Entwistle, A
2004-06-01
A means for improving the contrast in the images produced from digital light micrographs is described that requires no intervention by the experimenter: zero-order, scaling, tonally independent, moderated histogram equalization. It is based upon histogram equalization, which often results in digital light micrographs that contain regions that appear to be saturated, negatively biased or very grainy. Here a non-decreasing monotonic function is introduced into the process, which moderates the changes in contrast that are generated. This method is highly effective for all three of the main types of contrast found in digital light micrography: bright objects viewed against a dark background, e.g. fluorescence and dark-ground or dark-field image data sets; bright and dark objects sets against a grey background, e.g. image data sets collected with phase or Nomarski differential interference contrast optics; and darker objects set against a light background, e.g. views of absorbing specimens. Moreover, it is demonstrated that there is a single fixed moderating function, whose actions are independent of the number of elements of image data, which works well with all types of digital light micrographs, including multimodal or multidimensional image data sets. The use of this fixed function is very robust as the appearance of the final image is not altered discernibly when it is applied repeatedly to an image data set. Consequently, moderated histogram equalization can be applied to digital light micrographs as a push-button solution, thereby eliminating biases that those undertaking the processing might have introduced during manual processing. Finally, moderated histogram equalization yields a mapping function and so, through the use of look-up tables, indexes or palettes, the information present in the original data file can be preserved while an image with the improved contrast is displayed on the monitor screen.
Hortolà, Policarp
2010-01-01
When dealing with microscopic still images of some kinds of samples, the out-of-focus problem represents a particularly serious limiting factor for the subsequent generation of fully sharp 3D animations. In order to produce fully-focused 3D animations of strongly uneven surface microareas, a vertical stack of six digital secondary-electron SEM micrographs of a human bloodstain microarea was acquired. Afterwards, single combined images were generated using a macrophotography and light microscope image post-processing software. Subsequently, 3D animations of texture and topography were obtained in different formats using a combination of software tools. Finally, a 3D-like animation of a texture-topography composite was obtained in different formats using another combination of software tools. By one hand, results indicate that the use of image post-processing software not concerned primarily with electron micrographs allows to obtain, in an easy way, fully-focused images of strongly uneven surface microareas of bloodstains from small series of partially out-of-focus digital SEM micrographs. On the other hand, results also indicate that such small series of electron micrographs can be utilized for generating 3D and 3D-like animations that can subsequently be converted into different formats, by using certain user-friendly software facilities not originally designed for use in SEM, that are easily available from Internet. Although the focus of this study was on bloodstains, the methods used in it well probably are also of relevance for studying the surface microstructures of other organic or inorganic materials whose sharp displaying is difficult of obtaining from a single SEM micrograph.
Shaw, S L; Salmon, E D; Quatrano, R S
1995-12-01
In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.
Yang, Yi; Cai, Canying; Lin, Jianguo; Gong, Lunjun; Yang, Qibin
2017-05-01
In this paper, we used Niggli reduced cell theory to determine lattice constants of a micro/nano crystal by using electron diffraction patterns. The Niggli reduced cell method enhanced the accuracy of lattice constant measurement obviously, because the lengths and the angles of lattice vectors of a primitive cell can be measured directly on the electron micrographs instead of a double tilt holder. With the aid of digitized algorithm and least square optimization by using three digitized micrographs, a valid reciprocal Niggli reduced cell number can be obtained. Thus a reciprocal and real Bravais lattices are acquired. The results of three examples, i.e., Mg 4 Zn 7 , an unknown phase (Precipitate phase in nickel-base superalloy) and Ba 4 Ti 13 O 30 showed that the maximum errors are 1.6% for lengths and are 0.3% for angles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Di Palma, Antonella; Giangaspero, Annunziata; Cafiero, Maria Assunta; Germinara, Giacinto S
2012-05-30
Dermanyssus gallinae (poultry red mite) is a major threat for the poultry industry and is of significant interest for public health. Identification of D. gallinae can be difficult for scientists not familiar with mite morphology and terminology especially when trying to use identification keys. Moreover, this species may easily be confused with another dermanyssoid mite, Ornithonyssus sylviarum (northern fowl mite), which often shares the same hosts and environment. Specimens of D. gallinae were collected at poultry farms in the Puglia and performed for light and scanning electron microscopy observations, identification and micrographs. Moreover specimens of O. sylviarum were collected separately macerated and mounted on slides for light microscopy observations, identification and pictures. The micrographs used in this study, based on LM and SEM observations, highlight the following important identifying characters of D. gallinae: the prominent shoulders of the dorsal shield and the jagged edges of the shield reticulations, the position of setae j1, s1 and the epigynal pores, and the presence on tibia IV pl of one seta. Additional micrographs highlighting the shape of the dorsal (abruptly narrowed posteriorly) and epigynal (narrowly rounded posteriorly) shields and the chelicera (elongate, with distinct digits) of O. sylviarum enable its differentiation from D.gallinae. The photographic support provided here (both LM and SEM pictures) can be considered a practical tool for scientists who are not well acquainted with the morphology of D.gallinae, and who are involved with classical and molecular systematics, veterinary and human health aspects of poultry red mites.
Qualitative and quantitative interpretation of SEM image using digital image processing.
Saladra, Dawid; Kopernik, Magdalena
2016-10-01
The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Using digital colour to increase the realistic appearance of SEM micrographs of bloodstains.
Hortolà, Policarp
2010-10-01
Although in the scientific-research literature the micrographs from scanning electron microscopes (SEMs) are usually displayed in greyscale, the potential of colour resources provided by the SEM-coupled image-acquiring systems and, subsidiarily, by image-manipulation free softwares deserves be explored as a tool for colouring SEM micrographs of bloodstains. After acquiring greyscale SEM micrographs of a (dark red to the naked eye) human blood smear on grey chert, they were manually obtained in red tone using both the SEM-coupled image-acquiring system and an image-manipulation free software, as well as they were automatically generated in thermal tone using the SEM-coupled system. Red images obtained by the SEM-coupled system demonstrated lower visual-discrimination capability than the other coloured images, whereas those in red generated by the free software rendered better magnitude of scopic information than the red images generated by the SEM-coupled system. Thermal-tone images, although were further from the real sample colour than the red ones, not only increased their realistic appearance over the greyscale images, but also yielded the best visual-discrimination capability among all the coloured SEM micrographs, and fairly enhanced the relief effect of the SEM micrographs over both the greyscale and the red images. The application of digital colour by means of the facilities provided by an SEM-coupled image-acquiring system or, when required, by an image-manipulation free software provides a user-friendly, quick and inexpensive way of obtaining coloured SEM micrographs of bloodstains, avoiding to do sophisticated, time-consuming colouring procedures. Although this work was focused on bloodstains, well probably other monochromatic or quasi-monochromatic samples are also susceptible of increasing their realistic appearance by colouring them using the simple methods utilized in this study.
NASA Astrophysics Data System (ADS)
Johnson, Virginia Abbott; Lockard, J. David
The effects of kinetic structure and micrograph content on student achievement of reading micrograph skills were examined. The purpose of the study was to determine which form of kinetic structure, high or low, and/or micrograph content, unified or varied, was most effective and if there were any interactive effects. Randomly assigned to four treatment groups, 100 introductory college biology students attended three audiovisual presentations and practice sessions on reading light, transmission electron, and scanning electron micrographs. The micrograph skills test, administered at two points in time, assessed knowledge acquisition and retention. The test measured general concept skills and actual reading micrograph skills separately. All significant tests were considered with an = 0.05. High kinetic structure was found to be more effective than low kinetic structure in developing general concepts about micrographs. This finding supports Anderson's kinetic theory research. High kinetic structure instruction does not affect actual reading micrograph skills, but micrograph content does. Unified micrograph content practice sessions were more effective than varied micrograph content practice sessions. More attention should be given to the visual components of perceptual learning tasks.
2012-01-01
Background Dermanyssus gallinae (poultry red mite) is a major threat for the poultry industry and is of significant interest for public health. Identification of D. gallinae can be difficult for scientists not familiar with mite morphology and terminology especially when trying to use identification keys. Moreover, this species may easily be confused with another dermanyssoid mite, Ornithonyssus sylviarum (northern fowl mite), which often shares the same hosts and environment. Methods Specimens of D. gallinae were collected at poultry farms in the Puglia and performed for light and scanning electron microscopy observations, identification and micrographs. Moreover specimens of O. sylviarum were collected separately macerated and mounted on slides for light microscopy observations, identification and pictures. Results The micrographs used in this study, based on LM and SEM observations, highlight the following important identifying characters of D. gallinae: the prominent shoulders of the dorsal shield and the jagged edges of the shield reticulations, the position of setae j1, s1 and the epigynal pores, and the presence on tibia IV pl of one seta. Additional micrographs highlighting the shape of the dorsal (abruptly narrowed posteriorly) and epigynal (narrowly rounded posteriorly) shields and the chelicera (elongate, with distinct digits) of O. sylviarum enable its differentiation from D.gallinae. Conclusion The photographic support provided here (both LM and SEM pictures) can be considered a practical tool for scientists who are not well acquainted with the morphology of D.gallinae, and who are involved with classical and molecular systematics, veterinary and human health aspects of poultry red mites. PMID:22647594
Digital image processing of nanometer-size metal particles on amorphous substrates
NASA Technical Reports Server (NTRS)
Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.
1989-01-01
The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.
A new Cleotomiris species (Hemiptera: Heteroptera: Miridae: Phylinae) from North Korea.
Konstantinov, Fedor; Simov, Nikolay
2014-04-08
Cleotomiris josifovi is described from the vicinity of Pyong Kang, North Korea. The description of this new species is provided with scanning micrographs of selected structures, and digital microscopic images of habitus and genitalia.
Mosaic construction, processing, and review of very large electron micrograph composites
NASA Astrophysics Data System (ADS)
Vogt, Robert C., III; Trenkle, John M.; Harmon, Laurel A.
1996-11-01
A system of programs is described for acquisition, mosaicking, cueing and interactive review of large-scale transmission electron micrograph composite images. This work was carried out as part of a final-phase clinical analysis study of a drug for the treatment of diabetic peripheral neuropathy. MOre than 500 nerve biopsy samples were prepared, digitally imaged, processed, and reviewed. For a given sample, typically 1000 or more 1.5 megabyte frames were acquired, for a total of between 1 and 2 gigabytes of data per sample. These frames were then automatically registered and mosaicked together into a single virtual image composite, which was subsequently used to perform automatic cueing of axons and axon clusters, as well as review and marking by qualified neuroanatomists. Statistics derived from the review process were used to evaluate the efficacy of the drug in promoting regeneration of myelinated nerve fibers. This effort demonstrates a new, entirely digital capability for doing large-scale electron micrograph studies, in which all of the relevant specimen data can be included at high magnification, as opposed to simply taking a random sample of discrete locations. It opens up the possibility of a new era in electron microscopy--one which broadens the scope of questions that this imaging modality can be used to answer.
Piper, Jörg
2010-01-01
Several software solutions are powerful tools to enhance the depth of field and improve focus in digital photomicrography. By these means, the focal depth can be fundamentally optimized so that three-dimensional structures within specimens can be documented with superior quality. Thus, images can be created in light microscopy which will be comparable with scanning electron micrographs. The remaining sharpness will no longer be dependent on the specimen's vertical dimension or its range in regional thickness. Moreover, any potential lack of definition associated with loss of planarity and unsteadiness in the visual accommodation can be mitigated or eliminated so that the contour sharpness and resolution can be strongly enhanced.Through the use of complementary software, ultrahigh ranges in brightness and contrast (the so-called high-dynamic range) can be corrected so that the final images will also be free from locally over- or underexposed zones. Furthermore, fine detail in low natural contrast can be visualized in much higher clarity. Fundamental enhancements of the global visual information will result from both techniques.
Large-Scale Document Automation: The Systems Integration Issue.
ERIC Educational Resources Information Center
Kalthoff, Robert J.
1985-01-01
Reviews current technologies for electronic imaging and its recording and transmission, including digital recording, optical data disks, automated image-delivery micrographics, high-density-magnetic recording, and new developments in telecommunications and computers. The role of the document automation systems integrator, who will bring these…
77 FR 52077 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... digital storage medium or system that meets the terms of rule 31a-2(f). The fund, or person that maintains..., Copies Available From: Securities and Exchange Commission, Office of Investor Education and Advocacy... maintained and preserved for the required time by, or on behalf of, a fund on (i) micrographic media...
Digital image analysis to quantify carbide networks in ultrahigh carbon steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N., E-mail: ypicard@cmu.edu
A method has been developed and demonstrated to quantify the degree of carbide network connectivity in ultrahigh carbon steels through digital image processing and analysis of experimental micrographs. It was shown that the network connectivity and carbon content can be correlated to toughness for various ultrahigh carbon steel specimens. The image analysis approach first involved segmenting the carbide network and pearlite matrix into binary contrast representations via a grayscale intensity thresholding operation. Next, the carbide network pixels were skeletonized and parceled into braches and nodes, allowing the determination of a connectivity index for the carbide network. Intermediate image processing stepsmore » to remove noise and fill voids in the network are also detailed. The connectivity indexes of scanning electron micrographs were consistent in both secondary and backscattered electron imaging modes, as well as across two different (50 × and 100 ×) magnifications. Results from ultrahigh carbon steels reported here along with other results from the literature generally showed lower connectivity indexes correlated with higher Charpy impact energy (toughness). A deviation from this trend was observed at higher connectivity indexes, consistent with a percolation threshold for crack propagation across the carbide network. - Highlights: • A method for carbide network analysis in steels is proposed and demonstrated. • ImageJ method extracts a network connectivity index from micrographs. • Connectivity index consistent in different imaging conditions and magnifications. • Impact energy may plateau when a critical network connectivity is exceeded.« less
Pantic, Igor; Dacic, Sanja; Brkic, Predrag; Lavrnja, Irena; Pantic, Senka; Jovanovic, Tomislav; Pekovic, Sanja
2014-10-01
This aim of this study was to assess the discriminatory value of fractal and grey level co-occurrence matrix (GLCM) analysis methods in standard microscopy analysis of two histologically similar brain white mass regions that have different nerve fiber orientation. A total of 160 digital micrographs of thionine-stained rat brain white mass were acquired using a Pro-MicroScan DEM-200 instrument. Eighty micrographs from the anterior corpus callosum and eighty from the anterior cingulum areas of the brain were analyzed. The micrographs were evaluated using the National Institutes of Health ImageJ software and its plugins. For each micrograph, seven parameters were calculated: angular second moment, inverse difference moment, GLCM contrast, GLCM correlation, GLCM variance, fractal dimension, and lacunarity. Using the Receiver operating characteristic analysis, the highest discriminatory value was determined for inverse difference moment (IDM) (area under the receiver operating characteristic (ROC) curve equaled 0.925, and for the criterion IDM≤0.610 the sensitivity and specificity were 82.5 and 87.5%, respectively). Most of the other parameters also showed good sensitivity and specificity. The results indicate that GLCM and fractal analysis methods, when applied together in brain histology analysis, are highly capable of discriminating white mass structures that have different axonal orientation.
A Hybrid Systems Approach to Preservation of Printed Materials.
ERIC Educational Resources Information Center
Willis, Don
Intended to stimulate thought and discussion, this report compares micrographics and digital imaging as tools for the preservation of printed materials. The topics covered include: (1) the advantages and disadvantages of each technology; (2) trade-offs involved in selecting one technology over another; (3) benefits of using a hybrid approach; (4)…
Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen
Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.; ...
2015-11-20
Two sets of “theta”-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlationmore » between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. Lastly, the spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.« less
Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.
Two sets of “theta”-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlationmore » between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. Lastly, the spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.« less
PHOTO MICROGRAPH - LUNAR SAMPE 10022
1969-08-28
S69-47900 (September 1969) --- This is a photo micrograph of lunar sample 10022. Magnification one inch equals one-tenth millimeter. The light blue and white mineral is plagioclase. The black is ilmenite, and the blue and/or green and/or orange and/or yellow and/or red mineral is pyroxene. The large pyroxene is a phenocryst that had been partially resorbed. The lunar samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during the Apollo 11 lunar landing mission have been subjected to extensive tests and examinations at the Manned Spacecraft Center’s Lunar Receiving Laboratory.
Silicone intraocular lens surface calcification in a patient with asteroid hyalosis.
Matsumura, Kazuhiro; Takano, Masahiko; Shimizu, Kimiya; Nemoto, Noriko
2012-07-01
To confirm a substance presence on the posterior intraocular lens (IOL) surface in a patient with asteroid hyalosis. An 80-year-old man had IOLs for approximately 12 years. Opacities and neodymium-doped yttrium aluminum garnet pits were observed on the posterior surface of the right IOL. Asteroid hyalosis and an epiretinal membrane were observed OD. An IOL exchange was performed on 24 March 2008, and the explanted IOL was analyzed using a light microscope and a transmission electron microscope with a scanning electron micrograph and an energy-dispersive X-ray spectrometer for elemental analysis. To confirm asteroid hyalosis, asteroid bodies were examined with the ionic liquid (EtMeIm+ BF4-) method using a field emission scanning electron microscope (FE-SEM) with digital beam control RGB mapping. X-ray spectrometry of the deposits revealed high calcium and phosphorus peaks. Spectrometry revealed that the posterior IOL surface opacity was due to a calcium-phosphorus compound. Examination of the asteroid bodies using FE-SEM with digital beam control RGB mapping confirmed calcium and phosphorus as the main components. Calcium hydrogen phosphate dihydrate deposits were probably responsible for the posterior IOL surface opacity. Furthermore, analysis of the asteroid bodies demonstrated that calcium and phosphorus were its main components.
Sharing digital micrographs and other data files between computers.
Entwistle, A
2004-01-01
It ought to be easy to exchange digital micrographs and other computer data files with a colleague even on another continent. In practice, this often is not the case. The advantages and disadvantages of various methods that are available for exchanging data files between computers are discussed. When possible, data should be transferred through computer networking. When data are to be exchanged locally between computers with similar operating systems, the use of a local area network is recommended. For computers in commercial or academic environments that have dissimilar operating systems or are more widely spaced, the use of FTPs is recommended. Failing this, posting the data on a website and transferring by hypertext transfer protocol is suggested. If peer to peer exchange between computers in domestic environments is needed, the use of Messenger services such as Microsoft Messenger or Yahoo Messenger is the method of choice. When it is not possible to transfer the data files over the internet, single use, writable CD ROMs are the best media for transferring data. If for some reason this is not possible, DVD-R/RW, DVD+R/RW, 100 MB ZIP disks and USB flash media are potentially useful media for exchanging data files.
Edwards, Gerald E.; Black, Clanton C.
1971-01-01
A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given. The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C4-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO2 enters a leaf about 85% is fixed by the C4-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells. A technique also is given for the isolation of mesophyll cells from spinach leaves. Images PMID:16657571
Edwards, G E; Black, C C
1971-01-01
A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given.The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C(4)-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO(2) enters a leaf about 85% is fixed by the C(4)-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells.A technique also is given for the isolation of mesophyll cells from spinach leaves.
Photonic crystals, light manipulation, and imaging in complex nematic structures
NASA Astrophysics Data System (ADS)
Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan
2016-03-01
Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.
Polishing and parboiling effect on the nutritional and technological properties of pigmented rice
USDA-ARS?s Scientific Manuscript database
This study aims to evaluate the effects of polishing and parboiling on proximate composition, structure, phenolic compounds, antioxidant activity, cooking time and hardness of IAC-600 black rice cultivar and MPB-10 red rice lineage. Proximate analysis and light micrographs revealed higher migration ...
Directional budding of human immunodeficiency virus from monocytes.
Perotti, M E; Tan, X; Phillips, D M
1996-01-01
Time-lapse cinematography revealed that activated human immunodeficiency virus (HIV)-infected monocytes crawl along surfaces, putting forward a leading pseudopod. Scanning electron micrographs showed monocyte pseudopods associated with spherical structures the size of HIV virions, and transmission electron micrographs revealed HIV virions budding from pseudopods. Filamentous actin (F-actin) was localized by electron microscopy in the pseudopod by heavy meromyosin decoration. Colocalization of F-actin and p24 viral antigen by light microscopy immunofluorescence indicated that F-actin and virus were present on the same pseudopod. These observations indicate that monocytes produce virus from a leading pseudopod. We suggest that HIV secretion at the leading edges of donor monocytes/macrophages may be an efficient way for HIV to infect target cells. PMID:8709212
Beier, K; Fahimi, H D
1987-01-01
The feasibility of the application of a television-based image analyzer, the Texture Analysis System (TAS, Leitz Wetzlar, FRG) in conjunction with a light microscope for morphometric studies of hepatic peroxisomes has been investigated. Rat liver peroxisomes were stained with the alkaline-DAB method for localization of catalase and semithin (0.25 and 1 micron) sections of plastic-embedded material were examined under an oil immersion objective. The TAS detected the peroxisomal profiles selectively and determined their morphometric parameters automatically. The same parameters were obtained also by morphometric analysis of electron micrographs from the same material. The volume density of peroxisomes determined by TAS in semithin sections of normal liver, after correction for section thickness, is quite close to the corresponding value obtained by morphometry of electron micrographs. The difference is approximately 20%. In animals treated with the hypolipidemic drug bezafibrate, which causes proliferation of peroxisomes, TAS detected readily the increase in volume density of peroxisomes in semithin sections. In comparison with electron microscopy, however, the light-microscopic approach seems to underestimate the proliferation. The lower resolution of the light microscope and overlapping of neighbouring particles in relatively thick sections used for light-microscopic analysis may account for the differences. The present study has demonstrated the usefulness of automatic image analysis in conjunction with selective cytochemical staining of peroxisomes for morphometry of this organelle in rat liver. The light-microscopic approach is not only faster but is also extremely economical by obviating the use of an electron microscope.
USDA-ARS?s Scientific Manuscript database
Trachymolgus purpureus Fisher & Dowling sp. nov. is described from the Ozark highlands of North America. A diversity of imaging techniques are used to illustrate the species including field emission low-temperature scanning electron microscopy (FE-LTSEM), stereomicrography, compound light micrograph...
A new look at lunar soil collected from the sea of tranquility during the Apollo 11 mission.
Kiely, Carol; Greenberg, Gary; Kiely, Christopher J
2011-02-01
Complementary state-of-the-art optical, scanning electron, and X-ray microscopy techniques have been used to study the morphology of Apollo 11 lunar soil particles (10084-47). The combination of innovative lighting geometries with image processing of a through focal series of images has allowed us to obtain a unique collection of high-resolution light micrographs of these fascinating particles. Scanning electron microscopy (SEM) stereo-pair imaging has been exploited to illustrate some of the unique morphological properties of lunar regolith. In addition, for the first time, X-ray micrographs with submicron resolution have been taken of individual particles using X-ray ultramicroscopy (XuM). This SEM-based technique lends itself readily to the imaging of pores, cracks, and inclusions and allows the internal structure of an entire particle to be viewed. Rotational SEM and XuM movies have also been constructed from a series of images collected at sequential angles through 360°. These offer a new and insightful view of these complex particles providing size, shape, and spatial information on many of their internal features.
Growth Patterns Inferred from Anatomical Records 1
Silk, Wendy Kuhn; Lord, Elizabeth M.; Eckard, Kathleen J.
1989-01-01
Our objective was to test whether accurate growth analyses can be obtained from anatomical records and some mathematical formulas. Roots of Zea mays L. were grown at one of two temperatures (19°C or 29°C) and were prepared with standard techniques for light microscopy. Positions of cell walls were digitized from micrographs. The digitized data were averaged and smoothed and used in formulas to estimate growth trajectories, Z(t), velocities, v(z), and strain rates, r(z), where Z(t) is the location occupied by the cellular particle at time t; and v(z) and r(z) are, respectively, the fields of growth velocity and strain rate. The relationships tested are: for Z(t), t = n * c; v(z) = l(z) * f; and r(z) = f * (∂/∂z (l(z))). In the formulas, n represents the number of cells between the origin and the position Z(t); l(z) is local cell length; the constant c, named the `cellochron,' denotes the time for successive cells to pass a spatial point distal to the meristem; l(z) is local cell length, and f is cell flux. Growth trajectories and velocity fields from the anatomical method are in good agreement with earlier analyses based on marking experiments at the two different temperatures. Growth strain rate fields show an unexpected oscillation which may be due to numerical artifacts or to a real oscillation in cell production rate. Images Figure 2 PMID:16666832
Methylene-Cycloalkylacetate (MCA) Scaffold-Based Compounds as Novel Neurotropic Agents.
Lankri, David; Haham, Dikla; Lahiani, Adi; Lazarovici, Philip; Tsvelikhovsky, Dmitry
2018-04-18
One of the main symptoms in degenerative diseases is death of neuronal cell followed by the loss of neuronal pathways. In neuronal cultures, neurite outgrowths are cell sprouts capable of transforming into either axons or dendrites, to further form functional neuronal synaptic connections. Such connections have an important role in brain cognition, neuronal plasticity, neuronal survival, and regeneration. Therefore, drugs that stimulate neurite outgrowth may be found beneficial in ameliorating neural degeneration. Here, we establish the existence of a unique family of methylene-cycloalkylacetate-based molecules (MCAs) that interface with neuronal cell properties and operate as acceptable pharmacophores for a novel neurotropic (neurite outgrowth inducing) lead compounds. Using an established PC12 cell bioassay, we investigated the neurotropic effect of methylene-cycloalkylacetate compounds by comparison to NGF, a known neurotropic factor. Micrographs of the cells were collected by using a light microscope camera, and digitized photographs were analyzed for compound-induced neurotropic activity using an NIH image protocol. The results indicate that the alkene element, integrated within the cycloalkylacetate core, is indispensable for neurotropic activity. The discovered lead compounds need further mechanistic investigation and may be improved toward development of a neurotropic drug.
Macro-microscopic anatomy: obtaining a composite view of barrier zone formation in Acer saccharum
Kenneth Dudzik
1988-01-01
The technique for constructing a montage of large wood sections cut on a sliding microtome is discussed. Briefly, the technique involves photographing many serial micrographs in a pattern under a light microscope similar to the way flight lines are run in aerial photography. Assembly of the resulting overlapping photographs requires careful trimming. A composite of...
NASA Technical Reports Server (NTRS)
Housley, R. M.
1983-01-01
The evolution of the lunar regolith under solar wind and micrometeorite bombardment is discussed as well as the size distribution of ultrafine iron in lunar soil. The most important characteristics of complex graphite, sulfide, arsenide, palladium, and platinum mineralization in a pegmatoid pyroxenite of the Stillwater Complex in Montana are examined. Oblique reflected light micrographs and backscattered electron SEM images of the graphite associations are included.
NASA Technical Reports Server (NTRS)
Heinemann, K.
1987-01-01
The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.
Saito, K; Niki, K
1983-07-01
We propose a new method of dealing with morphometric synaptology that processes all synapses and boutons around the HRP marked neuron on a large composite electron micrograph, rather than a qualitative or a piecemeal quantitative study of a particular synapse and/or bouton that is not positioned on the surface of the neuron. This approach requires the development of both neuroanatomical procedures, by which a specific whole neuronal profile is identified, and valuable specialized tools, which support the collection and analysis of a great volume of morphometric data from composite electron micrographs, in order to reduce the burden of the morphologist. The present report is also concerned with the total and reliable semi-automatic interactive computer system for gathering and analyzing morphometric data that has been under development in our laboratory. A morphologist performs the pattern recognition portion by using a large-sized tablet digitizer and a menu-sheet command, and the system registers the various morphometric values of many different neurons and performs statistical analysis. Some examples of morphometric measurements and analysis show the usefulness and efficiency of the proposed system and method.
Wiesmann, Veit; Bergler, Matthias; Palmisano, Ralf; Prinzen, Martin; Franz, Daniela; Wittenberg, Thomas
2017-03-18
Manual assessment and evaluation of fluorescent micrograph cell experiments is time-consuming and tedious. Automated segmentation pipelines can ensure efficient and reproducible evaluation and analysis with constant high quality for all images of an experiment. Such cell segmentation approaches are usually validated and rated in comparison to manually annotated micrographs. Nevertheless, manual annotations are prone to errors and display inter- and intra-observer variability which influence the validation results of automated cell segmentation pipelines. We present a new approach to simulate fluorescent cell micrographs that provides an objective ground truth for the validation of cell segmentation methods. The cell simulation was evaluated twofold: (1) An expert observer study shows that the proposed approach generates realistic fluorescent cell micrograph simulations. (2) An automated segmentation pipeline on the simulated fluorescent cell micrographs reproduces segmentation performances of that pipeline on real fluorescent cell micrographs. The proposed simulation approach produces realistic fluorescent cell micrographs with corresponding ground truth. The simulated data is suited to evaluate image segmentation pipelines more efficiently and reproducibly than it is possible on manually annotated real micrographs.
Optical characterization of fritted glass for architectural applications
NASA Astrophysics Data System (ADS)
Jonsson, Jacob C.; Rubin, Michael D.; Nilsson, Annica M.; Jonsson, Andreas; Roos, Arne
2009-04-01
Fritted glass is commonly used as a light diffusing element in modern buildings. Traditionally it has been used for aesthetic purposes but it can also be used for energy savings by incorporating it in novel daylighting systems? To answer such questions the light scattering properties must be properly characterized. This paper contains measurements of different varieties of fritted glass, ranging from the simplest direct-hemispherical measurements to angle-resolved goniometer measurements. Modeling the light scattering to obtain the full bidirectional scattering distribution function (BSDF) extends the measured data, making it useful in simulation programs such as Window 6 and Radiance. Surface profilometry results and SEM micrographs are included to demonstrate the surface properties of the samples studied.
J.C. Domec; B. Lachenbruch; F.C. Meinzer
2006-01-01
The air-seeding hypothesis predicts that xylem embolism resistance is linked directly to bordered pit functioning. We tested this prediction in trunks, roots, and branches at different vertical and radial locations in young and old trees of Pseudotsuga menziesii. Dimensions of bordered pits were measured from light and scanning electron micrographs...
NASA Astrophysics Data System (ADS)
Wan, Yi
2011-06-01
Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.
A rapid method for counting nucleated erythrocytes on stained blood smears by digital image analysis
Gering, E.; Atkinson, C.T.
2004-01-01
Measures of parasitemia by intraerythrocytic hematozoan parasites are normally expressed as the number of infected erythrocytes per n erythrocytes and are notoriously tedious and time consuming to measure. We describe a protocol for generating rapid counts of nucleated erythrocytes from digital micrographs of thin blood smears that can be used to estimate intensity of hematozoan infections in nonmammalian vertebrate hosts. This method takes advantage of the bold contrast and relatively uniform size and morphology of erythrocyte nuclei on Giemsa-stained blood smears and uses ImageJ, a java-based image analysis program developed at the U.S. National Institutes of Health and available on the internet, to recognize and count these nuclei. This technique makes feasible rapid and accurate counts of total erythrocytes in large numbers of microscope fields, which can be used in the calculation of peripheral parasitemias in low-intensity infections.
Atom Optics for Bose-Einstein Condensates (BEC)
2012-04-25
Electron Micrograph of the Top View of Test Chip A .......................................29 11. A Scanning Electron Micrograph of the Cross...Sectional View of Test Chip A .....................29 12. A Scanning Electron Micrograph of the Top View of Test Chip B...30 13. A Scanning Electron Micrograph of the Cross Sectional View of Test Chip B .....................30 14. Toner Masks for Etching
Gross, Colin A; Reddy, Chandan K; Dazzo, Frank B
2010-02-01
Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system's uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at http://cme.msu.edu/cmeias/ . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most, thereby strengthening quantitative microscopy-based approaches to advance microbial ecology in situ at individual single-cell resolution.
Gilloteaux, J
1975-08-27
Studies on the intrinsic innervation of the anterior byssal retractor muscle (ABRM) in Mytilus edulis L. were continued at the ultrastructural level. Electron micrographs show nerve processes ensheathed by glio-interstitial cells running between muscle fibers. The glio-interstitial cells may represent all the types of osmiophilic cells previously described by the light microscopic ZIO technique in the anterior byssal retractor muscle.
A Binary Segmentation Approach for Boxing Ribosome Particles in Cryo EM Micrographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adiga, Umesh P.S.; Malladi, Ravi; Baxter, William
Three-dimensional reconstruction of ribosome particles from electron micrographs requires selection of many single-particle images. Roughly 100,000 particles are required to achieve approximately 10 angstrom resolution. Manual selection of particles, by visual observation of the micrographs on a computer screen, is recognized as a bottleneck in automated single particle reconstruction. This paper describes an efficient approach for automated boxing of ribosome particles in micrographs. Use of a fast, anisotropic non-linear reaction-diffusion method to pre-process micrographs and rank-leveling to enhance the contrast between particles and the background, followed by binary and morphological segmentation constitute the core of this technique. Modifying the shapemore » of the particles to facilitate segmentation of individual particles within clusters and boxing the isolated particles is successfully attempted. Tests on a limited number of micrographs have shown that over 80 percent success is achieved in automatic particle picking.« less
The light transmission and distribution in an optical fiber coated with TiO2 particles.
Wang, Wen; Ku, Young
2003-03-01
The light delivery and distribution phenomena along the optical fiber coated with the P-25 TiO(2) particles by dipping was investigated. The surface properties (coverage, roughness and thickness) of the TiO(2) layer coated on the optical fiber were characterized by SEM micrographs. For TiO(2) layer prepared from solutions containing less than 20 wt.% of TiO(2) slurry, the thickness of layer was increased linearly with the TiO(2) slurry content in solutions. The UV light intensity transmitted along a TiO(2)-coated optical fiber decreased more rapidly than that transmitted along a non-coated fiber. Based on the experimental results, the light intensity distribution around a coated optical fiber was modeled to determine the optimum configuration for the design of optical fiber reactors under various operational conditions. Copyright 2002 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.
2012-03-01
Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
REN, GANG; LIU, JINXIN; LI, HONGCHANG
A closed-loop proportional-integral (PI) control software is provided for fully mechanically controlled automated electron microscopic tomography. The software is developed based on Gatan DigitalMicrograph, and is compatible with Zeiss LIBRA 120 transmission electron microscope. However, it can be expanded to other TEM instrument with modification. The software consists of a graphical user interface, a digital PI controller, an image analyzing unit, and other drive units (i.e.: image acquire unit and goniometer drive unit). During a tomography data collection process, the image analyzing unit analyzes both the accumulated shift and defocus value of the latest acquired image, and provides the resultsmore » to the digital PI controller. The digital PI control compares the results with the preset values and determines the optimum adjustments of the goniometer. The goniometer drive unit adjusts the spatial position of the specimen according to the instructions given by the digital PI controller for the next tilt angle and image acquisition. The goniometer drive unit achieves high precision positioning by using a backlash elimination method. The major benefits of the software are: 1) the goniometer drive unit keeps pre-aligned/optimized beam conditions unchanged and achieves position tracking solely through mechanical control; 2) the image analyzing unit relies on only historical data and therefore does not require additional images/exposures; 3) the PI controller enables the system to dynamically track the imaging target with extremely low system error.« less
Adhesion of resin composite core materials to dentin.
O'Keefe, K L; Powers, J M
2001-01-01
This study determined (1) the effect of polymerization mode of resin composite core materials and dental adhesives on the bond strength to dentin, and (2) if dental adhesives perform as well to dentin etched with phosphoric acid as to dentin etched with self-etching primer. Human third molars were sectioned 2 mm from the highest pulp horn and polished. Three core materials (Fluorocore [dual cured], Core Paste [self-cured], and Clearfil Photo Core [light cured]) and two adhesives (Prime & Bond NT Dual Cure and Clearfil SE Bond [light cured]) were bonded to dentin using two dentin etching conditions. After storage, specimens were debonded in microtension and bond strengths were calculated. Scanning electron micrographs of representative bonding interfaces were analyzed. Analysis showed differences among core materials, adhesives, and etching conditions. Among core materials, dual-cured Fluorocore had the highest bond strengths. There were incompatibilities between self-cured Core Paste and Prime & Bond NT in both etched (0 MPa) and nonetched (3.0 MPa) dentin. Among adhesives, in most cases Clearfil SE Bond had higher bond strengths than Prime & Bond NT and bond strengths were higher to self-etched than to phosphoric acid-etched dentin. Scanning electron micrographs did not show a relationship between resin tags and bond strengths. There were incompatibilities between a self-cured core material and a dual-cured adhesive. All other combinations of core materials and adhesives produced strong in vitro bond strengths both in the self-etched and phosphoric acid-etched conditions.
The Effect of Format on Performance: Editing Text in Print versus Digital Formats
ERIC Educational Resources Information Center
Eden, Sigal; Eshet-Alkalai, Yoram
2013-01-01
In light of the present-day proliferation of digital texts and the increase in situations that require active digital text reading in learning, it is becoming increasingly important to shed light on the comparison between print and digital reading under active reading conditions. In this study, the active reading abilities of 93 university…
2000-01-01
second tier technologies: digital micromirror devices (DMD); alternating current gas plasma (ACGP); inorganic electroluminescent (EL, TFEL, AMEL... Micromirror Device (DMD) - Alternating Current Gas Plasma (ACGP) - Electroluminescent (EL, TFEL, AMEL) - Vacuum Fluorescent Display (VFD) - Inorganic Light...Instruments Digital Micromirror Device (DMD) Digital Light Processing technology and another, the Qualcomm/Hughes-JVC CRT/Liquid Crystal Light Valve
DMD: a digital light processing application to projection displays
NASA Astrophysics Data System (ADS)
Feather, Gary A.
1989-01-01
Summary Revolutionary technologies achieve rapid product and subsequent business diffusion only when the in- ventors focus on technology application, maturation, and proliferation. A revolutionary technology is emerg- ing with micro-electromechanical systems (MEMS). MEMS are being developed by leveraging mature semi- conductor processing coupled with mechanical systems into complete, integrated, useful systems. The digital micromirror device (DMD), a Texas Instruments invented MEMS, has focused on its application to projec- tion displays. The DMD has demonstrated its application as a digital light processor, processing and produc- ing compelling computer and video projection displays. This tutorial discusses requirements in the projection display market and the potential solutions offered by this digital light processing system. The seminar in- cludes an evaluation of the market, system needs, design, fabrication, application, and performance results of a system using digital light processing solutions.
The Hawaiian Freshwater Algal Database (HfwADB): a laboratory LIMS and online biodiversity resource
2012-01-01
Background Biodiversity databases serve the important role of highlighting species-level diversity from defined geographical regions. Databases that are specially designed to accommodate the types of data gathered during regional surveys are valuable in allowing full data access and display to researchers not directly involved with the project, while serving as a Laboratory Information Management System (LIMS). The Hawaiian Freshwater Algal Database, or HfwADB, was modified from the Hawaiian Algal Database to showcase non-marine algal specimens collected from the Hawaiian Archipelago by accommodating the additional level of organization required for samples including multiple species. Description The Hawaiian Freshwater Algal Database is a comprehensive and searchable database containing photographs and micrographs of samples and collection sites, geo-referenced collecting information, taxonomic data and standardized DNA sequence data. All data for individual samples are linked through unique 10-digit accession numbers (“Isolate Accession”), the first five of which correspond to the collection site (“Environmental Accession”). Users can search online for sample information by accession number, various levels of taxonomy, habitat or collection site. HfwADB is hosted at the University of Hawaii, and was made publicly accessible in October 2011. At the present time the database houses data for over 2,825 samples of non-marine algae from 1,786 collection sites from the Hawaiian Archipelago. These samples include cyanobacteria, red and green algae and diatoms, as well as lesser representation from some other algal lineages. Conclusions HfwADB is a digital repository that acts as a Laboratory Information Management System for Hawaiian non-marine algal data. Users can interact with the repository through the web to view relevant habitat data (including geo-referenced collection locations) and download images of collection sites, specimen photographs and micrographs, and DNA sequences. It is publicly available at http://algae.manoa.hawaii.edu/hfwadb/. PMID:23095476
Hard X-ray full field microscopy and magnifying microtomography using compound refractive lenses
NASA Astrophysics Data System (ADS)
Schroer, Christian G.; Günzler, Til Florian; Benner, Boris; Kuhlmann, Marion; Tümmler, Johannes; Lengeler, Bruno; Rau, Christoph; Weitkamp, Timm; Snigirev, Anatoly; Snigireva, Irina
2001-07-01
For hard X-rays, parabolic compound refractive lenses (PCRLs) are genuine imaging devices like glass lenses for visible light. Based on these new lenses, a hard X-ray full field microscope has been constructed that is ideally suited to image the interior of opaque samples with a minimum of sample preparation. As a result of a large depth of field, CRL micrographs are sharp projection images of most samples. To obtain 3D information about a sample, tomographic techniques are combined with magnified imaging.
Endosporoideus gen. nov., a mitosporic fungus on Phoenix hanceana.
Ho, Wai Hong; Yanna; Hyde, Kevin D; Goh, Teik Khiang
2005-01-01
Endosporoideus pedicellata gen. et sp, nov. is described and illustrated from decaying petioles of Phoenix hanceana collected from grassland in Tai Mo Shan, Hong Kong. The genus is unique in producing solitary, phragmosporous conidia. The conidia comprise a brown to dark brown inner-wall layer and thick, hyaline outer-wall layer and are produced holoblastically from determinate conidiogenous cells on micronematous, mononematous conidiophores. Cells of conidia may disarticulate at the septa. Representative steps in conidiogenesis of E. pedicellata are illustrated with light micrographs, and details of the conidiogenous events are interpreted schematically.
The Hawaiian Algal Database: a laboratory LIMS and online resource for biodiversity data
Wang, Norman; Sherwood, Alison R; Kurihara, Akira; Conklin, Kimberly Y; Sauvage, Thomas; Presting, Gernot G
2009-01-01
Background Organization and presentation of biodiversity data is greatly facilitated by databases that are specially designed to allow easy data entry and organized data display. Such databases also have the capacity to serve as Laboratory Information Management Systems (LIMS). The Hawaiian Algal Database was designed to showcase specimens collected from the Hawaiian Archipelago, enabling users around the world to compare their specimens with our photographs and DNA sequence data, and to provide lab personnel with an organizational tool for storing various biodiversity data types. Description We describe the Hawaiian Algal Database, a comprehensive and searchable database containing photographs and micrographs, geo-referenced collecting information, taxonomic checklists and standardized DNA sequence data. All data for individual samples are linked through unique accession numbers. Users can search online for sample information by accession number, numerous levels of taxonomy, or collection site. At the present time the database contains data representing over 2,000 samples of marine, freshwater and terrestrial algae from the Hawaiian Archipelago. These samples are primarily red algae, although other taxa are being added. Conclusion The Hawaiian Algal Database is a digital repository for Hawaiian algal samples and acts as a LIMS for the laboratory. Users can make use of the online search tool to view and download specimen photographs and micrographs, DNA sequences and relevant habitat data, including georeferenced collecting locations. It is publicly available at . PMID:19728892
El Hoshy, Khaled; Bosseila, Manal; El Sharkawy, Dina; Sobhi, Rehab
2016-06-01
The preferential accumulation of 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) in neoplastic cells supports its potential use in the photodetection of epithelial tumours through porphyrin fluorescence. To assess the validity of fluorescence diagnosis (FD) as an efficient pre-surgical in vivo imaging tool for defining the lateral boundaries of various types of basal cell carcinomas (BCCs). The BCC tumour area was determined for 27 patients using FD digitalized imaging system, where the accumulation of PpIX in tumour tissue in relation to normal tissue was measured. Subsequently, BCCs were excised according to the complete area defined by FD using Mohs micrographic surgery (MMS). Of the 27 BCCs, the FD margin of the lesion coincided with the histopathological picture in 12 BCCs (44.44%). The mean value of accumulation factor (AF) was 2.7. Although 17 pigmented BCCs showed attenuated or absent fluorescence in the center, fluorescence at their periphery was used as a guide for excision, and statistically, the pigmentation of the BCCs showed no effect on the results of the FD efficacy (p=1.0). Fluorescence diagnosis of BCC may be beneficial as a guide to the safety margin needed before MMS. The safety margin is decided according to the FD tumour diameter in relation to the clinical tumour diameter. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Information Dynamics Corp., Reading, MA.
