Applied Digital Logic Exercises Using FPGAs
NASA Astrophysics Data System (ADS)
Wick, Kurt
2017-09-01
Applied Digital Logic Exercises Using FPGAs is appropriate for anyone interested in digital logic who needs to learn how to implement it through detailed exercises with state-of-the-art digital design tools and components. The book exposes readers to combinational and sequential digital logic concepts and implements them with hands-on exercises using the Verilog Hardware Description Language (HDL) and a Field Programmable Gate Arrays (FGPA) teaching board.
Logic and memory concepts for all-magnetic computing based on transverse domain walls
NASA Astrophysics Data System (ADS)
Vandermeulen, J.; Van de Wiele, B.; Dupré, L.; Van Waeyenberge, B.
2015-06-01
We introduce a non-volatile digital logic and memory concept in which the binary data is stored in the transverse magnetic domain walls present in in-plane magnetized nanowires with sufficiently small cross sectional dimensions. We assign the digital bit to the two possible orientations of the transverse domain wall. Numerical proofs-of-concept are presented for a NOT-, AND- and OR-gate, a FAN-out as well as a reading and writing device. Contrary to the chirality based vortex domain wall logic gates introduced in Omari and Hayward (2014 Phys. Rev. Appl. 2 044001), the presented concepts remain applicable when miniaturized and are driven by electrical currents, making the technology compatible with the in-plane racetrack memory concept. The individual devices can be easily combined to logic networks working with clock speeds that scale linearly with decreasing design dimensions. This opens opportunities to an all-magnetic computing technology where the digital data is stored and processed under the same magnetic representation.
A psychometric evaluation of the digital logic concept inventory
NASA Astrophysics Data System (ADS)
Herman, Geoffrey L.; Zilles, Craig; Loui, Michael C.
2014-10-01
Concept inventories hold tremendous promise for promoting the rigorous evaluation of teaching methods that might remedy common student misconceptions and promote deep learning. The measurements from concept inventories can be trusted only if the concept inventories are evaluated both by expert feedback and statistical scrutiny (psychometric evaluation). Classical Test Theory and Item Response Theory provide two psychometric frameworks for evaluating the quality of assessment tools. We discuss how these theories can be applied to assessment tools generally and then apply them to the Digital Logic Concept Inventory (DLCI). We demonstrate that the DLCI is sufficiently reliable for research purposes when used in its entirety and as a post-course assessment of students' conceptual understanding of digital logic. The DLCI can also discriminate between students across a wide range of ability levels, providing the most information about weaker students' ability levels.
ERIC Educational Resources Information Center
Alsadoon, Abeer; Prasad, P. W. C.; Beg, Azam
2017-01-01
Making the students understand the theoretical concepts of digital logic design concepts is one of the major issues faced by the academics, therefore the teachers have tried different techniques to link the theoretical information to the practical knowledge. Use of software simulations is a technique for learning and practice that can be applied…
Programmable pulse generator based on programmable logic and direct digital synthesis.
Suchenek, M; Starecki, T
2012-12-01
The paper presents a new approach of pulse generation which results in both wide range tunability and high accuracy of the output pulses. The concept is based on the use of programmable logic and direct digital synthesis. The programmable logic works as a set of programmable counters, while direct digital synthesis (DDS) as the clock source. Use of DDS as the clock source results in stability of the output pulses comparable to the stability of crystal oscillators and quasi-continuous tuning of the output frequency.
An iLab for Teaching Advanced Logic Concepts with Hardware Descriptive Languages
ERIC Educational Resources Information Center
Ayodele, Kayode P.; Inyang, Isaac A.; Kehinde, Lawrence O.
2015-01-01
One of the more interesting approaches to teaching advanced logic concepts is the use of online laboratory frameworks to provide student access to remote field-programmable devices. There is as yet, however, no conclusive evidence of the effectiveness of such an approach. This paper presents the Advanced Digital Lab, a remote laboratory based on…
The development of a digital logic concept inventory
NASA Astrophysics Data System (ADS)
Herman, Geoffrey Lindsay
Instructors in electrical and computer engineering and in computer science have developed innovative methods to teach digital logic circuits. These methods attempt to increase student learning, satisfaction, and retention. Although there are readily accessible and accepted means for measuring satisfaction and retention, there are no widely accepted means for assessing student learning. Rigorous assessment of learning is elusive because differences in topic coverage, curriculum and course goals, and exam content prevent direct comparison of two teaching methods when using tools such as final exam scores or course grades. Because of these difficulties, computing educators have issued a general call for the adoption of assessment tools to critically evaluate and compare the various teaching methods. Science, Technology, Engineering, and Mathematics (STEM) education researchers commonly measure students' conceptual learning to compare how much different pedagogies improve learning. Conceptual knowledge is often preferred because all engineering courses should teach a fundamental set of concepts even if they emphasize design or analysis to different degrees. Increasing conceptual learning is also important, because students who can organize facts and ideas within a consistent conceptual framework are able to learn new information quickly and can apply what they know in new situations. If instructors can accurately assess their students' conceptual knowledge, they can target instructional interventions to remedy common problems. To properly assess conceptual learning, several researchers have developed concept inventories (CIs) for core subjects in engineering sciences. CIs are multiple-choice assessment tools that evaluate how well a student's conceptual framework matches the accepted conceptual framework of a discipline or common faulty conceptual frameworks. We present how we created and evaluated the digital logic concept inventory (DLCI).We used a Delphi process to identify the important and difficult concepts to include on the DLCI. To discover and describe common student misconceptions, we interviewed students who had completed a digital logic course. Students vocalized their thoughts as they solved digital logic problems. We analyzed the interview data using a qualitative grounded theory approach. We have administered the DLCI at several institutions and have checked the validity, reliability, and bias of the DLCI with classical testing theory procedures. These procedures consisted of follow-up interviews with students, analysis of administration results with statistical procedures, and expert feedback. We discuss these results and present the DLCI's potential for providing a meaningful tool for comparing student learning at different institutions.
A Psychometric Evaluation of the Digital Logic Concept Inventory
ERIC Educational Resources Information Center
Herman, Geoffrey L.; Zilles, Craig; Loui, Michael C.
2014-01-01
Concept inventories hold tremendous promise for promoting the rigorous evaluation of teaching methods that might remedy common student misconceptions and promote deep learning. The measurements from concept inventories can be trusted only if the concept inventories are evaluated both by expert feedback and statistical scrutiny (psychometric…
NASA Astrophysics Data System (ADS)
Marlius; Kaniawati, I.; Feranie, S.
2018-05-01
A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.
Students' Misconceptions about Medium-Scale Integrated Circuits
ERIC Educational Resources Information Center
Herman, G. L.; Loui, M. C.; Zilles, C.
2011-01-01
To improve instruction in computer engineering and computer science, instructors must better understand how their students learn. Unfortunately, little is known about how students learn the fundamental concepts in computing. To investigate student conceptions and misconceptions about digital logic concepts, the authors conducted a qualitative…
Biomolecular logic systems: applications to biosensors and bioactuators
NASA Astrophysics Data System (ADS)
Katz, Evgeny
2014-05-01
The paper presents an overview of recent advances in biosensors and bioactuators based on the biocomputing concept. Novel biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce output in the form of YES/NO response. Compared to traditional single-analyte sensing devices, biocomputing approach enables a high-fidelity multi-analyte biosensing, particularly beneficial for biomedical applications. Multi-signal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert to medical emergencies, along with an immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly exemplified for liver injury. Wide-ranging applications of multi-analyte digital biosensors in medicine, environmental monitoring and homeland security are anticipated. "Smart" bioactuators, for example for signal-triggered drug release, were designed by interfacing switchable electrodes and biocomputing systems. Integration of novel biosensing and bioactuating systems with the biomolecular information processing systems keeps promise for further scientific advances and numerous practical applications.
Digital MOS integrated circuits
NASA Astrophysics Data System (ADS)
Elmasry, M. I.
MOS in digital circuit design is considered along with aspects of digital VLSI, taking into account a comparison of MOSFET logic circuits, 1-micrometer MOSFET VLSI technology, a generalized guide for MOSFET miniaturization, processing technologies, novel circuit structures for VLSI, and questions of circuit and system design for VLSI. MOS memory cells and circuits are discussed, giving attention to a survey of high-density dynamic RAM cell concepts, one-device cells for dynamic random-access memories, variable resistance polysilicon for high density CMOS Ram, high performance MOS EPROMs using a stacked-gate cell, and the optimization of the latching pulse for dynamic flip-flop sensors. Programmable logic arrays are considered along with digital signal processors, microprocessors, static RAMs, and dynamic RAMs.
Compact universal logic gates realized using quantization of current in nanodevices.
Zhang, Wancheng; Wu, Nan-Jian; Yang, Fuhua
2007-12-12
This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.
An Undergraduate Experiment in Alarm System Design.
ERIC Educational Resources Information Center
Martini, R. A.; And Others
1988-01-01
Describes an experiment involving data acquisition by a computer, digital signal transmission from the computer to a digital logic circuit and signal interpretation by this circuit. The system is being used at the Illinois Institute of Technology. Discusses the fundamental concepts involved. Demonstrates the alarm experiment as it is used in…
A Simple and Effective Remedial Learning System with a Fuzzy Expert System
ERIC Educational Resources Information Center
Lin, C.-C.; Guo, K.-H.; Lin, Y.-C.
2016-01-01
This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is proposed for a digital logic course. Two learning concepts of the course have been used in the proposed system: number systems and combinational logic. We conducted an experiment to validate…
NASA Astrophysics Data System (ADS)
Ben-David Kolikant, Yifat; Genut, Sara
2017-10-01
In line with the growing interest in extending the diversity of CS students, we examined the performance of a unique group of students studying an introductory course in Digital logic: ultraorthodox Jewish men, whose previous education was based mostly on studying Talmud and who lacked a conventional high-school education. We used questions from the Digital Logic Concept Inventory . We compared the results to those of religious Jewish men with a conventional high-school education, and to the results reported in the literature. The ultraorthodox group performed better than the other groups in tasks that concerned number representation. No other statistically significant differences were found. Talk-aloud protocols revealed that the ultraorthodox students utilized a viable conceptual understanding in their performance. We can conclude that students' unique, alternative prior education should not be merely viewed as an obstacle to their academic studies, but also as a potential source for strengths.
Biological Signal Processing with a Genetic Toggle Switch
Hillenbrand, Patrick; Fritz, Georg; Gerland, Ulrich
2013-01-01
Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems. PMID:23874595
NASA Technical Reports Server (NTRS)
Rickard, D. A.; Bodenheimer, R. E.
1976-01-01
Digital computer components which perform two dimensional array logic operations (Tse logic) on binary data arrays are described. The properties of Golay transforms which make them useful in image processing are reviewed, and several architectures for Golay transform processors are presented with emphasis on the skeletonizing algorithm. Conventional logic control units developed for the Golay transform processors are described. One is a unique microprogrammable control unit that uses a microprocessor to control the Tse computer. The remaining control units are based on programmable logic arrays. Performance criteria are established and utilized to compare the various Golay transform machines developed. A critique of Tse logic is presented, and recommendations for additional research are included.
ERIC Educational Resources Information Center
Al-Haija, Qasem Abu; Al-Amri, Hasan; Al-Nashri, Mohamed; Al-Muhaisen, Sultan
2013-01-01
Project-Based Curriculum (PBC) is considered one of the most powerful methods in the engineering education where each course or courses-cluster is assigned a design project which considers a series of inter-related concepts that have been shown theoretically for the students. Using this approach, the student will gain the required knowledge in an…
NASA Astrophysics Data System (ADS)
Alsadoon, Abeer; Prasad, P. W. C.; Beg, Azam
2017-09-01
Making the students understand the theoretical concepts of digital logic design concepts is one of the major issues faced by the academics, therefore the teachers have tried different techniques to link the theoretical information to the practical knowledge. Use of software simulations is a technique for learning and practice that can be applied to many different disciplines. Experimentation of different computer hardware components/integrated circuits with the use of the simulators enhances the student learning. The simulators can be rather simplistic or quite complex. This paper reports our evaluation of different simulators available for use in the higher education institutions. We also provide the experience of incorporating some selected tools in teaching introductory courses in computer systems. We justified the effectiveness of incorporating the simulators into the computer system courses by use of student survey and final grade results.
A Multi-Discipline, Multi-Genre Digital Library for Research and Education
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maly, Kurt; Shen, Stewart N. T.
2004-01-01
We describe NCSTRL+, a unified, canonical digital library for educational and scientific and technical information (STI). NCSTRL+ is based on the Networked Computer Science Technical Report Library (NCSTRL), a World Wide Web (WWW) accessible digital library (DL) that provides access to over 100 university departments and laboratories. NCSTRL+ implements two new technologies: cluster functionality and publishing "buckets". We have extended the Dienst protocol, the protocol underlying NCSTRL, to provide the ability to "cluster" independent collections into a logically centralized digital library based upon subject category classification, type of organization, and genres of material. The concept of "buckets" provides a mechanism for publishing and managing logically linked entities with multiple data formats. The NCSTRL+ prototype DL contains the holdings of NCSTRL and the NASA Technical Report Server (NTRS). The prototype demonstrates the feasibility of publishing into a multi-cluster DL, searching across clusters, and storing and presenting buckets of information.
Electronics. Module 3: Digital Logic Application. Instructor's Guide.
ERIC Educational Resources Information Center
Carter, Ed; Murphy, Mark
This guide contains instructor's materials for a 10-unit secondary school course on digital logic application. The units are introduction to digital, logic gates, digital integrated circuits, combination logic, flip-flops, counters and shift registers, encoders and decoders, arithmetic circuits, memory, and analog/digital and digital/analog…
Role of biomolecular logic systems in biosensors and bioactuators
NASA Astrophysics Data System (ADS)
Mailloux, Shay; Katz, Evgeny
2014-09-01
An overview of recent advances in biosensors and bioactuators based on biocomputing systems is presented. Biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce an output in the form of a YES/NO response. Compared to traditional single-analyte sensing devices, the biocomputing approach enables high-fidelity multianalyte biosensing, which is particularly beneficial for biomedical applications. Multisignal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert medical personnel of medical emergencies together with immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly as exemplified for liver injury. Wide-ranging applications of multianalyte digital biosensors in medicine, environmental monitoring, and homeland security are anticipated. "Smart" bioactuators, for signal-triggered drug release, for example, were designed by interfacing switchable electrodes with biocomputing systems. Integration of biosensing and bioactuating systems with biomolecular information processing systems advances the potential for further scientific innovations and various practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.S.; Seong, P.H.
1995-08-01
In this paper, an improved algorithm for automatic test pattern generation (ATG) for nuclear power plant digital electronic circuits--the combinational type of logic circuits is presented. For accelerating and improving the ATG process for combinational circuits the presented ATG algorithm has the new concept--the degree of freedom (DF). The DF, directly computed from the system descriptions such as types of gates and their interconnections, is the criterion to decide which among several alternate lines` logic values required along each path promises to be the most effective in order to accelerate and improve the ATG process. Based on the DF themore » proposed ATG algorithm is implemented in the automatic fault diagnosis system (AFDS) which incorporates the advanced fault diagnosis method of artificial intelligence technique, it is shown that the AFDS using the ATG algorithm makes Universal Card (UV Card) testing much faster than the present testing practice or by using exhaustive testing sets.« less
The development of an interim generalized gate logic software simulator
NASA Technical Reports Server (NTRS)
Mcgough, J. G.; Nemeroff, S.
1985-01-01
A proof-of-concept computer program called IGGLOSS (Interim Generalized Gate Logic Software Simulator) was developed and is discussed. The simulator engine was designed to perform stochastic estimation of self test coverage (fault-detection latency times) of digital computers or systems. A major attribute of the IGGLOSS is its high-speed simulation: 9.5 x 1,000,000 gates/cpu sec for nonfaulted circuits and 4.4 x 1,000,000 gates/cpu sec for faulted circuits on a VAX 11/780 host computer.
Boolean integral calculus for digital systems
NASA Technical Reports Server (NTRS)
Tucker, J. H.; Tapia, M. A.; Bennett, A. W.
1985-01-01
The concept of Boolean integration is introduced and developed. When the changes in a desired function are specified in terms of changes in its arguments, then ways of 'integrating' (i.e., realizing) the function, if it exists, are presented. Boolean integral calculus has applications in design of logic circuits.
NASA Astrophysics Data System (ADS)
Qian, Feng; Li, Guoqiang
2001-12-01
In this paper a generalized look-ahead logic algorithm for number conversion from signed-digit to its complement representation is developed. By properly encoding the signed digits, all the operations are performed by binary logic, and unified logical expressions can be obtained for conversion from modified-signed-digit (MSD) to 2's complement, trinary signed-digit (TSD) to 3's complement, and quaternary signed-digit (QSD) to 4's complement. For optical implementation, a parallel logical array module using electron-trapping device is employed, which is suitable for realizing complex logic functions in the form of sum-of-product. The proposed algorithm and architecture are compatible with a general-purpose optoelectronic computing system.
NASA Astrophysics Data System (ADS)
Li, Guoqiang; Qian, Feng
2001-11-01
We present, for the first time to our knowledge, a generalized lookahead logic algorithm for number conversion from signed-digit to complement representation. By properly encoding the signed-digits, all the operations are performed by binary logic, and unified logical expressions can be obtained for conversion from modified-signed- digit (MSD) to 2's complement, trinary signed-digit (TSD) to 3's complement, and quarternary signed-digit (QSD) to 4's complement. For optical implementation, a parallel logical array module using an electron-trapping device is employed and experimental results are shown. This optical module is suitable for implementing complex logic functions in the form of the sum of the product. The algorithm and architecture are compatible with a general-purpose optoelectronic computing system.
Assessing Cultural Validity in Standardized Tests in STEM Education
ERIC Educational Resources Information Center
Gassant, Lunes
2013-01-01
This quantitative ex post facto study examined how race and gender, as elements of culture, influence the development of common misconceptions among STEM students. Primary data came from a standardized test: the Digital Logic Concept Inventory (DLCI) developed by Drs. Geoffrey L. Herman, Michael C. Louis, and Craig Zilles from the University of…
ERIC Educational Resources Information Center
Huscroft-D'Angelo, Jacqueline; Higgins, Kristina N.; Crawford, Lindy L.
2014-01-01
Proficiency in mathematics, including mathematical reasoning skills, requires students to communicate their mathematical thinking. Mathematical reasoning involves making sense of mathematical concepts in a logical way to form conclusions or judgments, and is often underdeveloped in students with learning disabilities. Technology-based environments…
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maly, Kurt; Shen, Stewart N. T.
1997-01-01
In this paper we describe NCSTRL+, a unified, canonical digital library for scientific and technical information (STI). NCSTRL+ is based on the Networked Computer Science Technical Report Library (NCSTRL), a World Wide Web (WWW) accessible digital library (DL) that provides access to over 80 university departments and laboratories. NCSTRL+ implements two new technologies: cluster functionality and publishing "buckets." We have extended the Dienst protocol, the protocol underlying NCSTRL, to provide the ability to "cluster" independent collections into a logically centralized digital library based upon subject category classification, type of organization, and genres of material. The concept of "buckets" provides a mechanism for publishing and managing logically linked entities with multiple data formats. The NCSTRL+ prototype DL contains the holdings of NCSTRL and the NASA Technical Report Server (NTRS). The prototype demonstrates the feasibility of publishing into a multi-cluster DL, searching across clusters, and storing and presenting buckets of information. We show that the overhead for these additional capabilities is minimal to both the author and the user when compared to the equivalent process within NCSTRL.
NASA Astrophysics Data System (ADS)
Chang, S. S. L.
State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.
Digital design using selection operations
NASA Technical Reports Server (NTRS)
Miles, Lowell H. (Inventor); Whitaker, Sterling R. (Inventor); Cameron, Eric G. (Inventor)
2004-01-01
A digital integrated circuit chip is designed by identifying a logical structure to be implemented. This logical structure is represented in terms of a logical operations, at least 5% of which include selection operations. A determination is made of logic cells that correspond to an implementation of these logical operations.
Agoncillo, A V; Mejino, J L; Rosse, C
1999-01-01
A principled and logical representation of the structure of the human body has led to conflicts with traditional representations of the same knowledge by anatomy textbooks. The examples which illustrate resolution of these conflicts suggest that stricter requirements must be met for semantic consistency, expressivity and specificity by knowledge sources intended to support inference than by textbooks and term lists. These next-generation resources should influence traditional concept representation, rather than be constrained by convention.
Fundamentals of Digital Logic.
ERIC Educational Resources Information Center
Noell, Monica L.
This course is designed to prepare electronics personnel for further training in digital techniques, presenting need to know information that is basic to any maintenance course on digital equipment. It consists of seven study units: (1) binary arithmetic; (2) boolean algebra; (3) logic gates; (4) logic flip-flops; (5) nonlogic circuits; (6)…
Implementing finite state machines in a computer-based teaching system
NASA Astrophysics Data System (ADS)
Hacker, Charles H.; Sitte, Renate
1999-09-01
Finite State Machines (FSM) are models for functions commonly implemented in digital circuits such as timers, remote controls, and vending machines. Teaching FSM is core in the curriculum of many university digital electronic or discrete mathematics subjects. Students often have difficulties grasping the theoretical concepts in the design and analysis of FSM. This has prompted the author to develop an MS-WindowsTM compatible software, WinState, that provides a tutorial style teaching aid for understanding the mechanisms of FSM. The animated computer screen is ideal for visually conveying the required design and analysis procedures. WinState complements other software for combinatorial logic previously developed by the author, and enhances the existing teaching package by adding sequential logic circuits. WinState enables the construction of a students own FSM, which can be simulated, to test the design for functionality and possible errors.
NASA Technical Reports Server (NTRS)
Nelson, Michael L.
1997-01-01
Our objective was to study the feasibility of extending the Dienst protocol to enable a multi-discipline, multi-format digital library. We implemented two new technologies: cluster functionality and publishing buckets. We have designed a possible implementation of clusters and buckets, and have prototyped some aspects of the resultant digital library. Currently, digital libraries are segregated by the disciplines they serve (computer science, aeronautics, etc.), and by the format of their holdings (reports, software, datasets, etc.). NCSTRL+ is a multi-discipline, multi-format digital library (DL) prototype created to explore the feasibility of the design and implementation issues involved with created a unified, canonical scientific and technical information (STI) DL. NCSTRL+ is based on the Networked Computer Science Technical Report Library (NCSTRL), a World Wide Web (WWW) accessible DL that provides access to over 80 university departments and laboratories. We have extended the Dienst protocol (version 4.1.8), the protocol underlying NCSTRL, to provide the ability to cluster independent collections into a logically centralized DL based upon subject category classification, type of organization, and genre of material. The concept of buckets provides a mechanism for publishing and managing logically linked entities with multiple data formats.
Field Effect Transistor Behavior in Electrospun Polyaniline/Polyethylene Oxide Nanofibers
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Theofylaktos, Noulle; Robinson, Daryl C.; Mueller, Carl H.; Pinto, Nicholas J.
2004-01-01
Novel translators and logic devices based on nanotechnology concepts are under intense development. The potential for ultra-low power circuitry makes nanotechnology attractive for applications such as digital electronics and sensors. Furthermore, the ability to form devices on flexible substrates expands the range of applications where electronic circuitry can be introduced. For NASA, nonotechndogy offers opportunities for increased onboard data processing and thus autonomous decision-making ability, ad novel sensors that detect and respond to external stimuli with few oversight requirements. The goat of this work is to demonstrate transistor behavior in polyaniline/ polyethylene oxide nanofibers, thus creating a foundation for future logic devices.
The trend of digital control system design for nuclear power plants in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S. H.; Jung, H. Y.; Yang, C. Y.
2006-07-01
Currently there are 20 nuclear power plants (NPPs) in operation, and 6 more units are under construction in Korea. The control systems of those NPPs have also been developed together with the technology advancement. Control systems started with On-Off control using the relay logic, had been evolved into Solid-State logic using TTL ICs, and applied with the micro-processors since the Yonggwang NPP Units 3 and 4 which started its construction in 1989. Multiplexers are also installed at the local plant areas to collect field input and to send output signals while communicating with the controllers located in the system cabinetsmore » near the main control room in order to reduce the field wiring cables. The design of the digital control system technology for the NPPs in Korea has been optimized to maximize the operability as well as the safety through the design, construction, start-up and operation experiences. Both Shin-Kori Units 1 and 2 and Shin-Wolsong Units 1 and 2 NPP projects under construction are being progressed at the same time. Digital Plant Control Systems of these projects have adopted multi-loop controllers, redundant loop configuration, and soft control system for the radwaste system. Programmable Logic Controller (PLC) and Distributed Control System (DCS) are applied with soft control system in Shin-Kori Units 3 and 4. This paper describes the evolvement of control system at the NPPs in Korea and the experience and design improvement through the observation of the latest failure of the digital control system. In addition, design concept and its trend of the digital control system being applied to the NPP in Korea are introduced. (authors)« less
Simulated Laboratory in Digital Logic.
ERIC Educational Resources Information Center
Cleaver, Thomas G.
Design of computer circuits used to be a pencil and paper task followed by laboratory tests, but logic circuit design can now be done in half the time as the engineer accesses a program which simulates the behavior of real digital circuits, and does all the wiring and testing on his computer screen. A simulated laboratory in digital logic has been…
SDLDS--System for Digital Logic Design and Simulation
ERIC Educational Resources Information Center
Stanisavljevic, Z.; Pavlovic, V.; Nikolic, B.; Djordjevic, J.
2013-01-01
This paper presents the basic features of a software system developed to support the teaching of digital logic, as well as the experience of using it in the Digital Logic course taught at the School of Electrical Engineering, University of Belgrade, Serbia. The system has been used for several years, both by students for self-learning and…
NASA Technical Reports Server (NTRS)
Preston, K., Jr.
1972-01-01
The characteristics of the holographic logic computer are discussed. The holographic operation is reviewed from the Fourier transform viewpoint, and the formation of holograms for use in performing digital logic are described. The operation of the computer with an experiment in which the binary identity function is calculated is discussed along with devices for achieving real-time performance. An application in pattern recognition using neighborhood logic is presented.
NASA Astrophysics Data System (ADS)
Moore, R.; Faerman, M.; Minster, J.; Day, S. M.; Ely, G.
2003-12-01
A community digital library provides support for ingestion, organization, description, preservation, and access of digital entities. The technologies that traditionally provide these capabilities are digital libraries (ingestion, organization, description), persistent archives (preservation) and data grids (access). We present a design for the SCEC community digital library that incorporates aspects of all three systems. Multiple groups have created integrated environments that sustain large-scale scientific data collections. By examining these projects, the following stages of implementation can be identified: \\begin{itemize} Definition of semantic terms to associate with relevant information. This includes definition of uniform content descriptors to describe physical quantities relevant to the scientific discipline, and creation of concept spaces to define how the uniform content descriptors are logically related. Organization of digital entities into logical collections that make it simple to browse and manage related material. Definition of services that are used to access and manipulate material in the collection. Creation of a preservation environment for the long-term management of the collection. Each community is faced with heterogeneity that is introduced when data is distributed across multiple sites, or when multiple sets of collection semantics are used, and or when multiple scientific sub-disciplines are federated. We will present the relevant standards that simplify the implementation of the SCEC community library, the resource requirements for different types of data sets that drive the implementation, and the digital library processes that the SCEC community library will support. The SCEC community library can be viewed as the set of processing steps that are required to build the appropriate SCEC reference data sets (SCEC approved encoding format, SCEC approved descriptive metadata, SCEC approved collection organization, and SCEC managed storage location). Each digital entity that is ingested into the SCEC community library is processed and validated for conformance to SCEC standards. These steps generate provenance, descriptive, administrative, structural, and behavioral metadata. Using data grid technology, the descriptive metadata can be registered onto a logical name space that is controlled and managed by the SCEC digital library. A version of the SCEC community digital library is being implemented in the Storage Resource Broker. The SRB system provides almost all the features enumerated above. The peer-to-peer federation of metadata catalogs is planned for release in September, 2003. The SRB system is in production use in multiple projects, from high-energy physics, to astronomy, to earth systems science, to bio-informatics. The SCEC community library will be based on the definition of standard metadata attributes, the creation of logical collections within the SRB, the creation of access services, and the demonstration of a preservation environment. The use of the SRB for the SCEC digital library will sustain the expected collection size and collection capabilities.
High-performance image processing architecture
NASA Astrophysics Data System (ADS)
Coffield, Patrick C.
1992-04-01
The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.
Research in digital adaptive flight controllers
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.
N channel JFET based digital logic gate structure
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor)
2010-01-01
A circuit topography is presented which is used to create usable digital logic gates using N (negatively doped) channel Junction Field Effect Transistors (JFETs) and load resistors, level shifting resistors, and supply rails whose values are based on the direct current (DC) parametric distributions of those JFETs. This method has direct application to the current state of the art in high temperature, for example 300.degree. C. to 500.degree. C. and higher, silicon carbide (SiC) device production. The ability to produce inverting and combinatorial logic enables the production of pulse and edge triggered latches. This scale of logic synthesis would bring digital logic and state machine capabilities to devices operating in extremely hot environments, such as the surface of Venus, near hydrothermal vents, within nuclear reactors (SiC is inherently radiation hardened), and within internal combustion engines. The basic logic gate can be configured as a driver for oscillator circuits allowing for time bases and simple digitizers for resistive or reactive sensors. The basic structure of this innovation, the inverter, can be reconfigured into various analog circuit topographies through the use of feedback structures.
Liba, Benjamin D; Kim, Eunkyoung; Martin, Alexandra N; Liu, Yi; Bentley, William E; Payne, Gregory F
2013-03-01
Exciting opportunities in bioelectronics will be facilitated by materials that can bridge the chemical logic of biology and the digital logic of electronics. Here we report the fabrication of a dual functional hydrogel film that can harvest electrons from its chemical environment and store these electrons by switching the film's redox-state. The hydrogel scaffold was formed by the anodic deposition of the aminopolysaccharide chitosan. Electron-harvesting function was conferred by co-depositing the enzyme glucose dehydrogenase (GDH) with chitosan. GDH catalyzes the transfer of electrons from glucose to the soluble redox-shuttle NADP(+). Electron-storage function was conferred by the redox-active food phenolic chlorogenic acid (CA) that was enzymatically grafted to the chitosan scaffold using tyrosinase. The grafted CA undergoes redox-cycling reactions with NADPH resulting in the net transfer of electrons to the film where they are stored in the reduced state of CA. The individual and dual functionalities of these films were demonstrated experimentally. There are three general conclusions from this proof-of-concept study. First, enzymatically-grafted catecholic moieties confer redox-capacitor function to the chitosan scaffold. Second, biological materials (i.e. chitosan and CA) and mechanisms (i.e. tyrosinase-mediated grafting) allow the reagentless fabrication of functional films that should be environmentally-friendly, safe and potentially even edible. Finally, the film's ability to mediate the transfer of electrons from a biological metabolite to an electrode suggests an approach to bridge the chemical logic of biology with the digital logic of electronics.
Reproducible Operating Margins on a 72800-Device Digital Superconducting Chip (Open Access)
2015-10-28
superconductor digital logic. Keywords: flux trapping, yield, digital Superconductor digital technology offers fundamental advantages over conventional...trapping in the superconductor films can degrade or preclude correct circuit operation. Scaling superconductor technology is now possible due to recent...advances in circuit design embodied in reciprocal quantum logic (RQL) [2, 3] and recent advances in superconductor integrated circuit fabrication, which
Distinguishing between evidence and its explanations in the steering of atomic clocks
NASA Astrophysics Data System (ADS)
Myers, John M.; Hadi Madjid, F.
2014-11-01
Quantum theory reflects within itself a separation of evidence from explanations. This separation leads to a known proof that: (1) no wave function can be determined uniquely by evidence, and (2) any chosen wave function requires a guess reaching beyond logic to things unforeseeable. Chosen wave functions are encoded into computer-mediated feedback essential to atomic clocks, including clocks that step computers through their phases of computation and clocks in space vehicles that supply evidence of signal propagation explained by hypotheses of spacetimes with metric tensor fields. The propagation of logical symbols from one computer to another requires a shared rhythm-like a bucket brigade. Here we show how hypothesized metric tensors, dependent on guesswork, take part in the logical synchronization by which clocks are steered in rate and position toward aiming points that satisfy phase constraints, thereby linking the physics of signal propagation with the sharing of logical symbols among computers. Recognizing the dependence of the phasing of symbol arrivals on guesses about signal propagation transports logical synchronization from the engineering of digital communications to a discipline essential to physics. Within this discipline we begin to explore questions invisible under any concept of time that fails to acknowledge unforeseeable events. In particular, variation of spacetime curvature is shown to limit the bit rate of logical communication.
ERIC Educational Resources Information Center
Zhu, Yi; Weng, T.; Cheng, Chung-Kuan
2009-01-01
Incorporating programmable logic devices (PLD) in digital design courses has become increasingly popular. The advantages of using PLDs, such as complex programmable logic devices (CPLDs) and field programmable gate arrays (FPGA), have been discussed before. However, previous studies have focused on the experiences from the point of view of the…
A Web-Based Visualization and Animation Platform for Digital Logic Design
ERIC Educational Resources Information Center
Shoufan, Abdulhadi; Lu, Zheng; Huss, Sorin A.
2015-01-01
This paper presents a web-based education platform for the visualization and animation of the digital logic design process. This includes the design of combinatorial circuits using logic gates, multiplexers, decoders, and look-up-tables as well as the design of finite state machines. Various configurations of finite state machines can be selected…
NASA Astrophysics Data System (ADS)
Irawan, Adi; Mardiyana; Retno Sari Saputro, Dewi
2017-06-01
This research is aimed to find out the effect of learning model towards learning achievement in terms of students’ logical mathematics intelligences. The learning models that were compared were NHT by Concept Maps, TGT by Concept Maps, and Direct Learning model. This research was pseudo experimental by factorial design 3×3. The population of this research was all of the students of class XI Natural Sciences of Senior High School in all regency of Karanganyar in academic year 2016/2017. The conclusions of this research were: 1) the students’ achievements with NHT learning model by Concept Maps were better than students’ achievements with TGT model by Concept Maps and Direct Learning model. The students’ achievements with TGT model by Concept Maps were better than the students’ achievements with Direct Learning model. 2) The students’ achievements that exposed high logical mathematics intelligences were better than students’ medium and low logical mathematics intelligences. The students’ achievements that exposed medium logical mathematics intelligences were better than the students’ low logical mathematics intelligences. 3) Each of student logical mathematics intelligences with NHT learning model by Concept Maps has better achievement than students with TGT learning model by Concept Maps, students with NHT learning model by Concept Maps have better achievement than students with the direct learning model, and the students with TGT by Concept Maps learning model have better achievement than students with Direct Learning model. 4) Each of learning model, students who have logical mathematics intelligences have better achievement then students who have medium logical mathematics intelligences, and students who have medium logical mathematics intelligences have better achievement than students who have low logical mathematics intelligences.
Eight-Channel Digital Signal Processor and Universal Trigger Module
NASA Astrophysics Data System (ADS)
Skulski, Wojtek; Wolfs, Frank
2003-04-01
A 10-bit, 8-channel, 40 megasamples per second digital signal processor and waveform digitizer DDC-8 (nicknamed Universal Trigger Module) is presented. The digitizer features 8 analog inputs, 1 analog output for a reconstructed analog waveform, 16 NIM logic inputs, 8 NIM logic outputs, and a pool of 16 TTL logic lines which can be individually configured as either inputs or outputs. The first application of this device is to enhance the present trigger electronics for PHOBOS at RHIC. The status of the development and the first results are presented. Possible applications of the new device are discussed. Supported by the NSF grant PHY-0072204.
Multi-enzyme logic network architectures for assessing injuries: digital processing of biomarkers.
Halámek, Jan; Bocharova, Vera; Chinnapareddy, Soujanya; Windmiller, Joshua Ray; Strack, Guinevere; Chuang, Min-Chieh; Zhou, Jian; Santhosh, Padmanabhan; Ramirez, Gabriela V; Arugula, Mary A; Wang, Joseph; Katz, Evgeny
2010-12-01
A multi-enzyme biocatalytic cascade processing simultaneously five biomarkers characteristic of traumatic brain injury (TBI) and soft tissue injury (STI) was developed. The system operates as a digital biosensor based on concerted function of 8 Boolean AND logic gates, resulting in the decision about the physiological conditions based on the logic analysis of complex patterns of the biomarkers. The system represents the first example of a multi-step/multi-enzyme biosensor with the built-in logic for the analysis of complex combinations of biochemical inputs. The approach is based on recent advances in enzyme-based biocomputing systems and the present paper demonstrates the potential applicability of biocomputing for developing novel digital biosensor networks.
