over 2 years ago. This paper describes the process of conversion from film-based imaging from the planning stages through clinical implementation. Dentistry poses many unique challenges as it strives to achieve better integration with systems primarily designed for imaging; however, the technical requirements for high-resolution image capture in dentistry far exceed those in medicine, as most routine dental diagnostic tasks are challenging. The significance of specification, evaluation, vendor selection, installation, trial runs, training, and phased clinical implementation is emphasized.
Nonlinear research of an image motion stabilization system embedded in a space land-survey telescope
NASA Astrophysics Data System (ADS)
Somov, Yevgeny; Butyrin, Sergey; Siguerdidjane, Houria
2017-01-01
We consider an image motion stabilization system embedded into a space telescope for a scanning optoelectronic observation of terrestrial targets. Developed model of this system is presented taking into account physical hysteresis of piezo-ceramic driver and a time delay at a forming of digital control. We have presented elaborated algorithms for discrete filtering and digital control, obtained results on analysis of the image motion velocity oscillations in the telescope focal plane, and also methods for terrestrial and in-flight verification of the system.
An improved three-dimensional non-scanning laser imaging system based on digital micromirror device
NASA Astrophysics Data System (ADS)
Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.
2018-01-01
Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.
High-contrast multilayer imaging of biological organisms through dark-field digital refocusing.
Faridian, Ahmad; Pedrini, Giancarlo; Osten, Wolfgang
2013-08-01
We have developed an imaging system to extract high contrast images from different layers of biological organisms. Utilizing a digital holographic approach, the system works without scanning through layers of the specimen. In dark-field illumination, scattered light has the main contribution in image formation, but in the case of coherent illumination, this creates a strong speckle noise that reduces the image quality. To remove this restriction, the specimen has been illuminated with various speckle-fields and a hologram has been recorded for each speckle-field. Each hologram has been analyzed separately and the corresponding intensity image has been reconstructed. The final image has been derived by averaging over the reconstructed images. A correlation approach has been utilized to determine the number of speckle-fields required to achieve a desired contrast and image quality. The reconstructed intensity images in different object layers are shown for different sea urchin larvae. Two multimedia files are attached to illustrate the process of digital focusing.
Ramos Brito, Ana Caroline; Verner, Francielle Silvestre; Junqueira, Rafael Binato; Yamasaki, Mayra Cristina; Queiroz, Polyane Mazucato; Freitas, Deborah Queiroz; Oliveira-Santos, Christiano
2017-04-01
This study compared the detection of fractured instruments in root canals with and without filling by periapical radiographs from 3 digital systems and cone-beam computed tomographic (CBCT) images with different resolutions. Thirty-one human molars (80 canals) were used. Root canals were divided into the following groups: the control group, without fillings; the fracture group, without fillings and with fractured files; the fill group, filled; and the fill/fracture group, filled and with fractured files. Digital radiographs in ortho-, mesio-, and distoradial directions were performed in 2 semidirect systems (VistaScan [Dürr Dental, Beitigheim-Bissinger, Germany] and Express [Instrumentarium Imaging, Tuusula, Finland]) and a direct system (SnapShot [Instrumentarium Imaging]). CBCT images were acquired with 0.085-mm and 0.2-mm voxel sizes. All images were assessed and reassessed by 4 observers for the presence or absence of fractured files on a 5-point scale. The sensitivity, specificity, and accuracy were calculated. In the absence of filling, accuracy values were high, and there were no statistical differences among the radiographic techniques, different digital systems, or the different CBCT voxels sizes. In the presence of filling, the accuracy of periapical radiographs was significantly higher than CBCT images. In general, SnapShot showed higher accuracy than VistaScan and Express. Periapical radiographs in 1 incidence were accurate for the detection of fractured endodontic instruments inside the root canal in the absence or presence of filling, suggesting that this technique should be the first choice as well as the direct digital radiographic system. In the presence of filling, the decision to perform a CBCT examination must take into consideration its low accuracy. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Applications and challenges of digital pathology and whole slide imaging.
Higgins, C
2015-07-01
Virtual microscopy is a method for digitizing images of tissue on glass slides and using a computer to view, navigate, change magnification, focus and mark areas of interest. Virtual microscope systems (also called digital pathology or whole slide imaging systems) offer several advantages for biological scientists who use slides as part of their general, pharmaceutical, biotechnology or clinical research. The systems usually are based on one of two methodologies: area scanning or line scanning. Virtual microscope systems enable automatic sample detection, virtual-Z acquisition and creation of focal maps. Virtual slides are layered with multiple resolutions at each location, including the highest resolution needed to allow more detailed review of specific regions of interest. Scans may be acquired at 2, 10, 20, 40, 60 and 100 × or a combination of magnifications to highlight important detail. Digital microscopy starts when a slide collection is put into an automated or manual scanning system. The original slides are archived, then a server allows users to review multilayer digital images of the captured slides either by a closed network or by the internet. One challenge for adopting the technology is the lack of a universally accepted file format for virtual slides. Additional challenges include maintaining focus in an uneven sample, detecting specimens accurately, maximizing color fidelity with optimal brightness and contrast, optimizing resolution and keeping the images artifact-free. There are several manufacturers in the field and each has not only its own approach to these issues, but also its own image analysis software, which provides many options for users to enhance the speed, quality and accuracy of their process through virtual microscopy. Virtual microscope systems are widely used and are trusted to provide high quality solutions for teleconsultation, education, quality control, archiving, veterinary medicine, research and other fields.
An automatic optimum kernel-size selection technique for edge enhancement
Chavez, Pat S.; Bauer, Brian P.
1982-01-01
Edge enhancement is a technique that can be considered, to a first order, a correction for the modulation transfer function of an imaging system. Digital imaging systems sample a continuous function at discrete intervals so that high-frequency information cannot be recorded at the same precision as lower frequency data. Because of this, fine detail or edge information in digital images is lost. Spatial filtering techniques can be used to enhance the fine detail information that does exist in the digital image, but the filter size is dependent on the type of area being processed. A technique has been developed by the authors that uses the horizontal first difference to automatically select the optimum kernel-size that should be used to enhance the edges that are contained in the image.
Trainable Cataloging for Digital Image Libraries with Applications to Volcano Detection
NASA Technical Reports Server (NTRS)
Burl, M. C.; Fayyad, U. M.; Perona, P.; Smyth, P.
1995-01-01
Users of digital image libraries are often not interested in image data per se but in derived products such as catalogs of objects of interest. Converting an image database into a usable catalog is typically carried out manually at present. For many larger image databases the purely manual approach is completely impractical. In this paper we describe the development of a trainable cataloging system: the user indicates the location of the objects of interest for a number of training images and the system learns to detect and catalog these objects in the rest of the database. In particular we describe the application of this system to the cataloging of small volcanoes in radar images of Venus. The volcano problem is of interest because of the scale (30,000 images, order of 1 million detectable volcanoes), technical difficulty (the variability of the volcanoes in appearance) and the scientific importance of the problem. The problem of uncertain or subjective ground truth is of fundamental importance in cataloging problems of this nature and is discussed in some detail. Experimental results are presented which quantify and compare the detection performance of the system relative to human detection performance. The paper concludes by discussing the limitations of the proposed system and the lessons learned of general relevance to the development of digital image libraries.
Laser-Directed Ranging System Implementing Single Camera System for Telerobotics Applications
NASA Technical Reports Server (NTRS)
Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)
1995-01-01
The invention relates generally to systems for determining the range of an object from a reference point and, in one embodiment, to laser-directed ranging systems useful in telerobotics applications. Digital processing techniques are employed which minimize the complexity and cost of the hardware and software for processing range calculations, thereby enhancing the commercial attractiveness of the system for use in relatively low-cost robotic systems. The system includes a video camera for generating images of the target, image digitizing circuitry, and an associated frame grabber circuit. The circuit first captures one of the pairs of stereo video images of the target, and then captures a second video image of the target as it is partly illuminated by the light beam, suitably generated by a laser. The two video images, taken sufficiently close together in time to minimize camera and scene motion, are converted to digital images and then compared. Common pixels are eliminated, leaving only a digital image of the laser-illuminated spot on the target. Mw centroid of the laser illuminated spot is dm obtained and compared with a predetermined reference point, predetermined by design or calibration, which represents the coordinate at the focal plane of the laser illumination at infinite range. Preferably, the laser and camera are mounted on a servo-driven platform which can be oriented to direct the camera and the laser toward the target. In one embodiment the platform is positioned in response to movement of the operator's head. Position and orientation sensors are used to monitor head movement. The disparity between the digital image of the laser spot and the reference point is calculated for determining range to the target. Commercial applications for the system relate to active range-determination systems, such as those used with robotic systems in which it is necessary to determine the, range to a workpiece or object to be grasped or acted upon by a robot arm end-effector in response to commands generated by an operator. In one embodiment, the system provides a real-time image of the target for the operator as the robot approaches the object. The system is also adapted for use in virtual reality systems in which a remote object or workpiece is to be acted upon by a remote robot arm or other mechanism controlled by an operator.
The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284
Warped document image correction method based on heterogeneous registration strategies
NASA Astrophysics Data System (ADS)
Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan
2013-03-01
With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.
RAPID: A random access picture digitizer, display, and memory system
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.; Rayfield, M.; Eskenazi, R.
1976-01-01
RAPID is a system capable of providing convenient digital analysis of video data in real-time. It has two modes of operation. The first allows for continuous digitization of an EIA RS-170 video signal. Each frame in the video signal is digitized and written in 1/30 of a second into RAPID's internal memory. The second mode leaves the content of the internal memory independent of the current input video. In both modes of operation the image contained in the memory is used to generate an EIA RS-170 composite video output signal representing the digitized image in the memory so that it can be displayed on a monitor.
Process simulation in digital camera system
NASA Astrophysics Data System (ADS)
Toadere, Florin
2012-06-01
The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.
Toward a digital camera to rival the human eye
NASA Astrophysics Data System (ADS)
Skorka, Orit; Joseph, Dileepan
2011-07-01
All things considered, electronic imaging systems do not rival the human visual system despite notable progress over 40 years since the invention of the CCD. This work presents a method that allows design engineers to evaluate the performance gap between a digital camera and the human eye. The method identifies limiting factors of the electronic systems by benchmarking against the human system. It considers power consumption, visual field, spatial resolution, temporal resolution, and properties related to signal and noise power. A figure of merit is defined as the performance gap of the weakest parameter. Experimental work done with observers and cadavers is reviewed to assess the parameters of the human eye, and assessment techniques are also covered for digital cameras. The method is applied to 24 modern image sensors of various types, where an ideal lens is assumed to complete a digital camera. Results indicate that dynamic range and dark limit are the most limiting factors. The substantial functional gap, from 1.6 to 4.5 orders of magnitude, between the human eye and digital cameras may arise from architectural differences between the human retina, arranged in a multiple-layer structure, and image sensors, mostly fabricated in planar technologies. Functionality of image sensors may be significantly improved by exploiting technologies that allow vertical stacking of active tiers.
Kamauu, Aaron W C; DuVall, Scott L; Robison, Reid J; Liimatta, Andrew P; Wiggins, Richard H; Avrin, David E
2006-01-01
Although digital teaching files are important to radiology education, there are no current satisfactory solutions for export of Digital Imaging and Communications in Medicine (DICOM) images from picture archiving and communication systems (PACS) in desktop publishing format. A vendor-neutral digital teaching file, the Radiology Interesting Case Server (RadICS), offers an efficient tool for harvesting interesting cases from PACS without requiring modifications of the PACS configurations. Radiologists push imaging studies from PACS to RadICS via the standard DICOM Send process, and the RadICS server automatically converts the DICOM images into the Joint Photographic Experts Group format, a common desktop publishing format. They can then select key images and create an interesting case series at the PACS workstation. RadICS was tested successfully against multiple unmodified commercial PACS. Using RadICS, radiologists are able to harvest and author interesting cases at the point of clinical interpretation with minimal disruption in clinical work flow. RSNA, 2006
Theoretical Limits of Lunar Vision Aided Navigation with Inertial Navigation System
2015-03-26
camera model. Light reflected or projected from objects in the scene of the outside world is taken in by the aperture (or opening) shaped as a double...model’s analog aspects with an analog-to-digital interface converting raw images of the outside world scene into digital information a computer can use to...Figure 2.7. Digital Image Coordinate System. Used with permission [30]. Angular Field of View. The angular field of view is the angle of the world scene
Reljin, Branimir; Milosević, Zorica; Stojić, Tomislav; Reljin, Irini
2009-01-01
Two methods for segmentation and visualization of microcalcifications in digital or digitized mammograms are described. First method is based on modern mathematical morphology, while the second one uses the multifractal approach. In the first method, by using an appropriate combination of some morphological operations, high local contrast enhancement, followed by significant suppression of background tissue, irrespective of its radiology density, is obtained. By iterative procedure, this method highly emphasizes only small bright details, possible microcalcifications. In a multifractal approach, from initial mammogram image, a corresponding multifractal "images" are created, from which a radiologist has a freedom to change the level of segmentation. An appropriate user friendly computer aided visualization (CAV) system with embedded two methods is realized. The interactive approach enables the physician to control the level and the quality of segmentation. Suggested methods were tested through mammograms from MIAS database as a gold standard, and from clinical praxis, using digitized films and digital images from full field digital mammograph.
Detection and Evaluation of Skin Disorders by One of Photogrammetric Image Analysis Methods
NASA Astrophysics Data System (ADS)
Güçin, M.; Patias, P.; Altan, M. O.
2012-08-01
Abnormalities on skin may vary from simple acne to painful wounds which affect a person's life quality. Detection of these kinds of disorders in early stages, followed by the evaluation of abnormalities is of high importance. At this stage, photogrammetry offers a non-contact solution to this concern by providing geometric highly accurate data. Photogrammetry, which has been used for firstly topographic purposes, in virtue of terrestrial photogrammetry became useful technique in non-topographic applications also (Wolf et al., 2000). Moreover the extension of usage of photogrammetry, in parallel with the development in technology, analogue photographs are replaced with digital images and besides digital image processing techniques, it provides modification of digital images by using filters, registration processes etc. Besides, photogrammetry (using same coordinate system by registration of images) can serve as a tool for the comparison of temporal imaging data. The aim of this study is to examine several digital image processing techniques, in particular the digital filters, which might be useful to determine skin disorders. In our study we examine affordable to purchase, user friendly software which needs neither expertise nor pre-training. Since it is a pre-work for subsequent and deeper studies, Adobe Photoshop 7.0 is used as a present software. In addition to that Adobe Photoshop released a DesAcc plug-ins with CS3 version and provides full compatibility with DICOM (Digital Imaging and Communications in Medicine) and PACS (Picture Archiving and Communications System) that enables doctors to store all medical data together with relevant images and share if necessary.
Digital imaging technology assessment: Digital document storage project
NASA Technical Reports Server (NTRS)
1989-01-01
An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.
NASA Technical Reports Server (NTRS)
2003-01-01
With NASA on its side, Positive Systems, Inc., of Whitefish, Montana, is veering away from the industry standards defined for producing and processing remotely sensed images. A top developer of imaging products for geographic information system (GIS) and computer-aided design (CAD) applications, Positive Systems is bucking traditional imaging concepts with a cost-effective and time-saving software tool called Digital Images Made Easy (DIME(trademark)). Like piecing a jigsaw puzzle together, DIME can integrate a series of raw aerial or satellite snapshots into a single, seamless panoramic image, known as a 'mosaic.' The 'mosaicked' images serve as useful backdrops to GIS maps - which typically consist of line drawings called 'vectors' - by allowing users to view a multidimensional map that provides substantially more geographic information.
Image database for digital hand atlas
NASA Astrophysics Data System (ADS)
Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente; Dey, Partha S.; Gertych, Arkadiusz; Pospiech-Kurkowska, Sywia
2003-05-01
Bone age assessment is a procedure frequently performed in pediatric patients to evaluate their growth disorder. A commonly used method is atlas matching by a visual comparison of a hand radiograph with a small reference set of old Greulich-Pyle atlas. We have developed a new digital hand atlas with a large set of clinically normal hand images of diverse ethnic groups. In this paper, we will present our system design and implementation of the digital atlas database to support the computer-aided atlas matching for bone age assessment. The system consists of a hand atlas image database, a computer-aided diagnostic (CAD) software module for image processing and atlas matching, and a Web user interface. Users can use a Web browser to push DICOM images, directly or indirectly from PACS, to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, are then extracted and compared with patterns from the atlas image database to assess the bone age. The digital atlas method built on a large image database and current Internet technology provides an alternative to supplement or replace the traditional one for a quantitative, accurate and cost-effective assessment of bone age.
Scollato, A; Perrini, P; Benedetto, N; Di Lorenzo, N
2007-06-01
We propose an easy-to-construct digital video editing system ideal to produce video documentation and still images. A digital video editing system applicable to many video sources in the operating room is described in detail. The proposed system has proved easy to use and permits one to obtain videography quickly and easily. Mixing different streams of video input from all the devices in use in the operating room, the application of filters and effects produces a final, professional end-product. Recording on a DVD provides an inexpensive, portable and easy-to-use medium to store or re-edit or tape at a later time. From stored videography it is easy to extract high-quality, still images useful for teaching, presentations and publications. In conclusion digital videography and still photography can easily be recorded by the proposed system, producing high-quality video recording. The use of firewire ports provides good compatibility with next-generation hardware and software. The high standard of quality makes the proposed system one of the lowest priced products available today.
De Melo, Daniela Pita; Cruz, Adriana Dibo; Melo, Saulo Leonardo Sousa; De Farias, Julyanna Filgueiras GonçAlves; Haiter-Neto, Francisco; De Almeida, Solange Maria
2015-04-01
To compare intraoral Phosphor Stimulable Plate digital system and intraoral film using different tube settings on incipient proximal caries detection. Five blocks, with five teeth each, were radiographically examined using phosphor plates and F-speed films. The images were acquired in 07 different tube potentials from 50-80 kV. The films were digitized. Three oral radiologists scored the images for the presence of caries using a 5-point rating scale. The areas under ROC curve were calculated. The influence of tube kilovoltage was verified by ANOVA and pair wise comparisons performed using Tukey test. Mean ROC curve areas varied from 0.446-0.628 for digital images and 0.494-0.559 for conventional images. The tube setting of 70 kV presented the best result both for digital and conventional images. Considering the image type separately, 70 kV scored highest followed by 75 and 65 kV for digital images (p=0.084). For conventional image modality, even though 70 kV presented the best result, it did not differ significantly from 80 kV, not differing from 60 and 55 kV, which did not differ from 75, 65 and 50 kV (p=0.53). Phosphor plate digital images seem to be more susceptible to tube setting potential variations then digitized film images.
Preliminary clinical evaluation of hard- and soft-copy digitized chest radiography
NASA Astrophysics Data System (ADS)
Rian, Roger L.; Smerud, Michael J.; Guinn, Todd
1994-05-01
The digital applications in radiology are a controversial advanced which potentially will influence all areas of patient imaging. It is utilized and accepted in angiography, computed tomography, magnetic resonance, nuclear imaging and sonography. More recently Computed Radiography has gained credibility in mobile scenarios as well as specific applications from cervical spine radiography to digital fluoroscopy. Usually this acceptance is related to benefits of lesser radiation exposure or an improved presentation with an incorrect radiographic technique. One advantage of interpreting from digital information is the potential manipulation of the image presentation to the observer through windowing, leveling and edge enhancement pre and/or during image review. Additionally this digital data can be transmitted over distance and represented as hard and/or soft copy for primary or consultative review. The number and quality of the images to be viewed, the environment of the review station as well as the observer experience with conventional radiographic as well as digital image evaluation are important aspects of delivering the radiologist's product i.e. the final interpretation. This paper assesses that product, specifically addressing the question `Is the radiologist's report the same whether derived from the original analog image or from its digitized image.' The object of this study is to determine whether a digital system (3M PACS) designed for consultative viewing in a satellite department can also be used directly for primary diagnosis of conventional chest exams.
Instant Grainification: Real-Time Grain-Size Analysis from Digital Images in the Field
NASA Astrophysics Data System (ADS)
Rubin, D. M.; Chezar, H.
2007-12-01
Over the past few years, digital cameras and underwater microscopes have been developed to collect in-situ images of sand-sized bed sediment, and software has been developed to measure grain size from those digital images (Chezar and Rubin, 2004; Rubin, 2004; Rubin et al., 2006). Until now, all image processing and grain- size analysis was done back in the office where images were uploaded from cameras and processed on desktop computers. Computer hardware has become small and rugged enough to process images in the field, which for the first time allows real-time grain-size analysis of sand-sized bed sediment. We present such a system consisting of weatherproof tablet computer, open source image-processing software (autocorrelation code of Rubin, 2004, running under Octave and Cygwin), and digital camera with macro lens. Chezar, H., and Rubin, D., 2004, Underwater microscope system: U.S. Patent and Trademark Office, patent number 6,680,795, January 20, 2004. Rubin, D.M., 2004, A simple autocorrelation algorithm for determining grain size from digital images of sediment: Journal of Sedimentary Research, v. 74, p. 160-165. Rubin, D.M., Chezar, H., Harney, J.N., Topping, D.J., Melis, T.S., and Sherwood, C.R., 2006, Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size: USGS Open-File Report 2006-1360.
NASA Astrophysics Data System (ADS)
Lee, Jasper C.; Ma, Kevin C.; Liu, Brent J.
2008-03-01
A Data Grid for medical images has been developed at the Image Processing and Informatics Laboratory, USC to provide distribution and fault-tolerant storage of medical imaging studies across Internet2 and public domain. Although back-up policies and grid certificates guarantee privacy and authenticity of grid-access-points, there still lacks a method to guarantee the sensitive DICOM images have not been altered or corrupted during transmission across a public domain. This paper takes steps toward achieving full image transfer security within the Data Grid by utilizing DICOM image authentication and a HIPAA-compliant auditing system. The 3-D lossless digital signature embedding procedure involves a private 64 byte signature that is embedded into each original DICOM image volume, whereby on the receiving end the signature can to be extracted and verified following the DICOM transmission. This digital signature method has also been developed at the IPILab. The HIPAA-Compliant Auditing System (H-CAS) is required to monitor embedding and verification events, and allows monitoring of other grid activity as well. The H-CAS system federates the logs of transmission and authentication events at each grid-access-point and stores it into a HIPAA-compliant database. The auditing toolkit is installed at the local grid-access-point and utilizes Syslog [1], a client-server standard for log messaging over an IP network, to send messages to the H-CAS centralized database. By integrating digital image signatures and centralized logging capabilities, DICOM image integrity within the Medical Imaging and Informatics Data Grid can be monitored and guaranteed without loss to any image quality.
Display Device Color Management and Visual Surveillance of Vehicles
ERIC Educational Resources Information Center
Srivastava, Satyam
2011-01-01
Digital imaging has seen an enormous growth in the last decade. Today users have numerous choices in creating, accessing, and viewing digital image/video content. Color management is important to ensure consistent visual experience across imaging systems. This is typically achieved using color profiles. In this thesis we identify the limitations…
Phantom feet on digital radionuclide images and other scary computer tales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, J.E.; Dworkin, H.J.; Dees, S.M.
1989-09-01
Malfunction of a computer-assisted digital gamma camera is reported. Despite what appeared to be adequate acceptance testing, an error in the system gave rise to switching of images and identification text. A suggestion is made for using a hot marker, which would avoid the potential error of misinterpretation of patient images.
Dental digital radiographic imaging.
Mauriello, S M; Platin, E
2001-01-01
Radiographs are an important adjunct to providing oral health care for the total patient. Historically, radiographic images have been produced using film-based systems. However, in recent years, with the arrival of new technologies, many practitioners have begun to incorporate digital radiographic imaging into their practices. Since dental hygienists are primarily responsible for exposing and processing radiographs in the provision of dental hygiene care, it is imperative that they become knowledgeable on the use and application of digital imaging in patient care and record keeping. The purpose of this course is to provide a comprehensive overview of digital radiography in dentistry. Specific components addressed are technological features, diagnostic software, advantages and disadvantages, technique procedures, and legal implications.
Comparative Study Of Image Enhancement Algorithms For Digital And Film Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado-Gonzalez, A.; Sanmiguel, R. E.
2008-08-11
Here we discuss the application of edge enhancement algorithms on images obtained with a Mammography System which has a Selenium Detector and on the other hand, on images obtained from digitized film mammography. Comparative analysis of such images includes the study of technical aspects of image acquisition, storage, compression and display. A protocol for a local database has been created as a result of this study.
Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN
2006-02-14
Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.
Franzblau, Alfred; teWaterNaude, Jim; Sen, Ananda; d'Arcy, Hannah; Smilg, Jacqueline S; Mashao, Khanyakude S; Meyer, Cristopher A; Lockey, James E; Ehrlich, Rodney I
2018-03-01
Continuing use of analog film and digital chest radiography for screening and surveillance for pneumoconiosis and tuberculosis in lower and middle income countries raises questions of equivalence of disease detection. This study compared analog to digital images for intra-rater agreement across formats and prevalence of changes related to silicosis and tuberculosis among South African gold miners using the International Labour Organization classification system. Miners with diverse radiological presentations of silicosis and tuberculosis were recruited. Digital and film chest images on each subject were classified by four expert readers. Readings of film and soft copy digital images showed no significant differences in prevalence of tuberculosis or silicosis, and intra-rater agreement across formats was fair to good. Hard copy images yielded higher prevalences. Film and digital soft copy images show consistent prevalence of findings, and generally fair to good intra-rater agreement for findings related to silicosis and tuberculosis. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kendrick, Stephen E.; Harwit, Alex; Kaplan, Michael; Smythe, William D.
2007-09-01
An MWIR TDI (Time Delay and Integration) Imager and Spectrometer (MTIS) instrument for characterizing from orbit the moons of Jupiter and Saturn is proposed. Novel to this instrument is the planned implementation of a digital TDI detector array and an innovative imaging/spectroscopic architecture. Digital TDI enables a higher SNR for high spatial resolution surface mapping of Titan and Enceladus and for improved spectral discrimination and resolution at Europa. The MTIS imaging/spectroscopic architecture combines a high spatial resolution coarse wavelength resolution imaging spectrometer with a hyperspectral sensor to spectrally decompose a portion of the data adjacent to the data sampled in the imaging spectrometer. The MTIS instrument thus maps with high spatial resolution a planetary object while spectrally decomposing enough of the data that identification of the constituent materials is highly likely. Additionally, digital TDI systems have the ability to enable the rejection of radiation induced spikes in high radiation environments (Europa) and the ability to image in low light levels (Titan and Enceladus). The ability to image moving objects that might be missed utilizing a conventional TDI system is an added advantage and is particularly important for characterizing atmospheric effects and separating atmospheric and surface components. This can be accomplished with on-orbit processing or collecting and returning individual non co-added frames.
Spread spectrum image steganography.
Marvel, L M; Boncelet, C R; Retter, C T
1999-01-01
In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking.
NASA Astrophysics Data System (ADS)
Takehara, Hironari; Miyazawa, Kazuya; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Kim, Soo Hyeon; Iino, Ryota; Noji, Hiroyuki; Ohta, Jun
2014-01-01
A CMOS image sensor with stacked photodiodes was fabricated using 0.18 µm mixed signal CMOS process technology. Two photodiodes were stacked at the same position of each pixel of the CMOS image sensor. The stacked photodiodes consist of shallow high-concentration N-type layer (N+), P-type well (PW), deep N-type well (DNW), and P-type substrate (P-sub). PW and P-sub were shorted to ground. By monitoring the voltage of N+ and DNW individually, we can observe two monochromatic colors simultaneously without using any color filters. The CMOS image sensor is suitable for fluorescence imaging, especially contact imaging such as a lensless observation system of digital enzyme-linked immunosorbent assay (ELISA). Since the fluorescence increases with time in digital ELISA, it is possible to observe fluorescence accurately by calculating the difference from the initial relation between the pixel values for both photodiodes.
Digital compression algorithms for HDTV transmission
NASA Technical Reports Server (NTRS)
Adkins, Kenneth C.; Shalkhauser, Mary JO; Bibyk, Steven B.
1990-01-01
Digital compression of video images is a possible avenue for high definition television (HDTV) transmission. Compression needs to be optimized while picture quality remains high. Two techniques for compression the digital images are explained and comparisons are drawn between the human vision system and artificial compression techniques. Suggestions for improving compression algorithms through the use of neural and analog circuitry are given.
Machine vision for digital microfluidics
NASA Astrophysics Data System (ADS)
Shin, Yong-Jun; Lee, Jeong-Bong
2010-01-01
Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.
Szeto, Timothy C; Webster, Christie Ann; Koprinarov, Ivaylo; Rowlands, J A
2008-03-01
Digital x-ray radiographic systems are desirable as they offer high quality images which can be processed, transferred, and stored without secondary steps. However, current clinical systems are extraordinarily expensive in comparison to film-based systems. Thus, there is a need for an economical digital imaging system for general radiology. The x-ray light valve (XLV) is a novel digital x-ray detector concept with the potential for high image quality and low cost. The XLV is comprised of a photoconductive detector layer and liquid crystal (LC) cell physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected at the surface of the photoconductor, causing a change in the reflective properties of the LC cell. The visible image so formed can subsequently be digitized with an optical scanner. By choosing the properties of the LC cell in combination with the appropriate photoconductor thickness and bias potentials, the XLV can be optimized for various diagnostic imaging tasks. Specifically for chest radiography, we identified three potentially practical reflective cell designs by selecting from those commonly used in LC display technology. The relationship between reflectance and x-ray exposure (i.e., the characteristic curve) was determined for all three cells using a theoretical model. The results indicate that the reflective electrically controlled birefringence (r-ECB) cell is the preferred choice for chest radiography, provided that the characteristic curve can be shifted towards lower exposures. The feasibility of the shift of the characteristic curve is shown experimentally. The experimental results thus demonstrate that an XLV based on the r-ECB cell design exhibits a characteristic curve suitable for chest radiography.
NASA Astrophysics Data System (ADS)
Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki
2006-01-01
In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.
Enterprise Implementation of Digital Pathology: Feasibility, Challenges, and Opportunities.