A five-year development program plan was drawn up for the Defense Documentation Center (DDC). This report presents in summary form the results of various surveys and reviews performed in selected areas of micrographics to support the efforts of the program's planners. Exhibits of supporting documentation are presented, together with a discussion…
Lighting in digital game worlds: effects on affect and play performance.
Knez, Igor; Niedenthal, Simon
2008-04-01
As a means of extending the significance of findings in experimental psychology and nonvisual psychological lighting research to digital game research, the present study was designed to investigate the impact of warm (reddish) and cool (bluish) simulated illumination in digital game worlds on game users' affect and play performance. In line with some previous findings, we predicted that lighting in a digital game world might, as in the real world, differently influence the nonvisual psychological mechanisms of affect, which in turn might enhance or impair the players' performance. It was shown that the players performed best and fastest in a game world lit with a warm (reddish) as compared to a cool (bluish) lighting. The former color of lighting also induced the highest level of pleasantness in game users. A regression analysis indicated tentatively that it was the level of pleasantness induced by the warm lighting that enhanced the players' better performance in that digital game world. It was also shown that high- as opposed to medium- or low-skilled players engage almost 2.5 times more per week in game playing. Given their skill, they performed significantly faster and felt significantly calmer and more relaxed in doing so.
Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques
NASA Astrophysics Data System (ADS)
Rekha, Suganthini; Bupesh Raja, V. K.
2017-05-01
The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.
The application of digital image plane holography technology to identify Chinese herbal medicine
NASA Astrophysics Data System (ADS)
Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui
2012-03-01
In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1993-01-01
A Linear Motion Encoding device for measuring the linear motion of a moving object is disclosed in which a light source is mounted on the moving object and a position sensitive detector such as an array photodetector is mounted on a nearby stationary object. The light source emits a light beam directed towards the array photodetector such that a light spot is created on the array. An analog-to-digital converter, connected to the array photodetector is used for reading the position of the spot on the array photodetector. A microprocessor and memory is connected to the analog-to-digital converter to hold and manipulate data provided by the analog-to-digital converter on the position of the spot and to compute the linear displacement of the moving object based upon the data from the analog-to-digital converter.
NASA Astrophysics Data System (ADS)
Nakhostin, M.
2015-10-01
In this paper, we have compared the performances of the digital zero-crossing and charge-comparison methods for n/γ discrimination with liquid scintillation detectors at low light outputs. The measurements were performed with a 2″×2″ cylindrical liquid scintillation detector of type BC501A whose outputs were sampled by means of a fast waveform digitizer with 10-bit resolution, 4 GS/s sampling rate and one volt input range. Different light output ranges were measured by operating the photomultiplier tube at different voltages and a new recursive algorithm was developed to implement the digital zero-crossing method. The results of our study demonstrate the superior performance of the digital zero-crossing method at low light outputs when a large dynamic range is measured. However, when the input range of the digitizer is used to measure a narrow range of light outputs, the charge-comparison method slightly outperforms the zero-crossing method. The results are discussed in regard to the effects of the quantization noise and the noise filtration performance of the zero-crossing filter.
NASA Technical Reports Server (NTRS)
Albus, James S.
1961-01-01
The solar aspect sensor described herein performs the analog-to-digital conversion of data optically. To accomplish this, it uses a binary "Gray code" light mask to produce a digital indication, in vehicle-fixed coordinates, of the elevation and azimuth angles of incident light from the sun. This digital solar aspect sensor system, in Explorer X, provided measurements of both elevation and azimuth angles to +/- 2 degrees at a distance of over 140,000 statute miles.
NASA Astrophysics Data System (ADS)
Mahata, K.; Shrivastava, A.; Gore, J. A.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Kumar, A.; Gupta, S.; Patale, P.
2018-06-01
In beam test experiments have been carried out for particle identification using digital pulse shape analysis in a 500 μm thick Neutron Transmutation Doped (nTD) silicon detector with an indigenously developed FPGA based 12 bit resolution, 1 GHz sampling digitizer. The nTD Si detector was used in a low-field injection setup to detect light heavy-ions produced in reactions of ∼ 5 MeV/A 7Li and 12C beams on different targets. Pulse height, rise time and current maximum have been obtained from the digitized charge output of a high bandwidth charge and current sensitive pre-amplifier. Good isotopic separation have been achieved using only the digitized charge output in case of light heavy-ions. The setup can be used for charged particle spectroscopy in nuclear reactions involving light heavy-ions around the Coulomb barrier energies.
Ultrastructural organization of the hamster renal pelvis.
Lacy, E R; Schmidt-Nielsen, B
1979-08-01
The renal pelvis of the hamster has been studied by light microscopy (epoxy resin sections), transmission electron microscopy, and morphometric analysis of electron micrographs. Three morphologically distinct epithelia line the pelvis, and each covers a different zone of the kidney. A thin epithelium covering the outer medulla (OM) consists of two cell types: (1) granular cells are most numerous and have apically positioned granules which stain intensely with toluidine blue, are membrane-bound, and contain a fine particulate matter that stains light grey to black in electron micrographs. (2) Basal cells do not have granules, are confined to the basal lamina region, and do not reach the mucosal epithelial surface. The inner medulla (IM) is covered by a pelvic epithelium morphologically similar to collecting duct epithelium of IM. Some cells in this portion of the pelvic epithelium (IM) stain intensely dark with toluidine blue, osmium tetroxide, lead, and uranyl acetate. Transitional epithelium, which separates cortex (C) from pelvic urine, has an asymmetric luminal plasma membrane and discoid vesicles, each of which is similar to those previously observed in mammalian ureter and urinary bladder epithelia. Based on morphological comparisons with other epithelia, the IM and OM pelvic epithelia would appear permeable to solutes and/or water, while the transitional epithelium covering the C appears relatively impermeable. It would also appear that the exchange of solutes and water between pelvic urine and OM would involve capillaries, primarily, since morphometric analysis showed that both fenestrated and continuous capillaries of the OM were extremely abundant (greater than 60% of OM pelvic surface area) just under the thin pelvic epithelium.
Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo
2008-01-23
To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.
Radi, M; Gaubert, J; Cristol-Gaubert, R; Baecker, V; Travo, P; Prudhomme, M; Godlewski, G; Prat-Pradal, D
2010-01-01
The goal in this paper was to rebuild a three dimensional (3D) reconstruction of the dorsal and ventral pancreatic buds, in the human embryos, at Carnegie stages 15-23. The early development of the pancreas is studied by tissue observation and reconstruction by a computer-assisted method, using a light micrograph images from consecutive serial sagittal sections (diameter 7 microm) of ten human embryos ranging from Carnegie stages 15-23, CRL 7-27 mm, fixed, dehydrated and embedded in paraffin, were stained alternately with haematoxylin-eosin or Heindenhain'Azan. The images were digitalized by Canon Camera 350 EOS D. The serial views were aligned automatically by software, manual alignment was performed, the data were analysed following segmentation and threshold. The two buds were clearly identified at stage 15. In stage 16, both pancreatic buds were in final position, and begin to merge in stage 17. From stage 18 to the stage 23, surrounding connective tissue differentiated. In the stage 23, the morphology of the pancreas was definitive. The superior portion of the anterior face of the pancreas's head was arising from the dorsal bud. The rest of the head including the uncinate process emanated from the ventral bud. The 3D computer-assisted reconstruction of the human pancreas visualized the relationships between the two pancreatic buds. This explains the disposition and the modality of the components fusion. This embryologic development permits a better understanding of congenital abnormalities.
A new method of three-dimensional computer assisted reconstruction of the developing biliary tract.
Prudhomme, M; Gaubert-Cristol, R; Jaeger, M; De Reffye, P; Godlewski, G
1999-01-01
A three-dimensional (3-D) computer assisted reconstruction of the biliary tract was performed in human and rat embryos at Carnegie stage 23 to describe and compare the biliary structures and to point out the anatomic relations between the structures of the hepatic pedicle. Light micrograph images from consecutive serial sagittal sections (diameter 7 mm) of one human and 16 rat embryos were directly digitalized with a CCD camera. The serial views were aligned automatically by software. The data were analysed following segmentation and thresholding, allowing automatic reconstruction. The main bile ducts ascended in the mesoderm of the hepatoduodenal ligament. The extrahepatic bile ducts: common bile duct (CD), cystic duct and gallbladder in the human, formed a compound system which could not be shown so clearly in histologic sections. The hepato-pancreatic ampulla was studied as visualised through the duodenum. The course of the CD was like a chicane. The gallbladder diameter and length were similar to those of the CD. Computer-assisted reconstruction permitted easy acquisition of the data by direct examination of the sections through the microscope. This method showed the relationships between the different structures of the hepatic pedicle and allowed estimation of the volume of the bile duct. These findings were not obvious in two-dimensional (2-D) views from histologic sections. Each embryonic stage could be rebuilt in 3-D, which could introduce the time as a fourth dimension, fundamental for the study of organogenesis.
Influence of different restorative techniques on marginal seal of class II composite restorations
RODRIGUES JUNIOR, Sinval Adalberto; PIN, Lúcio Fernando da Silva; MACHADO, Giovanna; DELLA BONA, Álvaro; DEMARCO, Flávio Fernando
2010-01-01
Objective To evaluate the gingival marginal seal in class II composite restorations using different restorative techniques. Material and Methods Class II box cavities were prepared in both proximal faces of 32 sound human third molars with gingival margins located in either enamel or dentin/cementum. Restorations were performed as follows: G1 (control): composite, conventional light curing technique; G2: composite, soft-start technique; G3: amalgam/composite association (amalcomp); and G4: resin-modified glass ionomer cement/ composite, open sandwich technique. The restored specimens were thermocycled. Epoxy resin replicas were made and coated for scanning electron microscopy examination. For microleakage evaluation, teeth were coated with nail polish and immersed in dye solution. Teeth were cut in 3 slices and dye penetration was recorded (mm), digitized and analyzed with Image Tool software. Microleakage data were analyzed statistically by non-parametric Kruskal-Wallis and Mann-Whitney tests. Results Leakage in enamel was lower than in dentin (p<0.001). G2 exhibited the lowest leakage values (p<0.05) in enamel margins, with no differences between the other groups. In dentin margins, groups G1 and G2 had similar behavior and both showed less leakage (p<0.05) than groups G3 and G4. SEM micrographs revealed different marginal adaptation patterns for the different techniques and for the different substrates. Conclusion The soft-start technique showed no leakage in enamel margins and produced similar values to those of the conventional (control) technique for dentin margins. PMID:20379680
Scanning computed confocal imager
George, John S.
2000-03-14
There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.
NASA Astrophysics Data System (ADS)
Ross, Arthur; Renfro, Timothy
2012-03-01
The Digital Electronics class at McMurry University created a Christmas light display that toggles the power of different strands of lights, according to what frequencies are played in a song, as an example of an analog to digital circuit. This was accomplished using a BA3830S IC six-band audio filter and six solid-state relays.
Chang, C F; Williams, R C; Grano, D A; Downing, K H; Glaeser, R M
1983-01-01
This study investigates the causes of the apparent differences between the optical diffraction pattern of a micrograph of a Tobacco Mosaic Virus (TMV) particle, the optical diffraction pattern of a ten-fold photographically averaged image, and the computed diffraction pattern of the original micrograph. Peak intensities along the layer lines in the transform of the averaged image appear to be quite unlike those in the diffraction pattern of the original micrograph, and the diffraction intensities for the averaged image extend to unexpectedly high resolution. A carefully controlled, quantitative comparison reveals, however, that the optical diffraction pattern of the original micrograph and that of the ten-fold averaged image are essentially equivalent. Using computer-based image processing, we discovered that the peak intensities on the 6th layer line have values very similar in magnitude to the neighboring noise, in contrast to what was expected from the optical diffraction pattern of the original micrograph. This discrepancy was resolved by recording a series of optical diffraction patterns when the original micrograph was immersed in oil. These patterns revealed the presence of a substantial phase grating effect, which exaggerated the peak intensities on the 6th layer line, causing an erroneous impression that the high resolution features possessed a good signal-to-noise ratio. This study thus reveals some pitfalls and misleading results that can be encountered when using optical diffraction patterns to evaluate image quality.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1996-01-01
A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror direct the light beam to a stand-alone low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-lo-digital converter.
Context-Aided Tracking with Adaptive Hyperspectral Imagery
2011-06-01
narrow spectral bands (e). . . . . . . . . . . . . . . . . . . . . 14 ix Figure Page 2.2. An illustration of a small portion of a digital micromirror ...incorporates two light paths: imaging and spectroscopy. Each pixel is steered towards a light path indepen- dently via the digital micromirror device (DMD...With the advent of digital micromirror device (DMD) arrays (DMA), the Rochester Institute of Technology Multi-Object Spectrometer (RITMOS) [36
Nailfold capillaroscopy by digital microscope in an Indian population with systemic sclerosis.
Bhakuni, Darshan S; Vasdev, Vivek; Garg, M K; Narayanan, Krishanan; Jain, Rahul; Mullick, Gautam
2012-02-01
Nailfold capillaroscopy (NFC) is a simple, non-invasive method with exceptional predictive value for the analysis of microvascular abnormalities, especially in systemic sclerosis (SSc) but remains underutilized due to cost factors of the nailfold videocapillaroscope, lack of expertise and availability issues. The aim of this study was to establish the utility of an inexpensive digital microscope to study NFC changes in SSc in correlation with disease subsets and extent of skin involvement. Twenty-two diffuse cutaneous SSc (DSS), 20 limited cutaneous SSc (LSS) patients and 42 controls were evaluated with NFC using a digital microscope at 30× and 100× magnification. Digital micrographs were used to study qualitative and quantitative changes in microvasculature. The capillary density was significantly less in all cases of SSc as compared to controls (5.3 ± 1.4 vs. 8.7 ± 1.2; P < 0.00001). Disorganized architecture was much more prevalent in DSS versus LSS (86.4%vs. 25%). The vascular deletion score (VDS) was significantly higher in DSS as compared to LSS (P < 0.0001). Scleroderma pattern (SP) was seen in 18 (81.9%) and 15 (75%) of patients with DSS and LSS, respectively. Only 4% of normal subjects showed non-specific pattern and none showed SP. The mean modified Rodnan skin score (MRSS) was positively correlated with vascular deletion score (r = 0.572; P < 0.001) and negatively with capillary density (r = -0.8; P < 0.001). Nailfold capillaroscopy changes in SSc are related to disease subset and MRSS. NFC with digital microscope is a simplified, inexpensive, outpatient procedure with results comparable to previous studies. © 2011 The Authors. International Journal of Rheumatic Diseases © 2011 Asia Pacific League of Associations for Rheumatology and Blackwell Publishing Asia Pty Ltd.
Scanning Transmission Electron Microscopy at High Resolution
Wall, J.; Langmore, J.; Isaacson, M.; Crewe, A. V.
1974-01-01
We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 Å resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 Å is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver. Images PMID:4521050
Rotary encoding device using polygonal mirror with diffraction gratings on each facet
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1993-01-01
A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror each have a low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-to-digital converter.
Study of Mechano-Chemical Machining of Ceramics and the Effect on Thin Film Behavior.
1981-06-01
polished 7 dry on nylon using NaCI 3 Photomicrographs of the etched surfaces of MgO polished 8 .wet on glass using NaCl 4 Surface profile and Nomarski ...micrograph of a Si wafer 10 taken before mechano-chemical polishing 5 Surface profile and Nomarski micrograph of a Si wafer 11 taken after mechano... Nomarski micrographs of mechano-chemically-polished 21 sapphire and tape-cast alumina 14 Surface profiles of mechano-chemically-polished sapphire 22
Spectrum image analysis tool - A flexible MATLAB solution to analyze EEL and CL spectrum images.
Schmidt, Franz-Philipp; Hofer, Ferdinand; Krenn, Joachim R
2017-02-01
Spectrum imaging techniques, gaining simultaneously structural (image) and spectroscopic data, require appropriate and careful processing to extract information of the dataset. In this article we introduce a MATLAB based software that uses three dimensional data (EEL/CL spectrum image in dm3 format (Gatan Inc.'s DigitalMicrograph ® )) as input. A graphical user interface enables a fast and easy mapping of spectral dependent images and position dependent spectra. First, data processing such as background subtraction, deconvolution and denoising, second, multiple display options including an EEL/CL moviemaker and, third, the applicability on a large amount of data sets with a small work load makes this program an interesting tool to visualize otherwise hidden details. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alsafy, M A M; El-Gendy, S A A
2012-03-01
The aim of this study was to cast a spotlight on the topography and to point out the clinical importance of the gastroesophageal junction (GEJ) in Anatolian Shepherd dogs. Nine Anatolian Shepherd dogs were used to study the morphology of the GEJ. The esophagus was appeared has a portion within the thoracic cavity while no portion of the esophagus presented within the abdominal cavity that documented the absence of the intra-abdominal portion in all studied dogs. The topographic anatomy, scanning electron and light microscopic examinations revealed that the gastroesophageal junction was located at the level of the phrenico-esophageal ligament (PEL) inside the esophageal hiatus. Our results were distinguished the morphology of the esophageal and gastric cardiac mucosa at the level of the gastroesophageal junction by the scanning electron micrographs. The light microscopical examination was explained the PEL attached to the esophageal side in one dog and to the gastric cardiac side in three dogs.
Confocal retinal imaging using a digital light projector with a near infrared VCSEL source
NASA Astrophysics Data System (ADS)
Muller, Matthew S.; Elsner, Ann E.
2018-02-01
A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1" LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging.
Near white light emission of silicon nanocrystals
NASA Astrophysics Data System (ADS)
Lee, Soojin; Han, Il-Ki; Cho, Woon-Jo
2003-11-01
Silicon nanoparticles in the range from 2 nm to 5 nm was prepared from Zintl salt, soldium silicide (NaSi) by sonochemical method. This synthesis permits the reaction completed as fast as in a few hours and the easy alkyl-modification of nanocrystals surface at room temperature and ambient pressure. The average size of nanoparticles measured by the dynamic light scattering analysis was 2.7 nm. The high-resolution transmission electron micrograph cofirmed the material identity of nanoparticles as crystalline silicon. FT-IR spectra are consistent with the surface states of nanocrystals that is chlorine- or butyl-capped. The emission peak center moved to longer wavelength (up to 430 nm) with the reaction time, under a 325 nm excitation. The luminescence of silicon colloids looks bright bluish-white under excitation using a commercial low-intensity UV lamp.
Cementum structure in Beluga whale teeth
Stock, S. R.; Finney, L. A.; Telser, A.; ...
2016-11-09
We report that a large fraction of the volume of Beluga whale (Delphinapterus leucas) teeth consists of cementum, a mineralized tissue which grows throughout the life of the animal and to which the periodontal ligaments attach. Annular growth bands or growth layer groups (GLGs) form within Beluga cementum, and this study investigates GLG structure using X-ray fluorescence mapping and X-ray diffraction mapping with microbeams of synchrotron radiation. The Ca and Zn fluorescent intensities and carbonated hydroxyapatite (cAp) diffracted intensities rise and fall together and match the light-dark bands visible in transmitted light micrographs. Within the bands of maximum Ca andmore » Zn intensity, the ratio of Zn to Ca is slightly higher than in the minima bands. Further, the GLG cAp, Ca and Zn modulation is preserved throughout the cementum for durations >25 year.« less
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1993-01-01
A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets is presented. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.
NASA Astrophysics Data System (ADS)
Yin, Yujian; Su, Ping; Ma, Jianshe
2018-01-01
A method to improve the radial resolution using special structured light is proposed in the field of digital holographic microscopy (DHM). A specimen is illuminated with circular symmetrical structured light that makes the spectrum have radial movement, so that high frequency components of the specimen are moved into the passband of the receiver to overcome the diffraction limit. In the DHM imaging system, Computer Generated Hologram (CGH) technology is used to generate the required structured light grating. Then the grating is loaded into a spatial light modulator (SLM) to obtain specific structured illumination. After recording the hologram, digital reconstruction, for the microstructure of a binary optical element that needs to observe radial distribution, the radial resolution of the specimen is improved experimentally compare it with the result of one-dimensional sinusoidal structured light imaging. And a method of designing structured light is presented.
A novel method for detecting light source for digital images forensic
NASA Astrophysics Data System (ADS)
Roy, A. K.; Mitra, S. K.; Agrawal, R.
2011-06-01
Manipulation in image has been in practice since centuries. These manipulated images are intended to alter facts — facts of ethics, morality, politics, sex, celebrity or chaos. Image forensic science is used to detect these manipulations in a digital image. There are several standard ways to analyze an image for manipulation. Each one has some limitation. Also very rarely any method tried to capitalize on the way image was taken by the camera. We propose a new method that is based on light and its shade as light and shade are the fundamental input resources that may carry all the information of the image. The proposed method measures the direction of light source and uses the light based technique for identification of any intentional partial manipulation in the said digital image. The method is tested for known manipulated images to correctly identify the light sources. The light source of an image is measured in terms of angle. The experimental results show the robustness of the methodology.
Seo, Soo Hong; Kim, Jae Hwan; Kim, Ji Woong; Kye, Young Chul; Ahn, Hyo Hyun
2011-02-01
Digital photography can be used to measure skin color colorimetrically when combined with proper techniques. To better understand the settings of digital photography for the evaluation and measurement of skin colors, we used a tungsten lamp with filters and the custom white balance (WB) function of a digital camera. All colored squares on a color chart were photographed with each original and filtered light, analyzed into CIELAB coordinates to produce the calibration method for each given light setting, and compared statistically with reference coordinates obtained using a reflectance spectrophotometer. They were summarized as to the typical color groups, such as skin colors. We compared these results according to the fixed vs. custom WB of a digital camera. The accuracy of color measurement was improved when using light with a proper color temperature conversion filter. The skin colors from color charts could be measured more accurately using a fixed WB. In vivo measurement of skin color was easy and possible with our method and settings. The color temperature conversion filter that produced daylight-like light from the tungsten lamp was the best choice when combined with fixed WB for the measurement of colors and acceptable photographs. © 2010 John Wiley & Sons A/S.
Cutting efficiency of a mid-infrared laser on human enamel.
Levy, G; Koubi, G F; Miserendino, L J
1998-02-01
In this study, the cutting ability of a newly developed dental laser was compared with a dental high-speed handpiece and rotary bur for removal of enamel. Measurements of the volume of tissue removed, energy emitted, and time of exposure were used to quantify the ablation rate (rate of tissue removal) for each test group and compared. Cutting efficiency (mm3/s) of the laser was calculated based on the mean volume of tissue removed per pulse (mm3/pulse) and unit energy expended (mm3/J) over the range of applied powers (2, 4, 6, and 8 W). The specimens were then examined by light microscopy and scanning electron micrographs for qualitative analysis of the amount of remaining debris and the presence of the smear layer on the prepared enamel surface. Calculations of the cutting efficiency of the laser over the range of powers tested revealed a linear relationship with the level of applied power. The maximum average rate of tissue removal by the laser was 0.256 mm3/s at 8 W, compared with 0.945 mm3/s by the dental handpiece. Light microscopy and scanning electron micrograph examinations revealed a reduction in the amount of remaining debris and smear layer in the laser-prepared enamel surfaces, compared with the conventional method. Based on the results of this study, the cutting efficiency of the high-speed handpiece and dental bur was 3.7 times greater than the laser over the range of powers tested, but the laser appeared to create a cleaner enamel surface with minimal thermal damage. Further modifications of the laser system are suggested for improvement of laser cutting efficiency.
Taheri, M.; Darabyan, M.; Izadbakhsh, E.; Nouri, F.; Haghani, M.; Mortazavi, S.A.R.; Mortazavi, G.; Mortazavi, S.M.J.; Moradi, M.
2017-01-01
Background: Due to rapid advances in modern technologies such as telecommunication technology, the world has witnessed an exponential growth in the use of digital handheld devices (e.g. smartphones and tablets). This drastic growth has resulted in increased global concerns about the safety of these devices. Smartphones, tablets, laptops, and other digital screens emit high levels of short-wavelength visible light (i.e. blue color region in the visible light spectrum). Material and Methods: At a dark environment, Staphylococcus aureus bacteria were exposed to the light emitted from common tablets/smartphones. The control samples were exposed to the same intensity of light generated by a conventional incandescent light bulb. The growth rate of bacteria was examined by measuring the optical density (OD) at 625 nm by using a spectrophotometer before the light exposure and after 30 to 330 minutes of light exposure. Results: The growth rates of bacteria in both smartphone and tablet groups were higher than that of the control group and the maximum smartphone/control and tablet/control growth ratios were observed in samples exposed to digital screens’ light for 300 min (ratios of 3.71 and 3.95, respectively). Conclusion: To the best of our knowledge, this is the first study that investigates the effect of exposure to light emitted from digital screens on the proliferation of Staphylococcus aureus and its association with acne pathogenesis. Our findings show that exposure to short-wavelength visible light emitted from smartphones and tablets can increase the proliferation of Staphylococcus aureus. PMID:28580338
Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain
2017-10-02
This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.
Confocal Retinal Imaging Using a Digital Light Projector with a Near Infrared VCSEL Source
Muller, Matthew S.; Elsner, Ann E.
2018-01-01
A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1″ LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging. PMID:29899586
33. VIEW OF FOUR OF SEVEN MONITORS SUSPENDED FROM CEILING ...
33. VIEW OF FOUR OF SEVEN MONITORS SUSPENDED FROM CEILING OF SLC-3W CONTROL ROOM NEAR NORTH WALL. LEFT TO RIGHT ABOVE THE MONITORS: DIGITAL GREENWICH MEAN TIME CLOCK, COMPLEX SAFETY WARNING LIGHTS FOR SLC-3W (PAD-2) AND LOB (THE GREEN LIGHT ON THE BOTTOM OF EACH STACK IS ILLUMINATED), AND DIGITAL COUNTDOWN AND HOLD CLOCKS. LEFT TO RIGHT BELOW THE MONITORS: INDICATOR LIGHTS SHOWING WHICH PAD OR VEHICLE FACILITIES ARE RECEIVING POWER FROM POWER PLANT 4 ON SOUTH VAFB, LIGHTS TO INDICATE IF POWER PLANT 4 IS ON OR OFF LINE, DIGITAL COUNTDOWN CLOCK, AND MILITARY-TIME CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Quality aspects of digital radiography in general dental practice.
Hellén-Halme, Kristina
2007-01-01
The number of dentists who have converted from conventional film radiography to digital radiography continues to grow. A digital system has numerous advantages, but there are also many new aspects to consider. The overall aim of this thesis was to study how digital radiography was used in general dental practices. The specific aims were to study how different factors affected image quality. To determine whether there were any differences in image quality between conventional film radiographs and digital radiographs, 4863 images (540 cases) were evaluated. The cases had been sent to the Swedish Dental Insurance Office for prior treatment approval. The image quality of digital radiographs was found to be significantly lower than that of film radiographs. This result led to a questionnaire study of dentists experienced in digital radiography. In 2003, a questionnaire was sent to the 139 general practice dentists who worked with digital radiography in Skine, Sweden; the response rate was 94%. Many general practice dentists had experienced several problems (65%), and less than half of the digital systems (40%) underwent some kind of quality control. One of the weaker links in the technical chain of digital radiography appeared to be the monitor. A field study to 19 dentists at their clinics found that the brightness and contrast settings of the monitors had to be adjusted to obtain the subjectively best image quality. The ambient light in the evaluation room was also found to affect the diagnostic outcome of low-contrast patterns in radiographs. To evaluate the effects of ambient light and technical adjustments of the monitor, a study using standardised set-ups was designed. Seven observers evaluated radiographs of 100 extracted human teeth for approximal caries under five different combinations of brightness and contrast settings on two different occasions with high and low ambient light levels in the evaluation room. The ability to diagnose carious lesions was found to be significantly better in a room with lower ambient light and on a monitor with well-adjusted brightness and contrast values than in a room with bright light and on an unadjusted monitor. In conclusion, many problems with dental digital radiography were identified. Knowledge of digital techniques and how to optimise each link in the system to maintain high radiographic quality at all times must be improved.
Rotary encoding device with polygonal reflector and centroid detection
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1994-01-01
A device for positioning encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the spots on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.
The Pathologist 2.0: An Update on Digital Pathology in Veterinary Medicine.
Bertram, Christof A; Klopfleisch, Robert
2017-09-01
Using light microscopy to describe the microarchitecture of normal and diseased tissues has changed very little since the middle of the 19th century. While the premise of histologic analysis remains intact, our relationship with the microscope is changing dramatically. Digital pathology offers new forms of visualization, and delivery of images is facilitated in unprecedented ways. This new technology can untether us entirely from our light microscopes, with many pathologists already performing their jobs using virtual microscopy. Several veterinary colleges have integrated virtual microscopy in their curriculum, and some diagnostic histopathology labs are switching to virtual microscopy as their main tool for the assessment of histologic specimens. Considering recent technical advancements of slide scanner and viewing software, digital pathology should now be considered a serious alternative to traditional light microscopy. This review therefore intends to give an overview of the current digital pathology technologies and their potential in all fields of veterinary pathology (ie, research, diagnostic service, and education). A future integration of digital pathology in the veterinary pathologist's workflow seems to be inevitable, and therefore it is proposed that trainees should be taught in digital pathology to keep up with the unavoidable digitization of the profession.
Evolution of digital angiography systems.
Brigida, Raffaela; Misciasci, Teresa; Martarelli, Fabiola; Gangitano, Guido; Ottaviani, Pierfrancesco; Rollo, Massimo; Marano, Pasquale
2003-01-01
The innovations introduced by digital subtraction angiography in digital radiography are briefly illustrated with the description of its components and functioning. The pros and cons of digital subtraction angiography are analyzed in light of present and future imaging technologies. In particular, among advantages there are: automatic exposure, digital image subtraction, digital post-processing, high number of images per second, possible changes in density and contrast. Among disadvantages there are: small round field of view, geometric distortion at the image periphery, high sensitivity to patient movements, not very high spatial resolution. At present, flat panel detectors represent the most suitable substitutes for digital subtraction angiography, with the introduction of novel solutions for those artifacts which for years have hindered its diagnostic validity. The concept of temporal artifact, reset light and possible future evolutions of this technology that may afford both diagnostic and protectionist advantages, are analyzed.
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne
2013-01-01
Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.
A 256×256 low-light-level CMOS imaging sensor with digital CDS
NASA Astrophysics Data System (ADS)
Zou, Mei; Chen, Nan; Zhong, Shengyou; Li, Zhengfen; Zhang, Jicun; Yao, Li-bin
2016-10-01
In order to achieve high sensitivity for low-light-level CMOS image sensors (CIS), a capacitive transimpedance amplifier (CTIA) pixel circuit with a small integration capacitor is used. As the pixel and the column area are highly constrained, it is difficult to achieve analog correlated double sampling (CDS) to remove the noise for low-light-level CIS. So a digital CDS is adopted, which realizes the subtraction algorithm between the reset signal and pixel signal off-chip. The pixel reset noise and part of the column fixed-pattern noise (FPN) can be greatly reduced. A 256×256 CIS with CTIA array and digital CDS is implemented in the 0.35μm CMOS technology. The chip size is 7.7mm×6.75mm, and the pixel size is 15μm×15μm with a fill factor of 20.6%. The measured pixel noise is 24LSB with digital CDS in RMS value at dark condition, which shows 7.8× reduction compared to the image sensor without digital CDS. Running at 7fps, this low-light-level CIS can capture recognizable images with the illumination down to 0.1lux.
DLP technolgy: applications in optical networking
NASA Astrophysics Data System (ADS)
Yoder, Lars A.; Duncan, Walter M.; Koontz, Elisabeth M.; So, John; Bartlett, Terry A.; Lee, Benjamin L.; Sawyers, Bryce D.; Powell, Donald; Rancuret, Paul
2001-11-01
For the past five years, Digital Light Processing (DLP) technology from Texas Instruments has made significant inroads in the projection display market. With products encompassing the world's smallest data & video projectors, HDTVs, and digital cinema, DLP is an extremely flexible technology. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based light switch array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator in the visible regime, the use of DLP technology under the constraints of coherent, infrared light for optical networking applications is being explored. As a coherent light modulator, the DMD device can be used in Dense Wavelength Division Multiplexed (DWDM) optical networks to dynamically manipulate and shape optical signals. This paper will present the fundamentals of using DLP with coherent wavefronts, discuss inherent advantages of the technology, and present several applications for DLP in dynamic optical networks.
NASA Astrophysics Data System (ADS)
Takehara, Hironari; Nagasaki, Mizuki; Sasagawa, Kiyotaka; Takehara, Hiroaki; Noda, Toshihiko; Tokuda, Takashi; Ohta, Jun
2016-03-01
Digital enzyme-linked immunosorbent assay (ELISA) is used for detecting various biomarkers with hypersensitivity. We have been developing compact systems by replacing the fluorescence microscope with a CMOS image sensor. Here, we propose a micro-light-pipe array structure made of metal filled with dye-doped resin, which can be used as a fabrication substrate of the micro-reaction-chamber array of digital ELISA. The possibility that this structure enhances the coupling efficiency for fluorescence was simulated using a simple model. To realize the structure, we fabricated a 30-µm-thick micropipe array by copper electroplating around a thick photoresist pattern. The typical diameter of each fabricated micropipe was 10 µm. The pipes were filled with yellow-dye-doped epoxy resin. The transmittance ratio of fluorescence and excitation light could be controlled by adjusting the doping concentration. We confirmed that an angled excitation light incidence suppressed the leakage of excitation light.
Analysis of off-axis incoherent digital holographic microscopy
NASA Astrophysics Data System (ADS)
Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro
2017-05-01
Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.
Effects of Peach Cultivar on Enzymatic Browning Following Cell Damage from High-Pressure Processing.
Techakanon, Chukwan; Gradziel, Thomas M; Barrett, Diane M
2016-10-12
Peach cultivars contribute to unique product characteristics and may affect the degree of browning after high-pressure processing (HPP). Nine peach cultivars were subjected to HPP at 0, 100, and 400 MPa for 10 min. Proton nuclear magnetic resonance ( 1 H NMR) relaxometry, light microscopy, color, polyphenol oxidase (PPO) activity, and total phenols were evaluated. The development of enzymatic browning during refrigerated storage occurred because of damage during HPP that triggered loss of cell integrity, allowing substrates to interact with enzymes. Increasing pressure levels resulted in greater damage, as determined by shifts in transverse relaxation time (T 2 ) and by light micrographs. Discoloration was triggered by membrane decompartmentalization but limited by PPO activity, which was found to correlate to cultivar harvest time (early, mid, and late season). Outcomes from the microstructure, 1 H NMR ,and PPO activity evaluation were an effective means of determining membrane decompartmentalization and allowed for prediction of browning scenarios.
Can light-field photography ease focusing on the scalp and oral cavity?
Taheri, Arash; Feldman, Steven R
2013-08-01
Capturing a well-focused image using an autofocus camera can be difficult in oral cavity and on a hairy scalp. Light-field digital cameras capture data regarding the color, intensity, and direction of rays of light. Having information regarding direction of rays of light, computer software can be used to focus on different subjects in the field after the image data have been captured. A light-field camera was used to capture the images of the scalp and oral cavity. The related computer software was used to focus on scalp or different parts of oral cavity. The final pictures were compared with pictures taken with conventional, compact, digital cameras. The camera worked well for oral cavity. It also captured the pictures of scalp easily; however, we had to repeat clicking between the hairs on different points to choose the scalp for focusing. A major drawback of the system was the resolution of the resulting pictures that was lower than conventional digital cameras. Light-field digital cameras are fast and easy to use. They can capture more information on the full depth of field compared with conventional cameras. However, the resolution of the pictures is relatively low. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2016-01-11
360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Österreicher, Johannes Albert; Kumar, Manoj
Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopymore » images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.« less
Evaluation of the cavity margins after Er:YAG laser ablation of the enamel and dentin
NASA Astrophysics Data System (ADS)
Dostalova, Tatjana; Krejsa, Otakar; Jelinkova, Helena; Hamal, Karel
1994-12-01
This study investigates the checks of cavity margin after enamel and dentin ablation. The Er:YAG laser enamel and dentin ablation can be directly connected with the danger of cracks originating in the enamel near the cavity. This study evaluates the quality of the enamel edges after Er:YAG laser preparation. The enamel and dentin of buccal surfaces were ablated by the Er:YAG laser radiation. An Erbium:YAG laser system with the energy of 200 mJ was used to generate 200 microsecond(s) long pulses of mid-infrared 2.94 micrometers light in multimode configuration. The laser was operating in a free running mode, the repetition rate being 0.5 Hz with average laser power of 100 mW. Laser radiation was focused on the tooth tissue. Water cooling was used during the procedure in order to prevent tooth tissue destruction. The time of laser preparation was 5 minutes. A cavity of class V was prepared. The teeth were immersed into 0.5% basic fuchsin and then centrifuged at 6000 rev/min for 20 minutes. The microphotographs of the margins stained with 0.5% basic fuchsin were made and then the longitudinal section of the teeth were evaluated. The micrographs of the longitudinal section were checked and measured afterwards. The effect of the investigated laser irradiation on the origin of cracks was analyzed in the scanning electron microscope. Micrographs of each tooth before and after the laser ablation were compared. Micrographs of the intact teeth after extraction present the cracks of the enamel. They depend on the pressure exerted during extraction. The influence of the laser ablation proper is it bears no signs of new cracks. The conclusions of this study demonstrate the non-invasive nature of the Er:YAG laser ablation of the hard dental tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test themore » digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.« less
International Micrographics Standards: Report of the 1979 Paris Meeting of ISO/TC171.
ERIC Educational Resources Information Center
Heynen, Jeffrey
1980-01-01
Describes a meeting of the technical committee on micrographics of the International Organization for Standardization, and fcuses on the committee's work relating to the reproduction of library materials within the general context of international standards-making activities. (FM)
Particle Morphology From Wood-Burning Cook Stoves Emissions
NASA Astrophysics Data System (ADS)
Peralta, O.; Carabali, G.; Castro, T.; Torres, R.; Ruiz, L. G.; Molina, L. T.; Saavedra, I.
2013-12-01
Emissions from three wood-burning cook stoves were sampled to collect particles. Transmission electron microscope (TEM) copper grids were placed on the last two stages of an 8-stage MOUDI cascade impactor (d50= 0.32, and 0.18 μm). Samples were obtained on two heating stages of cooking, the first is a quick heating process to boil 1 liter of water, and the second is to keep the water at 90 C. Absorption coefficient, scattering coefficients, and particles concentration (0.01 - 2.5 μm aerodynamic diameter) were measured simultaneously using an absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm), and a condensation particle counter connected to a chamber to dilute the wood stoves emissions. Transmission electron micrographic images of soot particles were acquired at different magnifications using a High Resolution Transmission Electron Microscope (HRTEM) JEOL HRTEM 4000EX operating at 200 kV, equipped with a GATAN digital micrograph system for image acquisition. The morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The presence of high numbers of carbon ceno-spheres can be attributed to pyrolysis, thermal degradation, and others processes prior to combustion. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50= 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, S and K.
Reconceptualising Critical Digital Literacy
ERIC Educational Resources Information Center
Pangrazio, Luciana
2016-01-01
While it has proved a useful concept during the past 20 years, the notion of "critical digital literacy" requires rethinking in light of the fast-changing nature of young people's digital practices. This paper contrasts long-established notions of "critical digital literacy" (based primarily around the critical consumption of…
An Army Illumination Model (AAIM)
2008-11-01
digitized for each of the three light types and coded into the model. 10 Figure 3. Spectra of light sources in table 2. Clear Mercury 0 20 40 60...λ λ∆= λ 1100 300 ii eE , (16) where eiλ is the radiant energy at a specific wavelength taken from the digitized spectra and ∆λ is the bin width...to a factor less than 2. Validation was also done via comparison with results from Garstang (6). His figures 2 and 3 were digitized and compared
Interactive display system having a digital micromirror imaging device
Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin
2006-04-11
A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.
Micrographics: A Bibliography of Sources.
ERIC Educational Resources Information Center
Thornberry, Patricia Lee; Michael, James D.
This extensive micrographics bibliography, which includes citations drawn from a literature search and prepared bibliographies, covers microforms, microfiche, and microfilm. Sections include 3 pages of book citations, 6 pages citing ERIC documents, and 33 pages of journal citations. Topics covered include microform library usage and usage in other…
Projection displays and MEMS: timely convergence for a bright future
NASA Astrophysics Data System (ADS)
Hornbeck, Larry J.
1995-09-01
Projection displays and microelectromechanical systems (MEMS) have evolved independently, occasionally crossing paths as early as the 1950s. But the commercially viable use of MEMS for projection displays has been illusive until the recent invention of Texas Instruments Digital Light Processing TM (DLP) technology. DLP technology is based on the Digital Micromirror DeviceTM (DMD) microchip, a MEMS technology that is a semiconductor digital light switch that precisely controls a light source for projection display and hardcopy applications. DLP technology provides a unique business opportunity because of the timely convergence of market needs and technology advances. The world is rapidly moving to an all- digital communications and entertainment infrastructure. In the near future, most of the technologies necessary for this infrastrucutre will be available at the right performance and price levels. This will make commercially viable an all-digital chain (capture, compression, transmission, reception decompression, hearing, and viewing). Unfortunately, the digital images received today must be translated into analog signals for viewing on today's televisions. Digital video is the final link in the all-digital infrastructure and DLP technoogy provides that link. DLP technology is an enabler for digital, high-resolution, color projection displays that have high contrast, are bright, seamless, and have the accuracy of color and grayscale that can be achieved only by digital control. This paper contains an introduction to DMD and DLP technology, including the historical context from which to view their developemnt. The architecture, projection operation, and fabrication are presented. Finally, the paper includes an update about current DMD business opportunities in projection displays and hardcopy.
Patterson-Kane, J C; Firth, E C; Parry, D A; Wilson, A M; Goodship, A E
1998-01-01
To determine the effect of a specific galloping exercise regimen on collagen fibril mass-average diameters (MAD) in the deep digital flexor tendon (DDFT) and suspensory ligament (SL) of young Thoroughbreds. 12 Thoroughbred fillies, 21 +/- 1 (mean +/- SD) months old. 6 horses underwent a specific 18-month treadmill training program involving galloping exercise. The remaining 6 horses served as controls, undertaking low-volume walking exercise over the same period. Sections were excised from the midpoint of the DDFT and SL, and small strips were dissected from central and peripheral locations for each structure. Fibril diameters were measured from micrographs of transverse ultrathin sections, using a computerized image analysis program. An MAD value was calculated for the central and peripheral regions of the DDFT and SL for each horse. Values for both regions were compared between exercised and control horses. The MAD did not change significantly with exercise for either the DDFT or the SL. Loading of the DDFT as a result of this exercise regimen was not sufficient to stimulate collagen fibril hypertrophy, in keeping with current data that indicate this tendon, compared with the SL and superficial digital flexor tendon (SDFT), is subjected to low loads. Microtrauma, in terms of reduction in fibril MAD, may have occurred in the SL at a site different from that sampled. Another possibility is that, between the trot and the gallop, loading of the SL does not increase to the same extent as that of the SDFT.
Tablet PC interaction with digital micromirror device (DMD)
NASA Astrophysics Data System (ADS)
Refai, Hakki H.; Dahshan, Mostafa H.; Sluss, James J., Jr.
2007-02-01
Digital light processing (DLP) is an innovative display technology that uses an optical switch array, known as a digital micromirror device (DMD), which allows digital control of light. To date, DMDs have been used primarily as high-speed spatial light modulators for projector applications. A tablet PC is a notebook or slate-shaped mobile PC. Its touch screen or digitizing tablet technology allows the user to operate the notebook with a stylus or digital pen instead of using a keyboard or mouse. In this paper, we describe an interface solution that translates any sketch on the tablet PC screen to an identical mirror-copy over the cross-section of the DMD micromirrors such that the image of the sketch can be projected onto a special screen. An algorithm has been created to control each single micromirror of the hundreds of thousands of micromirrors that cover the DMD surface. We demonstrate the successful application of a DMD to a high-speed two-dimensional (2D) scanning environment, acquiring the data from the tablet screen and launching its contents to the projection screen; with very high accuracy up to 13.68 μm x 13.68 μm of mirror pitch.