Can openEHR archetypes be used in a national context? The Danish archetype proof-of-concept project.
Bernstein, Knut; Tvede, Ida; Petersen, Jan; Bredegaard, Kirsten
2009-01-01
Semantic interoperability and secondary use of data are important informatics challenges in modern healthcare. Connected Digital Health Denmark is investigating if the openEHR reference model, archetypes and templates could be used for representing and exchanging clinical content specification and could become a candidate for a national logical infrastructure for semantic interoperability. The Danish archetype proof-of-concept project has tried out some elements of the openEHR methodology in cooperation with regions and vendors. The project has pointed out benefits and challenges using archetypes, and has identified barriers that need to be addressed in the next steps.
Graphical approach for multiple values logic minimization
NASA Astrophysics Data System (ADS)
Awwal, Abdul Ahad S.; Iftekharuddin, Khan M.
1999-03-01
Multiple valued logic (MVL) is sought for designing high complexity, highly compact, parallel digital circuits. However, the practical realization of an MVL-based system is dependent on optimization of cost, which directly affects the optical setup. We propose a minimization technique for MVL logic optimization based on graphical visualization, such as a Karnaugh map. The proposed method is utilized to solve signed-digit binary and trinary logic minimization problems. The usefulness of the minimization technique is demonstrated for the optical implementation of MVL circuits.
Design of a modular digital computer system, CDRL no. D001, final design plan
NASA Technical Reports Server (NTRS)
Easton, R. A.
1975-01-01
The engineering breadboard implementation for the CDRL no. D001 modular digital computer system developed during design of the logic system was documented. This effort followed the architecture study completed and documented previously, and was intended to verify the concepts of a fault tolerant, automatically reconfigurable, modular version of the computer system conceived during the architecture study. The system has a microprogrammed 32 bit word length, general register architecture and an instruction set consisting of a subset of the IBM System 360 instruction set plus additional fault tolerance firmware. The following areas were covered: breadboard packaging, central control element, central processing element, memory, input/output processor, and maintenance/status panel and electronics.
NASA Astrophysics Data System (ADS)
Haron, Adib; Mahdzair, Fazren; Luqman, Anas; Osman, Nazmie; Junid, Syed Abdul Mutalib Al
2018-03-01
One of the most significant constraints of Von Neumann architecture is the limited bandwidth between memory and processor. The cost to move data back and forth between memory and processor is considerably higher than the computation in the processor itself. This architecture significantly impacts the Big Data and data-intensive application such as DNA analysis comparison which spend most of the processing time to move data. Recently, the in-memory processing concept was proposed, which is based on the capability to perform the logic operation on the physical memory structure using a crossbar topology and non-volatile resistive-switching memristor technology. This paper proposes a scheme to map digital equality comparator circuit on memristive memory crossbar array. The 2-bit, 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit of equality comparator circuit are mapped on memristive memory crossbar array by using material implication logic in a sequential and parallel method. The simulation results show that, for the 64-bit word size, the parallel mapping exhibits 2.8× better performance in total execution time than sequential mapping but has a trade-off in terms of energy consumption and area utilization. Meanwhile, the total crossbar area can be reduced by 1.2× for sequential mapping and 1.5× for parallel mapping both by using the overlapping technique.
KM3NeT Digital Optical Module electronics
NASA Astrophysics Data System (ADS)
Real, Diego
2016-04-01
The KM3NeT collaboration is currently building of a neutrino telescope with a volume of several cubic kilometres at the bottom of the Mediterranean Sea. The telescope consists of a matrix of Digital Optical Modules that will detect the Cherenkov light originated by the interaction of the neutrinos in the proximity of the detector. This contribution describes the main components of the read-out electronics of the Digital Optical Module: the Power Board, which delivers all the power supply required by the Digital Optical Molule electronics; the Central Logic Board, the main core of the read-out system, hosting 31 Time to Digital Converters with 1 ns resolution and the White Rabbit protocol embedded in the Central Logic Board Field Programmable Gate Array; the Octopus boards, that transfer the Low Voltage Digital Signals from the PMT bases to the Central Logic Board and finally the PMT bases, in charge of converting the analogue signal produced in the 31 3" PMTs into a Low Voltage Digital Signal.
Qian, F; Li, G; Ruan, H; Jing, H; Liu, L
1999-09-10
A novel, to our knowledge, two-step digit-set-restricted modified signed-digit (MSD) addition-subtraction algorithm is proposed. With the introduction of the reference digits, the operand words are mapped into an intermediate carry word with all digits restricted to the set {1, 0} and an intermediate sum word with all digits restricted to the set {0, 1}, which can be summed to form the final result without carry generation. The operation can be performed in parallel by use of binary logic. An optical system that utilizes an electron-trapping device is suggested for accomplishing the required binary logic operations. By programming of the illumination of data arrays, any complex logic operations of multiple variables can be realized without additional temporal latency of the intermediate results. This technique has a high space-bandwidth product and signal-to-noise ratio. The main structure can be stacked to construct a compact optoelectronic MSD adder-subtracter.
NASA Technical Reports Server (NTRS)
Meyer, G.; Cicolani, L.
1981-01-01
A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.
Boolean Approaches in Digital Diagnosis
1989-12-04
Automation Conference, pages 64-70, 1983. 16. Barry W. Johnson. Design and A nalysis of Fault-Tolerant Digital Systems. Addison- Wesley Publishing...Mitchell. On a new algebra of logic. In C.S. Peirce, edhitor, Studies in Logic. Little, Brown. Boston. 1883. 2:3. Roger S. Pressman . Softwrare Engineering
"Glitch Logic" and Applications to Computing and Information Security
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Katkoori, Srinivas
2009-01-01
This paper introduces a new method of information processing in digital systems, and discusses its potential benefits to computing and information security. The new method exploits glitches caused by delays in logic circuits for carrying and processing information. Glitch processing is hidden to conventional logic analyses and undetectable by traditional reverse engineering techniques. It enables the creation of new logic design methods that allow for an additional controllable "glitch logic" processing layer embedded into a conventional synchronous digital circuits as a hidden/covert information flow channel. The combination of synchronous logic with specific glitch logic design acting as an additional computing channel reduces the number of equivalent logic designs resulting from synthesis, thus implicitly reducing the possibility of modification and/or tampering with the design. The hidden information channel produced by the glitch logic can be used: 1) for covert computing/communication, 2) to prevent reverse engineering, tampering, and alteration of design, and 3) to act as a channel for information infiltration/exfiltration and propagation of viruses/spyware/Trojan horses.
Abstracts of ARI Research Publications, FY 1974 and 1975
1979-10-01
may obtain these documents from the National Technical Information Service (NTIS), Department of Commerce, Springfield, Va., 22151. The six- digit AD...Siegel, A. I., Wolf, J. J., & Leahy, W. R. (Applied Psycho- logical Services, Inc.). A digital simulation model of message handling in the Tactical...inherent in the mission of interest, (b) incorporate these 28 into a logic for a digital simulation model, and (c) develop a computer program reflecting
Field Effect Transistor Behavior in Electrospun Polyaniline/Polyethylene Oxide Nanofibers
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Theofylaktos, Noulie; Mueller, Carl H.; Pinto, Nicholas J.
2004-01-01
Novel transistors and logic devices based on nanotechnology concepts are under intense development. The potential for ultra-low-power circuitry makes nanotechnology attractive for applications such as digital electronics and sensors. For NASA applications, nanotechnology offers tremendous opportunities for increased onboard data processing, and thus autonomous decision-making ability, and novel sensors that detect and respond to environmental stimuli with little oversight requirements. Polyaniline (PANi) is an intriguing material because its electrical conductivity can be changed from insulating to metallic by varying the doping levels and conformations of the polymer chain, and when combined with polyethylene oxide (PEO), can be formed into nanofibers with diameters ranging from approximately 50 to 500 nm (depending on the deposition conditions). The initial goal of this work was to demonstrate transistor behavior in these nanofibers, thus creating a foundation for future logic devices.
NASA Technical Reports Server (NTRS)
Guarro, Sergio B.
2010-01-01
This report validates and documents the detailed features and practical application of the framework for software intensive digital systems risk assessment and risk-informed safety assurance presented in the NASA PRA Procedures Guide for Managers and Practitioner. This framework, called herein the "Context-based Software Risk Model" (CSRM), enables the assessment of the contribution of software and software-intensive digital systems to overall system risk, in a manner which is entirely compatible and integrated with the format of a "standard" Probabilistic Risk Assessment (PRA), as currently documented and applied for NASA missions and applications. The CSRM also provides a risk-informed path and criteria for conducting organized and systematic digital system and software testing so that, within this risk-informed paradigm, the achievement of a quantitatively defined level of safety and mission success assurance may be targeted and demonstrated. The framework is based on the concept of context-dependent software risk scenarios and on the modeling of such scenarios via the use of traditional PRA techniques - i.e., event trees and fault trees - in combination with more advanced modeling devices such as the Dynamic Flowgraph Methodology (DFM) or other dynamic logic-modeling representations. The scenarios can be synthesized and quantified in a conditional logic and probabilistic formulation. The application of the CSRM method documented in this report refers to the MiniAERCam system designed and developed by the NASA Johnson Space Center.
NASA Astrophysics Data System (ADS)
Horowitz, Paul; Hill, Winfield
2015-04-01
1. Foundations; 2. Bipolar transistors; 3. Field effect transistors; 4. Operational amplifiers; 5. Precision circuits; 6. Filters; 7. Oscillators and timers; 8. Low noise techniques and transimpedance; 9. Power regulation; 10. Digital electronics; 11. Programmable logic devices; 12. Logical interfacing; 13. Digital meets analog; 14. Computers, controllers, and data links; 15. Microcontrollers.
Optical triple-in digital logic using nonlinear optical four-wave mixing
NASA Astrophysics Data System (ADS)
Widjaja, Joewono; Tomita, Yasuo
1995-08-01
A new programmable optical processor is proposed for implementing triple-in combinatorial digital logic that uses four-wave mixing. Binary-coded decimal-to-octal decoding is experimentally demonstrated by use of a photorefractive BaTiO 3 crystal. The result confirms the feasibility of the proposed system.
Principles of logic and the use of digital geographic information systems
Robinove, Charles Joseph
1986-01-01
Digital geographic information systems allow many different types of data to be spatially and statistically analyzed. Logical operations can be performed on individual or multiple data planes by algorithms that can be implemented in computer systems. Users and creators of the systems should fully understand these operations. This paper describes the relationships of layers and features in geographic data bases and the principles of logic that can be applied by geographic information systems and suggests that a thorough knowledge of the data that are entered into a geographic data base and of the logical operations will produce results that are most satisfactory to the user. Methods of spatial analysis are reduced to their primitive logical operations and explained to further such understanding.
NASA Technical Reports Server (NTRS)
Athale, R. A.; Lee, S. H.
1978-01-01
The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.
NASA Astrophysics Data System (ADS)
Konishi, Tsuyoshi; Tanida, Jun; Ichioka, Yoshiki
1995-06-01
A novel technique, the visual-area coding technique (VACT), for the optical implementation of fuzzy logic with the capability of visualization of the results is presented. This technique is based on the microfont method and is considered to be an instance of digitized analog optical computing. Huge amounts of data can be processed in fuzzy logic with the VACT. In addition, real-time visualization of the processed result can be accomplished.
Unpredictability and the transmission of numbers
NASA Astrophysics Data System (ADS)
Myers, John M.; Madjid, F. Hadi
2016-03-01
Curiously overlooked in physics is its dependence on the transmission of numbers. For example, the transmission of numerical clock readings is implicit in the concept of a coordinate system. The transmission of numbers and other logical distinctions is often achieved over a computer-mediated communications network in the face of an unpredictable environment. By unpredictable we mean something stronger than the spread of probabilities over given possible outcomes, namely an opening to unforeseeable possibilities. Unpredictability, until now overlooked in theoretical physics, makes the transmission of numbers interesting. Based on recent proofs within quantum theory that provide a theoretical foundation to unpredictability, here we show how regularities in physics rest on a background of channels over which numbers are transmitted. As is known to engineers of digital communications, numerical transmissions depend on coordination reminiscent of the cycle of throwing and catching by players tossing a ball back and forth. In digital communications, the players are computers, and the required coordination involves unpredictably adjusting "live clocks" that step these computers through phases of a cycle. We show how this phasing, which we call logical synchronization, constrains number-carrying networks, and, if a spacetime manifold in invoked, put "stripes" on spacetime. Via its logically synchronized channels, a network of live clocks serves as a reference against which to locate events. Such a network in any case underpins a coordinate frame, and in some cases the direct use of a network can be tailored to investigate an unpredictable environment. Examples include explorations of gravitational variations near Earth.
Recognizing and engineering digital-like logic gates and switches in gene regulatory networks.
Bradley, Robert W; Buck, Martin; Wang, Baojun
2016-10-01
A central aim of synthetic biology is to build organisms that can perform useful activities in response to specified conditions. The digital computing paradigm which has proved so successful in electrical engineering is being mapped to synthetic biological systems to allow them to make such decisions. However, stochastic molecular processes have graded input-output functions, thus, bioengineers must select those with desirable characteristics and refine their transfer functions to build logic gates with digital-like switching behaviour. Recent efforts in genome mining and the development of programmable RNA-based switches, especially CRISPRi, have greatly increased the number of parts available to synthetic biologists. Improvements to the digital characteristics of these parts are required to enable robust predictable design of deeply layered logic circuits. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Motivation for DOC III: 64-bit digital optical computer
NASA Astrophysics Data System (ADS)
Guilfoyle, Peter S.
1991-09-01
This paper suggests a new class of digital logic. OptiComp has focused on a digital optical logic family in order to capitalize on the inherent benefits of optical computing, which include (1) high FAN-IN and FAN-OUT, (2) low power consumption, (3) high noise margin, (4) high algorithmic efficiency using 'smart' interconnects, (5) free space leverage of GIBP (gate interconnect bandwidth product). Other well-known secondary advantages of optical logic include (but are not limited to) zero capacitive loading of signals at a detector, zero cross-talk between signals, zero signal dispersion, minimal clock skew (a few picoseconds or less in an imaging system). The primary focus of this paper is to demonstrate how each of the five advantages can be used to leverage other logic family performance such as GaAs; the secondary attributes will be discussed only in the context of introducing the DOC III architecture.
Motivation for DOC III: 64-bit digital optical computer
NASA Astrophysics Data System (ADS)
Guilfoyle, Peter S.
1991-09-01
The objective of this paper is to motivate a new class of digital logic. OptiComp has focused on a digital optical logic family in order to capitalize on the inherent benefits of optical computing, which include: (1) high FAN-IN and FAN-OUT, (2) low power consumption, (3) high noise margin, (4) high algorithmic efficiency using 'smart' interconnects, (5) free space leverage of GIBP (gate interconnect bandwidth product). Other well-known secondary advantages of optical logic include (but are not limited to): zero capacitive loading of signals at a detector, zero cross-talk between signals, zero signal dispersion, and minimal clock skew (a few picoseconds or less in an imaging system). The primary focus of this paper is on demonstrating how each of the five advantages can be used to leverage other logic family performance such as GaAs; the secondary attributes will be discussed only in the context of introducing the DOC III architecture.
Multi-valued logic gates based on ballistic transport in quantum point contacts.
Seo, M; Hong, C; Lee, S-Y; Choi, H K; Kim, N; Chung, Y; Umansky, V; Mahalu, D
2014-01-22
Multi-valued logic gates, which can handle quaternary numbers as inputs, are developed by exploiting the ballistic transport properties of quantum point contacts in series. The principle of a logic gate that finds the minimum of two quaternary number inputs is demonstrated. The device is scalable to allow multiple inputs, which makes it possible to find the minimum of multiple inputs in a single gate operation. Also, the principle of a half-adder for quaternary number inputs is demonstrated. First, an adder that adds up two quaternary numbers and outputs the sum of inputs is demonstrated. Second, a device to express the sum of the adder into two quaternary digits [Carry (first digit) and Sum (second digit)] is demonstrated. All the logic gates presented in this paper can in principle be extended to allow decimal number inputs with high quality QPCs.
Design of neurophysiologically motivated structures of time-pulse coded neurons
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lobodzinska, Raisa F.
2009-04-01
The common methodology of biologically motivated concept of building of processing sensors systems with parallel input and picture operands processing and time-pulse coding are described in paper. Advantages of such coding for creation of parallel programmed 2D-array structures for the next generation digital computers which require untraditional numerical systems for processing of analog, digital, hybrid and neuro-fuzzy operands are shown. The optoelectronic time-pulse coded intelligent neural elements (OETPCINE) simulation results and implementation results of a wide set of neuro-fuzzy logic operations are considered. The simulation results confirm engineering advantages, intellectuality, circuit flexibility of OETPCINE for creation of advanced 2D-structures. The developed equivalentor-nonequivalentor neural element has power consumption of 10mW and processing time about 10...100us.
Implementing neural nets with programmable logic
NASA Technical Reports Server (NTRS)
Vidal, Jacques J.
1988-01-01
Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.
Fundamentals of Digital Engineering: Designing for Reliability
NASA Technical Reports Server (NTRS)
Katz, R.; Day, John H. (Technical Monitor)
2001-01-01
The concept of designing for reliability will be introduced along with a brief overview of reliability, redundancy and traditional methods of fault tolerance is presented, as applied to current logic devices. The fundamentals of advanced circuit design and analysis techniques will be the primary focus. The introduction will cover the definitions of key device parameters and how analysis is used to prove circuit correctness. Basic design techniques such as synchronous vs asynchronous design, metastable state resolution time/arbiter design, and finite state machine structure/implementation will be reviewed. Advanced topics will be explored such as skew-tolerant circuit design, the use of triple-modular redundancy and circuit hazards, device transients and preventative circuit design, lock-up states in finite state machines generated by logic synthesizers, device transient characteristics, radiation mitigation techniques. worst-case analysis, the use of timing analyzer and simulators, and others. Case studies and lessons learned from spaceflight designs will be given as examples
Logic circuit detects both present and missing negative pulses in superimposed wave trains
NASA Technical Reports Server (NTRS)
Rice, R. E.
1967-01-01
Pulse divide and determination network provides a logical determination of pulse presence within a data train. The network uses digital logic circuitry to divide positive and negative pulses, to shape the separated pulses, and to determine, by means of coincidence logic, if negative pulses are missing from the pulse train.
Compton suppression and event triggering in a commercial data acquisition system
NASA Astrophysics Data System (ADS)
Tabor, Samuel; Caussyn, D. D.; Tripathi, Vandana; Vonmoss, J.; Liddick, S. N.
2012-10-01
A number of groups are starting to use flash digitizer systems to directly convert the preamplifier signals of high-resolution Ge detectors to a stream of digital data. Some digitizers are also equipped with software constant fraction discriminator algorithms capable of operating on the resulting digital data stream to provide timing information. Because of the dropping cost per channel of these systems, it should now be possible to also connect outputs of the Bismuth Germanate (BGO) scintillators used for Compton suppression to other digitizer inputs so that BGO logic signals can also be available in the same system. This provides the possibility to perform all the Compton suppression and multiplicity trigger logic within the digital system, thus eliminating the need for separate timing filter amplifiers (TFA), constant fraction discriminators (CFD), logic units, and lots of cables. This talk will describe the performance of such a system based on Pixie16 modules from XIA LLC with custom field programmable gate array (FPGA) programming for an array of Compton suppressed single Ge crystal and 4-crystal ``Clover'' detector array along with optional particle detectors. Initial tests of the system have produced results comparable with the current traditional system of individual electronics and peak sensing analog to digital converters. The advantages of the all digital system will be discussed.
Economical Implementation of a Filter Engine in an FPGA
NASA Technical Reports Server (NTRS)
Kowalski, James E.
2009-01-01
A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources. The implementation of the digital state-space filter involves matrix vector multiplications, which, in the absence of the present innovation, would ordinarily necessitate some multiplexing of vector elements and/or routing of data flows along multiple paths. The design concept calls for implementing vector registers as shift registers to simplify operand access to multipliers and accumulators, obviating both multiplexing and routing of data along multiple paths. Each vector register would be reused for different parts of a calculation. Outputs would always be drawn from the same register, and inputs would always be loaded into the same register. A simple state machine would control each filter. The output of a given filter would be passed to the next filter, accompanied by a "valid" signal, which would start the state machine of the next filter. Multiple filter modules would share a multiplication/accumulation arithmetic unit. The filter computations would be timed by use of a clock having a frequency high enough, relative to the input and output data rate, to provide enough cycles for matrix and vector arithmetic operations. This design concept could prove beneficial in numerous applications in which digital filters are used and/or vectors are multiplied by coefficient matrices. Examples of such applications include general signal processing, filtering of signals in control systems, processing of geophysical measurements, and medical imaging. For these and other applications, it could be advantageous to combine compact FPGA digital filter implementations with other application-specific logic implementations on single integrated-circuit chips. An FPGA could readily be tailored to implement a variety of filters because the filter coefficients would be loaded into memory at startup.
Statechart-based design controllers for FPGA partial reconfiguration
NASA Astrophysics Data System (ADS)
Łabiak, Grzegorz; Wegrzyn, Marek; Rosado Muñoz, Alfredo
2015-09-01
Statechart diagram and UML technique can be a vital part of early conceptual modeling. At the present time there is no much support in hardware design methodologies for reconfiguration features of reprogrammable devices. Authors try to bridge the gap between imprecise UML model and formal HDL description. The key concept in author's proposal is to describe the behavior of the digital controller by statechart diagrams and to map some parts of the behavior into reprogrammable logic by means of group of states which forms sequential automaton. The whole process is illustrated by the example with experimental results.
NASA Technical Reports Server (NTRS)
Ingle, B. D.; Ryan, J. P.
1972-01-01
A design for a solid-state parasitic speed controller using digital logic was analyzed. Parasitic speed controllers are used in space power electrical generating systems to control the speed of turbine-driven alternators within specified limits. The analysis included the performance characteristics of the speed controller and the generation of timing functions. The speed controller using digital logic applies step loads to the alternator. The step loads conduct for a full half wave starting at either zero or 180 electrical degrees.
F-15 digital electronic engine control system description
NASA Technical Reports Server (NTRS)
Myers, L. P.
1984-01-01
A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.
Digital Poetry: A Narrow Relation between Poetics and the Codes of the Computational Logic
NASA Astrophysics Data System (ADS)
Laurentiz, Silvia
The project "Percorrendo Escrituras" (Walking Through Writings Project) has been developed at ECA-USP Fine Arts Department. Summarizing, it intends to study different structures of digital information that share the same universe and are generators of a new aesthetics condition. The aim is to search which are the expressive possibilities of the computer among the algorithm functions and other of its specific properties. It is a practical, theoretical and interdisciplinary project where the study of programming evolutionary language, logic and mathematics take us to poetic experimentations. The focus of this research is the digital poetry, and it comes from poetics of permutation combinations and culminates with dynamic and complex systems, autonomous, multi-user and interactive, through agents generation derivations, filtration and emergent standards. This lecture will present artworks that use some mechanisms introduced by cybernetics and the notion of system in digital poetry that demonstrate the narrow relationship between poetics and the codes of computational logic.
Synthetic mixed-signal computation in living cells
Rubens, Jacob R.; Selvaggio, Gianluca; Lu, Timothy K.
2016-01-01
Living cells implement complex computations on the continuous environmental signals that they encounter. These computations involve both analogue- and digital-like processing of signals to give rise to complex developmental programs, context-dependent behaviours and homeostatic activities. In contrast to natural biological systems, synthetic biological systems have largely focused on either digital or analogue computation separately. Here we integrate analogue and digital computation to implement complex hybrid synthetic genetic programs in living cells. We present a framework for building comparator gene circuits to digitize analogue inputs based on different thresholds. We then demonstrate that comparators can be predictably composed together to build band-pass filters, ternary logic systems and multi-level analogue-to-digital converters. In addition, we interface these analogue-to-digital circuits with other digital gene circuits to enable concentration-dependent logic. We expect that this hybrid computational paradigm will enable new industrial, diagnostic and therapeutic applications with engineered cells. PMID:27255669
Digitized synchronous demodulator
NASA Technical Reports Server (NTRS)
Woodhouse, Christopher E. (Inventor)
1990-01-01
A digitized synchronous demodulator is constructed entirely of digital components including timing logic, an accumulator, and means to digitally filter the digital output signal. Indirectly, it accepts, at its input, periodic analog signals which are converted to digital signals by traditional analog-to-digital conversion techniques. Broadly, the input digital signals are summed to one of two registers within an accumulator, based on the phase of the input signal and medicated by timing logic. At the end of a predetermined number of cycles of the inputted periodic signals, the contents of the register that accumulated samples from the negative half cycle is subtracted from the accumulated samples from the positive half cycle. The resulting difference is an accurate measurement of the narrow band amplitude of the periodic input signal during the measurement period. This measurement will not include error sources encountered in prior art synchronous demodulators using analog techniques such as offsets, charge injection errors, temperature drift, switching transients, settling time, analog to digital converter missing code, and linearity errors.
NASA Astrophysics Data System (ADS)
Rosky, David S.; Coy, Bruce H.; Friedmann, Marc D.
1992-03-01
A 2500 gate mixed signal gate array has been developed that integrates custom PLL-based clock recovery and clock synthesis functions with 2500 gates of configurable logic cells to provide a single chip solution for 200 - 1244 MHz fiber based digital interface applications. By customizing the digital logic cells, any of the popular telecom and datacom standards may be implemented.
Energy Efficient Digital Logic Using Nanoscale Magnetic Devices
NASA Astrophysics Data System (ADS)
Lambson, Brian James
Increasing demand for information processing in the last 50 years has been largely satisfied by the steadily declining price and improving performance of microelectronic devices. Much of this progress has been made by aggressively scaling the size of semiconductor transistors and metal interconnects that microprocessors are built from. As devices shrink to the size regime in which quantum effects pose significant challenges, new physics may be required in order to continue historical scaling trends. A variety of new devices and physics are currently under investigation throughout the scientific and engineering community to meet these challenges. One of the more drastic proposals on the table is to replace the electronic components of information processors with magnetic components. Magnetic components are already commonplace in computers for their information storage capability. Unlike most electronic devices, magnetic materials can store data in the absence of a power supply. Today's magnetic hard disk drives can routinely hold billions of bits of information and are in widespread commercial use. Their ability to function without a constant power source hints at an intrinsic energy efficiency. The question we investigate in this dissertation is whether or not this advantage can be extended from information storage to the notoriously energy intensive task of information processing. Several proof-of-concept magnetic logic devices were proposed and tested in the past decade. In this dissertation, we build on the prior work by answering fundamental questions about how magnetic devices achieve such high energy efficiency and how they can best function in digital logic applications. The results of this analysis are used to suggest and test improvements to nanomagnetic computing devices. Two of our results are seen as especially important to the field of nanomagnetic computing: (1) we show that it is possible to operate nanomagnetic computers at the fundamental thermodyanimic limits of computation and (2) we develop a nanomagnet with a unique shape that is engineered to significantly improve the reliability of nanomagnetic logic.
Two-dimensional radiant energy array computers and computing devices
NASA Technical Reports Server (NTRS)
Schaefer, D. H.; Strong, J. P., III (Inventor)
1976-01-01
Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.
NASA Technical Reports Server (NTRS)
Baumann, Eric; Merolla, Anthony
1988-01-01
User controls number of clock pulses to prevent burnout. New digital programmable pulser circuit in three formats; freely running, counted, and single pulse. Operates at frequencies up to 5 MHz, with no special consideration given to layout of components or to terminations. Pulser based on sequential circuit with four states and binary counter with appropriate decoding logic. Number of programmable pulses increased beyond 127 by addition of another counter and decoding logic. For very large pulse counts and/or very high frequencies, use synchronous counters to avoid errors caused by propagation delays. Invaluable tool for initial verification or diagnosis of digital or digitally controlled circuity.
Designed cell consortia as fragrance-programmable analog-to-digital converters.
Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin
2017-03-01
Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.
Distinguishing between evidence and its explanations in the steering of atomic clocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, John M., E-mail: myers@seas.harvard.edu; Hadi Madjid, F., E-mail: gmadjid@aol.com
2014-11-15
Quantum theory reflects within itself a separation of evidence from explanations. This separation leads to a known proof that: (1) no wave function can be determined uniquely by evidence, and (2) any chosen wave function requires a guess reaching beyond logic to things unforeseeable. Chosen wave functions are encoded into computer-mediated feedback essential to atomic clocks, including clocks that step computers through their phases of computation and clocks in space vehicles that supply evidence of signal propagation explained by hypotheses of spacetimes with metric tensor fields. The propagation of logical symbols from one computer to another requires a shared rhythm—likemore » a bucket brigade. Here we show how hypothesized metric tensors, dependent on guesswork, take part in the logical synchronization by which clocks are steered in rate and position toward aiming points that satisfy phase constraints, thereby linking the physics of signal propagation with the sharing of logical symbols among computers. Recognizing the dependence of the phasing of symbol arrivals on guesses about signal propagation transports logical synchronization from the engineering of digital communications to a discipline essential to physics. Within this discipline we begin to explore questions invisible under any concept of time that fails to acknowledge unforeseeable events. In particular, variation of spacetime curvature is shown to limit the bit rate of logical communication. - Highlights: • Atomic clocks are steered in frequency toward an aiming point. • The aiming point depends on a chosen wave function. • No evidence alone can determine the wave function. • The unknowability of the wave function has implications for spacetime curvature. • Variability in spacetime curvature limits the bit rate of communications.« less
Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.
ERIC Educational Resources Information Center
Cleaver, Thomas G.
1988-01-01
Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)
Teaching Discrete and Programmable Logic Design Techniques Using a Single Laboratory Board
ERIC Educational Resources Information Center
Debiec, P.; Byczuk, M.
2011-01-01
Programmable logic devices (PLDs) are used at many universities in introductory digital logic laboratories, where kits containing a single high-capacity PLD replace "standard" sets containing breadboards, wires, and small- or medium-scale integration (SSI/MSI) chips. From the pedagogical point of view, two problems arise in these…
NASA Astrophysics Data System (ADS)
Lasher, Mark E.; Henderson, Thomas B.; Drake, Barry L.; Bocker, Richard P.
1986-09-01
The modified signed-digit (MSD) number representation offers full parallel, carry-free addition. A MSD adder has been described by the authors. This paper describes how the adder can be used in a tree structure to implement an optical multiply algorithm. Three different optical schemes, involving position, polarization, and intensity encoding, are proposed for realizing the trinary logic system. When configured in the generic multiplier architecture, these schemes yield the combinatorial logic necessary to carry out the multiplication algorithm. The optical systems are essentially three dimensional arrangements composed of modular units. Of course, this modularity is important for design considerations, while the parallelism and noninterfering communication channels of optical systems are important from the standpoint of reduced complexity. The authors have also designed electronic hardware to demonstrate and model the combinatorial logic required to carry out the algorithm. The electronic and proposed optical systems will be compared in terms of complexity and speed.
NASA Astrophysics Data System (ADS)
Sun, Degui; Wang, Na-Xin; He, Li-Ming; Weng, Zhao-Heng; Wang, Daheng; Chen, Ray T.
1996-06-01
A space-position-logic-encoding scheme is proposed and demonstrated. This encoding scheme not only makes the best use of the convenience of binary logic operation, but is also suitable for the trinary property of modified signed- digit (MSD) numbers. Based on the space-position-logic-encoding scheme, a fully parallel modified signed-digit adder and subtractor is built using optoelectronic switch technologies in conjunction with fiber-multistage 3D optoelectronic interconnects. Thus an effective combination of a parallel algorithm and a parallel architecture is implemented. In addition, the performance of the optoelectronic switches used in this system is experimentally studied and verified. Both the 3-bit experimental model and the experimental results of a parallel addition and a parallel subtraction are provided and discussed. Finally, the speed ratio between the MSD adder and binary adders is discussed and the advantage of the MSD in operating speed is demonstrated.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Raghuwanshi, Sanjeev Kumar
2016-06-01
The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.
LEGO-MM: LEarning structured model by probabilistic loGic Ontology tree for MultiMedia.
Tang, Jinhui; Chang, Shiyu; Qi, Guo-Jun; Tian, Qi; Rui, Yong; Huang, Thomas S
2016-09-22
Recent advances in Multimedia ontology have resulted in a number of concept models, e.g., LSCOM and Mediamill 101, which are accessible and public to other researchers. However, most current research effort still focuses on building new concepts from scratch, very few work explores the appropriate method to construct new concepts upon the existing models already in the warehouse. To address this issue, we propose a new framework in this paper, termed LEGO1-MM, which can seamlessly integrate both the new target training examples and the existing primitive concept models to infer the more complex concept models. LEGOMM treats the primitive concept models as the lego toy to potentially construct an unlimited vocabulary of new concepts. Specifically, we first formulate the logic operations to be the lego connectors to combine existing concept models hierarchically in probabilistic logic ontology trees. Then, we incorporate new target training information simultaneously to efficiently disambiguate the underlying logic tree and correct the error propagation. Extensive experiments are conducted on a large vehicle domain data set from ImageNet. The results demonstrate that LEGO-MM has significantly superior performance over existing state-of-the-art methods, which build new concept models from scratch.
de Bruin, Jeroen S; Adlassnig, Klaus-Peter; Leitich, Harald; Rappelsberger, Andrea
2018-01-01
Evidence-based clinical guidelines have a major positive effect on the physician's decision-making process. Computer-executable clinical guidelines allow for automated guideline marshalling during a clinical diagnostic process, thus improving the decision-making process. Implementation of a digital clinical guideline for the prevention of mother-to-child transmission of hepatitis B as a computerized workflow, thereby separating business logic from medical knowledge and decision-making. We used the Business Process Model and Notation language system Activiti for business logic and workflow modeling. Medical decision-making was performed by an Arden-Syntax-based medical rule engine, which is part of the ARDENSUITE software. We succeeded in creating an electronic clinical workflow for the prevention of mother-to-child transmission of hepatitis B, where institution-specific medical decision-making processes could be adapted without modifying the workflow business logic. Separation of business logic and medical decision-making results in more easily reusable electronic clinical workflows.
ERIC Educational Resources Information Center
Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.
2003-01-01
Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…
Interactive Web-based tutorials for teaching digital electronics
NASA Astrophysics Data System (ADS)
Bailey, Donald G.
2000-10-01
With a wide range of student abilities in a class, it is difficult to effectively teach and stimulate all students. A series of web based tutorials was designed to help weaker students and stretch the stronger students. The tutorials consist of a series of HTML web pages with embedded Java applets. This combination is particularly powerful for providing interactive demonstrations because any textual content may be easily provided within the web page. The applet is able to be a compete working program that dynamically illustrates the concept, or provides a working environment for the student to experiment and work through their solution. The applet is dynamic, and responds to the student through both mouse clicks and keyboard entry. These allow the student to adjust parameters, make selections, and affect the way the program is run or information is displayed. Such interaction allows each applet to provide a mini demonstration or experiment to help the student understand a particular concept or technique. The approach taken is illustrated with a tutorial that dynamically shows the relationships between a truth table, Karnaugh amp, logic circuit and Boolean algebra representations of a logic function, and dramatically illustrates the effect of minimization on the resultant circuit. Use of the tutorial has resulted in significant benefits, particularly with weaker students.
Choi, Jeeyae; Bakken, Suzanne; Lussier, Yves A; Mendonça, Eneida A
2006-01-01
Medical logic modules are a procedural representation for sharing task-specific knowledge for decision support systems. Based on the premise that clinicians may perceive object-oriented expressions as easier to read than procedural rules in Arden Syntax-based medical logic modules, we developed a method for improving the readability of medical logic modules. Two approaches were applied: exploiting the concept-oriented features of the Medical Entities Dictionary and building an executable Java program to replace Arden Syntax procedural expressions. The usability evaluation showed that 66% of participants successfully mapped all Arden Syntax rules to Java methods. These findings suggest that these approaches can play an essential role in the creation of human readable medical logic modules and can potentially increase the number of clinical experts who are able to participate in the creation of medical logic modules. Although our approaches are broadly applicable, we specifically discuss the relevance to concept-oriented nursing terminologies and automated processing of task-specific nursing knowledge.