Hartman, D J; Pantanowitz, L; McHugh, J S; Piccoli, A L; OLeary, M J; Lauro, G R
2017-10-01
Digital pathology is becoming technically possible to implement for routine pathology work. At our institution, we have been using digital pathology for second opinion intraoperative consultations for over 10 years. Herein, we describe our experience in converting to a digital pathology platform for primary pathology diagnosis. We implemented an incremental rollout for digital pathology on subspecialty benches, beginning with cases that contained small amounts of tissue (biopsy specimens). We successfully scanned over 40,000 slides through our digital pathology system. Several lessons (both challenges and opportunities) were learned through this implementation. A successful conversion to digital pathology requires pre-imaging adjustments, integrated software and post-imaging evaluations.
Along-Track Reef Imaging System (ATRIS)
Brock, John; Zawada, Dave
2006-01-01
"Along-Track Reef Imaging System (ATRIS)" describes the U.S. Geological Survey's Along-Track Reef Imaging System, a boat-based sensor package for rapidly mapping shallow water benthic environments. ATRIS acquires high resolution, color digital images that are accurately geo-located in real-time.
Performance of the SIR-B digital image processing subsystem
NASA Technical Reports Server (NTRS)
Curlander, J. C.
1986-01-01
A ground-based system to generate digital SAR image products has been developed and implemented in support of the SIR-B mission. This system is designed to achieve the maximum throughput while meeting strict image fidelity criteria. Its capabilities include: automated radiometric and geometric correction of the output imagery; high-precision absolute location without tiepoint registration; filtering of the raw data to remove spurious signals from alien radars; and automated catologing to maintain a full set of radar and image production facility in support of the SIR-B science investigators routinely produces over 80 image frames per week.
A cryptologic based trust center for medical images.
Wong, S T
1996-01-01
To investigate practical solutions that can integrate cryptographic techniques and picture archiving and communication systems (PACS) to improve the security of medical images. The PACS at the University of California San Francisco Medical Center consolidate images and associated data from various scanners into a centralized data archive and transmit them to remote display stations for review and consultation purposes. The purpose of this study is to investigate the model of a digital trust center that integrates cryptographic algorithms and protocols seamlessly into such a digital radiology environment to improve the security of medical images. The timing performance of encryption, decryption, and transmission of the cryptographic protocols over 81 volumetric PACS datasets has been measured. Lossless data compression is also applied before the encryption. The transmission performance is measured against three types of networks of different bandwidths: narrow-band Integrated Services Digital Network, Ethernet, and OC-3c Asynchronous Transfer Mode. The proposed digital trust center provides a cryptosystem solution to protect the confidentiality and to determine the authenticity of digital images in hospitals. The results of this study indicate that diagnostic images such as x-rays and magnetic resonance images could be routinely encrypted in PACS. However, applying encryption in teleradiology and PACS is a tradeoff between communications performance and security measures. Many people are uncertain about how to integrate cryptographic algorithms coherently into existing operations of the clinical enterprise. This paper describes a centralized cryptosystem architecture to ensure image data authenticity in a digital radiology department. The system performance has been evaluated in a hospital-integrated PACS environment.
A cryptologic based trust center for medical images.
Wong, S T
1996-01-01
OBJECTIVE: To investigate practical solutions that can integrate cryptographic techniques and picture archiving and communication systems (PACS) to improve the security of medical images. DESIGN: The PACS at the University of California San Francisco Medical Center consolidate images and associated data from various scanners into a centralized data archive and transmit them to remote display stations for review and consultation purposes. The purpose of this study is to investigate the model of a digital trust center that integrates cryptographic algorithms and protocols seamlessly into such a digital radiology environment to improve the security of medical images. MEASUREMENTS: The timing performance of encryption, decryption, and transmission of the cryptographic protocols over 81 volumetric PACS datasets has been measured. Lossless data compression is also applied before the encryption. The transmission performance is measured against three types of networks of different bandwidths: narrow-band Integrated Services Digital Network, Ethernet, and OC-3c Asynchronous Transfer Mode. RESULTS: The proposed digital trust center provides a cryptosystem solution to protect the confidentiality and to determine the authenticity of digital images in hospitals. The results of this study indicate that diagnostic images such as x-rays and magnetic resonance images could be routinely encrypted in PACS. However, applying encryption in teleradiology and PACS is a tradeoff between communications performance and security measures. CONCLUSION: Many people are uncertain about how to integrate cryptographic algorithms coherently into existing operations of the clinical enterprise. This paper describes a centralized cryptosystem architecture to ensure image data authenticity in a digital radiology department. The system performance has been evaluated in a hospital-integrated PACS environment. PMID:8930857
Digital-Electronic/Optical Apparatus Would Recognize Targets
NASA Technical Reports Server (NTRS)
Scholl, Marija S.
1994-01-01
Proposed automatic target-recognition apparatus consists mostly of digital-electronic/optical cross-correlator that processes infrared images of targets. Infrared images of unknown targets correlated quickly with images of known targets. Apparatus incorporates some features of correlator described in "Prototype Optical Correlator for Robotic Vision System" (NPO-18451), and some of correlator described in "Compact Optical Correlator" (NPO-18473). Useful in robotic system; to recognize and track infrared-emitting, moving objects as variously shaped hot workpieces on conveyor belt.
NASA Technical Reports Server (NTRS)
Giddings, L.; Boston, S.
1976-01-01
A method for digitizing zone maps is presented, starting with colored images and producing a final one-channel digitized tape. This method automates the work previously done interactively on the Image-100 and Data Analysis System computers of the Johnson Space Center (JSC) Earth Observations Division (EOD). A color-coded map was digitized through color filters on a scanner to form a digital tape in LARSYS-2 or JSC Universal format. The taped image was classified by the EOD LARSYS program on the basis of training fields included in the image. Numerical values were assigned to all pixels in a given class, and the resulting coded zone map was written on a LARSYS or Universal tape. A unique spatial filter option permitted zones to be made homogeneous and edges of zones to be abrupt transitions from one zone to the next. A zoom option allowed the output image to have arbitrary dimensions in terms of number of lines and number of samples on a line. Printouts of the computer program are given and the images that were digitized are shown.
Comparison of Digital Imaging Systems for Neutron Radiography
NASA Astrophysics Data System (ADS)
Pugliesi, R.; Pugliesi, Fábio; Stanojev Pereira, M. A.
2011-09-01
The characteristics of three digital imaging systems for neutron radiography purposes have been compared. Two of them make use of films, CR-39 and Kodak AA, and the third makes use of a LiF scintillator, for image registration. The irradiations were performed in the neutron radiography facility installed at the IEA-R1 nuclear research reactor of IPEN-CNEN/SP. According to the obtained results, the system based on CR-39 is the slowest to obtain an image, and the best in terms of resolution but the worse in terms of contrast. The system based on Kodak AA is faster than the prior, exhibits good resolution and contrast. The system based on the scintillator is the fastest to obtain an image, and best in terms of contrast but the worse in terms of resolution.
3D measurement by digital photogrammetry
NASA Astrophysics Data System (ADS)
Schneider, Carl T.
1993-12-01
Photogrammetry is well known in geodetic surveys as aerial photogrammetry or close range applications as architectural photogrammetry. The photogrammetric methods and algorithms combined with digital cameras and digital image processing methods are now introduced for industrial applications as automation and quality control. The presented paper will describe the photogrammetric and digital image processing algorithms and the calibration methods. These algorithms and methods were demonstrated with application examples. These applications are a digital photogrammetric workstation as a mobil multi purpose 3D measuring tool and a tube measuring system as an example for a single purpose tool.
Center for Coastline Security Technology, Year 3
2008-05-01
Polarization control for 3D Imaging with the Sony SRX-R105 Digital Cinema Projectors 3.4 HDMAX Camera and Sony SRX-R105 Projector Configuration for 3D...HDMAX Camera Pair Figure 3.2 Sony SRX-R105 Digital Cinema Projector Figure 3.3 Effect of camera rotation on projected overlay image. Figure 3.4...system that combines a pair of FAU’s HD-MAX video cameras with a pair of Sony SRX-R105 digital cinema projectors for stereo imaging and projection
Carotid Stenosis And Ulcer Detectability As A Function Of Pixel Size
NASA Astrophysics Data System (ADS)
Mintz, Leslie J.; Enzmann, Dieter R.; Keyes, Gary S.; Mainiero, Louis M.; Brody, William R.
1981-11-01
Digital radiography, in conjunction with digital subtraction methods can provide high quality images of the vascular system,1-4 Spatial resolution is one important limiting factor of this imaging technique. Since spatial resolution of a digital image is a function of pixel size, it is important to determine the pixel size threshold necessary to provide information comparable to that of conventional angiograms. This study was designed to establish the pixel size necessary to identify accurately stenotic and ulcerative lesions of the carotid artery.
Hughes, Michael; Tracey, Andrew; Bhushan, Monica; Chakravarty, Kuntal; Denton, Christopher P; Dubey, Shirish; Guiducci, Serena; Muir, Lindsay; Ong, Voon; Parker, Louise; Pauling, John D; Prabu, Athiveeraramapandian; Rogers, Christine; Roberts, Christopher; Herrick, Ariane L
2018-06-01
The reliability of clinician grading of systemic sclerosis-related digital ulcers has been reported to be poor to moderate at best, which has important implications for clinical trial design. The aim of this study was to examine the reliability of new proposed UK Scleroderma Study Group digital ulcer definitions among UK clinicians with an interest in systemic sclerosis. Raters graded (through a custom-built interface) 90 images (80 unique and 10 repeat) of a range of digital lesions collected from patients with systemic sclerosis. Lesions were graded on an ordinal scale of severity: 'no ulcer', 'healed ulcer' or 'digital ulcer'. A total of 23 clinicians - 18 rheumatologists, 3 dermatologists, 1 hand surgeon and 1 specialist rheumatology nurse - completed the study. A total of 2070 (1840 unique + 230 repeat) image gradings were obtained. For intra-rater reliability, across all images, the overall weighted kappa coefficient was high (0.71) and was moderate (0.55) when averaged across individual raters. Overall inter-rater reliability was poor (0.15). Although our proposed digital ulcer definitions had high intra-rater reliability, the overall inter-rater reliability was poor. Our study highlights the challenges of digital ulcer assessment by clinicians with an interest in systemic sclerosis and provides a number of useful insights for future clinical trial design. Further research is warranted to improve the reliability of digital ulcer definition/rating as an outcome measure in clinical trials, including examining the role for objective measurement techniques, and the development of digital ulcer patient-reported outcome measures.
The laboratory demonstration and signal processing of the inverse synthetic aperture imaging ladar
NASA Astrophysics Data System (ADS)
Gao, Si; Zhang, ZengHui; Xu, XianWen; Yu, WenXian
2017-10-01
This paper presents a coherent inverse synthetic-aperture imaging ladar(ISAL)system to obtain high resolution images. A balanced coherent optics system in laboratory is built with binary phase coded modulation transmit waveform which is different from conventional chirp. A whole digital signal processing solution is proposed including both quality phase gradient autofocus(QPGA) algorithm and cubic phase function(CPF) algorithm. Some high-resolution well-focused ISAL images of retro-reflecting targets are shown to validate the concepts. It is shown that high resolution images can be achieved and the influences from vibrations of platform involving targets and radar can be automatically compensated by the distinctive laboratory system and digital signal process.
Study of optical design of three-dimensional digital ophthalmoscopes.
Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien
2015-10-01
This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.
Software for Managing an Archive of Images
NASA Technical Reports Server (NTRS)
Hallai, Charles; Jones, Helene; Callac, Chris
2003-01-01
This is a revised draft by Innovators concerning the report on Software for Managing and Archive of Images.The SSC Multimedia Archive is an automated electronic system to manage images, acquired both by film and digital cameras, for the Public Affairs Office (PAO) at Stennis Space Center (SSC). Previously, the image archive was based on film photography and utilized a manual system that, by todays standards, had become inefficient and expensive. Now, the SSC Multimedia Archive, based on a server at SSC, contains both catalogs and images for pictures taken both digitally and with a traditional film-based camera, along with metadata about each image.
Implementing desktop image access of GI images
NASA Astrophysics Data System (ADS)
Grevera, George J.; Feingold, Eric R.; Horii, Steven C.; Laufer, Igor
1996-05-01
In this paper we present a specific example of the current state-of-the-art in desktop image access in the GI section of the Department of Radiology at the Hospital of the University of Pennsylvania. We describe a system which allows physicians to view and manipulate images from a Philips digital fluoroscopy system at the workstations in their offices. Typically they manipulate and view these images on their desktop Macs and then submit the results for slide making or save the images in digital teaching files. In addition to a discussion of the current state-of-the-art here at HUP, we also discuss some future directions that we are pursuing.
Design of a high-numerical-aperture digital micromirror device camera with high dynamic range.
Qiao, Yang; Xu, Xiping; Liu, Tao; Pan, Yue
2015-01-01
A high-NA imaging system with high dynamic range is presented based on a digital micromirror device (DMD). The DMD camera consists of an objective imaging system and a relay imaging system, connected by a DMD chip. With the introduction of a total internal reflection prism system, the objective imaging system is designed with a working F/# of 1.97, breaking through the F/2.45 limitation of conventional DMD projection lenses. As for the relay imaging system, an off-axis design that could correct off-axis aberrations of the tilt relay imaging system is developed. This structure has the advantage of increasing the NA of the imaging system while maintaining a compact size. Investigation revealed that the dynamic range of a DMD camera could be greatly increased, by 2.41 times. We built one prototype DMD camera with a working F/# of 1.23, and the field experiments proved the validity and reliability our work.
Real-time digital signal processing for live electro-optic imaging.
Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro
2009-08-31
We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.
Rubegni, Pietro; Nami, Niccolò; Poggiali, Sara; Tataranno, Domenico; Fimiani, M
2009-05-01
Because the skin is the only organ completely accessible to visual examination, digital technology has therefore attracted the attention of dermatologists for documenting, monitoring, measuring and classifying morphological manifestations. To describe a digital image management system dedicated to dermatological health care environments and to compare it with other existing softwares for digital image storage. We designed a reliable hardware structure that could ensure future scaling, because storage needs tend to grow exponentially. For the software, we chose a client-web server application based on a relational database and with a 'minimalist' user interface. We developed a software with a ready-made, adaptable index of skin pathologies. It facilitates classification by pathology, patient and visit, with an advanced search option allowing access to all images according to personalized criteria. The software also offers the possibility of comparing two or more digital images (follow-up). The fact that the archives of years of digital photos acquired and saved on PCs can easily be entered in the program distinguishes it from the others in the market. This option is fundamental for accessing all the photos taken in years of practice in the program without entering them one by one. The program is available to any user connected to the local Intranet and the system may directly be available in the future from the Internet. All clinics and surgeries, especially those that rely on digital images, are obliged to keep up with technological advances. It is therefore hoped that our project will become a model for medical structures intending to rationalise digital and other data according to statutory requirements.
Signal digitizing system and method based on amplitude-to-time optical mapping
Chou, Jason; Bennett, Corey V; Hernandez, Vince
2015-01-13
A signal digitizing system and method based on analog-to-time optical mapping, optically maps amplitude information of an analog signal of interest first into wavelength information using an amplitude tunable filter (ATF) to impress spectral changes induced by the amplitude of the analog signal onto a carrier signal, i.e. a train of optical pulses, and next from wavelength information to temporal information using a dispersive element so that temporal information representing the amplitude information is encoded in the time domain in the carrier signal. Optical-to-electrical conversion of the optical pulses into voltage waveforms and subsequently digitizing the voltage waveforms into a digital image enables the temporal information to be resolved and quantized in the time domain. The digital image may them be digital signal processed to digitally reconstruct the analog signal based on the temporal information with high fidelity.
An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa
2013-01-01
Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.
An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System
Cengiz, Kubra
2013-01-01
Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468
Ernst, E J; Speck, P M; Fitzpatrick, J J
2012-01-01
Digital photography is a valuable adjunct to document physical injuries after sexual assault. In order for a digital photograph to have high image quality, there must exist a high level of naturalness. Digital photo documentation has varying degrees of naturalness; however, for a photograph to be natural, specific technical elements for the viewer must be satisfied. No tool was available to rate the naturalness of digital photo documentation of female genital injuries after sexual assault. The Photo Documentation Image Quality Scoring System (PDIQSS) tool was developed to rate technical elements for naturalness. Using this tool, experts evaluated randomly selected digital photographs of female genital injuries captured following sexual assault. Naturalness of female genital injuries following sexual assault was demonstrated when measured in all dimensions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-03
...-Exclusive Licenses: Multi-Focal Structured Illumination Microscopy Systems and Methods AGENCY: National... pertains to a system and method for digital confocal microscopy that rapidly processes enhanced images. In particular, the invention is a method for digital confocal microscopy that includes a digital mirror device...
NASA Astrophysics Data System (ADS)
Lai, Chao-Jen; Shaw, Chris C.; Geiser, William; Kappadath, Srinivas C.; Liu, Xinming; Wang, TianPeng; Tu, Shu-Ju; Altunbas, Mustafa C.
2004-05-01
Slot scanning imaging techniques allow for effective scatter rejection without attenuating primary x-rays. The use of these techniques should generate better image quality for the same mean glandular dose (MGD) or a similar image quality for a lower MGD as compared to imaging techniques using an anti-scatter grid. In this study, we compared a slot scanning digital mammography system (SenoScan, Fisher Imaging Systems, Denver, CO) to a full-field digital mammography (FFDM) system used in conjunction with a 5:1 anti-scatter grid (SenoGraphe 2000D, General Electric Medical Systems, Milwaukee, WI). Images of a contrast-detail phantom (University Hospital Nijmegen, The Netherlands) were reviewed to measure the contrast-detail curves for both systems. These curves were measured at 100%, 71%, 49% and 33% of the reference mean glandular dose (MGD), as determined by photo-timing, for the Fisher system and 100% for the GE system. Soft-copy reading was performed on review workstations provided by the manufacturers. The correct observation ratios (CORs) were also computed and used to compare the performance of the two systems. The results showed that, based on the contrast-detail curves, the performance of the Fisher images, acquired at 100% and 71% of the reference MGD, was comparable to the GE images at 100% of the reference MGD. The CORs for Fisher images were 0.463 and 0.444 at 100% and 71% of the reference MGD, respectively, compared to 0.453 for the GE images at 100% of the reference MGD.
Evaluation of web-based annotation of ophthalmic images for multicentric clinical trials.
Chalam, K V; Jain, P; Shah, V A; Shah, Gaurav Y
2006-06-01
An Internet browser-based annotation system can be used to identify and describe features in digitalized retinal images, in multicentric clinical trials, in real time. In this web-based annotation system, the user employs a mouse to draw and create annotations on a transparent layer, that encapsulates the observations and interpretations of a specific image. Multiple annotation layers may be overlaid on a single image. These layers may correspond to annotations by different users on the same image or annotations of a temporal sequence of images of a disease process, over a period of time. In addition, geometrical properties of annotated figures may be computed and measured. The annotations are stored in a central repository database on a server, which can be retrieved by multiple users in real time. This system facilitates objective evaluation of digital images and comparison of double-blind readings of digital photographs, with an identifiable audit trail. Annotation of ophthalmic images allowed clinically feasible and useful interpretation to track properties of an area of fundus pathology. This provided an objective method to monitor properties of pathologies over time, an essential component of multicentric clinical trials. The annotation system also allowed users to view stereoscopic images that are stereo pairs. This web-based annotation system is useful and valuable in monitoring patient care, in multicentric clinical trials, telemedicine, teaching and routine clinical settings.
Developing tools for digital radar image data evaluation
NASA Technical Reports Server (NTRS)
Domik, G.; Leberl, F.; Raggam, J.
1986-01-01
The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.
A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.
Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto
2015-01-01
Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies.
21 CFR Appendix B to Subpart B of... - Scope of Product Coverage
Code of Federal Regulations, 2010 CFR
2010-04-01
... Transducer ITX—Transducer, Ultrasonic, Diagnostic Diagnostic X-Ray Imaging Devices (except mammographic x-ray systems): RA 892.1600 Angiographic X-Ray System IZI—System, X-Ray, Angiographic RA 892.1650 Image-Intensified Fluoroscopic X-Ray System MQB—Solid State X-Ray Imager (Flat Panel/Digital Imager) JAA—System, X...
21 CFR Appendix B to Subpart B of... - Scope of Product Coverage
Code of Federal Regulations, 2011 CFR
2011-04-01
... Transducer ITX—Transducer, Ultrasonic, Diagnostic Diagnostic X-Ray Imaging Devices (except mammographic x-ray systems): RA 892.1600 Angiographic X-Ray System IZI—System, X-Ray, Angiographic RA 892.1650 Image-Intensified Fluoroscopic X-Ray System MQB—Solid State X-Ray Imager (Flat Panel/Digital Imager) JAA—System, X...
Whole-slide imaging in pathology: the potential impact on PACS
NASA Astrophysics Data System (ADS)
Horii, Steven C.
2007-03-01
Pathology, the medical specialty charged with the evaluation of macroscopic and microscopic aspects of disease, is increasingly turning to digital imaging. While the conventional tissue blocks and glass slides form an "archive" that pathology departments must maintain, digital images acquired from microscopes or digital slide scanners are increasingly used for telepathology, consultation, and intra-facility communication. Since many healthcare facilities are moving to "enterprise PACS" with departments in addition to radiology using the infrastructure of such systems, some understanding of the potential of whole-slide digital images is important. Network and storage designers, in particular, are very likely to be impacted if a significant number of such images are to be moved on, or stored (even temporarily) in, enterprise PACS. As an example, a typical commercial whole-slide imaging system typically generates 15 gigabytes per slide scanned (per focal plane). Many of these whole-slide scanners have a throughput of 1000 slides per day. If that full capacity is used and all the resulting digital data is moved to the enterprise PACS, it amounts to 15 terabytes per day; the amount of data a large radiology department might generate in a year or two. This paper will review both the clinical scenarios of whole-slide imaging as well as the resulting data volumes. The author will emphasize the potential PACS infrastructure impact of such huge data volumes.
VENI, video, VICI: The merging of computer and video technologies
NASA Technical Reports Server (NTRS)
Horowitz, Jay G.
1993-01-01
The topics covered include the following: High Definition Television (HDTV) milestones; visual information bandwidth; television frequency allocation and bandwidth; horizontal scanning; workstation RGB color domain; NTSC color domain; American HDTV time-table; HDTV image size; digital HDTV hierarchy; task force on digital image architecture; open architecture model; future displays; and the ULTIMATE imaging system.
A simple tool for stereological assessment of digital images: the STEPanizer.
Tschanz, S A; Burri, P H; Weibel, E R
2011-07-01
STEPanizer is an easy-to-use computer-based software tool for the stereological assessment of digitally captured images from all kinds of microscopical (LM, TEM, LSM) and macroscopical (radiology, tomography) imaging modalities. The program design focuses on providing the user a defined workflow adapted to most basic stereological tasks. The software is compact, that is user friendly without being bulky. STEPanizer comprises the creation of test systems, the appropriate display of digital images with superimposed test systems, a scaling facility, a counting module and an export function for the transfer of results to spreadsheet programs. Here we describe the major workflow of the tool illustrating the application on two examples from transmission electron microscopy and light microscopy, respectively. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Real-time optical fiber digital speckle pattern interferometry for industrial applications
NASA Astrophysics Data System (ADS)
Chan, Robert K.; Cheung, Y. M.; Lo, C. H.; Tam, T. K.
1997-03-01
There is current interest, especially in the industrial sector, to use the digital speckle pattern interferometry (DSPI) technique to measure surface stress. Indeed, many publications in the subject are evident of the growing interests in the field. However, to bring the technology to industrial use requires the integration of several emerging technologies, viz. optics, feedback control, electronics, imaging processing and digital signal processing. Due to the highly interdisciplinary nature of the technique, successful implementation and development require expertise in all of the fields. At Baptist University, under the funding of a major industrial grant, we are developing the technology for the industrial sector. Our system fully exploits optical fibers and diode lasers in the design to enable practical and rugged systems suited for industrial applications. Besides the development in optics, we have broken away from the reliance of a microcomputer PC platform for both image capture and processing, and have developed a digital signal processing array system that can handle simultaneous and independent image capture/processing with feedback control. The system, named CASPA for 'cascadable architecture signal processing array,' is a third generation development system that utilizes up to 7 digital signal processors has proved to be a very powerful system. With our CASPA we are now in a better position to developing novel optical measurement systems for industrial application that may require different measurement systems to operate concurrently and requiring information exchange between the systems. Applications in mind such as simultaneous in-plane and out-of-plane DSPI image capture/process, vibrational analysis with interactive DSPI and phase shifting control of optical systems are a few good examples of the potentials.
NASA Technical Reports Server (NTRS)
1994-01-01
Charge Coupled Devices (CCDs) are high technology silicon chips that connect light directly into electronic or digital images, which can be manipulated or enhanced by computers. When Goddard Space Flight Center (GSFC) scientists realized that existing CCD technology could not meet scientific requirements for the Hubble Space Telescope Imagining Spectrograph, GSFC contracted with Scientific Imaging Technologies, Inc. (SITe) to develop an advanced CCD. SITe then applied many of the NASA-driven enhancements to the manufacture of CCDs for digital mammography. The resulting device images breast tissue more clearly and efficiently. The LORAD Stereo Guide Breast Biopsy system incorporates SITe's CCD as part of a digital camera system that is replacing surgical biopsy in many cases. Known as stereotactic needle biopsy, it is performed under local anesthesia with a needle and saves women time, pain, scarring, radiation exposure and money.
Bacher, Klaus; Smeets, Peter; Vereecken, Ludo; De Hauwere, An; Duyck, Philippe; De Man, Robert; Verstraete, Koenraad; Thierens, Hubert
2006-09-01
The aim of this study was to compare the image quality and radiation dose in chest imaging using an amorphous silicon flat-panel detector system and an amorphous selenium flat-panel detector system. In addition, the low-contrast performance of both systems with standard and low radiation doses was compared. In two groups of 100 patients each, digital chest radiographs were acquired with either an amorphous silicon or an amorphous selenium flat-panel system. The effective dose of the examination was measured using thermoluminescent dosimeters placed in an anthropomorphic Rando phantom. The image quality of the digital chest radiographs was assessed by five experienced radiologists using the European Guidelines on Quality Criteria for Diagnostic Radiographic Images. In addition, a contrast-detail phantom study was set up to assess the low-contrast performance of both systems at different radiation dose levels. Differences between the two groups were tested for significance using the two-tailed Mann-Whitney test. The amorphous silicon flat-panel system allowed an important and significant reduction in effective dose in comparison with the amorphous selenium flat-panel system (p < 0.0001) for both the posteroanterior and lateral views. In addition, clinical image quality analysis showed that the dose reduction was not detrimental to image quality. Compared with the amorphous selenium flat-panel detector system, the amorphous silicon flat-panel detector system performed significantly better in the low-contrast phantom study, with phantom entrance dose values of up to 135 muGy. Chest radiographs can be acquired with a significantly lower patient radiation dose using an amorphous silicon flat-panel system than using an amorphous selenium flat-panel system, thereby producing images that are equal or even superior in quality to those of the amorphous selenium flat-panel detector system.
Analysis of discrepancies observed between digital and analog images during a clinical trial of IRIS
NASA Astrophysics Data System (ADS)
Goldberg, Morris; Coristine, Marjorie; Currie, Shawn; Belanger, Garry; Ahuja, J.; Dillon, Richard F.; Robertson, John G.
1990-08-01
A clinical trial of an Integrated Radiological Information System (IRIS) was conducted at the Ottawa Civic Hospital with the Department of Emergency Medicine and the Department of Radiological Sciences between April 4, and May 12, 1989. During the trial, 319 active Emergency Department cases (905 films) were processed using IRIS. Radiologists examined the digital images on the image screen to formulate a diagnosis, then before dictating a report, they examined the analog films. In 30 cases there was a discrepancy between the information obtained while viewing the digital images on IRIS and the information obtained from the analog films. These anomalous cases were used in an independent study of the discrepancies. In the study, each case was reviewed in both digital and analog form by three physicians who provided a comparative rating of diagnostic quality. Any perceived differences between the digital and analog media were noted. Particular attention was paid to rating the relevance of the IRIS enhancement capabilities. Although ratings for digital images were high, the comparative ratings for the film are in general better. An analysis of the individual cases shows that: (i) most of the discrepancies probably resulted from physician inexperience in reading radiographs in digital form, (ii) the IRIS enhancement facilities significantly increase the ratings of satisfaction or perceived quality of digital images and (iii) an appropriate choice of enhancement may make visible the required diagnostic features for cases where some reviewers did not find the image/digital discrepant.
Ernst, E J; Speck, Patricia M; Fitzpatrick, Joyce J
2011-12-01
With the patient's consent, physical injuries sustained in a sexual assault are evaluated and treated by the sexual assault nurse examiner (SANE) and documented on preprinted traumagrams and with photographs. Digital imaging is now available to the SANE for documentation of sexual assault injuries, but studies of the image quality of forensic digital imaging of female genital injuries after sexual assault were not found in the literature. The Photo Documentation Image Quality Scoring System (PDIQSS) was developed to rate the image quality of digital photo documentation of female genital injuries after sexual assault. Three expert observers performed evaluations on 30 separate images at two points in time. An image quality score, the sum of eight integral technical and anatomical attributes on the PDIQSS, was obtained for each image. Individual image quality ratings, defined by rating image quality for each of the data, were also determined. The results demonstrated a high level of image quality and agreement when measured in all dimensions. For the SANE in clinical practice, the results of this study indicate that a high degree of agreement exists between expert observers when using the PDIQSS to rate image quality of individual digital photographs of female genital injuries after sexual assault. © 2011 International Association of Forensic Nurses.
Real-time emulation of neural images in the outer retinal circuit.