NASA Technical Reports Server (NTRS)
Merry, C. J.
1979-01-01
A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.
Emerging digital micromirror device (DMD) applications
NASA Astrophysics Data System (ADS)
Dudley, Dana; Duncan, Walter M.; Slaughter, John
2003-01-01
For the past six years, Digital Light Processing technology from Texas Instruments has made significant inroads in the projection display market. With products enabling the world"s smallest data and video projectors, HDTVs, and digital cinema, DLP technology is extremely powerful and flexible. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based "light switch" array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator for projector applications, dozens of new applications are now being enabled by general-use DMD products that are recently available to developers. The same light switching speed and "on-off" (contrast) ratio that have resulted in superior projector performance, along with the capability of operation outside the visible spectrum, make the DMD very attractive for many applications, including volumetric display, holographic data storage, lithography, scientific instrumentation, and medical imaging. This paper presents an overview of past and future DMD performance in the context of new DMD applications, cites several examples of emerging products, and describes the DMD components and tools now available to developers.
Um, Keehong; Yoo, Sooyeup
2013-10-01
Protocol for digital multiplex with 512 pieces of information is increasingly adopted in the design of illumination systems. In conventional light-emitting diode systems, the receivers are connected in parallel and each of the receiving units receives all the data from the master dimmer console, but each receiving unit operates by recognizing as its own data that which corresponds to the assigned number of the receiver. Because the serial numbers of illumination devices are transmitted in binary code, synchronization is too complicated to be used properly. In order to improve the protocol of illumination control systems, we propose an algorithm of protocol reception to install and manage the system in a simpler and more convenient way. We propose the systems for controlling the light-emitting diode illumination of simplified receiver slaves adopting the digital multiplex-512 protocol where master console and multiple receiver slaves are connected in a daisy chain fashion. The digital multiplex-512 data packet is received according to the sequence order of their locations from the console, without assigning the sequence number of each channel at the receiving device. The purpose of this paper is to design a simple and small-sized controller for the control systems of lamps and lighting adopting the digital multiplex-512 network.
ERIC Educational Resources Information Center
Isman, Aytekin; Canan Gungoren, Ozlem
2014-01-01
Era in which we live is known and referred as digital age.In this age technology is rapidly changed and developed. In light of these technological advances in 21st century, schools have the responsibility of training "digital citizen" as well as a good citizen. Digital citizens must have extensive skills, knowledge, Internet and …
Rapid Optical Shutter, Chopper, Modulator and Deflector
NASA Technical Reports Server (NTRS)
Danehy, Paul M. (Inventor)
2017-01-01
An optical device with a light source and a detector is provided. A digital micromirror device positioned between the detector and the light source may deflect light beams projected from the light source. An aperture in front of the detector may block an incoming light beam from the detector when the incoming light beam is incident on the detector outside of a passable incident range and including an aperture opening configured to pass the incoming light beam to the detector when the incoming light beam is incident on the detector within a passable incident range. The digital micromirror device may rotate between a first position causing the light beam to pass through the aperture opening and a second position causing the light beam to be blocked by the aperture. The optical device may be configured to operate as a shutter, chopper, modulator and/or deflector.
NASA Astrophysics Data System (ADS)
Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie
2018-07-01
A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.
Metallography of Aluminum and Its Alloys : Use of Electrolytic Polishing
NASA Technical Reports Server (NTRS)
Jacquet, Pierre A
1955-01-01
Recent methods are described for electropolishing aluminum and aluminum alloys. Numerous references are included of electrolytic micrographic investigations carried out during the period 1948 to 1952. A detailed description of a commercial electrolytic polishing unit, suitable for micrographic examination of aluminum and its alloys, is included.
Micrographics: A Quarter-Century Perspective.
ERIC Educational Resources Information Center
Ach, William K.
2000-01-01
Discusses the uses of micrographics in higher education, based on a 25-year period at Wake Forest University's (Winston-Salem, North Carolina) Library. Discusses acquisition of scholarly collections in microform on a subscription plan; the trend away from microopaques to microfiche and the advent of the reader-printer; improved access to microform…
Archival Stability of Microfilm--A Technical Review.
ERIC Educational Resources Information Center
Materazzi, Albert R.
The purpose of this report is to acquaint all personnel with some technical aspects of micrographics. The various film types used in the production of microfiche are discussed, including silver halide, diazo, and vesicular films. Other imaging systems used in micrographics are reviewed, and a basic introduction to sensitometry is given. The…
Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation
Liu, Yan; Ma, Cheng; Shen, Yuecheng; Shi, Junhui; Wang, Lihong V.
2017-01-01
Wavefront shaping based on digital optical phase conjugation (DOPC) focuses light through or inside scattering media, but the low speed of DOPC prevents it from being applied to thick, living biological tissue. Although a fast DOPC approach was recently developed, the reported single-shot wavefront measurement method does not work when the goal is to focus light inside, instead of through, highly scattering media. Here, using a ferroelectric liquid crystal based spatial light modulator, we develop a simpler but faster DOPC system that focuses light not only through, but also inside scattering media. By controlling 2.6 × 105 optical degrees of freedom, our system focused light through 3 mm thick moving chicken tissue, with a system latency of 3.0 ms. Using ultrasound-guided DOPC, along with a binary wavefront measurement method, our system focused light inside a scattering medium comprising moving tissue with a latency of 6.0 ms, which is one to two orders of magnitude shorter than those of previous digital wavefront shaping systems. Since the demonstrated speed approaches tissue decorrelation rates, this work is an important step toward in vivo deep-tissue non-invasive optical imaging, manipulation, and therapy. PMID:28815194
NASA Astrophysics Data System (ADS)
Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.
2016-07-01
We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral attenuation.We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral attenuation. Electronic supplementary information (ESI) available: GPC chromatograms, additional transmission electron micrographs, digital photographs, visible absorption spectra and laser diffraction data, further optical and fluorescence micrographs. See DOI: 10.1039/c6nr03856e
Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.
Feng, Wei; Zhang, Fumin; Wang, Weijing; Xing, Wei; Qu, Xinghua
2017-05-01
In this paper, we overcome the limited dynamic range of the conventional digital camera, and propose a method of realizing high dynamic range imaging (HDRI) from a novel programmable imaging system called a digital micromirror device (DMD) camera. The unique feature of the proposed new method is that the spatial and temporal information of incident light in our DMD camera can be flexibly modulated, and it enables the camera pixels always to have reasonable exposure intensity by DMD pixel-level modulation. More importantly, it allows different light intensity control algorithms used in our programmable imaging system to achieve HDRI. We implement the optical system prototype, analyze the theory of per-pixel coded exposure for HDRI, and put forward an adaptive light intensity control algorithm to effectively modulate the different light intensity to recover high dynamic range images. Via experiments, we demonstrate the effectiveness of our method and implement the HDRI on different objects.
Garcia-Sucerquia, Jorge
2013-01-01
By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm(2). The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.
Exploring Doctoral Students' Use of Digital Technologies: What Do They Use Them for and Why?
ERIC Educational Resources Information Center
Gouseti, Anastasia
2017-01-01
Digital technologies now form an integral feature of the university student experience and there is a range of studies that explore digital technology use within a higher education context. However, very few of these studies focus on how doctoral students engage with digital technologies. This article aims to throw light on the digital practices…
A Simple Spectrophotometer Using Common Materials and a Digital Camera
ERIC Educational Resources Information Center
Widiatmoko, Eko; Widayani; Budiman, Maman; Abdullah, Mikrajuddin; Khairurrijal
2011-01-01
A simple spectrophotometer was designed using cardboard, a DVD, a pocket digital camera, a tripod and a computer. The DVD was used as a diffraction grating and the camera as a light sensor. The spectrophotometer was calibrated using a reference light prior to use. The spectrophotometer was capable of measuring optical wavelengths with a…
ForestCrowns: a transparency estimation tool for digital photographs of forest canopies
Matthew Winn; Jeff Palmer; S.-M. Lee; Philip Araman
2016-01-01
ForestCrowns is a Windows®-based computer program that calculates forest canopy transparency (light transmittance) using ground-based digital photographs taken with standard or hemispherical camera lenses. The software can be used by forest managers and researchers to monitor growth/decline of forest canopies; provide input for leaf area index estimation; measure light...
3D light scanning macrography.
Huber, D; Keller, M; Robert, D
2001-08-01
The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences.
Low-Light Image Enhancement Using Adaptive Digital Pixel Binning
Yoo, Yoonjong; Im, Jaehyun; Paik, Joonki
2015-01-01
This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP). Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor. PMID:26121609
Bertram, Christof A; Gurtner, Corinne; Dettwiler, Martina; Kershaw, Olivia; Dietert, Kristina; Pieper, Laura; Pischon, Hannah; Gruber, Achim D; Klopfleisch, Robert
2018-07-01
Integration of new technologies, such as digital microscopy, into a highly standardized laboratory routine requires the validation of its performance in terms of reliability, specificity, and sensitivity. However, a validation study of digital microscopy is currently lacking in veterinary pathology. The aim of the current study was to validate the usability of digital microscopy in terms of diagnostic accuracy, speed, and confidence for diagnosing and differentiating common canine cutaneous tumor types and to compare it to classical light microscopy. Therefore, 80 histologic sections including 17 different skin tumor types were examined twice as glass slides and twice as digital whole-slide images by 6 pathologists with different levels of experience at 4 time points. Comparison of both methods found digital microscopy to be noninferior for differentiating individual tumor types within the category epithelial and mesenchymal tumors, but diagnostic concordance was slightly lower for differentiating individual round cell tumor types by digital microscopy. In addition, digital microscopy was associated with significantly shorter diagnostic time, but diagnostic confidence was lower and technical quality was considered inferior for whole-slide images compared with glass slides. Of note, diagnostic performance for whole-slide images scanned at 200× magnification was noninferior in diagnostic performance for slides scanned at 400×. In conclusion, digital microscopy differs only minimally from light microscopy in few aspects of diagnostic performance and overall appears adequate for the diagnosis of individual canine cutaneous tumors with minor limitations for differentiating individual round cell tumor types and grading of mast cell tumors.
Fast, optically controlled Kerr phase shifter for digital signal processing.
Li, R B; Deng, L; Hagley, E W; Payne, M G; Bienfang, J C; Levine, Z H
2013-05-01
We demonstrate an optically controlled Kerr phase shifter using a room-temperature 85Rb vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach-Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.
Quantum reading of a classical digital memory.
Pirandola, Stefano
2011-03-04
We consider a basic model of digital memory where each cell is composed of a reflecting medium with two possible reflectivities. By fixing the mean number of photons irradiated over each memory cell, we show that a nonclassical source of light can retrieve more information than any classical source. This improvement is shown in the regime of few photons and high reflectivities, where the gain of information can be surprising. As a result, the use of quantum light can have nontrivial applications in the technology of digital memories, such as optical disks and barcodes.
Growth and characterization of a new nonlinear optical organic crystal: 2,4,6-Trimethylacetanilide
NASA Astrophysics Data System (ADS)
Upadhyaya, V.; Prabhu, Sharada G.
2015-09-01
A new nonlinear optical organic material, 2,4,6-trimethylacetanilide (246TMAA), also known as N-[2,4,6- trimethylphenyl]acetamide, has been synthesized and grown as a single crystal by the slow evaporation technique by organic solvents. The grown crystals have been characterized by morphology study. The crystals are prismatic. Surface examination shows granular dendritic pattern in optical micrograph. The Scanning Electron Micrograph shows the layered growth of the crystal. The Differential Scanning Calorimeter plot shows no phase change until melting point (219°C). The density of the crystals is 1.1g/cc and the crystals are soft. The crystals are transparent in the visible region and in the ultra-violet region till 280 nm. 246TMAA crystallizes with 2 molecules in a monoclinic unit cell in the noncentrosymmetric point group m, space group Pn. Refractive indices of this optically biaxial crystal along the three crystallophysical axes have been measured at 633 nm. The optical second harmonic generation efficiency of the crystal at 1064 nm is about half that of the urea crystal, measured by powder method using Nd:YAG laser. The results show that the 246TMAA crystal can efficiently be used for up-conversion of infrared radiation into visible green light. The powder X-ray diffraction spectrum of the crystal has been obtained.
Digital video system for on-line portal verification
NASA Astrophysics Data System (ADS)
Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott
1990-07-01
A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.
Castro-Huertas, Valentina; Forero, Dimitri
2014-07-21
Tagalis Stål is recorded for the first time from Colombia and two species are described as new: Tagalis dichroa sp. nov., from Acandí (Chocó), and Tagalis albispina sp. nov., from Gorgona Island (Cauca). Based on the structure of the male genitalia of the known species, we here propose at least four species groups within Tagalis: 1) T. evavilmae, 2) T. femorata, 3) T. baenai, T. grossii, and T. marquesi, and 4) T. dichroa sp. nov., T. inornata, and T. seminigra. Tagalis albispina sp. nov. known only from the female holotype, cannot be placed into this scheme. Digital micrographs of the habitus and genitalia of the new species are provided. An updated key to the species of Tagalis is presented to facilitate the identification of the new species.
NASA Technical Reports Server (NTRS)
Judy, M. M.
1981-01-01
Values of mean trabecular spacing computed from optical diffraction patterns of 1:1 X-ray micrographs of tibial metaphysis and those obtained by standard image digitization techniques show excellent agreement. Upper limits on values of mean trabecular orientation deduced from diffraction patterns and the images are also in excellent agreement. Values of the ratio of mean trabecular spatial density in a region of 300 micrometers distal to the downwardly directed convexity in the cartilage growth plate to the value adjacent to the plate determined for flight animals sacrificed at recovery were significantly smaller than values for vivarium control animals. No significant differences were found in proximal regions. No significant differences in mean trabecular orientation were detected. Decreased values of trabecular spatial density and of both obsteoblastic activity and trabecular cross-sectional area noted in collateral researches suggest decreased modeling activity under weightlessness.
NASA Astrophysics Data System (ADS)
Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.
2012-11-01
We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.
Digital Tools: Enhancing Painting Skills among Malaysian Secondary School Students
ERIC Educational Resources Information Center
Samah, Azimah A.; Putih, Abu Talib; Hussin, Zaharah
2016-01-01
Digital tools refer to software applications in the production of artworks particularly in painting. Digital art work is materialized by using computers, software and a combination of computer peripherals such as tablet support. With the aid of electronic equipment, digital artists manipulate pixels or coloring with light to compose the work and…
Kahr, Bart; Freudenthal, John; Gunn, Erica
2010-05-18
We have made images of crystals illuminated with polarized light for almost two decades. Early on, we abandoned photosensitive chemicals in favor of digital electrophotometry with all of the attendant advantages of quantitative intensity data. Accurate intensities are a boon because they can be used to analytically discriminate small effects in the presence of larger ones. The change in the form of our data followed camera technology that transformed picture taking the world over. Ironically, exposures in early photographs were presumed to correlate simply with light intensity, raising the hope that photography would replace sensorial interpretation with mechanical objectivity and supplant the art of visual photometry. This was only true in part. Quantitative imaging accurate enough to render the separation of crystalloptical quantities had to await the invention of the solid-state camera. Many pioneers in crystal optics were also major figures in the early history of photography. We draw out the union of optical crystallography and photography because the tree that connects the inventors of photography is a structure unmatched for organizing our work during the past 20 years, not to mention that silver halide crystallites used in chemical photography are among the most consequential "crystals in light", underscoring our title. We emphasize crystals that have acquired optical properties such as linear birefringence, linear dichroism, circular birefringence, and circular dichroism, during growth from solution. Other crystalloptical effects were discovered that are unique to curiously dissymmetric crystals containing embedded oscillators. In the aggregate, dyed crystals constitute a generalization of single crystal matrix isolation. Simple crystals provided kinetic stability to include guests such as proteins or molecules in excited states. Molecular lifetimes were extended for the preparation of laser gain media and for the study of the photodynamics of single molecules. Luminophores were used as guests in crystals to reveal aspects of growth mechanisms by labeling surface structures such as steps and kinks. New methods were adopted for measuring and imaging the optical rotatory power of crystals. Chiroptical anisotropies can now be compared with the results of quantum chemical calculations that have emerged in the past 10 years. The rapid determination of the optical rotation and circular dichroism tensors of molecules in crystals, and the interpretation of these anisotropies, remains a subject of future research. Polycrystalline patterns that form far from equilibrium challenged the quantitative interpretation of micrographs when heterogeneities along the optical path and obliquely angled interfaces played large roles. Resulting "artifacts" were nevertheless incisive probes of polycrystalline texture and mesoscale chemistry in simple substances grown far from equilibrium or in biopathological crystals such as Alzheimer's amyloid plaques.
An Investigation of Concrete Deterioration at South Florida Water Management District Structure S65E
2014-02-01
24 Figure 19. SEM micrographs of deterioration observed on fracture surface including borehole near exposed surface and transition between...photomicrographs of repaired concrete surface. ........................................ 36 Figure A6. Supplemental photomicrographs of fractured sample...38 Figure B1. Supplemental SEM micrographs of inner non-deteriorated concrete fracture surface
1988-04-26
FIGURES Figure 1. Schematic of the suspension copolymerization approach ................ 8 Figure 2. SEM micrograph of fracture surface near molded...micrograph of fracture surface near molded edge of sample 1430-58b.............................................................. 18 Figure 12. SEM... caprolactam . The caprolactam (11.3 g) was placed in a large tube equipped with a nitrogen inlet, and heated under nitrogen to 80*C, whereupon
Composition and Science: A Symbiotic Relationship.
ERIC Educational Resources Information Center
Coward, Pat; Taylor, Jo
Critical thinking skills were taught to students in a lower-track freshman English class through the use of cross-disciplinary subject matter. Given a set of three transmission electron micrographs, or photographs of magnified tissue used in histology and pathology, students were asked to support their conclusions on which two of micrographs A, B,…
Histopathologic pitfalls of Mohs micrographic surgery and a review of tumor histology.
França, Katlein; Alqubaisy, Yasser; Hassanein, Ashraf; Nouri, Keyvan; Lotti, Torello
2018-06-01
Mohs micrographic surgery is a specialized subset of staged surgical excisions with each subsequent stage being driven largely by the histologic findings of the previous stage. Therefore, it is imperative that histologic analysis is performed in an accurate manner. Frozen section and tissue flattening is a crucial step in Mohs surgery. Frozen sections introduce certain artifacts and these artifacts must be interpreted in the correct context. Basal and squamous cell carcinomas are the most common tumors encountered in Mohs micrographic surgery, and their histopathology is also associated with certain "pitfalls". Basal cell carcinoma should be distinguished from hair follicles, folliculocentric basaloid proliferations, poromas, nevus sebaceous, desmoplastic trichoepitheliomas, and spiradenomas, to name but a few histologic entities. Similarly, squamous cell carcinoma should be distinguished from hypertrophic actinic keratoses, pseudoepitheliomatous hyperplasia, sebaceous carcinoma, and microcystic adnexal carcinoma. In addition, there are numerous subtypes of basal cell and squamous carcinomas that the Mohs surgeon should be aware of due to differences in the biologic behavior of these tumors. This review presents a number of the common histologic pitfalls of Mohs micrographic surgery and a review of tumor histology.
Accurate and cost-effective MTF measurement system for lens modules of digital cameras
NASA Astrophysics Data System (ADS)
Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu
2007-01-01
For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.
Process simulation in digital camera system
NASA Astrophysics Data System (ADS)
Toadere, Florin
2012-06-01
The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.
NASA Astrophysics Data System (ADS)
Zafar, Fahad; Kalavally, Vineetha; Bakaul, Masuduzzaman; Parthiban, R.
2015-09-01
For making commercial implementation of light emitting diode (LED) based visible light communication (VLC) systems feasible, it is necessary to incorporate it with dimming schemes which will provide energy savings, moods and increase the aesthetic value of the places using this technology. There are two general methods which are used to dim LEDs commonly categorized as analog and digital dimming. Incorporating fast data transmission with these techniques is a key challenge in VLC. In this paper, digital and analog dimming for a 10 Mb/s non return to zero on-off keying (NRZ-OOK) based VLC system is experimentally investigated considering both photometric and communicative parameters. A spectrophotometer was used for photometric analysis and a line of sight (LOS) configuration in the presence of ambient light was used for analyzing communication parameters. Based on the experimental results, it was determined that digital dimming scheme is preferable for use in indoor VLC systems requiring high dimming precision and data transmission at lower brightness levels. On the other hand, analog dimming scheme is a cost effective solution for high speed systems where dimming precision is insignificant.
Weekenstroo, Harm H A; Cornelissen, Bart M W; Bernelot Moens, Hein J
2015-06-01
Nailfold capillaroscopy is a non-invasive and safe technique for the analysis of microangiopathologies. Imaging quality of widely used simple videomicroscopes is poor. The use of green illumination instead of the commonly used white light may improve contrast. The aim of the study was to compare the effect of green illumination with white illumination, regarding capillary density, the number of microangiopathologies, and sensitivity and specificity for systemic sclerosis. Five rheumatologists have evaluated 80 images; 40 images acquired with green light, and 40 images acquired with white light. A larger number of microangiopathologies were found in images acquired with green light than in images acquired with white light. This results in slightly higher sensitivity with green light in comparison with white light, without reducing the specificity. These findings suggest that green instead of white illumination may facilitate evaluation of capillaroscopic images obtained with a low-cost digital videomicroscope.
Femtosecond digital lensless holographic microscopy to image biological samples.
Mendoza-Yero, Omel; Calabuig, Alejandro; Tajahuerce, Enrique; Lancis, Jesús; Andrés, Pedro; Garcia-Sucerquia, Jorge
2013-09-01
The use of femtosecond laser radiation in digital lensless holographic microscopy (DLHM) to image biological samples is presented. A mode-locked Ti:Sa laser that emits ultrashort pulses of 12 fs intensity FWHM, with 800 nm mean wavelength, at 75 MHz repetition rate is used as a light source. For comparison purposes, the light from a light-emitting diode is also used. A section of the head of a drosophila melanogaster fly is studied with both light sources. The experimental results show very different effects of the pinhole size on the spatial resolution with DLHM. Unaware phenomena on the field of the DLHM are analyzed.
Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue.
Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi
2018-04-01
For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.
Optimization of the polyplanar optical display electronics for a monochrome B-52 display
NASA Astrophysics Data System (ADS)
DeSanto, Leonard
1998-09-01
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMDTM) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMDTM divorced from the light engine and the interfacing of the DMDTM board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.
Profiling with the electron microscope.
NASA Technical Reports Server (NTRS)
Vedder, J. F.; Lem, H. Y.
1972-01-01
Discussion of a profiling technique using a scanning electron microscope for obtaining depth information on a single micrograph of a small specimen. A stationary electron beam is used to form a series of contamination spots in a line across the specimen. Micrographs obtained by this technique are useful as a means of projection and display where stereo viewers are not practical.
Optical Waveguide Scattering Reduction. II.
1980-12-01
Direct Methods..........................13 Topographical Approaches ................... 13 Nomarski Microscopy ................... 13 TIR Microscopy...6 3 Nomarski micrograph showing artifacts near the edge of a Ti- diffused LiNbO3 waveguide (50OX) ....... ................ 9...4 Nomarski micrograph showing the results of a 10 min heat treat- ment of LiNbO 3 at 850’C in flowing 02 ... ............. ... 12 5 Nomarski
NASA Technical Reports Server (NTRS)
Smith, J. D.; Todd, P.; Staehelin, L. A.
1997-01-01
Current models of gravity perception in higher plants focus on the buoyant weight of starch-filled amyloplasts as the initial gravity signal susceptor (statolith). However, no tests have yet determined if statolith mass is regulated to increase or decrease gravity stimulus to the plant. To this end, the root caps of white clover (Trifolium repens) grown in three gravity environments with three different levels of gravity stimulation have been examined: (i) 1-g control with normal static gravistimulation, (ii) on a slow clinostat with constant gravistimulation, and (iii) in the stimulus-free microgravity aboard the Space Shuttle. Seedlings were germinated and grown in the BioServe Fluid Processing Apparatus and root cap structure was examined at both light and electron microscopic levels, including three-dimensional cell reconstruction from serial sections. Quantitative analysis of the electron micrographs demonstrated that the starch content of amyloplasts varied with seedling age but not gravity condition. It was also discovered that, unlike in starch storage amyloplasts, all of the starch granules of statolith amyloplasts were encompassed by a fine filamentous, ribosome-excluding matrix. From light micrographic 3-D cell reconstructions, the absolute volume, number, and positional relationships between amyloplasts showed (i) that individual amyloplast volume increased in microgravity but remained constant in seedlings grown for up to three days on the clinostat, (ii) the number of amyloplasts per cell remained unchanged in microgravity but decreased on the clinostat, and (iii) the three-dimensional positions of amyloplasts were not random. Instead amyloplasts in microgravity were grouped near the cell centers while those from the clinostat appeared more dispersed. Taken together, these observations suggest that changing gravity stimulation can elicit feedback control over statolith mass by changing the size, number, and grouping of amyloplasts. These results support the starch-statolith theory of graviperception in higher plants and add to current models with a new feedback control loop as a mechanism for modulation of statolith responsiveness to inertial acceleration.
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David; LeBohec, Stephan
2018-06-01
We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.
Contrast in the Photoelectric Effect of Organic and Biochemical Surfaces
Birrell, G. B.; Burke, C.; Dehlinger, P.; Griffith, O. H.
1973-01-01
The photoelectric effect can provide the physical basis for a new method of mapping organic and biological surfaces. The technique, photoelectron microscopy, is similar to fluorescence microscopy using incident ultraviolet light except that photoejected electrons form the image of the specimen surface. In this work the minimum wavelengths of incident light required to produce an image were determined for the molecules 3,6-bis(dimethylamino)acridine (acridine orange) (I), benzo[a]pyrene (II), N,N,N′,N′-tetraphenylbenzidine (III), and copper phthalocyanine (IV). The photoelectron image thresholds for these compounds are 220 (I), 215 (II), 220 (III), and 240 nm (IV), all ±5 nm. Contrast of I-IV with respect to typical protein, lipid, nucleic acid, and polysaccharide surfaces was examined over the wavelength range 240-180 nm. The low magnification micrographs exhibited bright areas corresponding to I-IV but dark regions for the biochemical surfaces. The high contrast suggests the feasibility of performing extrinsic photoelectron microscopy experiments through selective labeling of sites on biological surfaces. ImagesFIGURE 3 PMID:4704486
Preventing Small Molecule Nucleation and Crystallization by Sequestering in a Micelle Corona
NASA Astrophysics Data System (ADS)
Li, Ziang; Johnson, Lindsay; Ricarte, Ralm; Yao, Letitia; Hillmyer, Marc; Bates, Frank; Lodge, Timothy
We exploited a blend of hydroxypropyl methylcellulose acetate succinate and poly(N-isopropylacrylamide) (PNIPAm) to improve the solubility and dissolution of a rapidly crystallizing model drug molecule phenytoin and observed synergistic effect in vitro at constant drug loading by varying the blending ratio. Dynamic and static light scattering experiments showed that PNIPAm self-assembled into micelles in aqueous solution. We believe that adding these PNIPAm micelles inhibited both nucleation and crystal growth of phenytoin based on the polarized light micrographs taken from the dissolution media. The drug-polymer intermolecular interaction was revealed by nuclear Overhauser effect spectroscopy and further quantified by diffusion ordered spectroscopy. We found that the phenytoin molecules were sequestered in aqueous solution by partitioning into the corona of the micelle. The blend strategy through the use of self-assembled micelles showcased in this study offers a new platform for designing advanced excipients for oral drug delivery. This study was funded by The Dow Chemical Company through Agreement 224249AT with the University of Minnesota.
Cristispira from oyster styles: complex morphology of large symbiotic spirochetes
NASA Technical Reports Server (NTRS)
Margulis, L.; Nault, L.; Sieburth, J. M.
1991-01-01
Crystalline styles (digestive organs) of bivalve mollusks provide the habitat for highly motile bacteria. Styles from freshly-collected oysters, Crassostrea virginica, were studied by electron microscopy; Cristispira spirochetes were abundant in these organs. Detailed study reveals these spirochetes to be among the most complex prokaryotic cells known. More than 600 periplasmic flagella and an adhering outer lipoprotein membrane (e.g., a 270 degrees sillon) form the ultrastructural basis for the "crista," first described by light microscopy. Unique rosette structures corresponding to the "chambers" or "ovoid inclusions" of light microscopy were detected at the periphery of all protoplasmic cylinders. Polar organelles and linearly aligned flagellar insertions are conspicuous. In size and complexity, Cristispira more resembles Pillotina, Diplocalyx, Clevelandina and Hollandina (large spirochetes symbiotic in termites) than it does Treponema. Cristispira pectinis (Gross, 1910), the type species; Spirillum ostrea (Noguchi, 1921); and another, less frequent bacterial symbiont are the predominant inhabitants of the dense style matrix. The ultrastructure of the spirillum and an electron micrograph of the third bacterium are shown.
Gu, Junfei; Zhou, Zhenxiang; Li, Zhikang; Chen, Ying; Wang, Zhiqin; Zhang, Hao; Yang, Jianchang
2017-01-01
Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS). Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ) to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl) and a normally pigmented control (Z802) were subjected to high (HL) and low light (LL). Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC) binding proteins, electron transport rates (ETR), photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size. PMID:28676818
ERIC Educational Resources Information Center
Afify, Mohammed Kamal
2018-01-01
The present study aims to identify standards of interactive digital concepts maps design and their measurement indicators as a tool to develop, organize and administer e-learning content in the light of Meaningful Learning Theory and Constructivist Learning Theory. To achieve the objective of the research, the author prepared a list of E-learning…
Guided-Wave Optic Devices for Integrated Optic Information Processing.
1984-08-08
Modulation and switching of light waves in Yttrium iron garnet (YIG)- Gadolinium gallium garnet (GGG) waveguides using Farady rotation , and light...switch, an electrooptic analog-to-digital converter using a Fabry -Perot modula- tor array, and a noncollinear magnetooptic modulator using magnetostatic...data routing in electronic computer networks. ELECTROOPTIC ANALOG-TO-DIGITAL CONVERTER USING CHANNEL WAVEGUIDE FABRY -PEROT MODULATOR ARRAY One of the
Automatic weld torch guidance control system
NASA Technical Reports Server (NTRS)
Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.
1982-01-01
A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.
Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B; Sturm, Benjamin W
2014-11-11
A scintillator radiation detector system according to one embodiment includes a scintillator; and a processing device for processing pulse traces corresponding to light pulses from the scintillator, wherein pulse digitization is used to improve energy resolution of the system. A scintillator radiation detector system according to another embodiment includes a processing device for fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times and performing a direct integration of fit parameters. A method according to yet another embodiment includes processing pulse traces corresponding to light pulses from a scintillator, wherein pulse digitization is used to improve energy resolution of the system. A method in a further embodiment includes fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times; and performing a direct integration of fit parameters. Additional systems and methods are also presented.
NASA Astrophysics Data System (ADS)
Jantzen, Connie; Slagle, Rick
1997-05-01
The distinction between exposure time and sample rate is often the first point raised in any discussion of high speed imaging. Many high speed events require exposure times considerably shorter than those that can be achieved solely by the sample rate of the camera, where exposure time equals 1/sample rate. Gating, a method of achieving short exposure times in digital cameras, is often difficult to achieve for exposure time requirements shorter than 100 microseconds. This paper discusses the advantages and limitations of using the short duration light pulse of a near infrared laser with high speed digital imaging systems. By closely matching the output wavelength of the pulsed laser to the peak near infrared response of current sensors, high speed image capture can be accomplished at very low (visible) light levels of illumination. By virtue of the short duration light pulse, adjustable to as short as two microseconds, image capture of very high speed events can be achieved at relatively low sample rates of less than 100 pictures per second, without image blur. For our initial investigations, we chose a ballistic subject. The results of early experimentation revealed the limitations of applying traditional ballistic imaging methods when using a pulsed infrared lightsource with a digital imaging system. These early disappointing results clarified the need to further identify the unique system characteristics of the digital imager and pulsed infrared combination. It was also necessary to investigate how the infrared reflectance and transmittance of common materials affects the imaging process. This experimental work yielded a surprising, successful methodology which will prove useful in imaging ballistic and weapons tests, as well as forensics, flow visualizations, spray pattern analyses, and nocturnal animal behavioral studies.
Review of free software tools for image analysis of fluorescence cell micrographs.
Wiesmann, V; Franz, D; Held, C; Münzenmayer, C; Palmisano, R; Wittenberg, T
2015-01-01
An increasing number of free software tools have been made available for the evaluation of fluorescence cell micrographs. The main users are biologists and related life scientists with no or little knowledge of image processing. In this review, we give an overview of available tools and guidelines about which tools the users should use to segment fluorescence micrographs. We selected 15 free tools and divided them into stand-alone, Matlab-based, ImageJ-based, free demo versions of commercial tools and data sharing tools. The review consists of two parts: First, we developed a criteria catalogue and rated the tools regarding structural requirements, functionality (flexibility, segmentation and image processing filters) and usability (documentation, data management, usability and visualization). Second, we performed an image processing case study with four representative fluorescence micrograph segmentation tasks with figure-ground and cell separation. The tools display a wide range of functionality and usability. In the image processing case study, we were able to perform figure-ground separation in all micrographs using mainly thresholding. Cell separation was not possible with most of the tools, because cell separation methods are provided only by a subset of the tools and are difficult to parametrize and to use. Most important is that the usability matches the functionality of a tool. To be usable, specialized tools with less functionality need to fulfill less usability criteria, whereas multipurpose tools need a well-structured menu and intuitive graphical user interface. © 2014 Fraunhofer-Institute for Integrated Circuits IIS Journal of Microscopy © 2014 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Liu, Yan; Ma, Cheng; Shen, Yuecheng; Wang, Lihong V.
2017-02-01
Optical phase conjugation based wavefront shaping techniques are being actively developed to focus light through or inside scattering media such as biological tissue, and they promise to revolutionize optical imaging, manipulation, and therapy. The speed of digital optical phase conjugation (DOPC) has been limited by the low speeds of cameras and spatial light modulators (SLMs), preventing DOPC from being applied to thick living tissue. Recently, a fast DOPC system was developed based on a single-shot wavefront measurement method, a field programmable gate array (FPGA) for data processing, and a digital micromirror device (DMD) for fast modulation. However, this system has the following limitations. First, the reported single-shot wavefront measurement method does not work when our goal is to focus light inside, instead of through, scattering media. Second, the DMD performed binary amplitude modulation, which resulted in a lower focusing contrast compared with that of phase modulations. Third, the optical fluence threshold causing DMDs to malfunction under pulsed laser illumination is lower than that of liquid crystal based SLMs, and the system alignment is significantly complicated by the oblique reflection angle of the DMD. Here, we developed a simple but high-speed DOPC system using a ferroelectric liquid crystal based SLM (512 × 512 pixels), and focused light through three diffusers within 4.7 ms. Using focused-ultrasound-guided DOPC along with a double exposure scheme, we focused light inside a scattering medium containing two diffusers within 7.7 ms, thus achieving the fastest digital time-reversed ultrasonically encoded (TRUE) optical focusing to date.
Flifla, M J; Garreau, M; Rolland, J P; Coatrieux, J L; Thomas, D
1992-12-01
'IBIS' is a set of computer programs concerned with the processing of electron micrographs, with particular emphasis on the requirements for structural analyses of biological macromolecules. The software is written in FORTRAN 77 and runs on Unix workstations. A description of the various functions and the implementation mode is given. Some examples illustrate the user interface.
The Readability of Online Patient Information About Mohs Micrographic Surgery.
Vargas, Christina R; DePry, Jennifer; Lee, Bernard T; Bordeaux, Jeremy S
2016-10-01
Mohs micrographic surgery has become increasingly used in the treatment of cutaneous malignancies over the past decade. Concurrently, more patients are using the Internet as a resource for medical information than ever before. The average American adult reads at an eighth grade level. The American Medical Association and National Institutes of Health have recommended a sixth grade target reading level for patient health materials. This study evaluates the readability of currently available online information about Mohs micrographic surgery in the context of these recommendations. An Internet search for the term "Mohs surgery" was performed and the first 10 results were identified. Patient information from each primary site was downloaded and formatted into plain text. Readability was assessed using 9 established tests; text was analyzed both overall and by Web site for comparison. A total of 101 articles were collected from the first 10 Web site search results; the overall average reading level was 14.4. All articles exceeded the recommended sixth grade reading level. Online resources about Mohs micrographic surgery are too difficult for many patients to read. The paucity of appropriately written patient information available on the Internet may hinder informed decision-making, participation, and subsequent postoperative satisfaction.
Perspectives of multimode fibers and digital holography for optogenetics
NASA Astrophysics Data System (ADS)
Czarske, Jürgen W.; Haufe, Daniel; Koukourakis, Nektarios; Büttner, Lars
2016-04-01
Optogenetic approaches allow the activation or inhibition of genetically prescribed populations of neurons by light. In principle, optogenetics offers not only the ability to elucidate the functions of neural circuitry, but also new approaches to a treatment of neurodegenerative diseases and recovery of vision and auditory perception. Optogenetics already has revolutionized research in neuroscience. However, new methods for delivering light to three-dimensionally distributed structures e.g. in the brain are necessary. A major hurdle for focusing light through biological tissue is the occurring scattering and scrambling of the light. We demonstrate the correction of the scrambling in a multimode fiber by digital optical phase conjugation with a perspective for optogenetics.
Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing.
Patel, Dinesh K; Sakhaei, Amir Hosein; Layani, Michael; Zhang, Biao; Ge, Qi; Magdassi, Shlomo
2017-04-01
Stretchable UV-curable (SUV) elastomers can be stretched by up to 1100% and are suitable for digital-light-processing (DLP)-based 3D-printing technology. DLP printing of these SUV elastomers enables the direct creation of highly deformable complex 3D hollow structures such as balloons, soft actuators, grippers, and buckyball electronical switches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.; Collins, Stuart A., Jr.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.
Habiby, S F; Collins, S A
1987-11-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.
Arithmetic operations in optical computations using a modified trinary number system.
Datta, A K; Basuray, A; Mukhopadhyay, S
1989-05-01
A modified trinary number (MTN) system is proposed in which any binary number can be expressed with the help of trinary digits (1, 0, 1 ). Arithmetic operations can be performed in parallel without the need for carry and borrow steps when binary digits are converted to the MTN system. An optical implementation of the proposed scheme that uses spatial light modulators and color-coded light signals is described.
Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.
Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes
2015-07-22
This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com
2015-06-24
Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less
Matsunaga, Tomoko M; Ogawa, Daisuke; Taguchi-Shiobara, Fumio; Ishimoto, Masao; Matsunaga, Sachihiro; Habu, Yoshiki
2017-06-01
Leaf color is an important indicator when evaluating plant growth and responses to biotic/abiotic stress. Acquisition of images by digital cameras allows analysis and long-term storage of the acquired images. However, under field conditions, where light intensity can fluctuate and other factors (shade, reflection, and background, etc.) vary, stable and reproducible measurement and quantification of leaf color are hard to achieve. Digital scanners provide fixed conditions for obtaining image data, allowing stable and reliable comparison among samples, but require detached plant materials to capture images, and the destructive processes involved often induce deformation of plant materials (curled leaves and faded colors, etc.). In this study, by using a lightweight digital scanner connected to a mobile computer, we obtained digital image data from intact plant leaves grown in natural-light greenhouses without detaching the targets. We took images of soybean leaves infected by Xanthomonas campestris pv. glycines , and distinctively quantified two disease symptoms (brown lesions and yellow halos) using freely available image processing software. The image data were amenable to quantitative and statistical analyses, allowing precise and objective evaluation of disease resistance.
Development of electronic cinema projectors
NASA Astrophysics Data System (ADS)
Glenn, William E.
2001-03-01
All of the components for the electronic cinema are now commercially available. Sony has a high definition progressively scanned 24 frame per second electronic cinema camera. This can be recorded digitally on tape or film on hard drives in RAID recorders. Much of the post production processing is now done digitally by scanning film, processing it digitally, and recording it on film for release. Fiber links and satellites can transmit cinema program material to theaters in real time. RAID or tape recorders can play programs for viewing at a much lower cost than storage on film. Two companies now have electronic cinema projectors on the market. Of all of the components, the electronic cinema projector is the most challenging. Achieving the resolution, light, output, contrast ratio, and color rendition all at the same time without visible artifacts is a difficult task. Film itself is, of course, a form of light-valve. However, electronically modulated light uses other techniques rather than changes in density to control the light. The optical techniques that have been the basis for many electronic light-valves have been under development for over 100 years. Many of these techniques are based on optical diffraction to modulate the light. This paper will trace the history of these techniques and show how they may be extended to produce electronic cinema projectors in the future.
Lin, Wei-Shao; Harris, Bryan T; Pellerito, John; Morton, Dean
2018-04-30
This report describes a proof of concept for fabricating an interim complete removable dental prosthesis with a digital light processing 3-dimensional (3D) printer. Although an in-office 3D printer can reduce the overall production cost for an interim complete removable dental prosthesis, the process has not been validated with clinical studies. This report provided a preliminary proof of concept in developing a digital workflow for the in-office additively manufactured interim complete removable dental prosthesis. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Optimization of the polyplanar optical display electronics for a monochrome B-52 display
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, L.
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.« less
Musse, Maja; De Franceschi, Loriane; Cambert, Mireille; Sorin, Clément; Le Caherec, Françoise; Burel, Agnès; Bouchereau, Alain; Mariette, François; Leport, Laurent
2013-01-01
Nitrogen use efficiency is relatively low in oilseed rape (Brassica napus) due to weak nitrogen remobilization during leaf senescence. Monitoring the kinetics of water distribution associated with the reorganization of cell structures, therefore, would be valuable to improve the characterization of nutrient recycling in leaf tissues and the associated senescence processes. In this study, nuclear magnetic resonance (NMR) relaxometry was used to describe water distribution and status at the cellular level in different leaf ranks of well-watered plants. It was shown to be able to detect slight variations in the evolution of senescence. The NMR results were linked to physiological characterization of the leaves and to light and electron micrographs. A relationship between cell hydration and leaf senescence was revealed and associated with changes in the NMR signal. The relative intensities and the transverse relaxation times of the NMR signal components associated with vacuole water were positively correlated with senescence, describing water uptake and vacuole and cell enlargement. Moreover, the relative intensity of the NMR signal that we assigned to the chloroplast water decreased during the senescence process, in agreement with the decrease in relative chloroplast volume estimated from micrographs. The results are discussed on the basis of water flux occurring at the cellular level during senescence. One of the main applications of this study would be for plant phenotyping, especially for plants under environmental stress such as nitrogen starvation. PMID:23903438
Stabilized super-thermite colloids: A new generation of advanced highly energetic materials
NASA Astrophysics Data System (ADS)
Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.
2017-10-01
One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.
Myofibrosarcoma treated with Mohs micrographic surgery.
Chiller, Katarina; Parker, Douglas; Washington, Carl
2004-12-01
Myofibrosarcoma is a rare malignant mesenchymal tumor composed predominantly of differentiated myofibroblasts. These tumors occur in both children and adults alike and are most commonly located on the head and neck. Recurrences rates range from 44% to 75%, and metastatic disease has been reported in up to 44% of cases. The objective was to present a case of a myofibrosarcoma treated with Mohs micrographic surgery and discuss the use of ultrastructural evaluation in the diagnosis of this rare tumor. A 31-year-old African American woman who presented to the Emory University Dermatologic Surgery Clinic with a 4-month history of a 2.5 x 2.5-cm indurated firm painful right upper lateral thigh nodule. A prior biopsy revealed a proliferation of somewhat bland spindled cells with large zones of necrosis with prominent mitotic figures, changes compatible with a cellular dermatofibroma. Because the lesion exhibited clinically suspicious characteristics such as rapid growth and deep infiltration, the patient was subsequently referred to Emory for further evaluation. There was no evidence of lymphadenopathy and a chest X-ray was unremarkable. A two-staged (five and four sections, respectively) uneventful Mohs micrographic surgery procedure was performed resulting in a defect measuring 3.5 x 3.5 x 1.0 cm. Primary closure was achieved with no complication, and the final scar measured 10 cm. Because of the suspicious clinical behavior of this tumor debulking specimen was sent for permanent section. Histopathologic interpretation of these sections was consistent with a fibrosarcoma with myofibroblastic differentiation. No clinical recurrence noted after 14-month follow-up. Mohs micrographic surgery is a technique that has been shown to provide superior cure rates in the treatment of many mesenchymal tumors. Here, we report the first case of myofibrosarcoma treated with Mohs micrographic surgery. Myofibrosarcoma is a rare but aggressive tumor that can be difficult to distinguish from other somewhat less aggressive malignancies such as dermatofibrosarcoma protuberans or malignant fibrous histiocytoma. Specific histopathologic criteria are reviewed. We recommend including Mohs micrographic surgery in the armamentarium for the treatment of this rare tumor.
Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED
NASA Astrophysics Data System (ADS)
Garcia-Sucerquia, J.
2015-04-01
The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution.
Digital learning programs - competition for the classical microscope?
Schmidt, Peter
2013-01-01
The development of digital media has been impressive in recent years which is also among the reason for their increasing use in academic teaching. This is especially true for teaching Anatomy and Histology in the first two years in medical and dental curricula. Modern digital technologies allow for efficient, affordable and easily accessible distribution of histological images in high quality. Microscopy depends almost exclusively on such images. Since 20 years numerous digital teaching systems have been developed for this purpose. Respective developments have changed the ways students acquire knowledge and prepare for exams. Teaching staff should adapt lectures, seminars and labs accordingly. As a first step, a collection of high resolution digital microscopic slides was made available for students at the Friedrich-Schiller-University in Jena. The aim of the present study was to evaluate the importance of conventional light microscopy and related technologies in current and future medical and dental education aswell. A survey was done among 172 medical and dental students at the Friedrich-Schiller-University Jena. 51% of students use now frequently new digital media for learning histology in contrast to 5% in the year 2000 [1]. Digital media including Internet, CD- based learning combined with social networks successfully compete with classical light microscopy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-06
..., to request (1) a digital ID certificate, which allows the participant (or its counsel or... NRC- issued digital ID certificate). Based upon this information, the Secretary will establish an... electronic docket. Information about applying for a digital ID certificate is available on NRC's public Web...
Building Expertise to Support Digital Scholarship: A Global Perspective
ERIC Educational Resources Information Center
Lewis, Vivian; Spiro, Lisa; Wang, Xuemao; Cawthorne, Jon E.
2015-01-01
This report sheds light on the expertise required to support a robust and sustainable digital scholarship (DS) program. It focuses first on defining and describing the key domain knowledge, skills, competencies, and mindsets at some of the world's most prominent digital scholarship programs. It then identifies the main strategies used to build…
Theoretical Perspectives of How Digital Natives Learn
ERIC Educational Resources Information Center
Kivunja, Charles
2014-01-01
Marck Prensky, an authority on teaching and learning especially with the aid of Information and Communication Technologies, has referred to 21st century children born after 1980 as "Digital Natives". This paper reviews literature of leaders in the field to shed some light on theoretical perspectives of how Digital Natives learn and how…
Digital Light Processing update: status and future applications
NASA Astrophysics Data System (ADS)
Hornbeck, Larry J.
1999-05-01
Digital Light Processing (DLP) projection displays based on the Digital Micromirror Device (DMD) were introduced to the market in 1996. Less than 3 years later, DLP-based projectors are found in such diverse applications as mobile, conference room, video wall, home theater, and large-venue. They provide high-quality, seamless, all-digital images that have exceptional stability as well as freedom from both flicker and image lag. Marked improvements have been made in the image quality of DLP-based projection display, including brightness, resolution, contrast ratio, and border image. DLP-based mobile projectors that weighted about 27 pounds in 1996 now weight only about 7 pounds. This weight reduction has been responsible for the definition of an entirely new projector class, the ultraportable. New applications are being developed for this important new projection display technology; these include digital photofinishing for high process speed minilab and maxilab applications and DLP Cinema for the digital delivery of films to audiences around the world. This paper describes the status of DLP-based projection display technology, including its manufacturing, performance improvements, and new applications, with emphasis on DLP Cinema.
Optics and optics-based technologies education with the benefit of LabVIEW
NASA Astrophysics Data System (ADS)
Wan, Yuhong; Man, Tianlong; Tao, Shiquan
2015-10-01
The details of design and implementation of incoherent digital holographic experiments based on LabVIEW are demonstrated in this work in order to offer a teaching modal by making full use of LabVIEW as an educational tool. Digital incoherent holography enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator and three-dimensional properties of the specimen are revealed after the hologram is reconstructed in the computer. The experiment of phase shifting incoherent digital holography is designed and implemented based on the principle of Fresnel incoherent correlation holography. An automatic control application is developed based on LabVIEW, which combines the functions of major experimental hardware control and digital reconstruction of the holograms. The basic functions of the system are completed and a user-friendly interface is provided for easy operation. The students are encouraged and stimulated to learn and practice the basic principle of incoherent digital holography and other related optics-based technologies during the programming of the application and implementation of the system.
Fundamentals of in Situ Digital Camera Methodology for Water Quality Monitoring of Coast and Ocean
Goddijn-Murphy, Lonneke; Dailloux, Damien; White, Martin; Bowers, Dave
2009-01-01
Conventional digital cameras, the Nikon Coolpix885® and the SeaLife ECOshot®, were used as in situ optical instruments for water quality monitoring. Measured response spectra showed that these digital cameras are basically three-band radiometers. The response values in the red, green and blue bands, quantified by RGB values of digital images of the water surface, were comparable to measurements of irradiance levels at red, green and cyan/blue wavelengths of water leaving light. Different systems were deployed to capture upwelling light from below the surface, while eliminating direct surface reflection. Relationships between RGB ratios of water surface images, and water quality parameters were found to be consistent with previous measurements using more traditional narrow-band radiometers. This current paper focuses on the method that was used to acquire digital images, derive RGB values and relate measurements to water quality parameters. Field measurements were obtained in Galway Bay, Ireland, and in the Southern Rockall Trough in the North Atlantic, where both yellow substance and chlorophyll concentrations were successfully assessed using the digital camera method. PMID:22346729
Jacob, Mathews; Blu, Thierry; Vaillant, Cedric; Maddocks, John H; Unser, Michael
2006-01-01
We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.
Digital image processing of bone - Problems and potentials
NASA Technical Reports Server (NTRS)
Morey, E. R.; Wronski, T. J.
1980-01-01
The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.
Novel Digital Driving Method Using Dual Scan for Active Matrix Organic Light-Emitting Diode Displays
NASA Astrophysics Data System (ADS)
Jung, Myoung Hoon; Choi, Inho; Chung, Hoon-Ju; Kim, Ohyun
2008-11-01
A new digital driving method has been developed for low-temperature polycrystalline silicon, transistor-driven, active-matrix organic light-emitting diode (AM-OLED) displays by time-ratio gray-scale expression. This driving method effectively increases the emission ratio and the number of subfields by inserting another subfield set into nondisplay periods in the conventional digital driving method. By employing the proposed modified gravity center coding, this method can be used to effectively compensate for dynamic false contour noise. The operation and performance were verified by current measurement and image simulation. The simulation results using eight test images show that the proposed approach improves the average peak signal-to-noise ratio by 2.61 dB, and the emission ratio by 20.5%, compared with the conventional digital driving method.
Color digital lensless holographic microscopy: laser versus LED illumination.
Garcia-Sucerquia, Jorge
2016-08-20
A comparison of the performance of color digital lensless holographic microscopy (CDLHM) as utilized for illumination of RGB lasers or a super-bright white-light LED with a set of spectral filters is presented. As the use of lasers in CDLHM conceals the possibility of having a compact, lightweight, portable, and low cost microscope, and additionally the limited available laser radiation wavelengths limit a real multispectral imaging microscope, here we present the use of super-bright white-light LED and spectral filters for illuminating the sample. The performance of RGB laser-CDLHM and LED-CDLHM is evaluated on imaging a section of the head of a Drosophila melanogaster fly. This comparison shows that there is trade-off between the spatial resolution of the microscope and the light sources utilized, which can be understood with regard to the coherence properties of the illuminating light. Despite the smaller spatial coherence features of LED-CDLHM in comparison with laser-CDLHM, the former shows promise as a portable RGB digital lensless holographic microscope that could be extended to other wavelengths by the use of different spectral filters.
Dulski, Kamil; Niedźwiecki, Szymon; Alfs, Dominika; Białas, Piotr; Curceanu, Catalina; Czerwiński, Eryk; Danel, Andrzej; Gajos, Aleksander; Głowacz, Bartosz; Gorgol, Marek; Hiesmayr, Beatrix; Jasińska, Bożena; Kacprzak, Krzysztof; Kamińska, Daria; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Kubicz, Ewelina; Kucharek, Mateusz; Mohammed, Muhsin; Pawlik-Niedźwiecka, Monika; Pałka, Marek; Raczyński, Lech; Rudy, Zbigniew; Rundel, Oleksandr; Sharma, Neha G.; Silarski, Michał; Uchacz, Tomasz; Wiślicki, Wojciech; Zgardzińska, Bożena; Zieliński, Marcin; Moskal, Paweł
2017-01-01
A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm. PMID:29176834
Wieczorek, Anna; Dulski, Kamil; Niedźwiecki, Szymon; Alfs, Dominika; Białas, Piotr; Curceanu, Catalina; Czerwiński, Eryk; Danel, Andrzej; Gajos, Aleksander; Głowacz, Bartosz; Gorgol, Marek; Hiesmayr, Beatrix; Jasińska, Bożena; Kacprzak, Krzysztof; Kamińska, Daria; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Kubicz, Ewelina; Kucharek, Mateusz; Mohammed, Muhsin; Pawlik-Niedźwiecka, Monika; Pałka, Marek; Raczyński, Lech; Rudy, Zbigniew; Rundel, Oleksandr; Sharma, Neha G; Silarski, Michał; Uchacz, Tomasz; Wiślicki, Wojciech; Zgardzińska, Bożena; Zieliński, Marcin; Moskal, Paweł
2017-01-01
A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm.
Correlation and agreement of a digital and conventional method to measure arch parameters.
Nawi, Nes; Mohamed, Alizae Marny; Marizan Nor, Murshida; Ashar, Nor Atika
2018-01-01
The aim of the present study was to determine the overall reliability and validity of arch parameters measured digitally compared to conventional measurement. A sample of 111 plaster study models of Down syndrome (DS) patients were digitized using a blue light three-dimensional (3D) scanner. Digital and manual measurements of defined parameters were performed using Geomagic analysis software (Geomagic Studio 2014 software, 3D Systems, Rock Hill, SC, USA) on digital models and with a digital calliper (Tuten, Germany) on plaster study models. Both measurements were repeated twice to validate the intraexaminer reliability based on intraclass correlation coefficients (ICCs) using the independent t test and Pearson's correlation, respectively. The Bland-Altman method of analysis was used to evaluate the agreement of the measurement between the digital and plaster models. No statistically significant differences (p > 0.05) were found between the manual and digital methods when measuring the arch width, arch length, and space analysis. In addition, all parameters showed a significant correlation coefficient (r ≥ 0.972; p < 0.01) between all digital and manual measurements. Furthermore, a positive agreement between digital and manual measurements of the arch width (90-96%), arch length and space analysis (95-99%) were also distinguished using the Bland-Altman method. These results demonstrate that 3D blue light scanning and measurement software are able to precisely produce 3D digital model and measure arch width, arch length, and space analysis. The 3D digital model is valid to be used in various clinical applications.
ERIC Educational Resources Information Center
Information Dynamics Corp., Reading, MA.
A study intended to provide the Defense Documentation Center (DDC) with a five-year plan for the development of improved and new microfiche products, services, and production capabilities is summarized in this report. In addition, the major findings, conclusions, and recommendations developed during the study are noted. The results of the research…
Cloud condensation nucleus counter by impactor sampling technique
NASA Technical Reports Server (NTRS)
Ohtake, T.
1981-01-01
Unlike typical CCN counters, this device counts the numbers of water droplets condensed on aerosol particles sampled on a microcover glass at various different relative humidities. The relative humidities ranged from 75 percent to a calculated value of 110 percent. A schematic of the apparatus is shown. The individual CCN can be identified in an optical micrograph and scanning electron micrograph and may be inspected for their chemical composition later.
Min, Xin; Huang, Zhaohui; Fang, Minghao; Liu, Yan'gai; Tang, Chao; Wu, Xiaowen
2016-04-01
In this paper, M3(VO4)2 (M = Mg, Ca, Sr, and Ba) self-activated phosphors were prepared by a solid-state reaction method at 1,000 °C for 5 h. The phase formation and micrographs were analyzed by X-ray diffraction and scanning electron microscopy. The Ca3(VO4)2 phosphor does not show any emission peaks under excitation with ultraviolet (UV) light. However, the M3(VO4)2 (M = Mg, Sr, and Ba) samples are effectively excited by UV light chips ranging from 200 nm to 400 nm and exhibit broad emission bands due to the charge transfer from the oxygen 2p orbital to the vacant 3d orbital of the vanadium in the VO4. The color of these phosphors changes from yellow to light blue via blue-green with increasing ionic radius from Mg to Sr to Ba. The luminescence lifetimes and quantum yield decrease with the increasing unit cell volume and V-V distance, in the order of Mg3(VO4)2 to Sr3(VO4)2 to Ba3(VO4)2. The emission intensity decreases with the increase of temperatures, but presents no color shift. This confirms that these self-activated M3(VO4)2 phosphors can be suggested as candidates of the single-phase phosphors for light using UV light emitting diodes (LEDs).
Clinical study of imaging skin cancer margins using polarized light imaging
NASA Astrophysics Data System (ADS)
Samatham, Ravikant; Lee, Ken; Jacques, Steven L.
2012-02-01
Skin cancer is most commons type of cancer in United States that occur on sun-exposed cosmetically sensitive areas like face, neck, and forearms. Surgical excision of skin cancer is challenging as more than one-third the actual margins extend beyond the clinically determined margins. Polarized light camera (polCAM) provides images of the superficial layers of the tissue with enhanced contrast which was used to image skin cancer margins. In a NIH-funded pilot study polCAM was used to image skin cancer in patients undergoing Mohs micrographic surgery for skin cancer. Polarized light imaging utilizes the polarization properties of light to create an image of a lesion comprised only of light scattering from the superficial layers of the skin which yields a characteristic "fabric pattern" of the putative lesion and the surrounding normal tissue. In several case studies conducted with a system developed for the clinic, we have found that skin cancer disrupts this fabric pattern, allowing the doctor a new means of identifying the margins of the lesion. Data is acquired before the patient underwent surgery. The clinically determined skin cancer margins were compared with margins determined by examination of the polCAM images. The true margins were provided by the dermatophathologist on examination of the frozen sections. Our initial data suggests that the contrast due to polarization changes associated with cancerous lesions can elucidate margins that were not recognized by the surgeon under normal conditions but were later confirmed by the pathologist.
Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology
Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes
2015-01-01
This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275
Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert
2009-03-10
In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.
Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system
NASA Astrophysics Data System (ADS)
Vítek, S.
2017-07-01
The purpose of this experiment was to measure light pollution in the capital of Czech Republic, Prague. As a measuring instrument is used calibrated consumer level digital single reflex camera with IR cut filter, therefore, the paper reports results of measuring and monitoring of the light pollution in the wavelength range of 390 - 700 nm, which most affects visual range astronomy. Combining frames of different exposure times made with a digital camera coupled with fish-eye lens allow to create high dynamic range images, contain meaningful values, so such a system can provide absolute values of the sky brightness.
Shaping non-diffracting beams with a digital micromirror device
NASA Astrophysics Data System (ADS)
Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De
2016-02-01
The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.
Defect Characterization in a Thin Walled Composite RP-1 Tank: A Case Study
NASA Technical Reports Server (NTRS)
Langsing, Matthew D.; Walker, James L., II; Russell, Samual S.
2000-01-01
A full scale thin walled composite tank, designed and fabricated for the storage of pressurized RP- I rocket fuel, was fully inspected with digital infrared thermography (IR) during assembly and prior to proof testing. The tank featured a "pill capsule" design with the equatorial bondline being overwrapped on both the inner and outer surfaces. A composite skirt was bonded to the aft dome of the tank to serve as a structural support when the tank was stood on end in service. Numerous anomalies were detected and mapped prior to proof testing, some along bondlines and some scattered throughout the acreage. After the tank was intentionally burst, coupons were cut from the regions including thermographic anomalies. These coupons were again inspected thermographically to document the growth of any indications due to proof testing. Ultrasonic inspections (UT) were also performed on the coupons for comparison to thermography. Several coupons were dissected and micrographed. Relationships between IR and UT indications and the physical nature of the dissected material are presented.
Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films
NASA Astrophysics Data System (ADS)
Yalçınkaya, Süleyman; Çakmak, Didem
2017-05-01
In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.
Jeon, Jin-Hun; Lee, Kyung-Tak; Kim, Hae-Young; Kim, Ji-Hwan
2013-01-01
PURPOSE The aim of this study was to evaluate the repeatability of the digitizing of silicon rubber impressions of abutment teeth by using a white light scanner and compare differences in repeatability between different abutment teeth types. MATERIALS AND METHODS Silicon rubber impressions of a canine, premolar, and molar tooth were each digitized 8 times using a white light scanner, and 3D surface models were created using the point clouds. The size of any discrepancy between each model and the corresponding reference tooth were measured, and the distribution of these values was analyzed by an inspection software (PowerInspect 2012, Delcamplc., Birmingham, UK). Absolute values of discrepancies were analyzed by the Kruskal-Wallis test and multiple comparisons (α=.05). RESULTS The discrepancy between the impressions for the canine, premolar, and molar teeth were 6.3 µm (95% confidence interval [CI], 5.4-7.2), 6.4 µm (95% CI, 5.3-7.6), and 8.9 µm (95% CI, 8.2-9.5), respectively. The discrepancy of the molar tooth impression was significantly higher than that of other tooth types. The largest variation (as mean [SD]) in discrepancies was seen in the premolar tooth impression scans: 26.7 µm (95% CI, 19.7-33.8); followed by canine and molar teeth impressions, 16.3 µm (95% CI, 15.3-17.3), and 14.0 µm (95% CI, 12.3-15.7), respectively. CONCLUSION The repeatability of the digitizing abutment teeth's silicon rubber impressions by using a white light scanner was improved compared to that with a laser scanner, showing only a low mean discrepancy between 6.3 µm and 8.9 µm, which was in an clinically acceptable range. Premolar impression with a long and narrow shape showed a significantly larger discrepancy than canine and molar impressions. Further work is needed to increase the digitizing performance of the white light scanner for deep and slender impressions. PMID:24353885
Brecko, Jonathan; Mathys, Aurore; Dekoninck, Wouter; De Ceukelaire, Marleen; VandenSpiegel, Didier; Semal, Patrick
2016-01-01
Digitization of the natural history specimens usually occurs by taking detailed pictures from different sides or producing 3D models. Additionally this is normally limited to imaging the specimen while exposed by light of the visual spectrum. However many specimens can see in or react to other spectra as well. Fluorescence is a well known reaction to the ultraviolet (UV) spectrum by animals, plants, minerals etc. but rarely taken into account while examining natural history specimens. Our tests show that museum specimens still fluoresce when exposed to UV light of 395 nm and 365 nm, even after many years of preservation. When the UV exposure is used in the digitization of specimens using our low cost focus stacking (2D+) setup, the resulting pictures reveal more detail than the conventional 2D+ images. Differences in fluorescence using 395 nm or 365 nm UV lights were noticed, however there isn’t a preferred wavelength as some specimens react more to the first, while others have better results with the latter exposure. Given the increased detail and the low cost of the system, UV exposure should be considered while digitizing natural history museum collections. PMID:27536993
Optical digital to analog conversion performance analysis for indoor set-up conditions
NASA Astrophysics Data System (ADS)
Dobesch, Aleš; Alves, Luis Nero; Wilfert, Otakar; Ribeiro, Carlos Gaspar
2017-10-01
In visible light communication (VLC) the optical digital to analog conversion (ODAC) approach was proposed as a suitable driving technique able to overcome light-emitting diode's (LED) non-linear characteristic. This concept is analogous to an electrical digital-to-analog converter (EDAC). In other words, digital bits are binary weighted to represent an analog signal. The method supports elementary on-off based modulations able to exploit the essence of LED's non-linear characteristic allowing simultaneous lighting and communication. In the ODAC concept the reconstruction error does not simply rely upon the converter bit depth as in case of EDAC. It rather depends on communication system set-up and geometrical relation between emitter and receiver as well. The paper describes simulation results presenting the ODAC's error performance taking into account: the optical channel, the LED's half power angle (HPA) and the receiver field of view (FOV). The set-up under consideration examines indoor conditions for a square room with 4 m length and 3 m height, operating with one dominant wavelength (blue) and having walls with a reflection coefficient of 0.8. The achieved results reveal that reconstruction error increases for higher data rates as a result of interference due to multipath propagation.
Digital radiography in general dental practice: a field study.
Hellén-Halme, K; Nilsson, M; Petersson, A
2007-07-01
The aim of this study was to conduct a field study to survey the performance of digital radiography and how it was used by dentists in general dental practice. 19 general dental practitioners were visited at their clinics. Ambient light (illuminance) was measured in the rooms where the monitors were placed. Different technical display parameters were noted. Test images and two phantoms--one low-contrast phantom and one line-pair resolution phantom--were used to evaluate the digital system. How the dentists used the enhancement program was investigated by noting which functions were used. Average illuminance in the operating room was 668 lux (range 190-1250 lux). On radiographs of the low-contrast phantom taken at the clinic, the ability to observe the holes decreased as illuminance increased. On average, the "light percentage" initially set on the monitor had to be decreased by 17% and contrast by 10% to optimize the display of the test images. The general dental practitioners used the enhancement programs most often to alter brightness and contrast to obtain the subjectively best image. Large differences between the clinics were noted. Knowledge of how to handle digital equipment in general dental practice should be improved. A calibrated monitor of good quality should be a given priority, as should proper ambient light conditions. There is a need to develop standardized quality controls for digital dental radiography.
Optical design of automotive headlight system incorporating digital micromirror device.
Hung, Chuan-Cheng; Fang, Yi-Chin; Huang, Ming-Shyan; Hsueh, Bo-Ren; Wang, Shuan-Fu; Wu, Bo-Wen; Lai, Wei-Chi; Chen, Yi-Liang
2010-08-01
In recent years, the popular adaptive front-lighting automobile headlight system has become a main emphasis of research that manufacturers will continue to focus great efforts on in the future. In this research we propose a new integral optical design for an automotive headlight system with an advanced light-emitting diode and digital micromirror device (DMD). Traditionally, automobile headlights have all been designed as a low beam light module, whereas the high beam light module still requires using accessory lamps. In anticipation of this new concept of integral optical design, we have researched and designed a single optical system with high and low beam capabilities. To switch on and off the beams, a DMD is typically used. Because DMDs have the capability of redirecting incident light into a specific angle, they also determine the shape of the high or low light beam in order to match the standard of headlight illumination. With collocation of the multicurvature reflection lens design, a DMD can control the light energy distribution and thereby reinforce the resolution of the light beam.
NASA Astrophysics Data System (ADS)
Di, Jianglei; Song, Yu; Xi, Teli; Zhang, Jiwei; Li, Ying; Ma, Chaojie; Wang, Kaiqiang; Zhao, Jianlin
2017-11-01
Biological cells are usually transparent with a small refractive index gradient. Digital holographic interferometry can be used in the measurement of biological cells. We propose a dual-wavelength common-path digital holographic microscopy for the quantitative phase imaging of biological cells. In the proposed configuration, a parallel glass plate is inserted in the light path to create the lateral shearing, and two lasers with different wavelengths are used as the light source to form the dual-wavelength composite digital hologram. The information of biological cells for different wavelengths is separated and extracted in the Fourier domain of the hologram, and then combined to a shorter wavelength in the measurement process. This method could improve the system's temporal stability and reduce speckle noises simultaneously. Mouse osteoblastic cells and peony pollens are measured to show the feasibility of this method.
1999-08-01
This includes the treatment of common skin conditions such as acne, dermatitis, psoriasis, vitiligo or alopecia to the more complex laser surgeries and...Phototherapy, Laser Surgery, Pediatric Dermatology, HIV Dermatology, Patch Testing, MOHS Micrographic Surgery, and Dermatologic Surgery. The entire...Dermatology Service is located on the first floor of the hospital. Minor surgical and MOHS Micrographic Surgery, ultraviolet treatment, and laser surgery
Pauling, L
1990-10-01
An analysis of electron micrographs of Al5Mn quasicrystals obtained by rapidly cooling a molten alloy with composition Al17Mn and removing the Al matrix by electrosolution, revealing aggregates of 20 microcrystals at the corners of a pentagonal dodecahedron, supports the proposal that these microcrystals are cubic crystals twinned about an icosahedral seed, with each cubic microcrystal sharing a threefold axis and three symmetry planes with the seed.
Remote interferometry by digital holography for shape control
NASA Astrophysics Data System (ADS)
Baumbach, Torsten; Osten, Wolfgang; Falldorf, Claas; Jueptner, Werner P. O.
2002-06-01
Modern production requires more and more effective methods for the inspection and quality control at the production place. Outsourcing and globalization result in possible large distances between co-operating partners. This may cause serious problems with respect to the just-in-time exchange of information and the response to possible violations of quality standards. Consequently new challenges arise for optical measurement techniques especially in the field of industrial shape control. A possible solution for these problems can be delivered by a technique that stores optically the full 3D information of the objects to be compared and where the data can be transported over large distances. In this paper we describe the progress in implementing a new technique for the direct comparison of the shape and deformation of two objects with different microstructure where it is not necessary that both samples are located at the same place. This is done by creating a coherent mask for the illumination of the sample object. The coherent mask is created by Digital Holography to enable the instant access to the complete optical information of the master object at any wanted place. The transmission of the digital master holograms to this place can be done via digital telecommunication networks. The comparison can be done in a digital or analogue way. Both methods result in a disappearance of the object shape and the appearance of the shape or deformation difference between the two objects only. The analogue reconstruction of the holograms with a liquid crystal spatial light modulator can be done by using the light modulator as an intensity modulator or as an phase modulator. The reconstruction technique and the space bandwidth of the light modulator will influence the quality of the result. Therefore the paper describes the progress in applying modern spatial light modulators and digital cameras for the effective storage and optical reconstruction of coherent masks.
The potential influence of LED lighting on mental illness.
Bauer, Michael; Glenn, Tasha; Monteith, Scott; Gottlieb, John F; Ritter, Philipp S; Geddes, John; Whybrow, Peter C
2018-02-01
Two recent scientific breakthroughs may alter the treatment of mental illness, as discussed in this narrative review. The first was the invention of white light-emitting diodes (LEDs), which enabled an ongoing, rapid transition to energy-efficient LEDs for lighting, and the use of LEDs to backlight digital devices. The second was the discovery of melanopsin-expressing photosensitive retinal ganglion cells, which detect environmental irradiance and mediate non-image forming (NIF) functions including circadian entrainment, melatonin secretion, alertness, sleep regulation and the pupillary light reflex. These two breakthroughs are interrelated because unlike conventional lighting, white LEDs have a dominant spectral wavelength in the blue light range, near the peak sensitivity for the melanopsin system. Pertinent articles were identified. Blue light exposure may suppress melatonin, increase alertness, and interfere with sleep in young, healthy volunteers and in animals. Areas of concern in mental illness include the influence of blue light on sleep, other circadian-mediated symptoms, prescribed treatments that target the circadian system, measurement using digital apps and devices, and adolescent sensitivity to blue light. While knowledge in both fields is expanding rapidly, future developments must address the potential impact of blue light on NIF functions for healthy individuals and those with mental illness.
Multiplexing 200 spatial modes with a single hologram
NASA Astrophysics Data System (ADS)
Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew
2017-11-01
The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.
Annealing temperature effect on electrical properties of MEH-PPV thin film via spin coating method
NASA Astrophysics Data System (ADS)
Azhar, N. E. A.; Shariffudin, S. S.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.
2018-05-01
Organic semiconductor has been discovered in different application devices such as organic light emitting diodes (OLEDs). Poly [2-methoxy-5(2' -ethylhexyloxy)-1, 4-phenylenevinylene), MEH-PPV widely used in this device because its ability to produce a good optical quality films. The MEH-PPV was prepared on glass substrate by spin coating method. The thin film was investigated at different annealing temperatures. The scanning electron micrographs (SEM) revealed that sample annealed at 50°C showed uniformity and less aggregation on morphology polymer thin film. Optical properties showed the intensities of visible emission increased as temperatures increased. The current-voltage (I-V) measurement revealed that the temperature of 50°C showed high conductive and it is suitable for optoelectronic device.
Structural characterization of casein micelles: shape changes during film formation.
Gebhardt, R; Vendrely, C; Kulozik, U
2011-11-09
The objective of this study was to determine the effect of size-fractionation by centrifugation on the film structure of casein micelles. Fractionated casein micelles in solution were asymmetrically distributed with a small distribution width as measured by dynamic light scattering. Films prepared from the size-fractionated samples showed a smooth surface in optical microscopy images and a homogeneous microstructure in atomic force micrographs. The nano- and microstructure of casein films was probed by micro-beam grazing incidence small angle x-ray scattering (μGISAXS). Compared to the solution measurements, the sizes determined in the film were larger and broadly distributed. The measured GISAXS patterns clearly deviate from those simulated for a sphere and suggest a deformation of the casein micelles in the film. © 2011 IOP Publishing Ltd
Digital learning programs - competition for the classical microscope?
Schmidt, Peter
2013-01-01
The development of digital media has been impressive in recent years which is also among the reason for their increasing use in academic teaching. This is especially true for teaching Anatomy and Histology in the first two years in medical and dental curricula. Modern digital technologies allow for efficient, affordable and easily accessible distribution of histological images in high quality. Microscopy depends almost exclusively on such images. Since 20 years numerous digital teaching systems have been developed for this purpose. Respective developments have changed the ways students acquire knowledge and prepare for exams. Teaching staff should adapt lectures, seminars and labs accordingly. As a first step, a collection of high resolution digital microscopic slides was made available for students at the Friedrich-Schiller-University in Jena. The aim of the present study was to evaluate the importance of conventional light microscopy and related technologies in current and future medical and dental education aswell. A survey was done among 172 medical and dental students at the Friedrich-Schiller-University Jena. 51% of students use now frequently new digital media for learning histology in contrast to 5% in the year 2000 [1]. Digital media including Internet, CD- based learning combined with social networks successfully compete with classical light microscopy. PMID:23467698
Integrating TV/digital data spectrograph system
NASA Technical Reports Server (NTRS)
Duncan, B. J.; Fay, T. D.; Miller, E. R.; Wamsteker, W.; Brown, R. M.; Neely, P. L.
1975-01-01
A 25-mm vidicon camera was previously modified to allow operation in an integration mode for low-light-level astronomical work. The camera was then mated to a low-dispersion spectrograph for obtaining spectral information in the 400 to 750 nm range. A high speed digital video image system was utilized to digitize the analog video signal, place the information directly into computer-type memory, and record data on digital magnetic tape for permanent storage and subsequent analysis.
Smolensky, Alexander V; Gilbert, Susan H; Harger-Allen, Margaret; Ford, Lincoln E
2007-01-01
Muscle birefringence, caused mainly by parallel thick filaments, increases in smooth muscle during stimulation, signalling thick filament formation upon activation. The reverse occurs in skeletal muscle, where a decrease in birefringence has been correlated with crossbridge movement away from the thick filaments. When force generation by trachealis muscle was inhibited with wortmannin, which inhibits myosin light-chain phosphorylation and thick-filament formation, but not the calcium increase caused by stimulation, the birefringence response inverted, suggesting crossbridge movement similar to that of skeletal muscle. Resistance to quick stretches was much greater in stimulated muscle than in unstimulated muscle before wortmannin treatment and no different in stimulated and unstimulated muscle after force inhibition by wortmannin. Before wortmannin treatment, stimulation reduced thick-filament cross-sectional areas in electron micrographs by 44%. After force inhibition by wortmannin, filament areas were not significantly different in stimulated and unstimulated muscle and not significantly different from those of relaxed muscle without wortmannin treatment. These results suggest that myofibrillar-space calcium causes crossbridges to move away from the thick filaments without firmly attaching to thin filaments. PMID:17095560
High aperture off-axis parabolic mirror applied in digital holographic microscopy
NASA Astrophysics Data System (ADS)
Kalenkov, Georgy S.; Kalenkov, Sergey G.; Shtanko, Alexander E.
2018-04-01
An optical scheme of recording digital holograms of micro-objects based on high numerical aperture off-axis parabolic mirror forming a high aperture reference wave is suggested. Registration of digital holograms based on the proposed optical scheme is confirmed experimentally. Application of the proposed approach for hyperspectral holograms registration of micro-objects in incoherent light is discussed.
A volumetric three-dimensional digital light photoactivatable dye display
NASA Astrophysics Data System (ADS)
Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.
2017-07-01
Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.
A volumetric three-dimensional digital light photoactivatable dye display
Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.
2017-01-01
Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated ‘on-off’ cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays. PMID:28695887
NASA Astrophysics Data System (ADS)
Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.
2015-01-01
Digital holography is technique which includes recording of interference pattern with digital photosensor, processing of obtained holographic data and reconstruction of object wavefront. Increase of signal-to-noise ratio (SNR) of reconstructed digital holograms is especially important in such fields as image encryption, pattern recognition, static and dynamic display of 3D scenes, and etc. In this paper compensation of photosensor light spatial noise portrait (LSNP) for increase of SNR of reconstructed digital holograms is proposed. To verify the proposed method, numerical experiments with computer generated Fresnel holograms with resolution equal to 512×512 elements were performed. Simulation of shots registration with digital camera Canon EOS 400D was performed. It is shown that solo use of the averaging over frames method allows to increase SNR only up to 4 times, and further increase of SNR is limited by spatial noise. Application of the LSNP compensation method in conjunction with the averaging over frames method allows for 10 times SNR increase. This value was obtained for LSNP measured with 20 % error. In case of using more accurate LSNP, SNR can be increased up to 20 times.
NASA Astrophysics Data System (ADS)
Kamble, Ravi; Sabale, Sandip; Chikode, Prashant; Puri, Vijaya; Mahajan, Smita
2016-11-01
Pure TiO2 and Mn2+-TiO2 nanoparticles have been prepared by simple hydrothermal method with different Mn2+ concentrations. Obtained samples were analysed to determine it’s structural, optical, morphological and compositional properties using x-ray diffraction, UV-DRS, Raman, photoluminescence, XPS, TEM and EDS analysis. The EDS micrograph confirms the existence of Mn2+ atoms in TiO2 matrix with 0.86, 1.60 and 1.90 wt%. The crystallite size as well as band gap decreases with increase in Mn2+ concentration. The average particle size obtained from TEM was found 8-11 nm which is in good agreement with XRD results. Raman bands at 640, 518 and 398 cm-1 further confirmed pure phase anatase in all samples. XPS shows the proper substitutions of few sites of Ti4+ ions by Mn2+ ions in the TiO2 host lattice. The intensity of PL spectra for Mn2+-TiO2 shows a gradual decrease in the peak intensity with increasing Mn2+ concentration in TiO2, it implies lower electron-hole recombination rate as Mn2+ ions increases. The obtained samples were further studied for its photocatalytic activities using malachite green dye under UV light and visible light.
Corrosion Chemistry in Inhibited HDA.
1980-11-30
mg HF. 200 B.1 Teflon PFA Reactor 201 (xviii) .. .. - i LIST OF MICROGRAPHS Micrograph Follows Page 4.1 A1/HDA x 1,000 80 4.2 A1/0.4 Wt % PF5 x 2,000...Ethylene Propylene copolymer Teflon PTFE Polytetrafluoroethylene Teflon PFA Perfluoroalkoxy fluorocarbon resin Spectroscopy IR (ir) Infra-red UV...fluoroplastic apparatus (to avoid any possible contamination by the reaction products of HF with glass). Iron powder (0.3g) was placed in a PFA screw-cap
Plant-Mimetic Heat Pipes for Operation with Large Inertial and Gravitation Stresses
2012-08-16
tensiometer based on the integration of the membrane with a MEMS-based pressure sen heat transfer, biomimicry , microfluidics, plant science U U U U...stable at each tension. Inset shows an optical micrograph of 25 cavities; dark cavities are filled and bright cavities are empty (cavitated). (C... Optical micrograph of a silicon membrane that has been anodically etched from the top to form nano- porous silicon and wet etched from the bottom to
1983-02-15
0.1 J/cm2 at 520 us, and Pulse Repetition Rate Was 10 Hs. 33 2-8 Nomarski Optical Micrograph of a Photodeposited Waveguide in LtNbO3 After Indiffusion...evaluate the interferometric array, the technique shown in Fig. 1-5 was used. With the two-mirror system shown, an incident planar wavefront could be...t- -’-, ,i- 1 0 110 - Fig. 2-8. Nomarski optical micrograph of a photodeposited waveguide in LiNbO3 after indiffusion. Small-scale divisions
Study of optical design of three-dimensional digital ophthalmoscopes.
Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien
2015-10-01
This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.
Chintapalli, Mahati; Higa, Kenneth; Chen, X. Chelsea; ...
2016-12-19
A method is presented in this paper to relate local morphology and ionic conductivity in a solid, lamellar block copolymer electrolyte for lithium batteries, by simulating conductivity through transmission electron micrographs. The electrolyte consists of polystyrene-block-poly(ethylene oxide) mixed with lithium bis(trifluoromethanesulfonyl) imide salt (SEO/LiTFSI), where the polystyrene phase is structural phase and the poly(ethylene oxide)/LiTFSI phase is ionically conductive. The electric potential distribution is simulated in binarized micrographs by solving the Laplace equation with constant potential boundary conditions. A morphology factor, f, is reported for each image by calculating the effective conductivity relative to a homogenous conductor. Images from twomore » samples are examined, one annealed with large lamellar grains and one unannealed with small grains. The average value off is 0.45 ± 0.04 for the annealed sample, and 0.37 ± 0.03 for the unannealed sample, both close to the value predicted by effective medium theory, 1/2. Simulated conductivities are compared to published experimental conductivities. The value of f Unannealed/f Annealed is 0.82 for simulations and 6.2 for experiments. Simulation results correspond well to predictions by effective medium theory but do not explain the experimental measurements. Finally, observation of nanoscale morphology over length scales greater than the size of the micrographs (~1 μm) may be required to explain the experimental results.« less
Stigall, Landon E; Brodland, David G; Zitelli, John A
2016-11-01
Evaluation of the entire surgical margin results in high rates of complete excision, low local recurrence rates, and maximal tissue conservation. Although well recognized for melanoma of the head and neck, few studies have focused exclusively on the trunk and proximal extremities. We sought to evaluate the efficacy of Mohs micrographic surgery for melanoma in situ (MIS) of the trunk and proximal extremities, and determine adequate excision margins for MIS when total margin evaluation is not used. Long-term outcomes in 882 cases of MIS treated with Mohs micrographic surgery were analyzed and compared with historical controls. Rates of complete excision were determined for increasing surgical margin intervals. One local recurrence occurred in our cohort (0.1%). Only 83% of MIS were excised with a 6-mm margin. Margins of 9 mm were needed to excise 97% of MIS, statistically equivalent to thin melanomas. We used a nonrandomized, single-institution, retrospective design. Mohs micrographic surgery may cure the 17% of MIS that exceed traditional excision margins of 5 mm and is a valuable option for these patients. Surgical margins of at least 0.9 cm should be considered for MIS of the trunk and extremities when total margin evaluation is not used. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chintapalli, Mahati; Higa, Kenneth; Chen, X. Chelsea
A method is presented in this paper to relate local morphology and ionic conductivity in a solid, lamellar block copolymer electrolyte for lithium batteries, by simulating conductivity through transmission electron micrographs. The electrolyte consists of polystyrene-block-poly(ethylene oxide) mixed with lithium bis(trifluoromethanesulfonyl) imide salt (SEO/LiTFSI), where the polystyrene phase is structural phase and the poly(ethylene oxide)/LiTFSI phase is ionically conductive. The electric potential distribution is simulated in binarized micrographs by solving the Laplace equation with constant potential boundary conditions. A morphology factor, f, is reported for each image by calculating the effective conductivity relative to a homogenous conductor. Images from twomore » samples are examined, one annealed with large lamellar grains and one unannealed with small grains. The average value off is 0.45 ± 0.04 for the annealed sample, and 0.37 ± 0.03 for the unannealed sample, both close to the value predicted by effective medium theory, 1/2. Simulated conductivities are compared to published experimental conductivities. The value of f Unannealed/f Annealed is 0.82 for simulations and 6.2 for experiments. Simulation results correspond well to predictions by effective medium theory but do not explain the experimental measurements. Finally, observation of nanoscale morphology over length scales greater than the size of the micrographs (~1 μm) may be required to explain the experimental results.« less
Smart Camera Technology Increases Quality
NASA Technical Reports Server (NTRS)
2004-01-01
When it comes to real-time image processing, everyone is an expert. People begin processing images at birth and rapidly learn to control their responses through the real-time processing of the human visual system. The human eye captures an enormous amount of information in the form of light images. In order to keep the brain from becoming overloaded with all the data, portions of an image are processed at a higher resolution than others, such as a traffic light changing colors. changing colors. In the same manner, image processing products strive to extract the information stored in light in the most efficient way possible. Digital cameras available today capture millions of pixels worth of information from incident light. However, at frame rates more than a few per second, existing digital interfaces are overwhelmed. All the user can do is store several frames to memory until that memory is full and then subsequent information is lost. New technology pairs existing digital interface technology with an off-the-shelf complementary metal oxide semiconductor (CMOS) imager to provide more than 500 frames per second of specialty image processing. The result is a cost-effective detection system unlike any other.
Chromatic aberration correction: an enhancement to the calibration of low-cost digital dermoscopes.
Wighton, Paul; Lee, Tim K; Lui, Harvey; McLean, David; Atkins, M Stella
2011-08-01
We present a method for calibrating low-cost digital dermoscopes that corrects for color and inconsistent lighting and also corrects for chromatic aberration. Chromatic aberration is a form of radial distortion that often occurs in inexpensive digital dermoscopes and creates red and blue halo-like effects on edges. Being radial in nature, distortions due to chromatic aberration are not constant across the image, but rather vary in both magnitude and direction. As a result, distortions are not only visually distracting but could also mislead automated characterization techniques. Two low-cost dermoscopes, based on different consumer-grade cameras, were tested. Color is corrected by imaging a reference and applying singular value decomposition to determine the transformation required to ensure accurate color reproduction. Lighting is corrected by imaging a uniform surface and creating lighting correction maps. Chromatic aberration is corrected using a second-order radial distortion model. Our results for color and lighting calibration are consistent with previously published results, while distortions due to chromatic aberration can be reduced by 42-47% in the two systems considered. The disadvantages of inexpensive dermoscopy can be quickly substantially mitigated with a suitable calibration procedure. © 2011 John Wiley & Sons A/S.