System for adjusting frequency of electrical output pulses derived from an oscillator
Bartholomew, David B.
2006-11-14
A system for setting and adjusting a frequency of electrical output pulses derived from an oscillator in a network is disclosed. The system comprises an accumulator module configured to receive pulses from an oscillator and to output an accumulated value. An adjustor module is configured to store an adjustor value used to correct local oscillator drift. A digital adder adds values from the accumulator module to values stored in the adjustor module and outputs their sums to the accumulator module, where they are stored. The digital adder also outputs an electrical pulse to a logic module. The logic module is in electrical communication with the adjustor module and the network. The logic module may change the value stored in the adjustor module to compensate for local oscillator drift or change the frequency of output pulses. The logic module may also keep time and calculate drift.
Superconducting flux flow digital circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, J.S.; Zipperian, T.E.; Hietala, V.M.
1993-03-01
The authors have developed a family of digital logic circuits based on superconducting flux flow transistors that show high speed, reasonable signal levels, large fan-out, and large noise margins. The circuits are made from high-temperature superconductors (HTS) and have been shown to operate at over 90 K. NOR gates have been demonstrated with fan-outs of more than 5 and fully loaded switching times less than a fixture-limited 50 ps. Ring-oscillator data suggest inverter delay times of about 40ps when using a 3-[mu]m linewidths. Simple flip-flops have also been demonstrated showing large noise margins, response times of less than 30 ps,more » and static power dissipation on the order of 30 nW. Among other uses, this logic family is appropriate as an interface between logic families such as single flux quantum and conventional semiconductor logic.« less
Devaraju, Naga Sai Gopi K; Unger, Marc A
2012-11-21
Advances in microfluidics now allow an unprecedented level of parallelization and integration of biochemical reactions. However, one challenge still faced by the field has been the complexity and cost of the control hardware: one external pressure signal has been required for each independently actuated set of valves on chip. Using a simple post-modification to the multilayer soft lithography fabrication process, we present a new implementation of digital fluidic logic fully analogous to electronic logic with significant performance advances over the previous implementations. We demonstrate a novel normally closed static gain valve capable of modulating pressure signals in a fashion analogous to an electronic transistor. We utilize these valves to build complex fluidic logic circuits capable of arbitrary control of flows by processing binary input signals (pressure (1) and atmosphere (0)). We demonstrate logic gates and devices including NOT, NAND and NOR gates, bi-stable flip-flops, gated flip-flops (latches), oscillators, self-driven peristaltic pumps, delay flip-flops, and a 12-bit shift register built using static gain valves. This fluidic logic shows cascade-ability, feedback, programmability, bi-stability, and autonomous control capability. This implementation of fluidic logic yields significantly smaller devices, higher clock rates, simple designs, easy fabrication, and integration into MSL microfluidics.
NASA Technical Reports Server (NTRS)
Carreno, Victor A.; Choi, G.; Iyer, R. K.
1990-01-01
A simulation study is described which predicts the susceptibility of an advanced control system to electrical transients resulting in logic errors, latched errors, error propagation, and digital upset. The system is based on a custom-designed microprocessor and it incorporates fault-tolerant techniques. The system under test and the method to perform the transient injection experiment are described. Results for 2100 transient injections are analyzed and classified according to charge level, type of error, and location of injection.
Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition
NASA Astrophysics Data System (ADS)
Popko, E. A.; Weinstein, I. A.
2016-08-01
Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.
Lyceum: A Multi-Protocol Digital Library Gateway
NASA Technical Reports Server (NTRS)
Maa, Ming-Hokng; Nelson, Michael L.; Esler, Sandra L.
1997-01-01
Lyceum is a prototype scalable query gateway that provides a logically central interface to multi-protocol and physically distributed, digital libraries of scientific and technical information. Lyceum processes queries to multiple syntactically distinct search engines used by various distributed information servers from a single logically central interface without modification of the remote search engines. A working prototype (http://www.larc.nasa.gov/lyceum/) demonstrates the capabilities, potentials, and advantages of this type of meta-search engine by providing access to over 50 servers covering over 20 disciplines.
Airstart performance of a digital electronic engine control system on an F100 engine
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.
1984-01-01
The digital electronic engine control (DEEC) system installed on an F100 engine in an F-15 aircraft was tested. The DEEC system incorporates a closed-loop air start feature in which the fuel flow is modulated to achieve the desired rate of compressor acceleration. With this logic the DEEC equipped F100 engine can achieve air starts over a larger envelope. The DEEC air start logic, the test program conducted on the F-15, and its results are described.
NASA Astrophysics Data System (ADS)
Matsuzaki, F.; Yoshikawa, N.; Tanaka, M.; Fujimaki, A.; Takai, Y.
2003-10-01
Recently many single flux quantum (SFQ) logic circuits containing several thousands of Josephson junctions have been designed successfully by using digital domain simulation based on the hard ware description language (HDL). In the present HDL-based design of SFQ circuits, a structure-level HDL description has been used, where circuits are made up of basic gate cells. However, in order to analyze large-scale SFQ digital systems, such as a microprocessor, more higher-level circuit abstraction is necessary to reduce the circuit simulation time. In this paper we have investigated the way to describe functionality of the large-scale SFQ digital circuits by a behavior-level HDL description. In this method, the functionality and the timing of the circuit block is defined directly by describing their behavior by the HDL. Using this method, we can dramatically reduce the simulation time of large-scale SFQ digital circuits.
Integrated circuits and logic operations based on single-layer MoS2.
Radisavljevic, Branimir; Whitwick, Michael Brian; Kis, Andras
2011-12-27
Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS(2) represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS(2). Our integrated circuits are capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits. We also show that electrical circuits composed of single-layer MoS(2) transistors are capable of performing the NOR logic operation, the basis from which all logical operations and full digital functionality can be deduced.
Rhee, Minsoung
2010-01-01
We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combinations of various logic circuits and receives pneumatically encoded serial commands at a single input line. The device then decodes the temporal command sequence by spatial parallelization, computes necessary logic calculations between parallelized command bits, stores command information for signal transportation and maintenance, and finally executes the command for the target devices. Thus, such pneumatic microprocessors will function as a universal on-chip control platform to perform complex parallel operations for large-scale integrated microfluidic devices. To demonstrate the working principles, we have built 2-bit, 3-bit, 4-bit, and 8-bit microprecessors to control various target devices for applications such as four color dye mixing, and multiplexed channel fluidic control. By significantly reducing the need for external controllers, the digital pneumatic microprocessor can be used as a universal on-chip platform to autonomously manipulate microfluids in a high throughput manner. PMID:19823730
NASA Technical Reports Server (NTRS)
Hegarty, D. M.
1974-01-01
A guidance, navigation, and control system, the Simulated Shuttle Flight Test System (SS-FTS), when interfaced with existing aircraft systems, provides a research facility for studying concepts for landing the space shuttle orbiter and conventional jet aircraft. The SS-FTS, which includes a general-purpose computer, performs all computations for precisely following a prescribed approach trajectory while properly managing the vehicle energy to allow safe arrival at the runway and landing within prescribed dispersions. The system contains hardware and software provisions for navigation with several combinations of possible navigation aids that have been suggested for the shuttle. The SS-FTS can be reconfigured to study different guidance and navigation concepts by changing only the computer software, and adapted to receive different radio navigation information through minimum hardware changes. All control laws, logic, and mode interlocks reside solely in the computer software.
Programmable Logic Application Notes
NASA Technical Reports Server (NTRS)
Katz, Richard
2000-01-01
This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter will continue a series of notes concentrating on analysis techniques with this issue's section discussing: Digital Timing Analysis Tools and Techniques. Articles in this issue include: SX and SX-A Series Devices Power Sequencing; JTAG and SXISX-AISX-S Series Devices; Analysis Techniques (i.e., notes on digital timing analysis tools and techniques); Status of the Radiation Hard reconfigurable Field Programmable Gate Array Program, Input Transition Times; Apollo Guidance Computer Logic Study; RT54SX32S Prototype Data Sets; A54SX32A - 0.22 micron/UMC Test Results; Ramtron FM1608 FRAM; and Analysis of VHDL Code and Synthesizer Output.
NASA Technical Reports Server (NTRS)
Beer, R.
1985-01-01
Small, low-cost comparator with 24-bit-precision yields ratio signal from pair of analog or digital input signals. Arithmetic logic chips (bit-slice) sample two 24-bit analog-to-digital converters approximately once every millisecond and accumulate them in two 24-bit registers. Approach readily modified to arbitrary precision.
Army/NASA small turboshaft engine digital controls research program
NASA Technical Reports Server (NTRS)
Sellers, J. F.; Baez, A. N.
1981-01-01
The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.
Surface-confined assemblies and polymers for molecular logic.
de Ruiter, Graham; van der Boom, Milko E
2011-08-16
Stimuli responsive materials are capable of mimicking the operation characteristics of logic gates such as AND, OR, NOR, and even flip-flops. Since the development of molecular sensors and the introduction of the first AND gate in solution by de Silva in 1993, Molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. In this Account, we present recent research activities that focus on MBLC with electrochromic polymers and metal polypyridyl complexes on a solid support. Metal polypyridyl complexes act as useful sensors to a variety of analytes in solution (i.e., H(2)O, Fe(2+/3+), Cr(6+), NO(+)) and in the gas phase (NO(x) in air). This information transfer, whether the analyte is present, is based on the reversible redox chemistry of the metal complexes, which are stable up to 200 °C in air. The concurrent changes in the optical properties are nondestructive and fast. In such a setup, the input is directly related to the output and, therefore, can be represented by one-input logic gates. These input-output relationships are extendable for mimicking the diverse functions of essential molecular logic gates and circuits within a set of Boolean algebraic operations. Such a molecular approach towards Boolean logic has yielded a series of proof-of-concept devices: logic gates, multiplexers, half-adders, and flip-flop logic circuits. MBLC is a versatile and, potentially, a parallel approach to silicon circuits: assemblies of these molecular gates can perform a wide variety of logic tasks through reconfiguration of their inputs. Although these developments do not require a semiconductor blueprint, similar guidelines such as signal propagation, gate-to-gate communication, propagation delay, and combinatorial and sequential logic will play a critical role in allowing this field to mature. For instance, gate-to-gate communication by chemical wiring of the gates with metal ions as electron carriers results in the integration of stand-alone systems: the output of one gate is used as the input for another gate. Using the same setup, we were able to display both combinatorial and sequential logic. We have demonstrated MBLC by coupling electrochemical inputs with optical readout, which resulted in various logic architectures built on a redox-active, functionalized surface. Electrochemically operated sequential logic systems such as flip-flops, multivalued logic, and multistate memory could enhance computational power without increasing spatial requirements. Applying multivalued digits in data storage could exponentially increase memory capacity. Furthermore, we evaluate the pros and cons of MBLC and identify targets for future research in this Account. © 2011 American Chemical Society
Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology.
Wang, Baojun; Kitney, Richard I; Joly, Nicolas; Buck, Martin
2011-10-18
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ(54)-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts. © 2011 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Traversa, Fabio L.; Di Ventra, Massimiliano
2017-02-01
We introduce a class of digital machines, we name Digital Memcomputing Machines, (DMMs) able to solve a wide range of problems including Non-deterministic Polynomial (NP) ones with polynomial resources (in time, space, and energy). An abstract DMM with this power must satisfy a set of compatible mathematical constraints underlying its practical realization. We prove this by making a connection with the dynamical systems theory. This leads us to a set of physical constraints for poly-resource resolvability. Once the mathematical requirements have been assessed, we propose a practical scheme to solve the above class of problems based on the novel concept of self-organizing logic gates and circuits (SOLCs). These are logic gates and circuits able to accept input signals from any terminal, without distinction between conventional input and output terminals. They can solve boolean problems by self-organizing into their solution. They can be fabricated either with circuit elements with memory (such as memristors) and/or standard MOS technology. Using tools of functional analysis, we prove mathematically the following constraints for the poly-resource resolvability: (i) SOLCs possess a global attractor; (ii) their only equilibrium points are the solutions of the problems to solve; (iii) the system converges exponentially fast to the solutions; (iv) the equilibrium convergence rate scales at most polynomially with input size. We finally provide arguments that periodic orbits and strange attractors cannot coexist with equilibria. As examples, we show how to solve the prime factorization and the search version of the NP-complete subset-sum problem. Since DMMs map integers into integers, they are robust against noise and hence scalable. We finally discuss the implications of the DMM realization through SOLCs to the NP = P question related to constraints of poly-resources resolvability.
One output function: a misconception of students studying digital systems - a case study
NASA Astrophysics Data System (ADS)
Trotskovsky, E.; Sabag, N.
2015-05-01
Background:Learning processes are usually characterized by students' misunderstandings and misconceptions. Engineering educators intend to help their students overcome their misconceptions and achieve correct understanding of the concept. This paper describes a misconception in digital systems held by many students who believe that combinational logic circuits should have only one output. Purpose:The current study aims to investigate the roots of the misconception about one-output function and the pedagogical methods that can help students overcome the misconception. Sample:Three hundred and eighty-one students in the Departments of Electrical and Electronics and Mechanical Engineering at an academic engineering college, who learned the same topics of a digital combinational system, participated in the research. Design and method:In the initial research stage, students were taught according to traditional method - first to design a one-output combinational logic system, and then to implement a system with a number of output functions. In the main stage, an experimental group was taught using a new method whereby they were shown how to implement a system with several output functions, prior to learning about one-output systems. A control group was taught using the traditional method. In the replication stage (the third stage), an experimental group was taught using the new method. A mixed research methodology was used to examine the results of the new learning method. Results:Quantitative research showed that the new teaching approach resulted in a statistically significant decrease in student errors, and qualitative research revealed students' erroneous thinking patterns. Conclusions:It can be assumed that the traditional teaching method generates an incorrect mental model of the one-output function among students. The new pedagogical approach prevented the creation of an erroneous mental model and helped students develop the correct conceptual understanding.
Hydraulic logic gates: building a digital water computer
NASA Astrophysics Data System (ADS)
Taberlet, Nicolas; Marsal, Quentin; Ferrand, Jérémy; Plihon, Nicolas
2018-03-01
In this article, we propose an easy-to-build hydraulic machine which serves as a digital binary computer. We first explain how an elementary adder can be built from test tubes and pipes (a cup filled with water representing a 1, and empty cup a 0). Using a siphon and a slow drain, the proposed setup combines AND and XOR logical gates in a single device which can add two binary digits. We then show how these elementary units can be combined to construct a full 4-bit adder. The sequencing of the computation is discussed and a water clock can be incorporated so that the machine can run without any exterior intervention.
Cheng, Nan; Zhu, Pengyu; Xu, Yuancong; Huang, Kunlun; Luo, Yunbo; Yang, Zhansen; Xu, Wentao
2016-10-15
The first example of droplet digital PCR logic gates ("YES", "OR" and "AND") for Hg (II) and Ag (I) ion detection has been constructed based on two amplification events triggered by a metal-ion-mediated base mispairing (T-Hg(II)-T and C-Ag(I)-C). In this work, Hg(II) and Ag(I) were used as the input, and the "true" hierarchical colors or "false" green were the output. Through accurate molecular recognition and high sensitivity amplification, positive droplets were generated by droplet digital PCR and viewed as the basis of hierarchical digital signals. Based on this principle, YES gate for Hg(II) (or Ag(I)) detection, OR gate for Hg(II) or Ag(I) detection and AND gate for Hg(II) and Ag(I) detection were developed, and their sensitively and selectivity were reported. The results indicate that the ddPCR logic system developed based on the different indicators for Hg(II) and Ag(I) ions provides a useful strategy for developing advanced detection methods, which are promising for multiplex metal ion analysis and intelligent DNA calculator design applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1972-01-01
Here, the 7400 line of transistor to transistor logic (TTL) devices is emphasized almost exclusively where hardware is concerned. However, it should be pointed out that the logic theory contained herein applies to all hardware. Binary numbers, simplification of logic circuits, code conversion circuits, basic flip-flop theory, details about series 54/7400, and asynchronous circuits are discussed.
Games in the environmental context and their strategic use for environmental education.
Branco, M A A; Weyermüller, A R; Müller, E F; Schneider, G T; Hupffer, H M; Delgado, J; Mossman, J B; Bez, M R; Mendes, T G
2015-05-01
This article aims to present the productivity of the assumptions of Philosophical Hermeneutics (Gadamer, 1996) and his discovery of the logical, ontological and structural model of the game that takes place during the experience that is the basis of comprehension. Thus, digital games are proposed as manners, methods and ways to improve the understanding, interpretation and application of the concepts of Sustainability and Environmental Principles. The attraction of the game as a pedagogic space lays in the fact that it takes over and allows the player to internalize ecological sensitivity, something that happens during the play. Finally, the results show an augment on students' motivation, when using the game versus the traditional process.
Synthesizing genetic sequential logic circuit with clock pulse generator.
Chuang, Chia-Hua; Lin, Chun-Liang
2014-05-28
Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.
Qubits and quantum Hamiltonian computing performances for operating a digital Boolean 1/2-adder
NASA Astrophysics Data System (ADS)
Dridi, Ghassen; Faizy Namarvar, Omid; Joachim, Christian
2018-04-01
Quantum Boolean (1 + 1) digits 1/2-adders are designed with 3 qubits for the quantum computing (Qubits) and 4 quantum states for the quantum Hamiltonian computing (QHC) approaches. Detailed analytical solutions are provided to analyse the time operation of those different 1/2-adder gates. QHC is more robust to noise than Qubits and requires about the same amount of energy for running its 1/2-adder logical operations. QHC is faster in time than Qubits but its logical output measurement takes longer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
Digital transmitter for data bus communications system
NASA Technical Reports Server (NTRS)
Proch, G. E. (Inventor)
1975-01-01
An improved digital transmitter for transmitting serial pulse code modulation (pcm) data at high bit rates over a transmission line is disclosed. When not transmitting, the transmitter features a high output impedance which prevents the transmitter from loading the transmission line. The pcm input is supplied to a logic control circuit which produces two discrete logic level signals which are supplied to an amplifier. The amplifier, which is transformer coupled to the output isolation circuitry, converts the discrete logic level signals to two high current level, ground isolated signals in the secondary windings of the coupling transformer. The latter signals are employed as inputs to the isolation circuitry which includes two series transistor pairs operating into a hybrid transformer functioning to isolate the transmitter circuitry from the transmission line.
Logics of Business Education for Sustainability
ERIC Educational Resources Information Center
Andersson, Pernilla; Öhman, Johan
2016-01-01
This paper explores various kinds of logics of "business education for sustainability" and how these "logics" position the subject business person, based on eight teachers' reasoning of their own practices. The concept of logics developed within a discourse theoretical framework is employed to analyse the teachers' reasoning.…
Majority logic gate for 3D magnetic computing.
Eichwald, Irina; Breitkreutz, Stephan; Ziemys, Grazvydas; Csaba, György; Porod, Wolfgang; Becherer, Markus
2014-08-22
For decades now, microelectronic circuits have been exclusively built from transistors. An alternative way is to use nano-scaled magnets for the realization of digital circuits. This technology, known as nanomagnetic logic (NML), may offer significant improvements in terms of power consumption and integration densities. Further advantages of NML are: non-volatility, radiation hardness, and operation at room temperature. Recent research focuses on the three-dimensional (3D) integration of nanomagnets. Here we show, for the first time, a 3D programmable magnetic logic gate. Its computing operation is based on physically field-interacting nanometer-scaled magnets arranged in a 3D manner. The magnets possess a bistable magnetization state representing the Boolean logic states '0' and '1.' Magneto-optical and magnetic force microscopy measurements prove the correct operation of the gate over many computing cycles. Furthermore, micromagnetic simulations confirm the correct functionality of the gate even for a size in the nanometer-domain. The presented device demonstrates the potential of NML for three-dimensional digital computing, enabling the highest integration densities.
Scaling up digital circuit computation with DNA strand displacement cascades.
Qian, Lulu; Winfree, Erik
2011-06-03
To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands. These multilayer circuits include thresholding and catalysis within every logical operation to perform digital signal restoration, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays. The design naturally incorporates other crucial elements for large-scale circuitry, such as general debugging tools, parallel circuit preparation, and an abstraction hierarchy supported by an automated circuit compiler.
Fuzzy logic of Aristotelian forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlovsky, L.I.
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties.more » In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.« less
GTEX: An expert system for diagnosing faults in satellite ground stations
NASA Technical Reports Server (NTRS)
Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.
1991-01-01
A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.
Video image processor on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/
NASA Technical Reports Server (NTRS)
Lindgren, R. W.; Tarbell, T. D.
1981-01-01
The SOUP instrument is designed to obtain diffraction-limited digital images of the sun with high photometric accuracy. The Video Processor originated from the requirement to provide onboard real-time image processing, both to reduce the telemetry rate and to provide meaningful video displays of scientific data to the payload crew. This original concept has evolved into a versatile digital processing system with a multitude of other uses in the SOUP program. The central element in the Video Processor design is a 16-bit central processing unit based on 2900 family bipolar bit-slice devices. All arithmetic, logical and I/O operations are under control of microprograms, stored in programmable read-only memory and initiated by commands from the LSI-11. Several functions of the Video Processor are described, including interface to the High Rate Multiplexer downlink, cosmetic and scientific data processing, scan conversion for crew displays, focus and exposure testing, and use as ground support equipment.
GTEX: An expert system for diagnosing faults in satellite ground stations
NASA Astrophysics Data System (ADS)
Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.
1991-11-01
A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.
15 CFR 970.601 - Logical mining unit.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Resource Development Concepts § 970.601 Logical mining unit. (a) In the case of an exploration license, a logical mining unit is an... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Logical mining unit. 970.601 Section...
15 CFR 970.601 - Logical mining unit.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Resource Development Concepts § 970.601 Logical mining unit. (a) In the case of an exploration license, a logical mining unit is an... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Logical mining unit. 970.601 Section...
15 CFR 970.601 - Logical mining unit.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Resource Development Concepts § 970.601 Logical mining unit. (a) In the case of an exploration license, a logical mining unit is an... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Logical mining unit. 970.601 Section...
15 CFR 970.601 - Logical mining unit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Resource Development Concepts § 970.601 Logical mining unit. (a) In the case of an exploration license, a logical mining unit is an... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Logical mining unit. 970.601 Section...
15 CFR 970.601 - Logical mining unit.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Resource Development Concepts § 970.601 Logical mining unit. (a) In the case of an exploration license, a logical mining unit is an... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Logical mining unit. 970.601 Section...
NASA Astrophysics Data System (ADS)
Rapoport, Diego L.
2011-01-01
In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology—after Merleau-Ponty, Heidegger and Rosen—and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to the commutator of the True and False operators of matrix logic, still with a quantum superposed state related to a Moebius surface, and as the physical field at the basis of Spencer-Brown's primitive distinction in the protologic of the calculus of distinction. In this setting, paradox, self-reference, depth, time and space, higher-order non-dual logic, perception, spin and a time operator, the Klein bottle, hypernumbers due to Musès which include non-trivial square roots of ±1 and in particular non-trivial nilpotents, quantum field operators, the transformation of cognition to spin for two-state quantum systems, are found to be keenly interwoven in a world conception compatible with the philosophical approach taken for basis of this article. The Klein bottle is found not only to be the topological in-formation for self-reference and paradox whose logical counterpart in the calculus of indications are the paradoxical imaginary time waves, but also a classical-quantum transformer (Hadamard's gate in quantum computation) which is indispensable to be able to obtain a complete multivalued logical system, and still to generate the matrix extension of classical connective Boolean logic. We further find that the multivalued logic that stems from considering the paradoxical equation in the calculus of distinctions, and in particular, the imaginary solutions to this equation, generates the matrix logic which supersedes the classical logic of connectives and which has for particular subtheories fuzzy and quantum logics. Thus, from a primitive distinction in the vacuum plane and the axioms of the calculus of distinction, we can derive by incorporating paradox, the world conception succinctly described above.
The music of morality and logic.
Mesz, Bruno; Rodriguez Zivic, Pablo H; Cecchi, Guillermo A; Sigman, Mariano; Trevisan, Marcos A
2015-01-01
Musical theory has built on the premise that musical structures can refer to something different from themselves (Nattiez and Abbate, 1990). The aim of this work is to statistically corroborate the intuitions of musical thinkers and practitioners starting at least with Plato, that music can express complex human concepts beyond merely "happy" and "sad" (Mattheson and Lenneberg, 1958). To do so, we ask whether musical improvisations can be used to classify the semantic category of the word that triggers them. We investigated two specific domains of semantics: morality and logic. While morality has been historically associated with music, logic concepts, which involve more abstract forms of thought, are more rarely associated with music. We examined musical improvisations inspired by positive and negative morality (e.g., good and evil) and logic concepts (true and false), analyzing the associations between these words and their musical representations in terms of acoustic and perceptual features. We found that music conveys information about valence (good and true vs. evil and false) with remarkable consistency across individuals. This information is carried by several musical dimensions which act in synergy to achieve very high classification accuracy. Positive concepts are represented by music with more ordered pitch structure and lower harmonic and sensorial dissonance than negative concepts. Music also conveys information indicating whether the word which triggered it belongs to the domains of logic or morality (true vs. good), principally through musical articulation. In summary, improvisations consistently map logic and morality information to specific musical dimensions, testifying the capacity of music to accurately convey semantic information in domains related to abstract forms of thought.
The music of morality and logic
Mesz, Bruno; Rodriguez Zivic, Pablo H.; Cecchi, Guillermo A.; Sigman, Mariano; Trevisan, Marcos A.
2015-01-01
Musical theory has built on the premise that musical structures can refer to something different from themselves (Nattiez and Abbate, 1990). The aim of this work is to statistically corroborate the intuitions of musical thinkers and practitioners starting at least with Plato, that music can express complex human concepts beyond merely “happy” and “sad” (Mattheson and Lenneberg, 1958). To do so, we ask whether musical improvisations can be used to classify the semantic category of the word that triggers them. We investigated two specific domains of semantics: morality and logic. While morality has been historically associated with music, logic concepts, which involve more abstract forms of thought, are more rarely associated with music. We examined musical improvisations inspired by positive and negative morality (e.g., good and evil) and logic concepts (true and false), analyzing the associations between these words and their musical representations in terms of acoustic and perceptual features. We found that music conveys information about valence (good and true vs. evil and false) with remarkable consistency across individuals. This information is carried by several musical dimensions which act in synergy to achieve very high classification accuracy. Positive concepts are represented by music with more ordered pitch structure and lower harmonic and sensorial dissonance than negative concepts. Music also conveys information indicating whether the word which triggered it belongs to the domains of logic or morality (true vs. good), principally through musical articulation. In summary, improvisations consistently map logic and morality information to specific musical dimensions, testifying the capacity of music to accurately convey semantic information in domains related to abstract forms of thought. PMID:26191020
Modified-Signed-Digit Optical Computing Using Fan-Out
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Zhou, Shaomin; Yeh, Pochi
1996-01-01
Experimental optical computing system containing optical fan-out elements implements modified signed-digit (MSD) arithmetic and logic. In comparison with previous optical implementations of MSD arithmetic, this one characterized by larger throughput, greater flexibility, and simpler optics.
Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.
1983-01-01
The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.
Comparing Online to Face-To-Face Delivery of Undergraduate Digital Circuits Content
ERIC Educational Resources Information Center
LaMeres, Brock J.; Plumb, Carolyn
2014-01-01
This paper presents a comparison of online to traditional face-to-face delivery of undergraduate digital systems material. Two specific components of digital content were compared and evaluated: a sophomore logic circuits course with no laboratory, and a microprocessor laboratory component of a junior-level computer systems course. For each of…
Digital microfluidics: Droplet based logic gates
NASA Astrophysics Data System (ADS)
Cheow, Lih Feng; Yobas, Levent; Kwong, Dim-Lee
2007-01-01
The authors present microfluidic logic gates based on two-phase flows at low Reynold's number. The presence and the absence of a dispersed phase liquid (slug) in a continuous phase liquid represent 1 and 0, respectively. The working principle of these devices is based on the change in hydrodynamic resistance for a channel containing droplets. Logical operations including AND, OR, and NOT are demonstrated, and may pave the way for microfludic system automation and computation.
Can composite digital monitoring biomarkers come of age? A framework for utilization.
Kovalchick, Christopher; Sirkar, Rhea; Regele, Oliver B; Kourtis, Lampros C; Schiller, Marie; Wolpert, Howard; Alden, Rhett G; Jones, Graham B; Wright, Justin M
2017-12-01
The application of digital monitoring biomarkers in health, wellness and disease management is reviewed. Harnessing the near limitless capacity of these approaches in the managed healthcare continuum will benefit from a systems-based architecture which presents data quality, quantity, and ease of capture within a decision-making dashboard. A framework was developed which stratifies key components and advances the concept of contextualized biomarkers. The framework codifies how direct, indirect, composite, and contextualized composite data can drive innovation for the application of digital biomarkers in healthcare. The de novo framework implies consideration of physiological, behavioral, and environmental factors in the context of biomarker capture and analysis. Application in disease and wellness is highlighted, and incorporation in clinical feedback loops and closed-loop systems is illustrated. The study of contextualized biomarkers has the potential to offer rich and insightful data for clinical decision making. Moreover, advancement of the field will benefit from innovation at the intersection of medicine, engineering, and science. Technological developments in this dynamic field will thus fuel its logical evolution guided by inputs from patients, physicians, healthcare providers, end-payors, actuarists, medical device manufacturers, and drug companies.
The GANDALF 128-Channel Time-to-Digital Converter
NASA Astrophysics Data System (ADS)
Büchele, M.; Fischer, H.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.
The GANDALF 6U-VME64x/VXS module has been designed to cope with a variety of readout tasks in high energy and nuclear physics experiments, in particular the COMPASS experiment at CERN. The exchangeable mezzanine cards allow for an employment of the system in very different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition or fast trigger generation. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In this concept each input signal is continuously sampled by 16 flip-flops using equidistant phase-shifted clocks. Compared to previous FPGA designs, usually based on delay lines and comprising few TDC channels with resolutions in the order of 10 ps, our design permits the implementation of a large number of TDC channels with a resolution of 64 ps in a single FPGA. Predictable placement of logic components and uniform routing inside the FPGA fabric is a particular challenge of this design. We present measurement results for the time resolution and the nonlinearity of the TDC readout system.
All-optical analog comparator.
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai
2016-08-23
An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical '1' or '0' by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai
2016-01-01
An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function. PMID:27550874
NASA Astrophysics Data System (ADS)
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai
2016-08-01
An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.
Rapidly reconfigurable all-optical universal logic gate
Goddard, Lynford L.; Bond, Tiziana C.; Kallman, Jeffrey S.
2010-09-07
A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.
Amplifying genetic logic gates.
Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew
2013-05-03
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
Synthesizing genetic sequential logic circuit with clock pulse generator
2014-01-01
Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665
Programmable Logic Application Notes
NASA Technical Reports Server (NTRS)
Katz, Richard; Day, John H. (Technical Monitor)
2001-01-01
This report will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter will continue a series of notes concentrating on analysis techniques with this issue's section discussing the use of Root-Sum-Square calculations for digital delays.
Introducing Programmable Logic to Undergraduate Engineering Students in a Digital Electronics Course
ERIC Educational Resources Information Center
Todorovich, E.; Marone, J. A.; Vazquez, M.
2012-01-01
Due to significant technological advances and industry requirements, many universities have introduced programmable logic and hardware description languages into undergraduate engineering curricula. This has led to a number of logistical and didactical challenges, in particular for computer science students. In this paper, the integration of some…
NASA Technical Reports Server (NTRS)
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
Motivation for DOC III: 64-bit digital optical computer
NASA Astrophysics Data System (ADS)
Guilfoyle, Peter S.
1991-09-01
OptiComp has focused on a digital optical logic family in order to capitalize on the inherent benefits of optical computing, which include (1) high FAN-IN and FAN-OUT, (2) low power consumption, (3) high noise margin, (4) high algorithmic efficiency using 'smart' interconnects, and (5) free-space leverage of gate interconnect bandwidth product. Other well-known secondary advantages of optical logic include zero capacitive loading of signals at a detector, zero cross-talk between signals, zero signal dispersion, and minimal clock skew (a few picoseconds or less in an imaging system). The primary focus of this paper is to demonstrate how each of the five advantages can be used to leverage other logic family performance such as GaAs; the secondary attributes are discussed only in the context of introducing the DOC III architecture.
NASA Astrophysics Data System (ADS)
Strangio, S.; Palestri, P.; Lanuzza, M.; Esseni, D.; Crupi, F.; Selmi, L.
2017-02-01
In this work, a benchmark for low-power digital applications of a III-V TFET technology platform against a conventional CMOS FinFET technology node is proposed. The analysis focuses on full-adder circuits, which are commonly identified as representative of the digital logic environment. 28T and 24T topologies, implemented in complementary-logic and transmission-gate logic, respectively, are investigated. Transient simulations are performed with a purpose-built test-bench on each single-bit full adder solution. The extracted delays and energy characteristics are post-processed and translated into figures-of-merit for multi-bit ripple-carry-adders. Trends related to the different full-adder implementations (for the same device technology platform) and to the different technology platforms (for the same full-adder topology) are presented and discussed.
Digital logic circuit based on two component molecular systems of BSA and salen
NASA Astrophysics Data System (ADS)
Hai-Bin, Lin; Feng, Chen; Hong-Xu, Guo
2018-02-01
A new fluorescent molecular probe 1 was designed and constructed by combining bovine serum albumin (BSA) and N,N‧-bis(salicylidene)ethylenediamine (salen). Stimulated by Zn2 +, tris, or EDTAH2Na2, the distance between BSA and salen was regulated, which was accompanied by an obvious change in the fluorescence intensity at 350 or 445 nm based on Förster resonance energy transfer. Moreover, based on the encoding binary digits in these inputs and outputs applying positive logic conventions, a monomolecular circuit integrating one OR, three NOT, and three YES gates, was successfully achieved.
Quantum-classical interface based on single flux quantum digital logic
NASA Astrophysics Data System (ADS)
McDermott, R.; Vavilov, M. G.; Plourde, B. L. T.; Wilhelm, F. K.; Liebermann, P. J.; Mukhanov, O. A.; Ohki, T. A.
2018-04-01
We describe an approach to the integrated control and measurement of a large-scale superconducting multiqubit array comprising up to 108 physical qubits using a proximal coprocessor based on the Single Flux Quantum (SFQ) digital logic family. Coherent control is realized by irradiating the qubits directly with classical bitstreams derived from optimal control theory. Qubit measurement is performed by a Josephson photon counter, which provides access to the classical result of projective quantum measurement at the millikelvin stage. We analyze the power budget and physical footprint of the SFQ coprocessor and discuss challenges and opportunities associated with this approach.
Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors.
Tremblay, Noah J; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E
2011-11-22
Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards 'intelligent sensors' that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations.
Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors
Tremblay, Noah J.; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E.
2013-01-01
Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards ‘intelligent sensors’ that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations. PMID:23754969
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Raedt, Hans; Katsnelson, Mikhail I.; Donker, Hylke C.
It is shown that the Pauli equation and the concept of spin naturally emerge from logical inference applied to experiments on a charged particle under the conditions that (i) space is homogeneous (ii) the observed events are logically independent, and (iii) the observed frequency distributions are robust with respect to small changes in the conditions under which the experiment is carried out. The derivation does not take recourse to concepts of quantum theory and is based on the same principles which have already been shown to lead to e.g. the Schrödinger equation and the probability distributions of pairs of particles inmore » the singlet or triplet state. Application to Stern–Gerlach experiments with chargeless, magnetic particles, provides additional support for the thesis that quantum theory follows from logical inference applied to a well-defined class of experiments. - Highlights: • The Pauli equation is obtained through logical inference applied to robust experiments on a charged particle. • The concept of spin appears as an inference resulting from the treatment of two-valued data. • The same reasoning yields the quantum theoretical description of neutral magnetic particles. • Logical inference provides a framework to establish a bridge between objective knowledge gathered through experiments and their description in terms of concepts.« less
A Non-reductionist Approach to Trust
NASA Astrophysics Data System (ADS)
Castelfranchi, Cristiano; Falcone, Rino; Lorini, Emiliano
We develop in this chapter a conceptual and logical model of social trust. We first present a modal logic of mental attitudes and action in which the concepts of plausible belief, certain belief, and a possibility order over formulas can be characterized. Then, we apply the logic to the formalization of the truster's expectation about some fundamental properties of the trustee (trustee's opportunity to accomplish a given task, his skills, abilities, and willingness to perform a given action for the accomplishment of the task). A, part of this chapter is devoted to discuss and formalize some concepts related to trust such as distrust, mistrust, lack of trust, and delegation. Finally, a concept of comparative trust is presented.