Hasegawa, Jun; Yagi, Tetsuya
2008-12-01
We describe a novel real-time system that emulates the architecture and functionality of the vertebrate retina. This system reconstructs the neural images formed by the retinal neurons in real time by using a combination of analog and digital systems consisting of a neuromorphic silicon retina chip, a field-programmable gate array, and a digital computer. While the silicon retina carries out the spatial filtering of input images instantaneously, using the embedded resistive networks that emulate the receptive field structure of the outer retinal neurons, the digital computer carries out the temporal filtering of the spatially filtered images to emulate the dynamical properties of the outer retinal circuits. The emulations of the neural image, including 128 x 128 bipolar cells, are carried out at a frame rate of 62.5 Hz. The emulation of the response to the Hermann grid and a spot of light and an annulus of lights has demonstrated that the system responds as expected by previous physiological and psychophysical observations. Furthermore, the emulated dynamics of neural images in response to natural scenes revealed the complex nature of retinal neuron activity. We have concluded that the system reflects the spatiotemporal responses of bipolar cells in the vertebrate retina. The proposed emulation system is expected to aid in understanding the visual computation in the retina and the brain.
Design of an image-distribution service from a clinical PACS
NASA Astrophysics Data System (ADS)
Gehring, Dale G.; Persons, Kenneth R.; Rothman, Melvyn L.; Felmlee, Joel P.; Gerhart, D. J.; Hangiandreou, Nicholas J.; Reardon, Frank J.; Shirk, M.; Forbes, Glenn S.; Williamson, Byrn, Jr.
1994-05-01
A PACS system has been developed through a multi-phase collaboration between the Mayo Clinic and IBM/Rochester. The current system has been fully integrated into the clinical practice of the Radiology Department for the primary purpose of digital image archival, retrieval, and networked workstation review. Work currently in progress includes the design and implementation of a gateway device for providing digital image data to third-party workstations, laser printers, and other devices, for users both within and outside of the Radiology Department.
Digital image processing of vascular angiograms
NASA Technical Reports Server (NTRS)
Selzer, R. H.; Beckenbach, E. S.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.
1975-01-01
The paper discusses the estimation of the degree of atherosclerosis in the human femoral artery through the use of a digital image processing system for vascular angiograms. The film digitizer uses an electronic image dissector camera to scan the angiogram and convert the recorded optical density information into a numerical format. Another processing step involves locating the vessel edges from the digital image. The computer has been programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements are combined into an atherosclerosis index, which is found in a post-mortem study to correlate well with both visual and chemical estimates of atherosclerotic disease.
The Commercial Challenges Of Pacs
NASA Astrophysics Data System (ADS)
Vanden Brink, John A.
1984-08-01
The increasing use of digital imaging techniques create a need for improved methods of digital processing, communication and archiving. However, the commercial opportunity is dependent on the resolution of a number of issues. These issues include proof that digital processes are more cost effective than present techniques, implementation of information system support in the imaging activity, implementation of industry standards, conversion of analog images to digital formats, definition of clinical needs, the implications of the purchase decision and technology requirements. In spite of these obstacles, a market is emerging, served by new and existing companies, that may become a $500 million market (U.S.) by 1990 for equipment and supplies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
REN, GANG; LIU, JINXIN; LI, HONGCHANG
A closed-loop proportional-integral (PI) control software is provided for fully mechanically controlled automated electron microscopic tomography. The software is developed based on Gatan DigitalMicrograph, and is compatible with Zeiss LIBRA 120 transmission electron microscope. However, it can be expanded to other TEM instrument with modification. The software consists of a graphical user interface, a digital PI controller, an image analyzing unit, and other drive units (i.e.: image acquire unit and goniometer drive unit). During a tomography data collection process, the image analyzing unit analyzes both the accumulated shift and defocus value of the latest acquired image, and provides the resultsmore » to the digital PI controller. The digital PI control compares the results with the preset values and determines the optimum adjustments of the goniometer. The goniometer drive unit adjusts the spatial position of the specimen according to the instructions given by the digital PI controller for the next tilt angle and image acquisition. The goniometer drive unit achieves high precision positioning by using a backlash elimination method. The major benefits of the software are: 1) the goniometer drive unit keeps pre-aligned/optimized beam conditions unchanged and achieves position tracking solely through mechanical control; 2) the image analyzing unit relies on only historical data and therefore does not require additional images/exposures; 3) the PI controller enables the system to dynamically track the imaging target with extremely low system error.« less
Systems and Methods for Imaging of Falling Objects
NASA Technical Reports Server (NTRS)
Fallgatter, Cale (Inventor); Garrett, Tim (Inventor)
2014-01-01
Imaging of falling objects is described. Multiple images of a falling object can be captured substantially simultaneously using multiple cameras located at multiple angles around the falling object. An epipolar geometry of the captured images can be determined. The images can be rectified to parallelize epipolar lines of the epipolar geometry. Correspondence points between the images can be identified. At least a portion of the falling object can be digitally reconstructed using the identified correspondence points to create a digital reconstruction.
Digital micromirror device-based laser-illumination Fourier ptychographic microscopy
Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.
2015-01-01
We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems. PMID:26480361
Digital micromirror device-based laser-illumination Fourier ptychographic microscopy.
Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R; Yaqoob, Zahid; So, Peter T C
2015-10-19
We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems.
Radel, Robert T; Goodell, Gary G; McClanahan, Scott B; Cohen, Mark E
2006-06-01
Previous studies suggest that digital and film-based radiography are similar for endodontic measurements. This study compared the accuracy and acceptability of measured distances from the tips of size #10 and #15 files to molar root apices in cadaver jaw sections using the newly developed Kodak RVG 6000, and the Schick CDR digital systems to digitized Kodak film. Standardized images were taken of files placed 0.5 to 1.5 mm short of true radiographic lengths. Images were imported into Adobe PhotoShop 7.0, thereby blinding observers who measured distances from files to root apices and assessed images for clarity (acceptability). Repeated measures ANOVA and Tukey-Kramer post hoc tests demonstrated that Kodak RVG 6000 images with enhanced contrast produced significantly less measurement error than unenhanced contrast Schick CDR images (p < 0.05) and significantly higher acceptability ratings than all other systems (all p < 0.002). Among these conditions, the newly developed Kodak RVG 6000 system provided the best overall images.
Devices, systems, and methods for imaging
Appleby, David; Fraser, Iain; Watson, Scott
2008-04-15
Certain exemplary embodiments comprise a system, which can comprise an imaging plate. The imaging plate can be exposable by an x-ray source. The imaging plate can be configured to be used in digital radiographic imaging. The imaging plate can comprise a phosphor-based image storage device configured to convert an image stored therein into light.
Applications of digital image analysis capability in Idaho
NASA Technical Reports Server (NTRS)
Johnson, K. A.
1981-01-01
The use of digital image analysis of LANDSAT imagery in water resource assessment is discussed. The data processing systems employed are described. The determination of urban land use conversion of agricultural land in two southwestern Idaho counties involving estimation and mapping of crop types and of irrigated land is described. The system was also applied to an inventory of irrigated cropland in the Snake River basin and establishment of a digital irrigation water source/service area data base for the basin. Application of the system to a determination of irrigation development in the Big Lost River basin as part of a hydrologic survey of the basin is also described.
NASA Astrophysics Data System (ADS)
Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan
2015-03-01
Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.
Cartographic services contract...for everything geographic
,
2003-01-01
The U.S. Geological Survey's (USGS) Cartographic Services Contract (CSC) is used to award work for photogrammetric and mapping services under the umbrella of Architect-Engineer (A&E) contracting. The A&E contract is broad in scope and can accommodate any activity related to standard, nonstandard, graphic, and digital cartographic products. Services provided may include, but are not limited to, photogrammetric mapping and aerotriangulation; orthophotography; thematic mapping (for example, land characterization); analog and digital imagery applications; geographic information systems development; surveying and control acquisition, including ground-based and airborne Global Positioning System; analog and digital image manipulation, analysis, and interpretation; raster and vector map digitizing; data manipulations (for example, transformations, conversions, generalization, integration, and conflation); primary and ancillary data acquisition (for example, aerial photography, satellite imagery, multispectral, multitemporal, and hyperspectral data); image scanning and processing; metadata production, revision, and creation; and production or revision of standard USGS products defined by formal and informal specification and standards, such as those for digital line graphs, digital elevation models, digital orthophoto quadrangles, and digital raster graphics.
Dual function seal: visualized digital signature for electronic medical record systems.
Yu, Yao-Chang; Hou, Ting-Wei; Chiang, Tzu-Chiang
2012-10-01
Digital signature is an important cryptography technology to be used to provide integrity and non-repudiation in electronic medical record systems (EMRS) and it is required by law. However, digital signatures normally appear in forms unrecognizable to medical staff, this may reduce the trust from medical staff that is used to the handwritten signatures or seals. Therefore, in this paper we propose a dual function seal to extend user trust from a traditional seal to a digital signature. The proposed dual function seal is a prototype that combines the traditional seal and digital seal. With this prototype, medical personnel are not just can put a seal on paper but also generate a visualized digital signature for electronic medical records. Medical Personnel can then look at the visualized digital signature and directly know which medical personnel generated it, just like with a traditional seal. Discrete wavelet transform (DWT) is used as an image processing method to generate a visualized digital signature, and the peak signal to noise ratio (PSNR) is calculated to verify that distortions of all converted images are beyond human recognition, and the results of our converted images are from 70 dB to 80 dB. The signature recoverability is also tested in this proposed paper to ensure that the visualized digital signature is verifiable. A simulated EMRS is implemented to show how the visualized digital signature can be integrity into EMRS.
Fiber Optic Communication System For Medical Images
NASA Astrophysics Data System (ADS)
Arenson, Ronald L.; Morton, Dan E.; London, Jack W.
1982-01-01
This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.
ERIC Educational Resources Information Center
Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen
2018-01-01
The aim of this study is to design and implement a digital interactive globe system (DIGS), by integrating low-cost equipment to make DIGS cost-effective. DIGS includes a data processing unit, a wireless control unit, an image-capturing unit, a laser emission unit, and a three-dimensional hemispheric body-imaging screen. A quasi-experimental study…
Digital radiography can reduce scoliosis x-ray exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kling, T.F. Jr.; Cohen, M.J.; Lindseth, R.E.
1990-09-01
Digital radiology is a new computerized system of acquiring x-rays in a digital (electronic) format. It possesses a greatly expanded dose response curve that allows a very broad range of x-ray dose to produce a diagnostic image. Potential advantages include significantly reduced radiation exposure without loss of image quality, acquisition of images of constant density irrespective of under or over exposure, and reduced repeat rates for unsatisfactory films. The authors prospectively studied 30 adolescents with scoliosis who had both conventional (full dose) and digital (full, one-half, or one-third dose) x-rays. They found digital made AP and lateral image with allmore » anatomic areas clearly depicted at full and one-half dose. Digital laterals were better at full dose and equal to conventional at one-half dose. Cobb angles were easily measured on all one-third dose AP and on 8 of 10 one-third dose digital laterals. Digital clearly depicted the Risser sign at one-half and one-third dose and the repeat rate was nil in this study, indicating digital compensates well for exposure errors. The study indicates that digital does allow radiation dose to be reduced by at least one-half in scoliosis patients and that it does have improved image quality with good contrast over a wide range of x-ray exposure.« less
ARIES: Enabling Visual Exploration and Organization of Art Image Collections.
Crissaff, Lhaylla; Wood Ruby, Louisa; Deutch, Samantha; DuBois, R Luke; Fekete, Jean-Daniel; Freire, Juliana; Silva, Claudio
2018-01-01
Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can place slides or printed images, move the images around at will, group them as desired, and visual-ly compare them. The transition to digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that effectively support the operations they perform with physi-cal light boxes. To address this problem, we designed ARIES (ARt Image Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and sup-porting advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the effectiveness of our system to support art historians tasks through real use cases.
Digital radiographic imaging transfer: comparison with plain radiographs.
Averch, T D; O'Sullivan, D; Breitenbach, C; Beser, N; Schulam, P G; Moore, R G; Kavoussi, L R
1997-04-01
Advances in digital imaging and computer display technology have allowed development of clinical teleradiographic systems. There are limited data assessing the effectiveness of such systems when applied to urologic pathology. In an effort to appraise the effectiveness of teleradiology in identifying renal calculi, the accuracy of findings on transmitted radiographic images were compared with those made when viewing the actual plain film. Plain films (KUB) were obtained from 26 patients who presented to the radiology department to rule out urinary calculous disease. The films were digitalized by a radiograph scanner into ARCNEMA-2 file format, compressed by a NASA algorithm, and transferred via a 28.8-kbps modern over standard telephone lines to a remote section 25 miles away, where they were decompressed and viewed on a 1600 x 1200-pixel monitor. Two attending urologists and two endourologic fellows were randomized to read either the transmitted image or the original radiograph with minimal clinical history provided. Of the 26 plain radiographic films, 24 were correctly interpreted by the fellows and 25 by the attending physicians (92% and 96% accuracy, respectively) for a total accuracy of 94% with no statistical difference (p = 0.16). After compression, all but one of the digital images were transferred successfully. The attending physicians correctly interpreted 24 of the 25 digital images (96%), whereas the fellows were correct on 21 interpretations (84%), resulting in a total 90% accuracy with a significant difference between the groups (p < or = 0.04). Overall, no statistical difference between the interpretations of the plain film and the digital image was revealed (p = 0.21). Using available technology, KUB images can be transmitted to a remote site, and the location of a stone can be determined correctly. Higher accuracy is demonstrated by experienced surgeons.
NASA Astrophysics Data System (ADS)
Chan, Heang-Ping; Vyborny, Carl J.; MacMahon, Heber; Metz, Charles E.; Doi, Kunio; Sickles, Edward A.
1986-06-01
We have conducted a study to assess the effects of digitization and unsharp-mask filtering on the ability of observers to detect subtle microcalcifications in mammograms. Thirty-two conventional screen-film mammograms were selected from patient files by two experienced mammographers. Twelve of the mammograms contained a suspicious cluster of microcalcifications in patients who subsequently underwent biopsy. Twenty of the mammograms were normal cases which were initially interpreted as being free of clustered microcalcifications and did not demonstrate such on careful review. The mammograms were digitized with a high-quality Fuji image processing/simulation system. The system consists of two drum scanners with which an original radiograph can be digitized, processed by a minicomputer, and reconstituted on film. In this study, we employed a sampling aperture of 0.1 mm X 0.1 mm and a sampling distance of 0.1 mm. The density range from 0.2 to 2.75 was digitized to 1024 grey levels per pixel. The digitized images were printed on a single emulsion film with a display aperture having the same size as the sampling aperture. The system was carefully calibrated so that the density and contrast of a digitized image were closely matched to those of the original radiograph. Initially, we evaluated the effects of the weighting factor and the mask size of a unsharp-mask filter on the appearance of mammograms for various types of breasts. Subjective visual comparisons suggested that a mask size of 91 X 91 pixels (9.1 mm X 9.1 mm) enhances the visibility of microcalcifications without excessively increasing the high-frequency noise. Further, a density-dependent weighting factor that increases linearly from 1.5 to 3.0 in the density range of 0.2 to 2.5 enhances the contrast of microcalcifications without introducing many potentially confusing artifacts in the low-density areas. An unsharp-mask filter with these parameters was used to process the digitized mammograms. We conducted observer performance experiments to evaluate the detectability of micro-calcifications in three sets of mammograms: the original film images, unprocessed digitized images, and unsharp-masked images. Each set included the same 20 normal cases and 12 abnormal cases. A total of 5 board-certified radiologists and 4 senior radiology residents participated as observers. In the first experiment, the detectability of microcalcifications was measured for the original, unprocessed digitized, and unsharp-masked images. Each observer read all 96 films in one session with the cases arranged in a different random order. A maximum of 15 seconds was allowed to read each image. To facilitate receiver operating character-istic (ROC) analysis, each observer ranked his/her observation regarding the presence or absence of a cluster of 3 or more microcalcifications on a 5-point confidence rating scale (1=definitely no microcalcifications, 2=probably no microcalcifications; 3=microcalcifi-cations possibly present; 4=microcalcifications probably present; 5=microcalcifications definitely present). The observer identified the location of the suspected microcalci-fications when the confidence rating was 2 or greater. In the second experiment, we evaluated whether reading the unsharp-masked image and the unprocessed digitized image side by side for each case would reduce false-positive detection rates for microcalcifications and thus improve overall performance. The observer was again allowed a maximum of 15 seconds to read each pair of images and was instructed to use the unsharp-masked image for primary reading and the unprocessed digitized image for reference. The experimental setting and procedures were otherwise the same as those for the first experiment.
[Observation of oral actions using digital image processing system].
Ichikawa, T; Komoda, J; Horiuchi, M; Ichiba, H; Hada, M; Matsumoto, N
1990-04-01
A new digital image processing system to observe oral actions is proposed. The system provides analyses of motion pictures along with other physiological signals. The major components are a video tape recorder, a digital image processor, a percept scope, a CCD camera, an A/D converter and a personal computer. Five reference points were marked on the lip and eyeglasses of 9 adult subjects. Lip movements were recorded and analyzed using the system when uttering five vowels and [ka, sa, ta, ha, ra, ma, pa, ba[. 1. Positions of the lip when uttering five vowels were clearly classified. 2. Active articulatory movements of the lip were not recognized when uttering consonants [k, s, t, h, r[. It seemed lip movements were dependent on tongue and mandibular movements. Downward and rearward movements of the upper lip, and upward and forward movements of the lower lip were observed when uttering consonants [m, p, b[.
Spatial resolution requirements for soft-copy reporting in digital radiography
NASA Astrophysics Data System (ADS)
Davies, Andrew G.; Cowen, Arnold R.; Fowler, Richard C.; Bury, Robert F.; Parkin, Geoff J. S.; Lintott, David J.; Martinez, Delia; Safudim, Asif
1996-04-01
The issue of the spatial resolution required in order to present diagnostic quality digital images, especially for softcopy reporting, has received much attention over recent years. The aim of this study was to compare the diagnostic performance reporting from hardcopy and optimized softcopy image presentations. One-hundred-fifteen radiographs of the hand acquired on a photostimulable phosphor computed radiography (CR) system were chosen as the image material. The study group was taken from patients who demonstrated subtle erosions of the bone in the digits. The control group consisted of radiologically normal bands. The images were presented in three modes, the CR system's hardcopy output, and softcopy presentations at full and half spatial resolutions. Four consultant radiologists participated as observers. Results were analyzed using the receiver operating characteristic (ROC) technique, and showed a statistically significant improvement in observer performance for both softcopy formats, when compared to the hardcopy presentation. However, no significant difference in observer performance was found between the two softcopy presentations. We therefore conclude that, with appropriate attention to the processing and presentation of digital image data, softcopy reporting can, for most examinations, provide superior diagnostic performance, even for images viewed at modest (1 k2) resolutions.
NASA Technical Reports Server (NTRS)
Buckner, J. D.; Council, H. W.; Edwards, T. R.
1974-01-01
Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.
CMOS cassette for digital upgrade of film-based mammography systems
NASA Astrophysics Data System (ADS)
Baysal, Mehmet A.; Toker, Emre
2006-03-01
While full-field digital mammography (FFDM) technology is gaining clinical acceptance, the overwhelming majority (96%) of the installed base of mammography systems are conventional film-screen (FSM) systems. A high performance, and economical digital cassette based product to conveniently upgrade FSM systems to FFDM would accelerate the adoption of FFDM, and make the clinical and technical advantages of FFDM available to a larger population of women. The planned FFDM cassette is based on our commercial Digital Radiography (DR) cassette for 10 cm x 10 cm field-of-view spot imaging and specimen radiography, utilizing a 150 micron columnar CsI(Tl) scintillator and 48 micron active-pixel CMOS sensor modules. Unlike a Computer Radiography (CR) cassette, which requires an external digitizer, our DR cassette transfers acquired images to a display workstation within approximately 5 seconds of exposure, greatly enhancing patient flow. We will present the physical performance of our prototype system against other FFDM systems in clinical use today, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and subjective criteria, such as a contrast-detail (CD-MAM) observer performance study. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for FFDM today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. This study promises to take advantage of these unique features to develop the first CMOS based FFDM upgrade cassette.
Fang, Simin; Zhou, Sheng; Wang, Xiaochun; Ye, Qingsheng; Tian, Ling; Ji, Jianjun; Wang, Yanqun
2015-01-01
To design and improve signal processing algorithms of ophthalmic ultrasonography based on FPGA. Achieved three signal processing modules: full parallel distributed dynamic filter, digital quadrature demodulation, logarithmic compression, using Verilog HDL hardware language in Quartus II. Compared to the original system, the hardware cost is reduced, the whole image shows clearer and more information of the deep eyeball contained in the image, the depth of detection increases from 5 cm to 6 cm. The new algorithms meet the design requirements and achieve the system's optimization that they can effectively improve the image quality of existing equipment.
Massively parallel information processing systems for space applications
NASA Technical Reports Server (NTRS)
Schaefer, D. H.
1979-01-01
NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.
NASA Astrophysics Data System (ADS)
Yu, Fei; Hui, Mei; Zhao, Yue-jin
2009-08-01
The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.
High-resolution terahertz inline digital holography based on quantum cascade laser
NASA Astrophysics Data System (ADS)
Deng, Qinghua; Li, Weihua; Wang, Xuemin; Li, Zeyu; Huang, Haochong; Shen, Changle; Zhan, Zhiqiang; Zou, Ruijiao; Jiang, Tao; Wu, Weidong
2017-11-01
A key requirement to put terahertz (THz) imaging systems into applications is high resolution. Based on a self-developed THz quantum cascade laser (QCL), we demonstrate a THz inline digital holography imaging system with high lateral resolution. In our case, the lateral resolution of this holography imaging system is pushed to about 70 μm, which is close to the intrinsic resolution limit of this system. To the best of our knowledge, this is much smaller than what has been reported up to now. This is attributed to a series of improvements, such as shortening the QCL wavelength, increasing Nx and Ny by the synthetic aperture method, smoothing the source beam profile, and diminishing vibration due to the cryorefrigeration device. This kind of holography system with a resolution smaller than 100 μm opens the door for many imaging experiments. It will turn the THz imaging systems into applications.
NASA Astrophysics Data System (ADS)
Mosquera Lopez, Clara; Agaian, Sos
2013-02-01
Prostate cancer detection and staging is an important step towards patient treatment selection. Advancements in digital pathology allow the application of new quantitative image analysis algorithms for computer-assisted diagnosis (CAD) on digitized histopathology images. In this paper, we introduce a new set of features to automatically grade pathological images using the well-known Gleason grading system. The goal of this study is to classify biopsy images belonging to Gleason patterns 3, 4, and 5 by using a combination of wavelet and fractal features. For image classification we use pairwise coupling Support Vector Machine (SVM) classifiers. The accuracy of the system, which is close to 97%, is estimated through three different cross-validation schemes. The proposed system offers the potential for automating classification of histological images and supporting prostate cancer diagnosis.
Remote Sensing Image Quality Assessment Experiment with Post-Processing
NASA Astrophysics Data System (ADS)
Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.
2018-04-01
This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.
NASA Astrophysics Data System (ADS)
Choi, Sunghoon; Lee, Seungwan; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Shin, Jungwook; Seo, Chang-Woo; Kim, Hee-Joung
2017-03-01
Digital tomosynthesis offers the advantage of low radiation doses compared to conventional computed tomography (CT) by utilizing small numbers of projections ( 80) acquired over a limited angular range. It produces 3D volumetric data, although there are artifacts due to incomplete sampling. Based upon these characteristics, we developed a prototype digital tomosynthesis R/F system for applications in chest imaging. Our prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including a precise motor controller, and a reconstruction server. For image reconstruction, users select between analytic and iterative reconstruction methods. Our reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module of Catphan700 were higher in images using a simultaneous algebraic reconstruction technique (SART) than in those using filtered back-projection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin® (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 s and 86.29 s on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from our system (5.68 mGy) was lower than that of conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.
Authenticity techniques for PACS images and records
NASA Astrophysics Data System (ADS)
Wong, Stephen T. C.; Abundo, Marco; Huang, H. K.
1995-05-01
Along with the digital radiology environment supported by picture archiving and communication systems (PACS) comes a new problem: How to establish trust in multimedia medical data that exist only in the easily altered memory of a computer. Trust is characterized in terms of integrity and privacy of digital data. Two major self-enforcing techniques can be used to assure the authenticity of electronic images and text -- key-based cryptography and digital time stamping. Key-based cryptography associates the content of an image with the originator using one or two distinct keys and prevents alteration of the document by anyone other than the originator. A digital time stamping algorithm generates a characteristic `digital fingerprint' for the original document using a mathematical hash function, and checks that it has not been modified. This paper discusses these cryptographic algorithms and their appropriateness for a PACS environment. It also presents experimental results of cryptographic algorithms on several imaging modalities.
NASA Astrophysics Data System (ADS)
Holland, S. Douglas
1992-09-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
NASA Technical Reports Server (NTRS)
Holland, S. Douglas (Inventor)
1992-01-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
Anger, Hal O.; Martin, Donn C.; Lampton, Michael L.
1983-01-01
A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.
Discrete shearlet transform: faithful digitization concept and its applications
NASA Astrophysics Data System (ADS)
Lim, Wang-Q.
2011-09-01
Over the past years, various representation systems which sparsely approximate functions governed by anisotropic features such as edges in images have been proposed. Alongside the theoretical development of these systems, algorithmic realizations of the associated transforms were provided. However, one of the most common short-comings of these frameworks is the lack of providing a unified treatment of the continuum and digital world, i.e., allowing a digital theory to be a natural digitization of the continuum theory. Shearlets were introduced as means to sparsely encode anisotropic singularities of multivariate data while providing a unified treatment of the continuous and digital realm. In this paper, we introduce a discrete framework which allows a faithful digitization of the continuum domain shearlet transform based on compactly supported shearlets. Finally, we show numerical experiments demonstrating the potential of the discrete shearlet transform in several image processing applications.
Kalinski, Thomas; Hofmann, Harald; Franke, Dagmar-Sybilla; Roessner, Albert
2002-01-01
Picture archiving and communication systems have been widely used in radiology thus far. Owing to the progress made in digital photo technology, their use in medicine opens up further opportunities. In the field of pathology, digital imaging offers new possiblities for the documentation of macroscopic and microscopic findings. Digital imaging has the advantage that the data is permanently and readily available, independent of conventional archives. In the past, PACS was a separate entity. Meanwhile, however, PACS has been integrated in DIS, the department information system, which was also run separately in former times. The combination of these two systems makes the administration of patient data, findings and images easier. Moreover, thanks to the introduction of special communication standards, a data exchange between different department information systems and hospital information systems (HIS) is possible. This provides the basis for a communication platform in medicine, constituting an electronic patient record (EPR) that permits an interdisciplinary treatment of patients by providing data of findings and images from clinics treating the same patient. As the pathologic diagnosis represents a central and often therapy-determining component, it is of utmost importance to add pathologic diagnoses to the EPR. Furthermore, the pathologist's work is considerably facilitated when he is able to retrieve additional data from the patient file. In this article, we describe our experience gained with the combined PACS and DIS systems recently installed at the Department of Pathology, University of Magdeburg. Moreover, we evaluate the current situation and future prospects for PACS in pathology.
Experimental research of digital image correlation system in high temperature test
NASA Astrophysics Data System (ADS)
Chen, Li; Wang, Yonghong; Dan, Xizuo; Xiao, Ying; Yang, Lianxiang
2016-01-01
Digital Image Correlation (DIC) is a full-field technique based on white-light illumination for displacement and strain measurement. But radiation on the specimen surface at high temperature affects the quality of acquired speckle pattern images for traditional DIC measurement. In order to minimize the radiation effect in high temperature measurement, this paper proposes a two-dimensional ultraviolet digital image correlation system (2D UV-DIC) containing UV LED and UV band-pass filter. It is confirmed by experiments that images acquired by this system saturate at higher temperature in comparison with DIC using filtered blue light imaging system. And the UV-DIC remains minimally affected by radiation at the temperature which is nearing the specimen's maximum working temperature (about 1250°C). In addition, considering the heat disturbance that can't be ignored in actual high temperature measurement, this paper also proposes a method using an air controller in combination with image average algorithm, and the method was then used to obtain the thermal expansion coefficient of the Austenitic chromium-nickel stainless steel specimen at different temperatures. By comparing the coefficients with the results calculated by other method, it shows that this comprehensive method has the advantages of strong anti-interference ability and high precision.
Quality aspects of digital radiography in general dental practice.
Hellén-Halme, Kristina
2007-01-01
The number of dentists who have converted from conventional film radiography to digital radiography continues to grow. A digital system has numerous advantages, but there are also many new aspects to consider. The overall aim of this thesis was to study how digital radiography was used in general dental practices. The specific aims were to study how different factors affected image quality. To determine whether there were any differences in image quality between conventional film radiographs and digital radiographs, 4863 images (540 cases) were evaluated. The cases had been sent to the Swedish Dental Insurance Office for prior treatment approval. The image quality of digital radiographs was found to be significantly lower than that of film radiographs. This result led to a questionnaire study of dentists experienced in digital radiography. In 2003, a questionnaire was sent to the 139 general practice dentists who worked with digital radiography in Skine, Sweden; the response rate was 94%. Many general practice dentists had experienced several problems (65%), and less than half of the digital systems (40%) underwent some kind of quality control. One of the weaker links in the technical chain of digital radiography appeared to be the monitor. A field study to 19 dentists at their clinics found that the brightness and contrast settings of the monitors had to be adjusted to obtain the subjectively best image quality. The ambient light in the evaluation room was also found to affect the diagnostic outcome of low-contrast patterns in radiographs. To evaluate the effects of ambient light and technical adjustments of the monitor, a study using standardised set-ups was designed. Seven observers evaluated radiographs of 100 extracted human teeth for approximal caries under five different combinations of brightness and contrast settings on two different occasions with high and low ambient light levels in the evaluation room. The ability to diagnose carious lesions was found to be significantly better in a room with lower ambient light and on a monitor with well-adjusted brightness and contrast values than in a room with bright light and on an unadjusted monitor. In conclusion, many problems with dental digital radiography were identified. Knowledge of digital techniques and how to optimise each link in the system to maintain high radiographic quality at all times must be improved.
NASA Astrophysics Data System (ADS)
Lee, D.; Choi, S.; Lee, H.; Kim, D.; Choi, S.; Kim, H.-J.