Developing Flexible Networked Lighting Control Systems
, Bluetooth, ZigBee and others are increasingly used for building control purposes. Low-cost computation : Bundling digital intelligence at the sensors and lights adds virtually no incremental cost. Coupled with cost. Research Goals and Objectives This project "Developing Flexible, Networked Lighting Control
Miller, Cara C; Burnside, Girvan; Higham, Susan M; Flannigan, Norah L
2016-11-01
To assess the use of Quantitative Light-induced Fluorescence-Digital as an oral hygiene evaluation tool during orthodontic treatment. In this prospective, randomized clinical trial, 33 patients undergoing fixed orthodontic appliance treatment were randomly allocated to receive oral hygiene reinforcement at four consecutive appointments using either white light (WL) or Quantitative Light-induced Fluorescence-Digital (QLF) images, taken with a device, as visual aids. Oral hygiene was recorded assessing the QLF images for demineralization, by fluorescence loss (ΔF), and plaque coverage (ΔR30). A debriefing questionnaire ascertained patient perspectives. There were no significant differences in demineralization (P = .56) or plaque accumulation (P = .82) between the WL and QLF groups from T0 to T4. There was no significant reduction in demineralization, ΔF, in the WL, or the QLF group from T0-T4 (P > .05); however, there was a significant reduction in ΔR30 plaque scores (P < .05). All the participants found being shown the images helpful, with 100% of the QLF group reflecting that it would be useful to have oral hygiene reinforcement for the full duration of treatment compared with 81% of the WL group (OR 2.3; P < .05). Quantitative Light-induced Fluorescence-Digital can be used to detect and monitor demineralization and plaque during orthodontics. Oral hygiene reinforcement at consecutive appointments using WL or QLF images as visual aids is effective in reducing plaque coverage. In terms of clinical benefits, QLF and WL images are of similar effectiveness; however, patients preferred the QLF images.
NASA Astrophysics Data System (ADS)
Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.
2015-02-01
The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and concentration x genotype interaction were all highly significant sources of variation in seed germination; however, interaction was the first in importance as a source of variation followed by the concentration, while genotype was the least important source of variation. These results suggest the potential use of eugenol oil nanoemulsion for protecting seedcotton from Fusarium wilt infection.
Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio
2015-01-28
Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAI(D)), which was compared with LAI estimated by the proposed digital photography method (LAI(M)). Results showed that the LAI(M) was able to estimate LAI(D) with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (f(f)) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions.
Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio
2015-01-01
Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAID), which was compared with LAI estimated by the proposed digital photography method (LAIM). Results showed that the LAIM was able to estimate LAID with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (ff) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions. PMID:25635411
Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J A
2008-03-01
New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed-the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks.
Imagining the Digital Library in a Commercialized Internet.
ERIC Educational Resources Information Center
Heckart, Ronald J.
1999-01-01
Discusses digital library planning in light of Internet commerce and technological innovation in marketing and customer relations that are transforming user expectations about Web sites that offer products and services. Topics include user self-sufficiency; personalized service; artificial intelligence; collaborative filtering; and electronic…
Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs
NASA Astrophysics Data System (ADS)
De Vylder, Jonas; Philips, Wilfried
2011-02-01
This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.
Atlas of nuclear emulsion micrographs from personnel dosimeters of manned space missions
NASA Technical Reports Server (NTRS)
Schaefer, H. J.; Sullivan, J. J.
1976-01-01
A collection of micrographs is presented taken from nuclear emulsions of personnel dosimeter packs carried by the astronauts on near-earth orbital and lunar missions. It is intended as a pictorial record and illustration of the radiation environment in space and as a supplement to earlier reports and publications of the laboratory in which the emulsion findings have been presented in detail for individual missions. A complete list of those earlier accounts precedes the picture sections.
The Light-Emitting Diode as a Light Detector
ERIC Educational Resources Information Center
Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew
2011-01-01
A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.
mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants frameworkmore » is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.« less
Photobleaching of red fluorescence in oral biofilms.
Hope, C K; de Josselin de Jong, E; Field, M R T; Valappil, S P; Higham, S M
2011-04-01
Many species of oral bacteria can be induced to fluoresce due to the presence of endogenous porphyrins, a phenomenon that can be utilized to visualize and quantify dental plaque in the laboratory or clinical setting. However, an inevitable consequence of fluorescence is photobleaching, and the effects of this on longitudinal, quantitative analysis of dental plaque have yet to be ascertained. Filter membrane biofilms were grown from salivary inocula or single species (Prevotella nigrescens and Prevotella intermedia). The mature biofilms were then examined in a custom-made lighting rig comprising 405 nm light-emitting diodes capable of delivering 220 W/m(2) at the sample, an appropriate filter and a digital camera; a set-up analogous to quantitative light-induced fluorescence digital. Longitudinal sets of images were captured and processed to assess the degradation in red fluorescence over time. Photobleaching was observed in all instances. The highest rates of photobleaching were observed immediately after initiation of illumination, specifically during the first minute. Relative rates of photobleaching during the first minute of exposure were 19.17, 13.72 and 3.43 arbitrary units/min for P. nigrescens biofilms, microcosm biofilm and P. intermedia biofilms, respectively. Photobleaching could be problematic when making quantitative measurements of porphyrin fluorescence in situ. Reducing both light levels and exposure time, in combination with increased camera sensitivity, should be the default approach when undertaking analyses by quantitative light-induced fluorescence digital. © 2010 John Wiley & Sons A/S.
Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope
NASA Astrophysics Data System (ADS)
Makrushin, Andrey; Scheidat, Tobias; Vielhauer, Claus
2015-03-01
In digital crime scene forensics, contactless non-destructive detection and acquisition of latent fingerprints by means of optical devices such as a high-resolution digital camera, confocal microscope, or chromatic white-light sensor is the initial step prior to destructive chemical development. The applicability of an optical sensor to digitalize latent fingerprints primarily depends on reflection properties of a substrate. Metallic painted surfaces, for instance, pose a problem for conventional sensors which make use of visible light. Since metallic paint is a semi-transparent layer on top of the surface, visible light penetrates it and is reflected off of the metallic flakes randomly disposed in the paint. Fingerprint residues do not impede light beams making ridges invisible. Latent fingerprints can be revealed, however, using ultraviolet light which does not penetrate the paint. We apply a UV-VIS spectroscope that is capable of capturing images within the range from 163 to 844 nm using 2048 discrete levels. We empirically show that latent fingerprints left behind on metallic painted surfaces become clearly visible within the range from 205 to 385 nm. Our proposed streakiness score feature determining the proportion of a ridge-valley pattern in an image is applied for automatic assessment of a fingerprint's visibility and distinguishing between fingerprint and empty regions. The experiments are carried out with 100 fingerprint and 100 non-fingerprint samples.
NASA Astrophysics Data System (ADS)
Kemper, Björn; Kastl, Lena; Schnekenburger, Jürgen; Ketelhut, Steffi
2018-02-01
Main restrictions of using laser light in digital holographic microscopy (DHM) are coherence induced noise and parasitic reflections in the experimental setup which limit resolution and measurement accuracy. We explored, if coherence properties of partial coherent light sources can be generated synthetically utilizing spectrally tunable lasers. The concept of the method is demonstrated by label-free quantitative phase imaging of living pancreatic tumor cells and utilizing an experimental configuration including a commercial microscope and a laser source with a broad tunable spectral range of more than 200 nm.
Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina
2016-01-01
The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject.
Experimental research of digital holographic microscopic measuring
NASA Astrophysics Data System (ADS)
Zhu, Xueliang; Chen, Feifei; Li, Jicheng
2013-06-01
Digital holography is a new imaging technique, which is developed on the base of optical holography, Digital processing, and Computer techniques. It is using CCD instead of the conventional silver to record hologram, and then reproducing the 3D contour of the object by the way of computer simulation. Compared with the traditional optical holographic, the whole process is of simple measuring, lower production cost, faster the imaging speed, and with the advantages of non-contact real-time measurement. At present, it can be used in the fields of the morphology detection of tiny objects, micro deformation analysis, and biological cells shape measurement. It is one of the research hot spot at home and abroad. This paper introduced the basic principles and relevant theories about the optical holography and Digital holography, and researched the basic questions which influence the reproduce images in the process of recording and reconstructing of the digital holographic microcopy. In order to get a clear digital hologram, by analyzing the optical system structure, we discussed the recording distance and of the hologram. On the base of the theoretical studies, we established a measurement and analyzed the experimental conditions, then adjusted them to the system. To achieve a precise measurement of tiny object in three-dimension, we measured MEMS micro device for example, and obtained the reproduction three-dimensional contour, realized the three dimensional profile measurement of tiny object. According to the experiment results consider: analysis the reference factors between the zero-order term and a pair of twin-images by the choice of the object light and the reference light and the distance of the recording and reconstructing and the characteristics of reconstruction light on the measurement, the measurement errors were analyzed. The research result shows that the device owns certain reliability.
Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina
2016-01-01
The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject. PMID:26943121
Novel solar light driven photocatalyst, zinc indium vanadate for photodegradation of aqueous phenol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahapure, Sonali A.; Rane, Vilas H.; Ambekar, Jalindar D.
2011-05-15
Graphical abstract: Novel photocatalyst, zinc indium vanadate (ZnIn{sub 2}V{sub 2}O{sub 9}) demonstrated and showed an excellent photocatalytic activity for phenol degradation under visible light. Research highlights: {yields} Designing and identification of a photocatalyst having prospective potential application to be used in visible light (400-800 nm). {yields} Successful synthesis of novel ZnIn{sub 2}V{sub 2}O{sub 9} by solid state route. {yields} Confirmation of the designed product using characterization techniques. {yields} Application study comprising photodegradation of aqueous phenol at visible light despite of UV radiations. -- Abstract: In the present investigation, we have demonstrated the synthesis of novel photocatalyst, zinc indium vanadate (ZIV)more » by solid-solid state route using respective oxides of zinc, indium and vanadium. This novel photocatalyst was characterized using XRD, FESEM, UV-DRS and FTIR in order to investigate its structural, morphological and optical properties. XRD clearly shows the formation of phase pure ZIV of triclinic crystal structure with good crystallinity. FESEM micrographs showed the clustered morphology having particle size between 0.5 and 1 {mu}m. Since, optical study showed the band gap around 2.8 eV, i.e. in visible region, we have performed the photocatalytic activity of phenol degradation under visible light irradiation. The photodecomposition of phenol by ZIV is studied for the first time and an excellent photocatalytic activity was obtained using this novel photocatalyst. Considering the band gap of zinc indium vanadate in visible region, it will also be the potential candidate for water splitting.« less
Gomez-Gelvez, Juan C; Kryvenko, Oleksandr N; Chabot-Richards, Devon S; Foucar, Kathryn; Inamdar, Kedar V; Karner, Kristin H
2015-07-01
Evaluation of the peripheral blood smear (PBS) is an essential diagnostic test in current medical practice. We aimed to evaluate the use of digital microscopy for the examination of PBS as an option to provide expert interpretation to remote sites and in "on-call" situations. We collected 100 Wright-Giemsa-stained PBS slides representing normal and abnormal findings seen at a community-based hospital. Four hematopathologists independently evaluated the cases using conventional light and digital microscopy. When comparing digital vs light microscopy, most of the cellular features evaluated showed at least a moderate degree of agreement in at least three of the reviewers. Discrepancies in final diagnosis were identified in a minority of the cases, most of which were attributed to the poorer resolution of digital microscopy at high magnification (×400). These results support the limited use of digital microscopy for evaluation and triage of peripheral blood smears as a practical option to obtain expert opinion in locations where experienced staff is not available on site. Our results indicate that while digital microscopy is well suited for basic triage of these blood smears, limitations in quality of imaging at higher magnification as well as large file size may limit its utility in certain settings and situations. Copyright© by the American Society for Clinical Pathology.
ERIC Educational Resources Information Center
Bull, Glen; Bell, Lynn
2009-01-01
The shift from analog to digital video transformed the system from a unidirectional analog broadcast to a two-way conversation, resulting in the birth of participatory media. Digital video offers new opportunities for teaching science, social studies, mathematics, and English language arts. The professional education associations for each content…
[Medical and dental digital photography. Choosing a cheap and user-friendly camera].
Chossegros, C; Guyot, L; Mantout, B; Cheynet, F; Olivi, P; Blanc, J-L
2010-04-01
Digital photography is more and more important in our everyday medical practice. Patient data, medico-legal proof, remote diagnosis, forums, and medical publications are some of the applications of digital photography in medical and dental fields. A lot of small, light, and cheap cameras are on the market. The main issue is to obtain good, reproducible, cheap, and easy-to-shoot pictures. Every medical situation, portrait in esthetic surgery, skin photography in dermatology, X-ray pictures or intra-oral pictures, for example, has its own requirements. For these reasons, we have tried to find an "ideal" compact digital camera. The Sony DSC-T90 (and its T900 counterpart with a wider screen) seems a good choice. Its small size makes it usable in every situation and its price is low. An external light source and a free photo software (XnView((R))) can be useful complementary tools. The main adjustments and expected results are discussed.
Digital Access to a Sky Century at Harvard: Initial Photometry and Astrometry
NASA Astrophysics Data System (ADS)
Laycock, S.; Tang, S.; Grindlay, J.; Los, E.; Simcoe, R.; Mink, D.
2010-10-01
Digital Access to a Sky Century at Harvard (DASCH) is a project to digitize the collection of ~500,000 glass photographic plates held at Harvard College Observatory. The collection spans the time period from 1880 to 1985, during which time every point on the sky was been observed from 500 to 1000 times. In this paper, we describe the DASCH commissioning run, during which we developed the data-reduction pipeline, characterized the plates and fine-tuned the digitizer's performance and operation. This initial run consisted of 500 plates taken from a variety of different plate series, all containing the open cluster Praeseppe (M44). We report that accurate photometry at the 0.1 mag level is possible on the majority of plates, and demonstrate century-long light curves of various types of variable stars in and around M44. DASCH will generate a public online archive of the entire plate collection, including images, source catalogs, and light curves for nearly all astronomical objects brighter than about 17th magnitude.
Clarke, Patrick J.; Collins, Robert J.; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S.
2012-01-01
Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called ‘one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm. PMID:23132024
NASA Astrophysics Data System (ADS)
Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun
2016-10-01
The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.
Near-to-eye electroholography via guided-wave acousto-optics for augmented reality
NASA Astrophysics Data System (ADS)
Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Smalley, Daniel; Bove, V. Michael
2017-03-01
Near-to-eye holographic displays act to directly project wavefronts into a viewer's eye in order to recreate 3-D scenes for augmented or virtual reality applications. Recently, several solutions for near-to-eye electroholography have been proposed based on digital spatial light modulators in conjunction with supporting optics, such as holographic waveguides for light delivery; however, such schemes are limited by the inherent low space-bandwidth product available with current digital SLMs. In this paper, we depict a fully monolithic, integrated optical platform for transparent near-to-eye holographic display requiring no supporting optics. Our solution employs a guided-wave acousto-optic spatial light modulator implemented in lithium niobate in conjunction with an integrated Bragg-regime reflection volume hologram.
2012-02-07
circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The asobtained thin-film transistors ( TFTs ) exhibit... flexible substrates for digital, analog and radio frequency applications. The as- obtained thin-film transistors ( TFTs ) exhibit highly uniform device...LCD) and organic light- emitting diode ( OLED ) displays lack the transparency and flexibility and are thus unsuitable for flexible electronic
Synthesis of nanocrystalline diamonds by microwave plasma
NASA Astrophysics Data System (ADS)
Purohit, V. S.; Jain, Deepti; Sathe, V. G.; Ganesan, V.; Bhoraskar, S. V.
2007-03-01
Nanocrystalline diamonds, varying in size from 40 to 400 nm, with random faceting were grown without the help of initial nucleation sites on nickel substrates as seen by scanning electron micrographs. These carbonaceous films were deposited in a microwave plasma reactor using hexane/nitrogen based chemical vapour deposition. The substrate temperatures during deposition were varied from 400 to 600 °C. The morphological investigations obtained by scanning electron micrographs and atomic force microscopy revealed the presence of nanocrystallites with multifaceted structures. Micro Raman investigations were carried out on the deposited films, which conclusively inferred that the growth of nanodiamond crystallites seen in the scanning electron micrographs correlate with clear Raman peaks appearing at 1120 and 1140 cm-1. Nanoindentation analysis with atomic force microscopy has revealed that the carbonaceous deposition identified by the Raman line at ~1140 cm-1, in fact, is related to nanodiamond on account of its hardness which was ~30 GPa. X-ray diffraction data supported this fact.
Marchionne, Elizabeth; Perez, Caroline; Hui, Andrea; Khachemoune, Amor
2017-01-01
The majority of penile carcinoma is squamous cell carcinoma. Although uncommon in the United States, it represents a larger proportion of cancers in the underdeveloped world. Invasive squamous cell carcinoma may arise from precursor lesions or de novo , and has been associated with lack of circumcision and HPV infection. Early diagnosis is imperative as lymphatic spread is associated with a poor prognosis. Radical surgical treatment is no longer the mainstay, and penile sparing treatments now are often used, including Mohs micrographic surgery. Therapeutic decisions should be made with regard to the size and location of the tumor, as well as the functional desires of the patient. It is critical for the dermatologist to be familiar with the evaluation, grading/staging, and treatment advances of penile squamous cell carcinoma. Herein, we present a review of the literature regarding penile squamous cell carcinoma, as well as a case report of invasive squamous cell carcinoma treated with Mohs micrographic surgery.
Goto, Kazufumi; Hayasaki, Yoshio
2015-07-15
In the twilight-field method for obtaining interference fringes with high contrast in in-line digital holography, only the intensity of the reference light is regulated to be close to the intensity of the object light, which is the ultra-weak scattered light from a nanoparticle, by using a low-frequency attenuation filter. Coherence of the light also strongly affects the contrast of the interference fringes. High coherence causes a lot of undesired coherent noise, which masks the fringes derived from the nanoparticles. Too-low coherence results in fringes with low contrast and a correspondingly low signal-to-noise ratio. Consequently, proper regulation of the coherence of the light source, in this study the spectral width, improves the minimum detectable size in holographic three-dimensional position measurement of nanoparticles. By using these methods, we were able to measure the position of a gold nanoparticle with a minimum diameter of 20 nm.
Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties.
Evangelho, Jarine Amaral do; Vanier, Nathan Levien; Pinto, Vânia Zanella; Berrios, Jose J De; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2017-01-01
Black bean protein hydrolysates obtained from pepsin and alcalase digestions until 120min of hydrolysis were evaluated by gel electrophoresis, relative fluorescence intensity, emulsifying properties, light micrograph of emulsions and in vitro antioxidant activity. The emulsion stability of the bean protein hydrolysates were evaluated during 30days of storage. The pepsin-treated bean protein hydrolysates presented higher degree of hydrolysis than the alcalase-treated protein hydrolysates. The alcalase-treated bean protein hydrolysates showed higher surface hydrophobicity. Moreover, the protein hydrolysates obtained with alcalase digestion presented higher emulsion stability during 30-days than those obtained from pepsin digestion. The protein concentrate and especially the hydrolysates obtained from alcalase digestion had good emulsion stability and antioxidant activity. Thus, they could be exploited as protein supplements in the diet as nutritional and bioactive foods. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kulkarni, Swati S.; Bodkhe, Gajanan A.; Shirsat, Sumedh M.; Hussaini, S. S.; Shejwal, N. N.; Shirsat, Mahendra D.
2018-03-01
Present communication deals with the development of cost effective dye sensitized solar cell (DSSC) with eco-friendly materials. Eco-friendly Eosin Y dye was used to sensitize photo anode which was fabricated using undoped and Aluminium doped titanium dioxide (TiO2) nanoparticles. Undoped and Aluminium doped TiO2 nanoparticles were synthesized by simple and cost effective sol-gel method. Aluminium doped and undoped TiO2 nanoparticles were characterized using UV-visible, FT-IR spectroscopy, x-ray Diffraction, and Scanning Electron Micrograph with EDX. The photo-voltaic activity of the cell was studied under light irradiation of 100 milliwatt cm-2. Aluminium doped TiO2 nanoparticle photo electrode exhibits more than 60% increase in cell efficiency as compared to the undoped TiO2 nanoparticle photo electrode.
Rapid in vivo vertical tissue sectioning by multiphoton tomography
NASA Astrophysics Data System (ADS)
Batista, Ana; Breunig, Hans Georg; König, Karsten
2018-02-01
A conventional tool in the pathological field is histology which involves the analysis of thin sections of tissue in which specific cellular structures are stained with different dyes. The process to obtain these stained tissue sections is time consuming and invasive as it requires tissue removal, fixation, sectioning, and staining. Moreover, imaging of live tissue is not possible. We demonstrate that multiphoton tomography can provide within seconds, non-invasive, label-free, vertical images of live tissue which are in quality similar to conventional light micrographs of histologic stained specimen. In contrast to conventional setups based on laser scanning which image horizontally sections, the vertical in vivo images are directly recorded by combined line scanning and timed adjustments of the height of the focusing optics. In addition, multiphoton tomography provides autofluorescence lifetimes which can be used to determine the metabolic states of cells.
40 CFR 86.204-94 - Section numbering; construction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and...; construction. (a) In the section number, the two digits following the hyphen designate the first model year for...
Miniature, mobile X-ray computed radiography system
Watson, Scott A; Rose, Evan A
2017-03-07
A miniature, portable x-ray system may be configured to scan images stored on a phosphor. A flash circuit may be configured to project red light onto a phosphor and receive blue light from the phosphor. A digital monochrome camera may be configured to receive the blue light to capture an article near the phosphor.
NASA Astrophysics Data System (ADS)
Cullen, Andrew T.; Price, Aaron D.
2017-04-01
Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes. Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.
ARIES: Enabling Visual Exploration and Organization of Art Image Collections.
Crissaff, Lhaylla; Wood Ruby, Louisa; Deutch, Samantha; DuBois, R Luke; Fekete, Jean-Daniel; Freire, Juliana; Silva, Claudio
2018-01-01
Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can place slides or printed images, move the images around at will, group them as desired, and visual-ly compare them. The transition to digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that effectively support the operations they perform with physi-cal light boxes. To address this problem, we designed ARIES (ARt Image Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and sup-porting advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the effectiveness of our system to support art historians tasks through real use cases.
Application Of Light Valves For Continuous-Tone Printing
NASA Astrophysics Data System (ADS)
Vergona, Albert B.
1989-07-01
New opportunities are emerging in the graphic-arts pre-press market stimulated by the need for digitally created images. To meet this need, we have designed a cost-effective three-color digital printer using PLZT light valves. Transparent lead lanthanum zirconate titanate (PLZT) ceramic crystals when used as a linear modulator offer a number of significant benefits. The primary advantage is that the light valve is an efficient modulator of incoherent light providing a broad spectral output ranging from 400nm to well into the infrared region. In addition, light valves offer the advantages of being small, low cost, have a wide dynamic range (>1000 to 1), and can be used with simple optical designs. The characteristics of the PLZT material plays an important role in the performance of the light valve. A number of variables such as ceramic composition, electrode spacing, and ceramic thickness can be altered to affect its quadratic electrooptic behavior. Additionally, the modulator design requires a closed-loop servo to eliminate the errors caused by the device's remanent polarization and nonlinear behavior.
NASA Astrophysics Data System (ADS)
Yang, Jiamiao; Shen, Yuecheng; Liu, Yan; Hemphill, Ashton S.; Wang, Lihong V.
2017-11-01
Optical scattering prevents light from being focused through thick biological tissue at depths greater than ˜1 mm. To break this optical diffusion limit, digital optical phase conjugation (DOPC) based wavefront shaping techniques are being actively developed. Previous DOPC systems employed spatial light modulators that modulated either the phase or the amplitude of the conjugate light field. Here, we achieve optical focusing through scattering media by using polarization modulation based generalized DOPC. First, we describe an algorithm to extract the polarization map from the measured scattered field. Then, we validate the algorithm through numerical simulations and find that the focusing contrast achieved by polarization modulation is similar to that achieved by phase modulation. Finally, we build a system using an inexpensive twisted nematic liquid crystal based spatial light modulator (SLM) and experimentally demonstrate light focusing through 3-mm thick chicken breast tissue. Since the polarization modulation based SLMs are widely used in displays and are having more and more pixel counts with the prevalence of 4 K displays, these SLMs are inexpensive and valuable devices for wavefront shaping.
Plant chlorophyll content meter
NASA Technical Reports Server (NTRS)
Spiering, Bruce A. (Inventor); Carter, Gregory A. (Inventor)
2000-01-01
A plant chlorophyll content meter is described which collects light reflected from a target plant and separates the collected light into two different wavelength bands. These wavelength bands, or channels, are described as having center wavelengths of 700 nm and 840 nm. The light collected in these two channels are processed using photo detectors and amplifiers. An analog to digital converter is described which provides a digital representation of the level of light collected by the lens and falling within the two channels. A controller provided in the meter device compares the level of light reflected from a target plant with a level of light detected from a light source, such as light reflected by a target having 100% reflectance, or transmitted through a diffusion receptor. The percent of reflection in the two separate wavelength bands from a target plant are compared to provide a ratio which indicates a relative level of plant physiological stress. A method of compensating for electronic drift is described where a sample is taken when a collection lens is covered to prevent light from entering the device. This compensation method allows for a more accurate reading by reducing error contributions due to electronic drift from environmental conditions at the location where a hand-held unit is used.
Digital Citizenship Policy Development Guide
ERIC Educational Resources Information Center
Alberta Education, 2012
2012-01-01
Education leaders are re-examining acceptable use policies in light of the increasing use of highly mobile information technologies. While acceptable use policies were developed to manage and control behaviour, a digital citizenship policy takes a more comprehensive approach by recognizing the important role of education in preparing digital…
Eskandarloo, Amir; Yousefi, Arman; Soheili, Setareh; Ghazikhanloo, Karim; Amini, Payam; Mohammadpoor, Haniyeh
2017-01-01
Background: Nowadays, digital radiography is widely used in dental practice. One of the most common types is Photo Stimulated Phosphor Plate (PSP). Objective: The aims of this experimental study were to evaluate the impacts of different combinations of storage conditions and varying delays in reading of digital images captured using PSPs. Methods: Standardized images of a step wedges were obtained using PSPs from the Digora digital systems. Plates were exposed and immediately scanned to produce the baseline gold standard. The plates were re-exposed and stored in four different storage conditions: white light, yellow light, natural light environment and dark room, then scanned after 10 and 30 minutes and 4 and 8 hours. Objective analysis was conducted by density measurements and the data were analyzed statistically using GEE test. Subjective analysis was performed by two oral and maxillofacial radiologists and the results were analyzed using McNemar’s test. Results: The results from GEE analysis show that in the natural light environment, the densities in 10 minutes did not differ from the baseline. The mean densities decreased significantly during the time in all environments. The mean densities in step 2 for the dark room environment decreased with a slighter slope in comparison to yellow environment significantly. Conclusion: PSP images showed significant decrease in the density in plates scanned for 10 minutes or longer after exposure which may not be detected clinically. The yellow light environment had a different impact on the quality of PSP images. The spatial resolution did not change significantly with time. PMID:29430262
Eskandarloo, Amir; Yousefi, Arman; Soheili, Setareh; Ghazikhanloo, Karim; Amini, Payam; Mohammadpoor, Haniyeh
2017-01-01
Nowadays, digital radiography is widely used in dental practice. One of the most common types is Photo Stimulated Phosphor Plate (PSP). The aims of this experimental study were to evaluate the impacts of different combinations of storage conditions and varying delays in reading of digital images captured using PSPs. Standardized images of a step wedges were obtained using PSPs from the Digora digital systems. Plates were exposed and immediately scanned to produce the baseline gold standard. The plates were re-exposed and stored in four different storage conditions: white light, yellow light, natural light environment and dark room, then scanned after 10 and 30 minutes and 4 and 8 hours. Objective analysis was conducted by density measurements and the data were analyzed statistically using GEE test. Subjective analysis was performed by two oral and maxillofacial radiologists and the results were analyzed using McNemar's test. The results from GEE analysis show that in the natural light environment, the densities in 10 minutes did not differ from the baseline. The mean densities decreased significantly during the time in all environments. The mean densities in step 2 for the dark room environment decreased with a slighter slope in comparison to yellow environment significantly. PSP images showed significant decrease in the density in plates scanned for 10 minutes or longer after exposure which may not be detected clinically. The yellow light environment had a different impact on the quality of PSP images. The spatial resolution did not change significantly with time.
Reference-free direct digital lock-in method and apparatus
NASA Technical Reports Server (NTRS)
Henry, James E. (Inventor); Leonard, John A. (Inventor)
2000-01-01
A reference-free direct digital lock-in system (RDDL 10) has a first input coupled to a periodic electrical signal and an output for outputting an indication of a magnitude of a desired periodic signal component. The RDDL also has a second input for receiving a signal (9) that specifies a reference period value, and operates to autonomously generate a lock-in reference signal having a specified period and a phase that is adjusted to maximize a magnitude of the outputted desired periodic signal component. In an embodiment of a measurement system that includes the RDDL 10 an optical source provides a chopped light beam having wavelengths within a predetermined range of wavelengths, and the periodic electrical signal is generated by at least one photodetector that is illuminated by the chopped light beam. In this embodiment the measurement system characterizes, for at least one wavelength of light that is generated by the optical source, a spectral response of the at least one photodetector. The RDDL can operate in nonreal-time upon previously generated and stored digital equivalent values of the periodic electrical signal or signals.
Method for enhanced control of welding processes
Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin
2000-01-01
Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.
North America Nebula in Different Lights
2011-02-10
This view of the North America nebula combines both visible and infrared light observations, taken by the Digitized Sky Survey and NASA Spitzer Space Telescope. Clusters of young stars about one million years old can be found throughout the image.
NASA Technical Reports Server (NTRS)
Swei, Sean; Cheung, Kenneth
2016-01-01
This project is to develop a novel aerostructure concept that takes advantage of emerging digital composite materials and manufacturing methods to build high stiffness-to-density ratio, ultra-light structures that can provide mission adaptive and aerodynamically efficient future N+3N+4 air vehicles.
Multi-beam and single-chip LIDAR with discrete beam steering by digital micromirror device
NASA Astrophysics Data System (ADS)
Rodriguez, Joshua; Smith, Braden; Hellman, Brandon; Gin, Adley; Espinoza, Alonzo; Takashima, Yuzuru
2018-02-01
A novel Digital Micromirror Device (DMD) based beam steering enables a single chip Light Detection and Ranging (LIDAR) system for discrete scanning points. We present increasing number of scanning point by using multiple laser diodes for Multi-beam and Single-chip DMD-based LIDAR.
Lipid Bilayer-Integrated Optoelectronic Tweezers for Nanoparticle Manipulations
2013-01-01
intensities of ∼5 W/cm2 using a digital micromirror device (Texas Instruments, TX, USA). Figure 4a shows the overlapped image of the projected light...CMMI- 1120724). ■ ABBREVIATIONS ITO, indium tin oxide:; a-Si:H, hydrogenated amorphous silicon:; DMD, digital micromirror device; SLB, supported lipid
NASA Astrophysics Data System (ADS)
Yin, Guoyan; Zhang, Limin; Zhang, Yanqi; Liu, Han; Du, Wenwen; Ma, Wenjuan; Zhao, Huijuan; Gao, Feng
2018-02-01
Pharmacokinetic diffuse fluorescence tomography (DFT) can describe the metabolic processes of fluorescent agents in biomedical tissue and provide helpful information for tumor differentiation. In this paper, a dynamic DFT system was developed by employing digital lock-in-photon-counting with square wave modulation, which predominates in ultra-high sensitivity and measurement parallelism. In this system, 16 frequency-encoded laser diodes (LDs) driven by self-designed light source system were distributed evenly in the imaging plane and irradiated simultaneously. Meanwhile, 16 detection fibers collected emission light in parallel by the digital lock-in-photon-counting module. The fundamental performances of the proposed system were assessed with phantom experiments in terms of stability, linearity, anti-crosstalk as well as images reconstruction. The results validated the availability of the proposed dynamic DFT system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laguna, O.; Collar, E.P.; Taranco, J.
Observations are made about microstructural aspects from HDPE and LDPE homopolymers and their blends as virgin materials and also from urban plastic wastes. Micrographs were taken by SEM. Micrographs corresponding to the fracture surface from specimens tested in an impact test clearly show different microstructural features due to polymer which is more than 50%. Parts were injection molded. A discussion is given about crystallization behavior of those materials obtained by DSC. For all blends the same results have been found, i.e., two peaks owing to each of the two polymers which are present in the blends.
Study of Mechano-Chemical Machining of Ceramics and the Effect on Thin Film Behavior.
1983-01-01
with Fe2O3 Under Various Pressures 9 7 Nomarski Micrographs of an Si N Substrate (a) Before *. and (b) After Mechanochemical Polishing 11 8 -Surface...the entire polished surface did not reveal any scratches. Figure 7 com- pares the Nomarski micrographs of an Si3 N4 substrate before (in the as...mechanochemically polished Si3N4 substrates, using an interferometric technique. The surface figure of a 2.5 x 2.5 cm Si 3N4 substrate is shown in Figure 9. This fig
Interaction of gases with lunar materials
NASA Technical Reports Server (NTRS)
Holmes, H. F.; Fuller, E. L., Jr.; Gammage, R. B.
1974-01-01
Quantitative efforts to assess the surface properties of lunar fines, particularly water induced porosity are discussed. Data show that: (1) changes induced in lunar fines are not visible in high energy electron micrographs, (2) scanning micrographs show no change in particle size distribution as a result of reaction with water, (3) water induced changes are internal to the particles themselves, (4) normal laboratory atmosphere blocks alteration reaction with water, and (5) surface properties of mature lunar soils appear to be almost independent of chemical composition and mineralogy, but there are some variations in their reactivity toward water.
Management of digital eye strain.
Coles-Brennan, Chantal; Sulley, Anna; Young, Graeme
2018-05-23
Digital eye strain, an emerging public health issue, is a condition characterised by visual disturbance and/or ocular discomfort related to the use of digital devices and resulting from a range of stresses on the ocular environment. This review aims to provide an overview of the extensive literature on digital eye strain research with particular reference to the clinical management of symptoms. As many as 90 per cent of digital device users experience symptoms of digital eye strain. Many studies suggest that the following factors are associated with digital eye strain: uncorrected refractive error (including presbyopia), accommodative and vergence anomalies, altered blinking pattern (reduced rate and incomplete blinking), excessive exposure to intense light, closer working distance, and smaller font size. Since a symptom may be caused by one or more factors, a holistic approach should be adopted. The following management strategies have been suggested: (i) appropriate correction of refractive error, including astigmatism and presbyopia; (ii) management of vergence anomalies, with the aim of inducing or leaving a small amount of heterophoria (~1.5 Δ Exo); (iii) blinking exercise/training to maintain normal blinking pattern; (iv) use of lubricating eye drops (artificial tears) to help alleviate dry eye-related symptoms; (v) contact lenses with enhanced comfort, particularly at end-of-day and in challenging environments; (vi) prescription of colour filters in all vision correction options, especially blue light-absorbing filters; and (vii) management of accommodative anomalies. Prevention is the main strategy for management of digital eye strain, which involves: (i) ensuring an ergonomic work environment and practice (through patient education and the implementation of ergonomic workplace policies); and (ii) visual examination and eye care to treat visual disorders. Special consideration is needed for people at a high risk of digital eye strain, such as computer workers and contact lens wearers. © 2018 Optometry Australia.
1-Meter Digital Elevation Model specification
Arundel, Samantha T.; Archuleta, Christy-Ann M.; Phillips, Lori A.; Roche, Brittany L.; Constance, Eric W.
2015-10-21
In January 2015, the U.S. Geological Survey National Geospatial Technical Operations Center began producing the 1-Meter Digital Elevation Model data product. This new product was developed to provide high resolution bare-earth digital elevation models from light detection and ranging (lidar) elevation data and other elevation data collected over the conterminous United States (lower 48 States), Hawaii, and potentially Alaska and the U.S. territories. The 1-Meter Digital Elevation Model consists of hydroflattened, topographic bare-earth raster digital elevation models, with a 1-meter x 1-meter cell size, and is available in 10,000-meter x 10,000-meter square blocks with a 6-meter overlap. This report details the specifications required for the production of the 1-Meter Digital Elevation Model.
NIR light propagation in a digital head model for traumatic brain injury (TBI)
Francis, Robert; Khan, Bilal; Alexandrakis, George; Florence, James; MacFarlane, Duncan
2015-01-01
Near infrared spectroscopy (NIRS) is capable of detecting and monitoring acute changes in cerebral blood volume and oxygenation associated with traumatic brain injury (TBI). Wavelength selection, source-detector separation, optode density, and detector sensitivity are key design parameters that determine the imaging depth, chromophore separability, and, ultimately, clinical usefulness of a NIRS instrument. We present simulation results of NIR light propagation in a digital head model as it relates to the ability to detect intracranial hematomas and monitor the peri-hematomal tissue viability. These results inform NIRS instrument design specific to TBI diagnosis and monitoring. PMID:26417498
Pham, Quang Duc; Kusumi, Yuichi; Hasegawa, Satoshi; Hayasaki, Yoshio
2012-10-01
We propose a new method for three-dimensional (3D) position measurement of nanoparticles using an in-line digital holographic microscope. The method improves the signal-to-noise ratio of the amplitude of the interference fringes to achieve higher accuracy in the position measurement by increasing weak scattered light from a nanoparticle relative to the reference light by using a low spatial frequency attenuation filter. We demonstrated the improvements of signal-to-noise ratio of the optical system and contrast of the interference fringes, allowing the 3D positions of nanoparticles to be determined more precisely.
NASA Astrophysics Data System (ADS)
Chwirot, B. W.; Chwirot, S.; Jedrzejczyk, W.; Redzinski, J.; Raczynska, A. M.; Telega, K.
2001-07-01
We studied spectral and spatial distributions of the intensity of the ultraviolet light-excited fluorescence of human skin. Our studied performed in situ in 162 patients with malignant and non-malignant skin lesions resulted in a new method of detecting melanomas in situ using digital imaging of the spectrally resolved fluorescence. With our diagnostic algorithm we could successfully detect 88.5% of the cases of melanoma in the group of patients subject to examinations with the fluorescence method. A patent application for the method has been submitted to the Patent Office in Warsaw.
Fast modal decomposition for optical fibers using digital holography.
Lyu, Meng; Lin, Zhiquan; Li, Guowei; Situ, Guohai
2017-07-26
Eigenmode decomposition of the light field at the output end of optical fibers can provide fundamental insights into the nature of electromagnetic-wave propagation through the fibers. Here we present a fast and complete modal decomposition technique for step-index optical fibers. The proposed technique employs digital holography to measure the light field at the output end of the multimode optical fiber, and utilizes the modal orthonormal property of the basis modes to calculate the modal coefficients of each mode. Optical experiments were carried out to demonstrate the proposed decomposition technique, showing that this approach is fast, accurate and cost-effective.
Omura, Y; Losco, M; Omura, A K; Takeshige, C; Hisamitsu, T; Nakajima, H; Soejima, K; Yamamoto, S; Ishikawa, H; Kagoshima, T
1992-01-01
In 1985, Omura, Y. discovered that, when specific molecules were placed anywhere in the close vicinity of the path of a light beam (laser), their molecular information, as well as information on electrical & magnetic fields, is transmitted bi-directionally along the path of this light beam. Namely, this information is transmitted in the direction the light beam is projected and towards the direction from which the light beam is coming. This finding was applied to the following clinical and basic research: 1) In the past, using indirect Bi-Digital O-Ring Test, human or animal patients were diagnosed through an intermediate third person holding a good electrical conducting probe, the tip of which was touching the part of the patient to be examined. However, in order to diagnose the patient in isolation from a distance, or a dangerous or unmanagable unanesthesized animal, such as a lion or tiger, the author succeeded in making a diagnosis by replacing the metal conducting probe with a soft laser beam which is held by the one hand of the third person whose index finger is placed in close vicinity of the laser beam generated by a battery-powered penlight-type solid state laser generator. Thus, diagnosis within visible distance, without direct patient contact, became a reality. 2) Using a projection light microscope, by giving indirect Bi-Digital O-Ring Test while contacting with a fine electro-conductive probe on the magnified fine structure of normal and abnormal cells, various normal and abnormal intracellular substances were localized through a third person holding a pure reference control substance with the same hand that is holding the probe as an intermediary for the indirect Bi-Digital O-Ring Test. Instead of the photon beam in a light microscope, the author found that, using an electron beam passing through the close vicinity of specific molecules of specimens in an electron microscope, the molecular information is transmitted to the magnified fluorescent screen, and an indirect Bi-Digital O-Ring Test could be performed through a projected penlight-type solid state soft laser beam on the magnified intracellular structure through an observation glass window. Using the magnified fine structure of the cells, by either a light projection microscopic field or electron microscope, in various cancer cells of both humans and animals, Oncogen C-fos (AB2) and mercury were found inside of the nucleus. Integrin alpha 5 beta 1 was found on cell membranes and nuclear cell membranes of cancer cells. Acetylcholine was not found anywhere within cancer cells.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Asadi, Reza; Ouyang, Zhengbiao
2018-03-01
A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.
Vijayakumar, A; Rosen, Joseph
2017-06-12
Recording digital holograms without wave interference simplifies the optical systems, increases their power efficiency and avoids complicated aligning procedures. We propose and demonstrate a new technique of digital hologram acquisition without two-wave interference. Incoherent light emitted from an object propagates through a random-like coded phase mask and recorded directly without interference by a digital camera. In the training stage of the system, a point spread hologram (PSH) is first recorded by modulating the light diffracted from a point object by the coded phase masks. At least two different masks should be used to record two different intensity distributions at all possible axial locations. The various recorded patterns at every axial location are superposed in the computer to obtain a complex valued PSH library cataloged to its axial location. Following the training stage, an object is placed within the axial boundaries of the PSH library and the light diffracted from the object is once again modulated by the same phase masks. The intensity patterns are recorded and superposed exactly as the PSH to yield a complex hologram of the object. The object information at any particular plane is reconstructed by a cross-correlation between the complex valued hologram and the appropriate element of the PSH library. The characteristics and the performance of the proposed system were compared with an equivalent regular imaging system.
Petersen, Kevin E; Manangon, Eliana; Hood, Joshua L; Wickline, Samuel A; Fernandez, Diego P; Johnson, William P; Gale, Bruce K
2014-12-01
Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for "label-free" isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics.
Manangon, Eliana; Hood, Joshua L.; Wickline, Samuel A.; Fernandez, Diego P.; Johnson, William P.; Gale, Bruce K.
2015-01-01
Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for “label-free” isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics. PMID:25084738
He, Qingyan; Zhang, Yuchen; Cai, Xixi; Wang, Shaoyun
2016-03-01
Biodegradable fish skin gelatin-titanium dioxide (TiO2) nanocomposite films were fabricated and characterized as a function of incorporating amount of TiO2 nanoparticles (gelatin/TiO2 ratio of 30:1, 20:1 and 10:1). A uniform distribution of TiO2 nanoparticles into gelatin matrix was observed using atomic force microscopy (AFM) micrographs. The data of intrinsic fluorescence spectra, Fourier transform infrared spectra (FTIR) and X-ray diffraction confirmed the interaction between protein and nanoparticles through hydrogen bonding. The TiO2-incorporated gelatin nanocomposite films exhibited more effective antibacterial activity for Escherichia coli after irradiating 120 min by UV light (365 nm), which were 54.38% for E. coli and 44.89% for Staphylococcus aureus, respectively. The analysis of physical properties revealed that addition of TiO2 nanoparticles to gelatin films significantly increased the tensile strength and elongation at break, while decreased its water vapor permeability. The light barrier measurements indicated that these films were highly transparent, and they had excellent barrier properties against UVC light at the same time. The results demonstrated the feasibility of incorporating nanoparticles to improve the properties of gelatin films, and it is of significance in utilizing the gelatin and titanium dioxide to produce biodegradable nanocomposite film as packaging material in food industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Classified one-step high-radix signed-digit arithmetic units
NASA Astrophysics Data System (ADS)
Cherri, Abdallah K.
1998-08-01
High-radix number systems enable higher information storage density, less complexity, fewer system components, and fewer cascaded gates and operations. A simple one-step fully parallel high-radix signed-digit arithmetic is proposed for parallel optical computing based on new joint spatial encodings. This reduces hardware requirements and improves throughput by reducing the space-bandwidth produce needed. The high-radix signed-digit arithmetic operations are based on classifying the neighboring input digit pairs into various groups to reduce the computation rules. A new joint spatial encoding technique is developed to present both the operands and the computation rules. This technique increases the spatial bandwidth product of the spatial light modulators of the system. An optical implementation of the proposed high-radix signed-digit arithmetic operations is also presented. It is shown that our one-step trinary signed-digit and quaternary signed-digit arithmetic units are much simpler and better than all previously reported high-radix signed-digit techniques.
Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelepouga, Serguei A; Rue, David M; Saveliev, Alexei V
2011-03-15
A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.
Automated classification of four types of developmental odontogenic cysts.
Frydenlund, A; Eramian, M; Daley, T
2014-04-01
Odontogenic cysts originate from remnants of the tooth forming epithelium in the jaws and gingiva. There are various kinds of such cysts with different biological behaviours that carry different patient risks and require different treatment plans. Types of odontogenic cysts can be distinguished by the properties of their epithelial layers in H&E stained samples. Herein we detail a set of image features for automatically distinguishing between four types of odontogenic cyst in digital micrographs and evaluate their effectiveness using two statistical classifiers - a support vector machine (SVM) and bagging with logistic regression as the base learner (BLR). Cyst type was correctly predicted from among four classes of odontogenic cysts between 83.8% and 92.3% of the time with an SVM and between 90 ± 0.92% and 95.4 ± 1.94% with a BLR. One particular cyst type was associated with the majority of misclassifications. Omission of this cyst type from the data set improved the classification rate for the remaining three cyst types to 96.2% for both SVM and BLR. Copyright © 2013 Elsevier Ltd. All rights reserved.
Armstrong, Linlea; Jimenez, Carmencita; Hunter, Alasdair G W
2003-05-15
We report a 7.5-year-old boy with loose translucent skin, aortic dilatation, hyperextensible veins, recurrent respiratory problems, pectus excavatum, arthralgias, lax joints, mild epiphyseal dysplasia, and umbilical and inguinal hernias. He also has developmental delay, progressive bilateral sensorineural hearing loss, an unusual facial appearance, terminal digit hypoplasia with unusual radiographic changes in some of the phalanges, glandular hypospadias, shawl scrotum, and undescended testes. Biochemical investigations, including electrophoresis of Types 1 and 3 procollagens and collagens, and quantification of serum copper and ceruloplasmin, are normal. Relative to age-matched control patients the electron micrographs of the boy's dermis show elastin fibers to be decreased in number, and abnormal in appearance, with a low matrix to microfibril ratio. The organ distribution of abnormalities and the nature of the findings suggest a connective tissue disorder. We contrast and compare this boy's phenotype to those of the classic connective tissue disorders. We conclude that he has cutis laxa with features that distinguish him from previously described types of cutis laxa. Copyright 2003 Wiley-Liss, Inc.
Micro-mechanics of ionic electroactive polymer actuators
NASA Astrophysics Data System (ADS)
Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo
2015-04-01
Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.
Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography
NASA Astrophysics Data System (ADS)
Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.
2016-05-01
Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.
Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers
D'Alba, Liliana; Saranathan, Vinodkumar; Clarke, Julia A.; Vinther, Jakob A.; Prum, Richard O.; Shawkey, Matthew D.
2011-01-01
The colours of living organisms are produced by the differential absorption of light by pigments (e.g. carotenoids, melanins) and/or by the physical interactions of light with biological nanostructures, referred to as structural colours. Only two fundamental morphologies of non-iridescent nanostructures are known in feathers, and recent work has proposed that they self-assemble by intracellular phase separation processes. Here, we report a new biophotonic nanostructure in the non-iridescent blue feather barbs of blue penguins (Eudyptula minor) composed of parallel β-keratin nanofibres organized into densely packed bundles. Synchrotron small angle X-ray scattering and two-dimensional Fourier analysis of electron micrographs of the barb nanostructure revealed short-range order in the organization of fibres at the appropriate size scale needed to produce the observed colour by coherent scattering. These two-dimensional quasi-ordered penguin nanostructures are convergent with similar arrays of parallel collagen fibres in avian and mammalian skin, but constitute a novel morphology for feathers. The identification of a new class of β-keratin nanostructures adds significantly to the known mechanisms of colour production in birds and suggests additional complexity in their self-assembly. PMID:21307042
Dalai, Swayamprava; Pakrashi, Sunandan; Chandrasekaran, Natarajan; Mukherjee, Amitava
2013-01-01
The ever increasing industrial and consumer applications of titanium dioxide nanoparticles (TiO2 NPs) raise concern over the possible risk associated with their environmental exposure. Still, the knowledge regarding nanoparticle behavior in a freshwater ecosystem is lacking. The current study focuses on the toxicity of TiO2 NPs towards Ceriodaphnia dubia (a dominant daphnid isolated from the freshwater) under two different conditions; (1) light and dark photoperiod (16:8 h) and (2) continuous dark conditions, for a period of 48 h. An increase in toxicity was observed with an increase in the concentration, until a certain threshold level (under both photoperiod and dark conditions), and beyond which, reduction was noted. The decrease in toxicity would have resulted from the aggregation and settling of NPs, making them less bioavailable. The oxidative stress was one of the major contributors towards cytotoxicity under both photoperiod and dark conditions. The slow depuration of TiO2 NPs under the photoperiod conditions confirmed a higher NP bioaccumulation and thus a higher bioconcentration factor (BCF) compared to dark conditions. The transmission electron micrographs confirmed the bioaccumulation of NPs and damage of tissues in the gut lining. PMID:23658658
Ashwar, Bilal Ahmad; Gani, Adil; Shah, Asima; Masoodi, Farooq Ahmad
2017-12-01
Starches extracted from four different rice cultivars were phosphorylated by using STMP/STPP to make modified food starches with high contents of type 4 resistant starch (RS4). The results revealed 10- fold improvement in RS4 content by the phosphorylation of starch. The phosphorus % and DS values of rice starches ranged from 0.33 to 0.35, and 0.016 to 0.018, respectively. FT-IR spectroscopy showed reduction of OH stretching band at 3290cm-1 and the appearance of PO at 1244-1266cm-1 which confirms crosslinking of starch with STMP/STPP. Phosphorylation was found to increase water absorption capacity, oil absorption capacity, bile-acid binding and lightness, whereas amylose content, swelling power, solubility index and light transmittance were decreased with phosphorylation. DSC analyses revealed increase in thermal transition temperatures of the crosslinked starches which suggests that the application of STMP/STPP as a crosslinker can improve the integrality and stability of starch. SEM micro-graphs revealed that phosphorylated rice starch granules retained their integrity, while some fissures appeared on the surface of some granules. XRD analysis revealed decreased crystallinity of RS4 rice starches. Copyright © 2017 Elsevier B.V. All rights reserved.
Colour-producing [beta]-keratin nanofibres in blue penguin (Eudyptula minor) feathers
DOE Office of Scientific and Technical Information (OSTI.GOV)
D; Alba, Liliana; Saranathan, Vinodkumar
2012-03-26
The colours of living organisms are produced by the differential absorption of light by pigments (e.g. carotenoids, melanins) and/or by the physical interactions of light with biological nanostructures, referred to as structural colours. Only two fundamental morphologies of non-iridescent nanostructures are known in feathers, and recent work has proposed that they self-assemble by intracellular phase separation processes. Here, we report a new biophotonic nanostructure in the non-iridescent blue feather barbs of blue penguins (Eudyptula minor) composed of parallel {beta}-keratin nanofibres organized into densely packed bundles. Synchrotron small angle X-ray scattering and two-dimensional Fourier analysis of electron micrographs of the barbmore » nanostructure revealed short-range order in the organization of fibres at the appropriate size scale needed to produce the observed colour by coherent scattering. These two-dimensional quasi-ordered penguin nanostructures are convergent with similar arrays of parallel collagen fibres in avian and mammalian skin, but constitute a novel morphology for feathers. The identification of a new class of {beta}-keratin nanostructures adds significantly to the known mechanisms of colour production in birds and suggests additional complexity in their self-assembly.« less
Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters
NASA Astrophysics Data System (ADS)
Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.
2015-10-01
Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.
Inorganic particle analysis of dental impression elastomers.
Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho
2010-01-01
The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.
X-ray light valve (XLV): a novel detectors' technology for digital mammography
NASA Astrophysics Data System (ADS)
Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter
2014-03-01
A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.
Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B.; Sturm, Benjamin W.
2016-02-09
According to one embodiment, a scintillator radiation detector system includes a scintillator, and a processing device for processing pulse traces corresponding to light pulses from the scintillator, where the processing device is configured to: process each pulse trace over at least two temporal windows and to use pulse digitization to improve energy resolution of the system. According to another embodiment, a scintillator radiation detector system includes a processing device configured to: fit digitized scintillation waveforms to an algorithm, perform a direct integration of fit parameters, process multiple integration windows for each digitized scintillation waveform to determine a correction factor, and apply the correction factor to each digitized scintillation waveform.
Protecting Digital Evidence Integrity by Using Smart Cards
NASA Astrophysics Data System (ADS)
Saleem, Shahzad; Popov, Oliver
RFC 3227 provides general guidelines for digital evidence collection and archiving, while the International Organization on Computer Evidence offers guidelines for best practice in the digital forensic examination. In the light of these guidelines we will analyze integrity protection mechanism provided by EnCase and FTK which is mainly based on Message Digest Codes (MDCs). MDCs for integrity protection are not tamper proof, hence they can be forged. With the proposed model for protecting digital evidence integrity by using smart cards (PIDESC) that establishes a secure platform for digitally signing the MDC (in general for a whole range of cryptographic services) in combination with Public Key Cryptography (PKC), one can show that this weakness might be overcome.
Zhu, Yanan; Ouyang, Qi; Mao, Youdong
2017-07-21
Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.
A Stochastic Kinematic Model of Class Averaging in Single-Particle Electron Microscopy
Park, Wooram; Midgett, Charles R.; Madden, Dean R.; Chirikjian, Gregory S.
2011-01-01
Single-particle electron microscopy is an experimental technique that is used to determine the 3D structure of biological macromolecules and the complexes that they form. In general, image processing techniques and reconstruction algorithms are applied to micrographs, which are two-dimensional (2D) images taken by electron microscopes. Each of these planar images can be thought of as a projection of the macromolecular structure of interest from an a priori unknown direction. A class is defined as a collection of projection images with a high degree of similarity, presumably resulting from taking projections along similar directions. In practice, micrographs are very noisy and those in each class are aligned and averaged in order to reduce the background noise. Errors in the alignment process are inevitable due to noise in the electron micrographs. This error results in blurry averaged images. In this paper, we investigate how blurring parameters are related to the properties of the background noise in the case when the alignment is achieved by matching the mass centers and the principal axes of the experimental images. We observe that the background noise in micrographs can be treated as Gaussian. Using the mean and variance of the background Gaussian noise, we derive equations for the mean and variance of translational and rotational misalignments in the class averaging process. This defines a Gaussian probability density on the Euclidean motion group of the plane. Our formulation is validated by convolving the derived blurring function representing the stochasticity of the image alignments with the underlying noiseless projection and comparing with the original blurry image. PMID:21660125
Cellular morphometry of the bronchi of human and dog lungs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, E.S.
1991-09-01
One hundred and forty-seven bronchial samples (generations 3--6) from 66 patients (62 usable; 36 female, 26 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. In addition, one hundred and fifty-six mongol dog bronchi (generations 2--6) dissected from different lobes of 26 dog lungs have also been similarly prepared. One hundred and twenty-seven human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 655 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement ofmore » the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 328 micrographs of dog epithelium from 33 bronchial samples have been used to measure the distances of basal and mucous cell nuclei to the epithelial free surface and have been entered into COSAS. Using the COSAS planimetry program, we continue to expand our established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the same 5 epithelial cell types of dog bronchi. Our micrographs of human bronchial epithelium have allowed us to analyze the recent suggestion that the DNA of lymphocytes may be subject to significant damage from Rn progeny while within the lung. Since the last progress report three papers have been submitted for publication. 17 refs., 4 tabs.« less
Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation
NASA Astrophysics Data System (ADS)
Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano
2011-01-01
Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.
Schwartz, Daniel M
2003-01-01
PURPOSE: First, to determine whether a silicone light-adjustable intraocular lens (IOL) can be fabricated and adjusted precisely with a light delivery device (LDD). Second, to determine the biocompatibility of an adjustable IOL and whether the lens can be adjusted precisely in vivo. METHODS: After fabrication of a light-adjustable silicone formulation, IOLs were made and tested in vitro for cytotoxicity, leaching, precision of adjustment, optical quality after adjustment, and mechanical properties. Light-adjustable IOLs were then tested in vivo for biocompatibility and precision of adjustment in a rabbit model. In collaboration with Zeiss-Meditec, a digital LDD was developed and tested to correct for higher-order aberrations in light-adjustable IOLs. RESULTS: The results establish that a biocompatible silicone IOL can be fabricated and adjusted using safe levels of light. There was no evidence of cytotoxicity or leaching. Testing of mechanical properties revealed no significant differences from commercial controls. Implantation of light-adjustable lenses in rabbits demonstrated- excellent biocompatibility after 6 months, comparable to a commercially available IOL. In vivo spherical (hyperopic and myopic) adjustment in rabbits was achieved using an analog light delivery system. The digital light delivery system was tested and achieved correction of higher-order aberrations. CONCLUSION: A silicone light-adjustable IOL and LDD have been developed to enable postoperative, noninvasive adjustment of lens power. The ability to correct higher-order aberrations in these materials has broad potential applicability for optimization of vision in patients undergoing cataract and refractive surgery. PMID:14971588
Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition
NASA Astrophysics Data System (ADS)
Al-Jawad, Selma M. H.
2017-10-01
Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.
Marriages of Convenience? Teachers and Coursebooks in the Digital Age
ERIC Educational Resources Information Center
Allen, Christopher
2015-01-01
This article reports on a survey of Swedish EFL teachers' attitudes towards, and dependence on, ELT coursebook packages in the light of recent research into digital literacy. The results showed that while ICT is making massive inroads into language classrooms in technologically advantaged countries like Sweden, the coursebook package still has its…
Bringing the Digital Camera to the Physics Lab
ERIC Educational Resources Information Center
Rossi, M.; Gratton, L. M.; Oss, S.
2013-01-01
We discuss how compressed images created by modern digital cameras can lead to even severe problems in the quantitative analysis of experiments based on such images. Difficulties result from the nonlinear treatment of lighting intensity values stored in compressed files. To overcome such troubles, one has to adopt noncompressed, native formats, as…
A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope
ERIC Educational Resources Information Center
Wakabayashi, Fumitaka; Hamada, Kiyohito
2006-01-01
Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…
2012-12-11
ment, and difficulties creating high aspect ratio features. In addition, conventional mask-based lithography cannot create curved surfaces in the...There are three types of digital mask technologies: (1) liquid crystal display (LCD); (2) digital micromirror device (DMD); and (3) LCoS. LCD is the
NASA Technical Reports Server (NTRS)
Johnson, Dennis A. (Inventor)
1996-01-01
A laser doppler velocimeter uses frequency shifting of a laser beam to provide signal information for each velocity component. A composite electrical signal generated by a light detector is digitized and a processor produces a discrete Fourier transform based on the digitized electrical signal. The transform includes two peak frequencies corresponding to the two velocity components.
Constructing Visually-Based Digital Conversations in EFL with VoiceThread
ERIC Educational Resources Information Center
Kent, David
2017-01-01
VoiceThread holds potential to provide students who rarely speak in class a means to create visually-based digital conversations. In light of this, pedagogical affordances of the tool are considered, along with efficacy behind VoiceThread development within English as a Foreign Language contexts. Instructional strategies, supported by examples,…
NASA Astrophysics Data System (ADS)
Valiya Peedikakkal, Liyana; Cadby, Ashley
2017-02-01
Localization based super resolution images of a biological sample is generally achieved by using high power laser illumination with long exposure time which unfortunately increases photo-toxicity of a sample, making super resolution microscopy, in general, incompatible with live cell imaging. Furthermore, the limitation of photobleaching reduces the ability to acquire time lapse images of live biological cells using fluorescence microscopy. Digital Light Processing (DLP) technology can deliver light at grey scale levels by flickering digital micromirrors at around 290 Hz enabling highly controlled power delivery to samples. In this work, Digital Micromirror Device (DMD) is implemented in an inverse Schiefspiegler telescope setup to control the power and pattern of illumination for super resolution microscopy. We can achieve spatial and temporal patterning of illumination by controlling the DMD pixel by pixel. The DMD allows us to control the power and spatial extent of the laser illumination. We have used this to show that we can reduce the power delivered to the sample to allow for longer time imaging in one area while achieving sub-diffraction STORM imaging in another using higher power densities.
Tests of PMT signal read-out of liquid argon scintillation with a new fast waveform digitizer
NASA Astrophysics Data System (ADS)
Acciarri, R.; Canci, N.; Cavanna, F.; Cortopassi, A.; D'Incecco, M.; Mini, G.; Pietropaolo, F.; Romboli, A.; Segreto, E.; Szelc, A. M.
2012-07-01
The CAEN V1751 is a new generation of Waveform Digitizer recently introduced by CAEN SpA. It features 8 Channels per board, 10 bit, 1 GS/s using Flash ADCs Waveform Digitizers (or 4 channels at 2 GS/s in Dual Edge Sampling mode) with threshold and Auto-Trigger capabilities. This provides a good basis for data acquisition in Dark Matter searches using PMTs to detect scintillation light in liquid argon, as it matches the requirements for measuring the fast scintillation component. The board was tested by operating it in real experimental conditions and by comparing it with a state of the art digital oscilloscope. We find that the sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the scintillation light in argon (characteristic time of about 6-7 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.
SD-SEM: sparse-dense correspondence for 3D reconstruction of microscopic samples.
Baghaie, Ahmadreza; Tafti, Ahmad P; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun
2017-06-01
Scanning electron microscopy (SEM) imaging has been a principal component of many studies in biomedical, mechanical, and materials sciences since its emergence. Despite the high resolution of captured images, they remain two-dimensional (2D). In this work, a novel framework using sparse-dense correspondence is introduced and investigated for 3D reconstruction of stereo SEM images. SEM micrographs from microscopic samples are captured by tilting the specimen stage by a known angle. The pair of SEM micrographs is then rectified using sparse scale invariant feature transform (SIFT) features/descriptors and a contrario RANSAC for matching outlier removal to ensure a gross horizontal displacement between corresponding points. This is followed by dense correspondence estimation using dense SIFT descriptors and employing a factor graph representation of the energy minimization functional and loopy belief propagation (LBP) as means of optimization. Given the pixel-by-pixel correspondence and the tilt angle of the specimen stage during the acquisition of micrographs, depth can be recovered. Extensive tests reveal the strength of the proposed method for high-quality reconstruction of microscopic samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mishchenko, Yuriy
2009-01-30
We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial micrographs with multi-scale ridge detector. Short breaks in detected boundaries are interpolated using anisotropic contour completion formulated in fuzzy-logic framework. Detected profiles from adjacent sections are linked together based on cues such as shape similarity and image texture. Thus obtained 3D segmentation is validated by human operators in computer-guided proofreading process. Our approach makes possible reconstructions of neural tissue at final rate of about 5 microm3/manh, as determined primarily by the speed of proofreading. To date we have applied this approach to reconstruct few blocks of neural tissue from different regions of rat brain totaling over 1000microm3, and used these to evaluate reconstruction speed, quality, error rates, and presence of ambiguous locations in neuropil ssTEM imaging data.
NASA Astrophysics Data System (ADS)
Su, Ping; Song, Yuming; Ma, Jianshe
2018-01-01
The DMD (Digital Micro-mirror Device) has the advantages of high refresh rate and high diffraction efficiency, and these make it become an ideal loader of multiple modes illumination. DOEs (Diffractive Optical Element) have the advantages of high degree of freedom, light weight, easy to copy, low cost etc., and can be used to reduce the weight, complexity, cost of optical system. A novel automotive headlamp system using DMD as the light distribution element and a DOE as the light field modulation device is proposed in this paper. The pure phase DOE is obtained by the GS algorithm using Rayleigh-Sommerfeld diffraction integral model. Based on the standard automotive headlamp light intensity distribution in the target plane, the amplitude distribution of DMD is obtained by numerical simulation, and the grayscale diagram loaded on the DMD can be obtained accordingly. Finally, according to simulation result, the light intensity distribution in the target plane is proportional to the national standard, hence verifies the validity of the novel system. The novel illumination system proposed in this paper provides a reliable hardware platform for the intelligent headlamps.
The evaluation and planning of light dose in photodynamic therapy for port wine stains
NASA Astrophysics Data System (ADS)
Zhang, Feng-juan; Hu, Xiaoming; Zhang, Qi-shen
2014-11-01
Photodynamic therapy (PDT) is one of the best available treatment for dermatology, especially for port wine stains (PWS), in which the efficacy is associated with the light dose, the photosensitizer concentration, the oxygen concentration and so on. Accurate control of the light dose will help doctors develop more effective treatment protocols, and reduce the treatment cost. Considering the characters of PWS, a binocular vision system composed of a camera, a digital projector and a computing unit is designed. An accurate 3D modeling of patients was achieved using a gray coding structured light, and then the lesions were segmented based on HSV space. Subsequently, each 3D point is fit on the surface by a nearest neighbor algorithm and the surface normal can be obtained. Three dimensional localization of lesion provide digital objective basis for automatic control of light device. The irradiance on the surface at a given angle can be assessed, and the optimum angle for the treatment can be solved and optimized by the doctor to improve irradiation areas.
New digital anti-copy/scan and verification technologies
NASA Astrophysics Data System (ADS)
Phillips, George K.
2004-06-01
This white paper reviews the method for making bearer printed information indistinguishable on a non-copyable substrate when a copied attempt is made on either an analog or digital electrostatic photocopier device. In 1995 we received patent number 5,704,651 for a non-copyable technology trademarked MetallicSafe. In this patent the abstract describes the usage of a reflective layer, formed on a complex pattern region and having graphic or font size shapes and type coordinating to particular patterns in the complex pattern region. The technology used in this patent has now been improved and evolved to new methods of creating a non-copyable substrate trademarked CopySafe+. CopySafe+ is formed of a metallic specular light reflector, a white camouflaged diffused light reflector, and the content information 'light absorption' layer. The synthesizing of these layers on a substrate creates dynamic camouflaged interference patterns and the phenomena of image chaos on a copy. In short, the orientation of a plurality of spectral and diffused light reflection camouflaged layers, mixed and coordinated with light absorption printed information, inhibits the copying device from reproducing the printed content.
Design of transient light signal simulator based on FPGA
NASA Astrophysics Data System (ADS)
Kang, Jing; Chen, Rong-li; Wang, Hong
2014-11-01
A design scheme of transient light signal simulator based on Field Programmable gate Array (FPGA) was proposed in this paper. Based on the characteristics of transient light signals and measured feature points of optical intensity signals, a fitted curve was created in MATLAB. And then the wave data was stored in a programmed memory chip AT29C1024 by using SUPERPRO programmer. The control logic was realized inside one EP3C16 FPGA chip. Data readout, data stream cache and a constant current buck regulator for powering high-brightness LEDs were all controlled by FPGA. A 12-Bit multiplying CMOS digital-to-analog converter (DAC) DAC7545 and an amplifier OPA277 were used to convert digital signals to voltage signals. A voltage-controlled current source constituted by a NPN transistor and an operational amplifier controlled LED array diming to achieve simulation of transient light signal. LM3405A, 1A Constant Current Buck Regulator for Powering LEDs, was used to simulate strong background signal in space. Experimental results showed that the scheme as a transient light signal simulator can satisfy the requests of the design stably.
Chitrarsu, Vijai Krishnan; Chidambaranathan, Ahila Singaravel; Balasubramaniam, Muthukumar
2017-10-31
To evaluate the shade matching capabilities in natural dentitions using Vita Toothguide 3D-Master and an intraoral digital spectrophotometer (Vita Easyshade Advance 4.0) in various light sources. Participants between 20 and 40 years old with natural, unrestored right maxillary central incisors, no history of bleaching, orthodontic treatment, or malocclusion and no rotations were included. According to their shades, subjects were randomly selected and grouped into A1, A2, and A3. A total of 100 participants (50 male and 50 female) in each group were chosen for this study. Shade selection was made between 10 am and 2 pm for all light sources. The same examiner selected the shade of natural teeth with Vita Toothguide 3D-Master under natural light within 2 minutes. Once the Vita Toothguide 3D-Masterwas matched with the maxillary right central incisor, the L*, a*, and b* values, chroma, and hue were recorded with Vita Easyshade Advance 4.0 by placing it on the shade tab under the same light source. The values were statistically analyzed using one-way ANOVA and Tukey's HSD post hoc test with SPSS v22.0 software. The mean ∆E* ab values for shades A1, A2, and A3 for groups 1, 2, and 3 were statistically significantly different from each other (p < 0.001). The intraoral digital spectrophotometer showed statistically significant differences in shade matching compared to Vita Toothguide 3D-Master. Incandescent light showed more accurate shade matching than the filtered LED, LED, and daylight. © 2017 by the American College of Prosthodontists.
High Accuracy Optical Inverse Square Law Experiment Using Inexpensive Light to Frequency Converters
ERIC Educational Resources Information Center
Wanser, Keith H.; Mahrley, Steve; Tanner, Joshua
2012-01-01
In this paper we report on the use of two different light to frequency converters, four different light sources, three of which are novel and inexpensive, and a hand held digital multimeter with a frequency counter, suitable for making accurate and rapid determination of the optical inverse square law exponent of -2 to better than [plus or…
Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces
Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.
2010-01-01
We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132
NASA Technical Reports Server (NTRS)
Meyers, D. G.
1984-01-01
Aquatic microcrustaceans of the genus Daphnia are known to orient to light during the day. At night, in the absence of visual cues, daphnids were suspected of maintaining equilibrium by monitoring the direction of gravity through their swimming antennae. Recent investigations using simulated, weightlessness conditions coupled with absence of illumination revealed hair like structures or setae on the basal, articulating socket of the antennae that, when surgically removed, resulted in disorientation. Given the simulated weightlessness or neutrally buoyant condition that eliminated sinking of the normally negatively buoyant Daphnia, it was proposed that the antennal socket setae function as rheoceptors stimulated by the upward rush of water currents during gravity induced, sinking phase of daphnid swimming movements. This rheoceptively mediated, gravity perception hypothesis is further supported by morphological investigations. Scanning electron micrographs indicate that antennal socket setae are anatomically similar to proprioceptors used by higher crustaceans to monitor gravitational direction.
Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses
NASA Astrophysics Data System (ADS)
Santhi, Kalavathy; Kumarsan, Dhanapal; Vengidusamy, Naryanan; Arumainathan, Stephen
2017-07-01
Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.
Stable chromosome condensation revealed by chromosome conformation capture
Eagen, Kyle P.; Hartl, Tom A.; Kornberg, Roger D.
2015-01-01
SUMMARY Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to ten-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes. PMID:26544940
Horne, R W; Wildy, P
1979-09-01
A brief historical account of the development and applications of the negative staining techniques to the study of the structure of viruses and their components as observed in the electron microscope is presented. Although the basic method of surrounding or embedding specimens in opaque dyes was used in light microscopy dating from about 1884, the equivalent preparative techniques applied to electron microscopy were comparatively recent. The combination of experiments on a sophisticated bacterial virus and the installation of a high resolution electron microscope in the Cavendish Laboratory, Cambridge, during 1954, subsequently led to the analysis of several important morphological features of animal, plant and bacterial viruses. The implications of the results from these early experiments on viruses and recent developments in negative staining methods for high resolution image analysis of electron micrographs are also discussed.
Kang, Zhuang-Li; Li, Xiang; He, Hong-Ju; Ma, Han-Jun; Song, Zhao-Jun
2017-08-01
A comprehensive study was conducted to evaluate the structural changes of meat and protein of pork batters produced by chopping or beating process through the phase-contrast micrograph, laser light scattering analyzer, scanning electronic microscopy and Raman spectrometer. The results showed that the shattered myofibrilla fragments were shorter and particle-sizes were smaller in the raw batter produced by beating process than those in the chopping process. Compared with the raw and cooked batters produced by chopping process, modifications in amide I and amide III bands revealed a significant decrease of α -helix content and an increase of β -sheet, β -turn and random coils content in the beating process. The changes in secondary structure of protein in the batter produced by beating process was thermally stable. Moreover, more tyrosine residues were buried, and more gauche-gauche-trans disulfide bonds conformations and hydrophobic interactions were formed in the batter produced by beating process.
Exfoliated graphite/titanium dioxide nanocomposites for photodegradation of eosin yellow
NASA Astrophysics Data System (ADS)
Ndlovu, Thabile; Kuvarega, Alex T.; Arotiba, Omotayo A.; Sampath, Srinivasan; Krause, Rui W.; Mamba, Bhekie B.
2014-05-01
An improved photocatalyst consisting of a nanocomposite of exfoliated graphite and titanium dioxide (EG-TiO2) was prepared. SEM and TEM micrographs showed that the spherical TiO2 nanoparticles were evenly distributed on the surface of the EG sheets. A four times photocatalytic enhancement was observed for this floating nanocomposite compared to TiO2 and EG alone for the degradation of eosin yellow. For all the materials, the reactions followed first order kinetics where for EG-TiO2, the rate constant was much higher than for EG and TiO2 under visible light irradiation. The enhanced photocatalytic activity of EG-TiO2 was ascribed to the capability of graphitic layers to accept and transport electrons from the excited TiO2, promoting charge separation. This indicates that carbon, a cheap and abundant material, can be a good candidate as an electron attracting reservoir for photocatalytic organic pollutant degradation.
NASA Astrophysics Data System (ADS)
Tsai, Chun-Wei; Wang, Chen; Lyu, Bo-Han; Chu, Chen-Hsien
2017-08-01
Digital Electro-optics Platform is the main concept of Jasper Display Corp. (JDC) to develop various applications. These applications are based on our X-on-Silicon technologies, for example, X-on-Silicon technologies could be used on Liquid Crystal on Silicon (LCoS), Micro Light-Emitting Diode on Silicon (μLEDoS), Organic Light-Emitting Diode on Silicon (OLEDoS), and Cell on Silicon (CELLoS), etc. LCoS technology is applied to Spatial Light Modulator (SLM), Dynamic Optics, Wavelength Selective Switch (WSS), Holographic Display, Microscopy, Bio-tech, 3D Printing and Adaptive Optics, etc. In addition, μLEDoS technology is applied to Augmented Reality (AR), Head Up Display (HUD), Head-mounted Display (HMD), and Wearable Devices. Liquid Crystal on Silicon - Spatial Light Modulator (LCoSSLM) based on JDC's On-Silicon technology for both amplitude and phase modulation, have an expanding role in several optical areas where light control on a pixel-by-pixel basis is critical for optimum system performance. Combination of the advantage of hardware and software, we can establish a "dynamic optics" for the above applications or more. Moreover, through the software operation, we can control the light more flexible and easily as programmable light processor.
78 FR 64916 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-30
...., light to heat), crystallization, melting, phase transformations, fracture, and other dynamic events. The... Sciences University, 1120 15th Street, Augusta, GA 30912. Instrument: Imaging System/Digital Microscope... the instrument include fast wavelength change, a dichromotome system, and two different light sources...
Theoretical Limits of Lunar Vision Aided Navigation with Inertial Navigation System
2015-03-26
camera model. Light reflected or projected from objects in the scene of the outside world is taken in by the aperture (or opening) shaped as a double...model’s analog aspects with an analog-to-digital interface converting raw images of the outside world scene into digital information a computer can use to...Figure 2.7. Digital Image Coordinate System. Used with permission [30]. Angular Field of View. The angular field of view is the angle of the world scene
Lensfree microscopy on a cellphone
Tseng, Derek; Mudanyali, Onur; Oztoprak, Cetin; Isikman, Serhan O.; Sencan, Ikbal; Yaglidere, Oguzhan; Ozcan, Aydogan
2010-01-01
We demonstrate lensfree digital microscopy on a cellphone. This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges. Weighing ~38 grams (<1.4 ounces), this lensfree imaging platform can be mechanically attached to the camera unit of a cellphone where the samples are loaded from the side, and are vertically illuminated by a simple light-emitting diode (LED). This incoherent LED light is then scattered from each micro-object to coherently interfere with the background light, creating the lensfree hologram of each object on the detector array of the cellphone. These holographic signatures captured by the cellphone permit reconstruction of microscopic images of the objects through rapid digital processing. We report the performance of this lensfree cellphone microscope by imaging various sized micro-particles, as well as red blood cells, white blood cells, platelets and a waterborne parasite (Giardia lamblia). PMID:20445943
Optical flip-flops and sequential logic circuits using a liquid crystal light valve
NASA Technical Reports Server (NTRS)
Fatehi, M. T.; Collins, S. A., Jr.; Wasmundt, K. C.
1984-01-01
This paper is concerned with the application of optics to digital computing. A Hughes liquid crystal light valve is used as an active optical element where a weak light beam can control a strong light beam with either a positive or negative gain characteristic. With this device as the central element the ability to produce bistable states from which different types of flip-flop can be implemented is demonstrated. In this paper, some general comments are first presented on digital computing as applied to optics. This is followed by a discussion of optical implementation of various types of flip-flop. These flip-flops are then used in the design of optical equivalents to a few simple sequential circuits such as shift registers and accumulators. As a typical sequential machine, a schematic layout for an optical binary temporal integrator is presented. Finally, a suggested experimental configuration for an optical master-slave flip-flop array is given.
NASA Astrophysics Data System (ADS)
Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.
2016-08-01
Optical phase conjugation (OPC)-based wavefront shaping techniques focus light through or within scattering media, which is critically important for deep-tissue optical imaging, manipulation, and therapy. However, to date, the sample thickness in OPC experiments has been limited to only a few millimeters. Here, by using a laser with a long coherence length and an optimized digital OPC system that can safely deliver more light power, we focused 532-nm light through tissue-mimicking phantoms up to 9.6 cm thick, as well as through ex vivo chicken breast tissue up to 2.5 cm thick. Our results demonstrate that OPC can be achieved even when photons have experienced on average 1000 scattering events. The demonstrated penetration of nearly 10 cm (˜100 transport mean free paths) has never been achieved before by any optical focusing technique, and it shows the promise of OPC for deep-tissue noninvasive optical imaging, manipulation, and therapy.
Modular Elastomer Photoresins for Digital Light Processing Additive Manufacturing.
Thrasher, Carl J; Schwartz, Johanna J; Boydston, Andrew J
2017-11-15
A series of photoresins suitable for the production of elastomeric objects via digital light processing additive manufacturing are reported. Notably, the printing procedure is readily accessible using only entry-level equipment under ambient conditions using visible light projection. The photoresin formulations were found to be modular in nature, and straightforward adjustments to the resin components enabled access to a range of compositions and mechanical properties. Collectively, the series includes silicones, hydrogels, and hybrids thereof. Printed test specimens displayed maximum elongations of up to 472% under tensile load, a tunable swelling behavior in water, and Shore A hardness values from 13.7 to 33.3. A combination of the resins was used to print a functional multimaterial three-armed pneumatic gripper. These photoresins could be transformative to advanced prototyping applications such as simulated human tissues, stimuli-responsive materials, wearable devices, and soft robotics.
Design of a Low-Light-Level Image Sensor with On-Chip Sigma-Delta Analog-to- Digital Conversion
NASA Technical Reports Server (NTRS)
Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.; Fossum, Eric R.
1993-01-01
The design and projected performance of a low-light-level active-pixel-sensor (APS) chip with semi-parallel analog-to-digital (A/D) conversion is presented. The individual elements have been fabricated and tested using MOSIS* 2 micrometer CMOS technology, although the integrated system has not yet been fabricated. The imager consists of a 128 x 128 array of active pixels at a 50 micrometer pitch. Each column of pixels shares a 10-bit A/D converter based on first-order oversampled sigma-delta (Sigma-Delta) modulation. The 10-bit outputs of each converter are multiplexed and read out through a single set of outputs. A semi-parallel architecture is chosen to achieve 30 frames/second operation even at low light levels. The sensor is designed for less than 12 e^- rms noise performance.
Holographic fluorescence mapping using space-division matching method
NASA Astrophysics Data System (ADS)
Abe, Ryosuke; Hayasaki, Yoshio
2017-10-01
Three-dimensional mapping of fluorescence light sources was performed by using self-interference digital holography. The positions of the sources were quantitatively determined by using Gaussian fitting of the axial and lateral intensity distributions obtained from diffraction calculations through position calibration from the observation space to the sample space. A space-division matching method was developed to perform the mapping of many fluorescence light sources, in this experiment, 500 nm fluorescent nanoparticles fixed in gelatin. A fluorescence digital holographic microscope having a 60 × objective lens with a numerical aperture of 1.25 detected 13 fluorescence light sources in a measurable region with a radius of ∼ 20 μm and a height of ∼ 5 μm. It was found that the measurable region had a conical shape resulting from the overlap between two beams.
Shaikh, Tanvir R; Gao, Haixiao; Baxter, William T; Asturias, Francisco J; Boisset, Nicolas; Leith, Ardean; Frank, Joachim
2009-01-01
This protocol describes the reconstruction of biological molecules from the electron micrographs of single particles. Computation here is performed using the image-processing software SPIDER and can be managed using a graphical user interface, termed the SPIDER Reconstruction Engine. Two approaches are described to obtain an initial reconstruction: random-conical tilt and common lines. Once an existing model is available, reference-based alignment can be used, a procedure that can be iterated. Also described is supervised classification, a method to look for homogeneous subsets when multiple known conformations of the molecule may coexist. PMID:19180078
A Study of Mechanical Alloying of Metal Powders
1981-05-01
UYON STAYt~ENT (d ida .... Approved for public release, distribution unlimited -. "’ I’ T PJIu TIO N IT A T EMT• ( ofe~ • e ao . m .. M•A 2-9, If...RELATIVE INTENSITY OF TIlE (1i1) BRAGG REFLECTION, 316 STAINLESS STEEL ,. 2.5 w/o Ti02 POWDER MILLED 98 HOURS AT 300 RPM...micrograph. 316.2.5 w/o Ti02 milled at 300 RPM. Annealed 1.5 hours at 11000C. 30. Micrographs, iron - 10 w/o TiO2 milled 64 hours 72 at 300 RIh
NASA Technical Reports Server (NTRS)
Pishnyak, Oleg; Golovin, Andrii; Kreminskia, Liubov; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.; Lavrentovich, Oleg D.
2006-01-01
We describe the application of smectic A (SmA) liquid crystals for beam deflection. SmA materials can be used in digital beam deflectors (DBDs) as fillers for passive birefringent prisms. SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Fast rotation of the incident light polarization in DBDs is achieved by an electrically switched 90 twisted nematic (TN) cell.
Generation of atmospheric wavefronts using binary micromirror arrays.
Anzuola, Esdras; Belmonte, Aniceto
2016-04-10
To simulate in the laboratory the influence that a turbulent atmosphere has on light beams, we introduce a practical method for generating atmospheric wavefront distortions that considers digital holographic reconstruction using a programmable binary micromirror array. We analyze the efficiency of the approach for different configurations of the micromirror array and experimentally demonstrate the benchtop technique. Though the mirrors on the digital array can only be positioned in one of two states, we show that the holographic technique can be used to devise a wide variety of atmospheric wavefront aberrations in a controllable and predictable way for a fraction of the cost of phase-only spatial light modulators.
Preparing images for publication: part 1.
Devigus, Alessandro; Paul, Stefan
2006-04-01
Images play a vital role in the publication and presentation of clinical and scientific work. Within clinical photography, color reproduction has always been a contentious issue. With the development of new technologies, the variables affecting color reproduction have changed, and photographers have moved away from film-based to digital photographic imaging systems. To develop an understanding of color, knowledge about the basic principles of light and vision is important. An object's color is determined by which wavelengths of light it reflects. Colors of light and colors of pigment behave differently. Due to technical limitations, monitors and printers are unable to reproduce all the colors we can see with our eyes, also called the LAB color space. In order to optimize the output of digital clinical images, color management solutions need to be integrated in the photographic workflow; however, their use is still limited in the medical field. As described in part 2 of this article, calibrating your computer monitor and using an 18% gray background card are easy ways to enable more consistent color reproduction for publication. In addition, some basic information about the various camera settings is given to facilitate the use of this new digital equipment in daily practice.
NASA Astrophysics Data System (ADS)
Chi, Yuxi; Yu, Liping; Pan, Bing
2018-05-01
A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.
Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan
2010-06-07
Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.
Marcinkowski, R; España, S; Van Holen, R; Vandenberghe, S
2014-12-07
The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15 × 15 2 × 2 × 22 mm(3) pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4 × 4 LYSO matrix of 1.9 × 1.9 × 22 mm(3) crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die.
Avoidance of the Real and Anxiety about the Unreal: Attachment Style and Video-Gaming
ERIC Educational Resources Information Center
Coulson, Mark; Oskis, Andrea; Gould, Rebecca L
2017-01-01
In this article, the authors discuss the light and dark side of attachments and attachment style in physical and digital worlds. They argue that many games offer opportunities for the generation of new and meaningful attachments to both physical and digital others. They discuss two "fundamental attachment errors" and show how these can…
Digital Fiction: "Unruly Object" or Literary Artefact?
ERIC Educational Resources Information Center
Allan, Cherie
2017-01-01
Is digital fiction worthy of serious consideration as a literary text and does it have a place in the English classroom, particularly in light of the establishment of a stand-alone Literature subject as part of the Years 11-12 English program in the Australian Curriculum? To answer these questions this paper briefly looks at the development and…
Making Room for the Transformation of Literacy Instruction in the Digital Classroom
ERIC Educational Resources Information Center
Sofkova Hashemi, Sylvana; Cederlund, Katarina
2017-01-01
Education is in the process of transforming traditional print-based instruction into digital formats. This multi-case study sheds light on the challenge of coping with the old and new in literacy teaching in the context of technology-mediated instruction in the early years of schooling (7-8 years old children). By investigating the relation…
Digital Games and the US National Research Council's Science Proficiency Goals
ERIC Educational Resources Information Center
Martinez-Garza, Mario; Clark, Douglas B.; Nelson, Brian C.
2013-01-01
This review synthesises research on digital games and science learning as it supports the goals for science proficiency outlined in the report by the US National Research Council on science education reform. The review is organised in terms of these research-based goals for science proficiency in light of their alignment with current science…
Examining spring phenology of forest understory using digital photography
Liang Liang; Mark D. Schwartz; Songlin Fei
2011-01-01
Phenology is an important indicator of forest health in relation to energy/nutrient cycles and species interactions. Accurate characterization of forest understory phenology is a crucial part of forest phenology observation. In this study, ground plots set up in a temperate mixed forest in Wisconsin were observed with a visible-light digital camera during spring 2007....
Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...
Bringing the Digital Camera to the Physics Lab
NASA Astrophysics Data System (ADS)
Rossi, M.; Gratton, L. M.; Oss, S.
2013-03-01
We discuss how compressed images created by modern digital cameras can lead to even severe problems in the quantitative analysis of experiments based on such images. Difficulties result from the nonlinear treatment of lighting intensity values stored in compressed files. To overcome such troubles, one has to adopt noncompressed, native formats, as we examine in this work.
Digital pulse shape discrimination.
Miller, L F; Preston, J; Pozzi, S; Flaska, M; Neal, J
2007-01-01
Pulse-shape discrimination (PSD) has been utilised for about 40 years as a method to obtain estimates for dose in mixed neutron and photon fields. Digitizers that operate close to GHz are currently available at a reasonable cost, and they can be used to directly sample signals from photomultiplier tubes. This permits one to perform digital PSD rather than the traditional, and well-established, analogoue techniques. One issue that complicates PSD for neutrons in mixed fields is that the light output characteristics of typical scintillators available for PSD, such as BC501A, vary as a function of energy deposited in the detector. This behaviour is more easily accommodated with digital processing of signals than with analogoue signal processing. Results illustrate the effectiveness of digital PSD.