Grossi, Enzo
2005-09-27
The concept of risk has pervaded medical literature in the last decades and has become a familiar topic, and the concept of probability, linked to binary logic approach, is commonly applied in epidemiology and clinical medicine. The application of probability theory to groups of individuals is quite straightforward but can pose communication challenges at individual level. Few articles by the way have tried to focus the concept of "risk" at the individual subject level rather than at population level. The author has reviewed the conceptual framework which has led to the use of probability theory in the medical field in a time when the principal causes of death were represented by acute disease often of infective origin. In the present scenario, in which chronic degenerative disease dominate and there are smooth transitions between health and disease the use of fuzzy logic rather than binary logic would be more appropriate. The use of fuzzy logic in which more than two possible truth-value assignments are allowed overcomes the trap of probability theory when dealing with uncertain outcomes, thereby making the meaning of a certain prognostic statement easier to understand by the patient. At individual subject level the recourse to the term plausibility, related to fuzzy logic, would help the physician to communicate to the patient more efficiently in comparison with the term probability, related to binary logic. This would represent an evident advantage for the transfer of medical evidences to individual subjects.
Digital Troposcatter Performance Model
1983-12-01
Dist Speia DIIBUTON STATEMR AO Approved tot public relemg ** - DistributionUnlimited __________ Communications. Control and Information Systems ...for digital troposcatter communication system design is described. Propagation and modem performance *are modeled. These include Path Loss and RSL...designing digital troposcatter systems . A User’s Manual Report discusses the use of the computer program TROPO. The description of the structure and logical
NASA Astrophysics Data System (ADS)
Alvear, Andrés.; Finger, Ricardo; Fuentes, Roberto; Sapunar, Raúl; Geelen, Tom; Curotto, Franco; Rodríguez, Rafael; Monasterio, David; Reyes, Nicolás.; Mena, Patricio; Bronfman, Leonardo
2016-07-01
Field Programmable Gate Arrays (FPGAs) capacity and Analog to Digital Converters (ADCs) speed have largely increased in the last decade. Nowadays we can find one million or more logic blocks (slices) as well as several thousand arithmetic units (ALUs/DSP) available on a single FPGA chip. We can also commercially procure ADC chips reaching 10 GSPS, with 8 bits resolution or more. This unprecedented power of computing hardware has allowed the digitalization of signal processes traditionally performed by analog components. In radio astronomy, the clearest example has been the development of digital sideband separating receivers which, by replacing the IF hybrid and calibrating the system imbalances, have exhibited a sideband rejection above 40dB; this is 20 to 30dB higher than traditional analog sideband separating (2SB) receivers. In Rodriguez et al.,1 and Finger et al.,2 we have demonstrated very high digital sideband separation at 3mm and 1mm wavelengths, using laboratory setups. We here show the first implementation of such technique with a 3mm receiver integrated into a telescope, where the calibration was performed by quasi-optical injection of the test tone in front of the Cassegrain antenna. We also reported progress in digital polarization synthesis, particularly in the implementation of a calibrated Digital Ortho-Mode Transducer (DOMT) based on the Morgan et al. proof of concept.3 They showed off- line synthesis of polarization with isolation higher than 40dB. We plan to implement a digital polarimeter in a real-time FPGA-based (ROACH-2) platform, to show ultra-pure polarization isolation in a non-stop integrating spectrometer.
Conceptualizing Magnification and Scale: The Roles of Spatial Visualization and Logical Thinking
ERIC Educational Resources Information Center
Jones, M. Gail; Gardner, Grant; Taylor, Amy R.; Wiebe, Eric; Forrester, Jennifer
2011-01-01
This study explored factors that contribute to students' concepts of magnification and scale. Spatial visualization, logical thinking, and concepts of magnification and scale were measured for 46 middle school students. Scores on the "Zoom Assessment" (an assessment of knowledge of magnification and scale) were correlated with the "Test of Logical…
Interface Circuits for Self-Checking Microprocessors
NASA Technical Reports Server (NTRS)
Rennels, D. A.; Chandramouli, R.
1986-01-01
Fault-tolerant-microcomputer concept based on enhancing "simple" computer with redundancy and self-checking logic circuits detect hardware faults. Interface and checking logic and redundant processors confer on 16-bit microcomputer ability to check itself for hardware faults. Checking circuitry also checks itself. Concept of self-checking complementary pairs (SCCP's) employed throughout ICL unit.
The Relationships Among Logical and Spatial Skills and Understanding Genetics Concepts and Problems.
ERIC Educational Resources Information Center
Costello, Sandra Judith
The purpose of this study was to determine whether relationships occur among spatial skills, logical reasoning, and various genetic concepts. Twenty-one students enrolled in an undergraduate genetics course in a northern New Jersey institution completed a series of tests and tasks designed to measure flexibility of closure, visualization,…
ERIC Educational Resources Information Center
Gurcay, Deniz; Gulbas, Etna
2018-01-01
The purpose of this research is to investigate the relationships between high school students' learning approaches and logical thinking abilities and their understandings of heat, temperature and internal energy concepts. Learning Approach Questionnaire, Test of Logical Thinking and Three-Tier Heat, Temperature and Internal Energy Test were used…
Home Diabetes Monitoring through Touch-Tone Computer Data Entry and Voice Synthesizer Response
Arbogast, James G.; Dodrill, William H.
1984-01-01
Current studies suggest that the control of Diabetes mellitus can be improved with home monitoring of blood sugars. Voice synthesizers and recent technology, allowing decoding of Touch-Tone® pulses into their digital equivalents, make it possible for diabetics with no more sophisticated equipment than a Touch-Tone® telephone to enter their blood sugars directly into a medical office computer. A working prototype that can provide physicians with timely, logically oriented information about their diabetics is discussed along with plans to expand this concept into giving the patients uncomplicated therapeutic advice without the need for a direct patient/physician interaction. The potential impact on health care costs and the management of other chronic diseases is presented.
NASA Astrophysics Data System (ADS)
Maimistov, Andrei I.
1995-10-01
An analysis is made of the fundamental concepts of conservative logic. It is shown that the existing optical soliton switches can be converted into logic gates which act as conservative logic elements. A logic device of this type, based on a nonlinear fibre-optic directional coupler, is considered. Polarised solitons are used in this coupler. This use of solitons leads in a natural way to the desirability of developing conservative triple-valued logic.
VLSI Implementation of Fault Tolerance Multiplier based on Reversible Logic Gate
NASA Astrophysics Data System (ADS)
Ahmad, Nabihah; Hakimi Mokhtar, Ahmad; Othman, Nurmiza binti; Fhong Soon, Chin; Rahman, Ab Al Hadi Ab
2017-08-01
Multiplier is one of the essential component in the digital world such as in digital signal processing, microprocessor, quantum computing and widely used in arithmetic unit. Due to the complexity of the multiplier, tendency of errors are very high. This paper aimed to design a 2×2 bit Fault Tolerance Multiplier based on Reversible logic gate with low power consumption and high performance. This design have been implemented using 90nm Complemetary Metal Oxide Semiconductor (CMOS) technology in Synopsys Electronic Design Automation (EDA) Tools. Implementation of the multiplier architecture is by using the reversible logic gates. The fault tolerance multiplier used the combination of three reversible logic gate which are Double Feynman gate (F2G), New Fault Tolerance (NFT) gate and Islam Gate (IG) with the area of 160μm x 420.3μm (67.25 mm2). This design achieved a low power consumption of 122.85μW and propagation delay of 16.99ns. The fault tolerance multiplier proposed achieved a low power consumption and high performance which suitable for application of modern computing as it has a fault tolerance capabilities.
Ultralow-Power Digital Correlator for Microwave Polarimetry
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Hass, K. Joseph
2004-01-01
A recently developed high-speed digital correlator is especially well suited for processing readings of a passive microwave polarimeter. This circuit computes the autocorrelations of, and the cross-correlations among, data in four digital input streams representing samples of in-phase (I) and quadrature (Q) components of two intermediate-frequency (IF) signals, denoted A and B, that are generated in heterodyne reception of two microwave signals. The IF signals arriving at the correlator input terminals have been digitized to three levels (-1,0,1) at a sampling rate up to 500 MHz. Two bits (representing sign and magnitude) are needed to represent the instantaneous datum in each input channel; hence, eight bits are needed to represent the four input signals during any given cycle of the sampling clock. The accumulation (integration) time for the correlation is programmable in increments of 2(exp 8) cycles of the sampling clock, up to a maximum of 2(exp 24) cycles. The basic functionality of the correlator is embodied in 16 correlation slices, each of which contains identical logic circuits and counters (see figure). The first stage of each correlation slice is a logic gate that computes one of the desired correlations (for example, the autocorrelation of the I component of A or the negative of the cross-correlation of the I component of A and the Q component of B). The sampling of the output of the logic gate output is controlled by the sampling-clock signal, and an 8-bit counter increments in every clock cycle when the logic gate generates output. The most significant bit of the 8-bit counter is sampled by a 16-bit counter with a clock signal at 2(exp 8) the frequency of the sampling clock. The 16-bit counter is incremented every time the 8-bit counter rolls over.
Digital signal conditioning for flight test instrumentation
NASA Technical Reports Server (NTRS)
Bever, Glenn A.
1991-01-01
An introduction to digital measurement processes on aircraft is provided. Flight test instrumentation systems are rapidly evolving from analog-intensive to digital intensive systems, including the use of onboard digital computers. The topics include measurements that are digital in origin, as well as sampling, encoding, transmitting, and storing data. Particular emphasis is placed on modern avionic data bus architectures and what to be aware of when extracting data from them. Examples of data extraction techniques are given. Tradeoffs between digital logic families, trends in digital development, and design testing techniques are discussed. An introduction to digital filtering is also covered.
Novel Quaternary Quantum Decoder, Multiplexer and Demultiplexer Circuits
NASA Astrophysics Data System (ADS)
Haghparast, Majid; Monfared, Asma Taheri
2017-05-01
Multiple valued logic is a promising approach to reduce the width of the reversible or quantum circuits, moreover, quaternary logic is considered as being a good choice for future quantum computing technology hence it is very suitable for the encoded realization of binary logic functions through its grouping of 2-bits together into quaternary values. The Quaternary decoder, multiplexer, and demultiplexer are essential units of quaternary digital systems. In this paper, we have initially designed a quantum realization of the quaternary decoder circuit using quaternary 1-qudit gates and quaternary Muthukrishnan-Stroud gates. Then we have presented quantum realization of quaternary multiplexer and demultiplexer circuits using the constructed quaternary decoder circuit and quaternary controlled Feynman gates. The suggested circuits in this paper have a lower quantum cost and hardware complexity than the existing designs that are currently used in quaternary digital systems. All the scales applied in this paper are based on Nanometric area.
Digital PCM bit synchronizer and detector
NASA Astrophysics Data System (ADS)
Moghazy, A. E.; Maral, G.; Blanchard, A.
1980-08-01
A theoretical analysis of a digital self-bit synchronizer and detector is presented and supported by the implementation of an experimental model that utilizes standard TTL logic circuits. This synchronizer is based on the generation of spectral line components by nonlinear filtering of the received bit stream, and extracting the line by a digital phase-locked loop (DPLL). The extracted reference signal instructs a digital matched filter (DMF) data detector. This realization features a short acquisition time and an all-digital structure.
A front-end readout Detector Board for the OpenPET electronics system
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.
2015-08-01
We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.
Video rate morphological processor based on a redundant number representation
NASA Astrophysics Data System (ADS)
Kuczborski, Wojciech; Attikiouzel, Yianni; Crebbin, Gregory A.
1992-03-01
This paper presents a video rate morphological processor for automated visual inspection of printed circuit boards, integrated circuit masks, and other complex objects. Inspection algorithms are based on gray-scale mathematical morphology. Hardware complexity of the known methods of real-time implementation of gray-scale morphology--the umbra transform and the threshold decomposition--has prompted us to propose a novel technique which applied an arithmetic system without carrying propagation. After considering several arithmetic systems, a redundant number representation has been selected for implementation. Two options are analyzed here. The first is a pure signed digit number representation (SDNR) with the base of 4. The second option is a combination of the base-2 SDNR (to represent gray levels of images) and the conventional twos complement code (to represent gray levels of structuring elements). Operation principle of the morphological processor is based on the concept of the digit level systolic array. Individual processing units and small memory elements create a pipeline. The memory elements store current image windows (kernels). All operation primitives of processing units apply a unified direction of digit processing: most significant digit first (MSDF). The implementation technology is based on the field programmable gate arrays by Xilinx. This paper justified the rationality of a new approach to logic design, which is the decomposition of Boolean functions instead of Boolean minimization.
A front-end readout Detector Board for the OpenPET electronics system
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...
2015-08-12
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
What is in a contour map? A region-based logical formalization of contour semantics
Usery, E. Lynn; Hahmann, Torsten
2015-01-01
This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.
Multi-layered reasoning by means of conceptual fuzzy sets
NASA Technical Reports Server (NTRS)
Takagi, Tomohiro; Imura, Atsushi; Ushida, Hirohide; Yamaguchi, Toru
1993-01-01
The real world consists of a very large number of instances of events and continuous numeric values. On the other hand, people represent and process their knowledge in terms of abstracted concepts derived from generalization of these instances and numeric values. Logic based paradigms for knowledge representation use symbolic processing both for concept representation and inference. Their underlying assumption is that a concept can be defined precisely. However, as this assumption hardly holds for natural concepts, it follows that symbolic processing cannot deal with such concepts. Thus symbolic processing has essential problems from a practical point of view of applications in the real world. In contrast, fuzzy set theory can be viewed as a stronger and more practical notation than formal, logic based theories because it supports both symbolic processing and numeric processing, connecting the logic based world and the real world. In this paper, we propose multi-layered reasoning by using conceptual fuzzy sets (CFS). The general characteristics of CFS are discussed along with upper layer supervision and context dependent processing.
Development of Boolean calculus and its applications. [digital systems design
NASA Technical Reports Server (NTRS)
Tapia, M. A.
1980-01-01
The development of Boolean calculus for its application to developing digital system design methodologies that would reduce system complexity, size, cost, speed, power requirements, etc., is discussed. Synthesis procedures for logic circuits are examined particularly asynchronous circuits using clock triggered flip flops.
DDL:Digital systems design language
NASA Technical Reports Server (NTRS)
Shival, S. G.
1980-01-01
Hardware description languages are valuable tools in such applications as hardware design, system documentation, and logic design training. DDL is convenient medium for inputting design details into hardware-design automation system. It is suitable for describing digital systems at gate, register transfer, and major combinational block level.
Microscale Digital Vacuum Electronic Gates
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.
Digital logic circuits in yeast with CRISPR-dCas9 NOR gates
Gander, Miles W.; Vrana, Justin D.; Voje, William E.; Carothers, James M.; Klavins, Eric
2017-01-01
Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we designed dCas9-Mxi1-based NOR gates in Saccharomyces cerevisiae that allow arbitrary connectivity and large genetic circuits. Because we used the chromatin remodeller Mxi1, our gates showed minimal leak and digital responses. We built a combinatorial library of NOR gates that directly convert guide RNA (gRNA) inputs into gRNA outputs, enabling the gates to be ‘wired' together. We constructed logic circuits with up to seven gRNAs, including repression cascades with up to seven layers. Modelling predicted the NOR gates have effectively zero transcriptional leak explaining the limited signal degradation in the circuits. Our approach enabled the largest, eukaryotic gene circuits to date and will form the basis for large, synthetic, cellular decision-making systems. PMID:28541304
Lattice Theory, Measures and Probability
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2007-11-01
In this tutorial, I will discuss the concepts behind generalizing ordering to measuring and apply these ideas to the derivation of probability theory. The fundamental concept is that anything that can be ordered can be measured. Since we are in the business of making statements about the world around us, we focus on ordering logical statements according to implication. This results in a Boolean lattice, which is related to the fact that the corresponding logical operations form a Boolean algebra. The concept of logical implication can be generalized to degrees of implication by generalizing the zeta function of the lattice. The rules of probability theory arise naturally as a set of constraint equations. Through this construction we are able to neatly connect the concepts of order, structure, algebra, and calculus. The meaning of probability is inherited from the meaning of the ordering relation, implication, rather than being imposed in an ad hoc manner at the start.
A Fuzzy Description Logic with Automatic Object Membership Measurement
NASA Astrophysics Data System (ADS)
Cai, Yi; Leung, Ho-Fung
In this paper, we propose a fuzzy description logic named f om -DL by combining the classical view in cognitive psychology and fuzzy set theory. A formal mechanism used to determine object memberships automatically in concepts is also proposed, which is lacked in previous work fuzzy description logics. In this mechanism, object membership is based on the defining properties of concept definition and properties in object description. Moreover, while previous works cannot express the qualitative measurements of an object possessing a property, we introduce two kinds of properties named N-property and L-property, which are quantitative measurements and qualitative measurements of an object possessing a property respectively. The subsumption and implication of concepts and properties are also explored in our work. We believe that it is useful to the Semantic Web community for reasoning the fuzzy membership of objects for concepts in fuzzy ontologies.
Digital circuits for computer applications: A compilation
NASA Technical Reports Server (NTRS)
1972-01-01
The innovations in this updated series of compilations dealing with electronic technology represent a carefully selected collection of digital circuits which have direct application in computer oriented systems. In general, the circuits have been selected as representative items of each section and have been included on their merits of having universal applications in digital computers and digital data processing systems. As such, they should have wide appeal to the professional engineer and scientist who encounter the fundamentals of digital techniques in their daily activities. The circuits are grouped as digital logic circuits, analog to digital converters, and counters and shift registers.
Magnon-based logic in a multi-terminal YIG/Pt nanostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganzhorn, Kathrin, E-mail: kathrin.ganzhorn@wmi.badw.de; Klingler, Stefan; Wimmer, Tobias
2016-07-11
Boolean logic is the foundation of modern digital information processing. Recently, there has been a growing interest in phenomena based on pure spin currents, which allows to move from charge to spin based logic gates. We study a proof-of-principle logic device based on the ferrimagnetic insulator Yttrium Iron Garnet, with Pt strips acting as injectors and detectors for non-equilibrium magnons. We experimentally observe incoherent superposition of magnons generated by different injectors. This allows to implement a fully functional majority gate, enabling multiple logic operations (AND and OR) in one and the same device. Clocking frequencies of the order of severalmore » GHz and straightforward down-scaling make our device promising for applications.« less
Efficient Multiplexer FPGA Block Structures Based on G4FETs
NASA Technical Reports Server (NTRS)
Vatan, Farrokh; Fijany, Amir
2009-01-01
Generic structures have been conceived for multiplexer blocks to be implemented in field-programmable gate arrays (FPGAs) based on four-gate field-effect transistors (G(sup 4)FETs). This concept is a contribution to the continuing development of digital logic circuits based on G4FETs and serves as a further demonstration that logic circuits based on G(sup 4)FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors. Results in this line of development at earlier stages were summarized in two previous NASA Tech Briefs articles: "G(sup 4)FETs as Universal and Programmable Logic Gates" (NPO-41698), Vol. 31, No. 7 (July 2007), page 44, and "Efficient G4FET-Based Logic Circuits" (NPO-44407), Vol. 32, No. 1 ( January 2008), page 38 . As described in the first-mentioned previous article, a G4FET can be made to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. The universality and programmability could be exploited to design logic circuits containing fewer components than are required for conventional transistor-based circuits performing the same logic functions. The second-mentioned previous article reported results of a comparative study of NOT-majority-gate (G(sup 4)FET)-based logic-circuit designs and equivalent NOR- and NAND-gate-based designs utilizing conventional transistors. [NOT gates (inverters) were also included, as needed, in both the G(sup 4)FET- and the NOR- and NAND-based designs.] In most of the cases studied, fewer logic gates (and, hence, fewer transistors), were required in the G(sup 4)FET-based designs. There are two popular categories of FPGA block structures or architectures: one based on multiplexers, the other based on lookup tables. In standard multiplexer- based architectures, the basic building block is a tree-like configuration of multiplexers, with possibly a few additional logic gates such as ANDs or ORs. Interconnections are realized by means of programmable switches that may connect the input terminals of a block to output terminals of other blocks, may bridge together some of the inputs, or may connect some of the input terminals to signal sources representing constant logical levels 0 or 1. The left part of the figure depicts a four-to-one G(sup 4)FET-based multiplexer tree; the right part of the figure depicts a functionally equivalent four-to-one multiplexer based on conventional transistors. The G(sup 4)FET version would contains 54 transistors; the conventional version contains 70 transistors.
ERIC Educational Resources Information Center
Crestani, Fabio; Dominich, Sandor; Lalmas, Mounia; van Rijsbergen, Cornelis Joost
2003-01-01
Discusses the importance of research on the use of mathematical, logical, and formal methods in information retrieval to help enhance retrieval effectiveness and clarify underlying concepts of information retrieval. Highlights include logic; probability; spaces; and future research needs. (Author/LRW)
Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic
NASA Astrophysics Data System (ADS)
Ayala, Christopher Lawrence
Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using RSFQ logic and prototype chips have been fabricated. As a joint work with HYPRES, a 20 GHz 8-bit Kogge-Stone ALU consisting of 7,950 JJs total has been fabricated using a 1.5 μm 4.5 kA/cm2 process and fully demonstrated. An 8-bit sparse-tree ALU (8,832 JJs total) and a 16-bit sparse-tree adder (12,785 JJs total) have also been fabricated using a 1.0 μm 10 kA/cm 2 process and demonstrated under collaboration with Yokohama National University and Nagoya University (Japan).
An Introduction to Logic Control Systems for the Behavioral Scientist, Part I, Text.
ERIC Educational Resources Information Center
Larsen, Lawrence A.
This programed instruction course gives a basic introduction to solid state programing equipment. Course objectives include giving the student (1) a working knowledge of the various types of units used in building digital logic control systems and (2) an idea of how they interconnect to perform different functions. The course has no prerequisites…
A m-ary linear feedback shift register with binary logic
NASA Technical Reports Server (NTRS)
Perlman, M. (Inventor)
1973-01-01
A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producible with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tubulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers.
Research on NC motion controller based on SOPC technology
NASA Astrophysics Data System (ADS)
Jiang, Tingbiao; Meng, Biao
2006-11-01
With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.
A logical foundation for representation of clinical data.
Campbell, K E; Das, A K; Musen, M A
1994-01-01
OBJECTIVE: A general framework for representation of clinical data that provides a declarative semantics of terms and that allows developers to define explicitly the relationships among both terms and combinations of terms. DESIGN: Use of conceptual graphs as a standard representation of logic and of an existing standardized vocabulary, the Systematized Nomenclature of Medicine (SNOMED International), for lexical elements. Concepts such as time, anatomy, and uncertainty must be modeled explicitly in a way that allows relation of these foundational concepts to surface-level clinical descriptions in a uniform manner. RESULTS: The proposed framework was used to model a simple radiology report, which included temporal references. CONCLUSION: Formal logic provides a framework for formalizing the representation of medical concepts. Actual implementations will be required to evaluate the practicality of this approach. PMID:7719805
The Semiautomated Test System: A Tool for Standardized Performance Testing.
ERIC Educational Resources Information Center
Ramsey, H. Rudy
For performance tests to be truly standardized, they must be administered in a way that will minimize variation due to operator intervention and errors. Through such technological developments as low-cost digital computers and digital logic modules, automatic test administration without restriction of test content has become possible. A…
[The improved design of table operating box of digital subtraction angiography device].
Qi, Xianying; Zhang, Minghai; Han, Fengtan; Tang, Feng; He, Lemin
2009-12-01
In this paper are analyzed the disadvantages of CGO-3000 digital subtraction angiography table Operating Box. The authors put forward a communication control scheme between single-chip microcomputer(SCM) and programmable logic controller(PLC). The details of hardware and software of communication are given.
Coding Skills as a Success Factor for a Society
ERIC Educational Resources Information Center
Tuomi, Pauliina; Multisilta, Jari Antero; Saarikoski, Petri; Suominen, Jaakko
2018-01-01
Digitalization is one of the most promising ways to increase productivity in the public sector and is needed to reform the economy by creating new innovation related jobs. The implementation of digital services requires problem solving, design skills, logical thinking, an understanding of how computers and networks operate, and programming…
Music, Technology, and an Evolving Curriculum.
ERIC Educational Resources Information Center
Moore, Brian
1992-01-01
Mechanical examples of musical technology, like the Steinway piano, are well known and accepted. Use of computers and electronic technology is the next logical step in developing art of music. MIDI (Musical Instrument Digital Interface) is explained, along with digital devices (such as synthesizers, sequencers, music notation software, multimedia,…
Digital transmitter for data bus communications system
NASA Technical Reports Server (NTRS)
Proch, G. E.
1974-01-01
Digital transmitter designed for Manchester coded signals (and all signals with ac waveforms) generated at a rate of one megabit per second includes efficient output isolation circuit. Transmitter consists of logic control section, amplifier, and output isolation section. Output isolation circuit provides dynamic impedance at terminals as function of amplifier output level.
NASA Technical Reports Server (NTRS)
Le Balleur, J. C.
1988-01-01
The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.
Reconfigurable and non-volatile vertical magnetic logic gates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, J., E-mail: jbutl001@ucr.edu; Lee, B.; Shachar, M.
2014-04-28
In this paper, we discuss the concept and prototype fabrication of reconfigurable and non-volatile vertical magnetic logic gates. These gates consist of two input layers and a RESET layer. The RESET layer allows the structure to be used as either an AND or an OR gate, depending on its magnetization state. To prove this concept, the gates were fabricated using a multi-layered patterned magnetic media, in which three magnetic layers are stacked and exchange-decoupled via non-magnetic interlayers. We demonstrate the functionality of these logic gates by conducting atomic force microscopy and magnetic force microscopy (MFM) analysis of the multi-layered patternedmore » magnetic media. The logic gates operation mechanism and fabrication feasibility are both validated by the MFM imaging results.« less
NASA Astrophysics Data System (ADS)
Ayala, Christopher L.; Grogg, Daniel; Bazigos, Antonios; Bleiker, Simon J.; Fernandez-Bolaños, Montserrat; Niklaus, Frank; Hagleitner, Christoph
2015-11-01
Nanoelectromechanical (NEM) switches have the potential to complement or replace traditional CMOS transistors in the area of ultra-low-power digital electronics. This paper reports the demonstration of prototype circuits including the first 3-stage ring oscillator built using cell-level digital logic elements based on curved NEM switches. The ring oscillator core occupies an area of 30 μm × 10 μm using 6 NEM switches. Each NEM switch device has a footprint of 5 μm × 3 μm, an air gap of 60 μm and is coated with amorphous carbon (a-C) for reliable operation. The ring oscillator operates at a frequency of 6.7 MHz, and confirms the simulated inverter propagation delay of 25 ns. The successful fabrication and measurement of this demonstrator are key milestones on the way towards an optimized, scaled technology with sub-nanosecond switching times, lower operating voltages and VLSI implementation.
The past, present and future of cyber-physical systems: a focus on models.
Lee, Edward A
2015-02-26
This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maly, Kurt; Shen, Stewart N. T.; Zubair, Mohammad
1998-01-01
We describe NCSTRL+, a unified, canonical digital library for scientific and technical information (STI). NCSTRL+ is based on the Networked Computer Science Technical Report Library (NCSTRL), a World Wide Web (WWW) accessible digital library (DL) that provides access to over 100 university departments and laboratories. NCSTRL+ implements two new technologies: cluster functionality and publishing buckets. We have extended Dienst, the protocol underlying NCSTRL, to provide the ability to cluster independent collections into a logically centralized digital library based upon subject category classification, type of organization, and genres of material. The bucket construct provides a mechanism for publishing and managing logically linked entities with multiple data forms as a single object. The NCSTRL+ prototype DL contains the holdings of NCSTRL and the NASA Technical Report Server (NTRS). The prototype demonstrates the feasibility of publishing into a multi-cluster DL, searching across clusters, and storing and presenting buckets of information.
NASA Technical Reports Server (NTRS)
Salazar, George A. (Inventor)
1993-01-01
This invention relates to a reconfigurable fuzzy cell comprising a digital control programmable gain operation amplifier, an analog-to-digital converter, an electrically erasable PROM, and 8-bit counter and comparator, and supporting logic configured to achieve in real-time fuzzy systems high throughput, grade-of-membership or membership-value conversion of multi-input sensor data. The invention provides a flexible multiplexing-capable configuration, implemented entirely in hardware, for effectuating S-, Z-, and PI-membership functions or combinations thereof, based upon fuzzy logic level-set theory. A membership value table storing 'knowledge data' for each of S-, Z-, and PI-functions is contained within a nonvolatile memory for storing bits of membership and parametric information in a plurality of address spaces. Based upon parametric and control signals, analog sensor data is digitized and converted into grade-of-membership data. In situ learn and recognition modes of operation are also provided.
The Past, Present and Future of Cyber-Physical Systems: A Focus on Models
Lee, Edward A.
2015-01-01
This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical. PMID:25730486
Measurement and Analysis of a Ferroelectric Field-Effect Transistor NAND Gate
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; MacLeond, Todd C.; Sayyah, Rana; Ho, Fat Duen
2009-01-01
Previous research investigated expanding the use of Ferroelectric Field-Effect Transistors (FFET) to other electronic devices beyond memory circuits. Ferroelectric based transistors possess unique characteris tics that give them interesting and useful properties in digital logic circuits. The NAND gate was chosen for investigation as it is one of the fundamental building blocks of digital electronic circuits. In t his paper, NAND gate circuits were constructed utilizing individual F FETs. N-channel FFETs with positive polarization were used for the standard CMOS NAND gate n-channel transistors and n-channel FFETs with n egative polarization were used for the standard CMOS NAND gate p-chan nel transistors. The voltage transfer curves were obtained for the NA ND gate. Comparisons were made between the actual device data and the previous modeled data. These results are compared to standard MOS logic circuits. The circuits analyzed are not intended to be fully opera tional circuits that would interface with existing logic circuits, bu t as a research tool to look into the possibility of using ferroelectric transistors in future logic circuits. Possible applications for th ese devices are presented, and their potential benefits and drawbacks are discussed.
A hybrid nanomemristor/transistor logic circuit capable of self-programming
Borghetti, Julien; Li, Zhiyong; Straznicky, Joseph; Li, Xuema; Ohlberg, Douglas A. A.; Wu, Wei; Stewart, Duncan R.; Williams, R. Stanley
2009-01-01
Memristor crossbars were fabricated at 40 nm half-pitch, using nanoimprint lithography on the same substrate with Si metal-oxide-semiconductor field effect transistor (MOS FET) arrays to form fully integrated hybrid memory resistor (memristor)/transistor circuits. The digitally configured memristor crossbars were used to perform logic functions, to serve as a routing fabric for interconnecting the FETs and as the target for storing information. As an illustrative demonstration, the compound Boolean logic operation (A AND B) OR (C AND D) was performed with kilohertz frequency inputs, using resistor-based logic in a memristor crossbar with FET inverter/amplifier outputs. By routing the output signal of a logic operation back onto a target memristor inside the array, the crossbar was conditionally configured by setting the state of a nonvolatile switch. Such conditional programming illuminates the way for a variety of self-programmed logic arrays, and for electronic synaptic computing. PMID:19171903
A hybrid nanomemristor/transistor logic circuit capable of self-programming.
Borghetti, Julien; Li, Zhiyong; Straznicky, Joseph; Li, Xuema; Ohlberg, Douglas A A; Wu, Wei; Stewart, Duncan R; Williams, R Stanley
2009-02-10
Memristor crossbars were fabricated at 40 nm half-pitch, using nanoimprint lithography on the same substrate with Si metal-oxide-semiconductor field effect transistor (MOS FET) arrays to form fully integrated hybrid memory resistor (memristor)/transistor circuits. The digitally configured memristor crossbars were used to perform logic functions, to serve as a routing fabric for interconnecting the FETs and as the target for storing information. As an illustrative demonstration, the compound Boolean logic operation (A AND B) OR (C AND D) was performed with kilohertz frequency inputs, using resistor-based logic in a memristor crossbar with FET inverter/amplifier outputs. By routing the output signal of a logic operation back onto a target memristor inside the array, the crossbar was conditionally configured by setting the state of a nonvolatile switch. Such conditional programming illuminates the way for a variety of self-programmed logic arrays, and for electronic synaptic computing.
Biosensors with Built-In Biomolecular Logic Gates for Practical Applications
Lai, Yu-Hsuan; Sun, Sin-Cih; Chuang, Min-Chieh
2014-01-01
Molecular logic gates, designs constructed with biological and chemical molecules, have emerged as an alternative computing approach to silicon-based logic operations. These molecular computers are capable of receiving and integrating multiple stimuli of biochemical significance to generate a definitive output, opening a new research avenue to advanced diagnostics and therapeutics which demand handling of complex factors and precise control. In molecularly gated devices, Boolean logic computations can be activated by specific inputs and accurately processed via bio-recognition, bio-catalysis, and selective chemical reactions. In this review, we survey recent advances of the molecular logic approaches to practical applications of biosensors, including designs constructed with proteins, enzymes, nucleic acids, nanomaterials, and organic compounds, as well as the research avenues for future development of digitally operating “sense and act” schemes that logically process biochemical signals through networked circuits to implement intelligent control systems. PMID:25587423
NASA Technical Reports Server (NTRS)
Crawford, D. B.; Burcham, F. W., Jr.
1984-01-01
A series of airstarts were conducted in an F-15 airplane with two prototype Pratt and Whitney F100 Engine Model Derivative engines equipped with Digital Electronic Engine Control (DEEC) systems. The airstart envelope and the time required for airstarts were defined. Comparisons were made between the original airstart logic, and modified logic which was designed to improve the airstart capability. Spooldown airstarts with the modified logic were more successful at lower altitudes than were those with the original logic. Spooldown airstart times ranged from 33 seconds at 250 knots to 83 seconds at 175 knots. The modified logic improved the airstart time from 31% to 53%, with the most improved times at slower airspeeds. Jet fuel starter (JFS)-assisted airstarts were conducted at 7000 m and airstart times were significantly faster than unassisted airstarts. The effect of altitude on airstart times was small.
Evolution of an Intelligent Deductive Logic Tutor Using Data-Driven Elements
ERIC Educational Resources Information Center
Mostafavi, Behrooz; Barnes, Tiffany
2017-01-01
Deductive logic is essential to a complete understanding of computer science concepts, and is thus fundamental to computer science education. Intelligent tutoring systems with individualized instruction have been shown to increase learning gains. We seek to improve the way deductive logic is taught in computer science by developing an intelligent,…
The Role of Guidance in Computer-Based Problem Solving for the Development of Concepts of Logic.
ERIC Educational Resources Information Center
Eysink, Tessa H. S.; Dijkstra, Sanne; Kuper, Jan
2002-01-01
Describes a study at the University of Twente (Netherlands) that investigated the effect of two instructional variables, manipulation of objects and guidance, in learning to use the logical connective, conditional with a computer-based learning environment, Tarski's World, designed to teach first-order logic. Discusses results of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zadeh, L.A.
1988-01-01
The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived. 7 references.
Multi-Valued Logic, Neutrosophy, and Schrödinger Equation
NASA Astrophysics Data System (ADS)
Smarandache, Florentin; Christianto, Victor
2017-04-01
Discussing some paradoxes in Quantum Mechanics from the viewpoint of Multi-Valued-logic pioneered by Lukasiewicz, and the recent concept Neutrosophic Logic. Essentially, this new concept offers new insights on the idea of `identity', which too often it has been accepted as given. Neutrosophy itself was developed in attempt to generalize Fuzzy-Logic introduced by L. Zadeh. The discussion is motivated by observation that despite almost eight decades, there is indication that some of those paradoxes known in Quantum Physics are not yet solved. In our knowledge, this is because the solution of those paradoxes requires re-examination of the foundations of logic itself, in particular on the notion of identity and multi-valuedness of entity. The discussion is also intended for young physicist fellows who think that somewhere there should be a `complete' explanation of these paradoxes in Quantum Mechanics. If this it doesn't answer all of their questions, it is our hope that at least it offers a new alternative viewpoint for these old questions.