2017-04-01
Lung cancer is currently the worldwide leading cause of death from cancer. Thus, detection of lung cancer at its early stages is critical for improving the survival rate of patients. Chest digital tomosynthesis (CDT) is a recently developed imaging modality, combining many advantages of digital radiography (DR) and computed tomography (CT). This method has the potential to be widely used in the clinical setting. In this study, we introduce a developed CDT R/F system and compare its image quality with those of DR and CT, especially with respect to anatomical noise and lung nodule conspicuity, for LUNGMAN phantoms. The developed CDT R/F system consists of a CsI scintillator flat panel detector, X-ray tube, and tomosynthesis data acquisition geometry. For CDT R/F imaging, 41 projections were acquired at different angles, over the ± 20° angular range, in a linear translation geometry. To evaluate the clinical effectiveness of the CDT R/F system, the acquired images were compared with CT (Philips brilliance CT 64, Philips healthcare, U.S.) and DR (ADR-M, LISTEM, Korea) phantom images in terms of the anatomical noise power spectrum (aNPS). DR images exhibited low conspicuity for a small-size lung nodule, while CDT R/F and CT exhibited relatively high sensitivity for all lung nodule sizes. The aNPS of the CDT R/F system was better than that of DR, by resolving anatomical overlapping problems. In conclusion, the developed CDT R/F system is likely to contribute to early diagnosis of lung cancer, while requiring a relatively low patient dose, compared with CT.
Color management systems: methods and technologies for increased image quality
NASA Astrophysics Data System (ADS)
Caretti, Maria
1997-02-01
All the steps in the imaging chain -- from handling the originals in the prepress to outputting them on any device - - have to be well calibrated and adjusted to each other, in order to reproduce color images in a desktop environment as accurate as possible according to the original. Today most of the steps in the prepress production are digital and therefore it is realistic to believe that the color reproduction can be well controlled. This is true thanks to the last years development of fast, cost effective scanners, digital sources and digital proofing devices not the least. It is likely to believe that well defined tools and methods to control this imaging flow will lead to large cost and time savings as well as increased overall image quality. Until now, there has been a lack of good, reliable, easy-to- use systems (e.g. hardware, software, documentation, training and support) in an extent that has made them accessible to the large group of users of graphic arts production systems. This paper provides an overview of the existing solutions to manage colors in a digital pre-press environment. Their benefits and limitations are discussed as well as how they affect the production workflow and organization. The difference between a color controlled environment and one that is not is explained.
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)
1975-01-01
The author has identified the following significant results. It was found that the high speed man machine interaction capability is a distinct advantage of the image 100; however, the small size of the digital computer in the system is a definite limitation. The system can be highly useful in an analysis mode in which it complements a large general purpose computer. The image 100 was found to be extremely valuable in the analysis of aircraft MSS data where the spatial resolution begins to approach photographic quality and the analyst can exercise interpretation judgements and readily interact with the machine.
NASA Technical Reports Server (NTRS)
1995-01-01
Intelligent Vision Systems, Inc. (InVision) needed image acquisition technology that was reliable in bad weather for its TDS-200 Traffic Detection System. InVision researchers used information from NASA Tech Briefs and assistance from Johnson Space Center to finish the system. The NASA technology used was developed for Earth-observing imaging satellites: charge coupled devices, in which silicon chips convert light directly into electronic or digital images. The TDS-200 consists of sensors mounted above traffic on poles or span wires, enabling two sensors to view an intersection; a "swing and sway" feature to compensate for movement of the sensors; a combination of electronic shutter and gain control; and sensor output to an image digital signal processor, still frame video and optionally live video.
XML-based scripting of multimodality image presentations in multidisciplinary clinical conferences
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Allada, Vivekanand; Dahlbom, Magdalena; Marcus, Phillip; Fine, Ian; Lapstra, Lorelle
2002-05-01
We developed a multi-modality image presentation software for display and analysis of images and related data from different imaging modalities. The software is part of a cardiac image review and presentation platform that supports integration of digital images and data from digital and analog media such as videotapes, analog x-ray films and 35 mm cine films. The software supports standard DICOM image files as well as AVI and PDF data formats. The system is integrated in a digital conferencing room that includes projections of digital and analog sources, remote videoconferencing capabilities, and an electronic whiteboard. The goal of this pilot project is to: 1) develop a new paradigm for image and data management for presentation in a clinically meaningful sequence adapted to case-specific scenarios, 2) design and implement a multi-modality review and conferencing workstation using component technology and customizable 'plug-in' architecture to support complex review and diagnostic tasks applicable to all cardiac imaging modalities and 3) develop an XML-based scripting model of image and data presentation for clinical review and decision making during routine clinical tasks and multidisciplinary clinical conferences.
Integration of aerial remote sensing imaging data in a 3D-GIS environment
NASA Astrophysics Data System (ADS)
Moeller, Matthias S.
2003-03-01
For some years sensor systems have been available providing digital images of a new quality. Especially aerial stereo scanners acquire digital multispectral images with an extremely high ground resolution of about 0.10 - 0.15m and provide in addition a Digital Surface Models (DSM). These imaging products both can be used for a detailed monitoring at scales up to 1:500. The processed georeferenced multispectral orthoimages can be readily integrated into GIS making them useful for a number of applications. The DSM, derived from forward and backward facing sensors of an aerial imaging system provides a ground resolution of 0.5 m and can be used for 3D visualization purposes. In some cases it is essential, to store the ground elevation as a Digital Terrain Model (DTM) and also the height of 3-dimensional objects in a separated database. Existing automated algorithms do not work precise for the extraction of DTM from aerial scanner DSM. This paper presents a new approach which combines the visible image data and the DSM data for the generation of DTM with a reliable geometric accuracy. Already existing cadastral data can be used as a knowledge base for the extraction of building heights in cities. These elevation data is the essential source for a GIS based urban information system with a 3D visualization component.
Local sharpening and subspace wavefront correction with predictive dynamic digital holography
NASA Astrophysics Data System (ADS)
Sulaiman, Sennan; Gibson, Steve
2017-09-01
Digital holography holds several advantages over conventional imaging and wavefront sensing, chief among these being significantly fewer and simpler optical components and the retrieval of complex field. Consequently, many imaging and sensing applications including microscopy and optical tweezing have turned to using digital holography. A significant obstacle for digital holography in real-time applications, such as wavefront sensing for high energy laser systems and high speed imaging for target racking, is the fact that digital holography is computationally intensive; it requires iterative virtual wavefront propagation and hill-climbing to optimize some sharpness criteria. It has been shown recently that minimum-variance wavefront prediction can be integrated with digital holography and image sharpening to reduce significantly large number of costly sharpening iterations required to achieve near-optimal wavefront correction. This paper demonstrates further gains in computational efficiency with localized sharpening in conjunction with predictive dynamic digital holography for real-time applications. The method optimizes sharpness of local regions in a detector plane by parallel independent wavefront correction on reduced-dimension subspaces of the complex field in a spectral plane.
Clinical decision making using teleradiology in urology.
Lee, B R; Allaf, M; Moore, R; Bohlman, M; Wang, G M; Bishoff, J T; Jackman, S V; Cadeddu, J A; Jarrett, T W; Khazan, R; Kavoussi, L R
1999-01-01
Using a personal computer-based teleradiology system, we compared accuracy, confidence, and diagnostic ability in the interpretation of digitized radiographs to determine if teleradiology-imported studies convey sufficient information to make relevant clinical decisions involving urology. Variables of diagnostic accuracy, confidence, image quality, interpretation, and the impact of clinical decisions made after viewing digitized radiographs were compared with those of original radiographs. We evaluated 956 radiographs that included 94 IV pyelograms, four voiding cystourethrograms, and two nephrostograms. The radiographs were digitized and transferred over an Ethernet network to a remote personal computer-based viewing station. The digitized images were viewed by urologists and graded according to confidence in making a diagnosis, image quality, diagnostic difficulty, clinical management based on the image itself, and brief patient history. The hard-copy radiographs were then interpreted immediately afterward, and diagnostic decisions were reassessed. All analog radiographs were reviewed by an attending radiologist. Ninety-seven percent of the decisions made from the digitized radiographs did not change after reviewing conventional radiographs of the same case. When comparing the variables of clinical confidence, quality of the film on the teleradiology system versus analog films, and diagnostic difficulty, we found no statistical difference (p > .05) between the two techniques. Overall accuracy in interpreting the digitized images on the teleradiology system was 88% by urologists compared with that of the attending radiologist's interpretation of the analog radiographs. However, urologists detected findings on five (5%) analog radiographs that had been previously unreported by the radiologist. Viewing radiographs transmitted to a personal computer-based viewing station is an appropriate means of reviewing films with sufficient quality on which to base clinical decisions. Our focus was whether decisions made after viewing the transmitted radiographs would change after viewing the hard-copy images of the same case. In 97% of the cases, the decision did not change. In those cases in which management was altered, recommendation of further imaging studies was the most common factor.
Samei, Ehsan; Buhr, Egbert; Granfors, Paul; Vandenbroucke, Dirk; Wang, Xiaohui
2005-08-07
The modulation transfer function (MTF) is well established as a metric to characterize the resolution performance of a digital radiographic system. Implemented by various laboratories, the edge technique is currently the most widespread approach to measure the MTF. However, there can be differences in the results attributed to differences in the analysis technique employed. The objective of this study was to determine whether comparable results can be obtained from different algorithms processing identical images representative of those of current digital radiographic systems. Five laboratories participated in a round-robin evaluation of six different algorithms including one prescribed in the International Electrotechnical Commission (IEC) 62220-1 standard. The algorithms were applied to two synthetic and 12 real edge images from different digital radiographic systems including CR, and direct- and indirect-conversion detector systems. The results were analysed in terms of variability as well as accuracy of the resulting presampled MTFs. The results indicated that differences between the individual MTFs and the mean MTF were largely below 0.02. In the case of the two simulated edge images, all algorithms yielded similar results within 0.01 of the expected true MTF. The findings indicated that all algorithms tested in this round-robin evaluation, including the IEC-prescribed algorithm, were suitable for accurate MTF determination from edge images, provided the images are not excessively noisy. The agreement of the MTF results was judged sufficient for the measurement of the MTF necessary for the determination of the DQE.
Holkenbrink, Patrick F.
1978-01-01
Landsat data are received by National Aeronautics and Space Administration (NASA) tracking stations and converted into digital form on high-density tapes (HDTs) by the Image Processing Facility (IPF) at the Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The HDTs are shipped to the EROS Data Center (EDC) where they are converted into customer products by the EROS Data Center digital image processing system (EDIPS). This document describes in detail one of these products: the computer-compatible tape (CCT) produced from Landsat-1, -2, and -3 multispectral scanner (MSS) data and Landsat-3 only return-beam vidicon (RBV) data. Landsat-1 and -2 RBV data will not be processed by IPF/EDIPS to CCT format.
Development of a ground signal processor for digital synthetic array radar data
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1981-01-01
A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.
Development of a microportable imaging system for otoscopy and nasoendoscopy evaluations.
VanLue, Michael; Cox, Kenneth M; Wade, James M; Tapp, Kevin; Linville, Raymond; Cosmato, Charlie; Smith, Tom
2007-03-01
Imaging systems for patients with cleft palate typically are not portable, but are essential to obtain an audiovisual record of nasoendoscopy and otoscopy procedures. Practitioners who evaluate patients in rural, remote, or otherwise medically underserved areas are expected to obtain audiovisual recordings of these procedures as part of standard clinical practice. Therefore, patients must travel substantial distances to medical facilities that have standard recording equipment. This project describes the specific components, strengths and weaknesses of an MPEG-4 digital recording system for otoscopy/nasoendoscopy evaluation of patients with cleft palate that is both portable and compatible with store-and-forward telemedicine applications. Three digital recording configurations (TabletPC, handheld digital video recorder, and an 8-mm digital camcorder) were used to record the audio/ video signal from an analog video scope system. The handheld digital video recorder was most effective at capturing audio/video and displaying procedures in real time. The system described was particularly easy to use, because it required no postrecording file capture or compression for later review, transfer, and/or archiving. The handheld digital recording system was assembled from commercially available components. The portability and the telemedicine compatibility of the handheld digital video recorder offers a viable solution for the documentation of nasoendosocopy and otoscopy procedures in remote, rural, or other locations where reduced medical access precludes the use of larger component audio/video systems.
DigitalGlobe(TM) Incorporated Corporate and System Update
NASA Technical Reports Server (NTRS)
Thomassie, Brett
2007-01-01
This viewgraph presentation describes a system update of Quickbird, the world's highest resolution commercial imaging satellite, operated by DigitalGlobe (TM) Incorporated. A satellite comparison of Quickbird, WorldView-60, and WorldView-110 is also presented.
Digital image classification with the help of artificial neural network by simple histogram.
Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant
2016-01-01
Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations.
NASA Astrophysics Data System (ADS)
Watanabe, Shuji; Takano, Hiroshi; Fukuda, Hiroya; Hiraki, Eiji; Nakaoka, Mutsuo
This paper deals with a digital control scheme of multiple paralleled high frequency switching current amplifier with four-quadrant chopper for generating gradient magnetic fields in MRI (Magnetic Resonance Imaging) systems. In order to track high precise current pattern in Gradient Coils (GC), the proposal current amplifier cancels the switching current ripples in GC with each other and designed optimum switching gate pulse patterns without influences of the large filter current ripple amplitude. The optimal control implementation and the linear control theory in GC current amplifiers have affinity to each other with excellent characteristics. The digital control system can be realized easily through the digital control implementation, DSPs or microprocessors. Multiple-parallel operational microprocessors realize two or higher paralleled GC current pattern tracking amplifier with optimal control design and excellent results are given for improving the image quality of MRI systems.
A Double Perturbation Method for Reducing Dynamical Degradation of the Digital Baker Map
NASA Astrophysics Data System (ADS)
Liu, Lingfeng; Lin, Jun; Miao, Suoxia; Liu, Bocheng
2017-06-01
The digital Baker map is widely used in different kinds of cryptosystems, especially for image encryption. However, any chaotic map which is realized on the finite precision device (e.g. computer) will suffer from dynamical degradation, which refers to short cycle lengths, low complexity and strong correlations. In this paper, a novel double perturbation method is proposed for reducing the dynamical degradation of the digital Baker map. Both state variables and system parameters are perturbed by the digital logistic map. Numerical experiments show that the perturbed Baker map can achieve good statistical and cryptographic properties. Furthermore, a new image encryption algorithm is provided as a simple application. With a rather simple algorithm, the encrypted image can achieve high security, which is competitive to the recently proposed image encryption algorithms.
Quantitative comparison of the application accuracy between NDI and IGT tracking systems
NASA Astrophysics Data System (ADS)
Li, Qinghang; Zamorano, Lucia J.; Jiang, Charlie Z. W.; Gong, JianXing; Diaz, Fernando
1999-07-01
The application accuracy is a crucial factor for the stereotactic surgical localization system in which space digitization system is one of the most important part of equipment. In this study we compared the application accuracy of using the OPTOTRAK space digitization system (OPTOTRAK 3020, Northern Digital, Waterloo, CAN) and FlashPoint Model 3000 and 5000 3-D digitizer systems (FlashPoint Model 3000 and 5000, Image Guided Surgery Technology Inc., Boulder, CO 80301, USA) for interactive localization of intracranial lesions. A phantom was mounted with the implantable frameless marker system (Fischer- Leibinger, Freiburg, Germany) which randomly distributed markers on the surface of the phantom. The target point was digitized and the coordinates were recorded and compared with reference points. The differences from the reference points were used as the deviation from the `true point'. The mean square root was calculated to show the sum of vectors. A paired t-test was used to analyze results. The results of the phantom showed that the mean square roots were 0.76 +/- 0.54 mm for the OPTOTRAK system and 1.23 +/- 0.53 mm for FlashPoint Model 3000 3-D digitizer system and 1.00 +/- 0.42 mm for FlashPoint Model 3000 3-D digitizer system in the 1 mm sections of CT scan. This preliminary results showed that there is no significant difference between two tracking systems. Both of them can be used for image guided surgery procedure.
[Basic concept in computer assisted surgery].
Merloz, Philippe; Wu, Hao
2006-03-01
To investigate application of medical digital imaging systems and computer technologies in orthopedics. The main computer-assisted surgery systems comprise the four following subcategories. (1) A collection and recording process for digital data on each patient, including preoperative images (CT scans, MRI, standard X-rays), intraoperative visualization (fluoroscopy, ultrasound), and intraoperative position and orientation of surgical instruments or bone sections (using 3D localises). Data merging based on the matching of preoperative imaging (CT scans, MRI, standard X-rays) and intraoperative visualization (anatomical landmarks, or bone surfaces digitized intraoperatively via 3D localiser; intraoperative ultrasound images processed for delineation of bone contours). (2) In cases where only intraoperative images are used for computer-assisted surgical navigation, the calibration of the intraoperative imaging system replaces the merged data system, which is then no longer necessary. (3) A system that provides aid in decision-making, so that the surgical approach is planned on basis of multimodal information: the interactive positioning of surgical instruments or bone sections transmitted via pre- or intraoperative images, display of elements to guide surgical navigation (direction, axis, orientation, length and diameter of a surgical instrument, impingement, etc. ). And (4) A system that monitors the surgical procedure, thereby ensuring that the optimal strategy defined at the preoperative stage is taken into account. It is possible that computer-assisted orthopedic surgery systems will enable surgeons to better assess the accuracy and reliability of the various operative techniques, an indispensable stage in the optimization of surgery.
Geometric accuracy of Landsat-4 and Landsat-5 Thematic Mapper images.
Borgeson, W.T.; Batson, R.M.; Kieffer, H.H.
1985-01-01
The geometric accuracy of the Landsat Thematic Mappers was assessed by a linear least-square comparison of the positions of conspicuous ground features in digital images with their geographic locations as determined from 1:24 000-scale maps. For a Landsat-5 image, the single-dimension standard deviations of the standard digital product, and of this image with additional linear corrections, are 11.2 and 10.3 m, respectively (0.4 pixel). An F-test showed that skew and affine distortion corrections are not significant. At this level of accuracy, the granularity of the digital image and the probable inaccuracy of the 1:24 000 maps began to affect the precision of the comparison. The tested image, even with a moderate accuracy loss in the digital-to-graphic conversion, meets National Horizontal Map Accuracy standards for scales of 1:100 000 and smaller. Two Landsat-4 images, obtained with the Multispectral Scanner on and off, and processed by an interim software system, contain significant skew and affine distortions. -Authors
Computerized tomography using video recorded fluoroscopic images
NASA Technical Reports Server (NTRS)
Kak, A. C.; Jakowatz, C. V., Jr.; Baily, N. A.; Keller, R. A.
1975-01-01
A computerized tomographic imaging system is examined which employs video-recorded fluoroscopic images as input data. By hooking the video recorder to a digital computer through a suitable interface, such a system permits very rapid construction of tomograms.
Klukowska, Malgorzata; Bader, Annike; Erbe, Christina; Bellamy, Philip; White, Donald J; Anastasia, Mary Kay; Wehrbein, Heiner
2011-05-01
A digital plaque image analysis system was developed to objectively assess dental plaque formation and coverage in patients treated with fixed orthodontic appliances. The technique was used to assess plaque levels of 52 patients undergoing treatment with fixed appliances in the Department of Orthodontics at Johannes Gutenberg University in Mainz, Germany. Plaque levels ranged from 5.1% to 85.3% of the analyzed tooth areas. About 37% of the patients had plaque levels over 50% of the dentition, but only 10% exhibited plaque levels below 15% of tooth coverage. The mean plaque coverage was 41.9% ± 18.8%. Plaque was mostly present along the gum line and around the orthodontic brackets and wires. The digital plaque image analysis system might provide a convenient quantitative technique to assess oral hygiene in orthodontic patients with multi-bracket appliances. Plaque coverage in orthodontic patients is extremely high and is 2 to 3 times higher than levels observed in high plaque-forming adults without appliances participating in clinical studies of the digital plaque image analysis system. Improved hygiene, chemotherapeutic regimens, and compliance are necessary in these patients. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Koperwhats, Martha A; Chang, Wei-Chih; Xiao, Jianguo
2002-01-01
Digital imaging technology promises efficient, economical, and fast service for patient care, but the challenges are great in the transition from film to a filmless (digital) environment. This change has a significant impact on the film library's personnel (film librarians) who play a leading roles in storage, classification, and retrieval of images. The objectives of this project were to study film library errors and the usability of a physical computerized system that could not be changed, while developing an intervention to reduce errors and test the usability of the intervention. Cognitive and human factors analysis were used to evaluate human-computer interaction. A workflow analysis was performed to understand the film and digital imaging processes. User and task analyses were applied to account for all behaviors involved in interaction with the system. A heuristic evaluation was used to probe the usability issues in the picture archiving and communication systems (PACS) modules. Simplified paper-based instructions were designed to familiarize the film librarians with the digital system. A usability survey evaluated the effectiveness of the instruction. The user and task analyses indicated that different users faced challenges based on their computer literacy, education, roles, and frequency of use of diagnostic imaging. The workflow analysis showed that the approaches to using the digital library differ among the various departments. The heuristic evaluation of the PACS modules showed the human-computer interface to have usability issues that prevented easy operation. Simplified instructions were designed for operation of the modules. Usability surveys conducted before and after revision of the instructions showed that performance improved. Cognitive and human factor analysis can help film librarians and other users adapt to the filmless system. Use of cognitive science tools will aid in successful transition of the film library from a film environment to a digital environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, C; Dave, J
Purpose: To characterize noise for image receptors of digital radiography systems based on pixel variance. Methods: Nine calibrated digital image receptors associated with nine new portable digital radiography systems (Carestream Health, Inc., Rochester, NY) were used in this study. For each image receptor, thirteen images were acquired with RQA5 beam conditions for input detector air kerma ranging from 0 to 110 µGy, and linearized ‘For Processing’ images were extracted. Mean pixel value (MPV), standard deviation (SD) and relative noise (SD/MPV) were obtained from each image using ROI sizes varying from 2.5×2.5 to 20×20 mm{sup 2}. Variance (SD{sup 2}) was plottedmore » as a function of input detector air kerma and the coefficients of the quadratic fit were used to derive structured, quantum and electronic noise coefficients. Relative noise was also fitted as a function of input detector air kerma to identify noise sources. The fitting functions used least-squares approach. Results: The coefficient of variation values obtained using different ROI sizes was less than 1% for all the images. The structured, quantum and electronic coefficients obtained from the quadratic fit of variance (r>0.97) were 0.43±0.10, 3.95±0.27 and 2.89±0.74 (mean ± standard deviation), respectively, indicating that overall the quantum noise was the dominant noise source. However, for one system electronic noise coefficient (3.91) was greater than quantum noise coefficient (3.56) indicating electronic noise to be dominant. Using relative noise values, the power parameter of the fitting equation (|r|>0.93) showed a mean and standard deviation of 0.46±0.02. A 0.50 value for this power parameter indicates quantum noise to be the dominant noise source whereas values around 0.50 indicate presence of other noise sources. Conclusion: Characterizing noise from pixel variance assists in identifying contributions from various noise sources that, eventually, may affect image quality. This approach may be integrated during periodic quality assessments of digital image receptors.« less
Several considerations with respect to the future of digital photography and photographic printing
NASA Astrophysics Data System (ADS)
Tuijn, Chris; Mahy, Marc F.
2000-12-01
Digital cameras are no longer exotic gadgets being used by a privileged group of early adopters. More and more people realize that there are obvious advantages to the digital solution over the conventional film-based workflow. Claiming that prints on paper are no longer necessary in the digit workflow, however, would be similar to reviving the myth of the paperless office. Often, people still like to share their memories on paper and this for a variety of reasons. There are still some hurdles to be taken in order to make the digital dream com true. In this paper, we will give a survey of the different workflows in digital photography. The local, semi-local and Internet solutions will be discussed as well as the preferred output systems for each of these solutions. When discussing output system, we immediately think of appropriate color management solutions. In the second part of this paper, we will discuss the major color management issues appearing in digital photography. A clear separation between the image acquisition and the image rendering phases will be made. After a quick survey of the different image restoration and enhancement techniques, we will make some reflections on the ideal color exchange space; the enhanced image should be delivered in this exchange space and, from there, the standard color management transformations can be applied to transfer the image from this exchange space to the native color space of the output device. We will also discus some color gamut characteristics and color management problems of different types of photographic printers that can occur during this conversion process.
Digital map databases in support of avionic display systems
NASA Astrophysics Data System (ADS)
Trenchard, Michael E.; Lohrenz, Maura C.; Rosche, Henry, III; Wischow, Perry B.
1991-08-01
The emergence of computerized mission planning systems (MPS) and airborne digital moving map systems (DMS) has necessitated the development of a global database of raster aeronautical chart data specifically designed for input to these systems. The Naval Oceanographic and Atmospheric Research Laboratory''s (NOARL) Map Data Formatting Facility (MDFF) is presently dedicated to supporting these avionic display systems with the development of the Compressed Aeronautical Chart (CAC) database on Compact Disk Read Only Memory (CDROM) optical discs. The MDFF is also developing a series of aircraft-specific Write-Once Read Many (WORM) optical discs. NOARL has initiated a comprehensive research program aimed at improving the pilots'' moving map displays current research efforts include the development of an alternate image compression technique and generation of a standard set of color palettes. The CAC database will provide digital aeronautical chart data in six different scales. CAC is derived from the Defense Mapping Agency''s (DMA) Equal Arc-second (ARC) Digitized Raster Graphics (ADRG) a series of scanned aeronautical charts. NOARL processes ADRG to tailor the chart image resolution to that of the DMS display while reducing storage requirements through image compression techniques. CAC is being distributed by DMA as a library of CDROMs.
O'Brien, M J; Takahashi, M; Brugal, G; Christen, H; Gahm, T; Goodell, R M; Karakitsos, P; Knesel, E A; Kobler, T; Kyrkou, K A; Labbe, S; Long, E L; Mango, L J; McGoogan, E; Oberholzer, M; Reith, A; Winkler, C
1998-01-01
Optical digital imaging and its related technologies have applications in cytopathology that encompass training and education, image analysis, diagnosis, report documentation and archiving, and telecommunications. Telecytology involves the use of telecommunications to transmit cytology images for the purposes of diagnosis, consultation or education. This working paper provides a mainly informational overview of optical digital imaging and summarizes current technologic resources and applications and some of the ethical and legal implications of the use of these new technologies in cytopathology. Computer hardware standards for optical digital imagery will continue to be driven mainly by commercial interests and nonmedical imperatives, but professional organizations can play a valuable role in developing recommendations or standards for digital image sampling, documentation, archiving, authenticity safeguards and teleconsultation protocols; in addressing patient confidentiality and ethical, legal and informed consent issues; and in providing support for quality assurance and standardization of digital image-based testing. There is some evidence that high levels of accuracy for telepathology diagnosis can be achieved using existing dynamic systems, which may also be applicable to telecytology consultation. Static systems for both telepathology and telecytology, which have the advantage of considerably lower cost, appear to have lower levels of accuracy. Laboratories that maintain digital image databases should adopt practices and protocols that ensure patient confidentiality. Individuals participating in telecommunication of digital images for diagnosis should be properly qualified, meet licensing requirements and use procedures that protect patient confidentiality. Such individuals should be cognizant of the limitations of the technology and employ quality assurance practices that ensure the validity and accuracy of each consultation. Even in an informal teleconsultation setting one should define the extent of participation and be mindful of potential malpractice liability. Digital imagery applications will continue to present new opportunities and challenges. Position papers such as this are directed toward assisting the profession to stay informed and in control of these applications in the laboratory. Telecytology is an area in particular need of studies of good quality to provide data on factors affecting accuracy. New technologic approaches to addressing the issue of selective sampling in static image consultation are needed. The use of artificial intelligence software as an adjunct to enhance the accuracy and reproducibility of cytologic diagnosis of digital images in routine and consultation settings deserves to be pursued. Other telecytology-related issues that require clarification and the adoption of workable guidelines include interstate licensure and protocols to define malpractice liability.
The design of wavefront coded imaging system
NASA Astrophysics Data System (ADS)
Lan, Shun; Cen, Zhaofeng; Li, Xiaotong
2016-10-01
Wavefront Coding is a new method to extend the depth of field, which combines optical design and signal processing together. By using optical design software ZEMAX ,we designed a practical wavefront coded imaging system based on a conventional Cooke triplet system .Unlike conventional optical system, the wavefront of this new system is modulated by a specially designed phase mask, which makes the point spread function (PSF)of optical system not sensitive to defocus. Therefore, a series of same blurred images obtained at the image plane. In addition, the optical transfer function (OTF) of the wavefront coded imaging system is independent of focus, which is nearly constant with misfocus and has no regions of zeros. All object information can be completely recovered through digital filtering at different defocus positions. The focus invariance of MTF is selected as merit function in this design. And the coefficients of phase mask are set as optimization goals. Compared to conventional optical system, wavefront coded imaging system obtains better quality images under different object distances. Some deficiencies appear in the restored images due to the influence of digital filtering algorithm, which are also analyzed in this paper. The depth of field of the designed wavefront coded imaging system is about 28 times larger than initial optical system, while keeping higher optical power and resolution at the image plane.
High-Speed Noninvasive Eye-Tracking System
NASA Technical Reports Server (NTRS)
Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin
2007-01-01
The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.
Vasconcelos, Karla de Faria; Rovaris, Karla; Nascimento, Eduarda Helena Leandro; Oliveira, Matheus Lima; Távora, Débora de Melo; Bóscolo, Frab Norberto
2017-11-01
To evaluate the performance of conventional radiography and photostimulable phosphor (PSP) plate in the detection of simulated internal root resorption (IRR) lesions in early stages. Twenty single-rooted teeth were X-rayed before and after having a simulated IRR early lesion. Three imaging systems were used: Kodak InSight dental film and two PSPs digital systems, Digora Optime and VistaScan. The digital images were displayed on a 20.1″ LCD monitor using the native software of each system, and the conventional radiographs were evaluated on a masked light box. Two radiologists were asked to indicate the presence or absence of IRR and, after two weeks, all images were re-evaluated. Cohen's kappa coefficient was calculated to assess intra- and interobserver agreement. The three imaging systems were compared using the Kruskal-Wallis test. For interexaminer agreement, overall kappa values were 0.70, 0.65 and 0.70 for conventional film, Digora Optima and VistaScan, respectively. Both the conventional and digital radiography presented low sensitivity, specificity, accuracy, positive and negative predictive values with no significant difference between imaging systems (p = .0725). The performance of conventional and PSP was similar in the detection of simulated IRR lesions in early stages with low accuracy.