Jacques, Eveline; Buytaert, Jan; Wells, Darren M; Lewandowski, Michal; Bennett, Malcolm J; Dirckx, Joris; Verbelen, Jean-Pierre; Vissenberg, Kris
2013-06-01
Image acquisition is an important step in the study of cytoskeleton organization. As visual interpretations and manual measurements of digital images are prone to errors and require a great amount of time, a freely available software package named MicroFilament Analyzer (MFA) was developed. The goal was to provide a tool that facilitates high-throughput analysis to determine the orientation of filamentous structures on digital images in a more standardized, objective and repeatable way. Here, the rationale and applicability of the program is demonstrated by analyzing the microtubule patterns in epidermal cells of control and gravi-stimulated Arabidopsis thaliana roots. Differential expansion of cells on either side of the root results in downward bending of the root tip. As cell expansion depends on the properties of the cell wall, this may imply a differential orientation of cellulose microfibrils. As cellulose deposition is orchestrated by cortical microtubules, the microtubule patterns were analyzed. The MFA program detects the filamentous structures on the image and identifies the main orientation(s) within individual cells. This revealed four distinguishable microtubule patterns in root epidermal cells. The analysis indicated that gravitropic stimulation and developmental age are both significant factors that determine microtubule orientation. Moreover, the data show that an altered microtubule pattern does not precede differential expansion. Other possible applications are also illustrated, including field emission scanning electron micrographs of cellulose microfibrils in plant cell walls and images of fluorescent actin. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Healy, Sinead; McMahon, Jill; Owens, Peter; Dockery, Peter; FitzGerald, Una
2018-02-01
Image segmentation is often imperfect, particularly in complex image sets such z-stack micrographs of slice cultures and there is a need for sufficient details of parameters used in quantitative image analysis to allow independent repeatability and appraisal. For the first time, we have critically evaluated, quantified and validated the performance of different segmentation methodologies using z-stack images of ex vivo glial cells. The BioVoxxel toolbox plugin, available in FIJI, was used to measure the relative quality, accuracy, specificity and sensitivity of 16 global and 9 local threshold automatic thresholding algorithms. Automatic thresholding yields improved binary representation of glial cells compared with the conventional user-chosen single threshold approach for confocal z-stacks acquired from ex vivo slice cultures. The performance of threshold algorithms varies considerably in quality, specificity, accuracy and sensitivity with entropy-based thresholds scoring highest for fluorescent staining. We have used the BioVoxxel toolbox to correctly and consistently select the best automated threshold algorithm to segment z-projected images of ex vivo glial cells for downstream digital image analysis and to define segmentation quality. The automated OLIG2 cell count was validated using stereology. As image segmentation and feature extraction can quite critically affect the performance of successive steps in the image analysis workflow, it is becoming increasingly necessary to consider the quality of digital segmenting methodologies. Here, we have applied, validated and extended an existing performance-check methodology in the BioVoxxel toolbox to z-projected images of ex vivo glia cells. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, E.S.
1991-09-01
One hundred and forty-seven bronchial samples (generations 3--6) from 66 patients (62 usable; 36 female, 26 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. In addition, one hundred and fifty-six mongol dog bronchi (generations 2--6) dissected from different lobes of 26 dog lungs have also been similarly prepared. One hundred and twenty-seven human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 655 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement ofmore » the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 328 micrographs of dog epithelium from 33 bronchial samples have been used to measure the distances of basal and mucous cell nuclei to the epithelial free surface and have been entered into COSAS. Using the COSAS planimetry program, we continue to expand our established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the same 5 epithelial cell types of dog bronchi. Our micrographs of human bronchial epithelium have allowed us to analyze the recent suggestion that the DNA of lymphocytes may be subject to significant damage from Rn progeny while within the lung. Since the last progress report three papers have been submitted for publication. 17 refs., 4 tabs.« less
The use of computed radiography plates to determine light and radiation field coincidence.
Kerns, James R; Anand, Aman
2013-11-01
Photo-stimulable phosphor computed radiography (CR) has characteristics that allow the output to be manipulated by both radiation and optical light. The authors have developed a method that uses these characteristics to carry out radiation field and light field coincidence quality assurance on linear accelerators. CR detectors from Kodak were used outside their cassettes to measure both radiation and light field edges from a Varian linear accelerator. The CR detector was first exposed to a radiation field and then to a slightly smaller light field. The light impinged on the detector's latent image, removing to an extent the portion exposed to the light field. The detector was then digitally scanned. A MATLAB-based algorithm was developed to automatically analyze the images and determine the edges of the light and radiation fields, the vector between the field centers, and the crosshair center. Radiographic film was also used as a control to confirm the radiation field size. Analysis showed a high degree of repeatability with the proposed method. Results between the proposed method and radiographic film showed excellent agreement of the radiation field. The effect of varying monitor units and light exposure time was tested and found to be very small. Radiation and light field sizes were determined with an uncertainty of less than 1 mm, and light and crosshair centers were determined within 0.1 mm. A new method was developed to digitally determine the radiation and light field size using CR photo-stimulable phosphor plates. The method is quick and reproducible, allowing for the streamlined and robust assessment of light and radiation field coincidence, with no observer interpretation needed.
A simple infrared-augmented digital photography technique for detection of pupillary abnormalities.
Shazly, Tarek A; Bonhomme, G R
2015-03-01
The purpose of the study was to describe a simple infrared photography technique to aid in the diagnosis and documentation of pupillary abnormalities. An unmodified 12-megapixel "point and shoot" digital camera was used to obtain binocular still photos and videos under different light conditions with near-infrared illuminating frames. The near-infrared light of 850 nm allows the capture of clear pupil images in both dim and bright light conditions. It also allows easy visualization of the pupil despite pigmented irides by augmenting the contrast between the iris and the pupil. The photos and videos obtained illustrated a variety of pupillary abnormalities using the aforementioned technique. This infrared-augmented photography technique supplements medical education, and aids in the more rapid detection, diagnosis, and documentation of a wide spectrum of pupillary abnormalities. Its portability and ease of use with minimal training complements the education of trainees and facilitates the establishment of difficult diagnoses.
Desolvation Induced Origami of Photocurable Polymers by Digit Light Processing.
Zhao, Zeang; Wu, Jiangtao; Mu, Xiaoming; Chen, Haosen; Qi, H Jerry; Fang, Daining
2017-07-01
Self-folding origami is of great interest in current research on functional materials and structures, but there is still a challenge to develop a simple method to create freestanding, reversible, and complex origami structures. This communication provides a feasible solution to this challenge by developing a method based on the digit light processing technique and desolvation-induced self-folding. In this new method, flat polymer sheets can be cured by a light field from a commercial projector with varying intensity, and the self-folding process is triggered by desolvation in water. Folded origami structures can be recovered once immersed in the swelling medium. The self-folding process is investigated both experimentally and theoretically. Diverse 3D origami shapes are demonstrated. This method can be used for responsive actuators and the fabrication of 3D electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light
Wang, Ying Min; Judkewitz, Benjamin; DiMarzio, Charles A.; Yang, Changhuei
2012-01-01
Fluorescence imaging is one of the most important research tools in biomedical sciences. However, scattering of light severely impedes imaging of thick biological samples beyond the ballistic regime. Here we directly show focusing and high-resolution fluorescence imaging deep inside biological tissues by digitally time-reversing ultrasound-tagged light with high optical gain (~5×105). We confirm the presence of a time-reversed optical focus along with a diffuse background—a corollary of partial phase conjugation—and develop an approach for dynamic background cancellation. To illustrate the potential of our method, we image complex fluorescent objects and tumour microtissues at an unprecedented depth of 2.5 mm in biological tissues at a lateral resolution of 36 μm×52 μm and an axial resolution of 657 μm. Our results set the stage for a range of deep-tissue imaging applications in biomedical research and medical diagnostics. PMID:22735456
Three-dimensional imaging of cultural heritage artifacts with holographic printers
NASA Astrophysics Data System (ADS)
Kang, Hoonjong; Stoykova, Elena; Berberova, Nataliya; Park, Jiyong; Nazarova, Dimana; Park, Joo Sup; Kim, Youngmin; Hong, Sunghee; Ivanov, Branimir; Malinowski, Nikola
2016-01-01
Holography is defined as a two-steps process of capture and reconstruction of the light wavefront scattered from three-dimensional (3D) objects. Capture of the wavefront is possible due to encoding of both amplitude and phase in the hologram as a result of interference of the light beam coming from the object and mutually coherent reference beam. Three-dimensional imaging provided by holography motivates development of digital holographic imaging methods based on computer generation of holograms as a holographic display or a holographic printer. The holographic printing technique relies on combining digital 3D object representation and encoding of the holographic data with recording of analog white light viewable reflection holograms. The paper considers 3D contents generation for a holographic stereogram printer and a wavefront printer as a means of analogue recording of specific artifacts which are complicated objects with regards to conventional analog holography restrictions.
Polyplanar optical display electronics
NASA Astrophysics Data System (ADS)
DeSanto, Leonard; Biscardi, Cyrus
1997-07-01
The polyplanar optical display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid- state laser at 532 nm as its light source. To produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the digital micromirror device (DMD) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD chip is operated remotely from the Texas Instruments circuit board. We discuss the operation of the DMD divorced from the light engine and the interfacing of the DMD board with various video formats including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.
ERIC Educational Resources Information Center
Jimoyiannis, Athanassios; Gravani, Maria
2011-01-01
The research reported in this paper aspires to shed light into adult digital literacy using learners' and educators' experiences and perceptions at Second Chance Schools, a project in Greece aiming at combating social exclusion through education. In exploring the above, this investigation uses a case-study approach within a qualitative paradigm…
Digital Distraction: Shedding Light on the 21st-Century College Classroom
ERIC Educational Resources Information Center
Aaron, Lynn S.; Lipton, Talia
2018-01-01
It is not uncommon to walk into a college classroom and find all heads bowed down to a flashing screen and the room . . . silent. While digital devices can certainly support learning, what about when they are a distraction? This study explored this 21st-century phenomenon from two perspectives: Does the use of a device for nonacademic purposes…
ForestCrowns: a software tool for analyzing ground-based digital photographs of forest canopies
Matthew F. Winn; Sang-Mook Lee; Phillip A. Araman
2013-01-01
Canopy coverage is a key variable used to characterize forest structure. In addition, the light transmitted through the canopy is an important ecological indicator of plant and animal habitat and understory climate conditions. A common ground-based method used to document canopy coverage is to take digital photographs from below the canopy. To assist with analyzing...
ERIC Educational Resources Information Center
Kreijns, Karel; Vermeulen, Marjan; van Buuren, Hans; Van Acker, Frederik
2017-01-01
Do perceptions of success in using digital learning materials (DLMs) "regularly" (i.e., several times a week) strengthen (or weaken) teachers' behavioural intentions to use DLMs again? And which psychological factors have a relationship with the intention to use DLMs again? These questions are important in light of stimulating teachers'…
Volkmann, Niels
2004-01-01
Reduced representation templates are used in a real-space pattern matching framework to facilitate automatic particle picking from electron micrographs. The procedure consists of five parts. First, reduced templates are constructed either from models or directly from the data. Second, a real-space pattern matching algorithm is applied using the reduced representations as templates. Third, peaks are selected from the resulting score map using peak-shape characteristics. Fourth, the surviving peaks are tested for distance constraints. Fifth, a correlation-based outlier screening is applied. Test applications to a data set of keyhole limpet hemocyanin particles indicate that the method is robust and reliable.
Electrical properties of palladium-doped CaCu3Ti4O12 ceramics
NASA Astrophysics Data System (ADS)
Singh, Arashdeep; Md Mursalin, Sk.; Rana, P.; Sen, Shrabanee
2015-09-01
The effect of doping palladium (Pd) at the Cu site of CaCu3Ti4O12 powders (CCPTO) synthesized by sol-gel technique on electrical properties was studied. XRD analysis revealed the formation of CCTO and CCPTO ceramics with some minor quantities of impurities. SEM micrographs revealed that the grain size decreased with Pd doping. TEM micrographs of CCPTO powder showed the formation of irregular-shaped particles of ~40 nm. The dielectric constant and dielectric loss showed a significant enhancement with Pd doping. A significant decrease in grain-boundary resistance with Pd doping was ascertained by impedance spectroscopy study.
Kiwanuka, Elizabeth; Cruz, Antonio P
2017-05-01
Lower extremity wounds present a major clinical challenge. This paper introduces a new multistep approach for improved aesthetic and functional outcome for lower extremity wound closure after Mohs micrographic surgery. In this prospective case series, 12 consecutive patients undergoing Mohs micrographic surgery for cutaneous malignancies of the lower extremities underwent closure assisted by elastic bandages, proper positioning with 45° flexion of the knee, buried vertical mattress sutures, and careful eversion, using a premium angled stapler. Assessment of cosmetic outcome was performed by 2 blinded observers, using the Hollander Wound Evaluation Scale. The mean age was 73 ± 9 years with most patients having at least one comorbidity. Six patients (50%) underwent resection of a basal cell carcinoma and 5 patients (42%) underwent resection of a squamous cell carcinoma and 1 patient (8%) underwent resection of a keratoacanthomatous carcinoma. There were no wound complications, and at the 3- to 6-month follow-up, 11 of the 12 wounds (92%) had an optimal Hollander Wound Evaluation Scale score of 6. This new approach to lower extremity wounds provides excellent cosmetic outcome with no reported complications.
Tolkachjov, Stanislav N; Hocker, Thomas L; Hochwalt, Phillip C; Camilleri, Michael J; Arpey, Christopher J; Brewer, Jerry D; Otley, Clark C; Roenigk, Randall K; Baum, Christian L
2015-02-01
Hidradenocarcinoma (HAC) is a rare malignant adnexal neoplasm with reported metastatic potential and undefined optimal treatment. To review clinical characteristics and outcomes of patients with HAC treated with Mohs micrographic surgery (MMS). The authors performed a retrospective chart review of patients with HAC treated by MMS at Mayo Clinic from 1993 to 2013, recording patient demographics, tumor characteristics, MMS stages to clearance, follow-up, recurrence, metastasis, and mortality. Ten patients underwent MMS for HAC more than 20 years. The average age was 62.8 years, with 6 females and 4 males. Occipital scalp was the most common location (40%), followed by extremities (30%) and face (20%). In 5 of 7 cases (71%), "cyst" was the working clinical diagnosis. The average preoperative lesion area was 3.18 cm, with an average of 1.5 MMS stages required for clearance. Mean postoperative follow-up was 7 years (range, 5-205 months). No tumors treated with MMS recurred, metastasized, or led to disease-related mortality. Mohs micrographic surgery seems to be a useful treatment modality for HAC. This is the largest reported series of HAC treated with MMS with long-term follow-up.
A collection of micrographs: where science and art meet
Uskoković, Vuk
2013-01-01
Micrographs obtained using different instrumental techniques are presented with the purpose of demonstrating their artistic qualities. The quality of uniformity currently dominates the aesthetic assessment in scientific practice and is discussed in relation to the classical appreciation of the interplay between symmetry and asymmetry in arts. It is argued that scientific and artistic qualities have converged and inspired each other throughout millennia. With scientific discoveries and inventions enriching the world of communication, broadening the space for artistic creativity and making artistic products more accessible than ever, science inevitably influences artistic creativity. On the other hand, the importance of aesthetic principles in guiding scientific conduct has been appreciated by some of the most creative scientific minds. Science and arts can be thus considered as parallel rails of a single railroad track. Only when precisely coordinated is the passing of the train of human knowledge enabled. The presented micrographs, occupying the central part of this discourse, are displayed with the purpose of showing the rich aesthetic character of even the most ordinary scientific images. The inherent aesthetic nature of scientific imagery and the artistic nature of scientific conduct have thus been offered as the conclusion. PMID:24465169
Kudella, Patrick Wolfgang; Moll, Kirsten; Wahlgren, Mats; Wixforth, Achim; Westerhausen, Christoph
2016-04-18
Rosetting is associated with severe malaria and a primary cause of death in Plasmodium falciparum infections. Detailed understanding of this adhesive phenomenon may enable the development of new therapies interfering with rosette formation. For this, it is crucial to determine parameters such as rosetting and parasitaemia of laboratory strains or patient isolates, a bottleneck in malaria research due to the time consuming and error prone manual analysis of specimens. Here, the automated, free, stand-alone analysis software automated rosetting analyzer for micrographs (ARAM) to determine rosetting rate, rosette size distribution as well as parasitaemia with a convenient graphical user interface is presented. Automated rosetting analyzer for micrographs is an executable with two operation modes for automated identification of objects on images. The default mode detects red blood cells and fluorescently labelled parasitized red blood cells by combining an intensity-gradient with a threshold filter. The second mode determines object location and size distribution from a single contrast method. The obtained results are compared with standardized manual analysis. Automated rosetting analyzer for micrographs calculates statistical confidence probabilities for rosetting rate and parasitaemia. Automated rosetting analyzer for micrographs analyses 25 cell objects per second reliably delivering identical results compared to manual analysis. For the first time rosette size distribution is determined in a precise and quantitative manner employing ARAM in combination with established inhibition tests. Additionally ARAM measures the essential observables parasitaemia, rosetting rate and size as well as location of all detected objects and provides confidence intervals for the determined observables. No other existing software solution offers this range of function. The second, non-malaria specific, analysis mode of ARAM offers the functionality to detect arbitrary objects. Automated rosetting analyzer for micrographs has the capability to push malaria research to a more quantitative and statistically significant level with increased reliability due to operator independence. As an installation file for Windows © 7, 8.1 and 10 is available for free, ARAM offers a novel open and easy-to-use platform for the malaria community to elucidate resetting. © 7, 8.1 and 10 is available for free, ARAM offers a novel open and easy-to-use platform for the malaria community to elucidate rosetting.
Huang, Shih-Hao; Hsueh, Hui-Jung; Jiang, Yeu-Long
2011-01-01
This paper describes a light-addressable electrolytic system used to perform an electrodeposition of calcium alginate hydrogels using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-anode to electrolytically produce protons, which can lead to a decreased pH gradient. The low pH generated at the anode can locally release calcium ions from insoluble calcium carbonate (CaCO3) to cause gelation of calcium alginate through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressable electrodeposition of calcium alginate hydrogels with different shapes and sizes, as well as multiplexed micropatterning was performed. The effects of the concentration of the alginate and CaCO3 solutions on the dimensional resolution of alginate hydrogel formation were experimentally examined. A 3 × 3 array of cell-encapsulated alginate hydrogels was also successfully demonstrated through light-addressable electrodeposition. Our proposed method provides a programmable method for the spatiotemporally controllable assembly of cell populations into cellular microarrays and could have a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery. PMID:22685500
Huang, Shih-Hao; Hsueh, Hui-Jung; Jiang, Yeu-Long
2011-09-01
This paper describes a light-addressable electrolytic system used to perform an electrodeposition of calcium alginate hydrogels using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-anode to electrolytically produce protons, which can lead to a decreased pH gradient. The low pH generated at the anode can locally release calcium ions from insoluble calcium carbonate (CaCO(3)) to cause gelation of calcium alginate through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressable electrodeposition of calcium alginate hydrogels with different shapes and sizes, as well as multiplexed micropatterning was performed. The effects of the concentration of the alginate and CaCO(3) solutions on the dimensional resolution of alginate hydrogel formation were experimentally examined. A 3 × 3 array of cell-encapsulated alginate hydrogels was also successfully demonstrated through light-addressable electrodeposition. Our proposed method provides a programmable method for the spatiotemporally controllable assembly of cell populations into cellular microarrays and could have a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery.
Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors
NASA Astrophysics Data System (ADS)
Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan
2015-04-01
The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.
Digital holographic tomography based on spectral interferometry.
Yu, Lingfeng; Chen, Zhongping
2007-10-15
A digital holographic tomography system has been developed with the use of an inexpensive broadband light source and a fiber-based spectral interferometer. Multiple synthesized holograms (or object wave fields) of different wavelengths are obtained by transversely scanning a probe beam. The acquisition speed is improved compared with conventional wavelength-scanning digital holographic systems. The optical field of a volume around the object location is calculated by numerical diffraction from each synthesized hologram, and all such field volumes are numerically superposed to create the three-dimensional tomographic image. Experiments were performed to demonstrate the idea.
Description and test results of a digital supersonic propulsion system integrated control
NASA Technical Reports Server (NTRS)
Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.
1976-01-01
A digitally implemented integrated inlet/engine control system was developed and tested on a mixed compression, Mach 2.5, supersonic inlet and augmented turbofan engine. The control matched engine airflow to available inlet airflow so that in steady state, the shock would be at the desired location, and the overboard bypass doors would be closed. During engine induced transients, such as augmentor lights and cutoffs, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart.
Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy.
Jiang, Shihong; Walker, John
2010-01-20
We report a differential fluorescence speckle confocal microscope that acquires an image in a fraction of a second by exploiting the very high frame rate of modern digital micromirror devices (DMDs). The DMD projects a sequence of predefined binary speckle patterns to the sample and modulates the intensity of the returning fluorescent light simultaneously. The fluorescent light reflecting from the DMD's "on" and "off" pixels is modulated by correlated speckle and anticorrelated speckle, respectively, to form two images on two CCD cameras in parallel. The sum of the two images recovers a widefield image, but their difference gives a near-confocal image in real time. Experimental results for both low and high numerical apertures are shown.
Orthoscopic real-image display of digital holograms.
Makowski, P L; Kozacki, T; Zaperty, W
2017-10-01
We present a practical solution for the long-standing problem of depth inversion in real-image holographic display of digital holograms. It relies on a field lens inserted in front of the spatial light modulator device addressed by a properly processed hologram. The processing algorithm accounts for pixel size and wavelength mismatch between capture and display devices in a way that prevents image deformation. Complete images of large dimensions are observable from one position with a naked eye. We demonstrate the method experimentally on a 10-cm-long 3D object using a single full-HD spatial light modulator, but it can supplement most holographic displays designed to form a real image, including circular wide angle configurations.
Lin, Yu-Chih; Tu, Han-Yen; Wu, Xin-Ru; Lai, Xin-Ji; Cheng, Chau-Jern
2018-05-14
This paper proposes one-shot synthetic aperture digital holographic microscopy using a combination of angular-multiplexing and coherence gating. The proposed angular-multiplexing technique uses multiple noncoplanar incident beams into the synthetic aperture to create tight packed passbands so as to extend spatial frequency spectrum. Coherence gating is performed to prevent the self-interference among the multiple beams. Based on the design guideline proposed herein, a phase-only spatial light modulator is employed as an adjustable blazed grating to split multiple noncoplanar beams and perform angular-multiplexing, and then using coherence gating based on low-coherence-light, superresolution imaging is achieved after one-shot acquisition.
Yu, Ming; Carter, Kelly T; Makar, Karen W; Vickers, Kathy; Ulrich, Cornelia M; Schoen, Robert E; Brenner, Dean; Markowitz, Sanford D; Grady, William M
2015-01-01
Aberrant DNA methylation is a common epigenetic alteration found in colorectal adenomas and cancers and plays a role in cancer initiation and progression. Aberrantly methylated DNA loci can also be found infrequently present in normal colon tissue, where they seem to have potential to be used as colorectal cancer (CRC) risk biomarkers. However, detection and precise quantification of the infrequent methylation events seen in normal colon is likely beyond the capability of commonly used PCR technologies. To determine the potential for methylated DNA loci as CRC risk biomarkers, we developed MethyLight droplet digital PCR (ddPCR) assays and compared their performance to the widely used conventional MethyLight PCR. Our analyses demonstrated the capacity of MethyLight ddPCR to detect a single methylated NTRK3 allele from among more than 3125 unmethylated alleles, 25-fold more sensitive than conventional MethyLight PCR. The MethyLight ddPCR assay detected as little as 19 and 38 haploid genome equivalents of methylated EVL and methylated NTRK3, respectively, which far exceeded conventional MethyLight PCR (379 haploid genome equivalents for both genes). When assessing methylated EVL levels in CRC tissue samples, MethyLight ddPCR reduced coefficients of variation (CV) to 6-65% of CVs seen with conventional MethyLight PCR. Importantly, we showed the ability of MethyLight ddPCR to detect infrequently methylated EVL alleles in normal colon mucosa samples that could not be detected by conventional MethyLight PCR. This study suggests that the sensitivity and precision of methylation detection by MethyLight ddPCR enhances the potential of methylated alleles for use as CRC risk biomarkers.
Design method of freeform light distribution lens for LED automotive headlamp based on DMD
NASA Astrophysics Data System (ADS)
Ma, Jianshe; Huang, Jianwei; Su, Ping; Cui, Yao
2018-01-01
We propose a new method to design freeform light distribution lens for light-emitting diode (LED) automotive headlamp based on digital micro mirror device (DMD). With the Parallel optical path architecture, the exit pupil of the illuminating system is set in infinity. Thus the principal incident rays of micro lens in DMD is parallel. DMD is made of high speed digital optical reflection array, the function of distribution lens is to distribute the emergent parallel rays from DMD and get a lighting pattern that fully comply with the national regulation GB 25991-2010.We use DLP 4500 to design the light distribution lens, mesh the target plane regulated by the national regulation GB 25991-2010 and correlate the mesh grids with the active mirror array of DLP4500. With the mapping relations and the refraction law, we can build the mathematics model and get the parameters of freeform light distribution lens. Then we import its parameter into the three-dimensional (3D) software CATIA to construct its 3D model. The ray tracing results using Tracepro demonstrate that the Illumination value of target plane is easily adjustable and fully comply with the requirement of the national regulation GB 25991-2010 by adjusting the exit brightness value of DMD. The theoretical optical efficiencies of the light distribution lens designed using this method could be up to 92% without any other auxiliary lens.
NASA Astrophysics Data System (ADS)
Sarkisov, Sergey S.; Kukhtareva, Tatiana; Kukhtarev, Nickolai V.; Curley, Michael J.; Edwards, Vernessa; Creer, Marylyn
2013-03-01
There is a great need for rapid detection of bio-hazardous species particularly in applications to food safety and biodefense. It has been recently demonstrated that the colonies of various bio-species could be rapidly detected using culture-specific and reproducible patterns generated by scattered non-coherent light. However, the method heavily relies on a digital pattern recognition algorithm, which is rather complex, requires substantial computational power and is prone to ambiguities due to shift, scale, or orientation mismatch between the analyzed pattern and the reference from the library. The improvement could be made, if, in addition to the intensity of the scattered optical wave, its phase would be also simultaneously recorded and used for the digital holographic pattern recognition. In this feasibility study the research team recorded digital Gabor-type (in-line) holograms of colonies of micro-organisms, such as Salmonella with a laser diode as a low-coherence light source and a lensless high-resolution (2.0x2.0 micron pixel pitch) digital image sensor. The colonies were grown in conventional Petri dishes using standard methods. The digitally recorded holograms were used for computational reconstruction of the amplitude and phase information of the optical wave diffracted on the colonies. Besides, the pattern recognition of the colony fragments using the cross-correlation between the digital hologram was also implemented. The colonies of mold fungi Altenaria sp, Rhizophus, sp, and Aspergillus sp have been also generating nano-colloidal silver during their growth in specially prepared matrices. The silver-specific plasmonic optical extinction peak at 410-nm was also used for rapid detection and growth monitoring of the fungi colonies.
[The extraction and analysis of a- and b- wave from electroretinogram in human].
Chen, Zi-he; Zheng, Chang-wei; Lei, Bo
2013-12-01
To determine the frequency range of a-b wave complex in the dark- and light-adapted electroretinogram (ERG) and to isolate the pure a- and b- waves. Case series study. Full-field ERGs were recorded in 16 eyes of 8 normal volunteers from October to November 2011. Digital filtering technique was used to extract the a- and b-waves from dark- and light-adapted ERG responses. The timings of a- and b-wave were measured to determine the frequency range of a-b wave complex. Major frequency components were determined from power spectra using fast Fourier transform (FFT). The effect of different order settings in the digital filter were compared to investigate the optimum condition, where the oscillatory potential (OP) was completely removed while the amplitudes and phases of the a- and b- waves were less affected. The Student-t test was used to compare the frequency range of a-b wave complex in dark- and light-adapted ERG. The averaged frequency range of the dark-adapted a-b wave complex was from (14.99 ± 2.39) to (25.35 ± 3.77) Hz, compared with (25.22 ± 6.56) to (32.47 ± 3.68) Hz for the light-adapted a-b wave complex, respectively, indicating the frequency range of the dark-adapted a-b wave complex was significantly less than the light-adapted a-b wave complex (t = 7.910, 7.693; both P < 0.01). The third order of the digital filter and a passband of 1 to 45 Hz was the best choice in term of removing the high frequency OP from the waveform of ERG and keeping the amplitude and phase of the a- and b- waves. The frequency of a-b wave complex is lower than that of OP. Therefore the a- and b- waves can be isolated from OP using different digital filter settings in human ERG. A third order and a passband of 1 to 45 Hz is the best choice to extract pure a- and b- waves from the original ERG.
Evaluation of modified portable digital camera for screening of diabetic retinopathy.
Chalam, Kakarla V; Brar, Vikram S; Keshavamurthy, Ravi
2009-01-01
To describe a portable wide-field noncontact digital camera for posterior segment photography. The digital camera has a compound lens consisting of two optical elements (a 90-dpt and a 20-dpt lens) attached to a 7.2-megapixel camera. White-light-emitting diodes are used to illuminate the fundus and reduce source reflection. The camera settings are set to candlelight mode, the optic zoom standardized to x2.4 and the focus is manually set to 3.0 m. The new technique provides quality wide-angle digital images of the retina (60 degrees ) in patients with dilated pupils, at a fraction of the cost of established digital fundus photography. The modified digital camera is a useful alternative technique to acquire fundus images and provides a tool for screening posterior segment conditions, including diabetic retinopathy in a variety of clinical settings.
Digital Earth Watch: Investigating the World with Digital Cameras
NASA Astrophysics Data System (ADS)
Gould, A. D.; Schloss, A. L.; Beaudry, J.; Pickle, J.
2015-12-01
Every digital camera including the smart phone camera can be a scientific tool. Pictures contain millions of color intensity measurements organized spatially allowing us to measure properties of objects in the images. This presentation will demonstrate how digital pictures can be used for a variety of studies with a special emphasis on using repeat digital photographs to study change-over-time in outdoor settings with a Picture Post. Demonstrations will include using inexpensive color filters to take pictures that enhance features in images such as unhealthy leaves on plants, or clouds in the sky. Software available at no cost from the Digital Earth Watch (DEW) website that lets students explore light, color and pixels, manipulate color in images and make measurements, will be demonstrated. DEW and Picture Post were developed with support from NASA. Please visit our websites: DEW: http://dew.globalsystemsscience.orgPicture Post: http://picturepost.unh.edu
RGB digital lensless holographic microscopy
NASA Astrophysics Data System (ADS)
Garcia-Sucerquia, Jorge
2013-11-01
The recent introduction of color digital lensless holographic microscopy (CDLHM) has shown the possibility of imaging microscopic specimens at full color without the need of lenses. Owing to the simplicity, robustness, and compactness of the digital lensless holographic microscopes (DLHM), they have been presented as the ideal candidates to being developed into portable holographic microscopes. However, in the case of CDLHM the utilization of three independent lasers hinders the portability option for this microscope. In this contribution an alternative to reduce the complexity of CDLHM aimed to recover the portability of this microscopy technology is presented. A super-bright white-light light-emitting diode (LED) is spectrally and spatially filtered to produce the needed illumination by CDLHM to work. CDLHM with LED illumination is used to image at full color a section of the head of a drosophila melanogaster fly (fruit fly). The LED-CDLHM method shows the capability of imaging objects of 2μm size in comparison with the micrometer resolution reported for LASER-CDLHM.
Tangible display systems: bringing virtual surfaces into the real world
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2012-03-01
We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.
Holographic zoom system based on spatial light modulator and liquid device
NASA Astrophysics Data System (ADS)
Wang, Di; Li, Lei; Liu, Su-Juan; Wang, Qiong-Hua
2018-02-01
In this paper, two holographic zoom systems are proposed based on the programmability of spatial light modulator (SLM) and zoom characteristics of liquid lens. An active optical zoom system is proposed in which the zoom module is composed of a liquid lens and an SLM. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of an image without mechanical moving parts and keep the output plane stationary. Then a color holographic zoom system based on a liquid lens is proposed. The system processes the color separation of the original object for red, green, and blue components and generated three holograms respectively. A new hologram with specific reconstructed distance can be generated by combing the hologram of the digital lens with the hologram of the image. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of the reconstructed image.
Cost-effective bidirectional digitized radio-over-fiber systems employing sigma delta modulation
NASA Astrophysics Data System (ADS)
Lee, Kyung Woon; Jung, HyunDo; Park, Jung Ho
2016-11-01
We propose a cost effective digitized radio-over-fiber (D-RoF) system employing a sigma delta modulation (SDM) and a bidirectional transmission technique using phase modulated downlink and intensity modulated uplink. SDM is transparent to different radio access technologies and modulation formats, and more suitable for a downlink of wireless system because a digital to analog converter (DAC) can be avoided at the base station (BS). Also, Central station and BS share the same light source by using a phase modulation for the downlink and an intensity modulation for the uplink transmission. Avoiding DACs and light sources have advantages in terms of cost reduction, power consumption, and compatibility with conventional wireless network structure. We have designed a cost effective bidirectional D-RoF system using a low pass SDM and measured the downlink and uplink transmission performance in terms of error vector magnitude, signal spectra, and constellations, which are based on the 10MHz LTE 64-QAM standard.
Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph
Ghamari, M.; Aguilar, C.; Soltanpur, C.; Nazeran, H.
2017-01-01
This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment. PMID:28959119
Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph.
Ghamari, M; Aguilar, C; Soltanpur, C; Nazeran, H
2016-03-01
This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment.
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, William A.; Brada, Mark P.
1995-01-01
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.
Everything You Always Wanted to Know about Fiber Optics but Were Afraid to Ask...
ERIC Educational Resources Information Center
Bunch, Robert M.
1993-01-01
Explains light-wave communication and optical fibers. The impact of fiber optics on communication is discussed; uses of fiber optic technology in elementary, secondary, and higher education are described; and possible futures of light-wave communication are considered, including Integrated Services Digital Networks and the National Research and…
Digital all-sky polarization imaging of partly cloudy skies.
Pust, Nathan J; Shaw, Joseph A
2008-12-01
Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.
KM3NeT Digital Optical Module electronics
NASA Astrophysics Data System (ADS)
Real, Diego
2016-04-01
The KM3NeT collaboration is currently building of a neutrino telescope with a volume of several cubic kilometres at the bottom of the Mediterranean Sea. The telescope consists of a matrix of Digital Optical Modules that will detect the Cherenkov light originated by the interaction of the neutrinos in the proximity of the detector. This contribution describes the main components of the read-out electronics of the Digital Optical Module: the Power Board, which delivers all the power supply required by the Digital Optical Molule electronics; the Central Logic Board, the main core of the read-out system, hosting 31 Time to Digital Converters with 1 ns resolution and the White Rabbit protocol embedded in the Central Logic Board Field Programmable Gate Array; the Octopus boards, that transfer the Low Voltage Digital Signals from the PMT bases to the Central Logic Board and finally the PMT bases, in charge of converting the analogue signal produced in the 31 3" PMTs into a Low Voltage Digital Signal.
Development of a Digital Microarray with Interferometric Reflectance Imaging
NASA Astrophysics Data System (ADS)
Sevenler, Derin
This dissertation describes a new type of molecular assay for nucleic acids and proteins. We call this technique a digital microarray since it is conceptually similar to conventional fluorescence microarrays, yet it performs enumerative ('digital') counting of the number captured molecules. Digital microarrays are approximately 10,000-fold more sensitive than fluorescence microarrays, yet maintain all of the strengths of the platform including low cost and high multiplexing (i.e., many different tests on the same sample simultaneously). Digital microarrays use gold nanorods to label the captured target molecules. Each gold nanorod on the array is individually detected based on its light scattering, with an interferometric microscopy technique called SP-IRIS. Our optimized high-throughput version of SP-IRIS is able to scan a typical array of 500 spots in less than 10 minutes. Digital DNA microarrays may have utility in applications where sequencing is prohibitively expensive or slow. As an example, we describe a digital microarray assay for gene expression markers of bacterial drug resistance.
Salazar, Antonio José; Camacho, Juan Camilo; Aguirre, Diego Andrés
2012-02-01
A common teleradiology practice is digitizing films. The costs of specialized digitizers are very high, that is why there is a trend to use conventional scanners and digital cameras. Statistical clinical studies are required to determine the accuracy of these devices, which are very difficult to carry out. The purpose of this study was to compare three capture devices in terms of their capacity to detect several image characteristics. Spatial resolution, contrast, gray levels, and geometric deformation were compared for a specialized digitizer ICR (US$ 15,000), a conventional scanner UMAX (US$ 1,800), and a digital camera LUMIX (US$ 450, but require an additional support system and a light box for about US$ 400). Test patterns printed in films were used. The results detected gray levels lower than real values for all three devices; acceptable contrast and low geometric deformation with three devices. All three devices are appropriate solutions, but a digital camera requires more operator training and more settings.
Multi-channel photon counting DOT system based on digital lock-in detection technique
NASA Astrophysics Data System (ADS)
Wang, Tingting; Zhao, Huijuan; Wang, Zhichao; Hou, Shaohua; Gao, Feng
2011-02-01
Relying on deeper penetration of light in the tissue, Diffuse Optical Tomography (DOT) achieves organ-level tomography diagnosis, which can provide information on anatomical and physiological features. DOT has been widely used in imaging of breast, neonatal cerebral oxygen status and blood oxygen kinetics observed by its non-invasive, security and other advantages. Continuous wave DOT image reconstruction algorithms need the measurement of the surface distribution of the output photon flow inspired by more than one driving source, which means that source coding is necessary. The most currently used source coding in DOT is time-division multiplexing (TDM) technology, which utilizes the optical switch to switch light into optical fiber of different locations. However, in case of large amounts of the source locations or using the multi-wavelength, the measurement time with TDM and the measurement interval between different locations within the same measurement period will therefore become too long to capture the dynamic changes in real-time. In this paper, a frequency division multiplexing source coding technology is developed, which uses light sources modulated by sine waves with different frequencies incident to the imaging chamber simultaneously. Signal corresponding to an individual source is obtained from the mixed output light using digital phase-locked detection technology at the detection end. A digital lock-in detection circuit for photon counting measurement system is implemented on a FPGA development platform. A dual-channel DOT photon counting experimental system is preliminary established, including the two continuous lasers, photon counting detectors, digital lock-in detection control circuit, and codes to control the hardware and display the results. A series of experimental measurements are taken to validate the feasibility of the system. This method developed in this paper greatly accelerates the DOT system measurement, and can also obtain the multiple measurements in different source-detector locations.
Osman, Reham B; Alharbi, Nawal; Wismeijer, Daniel
The aim of this study was to evaluate the effect of the build orientation/build angle on the dimensional accuracy of full-coverage dental restorations manufactured using digital light-processing technology (DLP-AM). A full dental crown was digitally designed and 3D-printed using DLP-AM. Nine build angles were used: 90, 120, 135, 150, 180, 210, 225, 240, and 270 degrees. The specimens were digitally scanned using a high-resolution optical surface scanner (IScan D104i, Imetric). Dimensional accuracy was evaluated using the digital subtraction technique. The 3D digital files of the scanned printed crowns (test model) were exported in standard tessellation language (STL) format and superimposed on the STL file of the designed crown [reference model] using Geomagic Studio 2014 (3D Systems). The root mean square estimate (RMSE) values were evaluated, and the deviation patterns on the color maps were further assessed. The build angle influenced the dimensional accuracy of 3D-printed restorations. The lowest RMSE was recorded for the 135-degree and 210-degree build angles. However, the overall deviation pattern on the color map was more favorable with the 135-degree build angle in contrast with the 210-degree build angle where the deviation was observed around the critical marginal area. Within the limitations of this study, the recommended build angle using the current DLP system was 135 degrees. Among the selected build angles, it offers the highest dimensional accuracy and the most favorable deviation pattern. It also offers a self-supporting crown geometry throughout the building process.
High-speed single-pixel digital holography
NASA Astrophysics Data System (ADS)
González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús
2017-06-01
The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.
Centralized light-source optical access network based on polarization multiplexing.
Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José
2010-03-01
This paper presents and demonstrates a centralized light source optical access network based on optical polarization multiplexing technique. By using two optical sources emitting light orthogonally polarized in the Central Node for downstream and upstream operations, the Remote Node is kept source-free. EVM values below telecommunication standard requirements have been measured experimentally when bidirectional digital signals have been transmitted over 10 km of SMF employing subcarrier multiplexing technique in the electrical domain.
Mitosis in Barbulanympha. I. Spindle structure, formation, and kinetochore engagement
1978-01-01
Successful culture of the obligatorily anaerobic symbionts residing in the hindgut of the wood-eating cockroach Cryptocercus punctulatus now permits continuous observation of mitosis in individual Barbulanympha cells. In Part I of this two-part paper, we report methods for culture of the protozoa, preparation of microscope slide cultures in which Barbulanympha survived and divided for up to 3 days, and an optical arrangement which permits observation and through-focus photographic recording of dividing cells, sequentially in differential interference contrast and rectified polarized light microscopy. We describe the following prophase events and structures: development of the astral rays and large extranuclear central spindle from the tips of the elongate-centrioles; the fine structure of spindle fibers and astral rays which were deduced in vivo from polarized light microscopy and seen as a particular array of microtubules in thin-section electron micrographs; formation of chromosomal spindle fibers by dynamic engagement of astral rays to the kinetochores embedded in the persistent nuclear envelope; and repetitive shortening of chromosomal spindle fibers which appear to hoist the nucleus to the spindle surface, cyclically jostle the kinetochores within the nuclear envelope, and churn the prophase chromosomes. The observations described here and in Part II have implications both for the evolution of mitosis and for understanding the mitotic process generally. PMID:681451
Morphology of the Vestibular Utricule in Toadfish, Opsanus Tau
NASA Technical Reports Server (NTRS)
Bass, L.; Smith, J.; Twombly, A.; Boyle, Richard; Varelas, Ehsanian J.; Johanson, C.
2003-01-01
The uticle is an otolith organ in the vertebrate inner ear that provides gravitoinertial acceleration information into the vestibular reflex pathways. The aim of the present study was to provide an anatomical description of this structure in the adult oyster toadfish, and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning electron and transmission electron microscopy were applied to visualize the sensory epithelium and its neural innervation. Electrophysiological techniques were used to identify utricular afferents by their response to translation stimuli. Similar to nerve afferents supplying the semicircular canals and lagena, utricular afferents commonly exhibit a short-latency increase of firing rate in response to electrical activation of the central efferent pathway. Afferents were labeled with biocytin either intraaxonally or with extracellular bulk deposits. Light microscope images of serial thick sections were used to make three-dimensional reconstructions of individual labeled afferents to identify the dendritic morphology with respect to epithelial location. Scanning electron microscopy was used to visualize the surface of the otolith mass facing the otolith membrane, and the hair cell polarization patterns of strioler and extrastriolar regions. Transmission electron micrographs of serial thin sections were compiled to create a three-dimensional reconstruction of the labeled afferent over a segment of its dendritic field and to examine the hair cell-afferent synaptic contacts.
NASA Astrophysics Data System (ADS)
Bondareva, A. P.; Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Starikov, S. N.
Scheme of optical image encryption with digital information input and dynamic encryption key based on two liquid crystal spatial light modulators and operating with spatially-incoherent monochromatic illumination is experimentally implemented. Results of experiments on images optical encryption and numerical decryption are presented. Satisfactory decryption error of 0.20÷0.27 is achieved.
Stochastic digital holography for visualizing inside strongly refracting transparent objects.
Desse, Jean-Michel; Picart, Pascal
2015-01-01
This paper presents a digital holographic method to visualize and measure refractive index variations, convection currents, or thermal gradients, occurring inside a transparent and refracting object. The proof of principle is provided through the visualization of refractive index variation inside a lighting bulb. Comparison with transmission and reflection holography is also provided. A very good agreement is obtained, thus validating the proposed approach.
Color reproduction with a smartphone
NASA Astrophysics Data System (ADS)
Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund
2013-10-01
The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition and understand how colors are made on digital displays.