Image Analysis Using Quantum Entropy Scale Space and Diffusion Concepts
2009-11-01
images using a combination of analytic methods and prototype Matlab and Mathematica programs. We investigated concepts of generalized entropy and...Schmidt strength from quantum logic gate decomposition. This form of entropy gives a measure of the nonlocal content of an entangling logic gate...11 We recall that the Schmidt number is an indicator of entanglement , but not a measure of entanglement . For instance, let us compare
ERIC Educational Resources Information Center
Marine Corps, Washington, DC.
Targeted for grades 10 through adult, these military-developed curriculum materials consist of a student lesson book with text readings and review exercises designed to prepare electronic personnel for further training in digital techniques. Covered in the five lessons are binary arithmetic (number systems, decimal systems, the mathematical form…
Evolving Digital Ecological Networks
Wagner, Aaron P.; Ofria, Charles
2013-01-01
“It is hard to realize that the living world as we know it is just one among many possibilities” [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms) that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism). Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks) that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved). PMID:23533370
Warburton, W.K.
1998-06-30
A high speed, digitally based, signal processing system is disclosed which accepts directly coupled input data from a detector with a continuous discharge type preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system`s principal elements are an analog signal conditioning section, a combinatorial logic section which implements digital triangular filtering and pileup inspection, and a microprocessor which accepts values captured by the logic section and uses them to compute x-ray energy values. Operating without pole-zero correction, the system achieves high resolution by capturing, in conjunction with each peak value from the digital filter, an associated value of the unfiltered signal, and using this latter signal to correct the former for errors which arise from its local slope terms. This correction greatly reduces both energy resolution degradation and peak centroid shifting in the output spectrum as a function of input count rate. When the noise of this correction is excessive, a modification allows two filtered averages of the signal to be captured and a corrected peak amplitude computed therefrom. 14 figs.
Warburton, William K.
1998-01-01
A high speed, digitally based, signal processing system which accepts directly coupled input data from a detector with a continuous discharge type preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system's principal elements are an analog signal conditioning section, a combinatorial logic section which implements digital triangular filtering and pileup inspection, and a microprocessor which accepts values captured by the logic section and uses them to compute x-ray energy values. Operating without pole-zero correction, the system achieves high resolution by capturing, in conjunction with each peak value from the digital filter, an associated value of the unfiltered signal, and using this latter signal to correct the former for errors which arise from its local slope terms. This correction greatly reduces both energy resolution degradation and peak centroid shifting in the output spectrum as a function of input count rate. When the noise of this correction is excessive, a modification allows two filtered averages of the signal to be captured and a corrected peak amplitude computed therefrom.
On the Formal-Logical Analysis of the Foundations of Mathematics Applied to Problems in Physics
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2016-03-01
Analysis of the foundations of mathematics applied to problems in physics was proposed. The unity of formal logic and of rational dialectics is methodological basis of the analysis. It is shown that critical analysis of the concept of mathematical quantity - central concept of mathematics - leads to the following conclusion: (1) The concept of ``mathematical quantity'' is the result of the following mental operations: (a) abstraction of the ``quantitative determinacy of physical quantity'' from the ``physical quantity'' at that the ``quantitative determinacy of physical quantity'' is an independent object of thought; (b) abstraction of the ``amount (i.e., abstract number)'' from the ``quantitative determinacy of physical quantity'' at that the ``amount (i.e., abstract number)'' is an independent object of thought. In this case, unnamed, abstract numbers are the only sign of the ``mathematical quantity''. This sign is not an essential sign of the material objects. (2) The concept of mathematical quantity is meaningless, erroneous, and inadmissible concept in science because it represents the following formal-logical and dialectical-materialistic error: negation of the existence of the essential sign of the concept (i.e., negation of the existence of the essence of the concept) and negation of the existence of measure of material object.
A Public Service-Dominant Logic for the Executive Education of Public Managers
ERIC Educational Resources Information Center
Hiedemann, Alexander M.; Nasi, Greta; Saporito, Raffaella
2017-01-01
Building on the concept of Public Service-Dominant Logic (PSDL), this article aims to apply the public service-dominant logic to executive education. We argue that fit-for-purpose and effective executive master programs for public managers (EMPA) need to be designed from a public service perspective. Framing executive education as a service…
Logical Reasoning in Middle Childhood: A Study of Piagetian Concrete Operations Stage.
ERIC Educational Resources Information Center
Hooper, Frank H.; And Others
This 4-year longitudinal study of logical reasoning found complex interrelationships among different cognitive processes of children ages 6 to 15. Piaget's stage theory is discussed in the introduction, with a focus on the concrete operational stage in middle childhood. In the study, a representative array of logical concept tasks and short-term…
ERIC Educational Resources Information Center
Steinhauer, Karsten; Drury, John E.; Portner, Paul; Walenski, Matthew; Ullman, Michael T.
2010-01-01
Logic has been intertwined with the study of language and meaning since antiquity, and such connections persist in present day research in linguistic theory (formal semantics) and cognitive psychology (e.g., studies of human reasoning). However, few studies in cognitive neuroscience have addressed logical dimensions of sentence-level language…
Interface For Dual-Channel MIL-STD-1553 Data Bus
NASA Technical Reports Server (NTRS)
Davies, Bryan L.; Heaps, Timothy L.
1992-01-01
Digital electronic subsystem made of commercially available programmable logic arrays and discrete logic devices serves as interface between microprocessor and dual-channel MIL-STD-1553 data bus. Subsystem consumes only 800 mW of power. Provides flexibility in that it is controllable via firmware. Includes only two reading-and-writing ports: one for status and control signals, other for transmission and reception of data.
1994-12-01
complex Internet addresses. Hypertext and hypermedia documents have logical and physical structure (Shneiderman, 1993). The logical structure delineates...Rubra, Miliaria Profunda , Anhidrotic Heat Exhaustion, Heat Syncope, Heat Edema, Sunburn, and Heat Tetany. The user may return to the main document...military or scientific organizations via digital communications networks such as the Internet . Access clearance would first be obtained from the USARIEM
Logic Gates Made of N-Channel JFETs and Epitaxial Resistors
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.
2008-01-01
Prototype logic gates made of n-channel junction field-effect transistors (JFETs) and epitaxial resistors have been demonstrated, with a view toward eventual implementation of digital logic devices and systems in silicon carbide (SiC) integrated circuits (ICs). This development is intended to exploit the inherent ability of SiC electronic devices to function at temperatures from 300 to somewhat above 500 C and withstand large doses of ionizing radiation. SiC-based digital logic devices and systems could enable operation of sensors and robots in nuclear reactors, in jet engines, near hydrothermal vents, and in other environments that are so hot or radioactive as to cause conventional silicon electronic devices to fail. At present, current needs for digital processing at high temperatures exceed SiC integrated circuit production capabilities, which do not allow for highly integrated circuits. Only single to small number component production of depletion mode n-channel JFETs and epitaxial resistors on a single substrate is possible. As a consequence, the fine matching of components is impossible, resulting in rather large direct-current parameter distributions within a group of transistors typically spanning multiples of 5 to 10. Add to this the lack of p-channel devices to complement the n-channel FETs, the lack of precise dropping diodes, and the lack of enhancement mode devices at these elevated temperatures and the use of conventional direct coupled and buffered direct coupled logic gate design techniques is impossible. The presented logic gate design is tolerant of device parameter distributions and is not hampered by the lack of complementary devices or dropping diodes. In addition to n-channel JFETs, these gates include level-shifting and load resistors (see figure). Instead of relying on precise matching of parameters among individual JFETS, these designs rely on choosing the values of these resistors and of supply potentials so as to make the circuits perform the desired functions throughout the ranges over which the parameters of the JFETs are distributed. The supply rails V(sub dd) and V(sub ss) and the resistors R are chosen as functions of the distribution of direct-current operating parameters of the group of transistors used.
Six to Ten Digits Multiplication Fun Learning Using Puppet Prototype
NASA Astrophysics Data System (ADS)
Islamiah Rosli, D.'oria; Ali, Azita; Peng, Lim Soo; Sujardi, Imam; Usodo, Budi; Adie Perdana, Fengky
2017-01-01
Logic and technical subjects require students to understand basic knowledge in mathematic. For instance, addition, minus, division and multiplication operations need to be mastered by students due to mathematic complexity as the learning mathematic grows higher. Weak foundation in mathematic also contribute to high failure rate in mathematic subjects in schools. In fact, students in primary schools are struggling to learn mathematic because they need to memorize formulas, multiplication or division operations. To date, this study will develop a puppet prototyping for learning mathematic for six to ten digits multiplication. Ten participants involved in the process of developing the prototype in this study. Students involved in the study were those from the intermediate class students whilst teachers were selected based on their vast knowledge and experiences and have more than five years of experience in teaching mathematic. Close participatory analysis will be used in the prototyping process as to fulfil the requirements of the students and teachers whom will use the puppet in learning six to ten digit multiplication in mathematic. Findings showed that, the students had a great time and fun learning experience in learning multiplication and they able to understand the concept of multiplication using puppet. Colour and materials of the puppet also help to attract student attention during learning. Additionally, students able to visualized and able to calculate accurate multiplication value and the puppet help them to recall in multiplying and adding the digits accordingly.
NASA Astrophysics Data System (ADS)
Wilson, Katherine E.; Henke, E.-F. Markus; Slipher, Geoffrey A.; Anderson, Iain A.
2017-04-01
Electromechanically coupled dielectric elastomer actuators (DEAs) and dielectric elastomer switches (DESs) may form digital logic circuitry made entirely of soft and flexible materials. The expansion in planar area of a DEA exerts force across a DES, which is a soft electrode with strain-dependent resistivity. When compressed, the DES drops steeply in resistance and changes state from non-conducting to conducting. Logic operators may be achieved with different arrangements of interacting DE actuators and switches. We demonstrate combinatorial logic elements, including the fundamental Boolean logic gates, as well as sequential logic elements, including latches and flip-flops. With both data storage and signal processing abilities, the necessary calculating components of a soft computer are available. A noteworthy advantage of a soft computer with mechanosensitive DESs is the potential for responding to environmental strains while locally processing information and generating a reaction, like a muscle reflex.
Reconfigurable firmware-defined radios synthesized from standard digital logic cells
NASA Astrophysics Data System (ADS)
Faisal, Muhammad; Park, Youngmin; Wentzloff, David D.
2011-06-01
This paper presents recent work on reconfigurable all-digital radio architectures. We leverage the flexibility and scalability of synthesized digital cells to construct reconfigurable radio architectures that consume significantly less power than a software defined radio implementing similar architectures. We present two prototypes of such architectures that can receive and demodulate FM and FRS band signals. Moreover, a radio architecture based on a reconfigurable alldigital phase-locked loop for coherent demodulation is presented.
Comprehensive change management concepts. Development of a participatory approach.
Zink, Klaus J; Steimle, Ulrich; Schröder, Delia
2008-07-01
During the last years, many change projects in organizations did not have the planned success. Therefore at first, the causes for these failures and the success factors contributing to organizational change have to be discussed. To get better results, a comprehensive change management concept has been developed and tested in an ongoing research project. By using concepts for an integrated assessment and design of organizations, an approach for analyzing the current situation has been elaborated to identify "lack of integration" in the change initiatives of a company. To realize an integrated overall approach of modernization by harmonizing different methods and concepts, first, one has to prove their relationship to policy and strategy (vertical harmonization). The second step is to take into account the fact that there has to be a logical fit between the single concepts (horizontal harmonization). But even if all elements are logically coherent, that does not mean that the people working in the company also see this coherence. Therefore, in addition to the "logical fit", one has to examine the "psychological fit". In the end, a concept for analyzing the status quo in an organization as a result of "objective data" and "subjective data" originated. Subsequently, instruments for harmonizing different modernizing concepts have been applied. As part of the comprehensive change management concept participatory ergonomic approaches have been used during the project. The present study shows this approach in the case of one company.
Scalable hybrid computation with spikes.
Sarpeshkar, Rahul; O'Halloran, Micah
2002-09-01
We outline a hybrid analog-digital scheme for computing with three important features that enable it to scale to systems of large complexity: First, like digital computation, which uses several one-bit precise logical units to collectively compute a precise answer to a computation, the hybrid scheme uses several moderate-precision analog units to collectively compute a precise answer to a computation. Second, frequent discrete signal restoration of the analog information prevents analog noise and offset from degrading the computation. And, third, a state machine enables complex computations to be created using a sequence of elementary computations. A natural choice for implementing this hybrid scheme is one based on spikes because spike-count codes are digital, while spike-time codes are analog. We illustrate how spikes afford easy ways to implement all three components of scalable hybrid computation. First, as an important example of distributed analog computation, we show how spikes can create a distributed modular representation of an analog number by implementing digital carry interactions between spiking analog neurons. Second, we show how signal restoration may be performed by recursive spike-count quantization of spike-time codes. And, third, we use spikes from an analog dynamical system to trigger state transitions in a digital dynamical system, which reconfigures the analog dynamical system using a binary control vector; such feedback interactions between analog and digital dynamical systems create a hybrid state machine (HSM). The HSM extends and expands the concept of a digital finite-state-machine to the hybrid domain. We present experimental data from a two-neuron HSM on a chip that implements error-correcting analog-to-digital conversion with the concurrent use of spike-time and spike-count codes. We also present experimental data from silicon circuits that implement HSM-based pattern recognition using spike-time synchrony. We outline how HSMs may be used to perform learning, vector quantization, spike pattern recognition and generation, and how they may be reconfigured.
Fuzzy Logic-Based Audio Pattern Recognition
NASA Astrophysics Data System (ADS)
Malcangi, M.
2008-11-01
Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.
On a concept of computer game implementation based on a temporal logic
NASA Astrophysics Data System (ADS)
Szymańska, Emilia; Adamek, Marek J.; Mulawka, Jan J.
2017-08-01
Time is a concept which underlies all the contemporary civilization. Therefore, it was necessary to create mathematical tools that allow a precise way to describe the complex time dependencies. One such tool is temporal logic. Its definition, description and characteristics will be presented in this publication. Then the authors will conduct a discussion on the usefulness of this tool in context of creating storyline in computer games such as RPG genre.
Procedure for extraction of disparate data from maps into computerized data bases
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1979-01-01
A procedure is presented for extracting disparate sources of data from geographic maps and for the conversion of these data into a suitable format for processing on a computer-oriented information system. Several graphic digitizing considerations are included and related to the NASA Earth Resources Laboratory's Digitizer System. Current operating procedures for the Digitizer System are given in a simplified and logical manner. The report serves as a guide to those organizations interested in converting map-based data by using a comparable map digitizing system.
Group Solutions, Too! More Cooperative Logic Activities for Grades K-4. Teacher's Guide. LHS GEMS.
ERIC Educational Resources Information Center
Goodman, Jan M.; Kopp, Jaine
There is evidence that structured cooperative logic is an effective way to introduce or reinforce mathematics concepts, explore thinking processes basic to both math and science, and develop the important social skills of cooperative problem-solving. This book contains a number of cooperative logic activities for grades K-4 in order to improve…
Securing a web-based teleradiology platform according to German law and "best practices".
Spitzer, Michael; Ullrich, Tobias; Ueckert, Frank
2009-01-01
The Medical Data and Picture Exchange platform (MDPE), as a teleradiology system, facilitates the exchange of digital medical imaging data among authorized users. It features extensive support of the DICOM standard including networking functions. Since MDPE is designed as a web service, security and confidentiality of data and communication pose an outstanding challenge. To comply with demands of German laws and authorities, a generic data security concept considered as "best practice" in German health telematics was adapted to the specific demands of MDPE. The concept features strict logical and physical separation of diagnostic and identity data and thus an all-encompassing pseudonymization throughout the system. Hence, data may only be merged at authorized clients. MDPE's solution of merging data from separate sources within a web browser avoids technically questionable techniques such as deliberate cross-site scripting. Instead, data is merged dynamically by JavaScriptlets running in the user's browser. These scriptlets are provided by one server, while content and method calls are generated by another server. Additionally, MDPE uses encrypted temporary IDs for communication and merging of data.
Safety and fitness electronic records (SAFER) system : logical architecture document : working draft
DOT National Transportation Integrated Search
1997-01-31
This Logical Architecture Document includes the products developed during the functional analysis of the Safety and Fitness Electronic Records (SAFER) System. This document, along with the companion Operational Concept and Physical Architecture Docum...
Canonical multi-valued input Reed-Muller trees and forms
NASA Technical Reports Server (NTRS)
Perkowski, M. A.; Johnson, P. D.
1991-01-01
There is recently an increased interest in logic synthesis using EXOR gates. The paper introduces the fundamental concept of Orthogonal Expansion, which generalizes the ring form of the Shannon expansion to the logic with multiple-valued (mv) inputs. Based on this concept we are able to define a family of canonical tree circuits. Such circuits can be considered for binary and multiple-valued input cases. They can be multi-level (trees and DAG's) or flattened to two-level AND-EXOR circuits. Input decoders similar to those used in Sum of Products (SOP) PLA's are used in realizations of multiple-valued input functions. In the case of the binary logic the family of flattened AND-EXOR circuits includes several forms discussed by Davio and Green. For the case of the logic with multiple-valued inputs, the family of the flattened mv AND-EXOR circuits includes three expansions known from literature and two new expansions.
Low power signal processing research at Stanford
NASA Technical Reports Server (NTRS)
Burr, J.; Williamson, P. R.; Peterson, A.
1991-01-01
This paper gives an overview of the research being conducted at Stanford University's Space, Telecommunications, and Radioscience Laboratory in the area of low energy computation. It discusses the work we are doing in large scale digital VLSI neural networks, interleaved processor and pipelined memory architectures, energy estimation and optimization, multichip module packaging, and low voltage digital logic.
ERIC Educational Resources Information Center
Ehret, Christian; Hollett, Ty; Jocius, Robin
2016-01-01
Representational logic cannot account for the entanglements of all that matters in making new media: feeling bodies, vibrant matter, feeling bodies and vibrant matter all moving and at different rates. In the currently shifting communicative landscape, where mobile technologies are the primary means for youths' digital production, all this…
Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.
Liu, Yuanda; Ang, Kah-Wee
2017-07-25
Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.
New fundamental evidence of non-classical structure in the combination of natural concepts.
Aerts, D; Sozzo, S; Veloz, T
2016-01-13
We recently performed cognitive experiments on conjunctions and negations of two concepts with the aim of investigating the combination problem of concepts. Our experiments confirmed the deviations (conceptual vagueness, underextension, overextension etc.) from the rules of classical (fuzzy) logic and probability theory observed by several scholars in concept theory, while our data were successfully modelled in a quantum-theoretic framework developed by ourselves. In this paper, we isolate a new, very stable and systematic pattern of violation of classicality that occurs in concept combinations. In addition, the strength and regularity of this non-classical effect leads us to believe that it occurs at a more fundamental level than the deviations observed up to now. It is our opinion that we have identified a deep non-classical mechanism determining not only how concepts are combined but, rather, how they are formed. We show that this effect can be faithfully modelled in a two-sector Fock space structure, and that it can be exactly explained by assuming that human thought is the superposition of two processes, a 'logical reasoning', guided by 'logic', and a 'conceptual reasoning', guided by 'emergence', and that the latter generally prevails over the former. All these findings provide new fundamental support to our quantum-theoretic approach to human cognition. © 2015 The Author(s).
Baranwal, Mayank; Gorugantu, Ram S; Salapaka, Srinivasa M
2015-08-01
This paper aims at control design and its implementation for robust high-bandwidth precision (nanoscale) positioning systems. Even though modern model-based control theoretic designs for robust broadband high-resolution positioning have enabled orders of magnitude improvement in performance over existing model independent designs, their scope is severely limited by the inefficacies of digital implementation of the control designs. High-order control laws that result from model-based designs typically have to be approximated with reduced-order systems to facilitate digital implementation. Digital systems, even those that have very high sampling frequencies, provide low effective control bandwidth when implementing high-order systems. In this context, field programmable analog arrays (FPAAs) provide a good alternative to the use of digital-logic based processors since they enable very high implementation speeds, moreover with cheaper resources. The superior flexibility of digital systems in terms of the implementable mathematical and logical functions does not give significant edge over FPAAs when implementing linear dynamic control laws. In this paper, we pose the control design objectives for positioning systems in different configurations as optimal control problems and demonstrate significant improvements in performance when the resulting control laws are applied using FPAAs as opposed to their digital counterparts. An improvement of over 200% in positioning bandwidth is achieved over an earlier digital signal processor (DSP) based implementation for the same system and same control design, even when for the DSP-based system, the sampling frequency is about 100 times the desired positioning bandwidth.
Halámek, Jan; Zhou, Jian; Halámková, Lenka; Bocharova, Vera; Privman, Vladimir; Wang, Joseph; Katz, Evgeny
2011-11-15
Biomolecular logic systems processing biochemical input signals and producing "digital" outputs in the form of YES/NO were developed for analysis of physiological conditions characteristic of liver injury, soft tissue injury, and abdominal trauma. Injury biomarkers were used as input signals for activating the logic systems. Their normal physiological concentrations were defined as logic-0 level, while their pathologically elevated concentrations were defined as logic-1 values. Since the input concentrations applied as logic 0 and 1 values were not sufficiently different, the output signals being at low and high values (0, 1 outputs) were separated with a short gap making their discrimination difficult. Coupled enzymatic reactions functioning as a biomolecular signal processing system with a built-in filter property were developed. The filter process involves a partial back-conversion of the optical-output-signal-yielding product, but only at its low concentrations, thus allowing the proper discrimination between 0 and 1 output values.
Fundamental physics issues of multilevel logic in developing a parallel processor.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Anirban; Miki, Kazushi
2007-06-01
In the last century, On and Off physical switches, were equated with two decisions 0 and 1 to express every information in terms of binary digits and physically realize it in terms of switches connected in a circuit. Apart from memory-density increase significantly, more possible choices in particular space enables pattern-logic a reality, and manipulation of pattern would allow controlling logic, generating a new kind of processor. Neumann's computer is based on sequential logic, processing bits one by one. But as pattern-logic is generated on a surface, viewing whole pattern at a time is a truly parallel processing. Following Neumann's and Shannons fundamental thermodynamical approaches we have built compatible model based on series of single molecule based multibit logic systems of 4-12 bits in an UHV-STM. On their monolayer multilevel communication and pattern formation is experimentally verified. Furthermore, the developed intelligent monolayer is trained by Artificial Neural Network. Therefore fundamental weak interactions for the building of truly parallel processor are explored here physically and theoretically.
Simultaneous G-Quadruplex DNA Logic.
Bader, Antoine; Cockroft, Scott L
2018-04-03
A fundamental principle of digital computer operation is Boolean logic, where inputs and outputs are described by binary integer voltages. Similarly, inputs and outputs may be processed on the molecular level as exemplified by synthetic circuits that exploit the programmability of DNA base-pairing. Unlike modern computers, which execute large numbers of logic gates in parallel, most implementations of molecular logic have been limited to single computing tasks, or sensing applications. This work reports three G-quadruplex-based logic gates that operate simultaneously in a single reaction vessel. The gates respond to unique Boolean DNA inputs by undergoing topological conversion from duplex to G-quadruplex states that were resolved using a thioflavin T dye and gel electrophoresis. The modular, addressable, and label-free approach could be incorporated into DNA-based sensors, or used for resolving and debugging parallel processes in DNA computing applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adiabatic quantum-flux-parametron cell library adopting minimalist design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, Naoki, E-mail: takeuchi-naoki-kx@ynu.jp; Yamanashi, Yuki; Yoshikawa, Nobuyuki
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells inmore » the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.« less
Adiabatic quantum-flux-parametron cell library adopting minimalist design
NASA Astrophysics Data System (ADS)
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-05-01
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
NASA Astrophysics Data System (ADS)
Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas
2017-04-01
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.
Fault detection and accommodation testing on an F100 engine in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.
1985-01-01
The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures.
2018-01-12
outcomes. This study included three phases: knowledge elicitation, establishment of rule-based, logic requirements, and the development of the POC iOS ...establish the logic needed for a mobile app prior to programming for iOS platforms. The study team selected Microsoft Excel because it enabled the...distribution of these plans would streamline the plan development process. Thus, as a proof-of-concept, the study team conducted a multi-phased effort
NASA Astrophysics Data System (ADS)
von Hippel, Matthew Hans Benjamin
A novel vehicle concept is introduced and its feasibility as an autonomous, self-propelled weather buoy for use in violent storm systems is analyzed. The vehicle concept is a spar sailboat -- consisting of only a deep keel and a sailing rig; no hull -- a design which is intended to improve longevity in rough seas as well as provide ideal placement opportunities for meteorological sensors. To evaluate the hypothetical locomotive and meteorological observation capabilities of the concept sailing spar in hurricane-like conditions, several relevant oceanographic phenomena are analyzed with the performance of the concept vehicle in mind. Enthalpy transfer from the ocean to the air is noted as the primary driving force of tropical storms and therefore becomes the measuring objective of the sailing spar. A discrete, iterative process for optimizing driving force while achieving equilibrium between the four airfoil surfaces is used to steer the sailing spar towards any objective despite variable and opposing simulated winds. Based on the limitations of sailing theory, logic is developed to autonomously navigate the sailing spar between human-selected waypoints on a digitized geographic map. Due the perceived inability to measure air-sea enthalpy exchange because the nature of tropical storms and due to its small scale, the sailing spar is deemed infeasible as a hurricane-capable meteorological observation platform.
Evolutionary space platform concept study. Volume 2, part B: Manned space platform concepts
NASA Technical Reports Server (NTRS)
1982-01-01
Logical, cost-effective steps in the evolution of manned space platforms are investigated and assessed. Tasks included the analysis of requirements for a manned space platform, identifying alternative concepts, performing system analysis and definition of the concepts, comparing the concepts and performing programmatic analysis for a reference concept.
Application of new type of distributed multimedia databases to networked electronic museum
NASA Astrophysics Data System (ADS)
Kuroda, Kazuhide; Komatsu, Naohisa; Komiya, Kazumi; Ikeda, Hiroaki
1999-01-01
Recently, various kinds of multimedia application systems have actively been developed based on the achievement of advanced high sped communication networks, computer processing technologies, and digital contents-handling technologies. Under this background, this paper proposed a new distributed multimedia database system which can effectively perform a new function of cooperative retrieval among distributed databases. The proposed system introduces a new concept of 'Retrieval manager' which functions as an intelligent controller so that the user can recognize a set of distributed databases as one logical database. The logical database dynamically generates and performs a preferred combination of retrieving parameters on the basis of both directory data and the system environment. Moreover, a concept of 'domain' is defined in the system as a managing unit of retrieval. The retrieval can effectively be performed by cooperation of processing among multiple domains. Communication language and protocols are also defined in the system. These are used in every action for communications in the system. A language interpreter in each machine translates a communication language into an internal language used in each machine. Using the language interpreter, internal processing, such internal modules as DBMS and user interface modules can freely be selected. A concept of 'content-set' is also introduced. A content-set is defined as a package of contents. Contents in the content-set are related to each other. The system handles a content-set as one object. The user terminal can effectively control the displaying of retrieved contents, referring to data indicating the relation of the contents in the content- set. In order to verify the function of the proposed system, a networked electronic museum was experimentally built. The results of this experiment indicate that the proposed system can effectively retrieve the objective contents under the control to a number of distributed domains. The result also indicate that the system can effectively work even if the system becomes large.
Kneer, Julia; Glock, Sabine; Beskes, Sara; Bente, Gary
2012-11-01
Violent digital game play has repeatedly been discussed to be strongly related to aggression and emotional instability. Thus, digital game players have to defend against these prejudices through emphasizing positive game-related concepts such as achievement, social interaction, and immersion. We experimentally investigated which positive- and negative-concept players and nonplayers activate when being primed with digital games. Participants were either exposed to violent or nonviolent game content and were required to work on a lexical decision task. Results showed that response latencies for the concept aggression and emotional instability were faster than for neutral concepts (not associated with digital games), but slower than for the positive concepts sociality and competition. Both players and nonplayers felt the need to defend against prejudices and emphasized positive concepts. Neither their own gaming experience nor the game content influenced the results. Being a part of the net generation is sufficient to suppress negative game-related concepts and to support positive game-related concepts to protect digital games as common leisure activity among peers.
Penchovsky, Robert
2012-10-19
Here we describe molecular implementations of integrated digital circuits, including a three-input AND logic gate, a two-input multiplexer, and 1-to-2 decoder using allosteric ribozymes. Furthermore, we demonstrate a multiplexer-decoder circuit. The ribozymes are designed to seek-and-destroy specific RNAs with a certain length by a fully computerized procedure. The algorithm can accurately predict one base substitution that alters the ribozyme's logic function. The ability to sense the length of RNA molecules enables single ribozymes to be used as platforms for multiple interactions. These ribozymes can work as integrated circuits with the functionality of up to five logic gates. The ribozyme design is universal since the allosteric and substrate domains can be altered to sense different RNAs. In addition, the ribozymes can specifically cleave RNA molecules with triplet-repeat expansions observed in genetic disorders such as oculopharyngeal muscular dystrophy. Therefore, the designer ribozymes can be employed for scaling up computing and diagnostic networks in the fields of molecular computing and diagnostics and RNA synthetic biology.
Electron lithography STAR design guidelines. Part 1: The STAR user design manual
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Newman, W.
1982-01-01
The STAR system developed by NASA enables any user with a logic diagram to design a semicustom digital MOS integrated circuit. The system is comprised of a library of standard logic cells and computer programs to place, route, and display designs implemented with cells from the library. Library cells of the CMOS metal gate and CMOS silicon gate technologies were simulated using SPICE, and the results are shown and compared.
A DNA Logic Gate Automaton for Detection of Rabies and Other Lyssaviruses.
Vijayakumar, Pavithra; Macdonald, Joanne
2017-07-05
Immediate activation of biosensors is not always desirable, particularly if activation is due to non-specific interactions. Here we demonstrate the use of deoxyribozyme-based logic gate networks arranged into visual displays to precisely control activation of biosensors, and demonstrate a prototype molecular automaton able to discriminate between seven different genotypes of Lyssaviruses, including Rabies virus. The device uses novel mixed-base logic gates to enable detection of the large diversity of Lyssavirus sequence populations, while an ANDNOT logic gate prevents non-specific activation across genotypes. The resultant device provides a user-friendly digital-like, but molecule-powered, dot-matrix text output for unequivocal results read-out that is highly relevant for point of care applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Cinematic Narrator: The Logic and Pragmatics of Impersonal Narration.
ERIC Educational Resources Information Center
Burgoyne, Robert
1990-01-01
Describes "impersonal narration," an approach that defends the concept of the cinematic narrator as a logical and pragmatic necessity. Compares this approach with existing theories of the cinematic narrator, addressing disagreements in the field of film narrative theory. (MM)
Apollo experience report: Guidance and control systems - Digital autopilot design development
NASA Technical Reports Server (NTRS)
Peters, W. H.; Cox, K. J.
1973-01-01
The development of the Apollo digital autopilots (the primary attitude control systems that were used for all phases of the lunar landing mission) is summarized. This report includes design requirements, design constraints, and design philosophy. The development-process functions and the essential information flow paths are identified. Specific problem areas that existed during the development are included. A discussion is also presented on the benefits inherent in mechanizing attitude-controller logic and dynamic compensation in a digital computer.
A 1 GHz sample rate, 256-channel, 1-bit quantization, CMOS, digital correlator chip
NASA Technical Reports Server (NTRS)
Timoc, C.; Tran, T.; Wongso, J.
1992-01-01
This paper describes the development of a digital correlator chip with the following features: 1 Giga-sample/second; 256 channels; 1-bit quantization; 32-bit counters providing up to 4 seconds integration time at 1 GHz; and very low power dissipation per channel. The improvements in the performance-to-cost ratio of the digital correlator chip are achieved with a combination of systolic architecture, novel pipelined differential logic circuits, and standard 1.0 micron CMOS process.
Wide Tuning Capability for Spacecraft Transponders
NASA Technical Reports Server (NTRS)
Lux, James; Mysoor, Narayan; Shah, Biren; Cook, Brian; Smith, Scott
2007-01-01
A document presents additional information on the means of implementing a capability for wide tuning of microwave receiver and transmitter frequencies in the development reported in the immediately preceding article, VCO PLL Frequency Synthesizers for Spacecraft Transponders (NPO- 42909). The reference frequency for a PLL-based frequency synthesizer is derived from a numerically controlled oscillator (NCO) implemented in digital logic, such that almost any reference frequency can be derived from a fixed crystal reference oscillator with microhertz precision. The frequency of the NCO is adjusted to track the received signal, then used to create another NCO frequency used to synthesize the transmitted signal coherent with, and at a specified frequency ratio to, the received signal. The frequencies can be changed, even during operation, through suitable digital programming. The NCOs and the related tracking loops and coherent turnaround logic are implemented in a field-programmable gate array (FPGA). The interface between the analog microwave receiver and transmitter circuits and the FPGA includes analog-to-digital and digital-toanalog converters, the sampling rates of which are chosen to minimize spurious signals and otherwise optimize performance. Several mixers and filters are used to properly route various signals.
Nonlinear dynamics based digital logic and circuits.
Kia, Behnam; Lindner, John F; Ditto, William L
2015-01-01
We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.
Feed-forward digital phase and amplitude correction system
Yu, D.U.L.; Conway, P.H.
1994-11-15
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.
Feed-forward digital phase and amplitude correction system
Yu, David U. L.; Conway, Patrick H.
1994-01-01
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.
NASA Technical Reports Server (NTRS)
Shiva, S. G.; Shah, A. M.
1980-01-01
The details of digital systems can be conveniently input into the design automation system by means of hardware description language (HDL). The computer aided design and test (CADAT) system at NASA MSFC is used for the LSI design. The digital design language (DDL) was selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. Problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system are addressed.
Hardware synthesis from DDL. [Digital Design Language for computer aided design and test of LSI
NASA Technical Reports Server (NTRS)
Shah, A. M.; Shiva, S. G.
1981-01-01
The details of the digital systems can be conveniently input into the design automation system by means of Hardware Description Languages (HDL). The Computer Aided Design and Test (CADAT) system at NASA MSFC is used for the LSI design. The Digital Design Language (DDL) has been selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. This paper addresses problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system.
Concept Mapping as a Learning Tool for the Employment Relations Degree
ERIC Educational Resources Information Center
Martinez-Canas, Ricardo; Ruiz-Palomino, Pablo
2011-01-01
Concept mapping is a technique to represent relationships between concepts that can help students to improve their meaningful learning. Using the cognitive theories proposed by Ausubel (1968), concept maps can help instructors and students to enhance their logical thinking and study skills by revealing connections among concepts that can simplify…
Adaptive logical stochastic resonance in time-delayed synthetic genetic networks
NASA Astrophysics Data System (ADS)
Zhang, Lei; Zheng, Wenbin; Song, Aiguo
2018-04-01
In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.
Users Guide to Direct Digital Control of Heating, Ventilating, and Air Conditioning Equipment,
1985-01-01
cycles, reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop. The prospective buyer of a DDC system should...in Fig- ure 4. Data on setpoints , reset schedules, and event timing, such as that presented in Figure 6, are often even more difficult to find. In con...control logic, setpoint and other data are readily available. Program logic, setpoint and schedule data, and other information stored in a DDC unit
Reasoning About Digital Circuits.
1983-07-01
The dissertation will later examine the logic’s formal syntax and semantics in great depth. Below are a few English - language statements and...function have a fixed point. Temporal lolc as a programming langua " Temporal logic can be used directly a a propamuing language . For example, the ...for a separate "sertion language ." For example, the formula S[(I+- );(I + i -- I) (I+2- I) states that if the variable I twice increaes by I in an
High-Speed, High-Resolution Time-to-Digital Conversion
NASA Technical Reports Server (NTRS)
Katz, Richard; Kleyner, Igor; Garcia, Rafael
2013-01-01
This innovation is a series of time-tag pulses from a photomultiplier tube, featuring short time interval between pulses (e.g., 2.5 ns). Using the previous art, dead time between pulses is too long, or too much hardware is required, including a very-high-speed demultiplexer. A faster method is needed. The goal of this work is to provide circuits to time-tag pulses that arrive at a high rate using the hardwired logic in an FPGA - specifically the carry chain - to create what is (in effect) an analog delay line. High-speed pulses travel down the chain in a "wave." For instance, a pulse train has been demonstrated from a 1- GHz source reliably traveling down the carry chain. The size of the carry chain is over 10 ns in the time domain. Thus, multiple pulses will travel down the carry chain in a wave simultaneously. A register clocked by a low-skew clock takes a "snapshot" of the wave. Relatively simple logic can extract the pulses from the snapshot picture by detecting the transitions between logic states. The propagation delay of CMOS (complementary metal oxide semiconductor) logic circuits will differ and/or change as a result of temperature, voltage, age, radiation, and manufacturing variances. The time-to-digital conversion circuits can be calibrated with test signals, or the changes can be nulled by a separate on-die calibration channel, in a closed loop circuit.