A novel x-ray imaging system and its imaging performance
NASA Astrophysics Data System (ADS)
Yu, Chunyu; Chang, Benkang; Wang, Shiyun; Zhang, Junju; Yao, Xiao
2006-09-01
Since x-ray was discovered and applied to the imaging technology, the x-ray imaging techniques have experienced several improvements, from film-screen, x-ray image intensifier, CR to DR. To store and transmit the image information conveniently, the digital imaging is necessary for the imaging techniques in medicine and biology. Usually as the intensifying screen technique as for concerned, to get the digital image signals, the CCD was lens coupled directly to the screen, but which suffers from a loss of x-ray signal and resulted in the poor x-ray image perfonnance. Therefore, to improve the image performance, we joined the brightness intensifier, which, was named the Low Light Level (LLL) image intensifier in military affairs, between the intensifying screen and the CCD and designed the novel x-ray imaging system. This design method improved the image performance of the whole system thus decreased the x-ray dose. Comparison between two systems with and without the brightness intensifier was given in detail in this paper. Moreover, the main noise source of the image produced by the novel system was analyzed, and in this paper, the original images produced by the novel x-ray imaging system and the processed images were given respectively. It was clear that the image performance was satisfied and the x-ray imaging system can be used in security checking and many other nondestructive checking fields.
NASA Astrophysics Data System (ADS)
Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.
2012-03-01
Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.
High speed quantitative digital microscopy
NASA Technical Reports Server (NTRS)
Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.
1984-01-01
Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.
Removal of instrument signature from Mariner 9 television images of Mars
NASA Technical Reports Server (NTRS)
Green, W. B.; Jepsen, P. L.; Kreznar, J. E.; Ruiz, R. M.; Schwartz, A. A.; Seidman, J. B.
1975-01-01
The Mariner 9 spacecraft was inserted into orbit around Mars in November 1971. The two vidicon camera systems returned over 7300 digital images during orbital operations. The high volume of returned data and the scientific objectives of the Television Experiment made development of automated digital techniques for the removal of camera system-induced distortions from each returned image necessary. This paper describes the algorithms used to remove geometric and photometric distortions from the returned imagery. Enhancement processing of the final photographic products is also described.
An online ID identification system for liquefied-gas cylinder plant
NASA Astrophysics Data System (ADS)
He, Jin; Ding, Zhenwen; Han, Lei; Zhang, Hao
2017-11-01
An automatic ID identification system for gas cylinders' online production was developed based on the production conditions and requirements of the Technical Committee for Standardization of Gas Cylinders. A cylinder ID image acquisition system was designed to improve the image contrast of ID regions on gas cylinders against the background. Then the ID digits region was located by the CNN template matching algorithm. Following that, an adaptive threshold method based on the analysis of local average grey value and standard deviation was proposed to overcome defects of non-uniform background in the segmentation results. To improve the single digit identification accuracy, two BP neural networks were trained respectively for the identification of all digits and the easily confusable digits. If the single digit was classified as one of confusable digits by the former BP neural network, it was further tested by the later one, and the later result was taken as the final identification result of this single digit. At last, the majority voting was adopted to decide the final identification result for the 6-digit cylinder ID. The developed system was installed on a production line of a liquefied-petroleum-gas cylinder plant and worked in parallel with the existing weighing step on the line. Through the field test, the correct identification rate for single ID digit was 94.73%, and none of the tested 2000 cylinder ID was misclassified through the majority voting.
NASA Astrophysics Data System (ADS)
Chen, Biao; Jing, Zhenxue; Smith, Andrew P.; Parikh, Samir; Parisky, Yuri
2006-03-01
Dual-energy contrast enhanced digital mammography (DE-CEDM), which is based upon the digital subtraction of low/high-energy image pairs acquired before/after the administration of contrast agents, may provide physicians physiologic and morphologic information of breast lesions and help characterize their probability of malignancy. This paper proposes to use only one pair of post-contrast low / high-energy images to obtain digitally subtracted dual-energy contrast-enhanced images with an optimal weighting factor deduced from simulated characteristics of the imaging chain. Based upon our previous CEDM framework, quantitative characteristics of the materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filters, breast tissues / lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systemically modeled. Using the base-material (polyethylene-PMMA) decomposition method based on entrance low / high-energy x-ray spectra and breast thickness, the optimal weighting factor was calculated to cancel the contrast between fatty and glandular tissues while enhancing the contrast of iodized lesions. By contrast, previous work determined the optimal weighting factor through either a calibration step or through acquisition of a pre-contrast low/high-energy image pair. Computer simulations were conducted to determine weighting factors, lesions' contrast signal values, and dose levels as functions of x-ray techniques and breast thicknesses. Phantom and clinical feasibility studies were performed on a modified Selenia full field digital mammography system to verify the proposed method and computer-simulated results. The resultant conclusions from the computer simulations and phantom/clinical feasibility studies will be used in the upcoming clinical study.
Anger, H.O.; Martin, D.C.; Lampton, M.L.
1983-07-26
A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.
Katayama, R; Sakai, S; Sakaguchi, T; Maeda, T; Takada, K; Hayabuchi, N; Morishita, J
2008-07-20
PURPOSE/AIM OF THE EXHIBIT: The purpose of this exhibit is: 1. To explain "resampling", an image data processing, performed by the digital radiographic system based on flat panel detector (FPD). 2. To show the influence of "resampling" on the basic imaging properties. 3. To present accurate measurement methods of the basic imaging properties of the FPD system. 1. The relationship between the matrix sizes of the output image and the image data acquired on FPD that automatically changes depending on a selected image size (FOV). 2. The explanation of the image data processing of "resampling". 3. The evaluation results of the basic imaging properties of the FPD system using two types of DICOM image to which "resampling" was performed: characteristic curves, presampled MTFs, noise power spectra, detective quantum efficiencies. CONCLUSION/SUMMARY: The major points of the exhibit are as follows: 1. The influence of "resampling" should not be disregarded in the evaluation of the basic imaging properties of the flat panel detector system. 2. It is necessary for the basic imaging properties to be measured by using DICOM image to which no "resampling" is performed.
Holographic zoom system based on spatial light modulator and liquid device
NASA Astrophysics Data System (ADS)
Wang, Di; Li, Lei; Liu, Su-Juan; Wang, Qiong-Hua
2018-02-01
In this paper, two holographic zoom systems are proposed based on the programmability of spatial light modulator (SLM) and zoom characteristics of liquid lens. An active optical zoom system is proposed in which the zoom module is composed of a liquid lens and an SLM. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of an image without mechanical moving parts and keep the output plane stationary. Then a color holographic zoom system based on a liquid lens is proposed. The system processes the color separation of the original object for red, green, and blue components and generated three holograms respectively. A new hologram with specific reconstructed distance can be generated by combing the hologram of the digital lens with the hologram of the image. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of the reconstructed image.
Viking image processing. [digital stereo imagery and computer mosaicking
NASA Technical Reports Server (NTRS)
Green, W. B.
1977-01-01
The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.
Edge directed image interpolation with Bamberger pyramids
NASA Astrophysics Data System (ADS)
Rosiles, Jose Gerardo
2005-08-01
Image interpolation is a standard feature in digital image editing software, digital camera systems and printers. Classical methods for resizing produce blurred images with unacceptable quality. Bamberger Pyramids and filter banks have been successfully used for texture and image analysis. They provide excellent multiresolution and directional selectivity. In this paper we present an edge-directed image interpolation algorithm which takes advantage of the simultaneous spatial-directional edge localization at the subband level. The proposed algorithm outperform classical schemes like bilinear and bicubic schemes from the visual and numerical point of views.
Information theoretic analysis of linear shift-invariant edge-detection operators
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2012-06-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the influences by the image gathering process. However, experiments show that the image gathering process has a profound impact on the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. We perform an end-to-end information theory based system analysis to assess linear shift-invariant edge-detection algorithms. We evaluate the performance of the different algorithms as a function of the characteristics of the scene and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge-detection algorithm is regarded as having high performance only if the information rate from the scene to the edge image approaches its maximum possible. This goal can be achieved only by jointly optimizing all processes. Our information-theoretic assessment provides a new tool that allows us to compare different linear shift-invariant edge detectors in a common environment.
Brunelli, Matteo; Beccari, Serena; Colombari, Romano; Gobbo, Stefano; Giobelli, Luca; Pellegrini, Andrea; Chilosi, Marco; Lunardi, Maria; Martignoni, Guido; Scarpa, Aldo; Eccher, Albino
2014-01-01
Validation of digital whole slide images is crucial to ensure that diagnostic performance is at least equivalent to that of glass slides and light microscopy. The College of American Pathologists Pathology and Laboratory Quality Center recently developed recommendations for internal digital pathology system validation. Following these guidelines we sought to validate the performance of a digital approach for routine diagnosis by using an iPad and digital control widescreen-assisted workstation through a pilot study. From January 2014, 61 histopathological slides were scanned by ScanScope Digital Slides Scanner (Aperio, Vista, CA). Two independent pathologists performed diagnosis on virtual slides in front of a widescreen by using two computer devices (ImageScope viewing software) located to different Health Institutions (AOUI Verona) connected by local network and a remote image server using an iPad tablet (Aperio, Vista, CA), after uploading the Citrix receiver for iPad. Quality indicators related to image characters and work-flow of the e-health cockpit enterprise system were scored based on subjective (high vs poor) perception. The images were re-evaluated two weeks apart. The whole glass slides encountered 10 liver: hepatocarcinoma, 10 renal carcinoma, 10 gastric carcinoma and 10 prostate biopsies: adenocarcinoma, 5 excisional skin biopsies: melanoma, 5 lymph-nodes: lymphoma. 6 immuno- and 5 special stains were available for intra- and internet remote viewing. Scan times averaged two minutes and 54 seconds per slide (standard deviation 2 minutes 34 seconds). Megabytes ranged from 256 to 680 (mean 390) per slide storage. Reliance on glass slide, image quality (resolution and color fidelity), slide navigation time, simultaneous viewers in geographically remote locations were considered of high performance score. Side by side comparisons between diagnosis performed on tissue glass slides versus widescreen were excellent showing an almost perfect concordance (0.81, kappa index). We validated our institutional digital pathology system for routine diagnostic facing with whole slide images in a cockpit enterprise digital system or iPad tablet. Computer widescreens are better for diagnosing scanned glass slide that iPad. For urgent requests, iPad may be used. Legal aspects have to be soon faced with to permit the clinical use of this technology in a manner that does not compromise patient care.
NASA Astrophysics Data System (ADS)
Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun
2016-10-01
The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.
Automated site characterization for robotic sample acquisition systems
NASA Astrophysics Data System (ADS)
Scholl, Marija S.; Eberlein, Susan J.
1993-04-01
A mobile, semiautonomous vehicle with multiple sensors and on-board intelligence is proposed for performing preliminary scientific investigations on extraterrestrial bodies prior to human exploration. Two technologies, a hybrid optical-digital computer system based on optical correlator technology and an image and instrument data analysis system, provide complementary capabilities that might be part of an instrument package for an intelligent robotic vehicle. The hybrid digital-optical vision system could perform real-time image classification tasks using an optical correlator with programmable matched filters under control of a digital microcomputer. The data analysis system would analyze visible and multiband imagery to extract mineral composition and textural information for geologic characterization. Together these technologies would support the site characterization needs of a robotic vehicle for both navigational and scientific purposes.
Visible digital watermarking system using perceptual models
NASA Astrophysics Data System (ADS)
Cheng, Qiang; Huang, Thomas S.
2001-03-01
This paper presents a visible watermarking system using perceptual models. %how and why A watermark image is overlaid translucently onto a primary image, for the purposes of immediate claim of copyright, instantaneous recognition of owner or creator, or deterrence to piracy of digital images or video. %perceptual The watermark is modulated by exploiting combined DCT-domain and DWT-domain perceptual models. % so that the watermark is visually uniform. The resulting watermarked image is visually pleasing and unobtrusive. The location, size and strength of the watermark vary randomly with the underlying image. The randomization makes the automatic removal of the watermark difficult even though the algorithm is known publicly but the key to the random sequence generator. The experiments demonstrate that the watermarked images have pleasant visual effect and strong robustness. The watermarking system can be used in copyright notification and protection.
Barisoni, Laura; Troost, Jonathan P; Nast, Cynthia; Bagnasco, Serena; Avila-Casado, Carmen; Hodgin, Jeffrey; Palmer, Matthew; Rosenberg, Avi; Gasim, Adil; Liensziewski, Chrysta; Merlino, Lino; Chien, Hui-Ping; Chang, Anthony; Meehan, Shane M; Gaut, Joseph; Song, Peter; Holzman, Lawrence; Gibson, Debbie; Kretzler, Matthias; Gillespie, Brenda W; Hewitt, Stephen M
2016-07-01
The multicenter Nephrotic Syndrome Study Network (NEPTUNE) digital pathology scoring system employs a novel and comprehensive methodology to document pathologic features from whole-slide images, immunofluorescence and ultrastructural digital images. To estimate inter- and intra-reader concordance of this descriptor-based approach, data from 12 pathologists (eight NEPTUNE and four non-NEPTUNE) with experience from training to 30 years were collected. A descriptor reference manual was generated and a webinar-based protocol for consensus/cross-training implemented. Intra-reader concordance for 51 glomerular descriptors was evaluated on jpeg images by seven NEPTUNE pathologists scoring 131 glomeruli three times (Tests I, II, and III), each test following a consensus webinar review. Inter-reader concordance of glomerular descriptors was evaluated in 315 glomeruli by all pathologists; interstitial fibrosis and tubular atrophy (244 cases, whole-slide images) and four ultrastructural podocyte descriptors (178 cases, jpeg images) were evaluated once by six and five pathologists, respectively. Cohen's kappa for inter-reader concordance for 48/51 glomerular descriptors with sufficient observations was moderate (0.40
Electro-optical imaging systems integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wight, R.
1987-01-01
Since the advent of high resolution, high data rate electronic sensors for military aircraft, the demands on their counterpart, the image generator hard copy output system, have increased dramatically. This has included support of direct overflight and standoff reconnaissance systems and often has required operation within a military shelter or van. The Tactical Laser Beam Recorder (TLBR) design has met the challenge each time. A third generation (TLBR) was designed and two units delivered to rapidly produce high quality wet process imagery on 5-inch film from a 5-sensor digital image signal input. A modular, in-line wet film processor is includedmore » in the total TLBR (W) system. The system features a rugged optical and transport package that requires virtually no alignment or maintenance. It has a ''Scan FIX'' capability which corrects for scanner fault errors and ''Scan LOC'' system which provides for complete phase synchronism isolation between scanner and digital image data input via strobed, 2-line digital buffers. Electronic gamma adjustment automatically compensates for variable film processing time as the film speed changes to track the sensor. This paper describes the fourth meeting of that challenge, the High Resolution Laser Beam Recorder (HRLBR) for Reconnaissance/Tactical applications.« less
A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases
NASA Astrophysics Data System (ADS)
Lasker, Joseph M.
Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system and previously implemented reconstruction scheme, I have performed initial dynamic imaging case studies on healthy volunteers and patients diagnosed with RA. These studies support our hypothesis that differences in the vascular and metabolic reactivity exist between affected and unaffected joints and can be used for diagnostic purposes.
NASA Astrophysics Data System (ADS)
Zhang, Guozhi; Petrov, Dimitar; Marshall, Nicholas; Bosmans, Hilde
2017-03-01
Digital breast tomosynthesis (DBT) is a relatively new diagnostic imaging modality for women. Currently, various models of DBT systems are available on the market and the number of installations is rapidly increasing. EUREF, the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services, has proposed a preliminary Guideline - protocol for the quality control of the physical and technical aspects of digital breast tomosynthesis systems, with an ultimate aim of providing limiting values guaranteeing proper performance for different applications of DBT. In this work, we introduce an adaptive toolkit developed in accordance with this guideline to facilitate the process of image quality evaluation in DBT performance test. This toolkit implements robust algorithms to quantify various technical parameters of DBT images and provides a convenient user interface in practice. Each test is built into a separate module with configurations set corresponding to the European guideline, which can be easily adapted to different settings and extended with additional tests. This toolkit largely improves the efficiency for image quality evaluation of DBT. It is also going to evolve with the development of protocols in quality control of DBT systems.
Wave analysis of a plenoptic system and its applications
NASA Astrophysics Data System (ADS)
Shroff, Sapna A.; Berkner, Kathrin
2013-03-01
Traditional imaging systems directly image a 2D object plane on to the sensor. Plenoptic imaging systems contain a lenslet array at the conventional image plane and a sensor at the back focal plane of the lenslet array. In this configuration the data captured at the sensor is not a direct image of the object. Each lenslet effectively images the aperture of the main imaging lens at the sensor. Therefore the sensor data retains angular light-field information which can be used for a posteriori digital computation of multi-angle images and axially refocused images. If a filter array, containing spectral filters or neutral density or polarization filters, is placed at the pupil aperture of the main imaging lens, then each lenslet images the filters on to the sensor. This enables the digital separation of multiple filter modalities giving single snapshot, multi-modal images. Due to the diversity of potential applications of plenoptic systems, their investigation is increasing. As the application space moves towards microscopes and other complex systems, and as pixel sizes become smaller, the consideration of diffraction effects in these systems becomes increasingly important. We discuss a plenoptic system and its wave propagation analysis for both coherent and incoherent imaging. We simulate a system response using our analysis and discuss various applications of the system response pertaining to plenoptic system design, implementation and calibration.
Integration of digital gross pathology images for enterprise-wide access.
Amin, Milon; Sharma, Gaurav; Parwani, Anil V; Anderson, Ralph; Kolowitz, Brian J; Piccoli, Anthony; Shrestha, Rasu B; Lauro, Gonzalo Romero; Pantanowitz, Liron
2012-01-01
Sharing digital pathology images for enterprise- wide use into a picture archiving and communication system (PACS) is not yet widely adopted. We share our solution and 3-year experience of transmitting such images to an enterprise image server (EIS). Gross pathology images acquired by prosectors were integrated with clinical cases into the laboratory information system's image management module, and stored in JPEG2000 format on a networked image server. Automated daily searches for cases with gross images were used to compile an ASCII text file that was forwarded to a separate institutional Enterprise Digital Imaging and Communications in Medicine (DICOM) Wrapper (EDW) server. Concurrently, an HL7-based image order for these cases was generated, containing the locations of images and patient data, and forwarded to the EDW, which combined data in these locations to generate images with patient data, as required by DICOM standards. The image and data were then "wrapped" according to DICOM standards, transferred to the PACS servers, and made accessible on an institution-wide basis. In total, 26,966 gross images from 9,733 cases were transmitted over the 3-year period from the laboratory information system to the EIS. The average process time for cases with successful automatic uploads (n=9,688) to the EIS was 98 seconds. Only 45 cases (0.5%) failed requiring manual intervention. Uploaded images were immediately available to institution- wide PACS users. Since inception, user feedback has been positive. Enterprise- wide PACS- based sharing of pathology images is feasible, provides useful services to clinical staff, and utilizes existing information system and telecommunications infrastructure. PACS-shared pathology images, however, require a "DICOM wrapper" for multisystem compatibility.
Integration of digital gross pathology images for enterprise-wide access
Amin, Milon; Sharma, Gaurav; Parwani, Anil V.; Anderson, Ralph; Kolowitz, Brian J; Piccoli, Anthony; Shrestha, Rasu B.; Lauro, Gonzalo Romero; Pantanowitz, Liron
2012-01-01
Background: Sharing digital pathology images for enterprise- wide use into a picture archiving and communication system (PACS) is not yet widely adopted. We share our solution and 3-year experience of transmitting such images to an enterprise image server (EIS). Methods: Gross pathology images acquired by prosectors were integrated with clinical cases into the laboratory information system's image management module, and stored in JPEG2000 format on a networked image server. Automated daily searches for cases with gross images were used to compile an ASCII text file that was forwarded to a separate institutional Enterprise Digital Imaging and Communications in Medicine (DICOM) Wrapper (EDW) server. Concurrently, an HL7-based image order for these cases was generated, containing the locations of images and patient data, and forwarded to the EDW, which combined data in these locations to generate images with patient data, as required by DICOM standards. The image and data were then “wrapped” according to DICOM standards, transferred to the PACS servers, and made accessible on an institution-wide basis. Results: In total, 26,966 gross images from 9,733 cases were transmitted over the 3-year period from the laboratory information system to the EIS. The average process time for cases with successful automatic uploads (n=9,688) to the EIS was 98 seconds. Only 45 cases (0.5%) failed requiring manual intervention. Uploaded images were immediately available to institution- wide PACS users. Since inception, user feedback has been positive. Conclusions: Enterprise- wide PACS- based sharing of pathology images is feasible, provides useful services to clinical staff, and utilizes existing information system and telecommunications infrastructure. PACS-shared pathology images, however, require a “DICOM wrapper” for multisystem compatibility. PMID:22530178
Two dimensional recursive digital filters for near real time image processing
NASA Technical Reports Server (NTRS)
Olson, D.; Sherrod, E.
1980-01-01
A program was designed toward the demonstration of the feasibility of using two dimensional recursive digital filters for subjective image processing applications that require rapid turn around. The concept of the use of a dedicated minicomputer for the processor for this application was demonstrated. The minicomputer used was the HP1000 series E with a RTE 2 disc operating system and 32K words of memory. A Grinnel 256 x 512 x 8 bit display system was used to display the images. Sample images were provided by NASA Goddard on a 800 BPI, 9 track tape. Four 512 x 512 images representing 4 spectral regions of the same scene were provided. These images were filtered with enhancement filters developed during this effort.
TU-AB-207-00: Digital Tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less
NASA Astrophysics Data System (ADS)
Pan, Bing; Wu, Dafang; Xia, Yong
2010-09-01
To determine the full-field high-temperature thermal deformation of the structural materials used in high-speed aerospace flight vehicles, a novel non-contact high-temperature deformation measurement system is established by combining transient aerodynamic heating simulation device with the reliability-guided digital image correlation (RG-DIC). The test planar sample with size varying from several mm 2 to several hundreds mm 2 can be heated from room temperature to 1100 °C rapidly and accurately using the infrared radiator of the transient aerodynamic heating simulation system. The digital images of the test sample surface at various temperatures are recorded using an ordinary optical imaging system. To cope with the possible local decorrelated regions caused by black-body radiation within the deformed images at the temperatures over 450 °C, the RG-DIC technique is used to extract full-field in-plane thermal deformation from the recorded images. In validation test, the thermal deformation fields and the values of coefficient of thermal expansion (CTEs) of a chromiumnickel austenite stainless steel sample from room temperature to 550 °C is measured and compared with the well-established handbook value, confirming the effectiveness and accuracy of the proposed technique. The experimental results reveal that the present system using an ordinary optical imaging system, is able to accurately measure full-field thermal deformation of metals and alloys at temperatures not exceeding 600 °C.
Fung, Kar-Ming; Hassell, Lewis A; Talbert, Michael L; Wiechmann, Allan F; Chaser, Brad E; Ramey, Joel
2012-01-01
Examination of glass slides is of paramount importance in pathology training. Until the introduction of digitized whole slide images that could be accessed through computer networks, the sharing of pathology slides was a major logistic issue in pathology education and practice. With the help of whole slide images, our department has developed several online pathology education websites. Based on a modular architecture, this program provides online access to whole slide images, still images, case studies, quizzes and didactic text at different levels. Together with traditional lectures and hands-on experiences, it forms the back bone of our histology and pathology education system for residents and medical students. The use of digitized whole slide images has a.lso greatly improved the communication between clinicians and pathologist in our institute.
32 CFR 813.2 - Sources of VIDOC.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Air Digital Recorder (ADR) images from airborne imagery systems, such as heads up displays, radar scopes, and images from electro-optical sensors carried aboard aircraft and weapons systems. (e...
32 CFR 813.2 - Sources of VIDOC.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Air Digital Recorder (ADR) images from airborne imagery systems, such as heads up displays, radar scopes, and images from electro-optical sensors carried aboard aircraft and weapons systems. (e...
32 CFR 813.2 - Sources of VIDOC.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Air Digital Recorder (ADR) images from airborne imagery systems, such as heads up displays, radar scopes, and images from electro-optical sensors carried aboard aircraft and weapons systems. (e...
32 CFR 813.2 - Sources of VIDOC.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Air Digital Recorder (ADR) images from airborne imagery systems, such as heads up displays, radar scopes, and images from electro-optical sensors carried aboard aircraft and weapons systems. (e...
32 CFR 813.2 - Sources of VIDOC.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Air Digital Recorder (ADR) images from airborne imagery systems, such as heads up displays, radar scopes, and images from electro-optical sensors carried aboard aircraft and weapons systems. (e...
An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor
NASA Astrophysics Data System (ADS)
Staderini, Enrico Maria; Castellano, Alfredo
1986-02-01
An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2. On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation.
Design of a rear anamorphic attachment for digital cinematography
NASA Astrophysics Data System (ADS)
Cifuentes, A.; Valles, A.
2008-09-01
Digital taking systems for HDTV and now for the film industry present a particularly challenging design problem for rear adapters in general. The thick 3-channel prism block in the camera provides an important challenge in the design. In this paper the design of a 1.33x rear anamorphic attachment is presented. The new design departs significantly from the traditional Bravais condition due to the thick dichroic prism block. Design strategies for non-rotationally symmetric systems and fields of view are discussed. Anamorphic images intrinsically have a lower contrast and less resolution than their rotationally symmetric counterparts, therefore proper image evaluation must be considered. The interpretation of the traditional image quality methods applied to anamorphic images is also discussed in relation to the design process. The final design has a total track less than 50 mm, maintaining the telecentricity of the digital prime lens and taking full advantage of the f/1.4 prism block.
Hausken, T; Li, X N; Goldman, B; Leotta, D; Ødegaard, S; Martin, R W
2001-07-01
To develop a non-invasive method for evaluating gastric emptying and duodenogastric reflux stroke volumes using three-dimensional (3D) guided digital color Doppler imaging. The technique involved color Doppler digital images of transpyloric flow in which the 3D position and orientation of the images were known by using a magnetic location system. In vitro, the system was found to slightly underestimate the reference flow (by average 8.8%). In vivo (five volunteers), stroke volume of gastric emptying episodes lasted on average only 0.69 s with a volume on average of 4.3 ml (range 1.1-7.4 ml), and duodenogastric reflux episodes on average 1.4 s with a volume of 8.3 ml (range 1.3-14.1 ml). With the appropriate instrument settings, orientation determined color Doppler can be used for stroke volume quantification of gastric emptying and duodenogastric reflux episodes.
Hadamard multimode optical imaging transceiver
Cooke, Bradly J; Guenther, David C; Tiee, Joe J; Kellum, Mervyn J; Olivas, Nicholas L; Weisse-Bernstein, Nina R; Judd, Stephen L; Braun, Thomas R
2012-10-30
Disclosed is a method and system for simultaneously acquiring and producing results for multiple image modes using a common sensor without optical filtering, scanning, or other moving parts. The system and method utilize the Walsh-Hadamard correlation detection process (e.g., functions/matrix) to provide an all-binary structure that permits seamless bridging between analog and digital domains. An embodiment may capture an incoming optical signal at an optical aperture, convert the optical signal to an electrical signal, pass the electrical signal through a Low-Noise Amplifier (LNA) to create an LNA signal, pass the LNA signal through one or more correlators where each correlator has a corresponding Walsh-Hadamard (WH) binary basis function, calculate a correlation output coefficient for each correlator as a function of the corresponding WH binary basis function in accordance with Walsh-Hadamard mathematical principles, digitize each of the correlation output coefficient by passing each correlation output coefficient through an Analog-to-Digital Converter (ADC), and performing image mode processing on the digitized correlation output coefficients as desired to produce one or more image modes. Some, but not all, potential image modes include: multi-channel access, temporal, range, three-dimensional, and synthetic aperture.
MO-E-217A-01: Contrast-Enhanced Spectral Mammography - Physical Aspects and QA.
Yaffe, M; Hill, M
2012-06-01
To describe the current state of dual energy contrast-enhanced digital mammography, to discuss those aspects of its operation that require evaluation or monitoring and to propose elements of a program for quality assurance of such systems. The principles of dual-energy contrast imaging will be discussed and tools and techniques for assessment of performance will be described. Many of the elements affecting image quality and dose performance in digital mammography (eg noise, system linearity, consistency of x-ray output and detector performance, artifacts) remain important. In addition, the ability to register images can influence the resultant image quality. The maintenance of breast compression thickness during the imaging procedure and calibration of the system to allow quantification of iodine in the breast represent new challenges to quality assurance. CESM provides a means of acquiring new information regarding tumor angiogenesis and may reveal some cancers that will not be detectable on digital mammography. It may also better demonstrate the extent of disease. The medical physicist must understand the dependence of image quality on physical factors. Implementation of a relevant QA program will be required if the promise of this new modality is to be delivered. © 2012 American Association of Physicists in Medicine.
Three-dimensional digital breast histopathology imaging
NASA Astrophysics Data System (ADS)
Clarke, G. M.; Peressotti, C.; Mawdsley, G. E.; Eidt, S.; Ge, M.; Morgan, T.; Zubovits, J. T.; Yaffe, M. J.