Post Your Digital Photos Online: Save Hard-Drive Space and Share Your Snapshots
ERIC Educational Resources Information Center
Branzburg, Jeffrey
2005-01-01
Digital photographs can take up a lot of hard-drive space. In light of this fact, many people are choosing to store their photos online. There are several ways to store pictures on the Web, the most popular being online photo storage services. These services have many benefits. They offer a safe place for photos in the event that one's computer…
NASA Astrophysics Data System (ADS)
Ravindra, B.; Priya, T. G.; Amareswari, K.; Priyal, M.; Nazia, A. A.; Banerjee, D.
2013-02-01
Context. Sunspots have been observed since Galileo Galilei invented the telescope. Later, sunspot drawings have been upgraded to image storage using photographic plate in the second half of nineteenth century. These photographic images are valuable data resources for studying long-term changes in the solar magnetic field and its influence on the Earth's climate and weather. Aims: Digitized photographic plates cannot be used directly for the scientific analysis. It requires certain steps of calibration and processing before using them for extracting any useful information. The final data can be used to study solar cycle variations over several cycles. Methods: We digitized more than 100 years of white-light images stored in photographic plates and films that are available at Kodaikanal observatory starting from 1904. The images were digitized using a 4k × 4k format CCD-camera-based digitizer unit.The digitized images were calibrated for relative plate density and aligned in such a way that the solar north is in upward direction. A semi-automated sunspot detection technique was used to identify the sunspots on the digitized images. Results: In addition to describing the calibration procedure and availability of the data, we here present preliminary results on the sunspot area measurements and their variation with time. The results show that the white-light images have a uniform spatial resolution throughout the 90 years of observations. However, the contrast of the images decreases from 1968 onwards. The images are circular and do not show any major geometrical distortions. The measured monthly averaged sunspot areas closely match the Greenwich sunspot area over the four solar cycles studied here. The yearly averaged sunspot area shows a high degree of correlation with the Greenwich sunspot area. Though the monthly averaged sunspot number shows a good correlation with the monthly averaged sunspot areas, there is a slight anti-correlation between the two during solar maximum. Conclusions: The Kodaikanal data archive is hosted at http://kso.iiap.res.in. The long time sequence of the Kodaikanal white-light images provides a consistent data set for sunspot areas and other proxies. Many studies can be performed using Kodaikanal data alone without requiring intercalibration between different data sources.
Evaporation of Particle-Stabilized Emulsion Sunscreen Films.
Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A
2016-08-24
We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.
Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
NASA Astrophysics Data System (ADS)
Lamata, Lucas
2017-03-01
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.
Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
Lamata, Lucas
2017-01-01
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559
Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays.
Park, Jae-Hyeung; Lee, Sung-Keun; Jo, Na-Young; Kim, Hee-Jae; Kim, Yong-Soo; Lim, Hong-Gi
2014-10-20
We propose a method to capture light ray field of three-dimensional scene using focal plane sweeping. Multiple images are captured using a usual camera at different focal distances, spanning the three-dimensional scene. The captured images are then back-projected to four-dimensional spatio-angular space to obtain the light ray field. The obtained light ray field can be visualized either using digital processing or optical reconstruction using various three-dimensional display techniques including integral imaging, layered display, and holography.
Multispectral imaging system for contaminant detection
NASA Technical Reports Server (NTRS)
Poole, Gavin H. (Inventor)
2003-01-01
An automated inspection system for detecting digestive contaminants on food items as they are being processed for consumption includes a conveyor for transporting the food items, a light sealed enclosure which surrounds a portion of the conveyor, with a light source and a multispectral or hyperspectral digital imaging camera disposed within the enclosure. Operation of the conveyor, light source and camera are controlled by a central computer unit. Light reflected by the food items within the enclosure is detected in predetermined wavelength bands, and detected intensity values are analyzed to detect the presence of digestive contamination.
Baker, Stokes S.; Vidican, Cleo B.; Cameron, David S.; Greib, Haittam G.; Jarocki, Christine C.; Setaputri, Andres W.; Spicuzza, Christopher H.; Burr, Aaron A.; Waqas, Meriam A.; Tolbert, Danzell A.
2012-01-01
Background and aims Studies have shown that levels of green fluorescent protein (GFP) leaf surface fluorescence are directly proportional to GFP soluble protein concentration in transgenic plants. However, instruments that measure GFP surface fluorescence are expensive. The goal of this investigation was to develop techniques with consumer digital cameras to analyse GFP surface fluorescence in transgenic plants. Methodology Inexpensive filter cubes containing machine vision dichroic filters and illuminated with blue light-emitting diodes (LED) were designed to attach to digital single-lens reflex (SLR) camera macro lenses. The apparatus was tested on purified enhanced GFP, and on wild-type and GFP-expressing arabidopsis grown autotrophically and heterotrophically. Principal findings Spectrum analysis showed that the apparatus illuminates specimens with wavelengths between ∼450 and ∼500 nm, and detects fluorescence between ∼510 and ∼595 nm. Epifluorescent photographs taken with SLR digital cameras were able to detect red-shifted GFP fluorescence in Arabidopsis thaliana leaves and cotyledons of pot-grown plants, as well as roots, hypocotyls and cotyledons of etiolated and light-grown plants grown heterotrophically. Green fluorescent protein fluorescence was detected primarily in the green channel of the raw image files. Studies with purified GFP produced linear responses to both protein surface density and exposure time (H0: β (slope) = 0 mean counts per pixel (ng s mm−2)−1, r2 > 0.994, n = 31, P < 1.75 × 10−29). Conclusions Epifluorescent digital photographs taken with complementary metal-oxide-semiconductor and charge-coupled device SLR cameras can be used to analyse red-shifted GFP surface fluorescence using visible blue light. This detection device can be constructed with inexpensive commercially available materials, thus increasing the accessibility of whole-organism GFP expression analysis to research laboratories and teaching institutions with small budgets. PMID:22479674
Developing a denoising filter for electron microscopy and tomography data in the cloud.
Starosolski, Zbigniew; Szczepanski, Marek; Wahle, Manuel; Rusu, Mirabela; Wriggers, Willy
2012-09-01
The low radiation conditions and the predominantly phase-object image formation of cryo-electron microscopy (cryo-EM) result in extremely high noise levels and low contrast in the recorded micrographs. The process of single particle or tomographic 3D reconstruction does not completely eliminate this noise and is even capable of introducing new sources of noise during alignment or when correcting for instrument parameters. The recently developed Digital Paths Supervised Variance (DPSV) denoising filter uses local variance information to control regional noise in a robust and adaptive manner. The performance of the DPSV filter was evaluated in this review qualitatively and quantitatively using simulated and experimental data from cryo-EM and tomography in two and three dimensions. We also assessed the benefit of filtering experimental reconstructions for visualization purposes and for enhancing the accuracy of feature detection. The DPSV filter eliminates high-frequency noise artifacts (density gaps), which would normally preclude the accurate segmentation of tomography reconstructions or the detection of alpha-helices in single-particle reconstructions. This collaborative software development project was carried out entirely by virtual interactions among the authors using publicly available development and file sharing tools.
High-resolution stress measurements for microsystem and semiconductor applications
NASA Astrophysics Data System (ADS)
Vogel, Dietmar; Keller, Juergen; Michel, Bernd
2006-04-01
Research results obtained for local stress determination on micro and nanotechnology components are summarized. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.
FIB-based measurement of local residual stresses on microsystems
NASA Astrophysics Data System (ADS)
Vogel, Dietmar; Sabate, Neus; Gollhardt, Astrid; Keller, Juergen; Auersperg, Juergen; Michel, Bernd
2006-03-01
The paper comprises research results obtained for stress determination on micro and nanotechnology components. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.
Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, S.; Chi, M.; Belianinov, A.
Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. In this paper, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO 3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in naturemore » and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. Finally, however, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.« less
Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas
2013-01-01
Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.
Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas
2013-01-01
Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. PMID:23766941
Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography
Jesse, S.; Chi, M.; Belianinov, A.; ...
2016-05-23
Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. In this paper, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO 3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in naturemore » and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. Finally, however, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.« less
Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography
Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.
2016-01-01
Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy. PMID:27211523
Longo, Caterina; Ragazzi, Moira; Castagnetti, Fabio; Gardini, Stefano; Palmieri, Tamara; Lallas, Aimilios; Moscarella, Elvira; Piana, Simonetta; Pellacani, Giovanni; Zalaudek, Iris; Argenziano, Giuseppe
2013-01-01
Mohs micrographic surgery can be employed in recurrent basal cell carcinoma, although it is a time-consuming technique. Recently, ex vivo fluorescence confocal microscopy (FCM) has been employed to obtain a fast assessment of tumor margins at the bedside. In our case we successfully employed ex vivo FCM to assess the tumor margins and we treated the persistent tumor with intensity-modulated radiation therapy. Our case demonstrates that a multidisciplinary approach is very efficient in managing complex and recurrent tumors and highlights the benefits of FCM as a new technique that can be used in the surgical theater to speed up the entire procedure.
Optical Coherence Tomography and Its Role in Mohs Micrographic Surgery: A Case Report
Chan, C. Stanley; Rohrer, Thomas E.
2012-01-01
Optical coherence tomography (OCT) is an imaging technology with the potential to provide high-resolution images of the skin non-invasively. With this device, it is possible to identify a host of skin structures including tumors. In this case report, we demonstrate the use of an OCT device in delineating a lateral tumor margin of an ill-defined basal cell carcinoma prior to Mohs micrographic surgery. Following surgery, the OCT images are compared to histologic sections to confirm their accuracy. OCT technology has the potential to be a vital tool for dermatologists and particularly Mohs surgeons in identifying tumor margins and potentially reducing the number of invasive procedures needed. PMID:23341806
Enhancing micrographs obtained with a scanning acoustic microscope using false-color encoding
NASA Astrophysics Data System (ADS)
Hammer, R.; Hollis, R. L.
1982-04-01
The periodic signal variations observed in reflection acoustic microscopy when lens-to-sample spacing is changed lead to reversals in image contrast. This contrast mechanism can be described by a V(Z) function, where V is the transducer voltage and Z the lens-to-sample spacing. In this work we show how by obtaining V(Z) curves from each plane of a complex sample, judicious choices of focal positions can be made to optimize signals from planes of interest, which allows color encoding of the image from each plane in an overlay image. We present false-color micrographs obtained in this way, along with A scans and V(Z) curves to demonstrate the technique.
Note: Suppression of kHz-frequency switching noise in digital micro-mirror devices
NASA Astrophysics Data System (ADS)
Hueck, Klaus; Mazurenko, Anton; Luick, Niclas; Lompe, Thomas; Moritz, Henning
2017-01-01
High resolution digital micro-mirror devices (DMDs) make it possible to produce nearly arbitrary light fields with high accuracy, reproducibility, and low optical aberrations. However, using these devices to trap and manipulate ultracold atomic systems for, e.g., quantum simulation is often complicated by the presence of kHz-frequency switching noise. Here we demonstrate a simple hardware extension that solves this problem and makes it possible to produce truly static light fields. This modification leads to a 47 fold increase in the time that we can hold ultracold 6Li atoms in a dipole potential created with the DMD. Finally, we provide reliable and user friendly APIs written in Matlab and Python to control the DMD.
Single chip lidar with discrete beam steering by digital micromirror device.
Smith, Braden; Hellman, Brandon; Gin, Adley; Espinoza, Alonzo; Takashima, Yuzuru
2017-06-26
A novel method of beam steering enables a large field of view and reliable single chip light detection and ranging (lidar) by utilizing a mass-produced digital micromirror device (DMD). Using a short pulsed laser, the micromirrors' rotation is frozen in mid-transition, which forms a programmable blazed grating. The blazed grating efficiently redistributes the light to a single diffraction order, among several. We demonstrated time of flight measurements for five discrete angles using this beam steering method with a nano second 905nm laser and Si avalanche diode. A distance accuracy of < 1 cm over a 1 m distance range, a 48° full field of view, and a measurement rate of 3.34k points/s is demonstrated.
Chen, Xiao; Yan, Bin-bin; Song, Fei-jun; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal
2012-10-20
A digital micromirror device (DMD) is a kind of widely used spatial light modulator. We apply DMD as wavelength selector in tunable fiber lasers. Based on the two-dimensional diffraction theory, the diffraction of DMD and its effect on properties of fiber laser parameters are analyzed in detail. The theoretical results show that the diffraction efficiency is strongly dependent upon the angle of incident light and the pixel spacing of DMD. Compared with the other models of DMDs, the 0.55 in. DMD grating is an approximate blazed state in our configuration, which makes most of the diffracted radiation concentrated into one order. It is therefore a better choice to improve the stability and reliability of tunable fiber laser systems.
Spectrally resolved digital holography using a white light LED
NASA Astrophysics Data System (ADS)
Claus, D.; Pedrini, G.; Buchta, D.; Osten, W.
2017-06-01
This paper introduces the concept of spectrally resolved digital holography. The measurement principle and the analysis of the data will be discussed in detail. The usefulness of spectrally resolved digital holography is demonstrated for colour imaging and optical metrology with regards to the recovery of modulus information and phase information, respectively. The phase information will be used to measure the shape of an object via the application of the dual wavelength method. Based on the large degree of data available, multiple speckle de-correlated dual wavelength phase maps can be obtained, which when averaged result in a signal to noise ratio improvement.
Generation of high-dynamic range image from digital photo
NASA Astrophysics Data System (ADS)
Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han
2016-10-01
A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.
NASA Astrophysics Data System (ADS)
Dawson, P.; Gage, J.; Takatsuka, M.; Goyette, S.
2009-02-01
To compete with other digital images, holograms must go beyond the current range of source-image types, such as sequences of photographs, laser scans, and 3D computer graphics (CG) scenes made with software designed for other applications. This project develops a set of innovative techniques for creating 3D digital content specifically for digital holograms, with virtual tools which enable the direct hand-crafting of subjects, mark by mark, analogous to Michelangelo's practice in drawing, painting and sculpture. The haptic device, the Phantom Premium 1.5 is used to draw against three-dimensional laser- scan templates of Michelangelo's sculpture placed within the holographic viewing volume.
Modeling of digital information optical encryption system with spatially incoherent illumination
NASA Astrophysics Data System (ADS)
Bondareva, Alyona P.; Cheremkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.; Starikov, Sergey N.
2015-10-01
State of the art micromirror DMD spatial light modulators (SLM) offer unprecedented framerate up to 30000 frames per second. This, in conjunction with high speed digital camera, should allow to build high speed optical encryption system. Results of modeling of digital information optical encryption system with spatially incoherent illumination are presented. Input information is displayed with first SLM, encryption element - with second SLM. Factors taken into account are: resolution of SLMs and camera, holograms reconstruction noise, camera noise and signal sampling. Results of numerical simulation demonstrate high speed (several gigabytes per second), low bit error rate and high crypto-strength.
[Clinical pathology on the verge of virtual microscopy].
Tolonen, Teemu; Näpänkangas, Juha; Isola, Jorma
2015-01-01
For more than 100 years, examinations of pathology specimens have relied on the use of the light microscope. The technological progress of the last few years is enabling the digitizing of histologic specimen slides and application of the virtual microscope in diagnostics. Virtual microscopy will facilitate consultation possibilities, and digital image analysis serves to enhance the level of diagnostics. Organizing and monitoring clinicopathological meetings will become easier. Digital archive of histologic specimens and the virtual microscopy network are expected to benefit training and research as well, particularly what applies to the Finnish biobank network which is currently being established.
Using a Computer to Monitor Temperature and Light.
ERIC Educational Resources Information Center
Watson, J. M.
1984-01-01
A 16K Sinclair ZX81 microcomputer equipped with an analog to digital board and a Sinclair printer was used to capture data continuously from a total of eight temperature or light sensors. Describes the construction of the peripherals, explains how to connect them together, and provides a program to run the ZX81. (Author/JN)
Continuous-Integration Laser Energy Lidar Monitor
NASA Technical Reports Server (NTRS)
Karsh, Jeremy
2011-01-01
This circuit design implements an integrator intended to allow digitization of the energy output of a pulsed laser, or the energy of a received pulse of laser light. It integrates the output of a detector upon which the laser light is incident. The integration is performed constantly, either by means of an active integrator, or by passive components.
Light Microscopy Module (LMM)-Emulator
NASA Technical Reports Server (NTRS)
Levine, Howard G.; Smith, Trent M.; Richards, Stephanie E.
2016-01-01
The Light Microscopy Module (LMM) is a microscope facility developed at Glenn Research Center (GRC) that provides researchers with powerful imaging capability onboard the International Space Station (ISS). LMM has the ability to have its hardware recongured on-orbit to accommodate a wide variety of investigations, with the capability of remotely acquiring and downloading digital images across multiple levels of magnication.
A compact disc under skimming light rays
NASA Astrophysics Data System (ADS)
De Luca, R.; Di Mauro, M.; Fiore, O.; Naddeo, A.
2018-03-01
The optical properties of a compact disc (CD) under "skimming" light rays have been analyzed. We have noticed that a clear green line can be detected when the disc is irradiated with light rays coming from a lamp in such a way that only those skimming the CD, held horizontally, are selected. We provide a physical interpretation of this phenomenon on the basis of elementary optics concepts. Extension of these concepts to digital versatile discs (DVDs) is given.
LEDs Illuminate Bulbs for Better Sleep, Wake Cycles
NASA Technical Reports Server (NTRS)
2015-01-01
Life on the International Space Station (ISS) wreaks havoc on an astronaut’s biological rhythms, and one way NASA mitigates the problem is through the use of LED lighting to alternately stimulate energy and focus and induce relaxation. Satellite Beach, Florida-based Lighting Science partnered with Kennedy Space Center to commercialize an LED system designed for the ISS, resulting in its DefinityDigital product line of light bulbs now used in numerous homes, hotel chains, and resorts.
NASA Technical Reports Server (NTRS)
Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)
2005-01-01
A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.
NASA Technical Reports Server (NTRS)
Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)
2005-01-01
A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.
Takanashi, N.; Doi, M.; Yasuda, N.; ...
2016-12-06
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takanashi, N.; Doi, M.; Yasuda, N.
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
Jeon, Jin-Hun; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Woong-Chul
2014-12-01
This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by 10°-20° and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (α=.05). Precision discrepancies for the canine, premolar, and molar were 3.7 µm, 3.2 µm, and 7.3 µm, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were 6.2 µm, 11.2 µm, and 21.8 µm, respectively, indicating the poorest trueness for the molar (P=.007). In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.
Duangsang, Suampa; Tengtrisorn, Supaporn
2012-05-01
To determine the normal range of Central Corneal Light Reflex Ratio (CCLRR) from photographs of young adults. A digital camera equipped with a telephoto lens with a flash attachment placed directly above the lens was used to obtain corneal light reflex photographs of 104 subjects, first with the subject fixating on the lens of the camera at a distance of 43 centimeters, and then while looking past the camera to a wall at a distance of 5.4 meters. Digital images were displayed using Adobe Photoshop at a magnification of l200%. The CCLRR was the ratio of the sum of distances between the inner margin of cornea and the central corneal light reflex of each eye to the sum of horizontal corneal diameter of each eye. Measurements were made by three technicians on all subjects, and repeated on a 16% (n=17) subsample. Mean ratios (standard deviation-SD) from near/distance measurements were 0.468 (0.012)/0.452 (0.019). Limits of the normal range, with 95% certainty, were 0.448 and 0.488 for near measurements and 0.419 and 0.484 for distance measurements. Lower and upper indeterminate zones were 0.440-0.447 and 0.489-0.497 for near measurements and 0.406-0.418 and 0.485-0.497 for distance measurements. More extreme values can be considered as abnormal. The reproducibility and repeatability of the test was good. This method is easy to perform and has potential for use in strabismus screening by paramedical personnel.
X-ray imaging using digital cameras
NASA Astrophysics Data System (ADS)
Winch, Nicola M.; Edgar, Andrew
2012-03-01
The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.
Single-shot digital holography by use of the fractional Talbot effect.
Martínez-León, Lluís; Araiza-E, María; Javidi, Bahram; Andrés, Pedro; Climent, Vicent; Lancis, Jesús; Tajahuerce, Enrique
2009-07-20
We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally reconstructed from the digital hologram. Both computer simulations and experimental results are presented.
An optical/digital processor - Hardware and applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Sterling, W. M.
1975-01-01
A real-time two-dimensional hybrid processor consisting of a coherent optical system, an optical/digital interface, and a PDP-11/15 control minicomputer is described. The input electrical-to-optical transducer is an electron-beam addressed potassium dideuterium phosphate (KD2PO4) light valve. The requirements and hardware for the output optical-to-digital interface, which is constructed from modular computer building blocks, are presented. Initial experimental results demonstrating the operation of this hybrid processor in phased-array radar data processing, synthetic-aperture image correlation, and text correlation are included. The applications chosen emphasize the role of the interface in the analysis of data from an optical processor and possible extensions to the digital feedback control of an optical processor.
Reflective Light Modulation by Cephalopods in Shallow Nearshore Habitats
2008-01-01
changeable camouflage patterns known in biology. Fish and insects are studied comparatively. APPROACH High-resolution digital still images (Canon EOS 1Ds...quantified in the digital images. HDTV video is used to follow foraging cephalopods and fish to document (a) speed of body patterning changes and (b...images of cephalopods and fishes . Briefly, the breakdown is as follows. (1) Izmir, Turkey, March 2008, to photograph the common European cuttlefish
Huang, Shih-Hao; Wei, Lu-Shiuan; Chu, Hsiao-Tzu; Jiang, Yeu-Long
2013-01-01
This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR). PMID:23959236
Huang, Shih-Hao; Wei, Lu-Shiuan; Chu, Hsiao-Tzu; Jiang, Yeu-Long
2013-08-16
This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR).
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
NASA Astrophysics Data System (ADS)
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.
2015-11-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
NASA Astrophysics Data System (ADS)
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.
2015-03-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; Muhlheim, Michael David; Wood, Richard
The US Nuclear Regulatory Commission (NRC) is initiating a new rulemaking project to develop a digital system common-cause failure (CCF) rule. This rulemaking will review and modify or affirm the NRC's current digital system CCF policy as discussed in the Staff Requirements Memorandum to the Secretary of the Commission, Office of the NRC (SECY) 93-087, Policy, Technical, and Licensing Issues Pertaining to Evolutionary and Advanced Light Water Reactor (ALWR) Designs, and Branch Technical Position (BTP) 7-19, Guidance on Evaluation of Defense-in-Depth and Diversity in Digital Computer-Based Instrumentation and Control Systems, as well as Chapter 7, Instrumentation and Controls, in NRCmore » Regulatory Guide (NUREG)-0800, Standard Review Plan for Review of Safety Analysis Reports for Nuclear Power Plants (ML033580677). The Oak Ridge National Laboratory (ORNL) is providing technical support to the NRC staff on the CCF rulemaking, and this report is one of several providing the technical basis to inform NRC staff members. For the task described in this report, ORNL examined instrumentation and controls (I&C) technology implementations in nuclear power plants in the light of current CCF guidance. The intent was to assess whether the current position on CCF is adequate given the evolutions in digital safety system implementations and, if gaps in the guidance were found, to provide recommendations as to how these gaps could be closed.« less
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.
Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K
2015-01-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
NASA Astrophysics Data System (ADS)
Grindlay, J.; Tang, S.; Simcoe, R.; Laycock, S.; Los, E.; Mink, D.; Doane, A.; Champine, G.
2009-08-01
The temporal Universe is now possible to study on previously inaccessible timescales of days to decades, over a full century, with the planned full-digitization of the Harvard plate collection. The Digital Access to a Sky Century @ Harvard (DASCH) project has developed the world's highest-speed precision plate scanner and the required software to digitize the ˜500,000 glass photographic plates (mostly 20 x 25~cm) that record images of the full sky taken by some 20 telescopes in both hemispheres over the period 1880 - 1985. These provide ˜500-1000 measures of any object brighter than the plate limit (typically B ˜14 - 17) with photometric accuracy from the digital image typically Δm ˜0.10 - 0.15 mag, with the presently developed photometry pipeline and spatially-dependent calibration (using the Hubble Guide Star Catalog) for each plate. We provide an overview of DASCH, the processing, and example light curves that illustrate the power of this unique dataset and resource. Production scanning and serving on-line the entire ˜1 PB database (both images and derived light curves) on spinning disk could be completed within ˜3 - 5 y after funding (for scanner operations and database construction) is obtained.
NASA Astrophysics Data System (ADS)
Pospisil, J.; Jakubik, P.; Machala, L.
2005-11-01
This article reports the suggestion, realization and verification of the newly developed measuring means of the noiseless and locally shift-invariant modulation transfer function (MTF) of a digital video camera in a usual incoherent visible region of optical intensity, especially of its combined imaging, detection, sampling and digitizing steps which are influenced by the additive and spatially discrete photodetector, aliasing and quantization noises. Such means relates to the still camera automatic working regime and static two-dimensional spatially continuous light-reflection random target of white-noise property. The introduced theoretical reason for such a random-target method is also performed under exploitation of the proposed simulation model of the linear optical intensity response and possibility to express the resultant MTF by a normalized and smoothed rate of the ascertainable output and input power spectral densities. The random-target and resultant image-data were obtained and processed by means of a processing and evaluational PC with computation programs developed on the basis of MATLAB 6.5E The present examples of results and other obtained results of the performed measurements demonstrate the sufficient repeatability and acceptability of the described method for comparative evaluations of the performance of digital video cameras under various conditions.
Yoon, Hyung-In; Yoo, Min-Jeong; Park, Eun-Jin
2017-12-01
The purpose of this study was to evaluate the in vitro validity of quantitative light-induced fluorescence-digital (QLF-D) and laser fluorescence (DIAGNOdent) for assessing proximal caries in extracted premolars, using digital radiography as reference method. A total of 102 extracted premolars with similar lengths and shapes were used. A single operator conducted all the examinations using three different detection methods (bitewing radiography, QLF-D, and DIAGNOdent). The bitewing x-ray scale, QLF-D fluorescence loss (ΔF), and DIAGNOdent peak readings were compared and statistically analyzed. Each method showed an excellent reliability. The correlation coefficient between bitewing radiography and QLF-D, DIAGNOdent were -0.644 and 0.448, respectively, while the value between QLF-D and DIAGNOdent was -0.382. The kappa statistics for bitewing radiography and QLF-D had a higher diagnosis consensus than those for bitewing radiography and DIAGNOdent. The QLF-D was moderately to highly accurate (AUC = 0.753 - 0.908), while DIAGNOdent was moderately to less accurate (AUC = 0.622 - 0.784). All detection methods showed statistically significant correlation and high correlation between the bitewing radiography and QLF-D. QLF-D was found to be a valid and reliable alternative diagnostic method to digital bitewing radiography for in vitro detection of proximal caries.
Mano, Shoji; Nakamura, Takanori; Kondo, Maki; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nagatani, Akira; Nishimura, Mikio
2014-01-01
The Plant Organelles Database 2 (PODB2), which was first launched in 2006 as PODB, provides static image and movie data of plant organelles, protocols for plant organelle research and external links to relevant websites. PODB2 has facilitated plant organellar research and the understanding of plant organelle dynamics. To provide comprehensive information on plant organelles in more detail, PODB2 was updated to PODB3 (http://podb.nibb.ac.jp/Organellome/). PODB3 contains two additional components: the electron micrograph database and the perceptive organelles database. Through the electron micrograph database, users can examine the subcellular and/or suborganellar structures in various organs of wild-type and mutant plants. The perceptive organelles database provides information on organelle dynamics in response to external stimuli. In addition to the extra components, the user interface for access has been enhanced in PODB3. The data in PODB3 are directly submitted by plant researchers and can be freely downloaded for use in further analysis. PODB3 contains all the information included in PODB2, and the volume of data and protocols deposited in PODB3 continue to grow steadily. We welcome contributions of data from all plant researchers to enhance the utility and comprehensiveness of PODB3.
Cellular morphometry of the bronchi of human and dog lungs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, E.S.
1991-03-01
One hundred and thirty-one bronchial samples from 62 patients have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. Complete patient records including occupational and smoking histories, as well as possible exposure to radon, are obtained. In addition, one hundred and sixty-two mongol dog bronchi dissected from different lobes of 23 dog lungs have also been similarly prepared. Ninety-four human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 532 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurementmore » of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 240 micrographs of dog epithelium from 31 bronchial samples have been entered into COSAS. We have, using the COSAS planimetry program, established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the epithelial cell types of dog bronchi. The data are being used to develop weighting factors for dosimetry and radon risk analysis. 26 refs., 7 figs., 4 tabs.« less
Zhou, Z X; Wei, D F; Guan, Y; Zheng, A N; Zhong, J J
2010-03-01
The purpose of this study was to provide micrographic evidences for the damaged membrane structure and intracellular structure change of Escherichia coli strain 8099, induced by polyhexamethylene guanidine hydrochloride (PHMG). The bactericidal effect of PHMG on E. coli was investigated based on beta-galactosidase activity assay, fluorescein-5-isothiocyanate confocal laser scanning microscopy, field emission scanning electron microscopy and transmission electron microscopy. The results revealed that a low dose (13 microg ml(-1)) of PHMG slightly damaged the outer membrane structure of the treated bacteria and increased the permeability of the cytoplasmic membrane, while no significant damage was observed to the morphological structure of the cells. A high dose (23 microg ml(-1)) of PHMG collapsed the outer membrane structure, led to the formation of a local membrane pore across the membrane and badly damaged the internal structure of the cells. Subsequently, intracellular components were leaked followed by cell inactivation. Dose-dependent membrane disruption was the main bactericidal mechanism of PHMG. The formation of the local membrane pores was probable after exposure to a high dose (23 microg ml(-1)) of PHMG. Micrographic evidences were provided about the damaged membrane structure and intracellular structure change of E. coli. The presented information helps understand the bactericidal mechanism of PHMG by membrane damage.
Basal Cell Carcinoma of the Dorsal Foot: An Update and Comprehensive Review of the Literature.
Loh, Tiffany Y; Rubin, Ashley G; Jiang, Shang I Brian
2017-01-01
Ultraviolet radiation is a well-known risk factor for basal cell carcinoma (BCC). Therefore, the high incidence of BCCs in sun-exposed areas such as the head and neck is unsurprising. However, unexpectedly, BCCs on the sun-protected dorsal foot have also been reported, and tumor occurrence here suggests that other factors besides ultraviolet radiation may play a role in BCC pathogenesis. Because only few dorsal foot BCCs have been reported, data on their clinical features and management are limited. To perform an updated review of the literature on clinical characteristics and treatment of dorsal foot BCCs. We conducted a comprehensive literature review by searching the PubMed database with the key phrases "basal cell carcinoma dorsal foot," "basal cell carcinoma foot," and "basal cell carcinoma toe." We identified 20 cases of dorsal foot BCCs in the literature, 17 of which had sufficient data for analysis. Only 1 case was treated with Mohs micrographic surgery. We present 8 additional cases of dorsal foot BCCs treated with Mohs micrographic surgery. Basal cell carcinomas on the dorsal foot are rare, and potential risk factors include Caucasian descent and personal history of skin cancer. Mohs micrographic surgery seems to be an effective treatment option.
LCD-based digital eyeglass for modulating spatial-angular information.
Bian, Zichao; Liao, Jun; Guo, Kaikai; Heng, Xin; Zheng, Guoan
2015-05-04
Using programmable aperture to modulate spatial-angular information of light field is well-known in computational photography and microscopy. Inspired by this concept, we report a digital eyeglass design that adaptively modulates light field entering human eyes. The main hardware includes a transparent liquid crystal display (LCD) and a mini-camera. The device analyzes the spatial-angular information of the camera image in real time and subsequently sends a command to form a certain pattern on the LCD. We show that, the eyeglass prototype can adaptively reduce light transmission from bright sources by ~80% and retain transparency to other dim objects meanwhile. One application of the reported device is to reduce discomforting glare caused by vehicle headlamps. To this end, we report the preliminary result of using the reported device in a road test. The reported device may also find applications in military operations (sniper scope), laser counter measure, STEM education, and enhancing visual contrast for visually impaired patients and elderly people with low vision.
Dean, David; Jonathan, Wallace; Siblani, Ali; Wang, Martha O; Kim, Kyobum; Mikos, Antonios G; Fisher, John P
2012-03-01
Highly accurate rendering of the external and internal geometry of bone tissue engineering scaffolds effects fit at the defect site, loading of internal pore spaces with cells, bioreactor-delivered nutrient and growth factor circulation, and scaffold resorption. It may be necessary to render resorbable polymer scaffolds with 50 μm or less accuracy to achieve these goals. This level of accuracy is available using Continuous Digital Light processing (cDLP) which utilizes a DLP(®) (Texas Instruments, Dallas, TX) chip. One such additive manufacturing device is the envisionTEC (Ferndale, MI) Perfactory(®). To use cDLP we integrate a photo-crosslinkable polymer, a photo-initiator, and a biocompatible dye. The dye attenuates light, thereby limiting the depth of polymerization. In this study we fabricated scaffolds using the well-studied resorbable polymer, poly(propylene fumarate) (PPF), titanium dioxide (TiO(2)) as a dye, Irgacure(®) 819 (BASF [Ciba], Florham Park, NJ) as an initiator, and diethyl fumarate as a solvent to control viscosity.
Superpixel-based spatial amplitude and phase modulation using a digital micromirror device.
Goorden, Sebastianus A; Bertolotti, Jacopo; Mosk, Allard P
2014-07-28
We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.
DMDs for multi-object near-infrared spectrographs in astronomy
NASA Astrophysics Data System (ADS)
Smee, Stephen A.; Barkhouser, Robert; Hope, Stephen; Conley, Devin; Gray, Aidan; Hope, Gavin; Robberto, Massimo
2018-02-01
The Digital Micromirror Device (DMD), typically used in projection screen technology, has utility in instrumentation for astronomy as a digitally programmable slit in a spectrograph. When placed at an imaging focal plane the device can be used to selectively direct light from astronomical targets into the optical path of a spectrograph, while at the same time directing the remaining light into an imaging camera, which can be used for slit alignment, science imaging, or both. To date the use of DMDs in astronomy has been limited, especially for instruments that operate in the near infrared (1 - 2.5 μm). This limitation is due in part to a host of technical challenges with respect to DMDs that, to date, have not been thoroughly explored. Those challenges include operation at cryogenic temperature, control electronics that facilitate DMD use at these temperatures, window coatings properly coated for the near infrared bandpass, and scattered light. This paper discusses these technical challenges and presents progress towards understanding and mitigating them.
A Photometric Technique for Determining Fluid Concentration using Consumer-Grade Hardware
NASA Technical Reports Server (NTRS)
Leslie, F.; Ramachandran, N.
1999-01-01
In support of a separate study to produce an exponential concentration gradient in a magnetic fluid, a noninvasive technique for determining, species concentration from off-the-shelf hardware has been developed. The approach uses a backlighted fluid test cell photographed with a commercial digital camcorder. Because the light extinction coefficient is wavelength dependent, tests were conducted to determine the best filter color to use, although some guidance was also provided using an absorption spectrophotometer. With the appropriate filter in place, the provide attenuation of the light passing, through the test cell was captured by the camcorder. The digital image was analyzed for intensity using, software from Scion Image Corp. downloaded from the Internet. The analysis provides a two-dimensional array of concentration with an average error of 0.0095 ml/ml. This technique is superior to invasive techniques, which require extraction of a sample that disturbs the concentration distribution in the test cell. Refinements of this technique using a true monochromatic laser light Source are also discussed.
Electronic method for autofluorography of macromolecules on two-D matrices
Davidson, Jackson B.; Case, Arthur L.
1983-01-01
A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix, such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100-1000 times.
Laser-based volumetric flow visualization by digital color imaging of a spectrally coded volume.
McGregor, T J; Spence, D J; Coutts, D W
2008-01-01
We present the framework for volumetric laser-based flow visualization instrumentation using a spectrally coded volume to achieve three-component three-dimensional particle velocimetry. By delivering light from a frequency doubled Nd:YAG laser with an optical fiber, we exploit stimulated Raman scattering within the fiber to generate a continuum spanning the visible spectrum from 500 to 850 nm. We shape and disperse the continuum light to illuminate a measurement volume of 20 x 10 x 4 mm(3), in which light sheets of differing spectral properties overlap to form an unambiguous color variation along the depth direction. Using a digital color camera we obtain images of particle fields in this volume. We extract the full spatial distribution of particles with depth inferred from particle color. This paper provides a proof of principle of this instrument, examining the spatial distribution of a static field and a spray field of water droplets ejected by the nozzle of an airbrush.
Objective assessment in digital images of skin erythema caused by radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsubara, H., E-mail: matubara@nirs.go.jp; Matsufuji, N.; Tsuji, H.
Purpose: Skin toxicity caused by radiotherapy has been visually classified into discrete grades. The present study proposes an objective and continuous assessment method of skin erythema in digital images taken under arbitrary lighting conditions, which is the case for most clinical environments. The purpose of this paper is to show the feasibility of the proposed method. Methods: Clinical data were gathered from six patients who received carbon beam therapy for lung cancer. Skin condition was recorded using an ordinary compact digital camera under unfixed lighting conditions; a laser Doppler flowmeter was used to measure blood flow in the skin. Themore » photos and measurements were taken at 3 h, 30, and 90 days after irradiation. Images were decomposed into hemoglobin and melanin colors using independent component analysis. Pixel values in hemoglobin color images were compared with skin dose and skin blood flow. The uncertainty of the practical photographic method was also studied in nonclinical experiments. Results: The clinical data showed good linearity between skin dose, skin blood flow, and pixel value in the hemoglobin color images; their correlation coefficients were larger than 0.7. It was deduced from the nonclinical that the uncertainty due to the proposed method with photography was 15%; such an uncertainty was not critical for assessment of skin erythema in practical use. Conclusions: Feasibility of the proposed method for assessment of skin erythema using digital images was demonstrated. The numerical relationship obtained helped to predict skin erythema by artificial processing of skin images. Although the proposed method using photographs taken under unfixed lighting conditions increased the uncertainty of skin information in the images, it was shown to be powerful for the assessment of skin conditions because of its flexibility and adaptability.« less
Williams, Bethany Jill; Hanby, Andrew; Millican-Slater, Rebecca; Nijhawan, Anju; Verghese, Eldo; Treanor, Darren
2018-03-01
To train and individually validate a group of breast pathologists in specialty-specific digital primary diagnosis by using a novel protocol endorsed by the Royal College of Pathologists' new guideline for digital pathology. The protocol allows early exposure to live digital reporting, in a risk-mitigated environment, and focuses on patient safety and professional development. Three specialty breast pathologists completed training in the use of a digital microscopy system, and were exposed to a training set of 20 challenging cases, designed to help them identify personal digital diagnostic pitfalls. Following this, the three pathologists viewed a total of 694 live, entire breast cases. All primary diagnoses were made on digital slides, with immediate glass slide review and reconciliation before final case sign-out. There was complete clinical concordance between the glass and digital impression of the case in 98.8% of cases. Only 1.2% of cases had a clinically significant difference in diagnosis/prognosis on glass and digital slide reads. All pathologists elected to continue using the digital microscope as the standard for breast histopathology specimens, with deferral to glass for a limited number of clinical/histological scenarios as a safety net. Individual training and validation for digital primary diagnosis allows pathologists to develop competence and confidence in their digital diagnostic skills, and aids safe and responsible transition from the light microscope to the digital microscope. © 2017 John Wiley & Sons Ltd.
Shock Initiation of Thermally Expanded TATB
NASA Astrophysics Data System (ADS)
Mulford, Roberta; Swift, Damian
2011-06-01
The plastic-bonded explosive PBX-9502 undergoes unusual hysteretic thermal expansion, or ``ratchet growth'' as a consequence of the uniaxial thermal expansion of the graphitic structure of the major component, TATB explosive. Upon thermal cycling, the density of the material can be reduced by as much as 9%, resulting in a distinct increase in the shock sensitivity of the solid. Run distances to detonation have been measured in thermally expanded samples of PBX-9502, using embedded particle velocity gauges and shock tracker gauges. Uniaxial shocks were generated using a light gas gun, to provide a repeatable stimulus for initiation of detonation. We have applied a porosity model to adjust standard Pop plot data to the reduced density of our samples, to investigate whether the sensitivity of the PBX 9502 increases ideally with the decreasing density, or whether the microscopically non-uniform expansion that occurs during ``ratchet growth'' leads to abnormal sensitivity, possibly as a result of cracking or debonding from the binder, as observed in micrographs of the sample.
Anaerobic animals from an ancient, anoxic ecological niche.
Mentel, Marek; Martin, William
2010-04-06
Tiny marine animals that complete their life cycle in the total absence of light and oxygen are reported by Roberto Danovaro and colleagues in this issue of BMC Biology. These fascinating animals are new members of the phylum Loricifera and possess mitochondria that in electron micrographs look very much like hydrogenosomes, the H2-producing mitochondria found among several unicellular eukaryotic lineages. The discovery of metazoan life in a permanently anoxic and sulphidic environment provides a glimpse of what a good part of Earth's past ecology might have been like in 'Canfield oceans', before the rise of deep marine oxygen levels and the appearance of the first large animals in the fossil record roughly 550-600 million years ago. The findings underscore the evolutionary significance of anaerobic deep sea environments and the anaerobic lifestyle among mitochondrion-bearing cells. They also testify that a fuller understanding of eukaryotic and metazoan evolution will come from the study of modern anoxic and hypoxic habitats.
Anaerobic animals from an ancient, anoxic ecological niche
2010-01-01
Tiny marine animals that complete their life cycle in the total absence of light and oxygen are reported by Roberto Danovaro and colleagues in this issue of BMC Biology. These fascinating animals are new members of the phylum Loricifera and possess mitochondria that in electron micrographs look very much like hydrogenosomes, the H2-producing mitochondria found among several unicellular eukaryotic lineages. The discovery of metazoan life in a permanently anoxic and sulphidic environment provides a glimpse of what a good part of Earth's past ecology might have been like in 'Canfield oceans', before the rise of deep marine oxygen levels and the appearance of the first large animals in the fossil record roughly 550-600 million years ago. The findings underscore the evolutionary significance of anaerobic deep sea environments and the anaerobic lifestyle among mitochondrion-bearing cells. They also testify that a fuller understanding of eukaryotic and metazoan evolution will come from the study of modern anoxic and hypoxic habitats. PMID:20370917
NASA Astrophysics Data System (ADS)
Kemp, Z. D. C.
2018-04-01
Determining the phase of a wave from intensity measurements has many applications in fields such as electron microscopy, visible light optics, and medical imaging. Propagation based phase retrieval, where the phase is obtained from defocused images, has shown significant promise. There are, however, limitations in the accuracy of the retrieved phase arising from such methods. Sources of error include shot noise, image misalignment, and diffraction artifacts. We explore the use of artificial neural networks (ANNs) to improve the accuracy of propagation based phase retrieval algorithms applied to simulated intensity measurements. We employ a phase retrieval algorithm based on the transport-of-intensity equation to obtain the phase from simulated micrographs of procedurally generated specimens. We then train an ANN with pairs of retrieved and exact phases, and use the trained ANN to process a test set of retrieved phase maps. The total error in the phase is significantly reduced using this method. We also discuss a variety of potential extensions to this work.
Polishing and parboiling effect on the nutritional and technological properties of pigmented rice.
Paiva, Flávia Fernandes; Vanier, Nathan Levien; Berrios, Jose De J; Pinto, Vânia Zanella; Wood, Delilah; Williams, Tina; Pan, James; Elias, Moacir Cardoso
2016-01-15
This study aims to evaluate the effects of polishing and parboiling on proximate composition, structure, phenolic compounds, antioxidant activity, cooking time and hardness of IAC-600 black rice cultivar and MPB-10 red rice lineage. Proximate analysis and light micrographs revealed higher migration of red rice proteins than black rice proteins to the endosperm as a result of parboiling. Parboiling reduced the ash content of red rice while no difference was determined in black rice. Gelatinized starch granules from both genotypes showed similar appearance. There was a decrease in relative crystallinity on both black and red rice subjected to parboiling, which was an indicative of crystallites disruption. Polishing removed more than 90% of free phenolics for both genotypes, while parboiling allowed the partial preservation of free phenolics content in polished rice. Parboiling induced an increase in the cooking time of red rice, but a decrease in the cooking time of black rice. Copyright © 2015 Elsevier Ltd. All rights reserved.