A Rational Analysis of Rule-Based Concept Learning
ERIC Educational Resources Information Center
Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L.
2008-01-01
This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…
Planning an Integrated On-Line Library system (IOLS)
1989-03-01
Logical Workflow for Circulation of Library Materials ............. 14 Figure 9. Detail of Circulation of Libary Materials ...................... 15...Operating Honolulu, HI 96826 System (808) 947-4441 DATA RESEARCH ASSOCIATES, Inc. (ATLAS) 9270 Olive Blvd. St. Louis, MO 01775 DIGITAL EQUIPMENT CORP... DIGITAL EQUIPMENT CORP. Stow, MA 01775 (617) 897-7163 EYRING LIBRARY SYSTEMS (CARL) 5280 S. West, Suite E260 Salt Lake City, UT 84107 TANDEM SYSTEMS
Design of digital voice storage and playback system
NASA Astrophysics Data System (ADS)
Tang, Chao
2018-03-01
Based on STC89C52 chip, this paper presents a single chip microcomputer minimum system, which is used to realize the logic control of digital speech storage and playback system. Compared with the traditional tape voice recording system, the system has advantages of small size, low power consumption, The effective solution of traditional voice recording system is limited in the use of electronic and information processing.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.
On-board processing concepts for future satellite communications systems
NASA Technical Reports Server (NTRS)
Brandon, W. T. (Editor); White, B. E. (Editor)
1980-01-01
The initial definition of on-board processing for an advanced satellite communications system to service domestic markets in the 1990's is discussed. An exemplar system with both RF on-board switching and demodulation/remodulation baseband processing is used to identify important issues related to system implementation, cost, and technology development. Analyses of spectrum-efficient modulation, coding, and system control techniques are summarized. Implementations for an RF switch and baseband processor are described. Among the major conclusions listed is the need for high gain satellites capable of handling tens of simultaneous beams for the efficient reuse of the 2.5 GHz 30/20 frequency band. Several scanning beams are recommended in addition to the fixed beams. Low power solid state 20 GHz GaAs FET power amplifiers in the 5W range and a general purpose digital baseband processor with gigahertz logic speeds and megabits of memory are also recommended.
The service telemetry and control device for space experiment “GRIS”
NASA Astrophysics Data System (ADS)
Glyanenko, A. S.
2016-02-01
Problems of scientific devices control (for example, fine control of measuring paths), collecting auxiliary (service information about working capacity, conditions of experiment carrying out, etc.) and preliminary data processing are actual for any space device. Modern devices for space research it is impossible to imagine without devices that didn't use digital data processing methods and specialized or standard interfaces and computing facilities. For realization of these functions in “GRIS” experiment onboard ISS for purposes minimization of dimensions, power consumption, the concept “system-on-chip” was chosen and realized. In the programmable logical integrated scheme by Microsemi from ProASIC3 family with maximum capacity up to 3M system gates, the computing kernel and all necessary peripherals are created. In this paper we discuss structure, possibilities and resources the service telemetry and control device for “GRIS” space experiment.
Mutation Testing for Effective Verification of Digital Components of Physical Systems
NASA Astrophysics Data System (ADS)
Kushik, N. G.; Evtushenko, N. V.; Torgaev, S. N.
2015-12-01
Digital components of modern physical systems are often designed applying circuitry solutions based on the field programmable gate array technology (FPGA). Such (embedded) digital components should be carefully tested. In this paper, an approach for the verification of digital physical system components based on mutation testing is proposed. The reference description of the behavior of a digital component in the hardware description language (HDL) is mutated by introducing into it the most probable errors and, unlike mutants in high-level programming languages, the corresponding test case is effectively derived based on a comparison of special scalable representations of the specification and the constructed mutant using various logic synthesis and verification systems.
GMAG Dissertation Award Talk: All Spin Logic -- Multimagnet Networks interacting via Spin currents
NASA Astrophysics Data System (ADS)
Srinivasan, Srikant
2012-02-01
Digital logic circuits have traditionally been based on storing information as charge on capacitors, and the stored information is transferred by controlling the flow of charge. However, electrons carry both charge and spin, the latter being responsible for magnetic phenomena. In the last few decades, there has been a significant improvement in our ability to control spins and their interaction with magnets. All Spin Logic (ASL) represents a new approach to information processing where spins and magnets now mirror the roles of charges and capacitors in conventional logic circuits. In this talk I first present a model [1] that couples non-collinear spin transport with magnet-dynamics to predict the switching behavior of the basic ASL device. This model is based on established physics and is benchmarked against available experimental data that demonstrate spin-torque switching in lateral structures. Next, the model is extended to simulate multi-magnet networks coupled with spin transport channels. The simulations suggest ASL devices have the essential characteristics for building logic circuits. In particular, (1) the example of an ASL ring oscillator [2, 3] is used to provide a clear signature of directed information transfer in cascaded ASL devices without the need for external control circuitry and (2) a simulated NAND [4] gate with fan-out of 2 suggests that ASL can implement universal logic and drive subsequent stages. Finally I will discuss how ASL based circuits could also have potential use in the design of neuromorphic circuits suitable for hybrid analog/digital information processing because of the natural mapping of ASL devices to neurons [4]. [4pt] [1] B. Behin-Aein, A. Sarkar, S. Srinivasan, and S. Datta, ``Switching Energy-Delay of All-Spin Logic devices,'' Appl. Phys. Lett., 98, 123510 (2011).[0pt] [2] S. Srinivasan, A. Sarkar, B. Behin-Aein, and S. Datta, ``All Spin Logic Device with Inbuilt Non-reciprocity,'' IEEE Trans. Magn., 47, 10 (2011).[0pt] [3] S. Srinivasan, A. Sarkar, B. Behin-Aein and S. Datta, ``Unidirectional Information transfer with cascaded All Spin Logic devices: A Ring Oscillator,'' IEEE Device Research Conference (2011).[0pt] [4] A. Sarkar, S. Srinivasan, B. Behin-Aein and S. Datta, ``Multimagnet networks interacting via spin currents'' IEEE International Electron Devices Meeting 2011. (to appear).
Brain Stretchers Book 4--Advanced.
ERIC Educational Resources Information Center
Anderson, Carolyn
This book provides puzzles, games, and mathematical activities for students in elementary grades. Number concepts and arithmetic are common topics. These classic math, logic, and word-problem activities encourage students to become flexible, creative thinkers while teaching them to draw valid conclusions based on logic and evidence. Each activity…
Closed circuit TV system automatically guides welding arc
NASA Technical Reports Server (NTRS)
Stephans, D. L.; Wall, W. A., Jr.
1968-01-01
Closed circuit television /CCTV/ system automatically guides a welding torch to position the welding arc accurately along weld seams. Digital counting and logic techniques incorporated in the control circuitry, ensure performance reliability.
NASA Technical Reports Server (NTRS)
Eno, R. F.
1984-01-01
Clock switched on and off in response to data signal. Flip-flop modulator generates square-wave carrier frequency that is half clock frequency and turns carrier on and off. Final demodulator output logical inverse of data input.
NULL Convention Floating Point Multiplier
Ramachandran, Seshasayanan
2015-01-01
Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069
NULL convention floating point multiplier.
Albert, Anitha Juliette; Ramachandran, Seshasayanan
2015-01-01
Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.
A bipolar population counter using wave pipelining to achieve 2.5 x normal clock frequency
NASA Technical Reports Server (NTRS)
Wong, Derek C.; De Micheli, Giovanni; Flynn, Michael J.; Huston, Robert E.
1992-01-01
Wave pipelining is a technique for pipelining digital systems that can increase clock frequency in practical circuits without increasing the number of storage elements. In wave pipelining, multiple coherent waves of data are sent through a block of combinational logic by applying new inputs faster than the delay through the logic. The throughput of a 63-b CML population counter was increased from 97 to 250 MHz using wave pipelining. The internal circuit is flowthrough combinational logic. Novel CAD methods have balanced all input-to-output paths to about the same delay. This allows multiple data waves to propagate in sequence when the circuit is clocked faster than its propagation delay.
Complex logic functions implemented with quantum dot bionanophotonic circuits.
Claussen, Jonathan C; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G; Medintz, Igor L
2014-03-26
We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated Förster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad lock.
Light-Gated Memristor with Integrated Logic and Memory Functions.
Tan, Hongwei; Liu, Gang; Yang, Huali; Yi, Xiaohui; Pan, Liang; Shang, Jie; Long, Shibing; Liu, Ming; Wu, Yihong; Li, Run-Wei
2017-11-28
Memristive devices are able to store and process information, which offers several key advantages over the transistor-based architectures. However, most of the two-terminal memristive devices have fixed functions once made and cannot be reconfigured for other situations. Here, we propose and demonstrate a memristive device "memlogic" (memory logic) as a nonvolatile switch of logic operations integrated with memory function in a single light-gated memristor. Based on nonvolatile light-modulated memristive switching behavior, a single memlogic cell is able to achieve optical and electrical mixed basic Boolean logic of reconfigurable "AND", "OR", and "NOT" operations. Furthermore, the single memlogic cell is also capable of functioning as an optical adder and digital-to-analog converter. All the memlogic outputs are memristive for in situ data storage due to the nonvolatile resistive switching and persistent photoconductivity effects. Thus, as a memdevice, the memlogic has potential for not only simplifying the programmable logic circuits but also building memristive multifunctional optoelectronics.
Digital Competence--An Emergent Boundary Concept for Policy and Educational Research
ERIC Educational Resources Information Center
Ilomäki, Liisa; Paavola, Sami; Lakkala, Minna; Kantosalo, Anna
2016-01-01
Digital competence is an evolving concept related to the development of digital technology and the political aims and expectations of citizenship in a knowledge society. It is regarded as a core competence in policy papers; in educational research it is not yet a standardized concept. We suggest that it is a useful boundary concept, which can be…
ERIC Educational Resources Information Center
Technology & Learning, 2005
2005-01-01
Concept maps are graphical ways of working with ideas and presenting information. They reveal patterns and relationships and help students to clarify their thinking, and to process, organize and prioritize. Displaying information visually--in concept maps, word webs, or diagrams--stimulates creativity. Being able to think logically teaches…
Graded Alternating-Time Temporal Logic
NASA Astrophysics Data System (ADS)
Faella, Marco; Napoli, Margherita; Parente, Mimmo
Graded modalities enrich the universal and existential quantifiers with the capability to express the concept of at least k or all but k, for a non-negative integer k. Recently, temporal logics such as μ-calculus and Computational Tree Logic, Ctl, augmented with graded modalities have received attention from the scientific community, both from a theoretical side and from an applicative perspective. Both μ-calculus and Ctl naturally apply as specification languages for closed systems: in this paper, we add graded modalities to the Alternating-time Temporal Logic (Atl) introduced by Alur et al., to study how these modalities may affect specification languages for open systems.
Chaplin, J C; Russell, N A; Krasnogor, N
2012-07-01
In this paper we detail experimental methods to implement registers, logic gates and logic circuits using populations of photochromic molecules exposed to sequences of light pulses. Photochromic molecules are molecules with two or more stable states that can be switched reversibly between states by illuminating with appropriate wavelengths of radiation. Registers are implemented by using the concentration of molecules in each state in a given sample to represent an integer value. The register's value can then be read using the intensity of a fluorescence signal from the sample. Logic gates have been implemented using a register with inputs in the form of light pulses to implement 1-input/1-output and 2-input/1-output logic gates. A proof of concept logic circuit is also demonstrated; coupled with the software workflow describe the transition from a circuit design to the corresponding sequence of light pulses. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Digi Island: A Serious Game for Teaching and Learning Digital Circuit Optimization
NASA Technical Reports Server (NTRS)
Harper, Michael; Miller, Joseph; Shen, Yuzhong
2011-01-01
Karnaugh maps, also known as K-maps, are a tool used to optimize or simplify digital logic circuits. A K-map is a graphical display of a logic circuit. K-map optimization is essentially the process of finding a minimum number of maximal aggregations of K-map cells. with values of 1 according to a set of rules. The Digi Island is a serious game designed for aiding students to learn K-map optimization. The game takes place on an exotic island (called Digi Island) in the Pacific Ocean . The player is an adventurer to the Digi Island and will transform it into a tourist attraction by developing real estates, such as amusement parks.and hotels. The Digi Island game elegantly converts boring 1s and Os in digital circuits into usable and unusable spaces on a beautiful island and transforms K-map optimization into real estate development, an activity with which many students are familiar and also interested in. This paper discusses the design, development, and some preliminary results of the Digi Island game.
Flight test of a full authority Digital Electronic Engine Control system in an F-15 aircraft
NASA Technical Reports Server (NTRS)
Barrett, W. J.; Rembold, J. P.; Burcham, F. W.; Myers, L.
1981-01-01
The Digital Electronic Engine Control (DEEC) system considered is a relatively low cost digital full authority control system containing selectively redundant components and fault detection logic with capability for accommodating faults to various levels of operational capability. The DEEC digital control system is built around a 16-bit, 1.2 microsecond cycle time, CMOS microprocessor, microcomputer system with approximately 14 K of available memory. Attention is given to the control mode, component bench testing, closed loop bench testing, a failure mode and effects analysis, sea-level engine testing, simulated altitude engine testing, flight testing, the data system, cockpit, and real time display.
Memory device for two-dimensional radiant energy array computers
NASA Technical Reports Server (NTRS)
Schaefer, D. H.; Strong, J. P., III (Inventor)
1977-01-01
A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included
A Curriculum for Logical Thinking. NAAESC Occasional Papers, Volume 1, Number 4.
ERIC Educational Resources Information Center
Charuhas, Mary S.
The purpose of this paper is to demonstrate methods for developing cognitive processes in adult students. It discusses concept formation and concept attainment, problem solving (which involves concept formation and concept attainment), Bruner's three stages of learning (enactive, iconic, and symbolic modes), and visual thinking. A curriculum for…
ERIC Educational Resources Information Center
Jonassen, David H.; And Others
1997-01-01
The strongly positivist beliefs on which traditional conceptions of instructional design (ID) are based derive from Aristotelian logic and oversimplify the world, reducing human learning and performance to a repertoire of manipulable behaviors. Reviews the cases against deterministic predictability and discusses hermeneutic, fuzzy logic, and chaos…
Gateways to Writing Logical Arguments
ERIC Educational Resources Information Center
McCann, Thomas M.
2010-01-01
Middle school and high school students have a conception of what the basic demands of logic are, and they draw on this understanding in anticipating certain demands of parents and teachers when the adolescents have to defend positions. At the same time, many adolescents struggle to "write" highly elaborated arguments. Teaching students lessons in…
2013-05-01
logic to perform control function computations and are connected to the full authority digital engine control ( FADEC ) via a high-speed data...Digital Engine Control ( FADEC ) via a high speed data communication bus. The short term distributed engine control configu- rations will be core...concen- trator; and high temperature electronics, high speed communication bus between the data concentrator and the control law processor master FADEC
Microcomputer Control of a Hydraulically Actuated Piston.
1987-06-01
EhhhohEohEmhhE EhhmhhhohhhhhI M1l *2 112.2 Ll 6 111111.258 MICROCOPY RESOLUfION TEST CHART NATIONAL BUREAUJ nF SIANDARDS 1963 A W* %i r f U V ~ S i V...SYSTE.M............................I( E. I REQUENCY RESPONSE TEST ........................... F. MODEL V.ALIDATION ................................. 2...O RITH M (BA SIC) ................................. 43 APPENDIX D: DIGITAL SYSTEM SIMULATION CODE (DSL) ........... 44 APPENDIX E: DIGITAL LOGIC TEST
NASA Astrophysics Data System (ADS)
Cominelli, Alessandro; Acconcia, Giulia; Ghioni, Massimo; Rech, Ivan
2018-03-01
Time-correlated single-photon counting (TCSPC) is a powerful optical technique, which permits recording fast luminous signals with picosecond precision. Unfortunately, given its repetitive nature, TCSPC is recognized as a relatively slow technique, especially when a large time-resolved image has to be recorded. In recent years, there has been a fast trend toward the development of TCPSC imagers. Unfortunately, present systems still suffer from a trade-off between number of channels and performance. Even worse, the overall measurement speed is still limited well below the saturation of the transfer bandwidth toward the external processor. We present a routing algorithm that enables a smart connection between a 32×32 detector array and five shared high-performance converters able to provide an overall conversion rate up to 10 Gbit/s. The proposed solution exploits a fully digital logic circuit distributed in a tree structure to limit the number and length of interconnections, which is a major issue in densely integrated circuits. The behavior of the logic has been validated by means of a field-programmable gate array, while a fully integrated prototype has been designed in 180-nm technology and analyzed by means of postlayout simulations.
Parallel database search and prime factorization with magnonic holographic memory devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khitun, Alexander
In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploitmore » wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.« less
FPGA Implementation of Metastability-Based True Random Number Generator
NASA Astrophysics Data System (ADS)
Hata, Hisashi; Ichikawa, Shuichi
True random number generators (TRNGs) are important as a basis for computer security. Though there are some TRNGs composed of analog circuit, the use of digital circuits is desired for the application of TRNGs to logic LSIs. Some of the digital TRNGs utilize jitter in free-running ring oscillators as a source of entropy, which consume large power. Another type of TRNG exploits the metastability of a latch to generate entropy. Although this kind of TRNG has been mostly implemented with full-custom LSI technology, this study presents an implementation based on common FPGA technology. Our TRNG is comprised of logic gates only, and can be integrated in any kind of logic LSI. The RS latch in our TRNG is implemented as a hard-macro to guarantee the quality of randomness by minimizing the signal skew and load imbalance of internal nodes. To improve the quality and throughput, the output of 64-256 latches are XOR'ed. The derived design was verified on a Xilinx Virtex-4 FPGA (XC4VFX20), and passed NIST statistical test suite without post-processing. Our TRNG with 256 latches occupies 580 slices, while achieving 12.5Mbps throughput.
Parallel database search and prime factorization with magnonic holographic memory devices
NASA Astrophysics Data System (ADS)
Khitun, Alexander
2015-12-01
In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploit wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.
Toward a phenomenology of trance logic in posttraumatic stress disorder.
Beshai, J A
2004-04-01
Some induction procedures result in trance logic as an essential feature of hypnosis. Trance logic is a voluntary state of acceptance of suggestions without the critical evaluation that would destroy the validity of the meaningfulness of the suggestion. Induction procedures in real and simulated conditions induce a conflict between two contradictory messages in experimental hypnosis. In military induction the conflict is much more subtle involving society's need for security and its need for ethics. Such conflicts are often construed by the subject as trance logic. Trance logic provides an opportunity for therapists using the phenomenology of "presence" to deal with the objectified concepts of "avoidance," "numbing" implicit in this kind of dysfunctional thinking in Posttraumatic Stress Disorder. An individual phenomenology of induction procedures and suggestions, which trigger trance logic, may lead to a resolution of logical fallacies and recurring painful memories. It invites a reconciliation of conflicting messages implicit in phobias and avoidance traumas. Such a phenomenological analysis of trance logic may well be a novel approach to restructure the meaning of trauma.
Bio-logic analysis of injury biomarker patterns in human serum samples.
Zhou, Jian; Halámek, Jan; Bocharova, Vera; Wang, Joseph; Katz, Evgeny
2011-01-15
Digital biosensor systems analyzing biomarkers characteristic of liver injury (LI), soft tissue injury (STI) and abdominal trauma (ABT) were developed and optimized for their performance in serum solutions spiked with injury biomarkers in order to mimic real medical samples. The systems produced 'Alert'-type optical output signals in the form of "YES-NO" separated by a threshold value. The new approach aims at the reliable detection of injury biomarkers for making autonomous decisions towards timely therapeutic interventions, particularly in conditions when a hospital treatment is not possible. The enzyme-catalyzed reactions performing Boolean AND/NAND logic operations in the presence of different combinations of the injury biomarkers allowed high-fidelity biosensing. Robustness of the systems was confirmed by their operation in serum solutions, representing the first example of chemically performed logic analysis of biological fluids and a step closer towards practical biomedical applications of enzyme-logic bioassays. Copyright © 2010 Elsevier B.V. All rights reserved.
Fuzzy logic particle tracking velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV
NASA Astrophysics Data System (ADS)
Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.
2015-11-01
In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.
NASA Astrophysics Data System (ADS)
Yamada, Katsuhiko; Jikuya, Ichiro
2014-09-01
Singularity analysis and the steering logic of pyramid-type single gimbal control moment gyros are studied. First, a new concept of directional passability in a specified direction is introduced to investigate the structure of an elliptic singular surface. The differences between passability and directional passability are discussed in detail and are visualized for 0H, 2H, and 4H singular surfaces. Second, quadratic steering logic (QSL), a new steering logic for passing the singular surface, is investigated. The algorithm is based on the quadratic constrained quadratic optimization problem and is reduced to the Newton method by using Gröbner bases. The proposed steering logic is demonstrated through numerical simulations for both constant torque maneuvering examples and attitude control examples.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.
The DigitalSeed: An Interactive Toy for Investigating Plants
ERIC Educational Resources Information Center
Cherubini, Mauro; Gash, Hugh; McCloughlin, Thomas
2008-01-01
Plant growth, development and reproduction are fundamental concepts in biology; yet there is a recorded lack of motivation for young people to grapple with these concepts. Here we present the "DigitalSeed" toy for making investigations around these concepts more accessible to children through hands-on digital interaction. This is part of an…
Evidence that logical reasoning depends on conscious processing.
DeWall, C Nathan; Baumeister, Roy F; Masicampo, E J
2008-09-01
Humans, unlike other animals, are equipped with a powerful brain that permits conscious awareness and reflection. A growing trend in psychological science has questioned the benefits of consciousness, however. Testing a hypothesis advanced by [Lieberman, M. D., Gaunt, R., Gilbert, D. T., & Trope, Y. (2002). Reflection and reflexion: A social cognitive neuroscience approach to attributional inference. Advances in Experimental Social Psychology, 34, 199-249], four studies suggested that the conscious, reflective processing system is vital for logical reasoning. Substantial decrements in logical reasoning were found when a cognitive load manipulation preoccupied conscious processing, while hampering the nonconscious system with consciously suppressed thoughts failed to impair reasoning (Experiment 1). Nonconscious activation (priming) of the idea of logical reasoning increased the activation of logic-relevant concepts, but failed to improve logical reasoning performance (Experiments 2a-2c) unless the logical conclusions were largely intuitive and thus not reliant on logical reasoning (Experiment 3). Meanwhile, stimulating the conscious goal of reasoning well led to improvements in reasoning performance (Experiment 4). These findings offer evidence that logical reasoning is aided by the conscious, reflective processing system.
Application of linear logic to simulation
NASA Astrophysics Data System (ADS)
Clarke, Thomas L.
1998-08-01
Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.
Scalable and expressive medical terminologies.
Mays, E; Weida, R; Dionne, R; Laker, M; White, B; Liang, C; Oles, F J
1996-01-01
The K-Rep system, based on description logic, is used to represent and reason with large and expressive controlled medical terminologies. Expressive concept descriptions incorporate semantically precise definitions composed using logical operators, together with important non-semantic information such as synonyms and codes. Examples are drawn from our experience with K-Rep in modeling the InterMed laboratory terminology and also developing a large clinical terminology now in production use at Kaiser-Permanente. System-level scalability of performance is achieved through an object-oriented database system which efficiently maps persistent memory to virtual memory. Equally important is conceptual scalability-the ability to support collaborative development, organization, and visualization of a substantial terminology as it evolves over time. K-Rep addresses this need by logically completing concept definitions and automatically classifying concepts in a taxonomy via subsumption inferences. The K-Rep system includes a general-purpose GUI environment for terminology development and browsing, a custom interface for formulary term maintenance, a C+2 application program interface, and a distributed client-server mode which provides lightweight clients with efficient run-time access to K-Rep by means of a scripting language.
Modal Interpretation of Quantum Mechanics and Classical Physical Theories
NASA Astrophysics Data System (ADS)
Ingarden, R. S.
In 1990, Bas C. van Fraassen defined the modal interpretation of quantum mechanics as the consideration of it as ``a pure theory of the possible, with testable, empirical implications for what actually happens". This is a narrow, traditional understanding of modality, only in the sense of the concept of possibility (usually denoted in logic by the C. I. Lewis's symbol 3) and the concept of necessity 2 defined by means of 3. In modern logic, however, modality is understood in a much wider sense as any intensional functor (i.e. non-extensional or determined not only by the truth value of a sentence). In the recent (independent of van Fraassen) publications of the author (1997), an attempt was made to apply this wider understanding of modality to interpretation of classical and quantum physics. In the present lecture, these problems are discussed on the background of a brief review of the logical approch to quantum mechanics in the recent 7 decades. In this discussion, the new concepts of sub-modality and super-modality of many orders are used.
The evolvability of programmable hardware.
Raman, Karthik; Wagner, Andreas
2011-02-06
In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected 'neutral networks' in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 10(45) logic circuits ('genotypes') and 10(19) logic functions ('phenotypes'). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry.
The evolvability of programmable hardware
Raman, Karthik; Wagner, Andreas
2011-01-01
In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected ‘neutral networks’ in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 1045 logic circuits (‘genotypes’) and 1019 logic functions (‘phenotypes’). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry. PMID:20534598
On the Concepts of Quantity and Quality in the History of Western Thought
ERIC Educational Resources Information Center
Campbell, Stephen R.
2004-01-01
This paper charts a cognitive history of the concepts of quantity and quality from three inter-related and inter-dependent perspectives of mathematics, logic, and physics. In so doing, other notions associated with the evolution of these concepts are identified and explicated. It is argued that the concepts of quantity and quality, considered in…
Interconnected magnetic tunnel junctions for spin-logic applications
NASA Astrophysics Data System (ADS)
Manfrini, Mauricio; Vaysset, Adrien; Wan, Danny; Raymenants, Eline; Swerts, Johan; Rao, Siddharth; Zografos, Odysseas; Souriau, Laurent; Gavan, Khashayar Babaei; Rassoul, Nouredine; Radisic, Dunja; Cupak, Miroslav; Dehan, Morin; Sayan, Safak; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Mocuta, Dan; Radu, Iuliana P.
2018-05-01
With the rapid progress of spintronic devices, spin-logic concepts hold promises of energy-delay conscious computation for efficient logic gate operations. We report on the electrical characterization of domain walls in interconnected magnetic tunnel junctions. By means of spin-transfer torque effect, domains walls are produced at the common free layer and its propagation towards the output pillar sensed by tunneling magneto-resistance. Domain pinning conditions are studied quasi-statically showing a strong dependence on pillar size, ferromagnetic free layer width and inter-pillar distance. Addressing pinning conditions are detrimental for cascading and fan-out of domain walls across nodes, enabling the realization of domain-wall-based logic technology.
Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis.
Li, Yong; Sun, Sujuan; Fan, Lin; Hu, Shanfang; Huang, Yan; Zhang, Ke; Nie, Zhou; Yao, Shouzhou
2017-11-20
A novel and versatile peptide-based bio-logic system capable of regulating cell function is developed using sortase A (SrtA), a peptide ligation enzyme, as a generic processor. By modular peptide design, we demonstrate that mammalian cells apoptosis can be programmed by peptide-based logic operations, including binary and combination gates (AND, INHIBIT, OR, and AND-INHIBIT), and a complex sequential logic circuit (multi-input keypad lock). Moreover, a proof-of-concept peptide regulatory circuit was developed to analyze the expression profile of cell-secreted protein biomarkers and trigger cancer-cell-specific apoptosis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improving learning performance with happiness by interactive scenarios.
Chuang, Chi-Hung; Chen, Ying-Nong; Tsai, Luo-Wei; Lee, Chun-Chieh; Tsai, Hsin-Chun
2014-01-01
Recently, digital learning has attracted a lot of researchers to improve the problems of learning carelessness, low learning ability, lack of concentration, and difficulties in comprehending the logic of math. In this study, a digital learning system based on Kinect somatosensory system is proposed to make children and teenagers happily learn in the course of the games and improve the learning performance. We propose two interactive geometry and puzzle games. The proposed somatosensory games can make learners feel curious and raise their motivation to find solutions for boring problems via abundant physical expressions and interactive operations. The players are asked to select particular operation by gestures and physical expressions within a certain time. By doing so, the learners can feel the fun of game playing and train their logic ability before they are aware. Experimental results demonstrate that the proposed somatosensory system can effectively improve the students' learning performance.
A description of the thruster attitude control simulation and its application to the HEAO-C study
NASA Technical Reports Server (NTRS)
Brandon, L. B.
1971-01-01
During the design and evaluation of a reaction control system (RCS), it is desirable to have a digital computer program simulating vehicle dynamics, disturbance torques, control torques, and RCS logic. The thruster attitude control simulation (TACS) is just such a computer program. The TACS is a relatively sophisticated digital computer program that includes all the major parameters involved in the attitude control of a vehicle using an RCS for control. It includes the effects of gravity gradient torques and HEAO-C aerodynamic torques so that realistic runs can be made in the areas of fuel consumption and engine actuation rates. Also, the program is general enough that any engine configuration and logic scheme can be implemented in a reasonable amount of time. The results of the application of the TACS in the HEAO-C study are included.
Improving Learning Performance with Happiness by Interactive Scenarios
Chuang, Chi-Hung; Chen, Ying-Nong; Tsai, Luo-Wei; Lee, Chun-Chieh; Tsai, Hsin-Chun
2014-01-01
Recently, digital learning has attracted a lot of researchers to improve the problems of learning carelessness, low learning ability, lack of concentration, and difficulties in comprehending the logic of math. In this study, a digital learning system based on Kinect somatosensory system is proposed to make children and teenagers happily learn in the course of the games and improve the learning performance. We propose two interactive geometry and puzzle games. The proposed somatosensory games can make learners feel curious and raise their motivation to find solutions for boring problems via abundant physical expressions and interactive operations. The players are asked to select particular operation by gestures and physical expressions within a certain time. By doing so, the learners can feel the fun of game playing and train their logic ability before they are aware. Experimental results demonstrate that the proposed somatosensory system can effectively improve the students' learning performance. PMID:24558331
A low power, area efficient fpga based beamforming technique for 1-D CMUT arrays.
Joseph, Bastin; Joseph, Jose; Vanjari, Siva Rama Krishna
2015-08-01
A low power area efficient digital beamformer targeting low frequency (2MHz) 1-D linear Capacitive Micromachined Ultrasonic Transducer (CMUT) array is developed. While designing the beamforming logic, the symmetry of the CMUT array is well exploited to reduce the area and power consumption. The proposed method is verified in Matlab by clocking an Arbitrary Waveform Generator(AWG). The architecture is successfully implemented in Xilinx Spartan 3E FPGA kit to check its functionality. The beamforming logic is implemented for 8, 16, 32, and 64 element CMUTs targeting Application Specific Integrated Circuit (ASIC) platform at Vdd 1.62V for UMC 90nm technology. It is observed that the proposed architecture consumes significantly lesser power and area (1.2895 mW power and 47134.4 μm(2) area for a 64 element digital beamforming circuit) compared to the conventional square root based algorithm.
Evidence of Hybrid Institutional Logics in the US Public Research University
ERIC Educational Resources Information Center
Upton, Stevie; Warshaw, Jarrett B.
2017-01-01
While the ascendancy of market behaviours in public research universities is well documented, the extent to which universities have transformed themselves into industry-like organisations has been called into question. So to what extent are universities displaying transformation in their core values? The concept of institutional logics, with its…
Excellence in University Academic Staff Evaluation: A Problematic Reality?
ERIC Educational Resources Information Center
O'Connor, Pat; O'Hagan, Clare
2016-01-01
This article is concerned with the macro-cultural ideal or institutional myth of excellence as defined and used in the evaluation of academic staff as part of an institutional logic. Such logics "prescribe what constitutes legitimate behaviour and provide taken-for-granted conceptions of what goals are appropriate and what means are…
Refining Concepts: Half Isn't Always Less
ERIC Educational Resources Information Center
Carter, Cynthia J.
2017-01-01
The author wants her students to see any new mathematics--fractions, negative numbers, algebra--as logical extensions of what they already know. This article describes two students' efforts to make sense of their conflicting interpretations of 1/2 × -6, both of which were compelling and logical to them. It describes how discussion, constructing…
Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation.
Dutta, Sourav; Zografos, Odysseas; Gurunarayanan, Surya; Radu, Iuliana; Soree, Bart; Catthoor, Francky; Naeemi, Azad
2017-12-19
Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 μm 2 for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1986-01-01
A hypothetical turbofan engine simplified simulation with a multivariable control and sensor failure detection, isolation, and accommodation logic (HYTESS II) is presented. The digital program, written in FORTRAN, is self-contained, efficient, realistic and easily used. Simulated engine dynamics were developed from linearized operating point models. However, essential nonlinear effects are retained. The simulation is representative of the hypothetical, low bypass ratio turbofan engine with an advanced control and failure detection logic. Included is a description of the engine dynamics, the control algorithm, and the sensor failure detection logic. Details of the simulation including block diagrams, variable descriptions, common block definitions, subroutine descriptions, and input requirements are given. Example simulation results are also presented.
Characteristics Of Ferroelectric Logic Gates Using a Spice-Based Model
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.
2005-01-01
A SPICE-based model of an n-channel ferroelectric field effect transistor has been developed based on both theoretical and empirical data. This model was used to generate the I-V characteristic of several logic gates. The use of ferroelectric field effect transistors in memory circuits is being developed by several organizations. The use of FFETs in other circuits, both analog and digital needs to be better understood. The ability of FFETs to have different characteristics depending on the initial polarization can be used to create logic gates. These gates can have properties not available to standard CMOS logic gates, such as memory, reconfigurability and memory. This paper investigates basic properties of FFET logic gates. It models FFET inverter, NAND gate and multi-input NAND gate. The I-V characteristics of the gates are presented as well as transfer characteristics and timing. The model used is a SPICE-based model developed from empirical data from actual Ferroelectric transistors. It simulates all major characteristics of the ferroelectric transistor, including polarization, hysteresis and decay. Contrasts are made of the differences between FFET logic gates and CMOS logic gates. FFET parameters are varied to show the effect on the overall gate. A recodigurable gate is investigated which is not possible with CMOS circuits. The paper concludes that FFETs can be used in logic gates and have several advantages over standard CMOS gates.
A pragmatic conception of science: Implications for science teaching
NASA Astrophysics Data System (ADS)
Sessoms, Deidre Bates
In this dissertation, I examine various philosophical conceptions of the nature of science---its goals, methods and products---and link those views to how science is taught. While the review begins in the 1600s, the focus is primarily on logical positivism. The logical positivist view of science prevailed for much of the twentieth century and has greatly influenced how science is taught. The review section culminates with current conceptions of science from the fields of philosophy, sociology, feminist studies and radical studies of science. These various conceptions of the nature of science are linked to how science is currently taught, at the K--12 level and at the university. In particular, the logical positivist conception has influenced the teaching of science by emphasizing the products of science (factual knowledge and theories) over the processes of science (the social methods of knowledge production). As a result of viewing science as the logical positivists did, teachers primarily focus on science as unchanging factual knowledge, at the expense of examining the social and cultural aspects of scientific practices. I develop a pragmatic conception of the method of science as reflective thinking that we effectively use in our everyday lives. Linking that conception with the aims that John Dewey outlined for schools in a democratic society points the way towards certain goals and methods for teaching science. Therefore, I explore the type of science teaching that might result when viewing science as a pragmatic activity conducted in a democracy. Teaching of this sort would involve students in working together on shared problems that arise in the context of daily life. For science students at the university, this would include participating in and critiquing scientific research in active research laboratories. Implementing this view of science teaching might result in modifications in the practices and goals of science. Lastly, the experiences of a group of under-represented minority students who studied the sciences at the university are used to illustrate both the promises and the pitfalls of attempting to incorporate a pragmatic view of science into science teaching.