2005-04-01
We have developed a digital histology imaging system that has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. The system is capable of producing a 3D representation of histopathology from an entire lumpectomy specimen. We acquire digital photomicrographs of a stack of large (120 x 170 mm) histology slides cut serially through the entire specimen. The images are then registered and displayed in 2D and 3D. This approach dramatically improves sampling and can improve visualization of tissue structures compared to current, small-format histology. The system consists of a brightfield microscope, adapted with a freeze-frame digital video camera and a large, motorized translation stage. The image of each slide is acquired as a mosaic of adjacent tiles, each tile representing one field-of-view of the microscope, and the mosaic is assembled into a seamless composite image. The assembly is done by a program developed to build image sets at six different levels within a multiresolution pyramid. A database-linked viewing program has been created to efficiently register and display the animated stack of images, which occupies about 80 GB of disk space per lumpectomy at full resolution, on a high-resolution (3840 x 2400 pixels) colour monitor. The scanning or tiling approach to digitization is inherently susceptible to two artefacts which disrupt the composite image, and which impose more stringent requirements on system performance. Although non-uniform illumination across any one isolated tile may not be discernible, the eye readily detects this non-uniformity when the entire assembly of tiles is viewed. The pattern is caused by deficiencies in optical alignment, spectrum of the light source, or camera corrections. The imaging task requires that features as small as 3.2 &mum in extent be seamlessly preserved. However, inadequate accuracy in positioning of the translation stage produces visible discontinuities between adjacent features. Both of these effects can distract the viewer from the perception of diagnostically important features. Here we describe the system design and discuss methods for the correction of these artefacts. In addition, we outline our approach to rendering the processing and display of these large images computationally feasible.
Nitrosi, Andrea; Bertolini, Marco; Borasi, Giovanni; Botti, Andrea; Barani, Adriana; Rivetti, Stefano; Pierotti, Luisa
2009-12-01
Ideally, medical x-ray imaging systems should be designed to deliver maximum image quality at an acceptable radiation risk to the patient. Quality assurance procedures are employed to ensure that these standards are maintained. A quality control protocol for direct digital radiography (DDR) systems is described and discussed. Software to automatically process and analyze the required images was developed. In this paper, the initial results obtained on equipment of different DDR manufacturers were reported. The protocol was developed to highlight even small discrepancies in standard operating performance.
Monitoring the defoliation of hardwood forests in Pennsylvania using LANDSAT. [gypsy moth surveys
NASA Technical Reports Server (NTRS)
Dottavio, C. L.; Nelson, R. F.; Williams, D. L. (Principal Investigator)
1983-01-01
An automated system for conducting annual gypsy moth defoliation surveys using LANDSAT MSS data and digital processing techniques is described. A two-step preprocessing procedure was developed that uses multitemporal data sets representing forest canopy conditions before and after defoliation to create a digital image in which all nonforest cover types are eliminated or masked out of a LANDSAT image that exhibits insect defoliation. A temporal window for defoliation assessment was identified and a statewide data base was established. A data management system to interface image analysis software with the statewide data base was developed and a cost benefit analysis of this operational system was conducted.
NASA Astrophysics Data System (ADS)
Yin, Guoyan; Zhang, Limin; Zhang, Yanqi; Liu, Han; Du, Wenwen; Ma, Wenjuan; Zhao, Huijuan; Gao, Feng
2018-02-01
Pharmacokinetic diffuse fluorescence tomography (DFT) can describe the metabolic processes of fluorescent agents in biomedical tissue and provide helpful information for tumor differentiation. In this paper, a dynamic DFT system was developed by employing digital lock-in-photon-counting with square wave modulation, which predominates in ultra-high sensitivity and measurement parallelism. In this system, 16 frequency-encoded laser diodes (LDs) driven by self-designed light source system were distributed evenly in the imaging plane and irradiated simultaneously. Meanwhile, 16 detection fibers collected emission light in parallel by the digital lock-in-photon-counting module. The fundamental performances of the proposed system were assessed with phantom experiments in terms of stability, linearity, anti-crosstalk as well as images reconstruction. The results validated the availability of the proposed dynamic DFT system.
Digital optical tomography system for dynamic breast imaging
NASA Astrophysics Data System (ADS)
Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.
2011-07-01
Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.
CytometryML and other data formats
NASA Astrophysics Data System (ADS)
Leif, Robert C.
2006-02-01
Cytology automation and research will be enhanced by the creation of a common data format. This data format would provide the pathology and research communities with a uniform way for annotating and exchanging images, flow cytometry, and associated data. This specification and/or standard will include descriptions of the acquisition device, staining, the binary representations of the image and list-mode data, the measurements derived from the image and/or the list-mode data, and descriptors for clinical/pathology and research. An international, vendor-supported, non-proprietary specification will allow pathologists, researchers, and companies to develop and use image capture/analysis software, as well as list-mode analysis software, without worrying about incompatibilities between proprietary vendor formats. Presently, efforts to create specifications and/or descriptions of these formats include the Laboratory Digital Imaging Project (LDIP) Data Exchange Specification; extensions to the Digital Imaging and Communications in Medicine (DICOM); Open Microscopy Environment (OME); Flowcyt, an extension to the present Flow Cytometry Standard (FCS); and CytometryML. The feasibility of creating a common data specification for digital microscopy and flow cytometry in a manner consistent with its use for medical devices and interoperability with both hospital information and picture archiving systems has been demonstrated by the creation of the CytometryML schemas. The feasibility of creating a software system for digital microscopy has been demonstrated by the OME. CytometryML consists of schemas that describe instruments and their measurements. These instruments include digital microscopes and flow cytometers. Optical components including the instruments' excitation and emission parts are described. The description of the measurements made by these instruments includes the tagged molecule, data acquisition subsystem, and the format of the list-mode and/or image data. Many of the CytometryML data-types are based on the Digital Imaging and Communications in Medicine (DICOM). Binary files for images and list-mode data have been created and read.
Digital colour management system for colour parameters reconstruction
NASA Astrophysics Data System (ADS)
Grudzinski, Karol; Lasmanowicz, Piotr; Assis, Lucas M. N.; Pawlicka, Agnieszka; Januszko, Adam
2013-10-01
Digital Colour Management System (DCMS) and its application to new adaptive camouflage system are presented in this paper. The DCMS is a digital colour rendering method which would allow for transformation of a real image into a set of colour pixels displayed on a computer monitor. Consequently, it can analyse pixels' colour which comprise images of the environment such as desert, semi-desert, jungle, farmland or rocky mountain in order to prepare an adaptive camouflage pattern most suited for the terrain. This system is described in present work as well as the use the subtractive colours mixing method to construct the real time colour changing electrochromic window/pixel (ECD) for camouflage purpose. The ECD with glass/ITO/Prussian Blue(PB)/electrolyte/CeO2-TiO2/ITO/glass configuration was assembled and characterized. The ECD switched between green and yellow after +/-1.5 V application and the colours have been controlled by Digital Colour Management System and described by CIE LAB parameters.
Sandgren, Buster; Crafoord, Joakim; Garellick, Göran; Carlsson, Lars; Weidenhielm, Lars; Olivecrona, Henrik
2013-10-01
Digital radiographic images in the anterior-posterior and lateral view have been gold standard for evaluation of peri-acetabular osteolysis for patients with an uncemented hip replacement. We compared digital radiographic images and computer tomography in detection of peri-acetabular osteolysis and devised a classification system based on computer tomography. Digital radiographs were compared with computer tomography on 206 hips, with a mean follow up 10 years after surgery. The patients had no clinical signs of osteolysis and none were planned for revision surgery. On digital radiographs, 192 cases had no osteolysis and only 14 cases had osteolysis. When using computer tomography there were 184 cases showing small or large osteolysis and only 22 patients had no osteolysis. A classification system for peri-acetabular osteolysis is proposed based on computer tomography that is easy to use on standard follow up evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.
New Trends of Emerging Technologies in Digital Pathology.
Bueno, Gloria; Fernández-Carrobles, M Milagro; Deniz, Oscar; García-Rojo, Marcial
2016-01-01
The future paradigm of pathology will be digital. Instead of conventional microscopy, a pathologist will perform a diagnosis through interacting with images on computer screens and performing quantitative analysis. The fourth generation of virtual slide telepathology systems, so-called virtual microscopy and whole-slide imaging (WSI), has allowed for the storage and fast dissemination of image data in pathology and other biomedical areas. These novel digital imaging modalities encompass high-resolution scanning of tissue slides and derived technologies, including automatic digitization and computational processing of whole microscopic slides. Moreover, automated image analysis with WSI can extract specific diagnostic features of diseases and quantify individual components of these features to support diagnoses and provide informative clinical measures of disease. Therefore, the challenge is to apply information technology and image analysis methods to exploit the new and emerging digital pathology technologies effectively in order to process and model all the data and information contained in WSI. The final objective is to support the complex workflow from specimen receipt to anatomic pathology report transmission, that is, to improve diagnosis both in terms of pathologists' efficiency and with new information. This article reviews the main concerns about and novel methods of digital pathology discussed at the latest workshop in the field carried out within the European project AIDPATH (Academia and Industry Collaboration for Digital Pathology). © 2016 S. Karger AG, Basel.
Implementation of real-time digital endoscopic image processing system
NASA Astrophysics Data System (ADS)
Song, Chul Gyu; Lee, Young Mook; Lee, Sang Min; Kim, Won Ky; Lee, Jae Ho; Lee, Myoung Ho
1997-10-01
Endoscopy has become a crucial diagnostic and therapeutic procedure in clinical areas. Over the past four years, we have developed a computerized system to record and store clinical data pertaining to endoscopic surgery of laparascopic cholecystectomy, pelviscopic endometriosis, and surgical arthroscopy. In this study, we developed a computer system, which is composed of a frame grabber, a sound board, a VCR control board, a LAN card and EDMS. Also, computer system controls peripheral instruments such as a color video printer, a video cassette recorder, and endoscopic input/output signals. Digital endoscopic data management system is based on open architecture and a set of widely available industry standards; namely Microsoft Windows as an operating system, TCP/IP as a network protocol and a time sequential database that handles both images and speech. For the purpose of data storage, we used MOD and CD- R. Digital endoscopic system was designed to be able to store, recreate, change, and compress signals and medical images. Computerized endoscopy enables us to generate and manipulate the original visual document, making it accessible to a virtually unlimited number of physicians.
Brüllmann, D D; d'Hoedt, B
2011-05-01
The aim of this study was to illustrate the influence of digital filters on the signal-to-noise ratio (SNR) and modulation transfer function (MTF) of digital images. The article will address image pre-processing that may be beneficial for the production of clinically useful digital radiographs with lower radiation dose. Three filters, an arithmetic mean filter, a median filter and a Gaussian filter (standard deviation (SD) = 0.4), with kernel sizes of 3 × 3 pixels and 5 × 5 pixels were tested. Synthetic images with exactly increasing amounts of Gaussian noise were created to gather linear regression of SNR before and after application of digital filters. Artificial stripe patterns with defined amounts of line pairs per millimetre were used to calculate MTF before and after the application of the digital filters. The Gaussian filter with a 5 × 5 kernel size caused the highest noise suppression (SNR increased from 2.22, measured in the synthetic image, to 11.31 in the filtered image). The smallest noise reduction was found with the 3 × 3 median filter. The application of the median filters resulted in no changes in MTF at the different resolutions but did result in the deletion of smaller structures. The 5 × 5 Gaussian filter and the 5 × 5 arithmetic mean filter showed the strongest changes of MTF. The application of digital filters can improve the SNR of a digital sensor; however, MTF can be adversely affected. As such, imaging systems should not be judged solely on their quoted spatial resolutions because pre-processing may influence image quality.
Digital image processing for the earth resources technology satellite data.
NASA Technical Reports Server (NTRS)
Will, P. M.; Bakis, R.; Wesley, M. A.
1972-01-01
This paper discusses the problems of digital processing of the large volumes of multispectral image data that are expected to be received from the ERTS program. Correction of geometric and radiometric distortions are discussed and a byte oriented implementation is proposed. CPU timing estimates are given for a System/360 Model 67, and show that a processing throughput of 1000 image sets per week is feasible.
Depth map generation using a single image sensor with phase masks.
Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki
2016-06-13
Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors.
The imaging node for the Planetary Data System
Eliason, E.M.; LaVoie, S.K.; Soderblom, L.A.
1996-01-01
The Planetary Data System Imaging Node maintains and distributes the archives of planetary image data acquired from NASA's flight projects with the primary goal of enabling the science community to perform image processing and analysis on the data. The Node provides direct and easy access to the digital image archives through wide distribution of the data on CD-ROM media and on-line remote-access tools by way of Internet services. The Node provides digital image processing tools and the expertise and guidance necessary to understand the image collections. The data collections, now approaching one terabyte in volume, provide a foundation for remote sensing studies for virtually all the planetary systems in our solar system (except for Pluto). The Node is responsible for restoring data sets from past missions in danger of being lost. The Node works with active flight projects to assist in the creation of their archive products and to ensure that their products and data catalogs become an integral part of the Node's data collections.
NASA Astrophysics Data System (ADS)
Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.
1999-05-01
We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent manner to the DSF systems for the TCDD comparisons. This would suggest that FDXD would therefore perform adequately in a clinical fluoroscopic environment and our initial clinical experiences support this. Noise reduction processing of the fluoroscopic data acquired on FDXD was also found to further improve TCDD performance for FDXD. FDXD therefore combines acceptable fluoroscopic performance with excellent radiographic (snap shot) imaging fidelity, allowing the possibility of a universal x-ray detector to be developed, based on FDXD's technology. It is also envisaged that fluoroscopic performance will be improved by the development of digital image enhancement techniques specifically tailored to the characteristics of the FDXD detector.
Creation of a virtual cutaneous tissue bank
NASA Astrophysics Data System (ADS)
LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.
2000-04-01
Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.
[Digital thoracic radiology: devices, image processing, limits].
Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E
2001-09-01
In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.
2013-01-15
S48-E-007 (12 Sept 1991) --- Astronaut James F. Buchli, mission specialist, catches snack crackers as they float in the weightless environment of the earth-orbiting Discovery. This image was transmitted by the Electronic Still Camera, Development Test Objective (DTO) 648. The ESC is making its initial appearance on a Space Shuttle flight. Electronic still photography is a new technology that enables a camera to electronically capture and digitize an image with resolution approaching film quality. The digital image is stored on removable hard disks or small optical disks, and can be converted to a format suitable for downlink transmission or enhanced using image processing software. The Electronic Still Camera (ESC) was developed by the Man- Systems Division at the Johnson Space Center and is the first model in a planned evolutionary development leading to a family of high-resolution digital imaging devices. H. Don Yeates, JSC's Man-Systems Division, is program manager for the ESC. THIS IS A SECOND GENERATION PRINT MADE FROM AN ELECTRONICALLY PRODUCED NEGATIVE
Quantification of tumor fluorescence during intraoperative optical cancer imaging.
Judy, Ryan P; Keating, Jane J; DeJesus, Elizabeth M; Jiang, Jack X; Okusanya, Olugbenga T; Nie, Shuming; Holt, David E; Arlauckas, Sean P; Low, Phillip S; Delikatny, E James; Singhal, Sunil
2015-11-13
Intraoperative optical cancer imaging is an emerging technology in which surgeons employ fluorophores to visualize tumors, identify tumor-positive margins and lymph nodes containing metastases. This study compares instrumentation to measure tumor fluorescence. Three imaging systems (Spectropen, Glomax, Flocam) measured and quantified fluorescent signal-to-background ratios (SBR) in vitro, murine xenografts, tissue phantoms and clinically. Evaluation criteria included the detection of small changes in fluorescence, sensitivity of signal detection at increasing depths and practicality of use. In vitro, spectroscopy was superior in detecting incremental differences in fluorescence than luminescence and digital imaging (Ln[SBR] = 6.8 ± 0.6, 2.4 ± 0.3, 2.6 ± 0.1, p = 0.0001). In fluorescent tumor cells, digital imaging measured higher SBRs than luminescence (6.1 ± 0.2 vs. 4.3 ± 0.4, p = 0.001). Spectroscopy was more sensitive than luminometry and digital imaging in identifying murine tumor fluorescence (SBR = 41.7 ± 11.5, 5.1 ± 1.8, 4.1 ± 0.9, p = 0.0001), and more sensitive than digital imaging at detecting fluorescence at increasing depths (SBR = 7.0 ± 3.4 vs. 2.4 ± 0.5, p = 0.03). Lastly, digital imaging was the most practical and least time-consuming. All methods detected incremental differences in fluorescence. Spectroscopy was the most sensitive for small changes in fluorescence. Digital imaging was the most practical considering its wide field of view, background noise filtering capability, and sensitivity to increasing depth.
15 CFR 762.5 - Reproduction of original records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... readability mean the quality of a group of letters or numerals being recognized as complete words or numbers.) (4) The system must preserve the initial image (including both obverse and reverse sides of paper... images. For systems based on the storage of digital images, the system must provide accessibility to any...
15 CFR 762.5 - Reproduction of original records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... readability mean the quality of a group of letters or numerals being recognized as complete words or numbers.) (4) The system must preserve the initial image (including both obverse and reverse sides of paper... images. For systems based on the storage of digital images, the system must provide accessibility to any...
15 CFR 762.5 - Reproduction of original records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... readability mean the quality of a group of letters or numerals being recognized as complete words or numbers.) (4) The system must preserve the initial image (including both obverse and reverse sides of paper... images. For systems based on the storage of digital images, the system must provide accessibility to any...
15 CFR 762.5 - Reproduction of original records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... readability mean the quality of a group of letters or numerals being recognized as complete words or numbers.) (4) The system must preserve the initial image (including both obverse and reverse sides of paper... images. For systems based on the storage of digital images, the system must provide accessibility to any...
Hypertext Image Retrieval: The Evolution of an Application.
ERIC Educational Resources Information Center
Roberts, G. Louis; Kenney, Carol E.
1991-01-01
Describes the development and implementation of a full-text image retrieval system at the Boeing Commercial Airplane Group. The conversion of card formats to a microcomputer-based system using HyperCard is described; the online system architecture is explained; and future plans are discussed, including conversion to digital images. (LRW)
Mertens, Jan E.J.; Roie, Martijn Van; Merckx, Jonas; Dekoninck, Wouter
2017-01-01
Abstract Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens. PMID:29134038
Accurate and cost-effective MTF measurement system for lens modules of digital cameras
NASA Astrophysics Data System (ADS)
Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu
2007-01-01
For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.
NOVEL OBSERVATIONS AND POTENTIAL APPLICATIONS USING DIGITAL INFRARED IRIS IMAGING
Roberts, Daniel K.; Lukic, Ana; Yang, Yongyi; Moroi, Sayoko E.; Wilensky, Jacob T.; Wernick, Miles N.
2017-01-01
Digital infrared (IR) iris photography using a modified digital camera system was carried out on about 300 subjects seen during routine clinical care and research at one facility. Since this image database offered opportunity to gain new insight into the potential utility of IR iris imaging, it was surveyed for unique image patterns. Then, a selection of photos was compiled that would illustrate the spectrum of this imaging experience. Potentially informative image patterns were observed in subjects with cataracts, diabetic retinopathy, Posner-Schlossman syndrome, iridociliary cysts, long anterior lens zonules, nevi, oculocutaneous albinism, pigment dispersion syndrome, pseudophakia, suspected vascular anomaly, and trauma. Image patterns were often unanticipated regardless of pre-existing information and suggest that IR iris imaging may have numerous potential clinical and research applications, some of which may still not be recognized. These observations suggest further development and study of this technology. PMID:19320317
City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component
Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.
1996-01-01
Many regions, cities, and towns in the Western United States need new or expanded water resources because of both population growth and increased development. Any tools or data that can help in the evaluation of an area's potential water resources must be considered for this increasingly critical need. Remotely sensed satellite images and subsequent digital image processing have been under-utilized in ground water resource evaluation and exploration. Satellite images can be helpful in detecting and mapping an area's regional structural patterns, including major fracture and fault systems, two important geologic settings for an area's surface to ground water relations. Within the United States Geological Survey's (USGS) Flagstaff Field Center, expertise and capabilities in remote sensing and digital image processing have been developed over the past 25 years through various programs. For the City of Flagstaff project, this expertise and these capabilities were combined with traditional geologic field mapping to help evaluate ground water resources in the Flagstaff area. Various enhancement and manipulation procedures were applied to the digital satellite images; the results, in both digital and hardcopy format, were used for field mapping and analyzing the regional structure. Relative to surface sampling, remotely sensed satellite and airborne images have improved spatial coverage that can help study, map, and monitor the earth surface at local and/or regional scales. Advantages offered by remotely sensed satellite image data include: 1. a synoptic/regional view compared to both aerial photographs and ground sampling, 2. cost effectiveness, 3. high spatial resolution and coverage compared to ground sampling, and 4. relatively high temporal coverage on a long term basis. Remotely sensed images contain both spectral and spatial information. The spectral information provides various properties and characteristics about the surface cover at a given location or pixel (that is, vegetation and/or soil type). The spatial information gives the distribution, variation, and topographic relief of the cover types from pixel to pixel. Therefore, the main characteristics that determine a pixel's brightness/reflectance and, consequently, the digital number (DN) assigned to the pixel, are the physical properties of the surface and near surface, the cover type, and the topographic slope. In this application, the ability to detect and map lineaments, especially those related to fractures and faults, is critical. Therefore, the extraction of spatial information from the digital images was of prime interest in this project. The spatial information varies among the different spectral bands available; in particular, a near infrared spectral band is better than a visible band when extracting spatial information in highly vegetated areas. In this study, both visible and near infrared bands were analyzed and used to extract the desired spatial information from the images. The wide swath coverage of remotely sensed satellite digital images makes them ideal for regional analysis and mapping. Since locating and mapping highly fractured and faulted areas is a major requirement for ground water resource evaluation and exploration this aspect of satellite images was considered critical; it allowed us to stand back (actually up about 440 miles), look at, and map the regional structural setting of the area. The main focus of the remote sensing and digital image processing component of this project was to use both remotely sensed digital satellite images and a Digital Elevation Model (DEM) to extract spatial information related to the structural and topographic patterns in the area. The data types used were digital satellite images collected by the United States' Landsat Thematic Mapper (TM) and French Systeme Probatoire d'Observation de laTerre (SPOT) imaging systems, along with a DEM of the Flagstaff region. The USGS Mini Image Processing Sy
Code of Federal Regulations, 2013 CFR
2013-10-01
... radiography (CR) is the term for digital X-ray image acquisition systems that detect X-ray signals using a... stimulating laser beam to convert the latent radiographic image to electronic signals which are then processed... image acquisition systems in which the X-ray signals received by the image detector are converted nearly...
Application of Oversampling to obtain the MTF of Digital Radiology Equipment.
NASA Astrophysics Data System (ADS)
Narváez, M.; Graffigna, J. P.; Gómez, M. E.; Romo, R.
2016-04-01
Within the objectives of theproject Medical Image Processing for QualityAssessment ofX Ray Imaging, the present research work is aimed at developinga phantomX ray image and itsassociated processing algorithms in order to evaluatethe image quality rendered by digital X ray equipment. These tools are used to measure various image parameters, among which spatial resolution shows afundamental property that can be characterized by the Modulation Transfer Function (MTF)of an imaging system [1]. After performing a thorough literature surveyon imaging quality control in digital X film in Argentine and international publications, it was decided to adopt for this work the Norm IEC 62220 1:2003 that recommends using an image edge as a testingmethod. In order to obtain the characterizing MTF, a protocol was designedfor unifying the conditions under which the images are acquired for later evaluation. The protocol implied acquiring a radiography image by means of a specific referential technique, i.e. referred either to voltage, current, time, distance focus plate (/film?) distance, or other referential parameter, and to interpret the image through a system of computed radiology or direct digital radiology. The contribution of the work stems from the fact that, even though the traditional way of evaluating an X film image quality has relied mostly on subjective methods, this work presents an objective evaluative toolfor the images obtained with a givenequipment, followed by a contrastive analysis with the renderings from other X filmimaging sets.Once the images were obtained, specific calculations were carried out. Though there exist some methods based on the subjective evaluation of the quality of image, this work offers an objective evaluation of the equipment under study. Finally, we present the results obtained on different equipment.
Image based automatic water meter reader
NASA Astrophysics Data System (ADS)
Jawas, N.; Indrianto
2018-01-01
Water meter is used as a tool to calculate water consumption. This tool works by utilizing water flow and shows the calculation result with mechanical digit counter. Practically, in everyday use, an operator will manually check the digit counter periodically. The Operator makes logs of the number shows by water meter to know the water consumption. This manual operation is time consuming and prone to human error. Therefore, in this paper we propose an automatic water meter digit reader from digital image. The digits sequence is detected by utilizing contour information of the water meter front panel.. Then an OCR method is used to get the each digit character. The digit sequence detection is an important part of overall process. It determines the success of overall system. The result shows promising results especially in sequence detection.
Use of film digitizers to assist radiology image management
NASA Astrophysics Data System (ADS)
Honeyman-Buck, Janice C.; Frost, Meryll M.; Staab, Edward V.
1996-05-01
The purpose of this development effort was to evaluate the possibility of using digital technologies to solve image management problems in the Department of Radiology at the University of Florida. The three problem areas investigated were local interpretation of images produced in remote locations, distribution of images to areas outside of radiology, and film handling. In all cases the use of a laser film digitizer interfaced to an existing Picture Archiving and Communication System (PACS) was investigated as a solution to the problem. In each case the volume of studies involved were evaluated to estimate the impact of the solution on the network, archive, and workstations. Communications were stressed in the analysis of the needs for all image transmission. The operational aspects of the solution were examined to determine the needs for training, service, and maintenance. The remote sites requiring local interpretation included were a rural hospital needing coverage for after hours studies, the University of Florida student infirmary, and the emergency room. Distribution of images to the intensive care units was studied to improve image access and patient care. Handling of films originating from remote sites and those requiring urgent reporting were evaluated to improve management functions. The results of our analysis and the decisions that were made based on the analysis are described below. In the cases where systems were installed, a description of the system and its integration into the PACS system is included. For all three problem areas, although we could move images via a digitizer to the archive and a workstation, there was no way to inform the radiologist that a study needed attention. In the case of outside films, the patient did not always have a medical record number that matched one in our Radiology Information Systems (RIS). In order to incorporate all studies for a patient, we needed common locations for orders, reports, and images. RIS orders were generated for each outside study to be interpreted and a medical record number assigned if none existed. All digitized outside films were archived in the PACS archive for later review or comparison use. The request generated by the RIS requesting a diagnostic interpretation was placed at the PACS workstation to alert the radiologists that unread images had arrived and a box was added to the workstation user interface that could be checked by the radiologist to indicate that a report had been dictated. The digitizer system solved several problems, unavailable films in the emergency room, teleradiology, and archiving of outside studies that had been read by University of Florida radiologists. In addition to saving time for outside film management, we now store the studies for comparison purposes, no longer lose emergency room films, generate diagnostic reports on emergency room films in a timely manner (important for billing and reimbursement), and can handle the distributed nature of our business. As changes in health care drive management changes, existing tools can be used in new ways to help make the transition easier. In this case, adding digitizers to an existing PACS network helped solve several image management problems.
Digital disaster evaluation and its application to 2015 Ms 8.1 Nepal Earthquake
NASA Astrophysics Data System (ADS)
WANG, Xiaoqing; LV, Jinxia; DING, Xiang; DOU, Aixia
2016-11-01
The purpose of the article is to probe the technique resolution of disaster information extraction and evaluation from the digital RS images based on the internet environment and aided by the social and geographic information. The solution is composed with such methods that the fast post-disaster assessment system will assess automatically the disaster area and grade, the multi-phase satellite and airborne high resolution digital RS images will provide the basis to extract the disaster areas or spots, assisted by the fast position of potential serious damage risk targets according to the geographic, administrative, population, buildings and other information in the estimated disaster region, the 2D digital map system or 3D digital earth system will provide platforms to interpret cooperatively the damage information in the internet environment, and further to estimate the spatial distribution of damage index or intensity, casualties or economic losses, which are very useful for the decision-making of emergency rescue and disaster relief, resettlement and reconstruction. The spatial seismic damage distribution of 2015 Ms 8.1 Nepal earthquake, as an example of the above solution, is evaluated by using the high resolution digital RS images, auxiliary geographic information and ground survey. The results are compared with the statistical disaster information issued by the ground truth by field surveying, and show good consistency.
Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom.
Onishi, Hideo; Matsutake, Yuki; Kawashima, Hiroki; Matsutomo, Norikazu; Amijima, Hizuru
2011-01-01
In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25° or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means.
DHMI: dynamic holographic microscopy interface
NASA Astrophysics Data System (ADS)
He, Xuefei; Zheng, Yujie; Lee, Woei Ming
2016-12-01
Digital holographic microscopy (DHM) is a powerful in-vitro biological imaging tool. In this paper, we report a fully automated off-axis digital holographic microscopy system completed with a graphical user interface in the Matlab environment. The interface primarily includes Fourier domain processing, phase reconstruction, aberration compensation and autofocusing. A variety of imaging operations such as region of interest selection, de-noising mode (filtering and averaging), low frame rate imaging for immediate reconstruction and high frame rate imaging routine ( 27 fps) are implemented to facilitate ease of use.
Integrating TV/digital data spectrograph system
NASA Technical Reports Server (NTRS)
Duncan, B. J.; Fay, T. D.; Miller, E. R.; Wamsteker, W.; Brown, R. M.; Neely, P. L.
1975-01-01
A 25-mm vidicon camera was previously modified to allow operation in an integration mode for low-light-level astronomical work. The camera was then mated to a low-dispersion spectrograph for obtaining spectral information in the 400 to 750 nm range. A high speed digital video image system was utilized to digitize the analog video signal, place the information directly into computer-type memory, and record data on digital magnetic tape for permanent storage and subsequent analysis.
NASA Astrophysics Data System (ADS)
Zhao, Guihua; Chen, Hong; Li, Xingquan; Zou, Xiaoliang
The paper presents the concept of lever arm and boresight angle, the design requirements of calibration sites and the integrated calibration method of boresight angles of digital camera or laser scanner. Taking test data collected by Applanix's LandMark system as an example, the camera calibration method is introduced to be piling three consecutive stereo images and OTF-Calibration method using ground control points. The laser calibration of boresight angle is proposed to use a manual and automatic method with ground control points. Integrated calibration between digital camera and laser scanner is introduced to improve the systemic precision of two sensors. By analyzing the measurement value between ground control points and its corresponding image points in sequence images, a conclusion is that position objects between camera and images are within about 15cm in relative errors and 20cm in absolute errors. By comparing the difference value between ground control points and its corresponding laser point clouds, the errors is less than 20cm. From achieved results of these experiments in analysis, mobile mapping system is efficient and reliable system for generating high-accuracy and high-density road spatial data more rapidly.