Deferring Totality: An Anti-Dialectic Theory of Identity
ERIC Educational Resources Information Center
Powell, David M.; Noel, Jana
2010-01-01
Using Derrida's concept of deferring totality, Deleuze's concept of the logic of multiplicities, and Butler's "sliding scale," this paper presents an anti-dialectic theory of identity, one that recognizes the permanent deferral of the very concept of identity--a non-synthesized, non-resolved identity--that values the hybridity of identities.…
How to Teach Procedures, Problem Solving, and Concepts in Microbial Genetics
ERIC Educational Resources Information Center
Bainbridge, Brian W.
1977-01-01
Flow-diagrams, algorithms, decision logic tables, and concept maps are presented in detail as methods for teaching practical procedures, problem solving, and basic concepts in microbial genetics. It is suggested that the flexible use of these methods should lead to an improved understanding of microbial genetics. (Author/MA)
Explicating the Concept of Contrapositive Equivalence
ERIC Educational Resources Information Center
Dawkins, Paul Christian; Hub, Alec
2017-01-01
This paper sets forth a concept (Simon, 2017) of contrapositive equivalence and explores some related phenomena of learning through a case study of Hugo's learning in a teaching experiment guiding the reinvention of mathematical logic. Our proposed concept of contrapositive equivalence rests upon set-based meanings for mathematical categories and…
Digital electronic engine control fault detection and accommodation flight evaluation
NASA Technical Reports Server (NTRS)
Baer-Ruedhart, J. L.
1984-01-01
The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.
Curriculum for Digital Education Leadership: A Concept Paper
ERIC Educational Resources Information Center
Brown, Cheryl; Czerniewicz, Laura; Huang, Cheng-Wen; Mayisela, Tabisa
2016-01-01
The Commonwealth Digital Education Leadership Training in Action (C-DELTA) is a long-term programme of the Commonwealth of Learning (COL) to promote a digital education environment in Commonwealth Member Nations. This concept paper proposes a holistic approach to conceptualising digital education leadership. The C-DELTA programme will provide a…
NASA Astrophysics Data System (ADS)
Jara Casas, L. M.; Ceresa, D.; Kulis, S.; Miryala, S.; Christiansen, J.; Francisco, R.; Gnani, D.
2017-02-01
A Digital RADiation (DRAD) test chip has been specifically designed to study the impact of Total Ionizing Dose (TID) (<1 Grad) and Single Event Upset (SEU) on digital logic gates in a 65 nm CMOS technology. Nine different versions of standard cell libraries are studied in this chip, basically differing in the device dimensions, Vt flavor and layout of the device. Each library has eighteen test structures specifically designed to characterize delay degradation and power consumption of the standard cells. For SEU study, a dedicated test structure based on a shift register is designed for each library. TID results up to 500 Mrad are reported.
All-digital GPS receiver mechanization
NASA Astrophysics Data System (ADS)
Ould, P. C.; van Wechel, R. J.
The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.
SWARM: A Compact High Resolution Correlator and Wideband VLBI Phased Array Upgrade for SMA
NASA Astrophysics Data System (ADS)
Weintroub, Jonathan
2014-06-01
A new digital back end (DBE) is being commissioned on Mauna Kea. The “SMA Wideband Astronomical ROACH2 Machine”, or SWARM, processes a 4 GHz usable band in single polarization mode and is flexibly reconfigurable for 2 GHz full Stokes dual polarization. The hardware is based on the open source Reconfigurable Open Architecture Computing Hardware 2 (ROACH2) platform from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). A 5 GSps quad-core analog-to-digital converter board uses a commercial chip from e2v installed on a CASPER-standard printed circuit board designed by Homin Jiang’s group at ASIAA. Two ADC channels are provided per ROACH2, each sampling a 2.3 GHz Nyquist band generated by a custom wideband block downconverter (BDC). The ROACH2 logic includes 16k-channel Polyphase Filterbank (F-engine) per input followed by a 10 GbE switch based corner-turn which feeds into correlator-accumulator logic (X-engines) co-located with the F-engines. This arrangement makes very effective use of a small amount of digital hardware (just 8 ROACH2s in 1U rack mount enclosures). The primary challenge now is to meet timing at full speed for a large and very complex FPGA bit code. Design of the VLBI phased sum and recorder interface logic is also in process. Our poster will describe the instrument design, with the focus on the particular challenges of ultra wideband signal processing. Early connected commissioning and science verification data will be presented.
Modified signed-digit trinary addition using synthetic wavelet filter
NASA Astrophysics Data System (ADS)
Iftekharuddin, K. M.; Razzaque, M. A.
2000-09-01
The modified signed-digit (MSD) number system has been a topic of interest as it allows for parallel carry-free addition of two numbers for digital optical computing. In this paper, harmonic wavelet joint transform (HWJT)-based correlation technique is introduced for optical implementation of MSD trinary adder implementation. The realization of the carry-propagation-free addition of MSD trinary numerals is demonstrated using synthetic HWJT correlator model. It is also shown that the proposed synthetic wavelet filter-based correlator shows high performance in logic processing. Simulation results are presented to validate the performance of the proposed technique.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
NASA Technical Reports Server (NTRS)
Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.
1985-01-01
The fault detection and accommodation (FDA) methods that can be used for digital engine control systems are presently subjected to a flight test program in the case of the F-15 fighter's F100 engine electronic controls, inducing selected faults and then evaluating the resulting digital engine control responses. In general, flight test results were found to compare well with both ground tests and predictions. It is noted that the inducement of dual-pressure failures was not feasible, since FDA logic was not designed to accommodate them.
NASA Astrophysics Data System (ADS)
Wan, Danny; Manfrini, Mauricio; Vaysset, Adrien; Souriau, Laurent; Wouters, Lennaert; Thiam, Arame; Raymenants, Eline; Sayan, Safak; Jussot, Julien; Swerts, Johan; Couet, Sebastien; Rassoul, Nouredine; Babaei Gavan, Khashayar; Paredis, Kristof; Huyghebaert, Cedric; Ercken, Monique; Wilson, Christopher J.; Mocuta, Dan; Radu, Iuliana P.
2018-04-01
Magnetic tunnel junctions (MTJs) interconnected via a continuous ferromagnetic free layer were fabricated for spin torque majority gate (STMG) logic. The MTJs are biased independently and show magnetoelectric response under spin transfer torque. The electrical control of these devices paves the way to future spin logic devices based on domain wall (DW) motion. In particular, it is a significant step towards the realization of a majority gate. To our knowledge, this is the first fabrication of a cross-shaped free layer shared by several perpendicular MTJs. The fabrication process can be generalized to any geometry and any number of MTJs. Thus, this framework can be applied to other spin logic concepts based on magnetic interconnect. Moreover, it allows exploration of spin dynamics for logic applications.
NASA Technical Reports Server (NTRS)
Sultan, Labib; Janabi, Talib
1992-01-01
This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.
Multi-objective decision-making under uncertainty: Fuzzy logic methods
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1995-01-01
Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.
2014-09-01
electrocardiography (ECG), electromyography (EMG), and electroencephalography (EEG) applications that operate using thermoelectrically generated energy...semiconductor ECG electrocardiography EEG electroencephalography EMG electromyography FY15 fiscal year 2015 IC integrated circuit MOSFETs
Pulse stretcher for narrow pulses
NASA Technical Reports Server (NTRS)
Lindsey, R. S., Jr. (Inventor)
1974-01-01
A pulse stretcher for narrow pulses is presented. The stretcher is composed of an analog section for processing each arriving analog pulse and a digital section with logic for providing command signals to the gates and switches in the analog section.
Three challenges to the complementarity of the logic and the pragmatics of science.
Uebel, Thomas
2015-10-01
The bipartite metatheory thesis attributes to Rudolf Carnap, Philipp Frank and Otto Neurath a conception of the nature of post-metaphysical philosophy of science that sees the purely formal-logical analyses of the logic of science as complemented by empirical inquiries into the psychology, sociology and history of science. Three challenges to this thesis are considered in this paper: that Carnap did not share this conception of the nature of philosophy of science even on a programmatic level, that Carnap's detailed analysis of the language of science is incompatible with one developed by Neurath for the pursuit of empirical studies of science, and, finally, that Neurath himself was confused about the programme of which the bipartite metatheory thesis makes him a representative. I argue that all three challenges can be met and refuted. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optical Generation of Fuzzy-Based Rules
NASA Astrophysics Data System (ADS)
Gur, Eran; Mendlovic, David; Zalevsky, Zeev
2002-08-01
In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.
Using AI and Semantic Web Technologies to attack Process Complexity in Open Systems
NASA Astrophysics Data System (ADS)
Thompson, Simon; Giles, Nick; Li, Yang; Gharib, Hamid; Nguyen, Thuc Duong
Recently many vendors and groups have advocated using BPEL and WS-BPEL as a workflow language to encapsulate business logic. While encapsulating workflow and process logic in one place is a sensible architectural decision the implementation of complex workflows suffers from the same problems that made managing and maintaining hierarchical procedural programs difficult. BPEL lacks constructs for logical modularity such as the requirements construct from the STL [12] or the ability to adapt constructs like pure abstract classes for the same purpose. We describe a system that uses semantic web and agent concepts to implement an abstraction layer for BPEL based on the notion of Goals and service typing. AI planning was used to enable process engineers to create and validate systems that used services and goals as first class concepts and compiled processes at run time for execution.
The logic of relations and the logic of management.
Buntinx, W
2008-07-01
Increasing emphasis on financial and administrative control processes is affecting service culture in support organisations for persons with intellectual disability. This phenomenon is currently obvious in Dutch service organisations that find themselves in transition towards more community care and at the same time under pressure from new administrative and funding managerial bureaucracy. As a result, the logic of management is becoming more dominant in direct support settings and risk to overshadow the logic of relationships between staff and clients. The article presents a reflection on this phenomenon, starting from a description of service team characteristics as found in the literature. Next, findings about direct support staff (DSS) continuity are summarised from four Dutch studies. Following up these findings, the concept of 'microsystems' is explored as a possible answer to the organisational challenges demonstrated in the studies. Team characteristics, especially team size and membership continuity for DSS, appear relevant factors for assuring supportive relationships and service quality in direct support teams. The structure of the primary support team shows to be of special interest. The organisational concept of 'microsystems' is explored with respect to transcending the present conflict between bureaucratic managerial pressure and the need for supportive relationships. Service organisations need to create structural conditions for the efficacy of direct support teams in terms of client relationships and relevant client outcomes. At the same time, the need for administrative and control processes can not be denied. The concept of 'microsystems', application of a Quality of Life framework and the use of new instruments, such as the Supports Intensity Scale, can contribute to an organisational solution for the present conflicting logic of relations and management.
Correction And Use Of Jitter In Television Images
NASA Technical Reports Server (NTRS)
Diner, Daniel B.; Fender, Derek H.; Fender, Antony R. H.
1989-01-01
Proposed system stabilizes jittering television image and/or measures jitter to extract information on motions of objects in image. Alternative version, system controls lateral motion on camera to generate stereoscopic views to measure distances to objects. In another version, motion of camera controlled to keep object in view. Heart of system is digital image-data processor called "jitter-miser", which includes frame buffer and logic circuits to correct for jitter in image. Signals from motion sensors on camera sent to logic circuits and processed into corrections for motion along and across line of sight.
Static Characteristics of the Ferroelectric Transistor Inverter
NASA Technical Reports Server (NTRS)
Mitchell, Cody; Laws, crystal; MacLeond, Todd C.; Ho, Fat D.
2010-01-01
The inverter is one of the most fundamental building blocks of digital logic, and it can be used as the foundation for understanding more complex logic gates and circuits. This paper presents the characteristics of an inverter circuit using a ferroelectric field-effect transistor. The voltage transfer characteristics are analyzed with respect to varying parameters such as supply voltage, input voltage, and load resistance. The effects of the ferroelectric layer between the gate and semiconductor are examined, and comparisons are made between the inverters using ferroelectric transistors and those using traditional MOSFETs.
Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory.
Ng, Tse Nga; Schwartz, David E; Lavery, Leah L; Whiting, Gregory L; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer
2012-01-01
Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic.
NASA Lewis F100 engine testing
NASA Technical Reports Server (NTRS)
Werner, R. A.; Willoh, R. G., Jr.; Abdelwahab, M.
1984-01-01
Two builds of an F100 engine model derivative (EMD) engine were evaluated for improvements in engine components and digital electronic engine control (DEEC) logic. Two DEEC flight logics were verified throughout the flight envelope in support of flight clearance for the F100 engine model derivative program (EMPD). A nozzle instability and a faster augmentor transient capability was investigated in support of the F-15 DEEC flight program. Off schedule coupled system mode fan flutter, DEEC nose-boom pressure correlation, DEEC station six pressure comparison, and a new fan inlet variable vane (CIVV) schedule are identified.
ERIC Educational Resources Information Center
Schultz, Leah
2011-01-01
This research investigates the implementation of the programming language Alice to teach computer programming logic to computer information systems students. Alice has been implemented in other university settings and has been reported to have many benefits including object-oriented concepts and an engaging and fun learning environment. In this…
ERIC Educational Resources Information Center
Evans, Katherine
2016-01-01
This article is an exploration of the possibilities encountered through shifting from a "logic of quality" to a "space of meaning-making" within early years education. Focusing on ideas of "readiness", this discussion aims to challenge normative understandings that relate this concept to the predictable achievement of…
Three-Function Logic Gate Controlled by Analog Voltage
NASA Technical Reports Server (NTRS)
Zebulum, Ricardo; Stoica, Adrian
2006-01-01
The figure is a schematic diagram of a complementary metal oxide/semiconductor (CMOS) electronic circuit that performs one of three different logic functions, depending on the level of an externally applied control voltage, V(sub sel). Specifically, the circuit acts as A NAND gate at V(sub sel) = 0.0 V, A wire (the output equals one of the inputs) at V(sub sel) = 1.0 V, or An AND gate at V(sub sel) = -1.8 V. [The nominal power-supply potential (VDD) and logic "1" potential of this circuit is 1.8 V.] Like other multifunctional circuits described in several prior NASA Tech Briefs articles, this circuit was synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. An evolved circuit can be tested by computational simulation and/or tested in real hardware, and the results of the test can provide guidance for refining the design through further iteration. The evolutionary synthesis of electronic circuits can now be implemented by means of a software package Genetic Algorithms for Circuit Synthesis (GACS) that was developed specifically for this purpose. GACS was used to synthesize the present trifunctional circuit. As in the cases of other multifunctional circuits described in several prior NASA Tech Briefs articles, the multiple functionality of this circuit, the use of a single control voltage to select the function, and the automated evolutionary approach to synthesis all contribute synergistically to a combination of features that are potentially advantageous for the further development of robust, multiple-function logic circuits, including, especially, field-programmable gate arrays (FPGAs). These advantages include the following: This circuit contains only 9 transistors about half the number of transistors that would be needed to obtain equivalent NAND/wire/AND functionality by use of components from a standard digital design library. If multifunctional gates like this circuit were used in the place of the configurable logic blocks of present commercial FPGAs, it would be possible to change the functions of the resulting digital systems within shorter times. For example, by changing a single control voltage, one could change the function of thousands of FPGA cells within nanoseconds. In contrast, typically, the reconfiguration in a conventional FPGA by use of bits downloaded from look-up tables via a digital bus takes microseconds.
Stochastic p -Bits for Invertible Logic
NASA Astrophysics Data System (ADS)
Camsari, Kerem Yunus; Faria, Rafatul; Sutton, Brian M.; Datta, Supriyo
2017-07-01
Conventional semiconductor-based logic and nanomagnet-based memory devices are built out of stable, deterministic units such as standard metal-oxide semiconductor transistors, or nanomagnets with energy barriers in excess of ≈40 - 60 kT . In this paper, we show that unstable, stochastic units, which we call "p -bits," can be interconnected to create robust correlations that implement precise Boolean functions with impressive accuracy, comparable to standard digital circuits. At the same time, they are invertible, a unique property that is absent in standard digital circuits. When operated in the direct mode, the input is clamped, and the network provides the correct output. In the inverted mode, the output is clamped, and the network fluctuates among all possible inputs that are consistent with that output. First, we present a detailed implementation of an invertible gate to bring out the key role of a single three-terminal transistorlike building block to enable the construction of correlated p -bit networks. The results for this specific, CMOS-assisted nanomagnet-based hardware implementation agree well with those from a universal model for p -bits, showing that p -bits need not be magnet based: any three-terminal tunable random bit generator should be suitable. We present a general algorithm for designing a Boltzmann machine (BM) with a symmetric connection matrix [J ] (Ji j=Jj i) that implements a given truth table with p -bits. The [J ] matrices are relatively sparse with a few unique weights for convenient hardware implementation. We then show how BM full adders can be interconnected in a partially directed manner (Ji j≠Jj i) to implement large logic operations such as 32-bit binary addition. Hundreds of stochastic p -bits get precisely correlated such that the correct answer out of 233 (≈8 ×1 09) possibilities can be extracted by looking at the statistical mode or majority vote of a number of time samples. With perfect directivity (Jj i=0 ) a small number of samples is enough, while for less directed connections more samples are needed, but even in the former case logical invertibility is largely preserved. This combination of digital accuracy and logical invertibility is enabled by the hybrid design that uses bidirectional BM units to construct circuits with partially directed interunit connections. We establish this key result with extensive examples including a 4-bit multiplier which in inverted mode functions as a factorizer.
Nacke, Lennart E; Nacke, Anne; Lindley, Craig A
2009-10-01
In recent years, an aging demographic majority in the Western world has come to the attention of the game industry. The recently released "brain-training" games target this population, and research investigating gameplay experience of the elderly using this game form is lacking. This study employs a 2 x 2 mixed factorial design (age group: young and old x game form: paper and Nintendo DS) to investigate effects of age and game form on usability, self-assessment, and gameplay experience in a supervised field study. Effectiveness was evaluated in task completion time, efficiency as error rate, together with self-assessment measures (arousal, pleasure, dominance) and game experience (challenge, flow, competence, tension, positive and negative affect). Results indicate players, regardless of age, are more effective and efficient using pen-and-paper than using a Nintendo DS console. However, the game is more arousing and induces a heightened sense of flow in digital form for gamers of all ages. Logic problem-solving challenges within digital games may be associated with positive feelings for the elderly but with negative feelings for the young. Thus, digital logic-training games may provide positive gameplay experience for an aging Western civilization.
Digital Device Architecture and the Safe Use of Flash Devices in Munitions
NASA Technical Reports Server (NTRS)
Katz, Richard B.; Flowers, David; Bergevin, Keith
2017-01-01
Flash technology is being utilized in fuzed munition applications and, based on the development of digital logic devices in the commercial world, usage of flash technology will increase. Digital devices of interest to designers include flash-based microcontrollers and field programmable gate arrays (FPGAs). Almost a decade ago, a study was undertaken to determine if flash-based microcontrollers could be safely used in fuzes and, if so, how should such devices be applied. The results were documented in the Technical Manual for the Use of Logic Devices in Safety Features. This paper will first review the Technical Manual and discuss the rationale behind the suggested architectures for microcontrollers and a brief review of the concern about data retention in flash cells. An architectural feature in the microcontroller under study will be discussed and its use will show how to screen for weak or failed cells during manufacture, storage, or immediately prior to use. As was done for microcontrollers a decade ago, architectures for a flash-based FPGA will be discussed, showing how it can be safely used in fuzes. Additionally, architectures for using non-volatile (including flash-based) storage will be discussed for SRAM-based FPGAs.
Digital Synchronizer without Metastability
NASA Technical Reports Server (NTRS)
Simle, Robert M.; Cavazos, Jose A.
2009-01-01
A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.
ERIC Educational Resources Information Center
Baser, Mustafa
2006-01-01
This study explores the effectiveness of conceptual change oriented instruction and standard science instruction and contribution of logical thinking ability on seventh grade students' understanding of heat and temperature concepts. Misconceptions related to heat and temperature concepts were determined by related literature on this subject.…
Study of Reversible Logic Synthesis with Application in SOC: A Review
NASA Astrophysics Data System (ADS)
Sharma, Chinmay; Pahuja, Hitesh; Dadhwal, Mandeep; Singh, Balwinder
2017-08-01
The prime concern in today’s SOC designs is the power dissipation which increases with technology scaling. The reversible logic possesses very high potential in reducing power dissipation in these designs. It finds its application in latest research fields such as DNA computing, quantum computing, ultra-low power CMOS design and nanotechnology. The reversible circuits can be easily designed using the conventional CMOS technology at a cost of a garbage output which maintains the reversibility. The purpose of this paper is to provide an overview of the developments that have occurred till date in this concept and how the new reversible logic gates are used to design the logic functions.
NASA Astrophysics Data System (ADS)
Kotb, Amer; Zoiros, Kyriakos E.
2016-08-01
The concept of soliton provides a line in research in telecommunications systems. In the present study, a soliton all-optical logic AND gate with semiconductor optical amplifier (SOA)-assisted Mach-Zehnder interferometer has been numerically simulated and investigated. The dependence of the output quality factor (Q-factor) on the soliton characteristics and SOA parameters has been examined and assessed. The obtained results demonstrate that the soliton AND gate is capable of operating at a data rate of 80 Gb/s with logical correctness and high-output Q-factor.
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1980-01-01
A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.
The Quantum Logical Challenge: Peter Mittelstaedt's Contributions to Logic and Philosophy of Science
NASA Astrophysics Data System (ADS)
Beltrametti, E.; Dalla Chiara, M. L.; Giuntini, R.
2017-12-01
Peter Mittelstaedt's contributions to quantum logic and to the foundational problems of quantum theory have significantly realized the most authentic spirit of the International Quantum Structures Association: an original research about hard technical problems, which are often "entangled" with the emergence of important changes in our general world-conceptions. During a time where both the logical and the physical community often showed a skeptical attitude towards Birkhoff and von Neumann's quantum logic, Mittelstaedt brought into light the deeply innovating features of a quantum logical thinking that allows us to overcome some strong and unrealistic assumptions of classical logical arguments. Later on his intense research on the unsharp approach to quantum theory and to the measurement problem stimulated the increasing interest for unsharp forms of quantum logic, creating a fruitful interaction between the work of quantum logicians and of many-valued logicians. Mittelstaedt's general views about quantum logic and quantum theory seem to be inspired by a conjecture that is today more and more confirmed: there is something universal in the quantum theoretic formalism that goes beyond the limits of microphysics, giving rise to interesting applications to a number of different fields.
Fuzzy Versions of Epistemic and Deontic Logic
NASA Technical Reports Server (NTRS)
Gounder, Ramasamy S.; Esterline, Albert C.
1998-01-01
Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.
Short circuit protection for a power distribution system
NASA Technical Reports Server (NTRS)
Owen, J. R., III
1969-01-01
Sensing circuit detects when the output from a matrix is present and when it should be present. The circuit provides short circuit protection for a power distribution system where the selection of the driven load is accomplished by digital logic.
Maximizing Accessibility to Spatially Referenced Digital Data.
ERIC Educational Resources Information Center
Hunt, Li; Joselyn, Mark
1995-01-01
Discusses some widely available spatially referenced datasets, including raster and vector datasets. Strategies for improving accessibility include: acquisition of data in a software-dependent format; reorganization of data into logical geographic units; acquisition of intelligent retrieval software; improving computer hardware; and intelligent…
A molecular-sized optical logic circuit for digital modulation of a fluorescence signal
NASA Astrophysics Data System (ADS)
Nishimura, Takahiro; Tsuchida, Karin; Ogura, Yusuke; Tanida, Jun
2018-03-01
Fluorescence measurement allows simultaneous detection of multiple molecular species by using spectrally distinct fluorescence probes. However, due to the broad spectra of fluorescence emission, the multiplicity of fluorescence measurement is generally limited. To overcome this limitation, we propose a method to digitally modulate fluorescence output signals with a molecular-sized optical logic circuit by using optical control of fluorescence resonance energy transfer (FRET). The circuit receives a set of optical inputs represented with different light wavelengths, and then it switches high and low fluorescence intensity from a reporting molecule according to the result of the logic operation. By using combinational optical inputs in readout of fluorescence signals, the number of biomolecular species that can be identified is increased. To implement the FRET-based circuits, we designed two types of basic elements, YES and NOT switches. An YES switch produces a high-level output intensity when receiving a designated light wavelength input and a low-level intensity without the light irradiation. A NOT switch operates inversely to the YES switch. In experiments, we investigated the operation of the YES and NOT switches that receive a 532-nm light input and modulate the fluorescence intensity of Alexa Fluor 488. The experimental result demonstrates that the switches can modulate fluorescence signals according to the optical input.
Design Time Optimization for Hardware Watermarking Protection of HDL Designs
Castillo, E.; Morales, D. P.; García, A.; Parrilla, L.; Todorovich, E.; Meyer-Baese, U.
2015-01-01
HDL-level design offers important advantages for the application of watermarking to IP cores, but its complexity also requires tools automating these watermarking algorithms. A new tool for signature distribution through combinational logic is proposed in this work. IPP@HDL, a previously proposed high-level watermarking technique, has been employed for evaluating the tool. IPP@HDL relies on spreading the bits of a digital signature at the HDL design level using combinational logic included within the original system. The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself. Three algorithms were studied in order to develop this automated tool. The selection of a cost function determines the best hosting solutions in terms of area and performance penalties on the IP core to protect. An 1D-DWT core and MD5 and SHA1 digital signatures were used in order to illustrate the benefits of the new tool and its optimization related to the extraction logic resources. Among the proposed algorithms, the alternative based on simulated annealing reduces the additional resources while maintaining an acceptable computation time and also saving designer effort and time. PMID:25861681
Source-Coupled, N-Channel, JFET-Based Digital Logic Gate Structure Using Resistive Level Shifters
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.
2011-01-01
A circuit topography is used to create usable, digital logic gates using N (negatively doped) channel junction field effect transistors (JFETs), load resistors, level shifting resistors, and supply rails whose values are based on the DC parametric distributions of these JFETs. This method has direct application to the current state-of-the-art in high-temperature (300 to 500 C and higher) silicon carbide (SiC) device production, and defines an adaptation to the logic gate described in U.S. Patent 7,688,117 in that, by removing the level shifter from the output of the gate structure described in the patent (and applying it to the input of the same gate), a source-coupled gate topography is created. This structure allows for the construction AND/OR (sum of products) arrays that use far fewer transistors and resistors than the same array as constructed from the gates described in the aforementioned patent. This plays a central role when large multiplexer constructs are necessary; for example, as in the construction of memory. This innovation moves the resistive level shifter from the output of the basic gate structure to the front as if the input is now configured as what would be the output of the preceding gate, wherein the output is the two level shifting resistors. The output of this innovation can now be realized as the lone follower transistor with its source node as the gate output. Additionally, one may leave intact the resistive level shifter on the new gate topography. A source-coupled to direct-coupled logic translator will be the result.
An Institutional Perspective on Accountable Care Organizations.
Goodrick, Elizabeth; Reay, Trish
2016-12-01
We employ aspects of institutional theory to explore how Accountable Care Organizations (ACOs) can effectively manage the multiplicity of ideas and pressures within which they are embedded and consequently better serve patients and their communities. More specifically, we draw on the concept of institutional logics to highlight the importance of understanding the conflicting principles upon which ACOs were founded. Based on previous research conducted both inside and outside health care settings, we argue that ACOs can combine attention to these principles (or institutional logics) in different ways; the options fall on a continuum from (a) segregating the effects of multiple logics from each other by compartmentalizing responses to multiple logics to (b) fully hybridizing the different logics. We suggest that the most productive path for ACOs is to situate their approach between the two extremes of "segregating" and "fully hybridizing." This strategic approach allows ACOs to develop effective responses that combine logics without fully integrating them. We identify three ways that ACOs can embrace institutional complexity short of fully hybridizing disparate logics: (1) reinterpreting practices to make them compatible with other logics; (2) engaging in strategies that take advantage of existing synergy between conflicting logics; (3) creating opportunities for people at frontline to develop innovative ways of working that combine multiple logics. © The Author(s) 2016.
Versatile logic devices based on programmable DNA-regulated silver-nanocluster signal transducers.
Huang, Zhenzhen; Tao, Yu; Pu, Fang; Ren, Jinsong; Qu, Xiaogang
2012-05-21
A DNA-encoding strategy is reported for the programmable regulation of the fluorescence properties of silver nanoclusters (AgNCs). By taking advantage of the DNA-encoding strategy, aqueous AgNCs were used as signal transducers to convert DNA inputs into fluorescence outputs for the construction of various DNA-based logic gates (AND, OR, INHIBIT, XOR, NOR, XNOR, NAND, and a sequential logic gate). Moreover, a biomolecular keypad that was capable of constructing crossword puzzles was also fabricated. These AgNC-based logic systems showed several advantages, including a simple transducer-introduction strategy, universal design, and biocompatible operation. In addition, this proof of concept opens the door to a new generation of signal transducer materials and provides a general route to versatile biomolecular logic devices for practical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Knowledge representation in fuzzy logic
NASA Technical Reports Server (NTRS)
Zadeh, Lotfi A.
1989-01-01
The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.
An Argumentation Framework based on Paraconsistent Logic
NASA Astrophysics Data System (ADS)
Umeda, Yuichi; Takahashi, Takehisa; Sawamura, Hajime
Argumentation is the most representative of intelligent activities of humans. Therefore, it is natural to think that it could have many implications for artificial intelligence and computer science as well. Specifically, argumentation may be considered a most primitive capability for interaction among computational agents. In this paper we present an argumentation framework based on the four-valued paraconsistent logic. Tolerance and acceptance of inconsistency that this logic has as its logical feature allow for arguments on inconsistent knowledge bases with which we are often confronted. We introduce various concepts for argumentation, such as arguments, attack relations, argument justification, preferential criteria of arguments based on social norms, and so on, in a way proper to the four-valued paraconsistent logic. Then, we provide the fixpoint semantics and dialectical proof theory for our argumentation framework. We also give the proofs of the soundness and completeness.
Method and apparatus for digitally based high speed x-ray spectrometer
Warburton, W.K.; Hubbard, B.
1997-11-04
A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ``hardwired`` processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs.
Method and apparatus for digitally based high speed x-ray spectrometer
Warburton, William K.; Hubbard, Bradley
1997-01-01
A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a "hardwired" processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer.
Superconducting Digital Multiplexers for Sensor Arrays
NASA Technical Reports Server (NTRS)
Kadin, Alan M.; Brock, Darren K.; Gupta, Deepnarayan
2004-01-01
Arrays of cryogenic microbolometers and other cryogenic detectors are being developed for infrared imaging. If the signal from each sensor is amplified, multiplexed, and digitized using superconducting electronics, then this data can be efficiently read out to ambient temperature with a minimum of noise and thermal load. HYPRES is developing an integrated system based on SQUID amplifiers, a high-resolution analog-to-digital converter (ADC) based on RSFQ (rapid single flux quantum) logic, and a clocked RSFQ multiplexer. The ADC and SQUIDs have already been demonstrated for other projects, so this paper will focus on new results of a digital multiplexer. Several test circuits have been fabricated using Nb Josephson technology and are about to be tested at T = 4.2 K, with a more complete prototype in preparation.
Adult Literacy for Development: The Logic and Structure of Economic Motivations.
ERIC Educational Resources Information Center
Bhola, H. S.
This paper addresses the logic and the structure of economic motivations for adult literacy promotion. It uses as an example the People's Republic of China to demonstrate how economic motivations can best serve the cause of adult literacy and suggests applying these concepts to India. The paper is organized in three parts. In the first part, the…
ERIC Educational Resources Information Center
Norman, D. A.; And Others
"Machine controlled adaptive training is a promising concept. In adaptive training the task presented to the trainee varies as a function of how well he performs. In machine controlled training, adaptive logic performs a function analogous to that performed by a skilled operator." This study looks at the ways in which gain-effective time…
ERIC Educational Resources Information Center
Vásquez, Gonzalo Camacho
2017-01-01
A reflection about two classroom experiences is presented in the attempt to incorporate the Logic of Sense into the notion of inquiry for learning. The author used the method of Experimentation introduced by Deleuze and Guattari, who based its principles on philosophical conceptions by Baruch Spinoza. The first experience is conducted with…
Cognitive algorithms: dynamic logic, working of the mind, evolution of consciousness and cultures
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.
2007-04-01
The paper discusses evolution of consciousness driven by the knowledge instinct, a fundamental mechanism of the mind which determines its higher cognitive functions. Dynamic logic mathematically describes the knowledge instinct. It overcomes past mathematical difficulties encountered in modeling intelligence and relates it to mechanisms of concepts, emotions, instincts, consciousness and unconscious. The two main aspects of the knowledge instinct are differentiation and synthesis. Differentiation is driven by dynamic logic and proceeds from vague and unconscious states to more crisp and conscious states, from less knowledge to more knowledge at each hierarchical level of the mind. Synthesis is driven by dynamic logic operating in a hierarchical organization of the mind; it strives to achieve unity and meaning of knowledge: every concept finds its deeper and more general meaning at a higher level. These mechanisms are in complex relationship of symbiosis and opposition, which leads to complex dynamics of evolution of consciousness and cultures. Modeling this dynamics in a population leads to predictions for the evolution of consciousness, and cultures. Cultural predictive models can be compared to experimental data and used for improvement of human conditions. We discuss existing evidence and future research directions.
A Microcomputer Interface for External Circuit Control.
ERIC Educational Resources Information Center
Gorham, D. A.
1983-01-01
Describes an interface designed to meet the requirements of an instrumentation teaching laboratory, particularly to develop computer-controlled digital circuitry while exploiting electrical drive properties of common transistor-transistor logic (TTL) devices, minimizing cost/number of components. Discusses decoding for Pet, switches, lights, and…
ERIC Educational Resources Information Center
Shin, Shin-Shing
2016-01-01
Students attending object-oriented analysis and design (OOAD) courses typically encounter difficulties transitioning from requirements analysis to logical design and then to physical design. Concept maps have been widely used in studies of user learning. The study reported here, based on the relationship of concept maps to learning theory and…
Using the Tower of Hanoi Puzzle to Infuse Your Mathematics Classroom with Computer Science Concepts
ERIC Educational Resources Information Center
Marzocchi, Alison S.
2016-01-01
This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi…
ERIC Educational Resources Information Center
Qian, Min-hui
2006-01-01
Within the sphere of contemporary social sciences, the terms "modernity," "post-modernity" and "globalization" have penetrated, as the core concepts, into various fields of social sciences in a logical way. In constituting the concept of "modernity," sociology of education develops the educational theory, as sociological theory does, into a "grand…
A simple second-order digital phase-locked loop.
NASA Technical Reports Server (NTRS)
Tegnelia, C. R.
1972-01-01
A simple second-order digital phase-locked loop has been designed for the Viking Orbiter 1975 command system. Excluding analog-to-digital conversion, implementation of the loop requires only an adder/subtractor, two registers, and a correctable counter with control logic. The loop considers only the polarity of phase error and corrects system clocks according to a filtered sequence of this polarity. The loop is insensitive to input gain variation, and therefore offers the advantage of stable performance over long life. Predictable performance is guaranteed by extreme reliability of acquisition, yet in the steady state the loop produces only a slight degradation with respect to analog loop performance.
Characterization of the faulted behavior of digital computers and fault tolerant systems
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Miner, Paul S.
1989-01-01
A development status evaluation is presented for efforts conducted at NASA-Langley since 1977, toward the characterization of the latent fault in digital fault-tolerant systems. Attention is given to the practical, high speed, generalized gate-level logic system simulator developed, as well as to the validation methodology used for the simulator, on the basis of faultable software and hardware simulations employing a prototype MIL-STD-1750A processor. After validation, latency tests will be performed.
Computer-Aided Design Package for Designers of Digital Optical Computers
1993-07-01
Saul Levy, Chun Liew, Masoud Majidi , Donald Smith, and Thomas Stone Final Report for Grant #N00014-90-J-4018 Period Covered: 5/1/90 - 4/30/93 Miles...Logic Arrays," Applied Optics, 27, pp. 1651-1660, (May 1, 1988). [5] Murdocca, M. J., V. Gupta, and M. Majidi , "New Approaches to Digital Optical...Lanzl, F., H.-J. Preuss and G. Wiegelt, eds., Proc. SPIE, vol. 319, Garmisch, Bavaria, pp. 126-127, (1990). Murdocca, M. J., V. Gupta, and M. Majidi
Digital phase-locked loop speed control for a brushless dc motor
NASA Astrophysics Data System (ADS)
Wise, M. G.