Movement measurement of isolated skeletal muscle using imaging microscopy
NASA Astrophysics Data System (ADS)
Elias, David; Zepeda, Hugo; Leija, Lorenzo S.; Sossa, Humberto; de la Rosa, Jose I.
1997-05-01
An imaging-microscopy methodology to measure contraction movement in chemically stimulated crustacean skeletal muscle, whose movement speed is about 0.02 mm/s is presented. For this, a CCD camera coupled to a microscope and a high speed digital image acquisition system, allowing us to capture 960 images per second are used. The images are digitally processed in a PC and displayed in a video monitor. A maximal field of 0.198 X 0.198 mm2 and a spatial resolution of 3.5 micrometers are obtained.
NASA Astrophysics Data System (ADS)
The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.
Endodontic radiography: who is reading the digital radiograph?
Tewary, Shalini; Luzzo, Joseph; Hartwell, Gary
2011-07-01
Digital radiographic imaging systems have undergone tremendous improvements since their introduction. Advantages of digital radiographs over conventional films include lower radiation doses compared with conventional films, instantaneous images, archiving and sharing images easily, and manipulation of several radiographic properties that might help in diagnosis. A total of 6 observers including 2 endodontic residents, 3 endodontists, and 1 oral radiologist evaluated 150 molar digital periapical radiographs to determine which of the following conditions existed: normal periapical tissue, widened periodontal ligament, or presence of periapical radiolucency. The evaluators had full control over the radiograph's parameters of the Planmeca Dimaxis software program. All images were viewed on the same computer monitor with ideal vie-wing conditions. The same 6 observers evaluated the same 150 digital images 3 months later. The data were analyzed to determine how well the evaluators agreed with each other (interobserver agreement) for 2 rounds of observations and with themselves (intraobserver agreement). Fleiss kappa statistical analysis was used to measure the level of agreement among multiple raters. The overall Fleiss kappa value for interobserver agreement for the first round of interpretation was 0.34 (P < .001). The overall Fleiss kappa value for interobserver agreement for the second round of interpretation was 0.35 (P < .001). This resulted in fair (0.2-0.4) agreement among the 6 raters at both observation periods. A weighted kappa analysis was used to determine intraobserver agreement, which showed on average a moderate agreement. The results indicate that the interpretation of a dental radiograph is subjective, irrespective of whether conventional or digital radiographs are used. The factors that appeared to have the most impact were the years of experience of the examiner and familiarity of the operator with a given digital system. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerlin, B.D.; Cerva, J.R.; Glenn, M.E.
This document describes evaluation studies and technical investigations proposed for the three-year Digital Imaging Network System (DINS) prototype project, sponsored by the U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland. The project has three overall goals. The first is to install and operate a prototype DINS at each of two University-based hospitals for test purposes. The second is to evaluate key aspects of each prototype system once it is in full operation. The third is to develop guidelines and specifications for an operational DINS suitable for use by the military and others developing systems of the future. Thismore » document defines twelve overall evaluative questions for use in meeting the second and third objectives of the project and proposes studies that will answer these questions.« less
Coincidence ion imaging with a fast frame camera
NASA Astrophysics Data System (ADS)
Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen
2014-12-01
A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.
1983-01-01
The effects of the seasonal variation of illumination over digital processing of LANDSAT images are evaluated. Two sets of LANDSAT data referring to the orbit 150 and row 28 were selected with illumination parameters varying from 43 deg to 64 deg for azimuth and from 30 deg to 36 deg for solar elevation respectively. IMAGE-100 system permitted the digital processing of LANDSAT data. Original images were transformed by means of digital filtering so as to enhance their spatial features. The resulting images were used to obtain an unsupervised classification of relief units. Topographic variables (declivity, altitude, relief range and slope length) were used to identify the true relief units existing on the ground. The LANDSAT over pass data show that digital processing is highly affected by illumination geometry, and there is no correspondence between relief units as defined by spectral features and those resulting from topographic features.
Lee, Kam L; Ireland, Timothy A; Bernardo, Michael
2016-06-01
This is the first part of a two-part study in benchmarking the performance of fixed digital radiographic general X-ray systems. This paper concentrates on reporting findings related to quantitative analysis techniques used to establish comparative image quality metrics. A systematic technical comparison of the evaluated systems is presented in part two of this study. A novel quantitative image quality analysis method is presented with technical considerations addressed for peer review. The novel method was applied to seven general radiographic systems with four different makes of radiographic image receptor (12 image receptors in total). For the System Modulation Transfer Function (sMTF), the use of grid was found to reduce veiling glare and decrease roll-off. The major contributor in sMTF degradation was found to be focal spot blurring. For the System Normalised Noise Power Spectrum (sNNPS), it was found that all systems examined had similar sNNPS responses. A mathematical model is presented to explain how the use of stationary grid may cause a difference between horizontal and vertical sNNPS responses.
Digital image classification with the help of artificial neural network by simple histogram
Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant
2016-01-01
Background: Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. Aims and Objectives: In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. Materials and Methods: A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. Result: A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. Conclusion: The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations. PMID:27279679
Rowlands, J A; Hunter, D M
1995-12-01
Digital radiographic systems based on photoconductive layers with the latent charge image readout by photoinduced discharge (PID) are investigated theoretically. Previously, a number of different systems have been proposed using sandwiched photoconductor and insulator layers and readout using a scanning laser beam. These systems are shown to have the general property of being very closely coupled (i.e., optimization of one imaging characteristic usually impacts negatively on others). The presence of a condensed state insulator between the photoconductor surface and the readout electrode does, however, confer a great advantage over systems using air gaps with their relatively low breakdown field. The greater breakdown field of condensed state dielectrics permits the modification of the electric field during the period between image formation and image readout. The trade-off between readout speed and noise makes this system suitable for instant general radiography and even rapid sequence radiography, however, the system is unsuitable for the low exposure rates used in fluoroscopy.
Digital micromirror device based ophthalmoscope with concentric circle scanning.
Damodaran, Mathi; Vienola, Kari V; Braaf, Boy; Vermeer, Koenraad A; de Boer, Johannes F
2017-05-01
Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast.
Digital micromirror device based ophthalmoscope with concentric circle scanning
Damodaran, Mathi; Vienola, Kari V.; Braaf, Boy; Vermeer, Koenraad A.; de Boer, Johannes F.
2017-01-01
Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast. PMID:28663905
The Electronic View Box: a software tool for radiation therapy treatment verification.
Bosch, W R; Low, D A; Gerber, R L; Michalski, J M; Graham, M V; Perez, C A; Harms, W B; Purdy, J A
1995-01-01
We have developed a software tool for interactively verifying treatment plan implementation. The Electronic View Box (EVB) tool copies the paradigm of current practice but does so electronically. A portal image (online portal image or digitized port film) is displayed side by side with a prescription image (digitized simulator film or digitally reconstructed radiograph). The user can measure distances between features in prescription and portal images and "write" on the display, either to approve the image or to indicate required corrective actions. The EVB tool also provides several features not available in conventional verification practice using a light box. The EVB tool has been written in ANSI C using the X window system. The tool makes use of the Virtual Machine Platform and Foundation Library specifications of the NCI-sponsored Radiation Therapy Planning Tools Collaborative Working Group for portability into an arbitrary treatment planning system that conforms to these specifications. The present EVB tool is based on an earlier Verification Image Review tool, but with a substantial redesign of the user interface. A graphical user interface prototyping system was used in iteratively refining the tool layout to allow rapid modifications of the interface in response to user comments. Features of the EVB tool include 1) hierarchical selection of digital portal images based on physician name, patient name, and field identifier; 2) side-by-side presentation of prescription and portal images at equal magnification and orientation, and with independent grayscale controls; 3) "trace" facility for outlining anatomical structures; 4) "ruler" facility for measuring distances; 5) zoomed display of corresponding regions in both images; 6) image contrast enhancement; and 7) communication of portal image evaluation results (approval, block modification, repeat image acquisition, etc.). The EVB tool facilitates the rapid comparison of prescription and portal images and permits electronic communication of corrections in port shape and positioning.
Kim, Dong-Keun; Yoo, Sun K; Kim, Sun H
2005-01-01
The instant transmission of radiological images may be important for making rapid clinical decisions about emergency patients. We have examined an instant image transfer system based on a personal digital assistant (PDA) phone with a built-in camera. Images displayed on a picture archiving and communication systems (PACS) monitor can be captured by the camera in the PDA phone directly. Images can then be transmitted from an emergency centre to a remote physician via a wireless high-bandwidth network (CDMA 1 x EVDO). We reviewed the radiological lesions in 10 normal and 10 abnormal cases produced by modalities such as computerized tomography (CT), magnetic resonance (MR) and digital angiography. The images were of 24-bit depth and 1,144 x 880, 1,120 x 840, 1,024 x 768, 800 x 600, 640 x 480 and 320 x 240 pixels. Three neurosurgeons found that for satisfactory remote consultation a minimum size of 640 x 480 pixels was required for CT and MR images and 1,024 x 768 pixels for angiography images. Although higher resolution produced higher clinical satisfaction, it also required more transmission time. At the limited bandwidth employed, higher resolutions could not be justified.
Digital information management: a progress report on the National Digital Mammography Archive
NASA Astrophysics Data System (ADS)
Beckerman, Barbara G.; Schnall, Mitchell D.
2002-05-01
Digital mammography creates very large images, which require new approaches to storage, retrieval, management, and security. The National Digital Mammography Archive (NDMA) project, funded by the National Library of Medicine (NLM), is developing a limited testbed that demonstrates the feasibility of a national breast imaging archive, with access to prior exams; patient information; computer aids for image processing, teaching, and testing tools; and security components to ensure confidentiality of patient information. There will be significant benefits to patients and clinicians in terms of accessible data with which to make a diagnosis and to researchers performing studies on breast cancer. Mammography was chosen for the project, because standards were already available for digital images, report formats, and structures. New standards have been created for communications protocols between devices, front- end portal and archive. NDMA is a distributed computing concept that provides for sharing and access across corporate entities. Privacy, auditing, and patient consent are all integrated into the system. Five sites, Universities of Pennsylvania, Chicago, North Carolina and Toronto, and BWXT Y12, are connected through high-speed networks to demonstrate functionality. We will review progress, including technical challenges, innovative research and development activities, standards and protocols being implemented, and potential benefits to healthcare systems.
The potential for neurovascular intravenous angiography using K-edge digital subtraction angiography
NASA Astrophysics Data System (ADS)
Schültke, E.; Fiedler, S.; Kelly, M.; Griebel, R.; Juurlink, B.; LeDuc, G.; Estève, F.; Le Bas, J.-F.; Renier, M.; Nemoz, C.; Meguro, K.
2005-08-01
Background: Catheterization of small-caliber blood vessels in the central nervous system can be extremely challenging. Alternatively, intravenous (i.v.) administration of contrast agent is minimally invasive and therefore carries a much lower risk for the patient. With conventional X-ray equipment, volumes of contrast agent that could be safely administered to the patient do not allow acquisition of high-quality images after i.v. injection, because the contrast bolus is extremely diluted by passage through the heart. However, synchrotron-based digital K-edge subtraction angiography does allow acquisition of high-quality images after i.v. administration of relatively small doses of contrast agent. Materials and methods: Eight adult male New Zealand rabbits were used for our experiments. Animals were submitted to both angiography with conventional X-ray equipment and synchrotron-based digital subtraction angiography. Results: With conventional X-ray equipment, no contrast was seen in either cerebral or spinal blood vessels after i.v. injection of iodinated contrast agent. However, using K-edge digital subtraction angiography, as little as 1 ml iodinated contrast agent, when administered as i.v. bolus, yielded images of small-caliber blood vessels in the central nervous system (both brain and spinal cord). Conclusions: If it would be possible to image blood vessels of the same diameter in the central nervous system of human patients, the synchrotron-based technique could yield high-quality images at a significantly lower risk for the patient than conventional X-ray imaging. Images could be acquired where catheterization of feeding blood vessels has proven impossible.
Region-growing approach to detect microcalcifications in digital mammograms
NASA Astrophysics Data System (ADS)
Shin, Jin-Wook; Chae, Soo-Ik; Sook, Yoon M.; Park, Dong-Sun
2001-09-01
Detecting early symptoms of breast cancer is very important to enhance the possibility of cure. There have been active researches to develop computer-aided diagnosis(CAD) systems detecting early symptoms of breast cancer in digital mammograms. An expert or a CAD system can recognize the early symptoms based on microcalcifications appeared in digital mammographic images. Microcalcifications have higher gray value than surrounding regions, so these can be detected by expanding a region from a local maximum. However the resultant image contains unnecessary elements such as noise, holes and valleys. Mathematical morphology is a good solution to delete regions that are affected by the unnecessary elements. In this paper, we present a method that effectively detects microcalcifications in digital mammograms using a combination of local maximum operation and the region-growing operation.
Enhancing depth of focus in tilted microfluidics channels by digital holography.
Matrecano, Marcella; Paturzo, Melania; Finizio, Andrea; Ferraro, Pietro
2013-03-15
In this Letter we propose a method to enhance the limited depth of field (DOF) in optical imaging systems, through digital holography. The proposed approach is based on the introduction of a cubic phase plate into the diffraction integral, analogous to what occurs in white-light imaging systems. By this approach we show that it is possible to improve the DOF and to recover the extended focus image of a tilted object in a single reconstruction step. Moreover, we demonstrate the possibility of obtaining well-focused biological cells flowing into a tilted microfluidic channel.
Is phase measurement necessary for incoherent holographic 3D imaging?
NASA Astrophysics Data System (ADS)
Rosen, Joseph; Vijayakumar, A.; Rai, Mani Ratnam; Mukherjee, Saswata
2018-02-01
Incoherent digital holography can be used for several applications, among which are high resolution fluorescence microscopy and imaging through a scattering medium. Historically, an incoherent digital hologram has been usually recorded by self-interference systems in which both interfering beams are originated from the same observed object. The self-interference system enables to read the phase distribution of the wavefronts propagating from an object and consequently to decode the 3D location of the object points. In this presentation, we survey several cases in which 3D holographic imaging can be done without the phase information and without two-wave interference.
Automatic forensic face recognition from digital images.
Peacock, C; Goode, A; Brett, A
2004-01-01
Digital image evidence is now widely available from criminal investigations and surveillance operations, often captured by security and surveillance CCTV. This has resulted in a growing demand from law enforcement agencies for automatic person-recognition based on image data. In forensic science, a fundamental requirement for such automatic face recognition is to evaluate the weight that can justifiably be attached to this recognition evidence in a scientific framework. This paper describes a pilot study carried out by the Forensic Science Service (UK) which explores the use of digital facial images in forensic investigation. For the purpose of the experiment a specific software package was chosen (Image Metrics Optasia). The paper does not describe the techniques used by the software to reach its decision of probabilistic matches to facial images, but accepts the output of the software as though it were a 'black box'. In this way, the paper lays a foundation for how face recognition systems can be compared in a forensic framework. The aim of the paper is to explore how reliably and under what conditions digital facial images can be presented in evidence.
Mapping invasive weeds and their control with spatial information technologies
USDA-ARS?s Scientific Manuscript database
We discuss applications of airborne multispectral digital imaging systems, imaging processing techniques, global positioning systems (GPS), and geographic information systems (GIS) for mapping the invasive weeds giant salvinia (Salvinia molesta) and Brazilian pepper (Schinus terebinthifolius) and fo...
NASA Astrophysics Data System (ADS)
Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu
2000-12-01
New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.
Lee, Kam L; Bernardo, Michael; Ireland, Timothy A
2016-06-01
This is part two of a two-part study in benchmarking system performance of fixed digital radiographic systems. The study compares the system performance of seven fixed digital radiography systems based on quantitative metrics like modulation transfer function (sMTF), normalised noise power spectrum (sNNPS), detective quantum efficiency (sDQE) and entrance surface air kerma (ESAK). It was found that the most efficient image receptors (greatest sDQE) were not necessarily operating at the lowest ESAK. In part one of this study, sMTF is shown to depend on system configuration while sNNPS is shown to be relatively consistent across systems. Systems are ranked on their signal-to-noise ratio efficiency (sDQE) and their ESAK. Systems using the same equipment configuration do not necessarily have the same system performance. This implies radiographic practice at the site will have an impact on the overall system performance. In general, systems are more dose efficient at low dose settings.
NASA Technical Reports Server (NTRS)
Andres, Vince; Walter, David; Hallal, Charles; Jones, Helene; Callac, Chris
2004-01-01
The SSC Multimedia Archive is an automated electronic system to manage images, acquired both by film and digital cameras, for the Public Affairs Office (PAO) at Stennis Space Center (SSC). Previously, the image archive was based on film photography and utilized a manual system that, by today s standards, had become inefficient and expensive. Now, the SSC Multimedia Archive, based on a server at SSC, contains both catalogs and images for pictures taken both digitally and with a traditional, film-based camera, along with metadata about each image. After a "shoot," a photographer downloads the images into the database. Members of the PAO can use a Web-based application to search, view and retrieve images, approve images for publication, and view and edit metadata associated with the images. Approved images are archived and cross-referenced with appropriate descriptions and information. Security is provided by allowing administrators to explicitly grant access privileges to personnel to only access components of the system that they need to (i.e., allow only photographers to upload images, only PAO designated employees may approve images).
A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners.
Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh
2013-01-01
Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thresholded images are undergone anthropometric measurements taking in to account the scale factor of pixel size to metric scale. The proposed method is finally applied to plantar images obtained through scanning feet of randomly selected subjects by a foot scanner system as our experimental setup described in the paper. Running computation time and the effects of GLSC parameters are investigated in the simulation results.
Fung, Kar-Ming; Hassell, Lewis A.; Talbert, Michael L.; Wiechmann, Allan F.; Chaser, Brad E.; Ramey, Joel
2012-01-01
Examination of glass slides is of paramount importance in pathology training. Until the introduction of digitized whole slide images that could be accessed through computer networks, the sharing of pathology slides was a major logistic issue in pathology education and practice. With the help of whole slide images, our department has developed several online pathology education websites. Based on a modular architecture, this program provides online access to whole slide images, still images, case studies, quizzes and didactic text at different levels. Together with traditional lectures and hands-on experiences, it forms the back bone of our histology and pathology education system for residents and medical students. The use of digitized whole slide images has a.lso greatly improved the communication between clinicians and pathologist in our institute. PMID:21965282
Development of a prototype chest digital tomosynthesis R/F system
NASA Astrophysics Data System (ADS)
Choi, Sunghoon; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Shin, Jungwook; Jang, Woojin; Seo, Chang-Woo; Kim, Hee-Joung
2017-03-01
Digital tomosynthesis has an advantage of low radiation dose compared to conventional computed tomography (CT) by utilizing small number of projections ( 80) acquired over a limited angular range. It can produce 3D volumetric data although they may have some artifacts due to incomplete sampling. Based upon these attractive merits, we developed a prototype digital tomosynthesis R/F system especially for the purpose of applications in chest imaging. Prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including precise motor controller, and a reconstruction server. For image reconstruction, users could select the reconstruction option between analytic and iterative methods. Reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of the phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module was higher in images using the simultaneous algebraic reconstruction technique (SART) than those using filtered backprojection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 sec and 86.29 sec on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from the system (5.68 mGy) could demonstrate a significant lowered radiation dose compared to conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.
A digital correlator upgrade for the Arcminute MicroKelvin Imager
NASA Astrophysics Data System (ADS)
Hickish, Jack; Razavi-Ghods, Nima; Perrott, Yvette C.; Titterington, David J.; Carey, Steve H.; Scott, Paul F.; Grainge, Keith J. B.; Scaife, Anna M. M.; Alexander, Paul; Saunders, Richard D. E.; Crofts, Mike; Javid, Kamran; Rumsey, Clare; Jin, Terry Z.; Ely, John A.; Shaw, Clive; Northrop, Ian G.; Pooley, Guy; D'Alessandro, Robert; Doherty, Peter; Willatt, Greg P.
2018-04-01
The Arcminute Microkelvin Imager (AMI) telescopes located at the Mullard Radio Astronomy Observatory near Cambridge have been significantly enhanced by the implementation of a new digital correlator with 1.2 MHz spectral resolution. This system has replaced a 750-MHz resolution analogue lag-based correlator, and was designed to mitigate the effects of radio frequency interference, particularly that from geostationary satellites which are visible from the AMI site when observing at low declinations. The upgraded instrument consists of 18 ROACH2 Field Programmable Gate Array platforms used to implement a pair of real-time FX correlators - one for each of AMI's two arrays. The new system separates the down-converted RF baseband signal from each AMI receiver into two sub-bands, each of which are filtered to a width of 2.3 GHz and digitized at 5-Gsps with 8 bits of precision. These digital data streams are filtered into 2048 frequency channels and cross-correlated using FPGA hardware, with a commercial 10 Gb Ethernet switch providing high-speed data interconnect. Images formed using data from the new digital correlator show over an order of magnitude improvement in dynamic range over the previous system. The ability to observe at low declinations has also been significantly improved.
2015-01-01
streak tube imaging Lidar [15]. Nevertheless, instead of one- dimensional (1D) fan beam, a laser source modulates the digital micromirror device DMD and...Trans. Inform. Theory, vol. 52, pp. 1289-1306, 2006. [10] D. Dudley, W. Duncan and J. Slaughter, "Emerging Digital Micromirror Device (DMD) Applications
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2013-03-01
We are developing tangible imaging systems1-4 that enable natural interaction with virtual objects. Tangible imaging systems are based on consumer mobile devices that incorporate electronic displays, graphics hardware, accelerometers, gyroscopes, and digital cameras, in laptop or tablet-shaped form-factors. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of threedimensional objects with complex textures and material properties are rendered to the screen, and tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. Tangible imaging systems thus allow virtual objects to be observed and manipulated as naturally as real ones with the added benefit that object properties can be modified under user control. In this paper we describe four tangible imaging systems we have developed: the tangiBook - our first implementation on a laptop computer; tangiView - a more refined implementation on a tablet device; tangiPaint - a tangible digital painting application; and phantoView - an application that takes the tangible imaging concept into stereoscopic 3D.
Camera system resolution and its influence on digital image correlation
Reu, Phillip L.; Sweatt, William; Miller, Timothy; ...
2014-09-21
Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss ofmore » spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The study will demonstrate the tradeoffs associated with limited lens resolution.« less
Monnin, P; Gutierrez, D; Bulling, S; Lepori, D; Valley, J F; Verdun, F R
2005-02-01
Four standard radiation qualities (from RQA 3 to RQA 9) were used to compare the imaging performance of a computed radiography (CR) system (general purpose and high resolution phosphor plates of a Kodak CR 9000 system), a selenium-based direct flat panel detector (Kodak Direct View DR 9000), and a conventional screen-film system (Kodak T-MAT L/RA film with a 3M Trimax Regular screen of speed 400) in conventional radiography. Reference exposure levels were chosen according to the manufacturer's recommendations to be representative of clinical practice (exposure index of 1700 for digital systems and a film optical density of 1.4). With the exception of the RQA 3 beam quality, the exposure levels needed to produce a mean digital signal of 1700 were higher than those needed to obtain a mean film optical density of 1.4. In spite of intense developments in the field of digital detectors, screen-film systems are still very efficient detectors for most of the beam qualities used in radiology. An important outcome of this study is the behavior of the detective quantum efficiency of the digital radiography (DR) system as a function of beam energy. The practice of users to increase beam energy when switching from a screen-film system to a CR system, in order to improve the compromise between patient dose and image quality, might not be appropriate when switching from screen-film to selenium-based DR systems.
Applications Of Digital Image Acquisition In Anthropometry
NASA Astrophysics Data System (ADS)
Woolford, Barbara; Lewis, James L.
1981-10-01
Anthropometric data on reach and mobility have traditionally been collected by time consuming and relatively inaccurate manual methods. Three dimensional digital image acquisition promises to radically increase the speed and ease of data collection and analysis. A three-camera video anthropometric system for collecting position, velocity, and force data in real time is under development for the Anthropometric Measurement Laboratory at NASA's Johnson Space Center. The use of a prototype of this system for collecting data on reach capabilities and on lateral stability is described. Two extensions of this system are planned.
Air Force Human Resources Laboratory Annual Report - Fiscal Year 1983.
1984-08-01
were performed - digital image-generation visual system and three in the Advanced Simulator for Pilot Training at associated wide-angle windows. The...inputs by the trainee. This arrangement, and survivability in high-threat environments are , with its corresponding analog-to- digital interface... digitized models of various military vehicles and aircraft for continual update/expansion. Utilization: An interactive modeling system will be user
Medical image archive node simulation and architecture
NASA Astrophysics Data System (ADS)
Chiang, Ted T.; Tang, Yau-Kuo
1996-05-01
It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape access time, number of drives, number of exams per patient, number of Central Processing Units, patient grouping, and priority impacts. The MIADS, which could be a key component of a broader data repository system, will be able to communicate with and obtain data from existing hospital information systems. We will discuss the external interfaces enabling MIADS to communicate with and obtain data from existing Radiology Information Systems such as the Picture Archiving and Communication System (PACS). Our system design encompasses the broader aspects of the archive node, which could include multimedia data such as image, audio, video, and free text data. This system is designed to be integrated with current hospital PACS through a Digital Imaging and Communications in Medicine interface. However, the system can also be accessed through the Internet using Hypertext Transport Protocol or Simple File Transport Protocol. Our design and simulation work will be key to implementing a successful, scalable medical image archive and distribution system.
NASA Technical Reports Server (NTRS)
Lovegreen, J. R.; Prosser, W. J.; Millet, R. A.
1975-01-01
A site in the Great Valley subsection of the Valley and Ridge physiographic province in eastern Pennsylvania was studied to evaluate the use of digital and analog image processing for geologic investigations. Ground truth at the site was obtained by a field mapping program, a subsurface exploration investigation and a review of available published and unpublished literature. Remote sensing data were analyzed using standard manual techniques. LANDSAT-1 imagery was analyzed using digital image processing employing the multispectral Image 100 system and using analog color processing employing the VP-8 image analyzer. This study deals primarily with linears identified employing image processing and correlation of these linears with known structural features and with linears identified manual interpretation; and the identification of rock outcrops in areas of extensive vegetative cover employing image processing. The results of this study indicate that image processing can be a cost-effective tool for evaluating geologic and linear features for regional studies encompassing large areas such as for power plant siting. Digital image processing can be an effective tool for identifying rock outcrops in areas of heavy vegetative cover.
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; John, Renu
2015-12-01
Digital holographic microscope (DHM) is an emerging quantitative phase imaging technique with unique imaging scales and resolutions leading to multitude of applications. DHM is promising as a novel investigational and applied tool for cell imaging, studying the morphology and real time dynamics of cells and a number of related applications. The use of numerical propagation and computational digital optics offer unique flexibility to tune the depth of focus, and compensate for image aberrations. In this work, we report imaging the dynamics of cell division in E.coli and yeast cells using a DHM platform. We demonstrate 3-D and depth imaging as well as reconstruction of phase profiles of E.coli and yeast cells using the system. We record a digital hologram of E.coli and yeast cells and reconstruct the image using Fresnel propagation algorithm. We also use aberration compensation algorithms for correcting the aberrations that are introduced by the microscope objective in the object path using linear least square fitting techniques. This work demonstrates the strong potential of a DHM platform in 3-D live cell imaging, fast clinical quantifications and pathological applications.
Interhospital network system using the worldwide web and the common gateway interface.
Oka, A; Harima, Y; Nakano, Y; Tanaka, Y; Watanabe, A; Kihara, H; Sawada, S
1999-05-01
We constructed an interhospital network system using the worldwide web (WWW) and the Common Gateway Interface (CGI). Original clinical images are digitized and stored as a database for educational and research purposes. Personal computers (PCs) are available for data treatment and browsing. Our system is simple, as digitized images are stored into a Unix server machine. Images of important and interesting clinical cases are selected and registered into the image database using CGI. The main image format is 8- or 12-bit Joint Photographic Experts Group (JPEG) image. Original clinical images are finally stored in CD-ROM using a CD recorder. The image viewer can browse all of the images for one case at once as thumbnail pictures; image quality can be selected depending on the user's purpose. Using the network system, clinical images of interesting cases can be rapidly transmitted and discussed with other related hospitals. Data transmission from relational hospitals takes 1 to 2 minutes per 500 Kbyte of data. More distant hospitals (e.g., Rakusai Hospital, Kyoto) takes 1 minute more. The mean number of accesses our image database in a recent 3-month period was 470. There is a total about 200 cases in our image database, acquired over the past 2 years. Our system is useful for communication and image treatment between hospitals and we will describe the elements of our system and image database.
Paskevich, Valerie F.
1992-01-01
The Branch of Atlantic Marine Geology has been involved in the collection, processing and digital mosaicking of high, medium and low-resolution side-scan sonar data during the past 6 years. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. With the need to process sidescan data in the field with increased power and reduced cost of major workstations, a need to have an image processing package on a UNIX based computer system which could be utilized in the field as well as be more generally available to Branch personnel was identified. This report describes the initial development of that package referred to as the Woods Hole Image Processing System (WHIPS). The software was developed using the Unidata NetCDF software interface to allow data to be more readily portable between different computer operating systems.
Storing Data and Video on One Tape
NASA Technical Reports Server (NTRS)
Nixon, J. H.; Cater, J. P.
1985-01-01
Microprocessor-based system originally developed for anthropometric research merges digital data with video images for storage on video cassette recorder. Combined signals later retrieved and displayed simultaneously on television monitor. System also extracts digital portion of stored information and transfers it to solid-state memory.
Student Development of Educational Software: Spin-Offs from Classroom Use of DIAS.
ERIC Educational Resources Information Center
Harrington, John A., Jr.; And Others
1988-01-01
Describes several college courses which encourage students to develop computer software programs in the areas of remote sensing and geographic information systems. A microcomputer-based tutorial package, the Digital Image Analysis System (DAIS), teaches the principles of digital processing. (LS)
Efficient high-performance ultrasound beamforming using oversampling
NASA Astrophysics Data System (ADS)
Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew
1998-05-01
High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.
The value of digital imaging in diabetic retinopathy.
Sharp, P F; Olson, J; Strachan, F; Hipwell, J; Ludbrook, A; O'Donnell, M; Wallace, S; Goatman, K; Grant, A; Waugh, N; McHardy, K; Forrester, J V
2003-01-01
To assess the performance of digital imaging, compared with other modalities, in screening for and monitoring the development of diabetic retinopathy. All imaging was acquired at a hospital assessment clinic. Subsequently, study optometrists examined the patients in their own premises. A subset of patients also had fluorescein angiography performed every 6 months. Research clinic at the hospital eye clinic and optometrists' own premises. Study comprised 103 patients who had type 1 diabetes mellitus, 481 had type 2 diabetes mellitus and two had secondary diabetes mellitus; 157 (26.8%) had some form of retinopathy ('any') and 58 (9.9%) had referable retinopathy. A repeat assessment was carried out of all patients 1 year after their initial assessment. Patients who had more severe forms of retinopathy were monitored more frequently for evidence of progression. Detection of retinopathy, progression of retinopathy and determination of when treatment is required. Manual grading of 35-mm colour slides produced the highest sensitivity and specificity figures, with optometrist examination recording most false negatives. Manual and automated analysis of digital images had intermediate sensitivity. Both manual grading of 35-mm colour slides and digital images gave sensitivities of over 90% with few false positives. Digital imaging produced 50% fewer ungradable images than colour slides. This part of the study was limited as patients with the more severe levels of retinopathy opted for treatment. There was an increase in the number of microaneurysms in those patients who developed from mild to moderate. There was no difference between the turnover rate of either new or regressed microaneurysms for patients with mild or with sight-threatening retinopathy. It was not possible in this study to ascertain whether digital imaging systems determine when treatment is warranted. In the context of a national screening programme for referable retinopathy, digital imaging is an effective method. In addition, technical failure rates are lower with digital imaging than conventional photography. Digital imaging is also a more sensitive technique than slit-lamp examination by optometrists. Automated grading can improve efficiency by correctly identifying just under half the population as having no retinopathy. Recommendations for future research include: investigating whether the nasal field is required for grading; a large screening programme is required to ascertain if automated grading can safely perform as a first-level grader; if colour improves the performance of grading digital images; investigating methods to ensure effective uptake in a diabetic retinopathy screening programme.
An optical authentication system based on imaging of excitation-selected lanthanide luminescence.
Carro-Temboury, Miguel R; Arppe, Riikka; Vosch, Tom; Sørensen, Thomas Just
2018-01-01
Secure data encryption relies heavily on one-way functions, and copy protection relies on features that are difficult to reproduce. We present an optical authentication system based on lanthanide luminescence from physical one-way functions or physical unclonable functions (PUFs). They cannot be reproduced and thus enable unbreakable encryption. Further, PUFs will prevent counterfeiting if tags with unique PUFs are grafted onto products. We have developed an authentication system that comprises a hardware reader, image analysis, and authentication software and physical keys that we demonstrate as an anticounterfeiting system. The physical keys are PUFs made from random patterns of taggants in polymer films on glass that can be imaged following selected excitation of particular lanthanide(III) ions doped into the individual taggants. This form of excitation-selected imaging ensures that by using at least two lanthanide(III) ion dopants, the random patterns cannot be copied, because the excitation selection will fail when using any other emitter. With the developed reader and software, the random patterns are read and digitized, which allows a digital pattern to be stored. This digital pattern or digital key can be used to authenticate the physical key in anticounterfeiting or to encrypt any message. The PUF key was produced with a staggering nominal encoding capacity of 7 3600 . Although the encoding capacity of the realized authentication system reduces to 6 × 10 104 , it is more than sufficient to completely preclude counterfeiting of products.
Digital tripwire: a small automated human detection system
NASA Astrophysics Data System (ADS)
Fischer, Amber D.; Redd, Emmett; Younger, A. Steven
2009-05-01
A low cost, lightweight, easily deployable imaging sensor that can dependably discriminate threats from other activities within its field of view and, only then, alert the distant duty officer by transmitting a visual confirmation of the threat would provide a valuable asset to modern defense. At present, current solutions suffer from a multitude of deficiencies - size, cost, power endurance, but most notably, an inability to assess an image and conclude that it contains a threat. The human attention span cannot maintain critical surveillance over banks of displays constantly conveying such images from the field. DigitalTripwire is a small, self-contained, automated human-detection system capable of running for 1-5 days on two AA batteries. To achieve such long endurance, the DigitalTripwire system utilizes an FPGA designed with sleep functionality. The system uses robust vision algorithms, such as a partially unsupervised innovative backgroundmodeling algorithm, which employ several data reduction strategies to operate in real-time, and achieve high detection rates. When it detects human activity, either mounted or dismounted, it sends an alert including images to notify the command center. In this paper, we describe the hardware and software design of the DigitalTripwire system. In addition, we provide detection and false alarm rates across several challenging data sets demonstrating the performance of the vision algorithms in autonomously analyzing the video stream and classifying moving objects into four primary categories - dismounted human, vehicle, non-human, or unknown. Performance results across several challenging data sets are provided.
NASA Technical Reports Server (NTRS)
Gradl, Paul
2016-01-01
NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.
Processing techniques for digital sonar images from GLORIA.
Chavez, P.S.
1986-01-01
Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author
Method and apparatus for reading meters from a video image
Lewis, Trevor J.; Ferguson, Jeffrey J.
1997-01-01
A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.
Aldridge, Kristina; Boyadjiev, Simeon A.; Capone, George T.; DeLeon, Valerie B.; Richtsmeier, Joan T.
2015-01-01
The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic studies due to their ability to collect data rapidly and non-invasively. Before these systems can be broadly implemented the error associated with data collected from images acquired using these technologies must be assessed. This study investigates the precision, error, and repeatability associated with anthropometric landmark coordinate data collected from 3D digital photogrammetric images acquired with the 3dMDface System. Precision, error due to the imaging system, error due to digitization of the images, and repeatability are assessed in a sample of children and adults (N=15). Results show that data collected from images with the 3dMDface System are highly repeatable and precise. The average error associated with the placement of landmarks is sub-millimeter; both the error due to digitization and to the imaging system are very low. The few measures showing a higher degree of error include those crossing the labial fissure, which are influenced by even subtle movement of the mandible. These results suggest that 3D anthropometric data collected using the 3dMDface System are highly reliable and therefore useful for evaluation of clinical dysmorphology and surgery, analyses of genotype-phenotype correlations, and inheritance of complex phenotypes. PMID:16158436
Acceptance testing and commissioning of Kodak Directview CR-850 digital radiography system.
Bezak, E; Nelligan, R A
2006-03-01
This Technical Paper describes Acceptance Testing and Commissioning of the Kodak DirectView CR-850 digital radiography system installed at the Royal Adelaide Hospital. The first of its type installed in Australia, the system is a "dry" image processor, for which no chemicals are required to develop images. Rather, latent radiographic images are stored on photostimulable phosphor screens, which are scanned and displayed by a reader unit. The image can be digitally processed and enhanced before it is forwarded to a storage device, printer or workstation display, thereby alleviating the need to re-expose patients to achieve satisfactory quality images. The phosphor screens are automatically erased, ready for re-use. Results are reported of tests carried out using the optional "Total Quality Tool" quality assurance package installed with the system. This package includes analysis and reporting software which provides for simple testing and reporting of many important characteristics of the system, such as field uniformity, aspect ratio, line and pixel positions, image and system noise, exposure response, scan linearity, modulation transfer function (MTF) and image artefacts. Acceptance Tests were performed for kV and MV exposures. Resolution for MV exposures was at least 0.8 l/mm, and measured phantom dimensions were within 1.05% of expected magnification. Reproducibility between cassettes was within 1.6%. The mean pixel values on the central axis were close to linear for MV exposures from 3 to 10 MU and reached saturation level at around 20 MU for 6 MV and around 30 MV for 23 MV beams. Noise levels were below 0.2 %.
42 CFR 37.51 - Proficiency in the use of systems for classifying the pneumoconioses.
Code of Federal Regulations, 2012 CFR
2012-10-01
... images provided for use with the Guidelines for the Use of the ILO International Classification of... images may be used for classifying digital chest images for pneumoconiosis. Modification of the appearance of the standard images using software tools is not permitted. (d) Viewing systems should enable...
Development of a real-time digital radiography system using a scintillator-type flat-panel detector
NASA Astrophysics Data System (ADS)
Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Okajima, Kenichi
2001-06-01
In order to study the advantage and remaining problems of FPD (flat panel detector) for clinical use by the real-time DR (digital radiography) system, we developed a prototype system using a scintillator type FPD and which was compared with previous I.I.-CCD type real-time DR. We replaced the X- ray detector of DR-2000X from I.I.-4M (4 million pixels)-CCD camera to the scintillator type dynamic FPD(7' X 9', 127 micrometers ), which can take both radiographic and fluoroscopic images. We obtained the images of head and stomach phantoms, and discussed about the image quality with medical doctors.
Optimization of digitization procedures in cultural heritage preservation
NASA Astrophysics Data System (ADS)
Martínez, Bea; Mitjà, Carles; Escofet, Jaume
2013-11-01
The digitization of both volumetric and flat objects is the nowadays-preferred method in order to preserve cultural heritage items. High quality digital files obtained from photographic plates, films and prints, paintings, drawings, gravures, fabrics and sculptures, allows not only for a wider diffusion and on line transmission, but also for the preservation of the original items from future handling. Early digitization procedures used scanners for flat opaque or translucent objects and camera only for volumetric or flat highly texturized materials. The technical obsolescence of the high-end scanners and the improvement achieved by professional cameras has result in a wide use of cameras with digital back to digitize any kind of cultural heritage item. Since the lens, the digital back, the software controlling the camera and the digital image processing provide a wide range of possibilities, there is necessary to standardize the methods used in the reproduction work leading to preserve as high as possible the original item properties. This work presents an overview about methods used for camera system characterization, as well as the best procedures in order to identify and counteract the effect of the lens residual aberrations, sensor aliasing, image illumination, color management and image optimization by means of parametric image processing. As a corollary, the work shows some examples of reproduction workflow applied to the digitization of valuable art pieces and glass plate photographic black and white negatives.
NASA Astrophysics Data System (ADS)
Mehring, James W.; Thomas, Scott D.
1995-11-01
The Data Services Segment of the Defense Mapping Agency's Digital Production System provides a digital archive of imagery source data for use by DMA's cartographic user's. This system was developed in the mid-1980's and is currently undergoing modernization. This paper addresses the modernization of the imagery buffer function that was performed by custom hardware in the baseline system and is being replaced by a RAID Server based on commercial off the shelf (COTS) hardware. The paper briefly describes the baseline DMA image system and the modernization program, that is currently under way. Throughput benchmark measurements were made to make design configuration decisions for a commercial off the shelf (COTS) RAID Server to perform as system image buffer. The test program began with performance measurements of the RAID read and write operations between the RAID arrays and the server CPU for RAID levels 0, 5 and 0+1. Interface throughput measurements were made for the HiPPI interface between the RAID Server and the image archive and processing system as well as the client side interface between a custom interface board that provides the interface between the internal bus of the RAID Server and the Input- Output Processor (IOP) external wideband network currently in place in the DMA system to service client workstations. End to end measurements were taken from the HiPPI interface through the RAID write and read operations to the IOP output interface.
Clinical evaluation of JPEG2000 compression for digital mammography
NASA Astrophysics Data System (ADS)
Sung, Min-Mo; Kim, Hee-Joung; Kim, Eun-Kyung; Kwak, Jin-Young; Yoo, Jae-Kyung; Yoo, Hyung-Sik
2002-06-01
Medical images, such as computed radiography (CR), and digital mammographic images will require large storage facilities and long transmission times for picture archiving and communications system (PACS) implementation. American College of Radiology and National Equipment Manufacturers Association (ACR/NEMA) group is planning to adopt a JPEG2000 compression algorithm in digital imaging and communications in medicine (DICOM) standard to better utilize medical images. The purpose of the study was to evaluate the compression ratios of JPEG2000 for digital mammographic images using peak signal-to-noise ratio (PSNR), receiver operating characteristic (ROC) analysis, and the t-test. The traditional statistical quality measures such as PSNR, which is a commonly used measure for the evaluation of reconstructed images, measures how the reconstructed image differs from the original by making pixel-by-pixel comparisons. The ability to accurately discriminate diseased cases from normal cases is evaluated using ROC curve analysis. ROC curves can be used to compare the diagnostic performance of two or more reconstructed images. The t test can be also used to evaluate the subjective image quality of reconstructed images. The results of the t test suggested that the possible compression ratios using JPEG2000 for digital mammographic images may be as much as 15:1 without visual loss or with preserving significant medical information at a confidence level of 99%, although both PSNR and ROC analyses suggest as much as 80:1 compression ratio can be achieved without affecting clinical diagnostic performance.
Fast energy spectrum and transverse beam profile monitoring and feedback systems for the SLC linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soderstrom, E.J.; Abrams, G.S.; Weinstein, A.J.
Fast energy spectrum and transverse beam profile monitoring systems have been tested at the SLC. The signals for each system are derived from digitizations of images on phosphor screens. Individual beam bunch images are digitized in the case of the transverse profile system and synchrotron radiation images produced by wiggler magnets for the energy spectrum. Measurements are taken at two-second intervals. Feedback elements have been installed for future use and consist of rf phase shifters to control energy spectrum and dipole correctors to control the beam launch into the linac affecting the transverse beam profile. Details of these systems, includingmore » hardware, timing, data acquisition, data reduction, measurement accuracy, and operational experience will be presented. 9 refs.« less
Digital implementation of a neural network for imaging
NASA Astrophysics Data System (ADS)
Wood, Richard; McGlashan, Alex; Yatulis, Jay; Mascher, Peter; Bruce, Ian
2012-10-01
This paper outlines the design and testing of a digital imaging system that utilizes an artificial neural network with unsupervised and supervised learning to convert streaming input (real time) image space into parameter space. The primary objective of this work is to investigate the effectiveness of using a neural network to significantly reduce the information density of streaming images so that objects can be readily identified by a limited set of primary parameters and act as an enhanced human machine interface (HMI). Many applications are envisioned including use in biomedical imaging, anomaly detection and as an assistive device for the visually impaired. A digital circuit was designed and tested using a Field Programmable Gate Array (FPGA) and an off the shelf digital camera. Our results indicate that the networks can be readily trained when subject to limited sets of objects such as the alphabet. We can also separate limited object sets with rotational and positional invariance. The results also show that limited visual fields form with only local connectivity.
Are reconstruction filters necessary?
NASA Astrophysics Data System (ADS)
Holst, Gerald C.
2006-05-01
Shannon's sampling theorem (also called the Shannon-Whittaker-Kotel'nikov theorem) was developed for the digitization and reconstruction of sinusoids. Strict adherence is required when frequency preservation is important. Three conditions must be met to satisfy the sampling theorem: (1) The signal must be band-limited, (2) the digitizer must sample the signal at an adequate rate, and (3) a low-pass reconstruction filter must be present. In an imaging system, the signal is band-limited by the optics. For most imaging systems, the signal is not adequately sampled resulting in aliasing. While the aliasing seems excessive mathematically, it does not significantly affect the perceived image. The human visual system detects intensity differences, spatial differences (shapes), and color differences. The eye is less sensitive to frequency effects and therefore sampling artifacts have become quite acceptable. Indeed, we love our television even though it is significantly undersampled. The reconstruction filter, although absolutely essential, is rarely discussed. It converts digital data (which we cannot see) into a viewable analog signal. There are several reconstruction filters: electronic low-pass filters, the display media (monitor, laser printer), and your eye. These are often used in combination to create a perceived continuous image. Each filter modifies the MTF in a unique manner. Therefore image quality and system performance depends upon the reconstruction filter(s) used. The selection depends upon the application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... production, processing, consumption, export or import of chemicals. Each facility subject to inspection under... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... production, processing, consumption, export or import of chemicals. Each facility subject to inspection under... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... production, processing, consumption, export or import of chemicals. Each facility subject to inspection under... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... production, processing, consumption, export or import of chemicals. Each facility subject to inspection under... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... production, processing, consumption, export or import of chemicals. Each facility subject to inspection under... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the...
Synthetic aperture in terahertz in-line digital holography for resolution enhancement.
Huang, Haochong; Rong, Lu; Wang, Dayong; Li, Weihua; Deng, Qinghua; Li, Bin; Wang, Yunxin; Zhan, Zhiqiang; Wang, Xuemin; Wu, Weidong
2016-01-20
Terahertz digital holography is a combination of terahertz technology and digital holography. In digital holography, the imaging resolution is the key parameter in determining the detailed quality of a reconstructed wavefront. In this paper, the synthetic aperture method is used in terahertz digital holography and the in-line arrangement is built to perform the detection. The resolved capability of previous terahertz digital holographic systems restricts this technique to meet the requirement of practical detection. In contrast, the experimental resolved power of the present method can reach 125 μm, which is the best resolution of terahertz digital holography to date. Furthermore, the basic detection of a biological specimen is conducted to show the practical application. In all, the results of the proposed method demonstrate the enhancement of experimental imaging resolution and that the amplitude and phase distributions of the fine structure of samples can be reconstructed by using terahertz digital holography.
NASA Astrophysics Data System (ADS)
Chi, Yuxi; Yu, Liping; Pan, Bing
2018-05-01
A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.
Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array
NASA Astrophysics Data System (ADS)
Shan, Jing
X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by retrofitting the source array to a Carestream digital radiography system. The system passed the electrical and radiation safety tests, and was installed in Marsico Hall. The patient trial started in March of 2015, and the first patient was successfully imaged.
Interactive digital image manipulation system
NASA Technical Reports Server (NTRS)
Henze, J.; Dezur, R.
1975-01-01
The system is designed for manipulation, analysis, interpretation, and processing of a wide variety of image data. LANDSAT (ERTS) and other data in digital form can be input directly into the system. Photographic prints and transparencies are first converted to digital form with an on-line high-resolution microdensitometer. The system is implemented on a Hewlett-Packard 3000 computer with 128 K bytes of core memory and a 47.5 megabyte disk. It includes a true color display monitor, with processing memories, graphics overlays, and a movable cursor. Image data formats are flexible so that there is no restriction to a given set of remote sensors. Conversion between data types is available to provide a basis for comparison of the various data. Multispectral data is fully supported, and there is no restriction on the number of dimensions. In this way multispectral data collected at more than one point in time may simply be treated as a data collected with twice (three times, etc.) the number of sensors. There are various libraries of functions available to the user: processing functions, display functions, system functions, and earth resources applications functions.
Teman, Carolin J.; Wilson, Andrew R.; Perkins, Sherrie L.; Hickman, Kimberly; Prchal, Josef T.; Salama, Mohamed E.
2010-01-01
Evaluation of bone marrow fibrosis and osteosclerosis in myeloproliferative neoplasms (MPN) is subject to interobserver inconsistency. Performance data for currently utilized fibrosis grading systems are lacking, and classification scales for osteosclerosis do not exist. Digital imaging can serve as a quantification method for fibrosis and osteosclerosis. We used digital imaging techniques for trabecular area assessment and reticulin-fiber quantification. Patients with all Philadelphia negative MPN subtypes had higher trabecular volume than controls (p ≤0.0015). Results suggest that the degree of osteosclerosis helps differentiate primary myelofibrosis from other MPN. Numerical quantification of fibrosis highly correlated with subjective scores, and interobserver correlation was satisfactory. Digital imaging provides accurate quantification for osteosclerosis and fibrosis. PMID:20122729
Aldaz, Gabriel; Shluzas, Lauren Aquino; Pickham, David; Eris, Ozgur; Sadler, Joel; Joshi, Shantanu; Leifer, Larry
2015-01-01
Chronic wounds, including pressure ulcers, compromise the health of 6.5 million Americans and pose an annual estimated burden of $25 billion to the U.S. health care system. When treating chronic wounds, clinicians must use meticulous documentation to determine wound severity and to monitor healing progress over time. Yet, current wound documentation practices using digital photography are often cumbersome and labor intensive. The process of transferring photos into Electronic Medical Records (EMRs) requires many steps and can take several days. Newer smartphone and tablet-based solutions, such as Epic Haiku, have reduced EMR upload time. However, issues still exist involving patient positioning, image-capture technique, and patient identification. In this paper, we present the development and assessment of the SnapCap System for chronic wound photography. Through leveraging the sensor capabilities of Google Glass, SnapCap enables hands-free digital image capture, and the tagging and transfer of images to a patient’s EMR. In a pilot study with wound care nurses at Stanford Hospital (n=16), we (i) examined feature preferences for hands-free digital image capture and documentation, and (ii) compared SnapCap to the state of the art in digital wound care photography, the Epic Haiku application. We used the Wilcoxon Signed-ranks test to evaluate differences in mean ranks between preference options. Preferred hands-free navigation features include barcode scanning for patient identification, Z(15) = -3.873, p < 0.001, r = 0.71, and double-blinking to take photographs, Z(13) = -3.606, p < 0.001, r = 0.71. In the comparison between SnapCap and Epic Haiku, the SnapCap System was preferred for sterile image-capture technique, Z(16) = -3.873, p < 0.001, r = 0.68. Responses were divided with respect to image quality and overall ease of use. The study’s results have contributed to the future implementation of new features aimed at enhancing mobile hands-free digital photography for chronic wound care. PMID:25902061
Medical image security in a HIPAA mandated PACS environment.
Cao, F; Huang, H K; Zhou, X Q
2003-01-01
Medical image security is an important issue when digital images and their pertinent patient information are transmitted across public networks. Mandates for ensuring health data security have been issued by the federal government such as Health Insurance Portability and Accountability Act (HIPAA), where healthcare institutions are obliged to take appropriate measures to ensure that patient information is only provided to people who have a professional need. Guidelines, such as digital imaging and communication in medicine (DICOM) standards that deal with security issues, continue to be published by organizing bodies in healthcare. However, there are many differences in implementation especially for an integrated system like picture archiving and communication system (PACS), and the infrastructure to deploy these security standards is often lacking. Over the past 6 years, members in the Image Processing and Informatics Laboratory, Childrens Hospital, Los Angeles/University of Southern California, have actively researched image security issues related to PACS and teleradiology. The paper summarizes our previous work and presents an approach to further research on the digital envelope (DE) concept that provides image integrity and security assurance in addition to conventional network security protection. The DE, including the digital signature (DS) of the image as well as encrypted patient information from the DICOM image header, can be embedded in the background area of the image as an invisible permanent watermark. The paper outlines the systematic development, evaluation and deployment of the DE method in a PACS environment. We have also proposed a dedicated PACS security server that will act as an image authority to check and certify the image origin and integrity upon request by a user, and meanwhile act also as a secure DICOM gateway to the outside connections and a PACS operation monitor for HIPAA supporting information. Copyright 2002 Elsevier Science Ltd.
Mills, Anne M; Gradecki, Sarah E; Horton, Bethany J; Blackwell, Rebecca; Moskaluk, Christopher A; Mandell, James W; Mills, Stacey E; Cathro, Helen P
2018-01-01
Prior work has shown that digital images and microscopic slides can be interpreted with comparable diagnostic accuracy. Although accuracy has been well-validated, the interpretative time for digital images has scarcely been studied and concerns about efficiency remain a major barrier to adoption. We investigated the efficiency of digital pathology when compared with glass slide interpretation in the diagnosis of surgical pathology biopsy and resection specimens. Slides were pulled from 510 surgical pathology cases from 5 organ systems (gastrointestinal, gynecologic, liver, bladder, and brain). Original diagnoses were independently confirmed by 2 validating pathologists. Diagnostic slides were scanned using the Philips IntelliSite Pathology Solution. Each case was assessed independently on digital and optical by 3 reading pathologists, with a ≥6 week washout period between modalities. Reading pathologists recorded assessment times for each modality; digital times included time to load the case. Diagnostic accuracy was determined based on whether a rendered diagnosis differed significantly from the original diagnosis. Statistical analysis was performed to assess for differences in interpretative times across modalities. All 3 reading pathologists showed comparable diagnostic accuracy across optical and digital modalities (mean major discordance rates with original diagnosis: 4.8% vs. 4.4%, respectively). Mean assessment times ranged from 1.2 to 9.1 seconds slower on digital versus optical. The slowest reader showed a significant learning effect during the course of the study so that digital assessment times decreased over time and were comparable with optical times by the end of the series. Organ site and specimen type did not significantly influence differences in interpretative times. In summary, digital image reading times compare favorably relative to glass slides across a variety of organ systems and specimen types. Mean increase in assessment time is 4 seconds/case. This time can be minimized with experience and may be further balanced by the improved ease of electronic chart access allowed by digital slide viewing, as well as quantitative assessments which can be expedited on digital images.
A novel automatic full-scale inspecting system for banknote printing plates
NASA Astrophysics Data System (ADS)
Zhang, Jian; Feng, Li; Lu, Jibing; Qin, Qingwang; Liu, Liquan; Liu, Huina
2018-01-01
Quality assurance of banknote printing plates is an important issue for the corporation which produces them. Every plate must be checked carefully and entirely before it's sent to the banknote printing factory. Previously the work is done by specific workers, usually with the help of powder and magnifiers, and often lasts for 3 to 4 hours for a 5*7 plate with the size of about 650*500 square millimeters. Now we have developed an automatic inspecting system to replace human work. The system mainly includes a stable platform, an electrical subsystem and an inspecting subsystem. A microscope held by the crossbeam can move around in the x-y-z space over the platform. A digital camera combined with the microscope captures gray digital images of the plate. The size of each digital image is 2672*4008, and each pixel corresponds to about 2.9*2.9 square microns area of the plate. The plate is inspected by each unit, and corresponding images are captured at the same relative position. Thousands of images are captured for one plate (for example, 4200 (120*5*7) for a 5*7 plate). The inspecting model images are generated from images of qualified plates, and then used to inspect indeterminate plates. The system costs about 64 minutes to inspect a plate, and identifies obvious defects.
Light-Directed Ranging System Implementing Single Camera System for Telerobotics Applications
NASA Technical Reports Server (NTRS)
Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)
1997-01-01
A laser-directed ranging system has utility for use in various fields, such as telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a single video camera and a directional light source such as a laser mounted on a camera platform, and a remotely positioned operator. In one embodiment, the position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. The laser is offset vertically and horizontally from the camera, and the laser/camera platform is directed by the user to point the laser and the camera toward a target device. The image produced by the video camera is processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. A reference point is defined at a point in the video frame, which may be located outside of the image area of the camera. The disparity between the digital image of the laser spot and the reference point is calculated for use in a ranging analysis to determine range to the target.
Smart Camera Technology Increases Quality
NASA Technical Reports Server (NTRS)
2004-01-01
When it comes to real-time image processing, everyone is an expert. People begin processing images at birth and rapidly learn to control their responses through the real-time processing of the human visual system. The human eye captures an enormous amount of information in the form of light images. In order to keep the brain from becoming overloaded with all the data, portions of an image are processed at a higher resolution than others, such as a traffic light changing colors. changing colors. In the same manner, image processing products strive to extract the information stored in light in the most efficient way possible. Digital cameras available today capture millions of pixels worth of information from incident light. However, at frame rates more than a few per second, existing digital interfaces are overwhelmed. All the user can do is store several frames to memory until that memory is full and then subsequent information is lost. New technology pairs existing digital interface technology with an off-the-shelf complementary metal oxide semiconductor (CMOS) imager to provide more than 500 frames per second of specialty image processing. The result is a cost-effective detection system unlike any other.
ERIC Educational Resources Information Center
Lee, Szu-Hsin
2016-01-01
No matter how fast or wide digital technology develops, because of the gap between urban and rural areas, a digital divide in the education system still exists. The researcher joined the digital film-making summer camp, where the major objective was to decrease the digital divide between urban and rural areas. Thirty schoolchildren from one…
Advanced IR System For Supersonic Boundary Layer Transition Flight Experiment
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a preferred method investigating transition in flight: a) Global and non-intrusive; b) Can also be used to visualize and characterize other fluid mechanic phenomena such as shock impingement, separation etc. F-15 based system was updated with new camera and digital video recorder to support high Reynolds number transition tests. Digital Recording improves image quality and analysis capability and allows for accurate quantitative (temperature) measurements and greater enhancement through image processing allows analysis of smaller scale phenomena.
Picture archiving and communication in radiology.
Napoli, Marzia; Nanni, Marinella; Cimarra, Stefania; Crisafulli, Letizia; Campioni, Paolo; Marano, Pasquale
2003-01-01
After over 80 years of exclusive archiving of radiologic films, at present, in Radiology, digital archiving is increasingly gaining ground. Digital archiving allows a considerable reduction in costs and space saving, but most importantly, immediate or remote consultation of all examinations and reports in the hospital clinical wards, is feasible. The RIS system, in this case, is the starting point of the process of electronic archiving which however is the task of PACS. The latter can be used as radiologic archive in accordance with the law provided that it is in conformance with some specifications as the use of optical long-term storage media or with electronic track of change. PACS archives, in a hierarchical system, all digital images produced by each diagnostic imaging modality. Images and patient data can be retrieved and used for consultation or remote consultation by the reporting radiologist who requires images and reports of previous radiologic examinations or by the referring physician of the ward. Modern PACS owing to the WEB server allow remote access to extremely simplified images and data however ensuring the due regulations and access protections. Since the PACS enables a simpler data communication within the hospital, security and patient privacy should be protected. A secure and reliable PACS should be able to minimize the risk of accidental data destruction, and should prevent non authorized access to the archive with adequate security measures in relation to the acquired knowledge and based on the technological advances. Archiving of data produced by modern digital imaging is a problem now present also in small Radiology services. The technology is able to readily solve problems which were extremely complex up to some years ago as the connection between equipment and archiving system owing also to the universalization of the DICOM 3.0 standard. The evolution of communication networks and the use of standard protocols as TCP/IP can minimize problems of data and image remote transmission within the healthcare enterprise as well as over the territory. However, new problems are appearing as that of digital data security profiles and of the different systems which should ensure it. Among these, algorithms of electronic signature should be mentioned. In Italy they are validated by law and therefore can be used in digital archives in accordance with the law.
High-speed single-pixel digital holography
NASA Astrophysics Data System (ADS)
González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús
2017-06-01
The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.