1985-06-01
Speed control of d.c. motors by phase-locked loops (PLL) is becoming increasingly popular. Primary interest has been in employing PLL for constant speed control. This thesis investigates the theory and techniques of digital PLL to speed control of a brushless d.c. motor with a variable speed of operation. Addition of logic controlled count enable/disable to a synchronous up/down counter, used as a phase-frequency detector, is shown to improve the performance of previously proposed PLL control schemes.
Augmentor transient capability of an F100 engine equipped with a digital electronic engine control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Pai, G. D.
1984-01-01
An F100 augmented turbofan engine equipped with digital electronic engine control (DEEC) system was evaluated. The engine was equipped with a specially modified augmentor to provide improved steady state and transient augmentor capability. The combination of the DEEC and the modified augmentor was evaluated in sea level and altitude facility tests and then in four different flight phases in an F-15 aircraft. The augmentor configuration, logic, and test results are presented.
Electronic photography: a new age of medical imaging?
Tübergen, D; Manegold, B C
1993-07-01
This is a critical overview of present conceptions of the introduction of electronic photography in medicine. It is not a complete list of products, rather it is a description of how the requirements of the physician have influenced medical illustration in the past and will continue to do so in the future. Video systems are widely used in medicine. Besides the learning and teaching of effects of television, minimal invasive surgery (MIS) has become reality through endoscopy, rapidly accepted worldwide. Documentation of endoscopic procedures and their effects is becoming routine. Therefore, the conversion of complex optical information into binary units is a logical development to save space for storage. The reproduction, storage and transfer of detailed images is already realized by digital camera systems, photo CD, scanners and picture archiving and communicating system (PACS). Now electronic imaging in medicine has to be regarded as a matter of routine. The real impact of accelerated editing will be shown in the future.
Digital circuits using universal logic gates
NASA Technical Reports Server (NTRS)
Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor); Cameron, Eric G. (Inventor); Donohoe, Gregory W. (Inventor); Gambles, Jody W. (Inventor)
2004-01-01
According to the invention, a digital circuit design embodied in at least one of a structural netlist, a behavioral netlist, a hardware description language netlist, a full-custom ASIC, a semi-custom ASIC, an IP core, an integrated circuit, a hybrid of chips, one or more masks, a FPGA, and a circuit card assembly is disclosed. The digital circuit design includes first and second sub-circuits. The first sub-circuits comprise a first percentage of the digital circuit design and the second sub-circuits comprise a second percentage of the digital circuit design. Each of the second sub-circuits is substantially comprised of one or more kernel circuits. The kernel circuits are comprised of selection circuits. The second percentage is at least 5%. In various embodiments, the second percentage could be at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%.
What conceptual spaces can do for Carnap's late inductive logic.
Sznajder, Marta
2016-04-01
In the last published account of his late inductive logic, the Basic System of Inductive Logic, Rudolf Carnap introduced a new element to the systems of inductive logic, namely the so-called attribute spaces. These geometrical structures model the meanings of the predicates of the object language and have a similar structure as the conceptual spaces employed by cognitive scientists like Peter Gärdenfors. I show how the development of the theory of conceptual spaces helps us to see the addition of attribute spaces as a step forward in explicating the concept of confirmation. I discuss the differences and similarities of the two theories and investigate the possibilities for developing further connections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity
Agliari, Elena; Altavilla, Matteo; Barra, Adriano; Dello Schiavo, Lorenzo; Katz, Evgeny
2015-01-01
Recent experimental breakthroughs have finally allowed to implement in-vitro reaction kinetics (the so called enzyme based logic) which code for two-inputs logic gates and mimic the stochastic AND (and NAND) as well as the stochastic OR (and NOR). This accomplishment, together with the already-known single-input gates (performing as YES and NOT), provides a logic base and paves the way to the development of powerful biotechnological devices. However, as biochemical systems are always affected by the presence of noise (e.g. thermal), standard logic is not the correct theoretical reference framework, rather we show that statistical mechanics can work for this scope: here we formulate a complete statistical mechanical description of the Monod-Wyman-Changeaux allosteric model for both single and double ligand systems, with the purpose of exploring their practical capabilities to express noisy logical operators and/or perform stochastic logical operations. Mixing statistical mechanics with logics, and testing quantitatively the resulting findings on the available biochemical data, we successfully revise the concept of cooperativity (and anti-cooperativity) for allosteric systems, with particular emphasis on its computational capabilities, the related ranges and scaling of the involved parameters and its differences with classical cooperativity (and anti-cooperativity). PMID:25976626
Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity.
Agliari, Elena; Altavilla, Matteo; Barra, Adriano; Dello Schiavo, Lorenzo; Katz, Evgeny
2015-05-15
Recent experimental breakthroughs have finally allowed to implement in-vitro reaction kinetics (the so called enzyme based logic) which code for two-inputs logic gates and mimic the stochastic AND (and NAND) as well as the stochastic OR (and NOR). This accomplishment, together with the already-known single-input gates (performing as YES and NOT), provides a logic base and paves the way to the development of powerful biotechnological devices. However, as biochemical systems are always affected by the presence of noise (e.g. thermal), standard logic is not the correct theoretical reference framework, rather we show that statistical mechanics can work for this scope: here we formulate a complete statistical mechanical description of the Monod-Wyman-Changeaux allosteric model for both single and double ligand systems, with the purpose of exploring their practical capabilities to express noisy logical operators and/or perform stochastic logical operations. Mixing statistical mechanics with logics, and testing quantitatively the resulting findings on the available biochemical data, we successfully revise the concept of cooperativity (and anti-cooperativity) for allosteric systems, with particular emphasis on its computational capabilities, the related ranges and scaling of the involved parameters and its differences with classical cooperativity (and anti-cooperativity).
Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity
NASA Astrophysics Data System (ADS)
Agliari, Elena; Altavilla, Matteo; Barra, Adriano; Dello Schiavo, Lorenzo; Katz, Evgeny
2015-05-01
Recent experimental breakthroughs have finally allowed to implement in-vitro reaction kinetics (the so called enzyme based logic) which code for two-inputs logic gates and mimic the stochastic AND (and NAND) as well as the stochastic OR (and NOR). This accomplishment, together with the already-known single-input gates (performing as YES and NOT), provides a logic base and paves the way to the development of powerful biotechnological devices. However, as biochemical systems are always affected by the presence of noise (e.g. thermal), standard logic is not the correct theoretical reference framework, rather we show that statistical mechanics can work for this scope: here we formulate a complete statistical mechanical description of the Monod-Wyman-Changeaux allosteric model for both single and double ligand systems, with the purpose of exploring their practical capabilities to express noisy logical operators and/or perform stochastic logical operations. Mixing statistical mechanics with logics, and testing quantitatively the resulting findings on the available biochemical data, we successfully revise the concept of cooperativity (and anti-cooperativity) for allosteric systems, with particular emphasis on its computational capabilities, the related ranges and scaling of the involved parameters and its differences with classical cooperativity (and anti-cooperativity).
Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory
Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer
2012-01-01
Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143
NASA Technical Reports Server (NTRS)
Ng, Tak-kwong (Inventor); Herath, Jeffrey A. (Inventor)
2010-01-01
An integrated system mitigates the effects of a single event upset (SEU) on a reprogrammable field programmable gate array (RFPGA). The system includes (i) a RFPGA having an internal configuration memory, and (ii) a memory for storing a configuration associated with the RFPGA. Logic circuitry programmed into the RFPGA and coupled to the memory reloads a portion of the configuration from the memory into the RFPGA's internal configuration memory at predetermined times. Additional SEU mitigation can be provided by logic circuitry on the RFPGA that monitors and maintains synchronized operation of the RFPGA's digital clock managers.
Evaluation of an F100 multivariable control using a real-time engine simulation
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Soeder, J. F.; Skira, C.
1977-01-01
The control evaluated has been designed for the F100-PW-100 turbofan engine. The F100 engine represents the current state-of-the-art in aircraft gas turbine technology. The control makes use of a multivariable, linear quadratic regulator. The evaluation procedure employed utilized a real-time hybrid computer simulation of the F100 engine and an implementation of the control logic on the NASA LeRC digital computer/controller. The results of the evaluation indicated that the control logic and its implementation will be capable of controlling the engine throughout its operating range.
Automotive Electronics. Teacher Edition (Revised).
ERIC Educational Resources Information Center
Mackert, Howard C.; Heiserman, Russell L.
This learning module addresses computers and their applications in contemporary automobiles. The text provides students with information on automotive microcomputers and hands-on activities that will help them see how semiconductors and digital logic devices fit into the modern repair facility. The module contains nine instructional units that…
Digital Circuit Analysis Using an 8080 Processor.
ERIC Educational Resources Information Center
Greco, John; Stern, Kenneth
1983-01-01
Presents the essentials of a program written in Intel 8080 assembly language for the steady state analysis of a combinatorial logic gate circuit. Program features and potential modifications are considered. For example, the program could also be extended to include clocked/unclocked sequential circuits. (JN)
Fuzzy Logic Enhanced Digital PIV Processing Software
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1999-01-01
Digital Particle Image Velocimetry (DPIV) is an instantaneous, planar velocity measurement technique that is ideally suited for studying transient flow phenomena in high speed turbomachinery. DPIV is being actively used at the NASA Glenn Research Center to study both stable and unstable operating conditions in a high speed centrifugal compressor. Commercial PIV systems are readily available which provide near real time feedback of the PIV image data quality. These commercial systems are well designed to facilitate the expedient acquisition of PIV image data. However, as with any general purpose system, these commercial PIV systems do not meet all of the data processing needs required for PIV image data reduction in our compressor research program. An in-house PIV PROCessing (PIVPROC) code has been developed for reducing PIV data. The PIVPROC software incorporates fuzzy logic data validation for maximum information recovery from PIV image data. PIVPROC enables combined cross-correlation/particle tracking wherein the highest possible spatial resolution velocity measurements are obtained.
Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)
Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...
2016-08-26
The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less
A Simple Memristor Model for Circuit Simulations
NASA Astrophysics Data System (ADS)
Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team
This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.
An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Seyedi, Saeid; Navimipour, Nima Jafari
2018-03-01
Quantum-dot Cellular Automata (QCA) has been potentially considered as a supersede to Complementary Metal-Oxide-Semiconductor (CMOS) because of its inherent advantages. Many QCA-based logic circuits with smaller feature size, improved operating frequency, and lower power consumption than CMOS have been offered. This technology works based on electron relations inside quantum-dots. Due to the importance of designing an optimized decoder in any digital circuit, in this paper, we design, implement and simulate a new 2-to-4 decoder based on QCA with low delay, area, and complexity. The logic functionality of the 2-to-4 decoder is verified using the QCADesigner tool. The results have shown that the proposed QCA-based decoder has high performance in terms of a number of cells, covered area, and time delay. Due to the lower clock pulse frequency, the proposed 2-to-4 decoder is helpful for building QCA-based sequential digital circuits with high performance.
The influence of role-specific self-concept and sex-role identity on career choices in science
NASA Astrophysics Data System (ADS)
Baker, Dale R.
Despite much effort on the part of educators the number of females who choose science careers remains low. This research focuses on two factors which may be influencing females in their choice of careers. These factors are role-specific self-concept in science and self perception in terms of stereotypical masculine and feminine characteristics. In addition logical ability and mathematics and science courses were also examined as factors in career choice. Females preferring science related careers and females preferring nontraditional careers such as police, military and trades were found to have a positive role-specific self-concept and a masculine perception of themselves. Females preferring traditional careers such as teacher or hairdresser had a poor role-specific self-concept and a more feminine perception of themselves. Males as a group were found to have a more positive role-specific self-concept than females. Logical ability was also related to a science career preference for both males and females. Males expected to take more higher level math courses than females, while females preferring science careers expected to take the most higher level science courses.
Three Logics of Instructional Leadership
ERIC Educational Resources Information Center
Rigby, Jessica G.
2014-01-01
Purpose: This study examines conceptions of instructional leadership in the institutional environment. We know that principals' practices affect student learning and that principals are influenced by ideas in the broader environment. This article examines and defines the multiple conceptions of what it means for principals to be instructional…
NASA Technical Reports Server (NTRS)
1982-01-01
The programmatic data for the reference concept of the Manned Space Platform is presented. Details regarding work breakdown structure (WBS) and dictionary, the facilities and equipment required to produce the modules, the project schedule and logic diagram, a preliminary assessment of environmental impacts and details regarding the estimated costs for the reference concept are included. The proposed WBS which was developed to provide summary and system level segregation of the nonrecurring and recurring portions of the Manned Space Platform project is also included. The accompanying dictionary outlines the function and activities contained within each WBS element. The facility and equipment required to produce the various modules is discussed. Generally, required equipment is within the existing state of the art although the size of some of the items to be manufactured is a consideration. A preliminary manufacturing flow was also provided. The project schedules presented consist of the Master Project Summary Schedule, the Master Project Phasing Chart and the Logic Network.
Wide operating window spin-torque majority gate towards large-scale integration of logic circuits
NASA Astrophysics Data System (ADS)
Vaysset, Adrien; Zografos, Odysseas; Manfrini, Mauricio; Mocuta, Dan; Radu, Iuliana P.
2018-05-01
Spin Torque Majority Gate (STMG) is a logic concept that inherits the non-volatility and the compact size of MRAM devices. In the original STMG design, the operating range was restricted to very small size and anisotropy, due to the exchange-driven character of domain expansion. Here, we propose an improved STMG concept where the domain wall is driven with current. Thus, input switching and domain wall propagation are decoupled, leading to higher energy efficiency and allowing greater technological optimization. To ensure majority operation, pinning sites are introduced. We observe through micromagnetic simulations that the new structure works for all input combinations, regardless of the initial state. Contrary to the original concept, the working condition is only given by threshold and depinning currents. Moreover, cascading is now possible over long distances and fan-out is demonstrated. Therefore, this improved STMG concept is ready to build complete Boolean circuits in absence of external magnetic fields.
NASA Astrophysics Data System (ADS)
Yang, Jiaqi; Li, Ting; Yu, Mingyuan; Zhang, Shuangshuang; Lin, Fujiang; He, Lin
2017-08-01
This paper analyzes the power consumption and delay mechanisms of the successive-approximation (SA) logic of a typical asynchronous SAR ADC, and provides strategies to reduce both of them. Following these strategies, a unique direct-pass SA logic is proposed based on a full-swing once-triggered DFF and a self-locking tri-state gate. The unnecessary internal switching power of a typical TSPC DFF, which is commonly used in the SA logic, is avoided. The delay of the ready detector as well as the sequencer is removed from the critical path. A prototype SAR ADC based on the proposed SA logic is fabricated in 130 nm CMOS. It achieves a peak SNDR of 56.3 dB at 1.2 V supply and 65 MS/s sampling rate, and has a total power consumption of 555 μW, while the digital part consumes only 203 μW. Project supported by the National Natural Science Foundation of China (Nos. 61204033, 61331015), the Fundamental Research Funds for the Central Universities (No. WK2100230015), and the Funds of Science and Technology on Analog Integrated Circuit Laboratory (No. 9140C090111150C09041).
Assessing cultural validity in standardized tests in stem education
NASA Astrophysics Data System (ADS)
Gassant, Lunes
This quantitative ex post facto study examined how race and gender, as elements of culture, influence the development of common misconceptions among STEM students. Primary data came from a standardized test: the Digital Logic Concept Inventory (DLCI) developed by Drs. Geoffrey L. Herman, Michael C. Louis, and Craig Zilles from the University of Illinois at Urbana-Champaign. The sample consisted of a cohort of 82 STEM students recruited from three universities in Northern Louisiana. Microsoft Excel and the Statistical Package for the Social Sciences (SPSS) were used for data computation. Two key concepts, several sub concepts, and 19 misconceptions were tested through 11 items in the DLCI. Statistical analyses based on both the Classical Test Theory (Spearman, 1904) and the Item Response Theory (Lord, 1952) yielded similar results: some misconceptions in the DLCI can reliably be predicted by the Race or the Gender of the test taker. The research is significant because it has shown that some misconceptions in a STEM discipline attracted students with similar ethnic backgrounds differently; thus, leading to the existence of some cultural bias in the standardized test. Therefore the study encourages further research in cultural validity in standardized tests. With culturally valid tests, it will be possible to increase the effectiveness of targeted teaching and learning strategies for STEM students from diverse ethnic backgrounds. To some extent, this dissertation has contributed to understanding, better, the gap between high enrollment rates and low graduation rates among African American students and also among other minority students in STEM disciplines.
ERIC Educational Resources Information Center
Stamovlasis, Dimitrios; Tsitsipis, Georgios; Papageorgiou, George
2010-01-01
This work uses the concepts and tools of complexity theory to examine the effect of logical thinking and two cognitive styles, such as, the degree of field dependence/independence and the convergent/divergent thinking on students' understanding of the structure of matter. Students were categorized according to the model they adopted for the…
NASA Astrophysics Data System (ADS)
Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong
2014-07-01
DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology.DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology. Electronic supplementary information (ESI) available: Additional figures (Table S1, Fig. S1-S5). See DOI: 10.1039/c4nr01676a
Studies in optical parallel processing. [All optical and electro-optic approaches
NASA Technical Reports Server (NTRS)
Lee, S. H.
1978-01-01
Threshold and A/D devices for converting a gray scale image into a binary one were investigated for all-optical and opto-electronic approaches to parallel processing. Integrated optical logic circuits (IOC) and optical parallel logic devices (OPA) were studied as an approach to processing optical binary signals. In the IOC logic scheme, a single row of an optical image is coupled into the IOC substrate at a time through an array of optical fibers. Parallel processing is carried out out, on each image element of these rows, in the IOC substrate and the resulting output exits via a second array of optical fibers. The OPAL system for parallel processing which uses a Fabry-Perot interferometer for image thresholding and analog-to-digital conversion, achieves a higher degree of parallel processing than is possible with IOC.
Nanoeletromechanical switch and logic circuits formed therefrom
Nordquist, Christopher D [Albuquerque, NM; Czaplewski, David A [Albuquerque, NM
2010-05-18
A nanoelectromechanical (NEM) switch is formed on a substrate with a source electrode containing a suspended electrically-conductive beam which is anchored to the substrate at each end. This beam, which can be formed of ruthenium, bows laterally in response to a voltage applied between a pair of gate electrodes and the source electrode to form an electrical connection between the source electrode and a drain electrode located near a midpoint of the beam. Another pair of gate electrodes and another drain electrode can be located on an opposite side of the beam to allow for switching in an opposite direction. The NEM switch can be used to form digital logic circuits including NAND gates, NOR gates, programmable logic gates, and SRAM and DRAM memory cells which can be used in place of conventional CMOS circuits, or in combination therewith.
Implementation Of Fuzzy Automated Brake Controller Using TSK Algorithm
NASA Astrophysics Data System (ADS)
Mittal, Ruchi; Kaur, Magandeep
2010-11-01
In this paper an application of Fuzzy Logic for Automatic Braking system is proposed. Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal Depending upon the speed and distance of train. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance depending upon the varying speed and distance of the train.
[Medical ethics, a counter-weight to the logics of the Perruche decree].
François, Irène; Moutel, Grégoire; Bertrandon, Richard; Herve, Christian
2002-07-27
FROM A CONTRACTUAL LOGIC TO A PROBABILISTIC APPROACH: Since 1936, reflections on the relationship between the physician and the patient have progressed within the context of a contractual legal concept. Its contents have been based more on jurisprudence than on the physicians' reflections with regard to their practice. Associated with this contractual logic, some confusion exists between a lesion, a medical concept, and a handicap, which is the social consequence of one's status of health. This has been reinforced by the scientific progress made in medicine, which privileges a probabilistic approach based on scientific data, rather than the uncertainty, inscribed in the dialogue and singularity of the encounter. REGARDING THE PERRUCHE DECREE: We analyzed the reports submitted to the court of cessation regarding the Perruche affair, together with the first chapter of the law concerning the rights of the patients and the quality of health system, by studying the extent to which this decision was inscribed or not in the continuity of past legal decisions, and whether the characteristics described above were present. In this decree, the predominating contractual logic is that the notion of handicap is not analyzed, and the scientific and probabilistic conception of medical practice is involved in the debate. THE NECESSITY FOR REFLECTION: Our discussion insists on the necessity of constructing a reflection on the medical presentation; society cannot accept that this be reduced to the strict respect of the elements of the contract, defined by legal decisions. It should be carefully thought out by health professionals, and in collaboration with human science.
Computer network defense through radial wave functions
NASA Astrophysics Data System (ADS)
Malloy, Ian J.
The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.
A Compton suppressed detector multiplicity trigger based digital DAQ for gamma-ray spectroscopy
NASA Astrophysics Data System (ADS)
Das, S.; Samanta, S.; Banik, R.; Bhattacharjee, R.; Basu, K.; Raut, R.; Ghugre, S. S.; Sinha, A. K.; Bhattacharya, S.; Imran, S.; Mukherjee, G.; Bhattacharyya, S.; Goswami, A.; Palit, R.; Tan, H.
2018-06-01
The development of a digitizer based pulse processing and data acquisition system for γ-ray spectroscopy with large detector arrays is presented. The system is based on 250 MHz 12-bit digitizers, and is triggered by a user chosen multiplicity of Compton suppressed detectors. The logic for trigger generation is similar to the one practised for analog (NIM/CAMAC) pulse processing electronics, while retaining the fast processing merits of the digitizer system. Codes for reduction of data acquired from the system have also been developed. The system has been tested with offline studies using radioactive sources as well as in the in-beam experiments with an array of Compton suppressed Clover detectors. The results obtained therefrom validate its use in spectroscopic efforts for nuclear structure investigations.
Translations on Eastern Europe Scientific Affairs, Number 560
1977-10-04
Miklos Szilagyi . TAPNEG; prepares digitalized printed wiring diagram control punch tape on an ADMAP-2 graphing machine with reflection on the x axis...FOKAL 16 KE; BME, Dr Zsolt Illyefalvi-Vitez; BME, Dr Miklos Szilagyi . TESTOP-10; the program provides measurement and diagnostics for logic cards
Data system for multiplexed water-current meters
NASA Technical Reports Server (NTRS)
Ramsey, C. R.
1977-01-01
Flow rates at 32 flood plain locations are measured simultaneously by single digital logic unit with high noise immunity. Water flowing through pygmy current meters rotates element that closes electrical contact once every resolution, so flow rate is measured by counting number of closures in time interval.
PLATO--AN AUTOMATED TEACHING DEVICE.
ERIC Educational Resources Information Center
BITZER, D.; AND OTHERS
PLATO (PROGRAMED LOGIC FOR AUTOMATIC TEACHING OPERATION) IS A DEVICE FOR TEACHING A NUMBER OF STUDENTS INDIVIDUALLY BY MEANS OF A SINGLE, CENTRAL PURPOSE, DIGITAL COMPUTER. THE GENERAL ORGANIZATION OF EQUIPMENT CONSISTS OF A KEYSET FOR STUDENT RESPONSES, THE COMPUTER, STORAGE DEVICE (ELECTRIC BLACKBOARD), SLIDE SELECTOR (ELECTRICAL BOOK), AND TV…
CEDS Addresses: Rubric Elements
ERIC Educational Resources Information Center
US Department of Education, 2015
2015-01-01
Common Education Data Standards (CEDS) Version 4 introduced a common data vocabulary for defining rubrics in a data system. The CEDS elements support digital representations of both holistic and analytic rubrics. This document shares examples of holistic and analytic project rubrics, available CEDS Connections, and a logical model showing the…
Superconducting flux flow digital circuits
Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.
1995-01-01
A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.
ERIC Educational Resources Information Center
Snapp, Robert R.; Neumann, Maureen D.
2015-01-01
The rapid growth of digital technology, including the worldwide adoption of mobile and embedded computers, places new demands on K-grade 12 educators and their students. Young people should have an opportunity to learn the technical knowledge of computer science (e.g., computer programming, mathematical logic, and discrete mathematics) in order to…
Jung, Hyesil; Park, Hyeoun-Ae; Song, Tae-Min
2017-07-24
Social networking services (SNSs) contain abundant information about the feelings, thoughts, interests, and patterns of behavior of adolescents that can be obtained by analyzing SNS postings. An ontology that expresses the shared concepts and their relationships in a specific field could be used as a semantic framework for social media data analytics. The aim of this study was to refine an adolescent depression ontology and terminology as a framework for analyzing social media data and to evaluate description logics between classes and the applicability of this ontology to sentiment analysis. The domain and scope of the ontology were defined using competency questions. The concepts constituting the ontology and terminology were collected from clinical practice guidelines, the literature, and social media postings on adolescent depression. Class concepts, their hierarchy, and the relationships among class concepts were defined. An internal structure of the ontology was designed using the entity-attribute-value (EAV) triplet data model, and superclasses of the ontology were aligned with the upper ontology. Description logics between classes were evaluated by mapping concepts extracted from the answers to frequently asked questions (FAQs) onto the ontology concepts derived from description logic queries. The applicability of the ontology was validated by examining the representability of 1358 sentiment phrases using the ontology EAV model and conducting sentiment analyses of social media data using ontology class concepts. We developed an adolescent depression ontology that comprised 443 classes and 60 relationships among the classes; the terminology comprised 1682 synonyms of the 443 classes. In the description logics test, no error in relationships between classes was found, and about 89% (55/62) of the concepts cited in the answers to FAQs mapped onto the ontology class. Regarding applicability, the EAV triplet models of the ontology class represented about 91.4% of the sentiment phrases included in the sentiment dictionary. In the sentiment analyses, "academic stresses" and "suicide" contributed negatively to the sentiment of adolescent depression. The ontology and terminology developed in this study provide a semantic foundation for analyzing social media data on adolescent depression. To be useful in social media data analysis, the ontology, especially the terminology, needs to be updated constantly to reflect rapidly changing terms used by adolescents in social media postings. In addition, more attributes and value sets reflecting depression-related sentiments should be added to the ontology. ©Hyesil Jung, Hyeoun-Ae Park, Tae-Min Song. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 24.07.2017.
Jung, Hyesil; Song, Tae-Min
2017-01-01
Background Social networking services (SNSs) contain abundant information about the feelings, thoughts, interests, and patterns of behavior of adolescents that can be obtained by analyzing SNS postings. An ontology that expresses the shared concepts and their relationships in a specific field could be used as a semantic framework for social media data analytics. Objective The aim of this study was to refine an adolescent depression ontology and terminology as a framework for analyzing social media data and to evaluate description logics between classes and the applicability of this ontology to sentiment analysis. Methods The domain and scope of the ontology were defined using competency questions. The concepts constituting the ontology and terminology were collected from clinical practice guidelines, the literature, and social media postings on adolescent depression. Class concepts, their hierarchy, and the relationships among class concepts were defined. An internal structure of the ontology was designed using the entity-attribute-value (EAV) triplet data model, and superclasses of the ontology were aligned with the upper ontology. Description logics between classes were evaluated by mapping concepts extracted from the answers to frequently asked questions (FAQs) onto the ontology concepts derived from description logic queries. The applicability of the ontology was validated by examining the representability of 1358 sentiment phrases using the ontology EAV model and conducting sentiment analyses of social media data using ontology class concepts. Results We developed an adolescent depression ontology that comprised 443 classes and 60 relationships among the classes; the terminology comprised 1682 synonyms of the 443 classes. In the description logics test, no error in relationships between classes was found, and about 89% (55/62) of the concepts cited in the answers to FAQs mapped onto the ontology class. Regarding applicability, the EAV triplet models of the ontology class represented about 91.4% of the sentiment phrases included in the sentiment dictionary. In the sentiment analyses, “academic stresses” and “suicide” contributed negatively to the sentiment of adolescent depression. Conclusions The ontology and terminology developed in this study provide a semantic foundation for analyzing social media data on adolescent depression. To be useful in social media data analysis, the ontology, especially the terminology, needs to be updated constantly to reflect rapidly changing terms used by adolescents in social media postings. In addition, more attributes and value sets reflecting depression-related sentiments should be added to the ontology. PMID:28739560
Pneumatic oscillator circuits for timing and control of integrated microfluidics.
Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E
2013-11-05
Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.
Williamson, A M; Feyer, A M; Mattick, R P; Friswell, R; Finlay-Brown, S
2001-05-01
The effects of 28 h of sleep deprivation were compared with varying doses of alcohol up to 0.1% blood alcohol concentration (BAC) in the same subjects. The study was conducted in the laboratory. Twenty long-haul truck drivers and 19 people not employed as professional drivers acted as subjects. Tests were selected that were likely to be affected by fatigue, including simple reaction time, unstable tracking, dual task, Mackworth clock vigilance test, symbol digit coding, visual search, sequential spatial memory and logical reasoning. While performance effects were seen due to alcohol for all tests, sleep deprivation affected performance on most tests, but had no effect on performance on the visual search and logical reasoning tests. Some tests showed evidence of a circadian rhythm effect on performance, in particular, simple reaction time, dual task, Mackworth clock vigilance, and symbol digit coding, but only for response speed and not response accuracy. Drivers were slower but more accurate than controls on the symbol digit test, suggesting that they took a more conservative approach to performance of this test. This study demonstrated which tests are most sensitive to sleep deprivation and fatigue. The study therefore has established a set of tests that can be used in evaluations of fatigue and fatigue countermeasures.
NASA Astrophysics Data System (ADS)
Ang, Yee Sin; Yang, Shengyuan A.; Zhang, C.; Ma, Zhongshui; Ang, L. K.
2017-12-01
Despite much anticipation of valleytronics as a candidate to replace the aging complementary metal-oxide-semiconductor (CMOS) based information processing, its progress is severely hindered by the lack of practical ways to manipulate valley polarization all electrically in an electrostatic setting. Here, we propose a class of all-electric-controlled valley filter, valve, and logic gate based on the valley-contrasting transport in a merging Dirac cones system. The central mechanism of these devices lies on the pseudospin-assisted quantum tunneling which effectively quenches the transport of one valley when its pseudospin configuration mismatches that of a gate-controlled scattering region. The valley polarization can be abruptly switched into different states and remains stable over semi-infinite gate-voltage windows. Colossal tunneling valley-pseudomagnetoresistance ratio of over 10 000 % can be achieved in a valley-valve setup. We further propose a valleytronic-based logic gate capable of covering all 16 types of two-input Boolean logics. Remarkably, the valley degree of freedom can be harnessed to resurrect logical reversibility in two-input universal Boolean gate. The (2 +1 ) polarization states (two distinct valleys plus a null polarization) reestablish one-to-one input-to-output mapping, a crucial requirement for logical reversibility, and significantly reduce the complexity of reversible circuits. Our results suggest that the synergy of valleytronics and digital logics may provide new paradigms for valleytronic-based information processing and reversible computing.
Patterns of Inclusion: Fostering Digital Citizenship through Hybrid Education
ERIC Educational Resources Information Center
Pedersen, Alex Young; Nørgaard, Rikke Toft; Köppe, Christian
2018-01-01
Reconsidering the concept of digital citizenship and the essential component of education, the authors propose that the concept of Hybrid Education may serve both as a guideline for the utilization of digital technologies in education and as a methodology for fostering new forms of participation, inclusion and engagement in society. Following T.…
Digital Print Concepts: Conceptualizing a Modern Framework for Measuring Emerging Knowledge
ERIC Educational Resources Information Center
Javorsky, Kristin H.
2014-01-01
This dissertation sought to produce and empirically test a theoretical model for the literacy construct of print concepts that would take into account the unique affordances of digital picture books for emergent readers. The author used an exploratory study of twenty randomly selected digital story applications to identify print conventions, text…
ERIC Educational Resources Information Center
Mohamed Razali, Abu Bakar
2013-01-01
Very little is known about how teachers' "conceptualizations" of digital technology and their "uses" of the technology evolve and relate. Yet knowing about and understanding teachers' conceptions and uses of digital technology are essential for learning how teachers integrate it effectively for student learning. By applying…
Evolution of Scientific and Technical Information Distribution
NASA Technical Reports Server (NTRS)
Esler, Sandra; Nelson, Michael L.
1998-01-01
World Wide Web (WWW) and related information technologies are transforming the distribution of scientific and technical information (STI). We examine 11 recent, functioning digital libraries focusing on the distribution of STI publications, including journal articles, conference papers, and technical reports. We introduce 4 main categories of digital library projects: based on the architecture (distributed vs. centralized) and the contributor (traditional publisher vs. authoring individual/organization). Many digital library prototypes merely automate existing publishing practices or focus solely on the digitization of the publishing cycle output, not sampling and capturing elements of the input. Still others do not consider for distribution the large body of "gray literature." We address these deficiencies in the current model of STI exchange by suggesting methods for expanding the scope and target of digital libraries by focusing on a greater source of technical publications and using "buckets," an object-oriented construct for grouping logically related information objects, to include holdings other than technical publications.
Making Temporal Logic Calculational: A Tool for Unification and Discovery
NASA Astrophysics Data System (ADS)
Boute, Raymond
In temporal logic, calculational proofs beyond simple cases are often seen as challenging. The situation is reversed by making temporal logic calculational, yielding shorter and clearer proofs than traditional ones, and serving as a (mental) tool for unification and discovery. A side-effect of unifying theories is easier access by practicians. The starting point is a simple generic (software tool independent) Functional Temporal Calculus (FTC). Specific temporal logics are then captured via endosemantic functions. This concept reflects tacit conventions throughout mathematics and, once identified, is general and useful. FTC also yields a reasoning style that helps discovering theorems by calculation rather than just proving given facts. This is illustrated by deriving various theorems, most related to liveness issues in TLA+, and finding strengthenings of known results. Educational issues are addressed in passing.
Pedagogy of the logic model: teaching undergraduates to work together to change their communities.
Zimmerman, Lindsey; Kamal, Zohra; Kim, Hannah
2013-01-01
Undergraduate community psychology courses can empower students to address challenging problems in their local communities. Creating a logic model is an experiential way to learn course concepts by "doing." Throughout the semester, students work with peers to define a problem, develop an intervention, and plan an evaluation focused on an issue of concern to them. This report provides an overview of how to organize a community psychology course around the creation of a logic model in order for students to develop this applied skill. Two undergraduate student authors report on their experience with the logic model assignment, describing the community problem they chose to address, what they learned from the assignment, what they found challenging, and what they are doing now in their communities based on what they learned.
Modeling Human Elements of Decision-Making
2002-06-01
59 LIST OF REFERENCES Agor , Weston H ., The Logic of Intuitive Decision Making, Greenwood Press 1998 Barrick, M., Mount, M., "The Big Five...of sources discuss the concept of intuition. In The Logic of Intuitive Decision-making, Weston Agor refers to intuition as a highly rational...both factual and feeling 16 cues. Agor studied over 3000 individuals in leadership positions in a variety of organizations to determine the role
ERIC Educational Resources Information Center
Roh, Kyeong Hah
2010-01-01
This study explored students' understanding of a logical structure in defining the limit of a sequence, focusing on the relationship between epsilon and N. The subjects of this study were college students who had already encountered the concept of limit but did not have any experience with rigorous proofs using the epsilon-N definition. This study…
The PASM Parallel Processing System: Hardware Design and Intelligent Operating System Concepts
1986-07-01
IND-3 Jac Logic 0ISCAUTO-3 UK Jus Parallel IrAorf act Pori 90-7 el MS. IND-3 P110-3 Logic = .CUTO-3 AC-4 0 Sow PAIS WK.110-7 --------- CSS CC. THO...process communication are part of the ment, which must be part of the task body: jitsu VP-20043 uses 32-bit integers. Pro- language. The compiler actually
A new method for qualitative simulation of water resources systems: 1. Theory
NASA Astrophysics Data System (ADS)
Camara, A. S.; Pinheiro, M.; Antunes, M. P.; Seixas, M. J.
1987-11-01
A new dynamic modeling methodology, SLIN (Simulação Linguistica), allowing for the analysis of systems defined by linguistic variables, is presented. SLIN applies a set of logical rules avoiding fuzzy theoretic concepts. To make the transition from qualitative to quantitative modes, logical rules are used as well. Extensions of the methodology to simulation-optimization applications and multiexpert system modeling are also discussed.
Control of motion stability of the line tracer robot using fuzzy logic and kalman filter
NASA Astrophysics Data System (ADS)
Novelan, M. S.; Tulus; Zamzami, E. M.
2018-03-01
Setting of motion and balance line tracer robot two wheels is actually a combination of a two-wheeled robot balance concept and the concept of line follower robot. The main objective of this research is to maintain the robot in an upright and can move to follow the line of the Wizard while maintaining balance. In this study the motion balance system on line tracer robot by considering the presence of a noise, so that it takes the estimator is used to mengestimasi the line tracer robot motion. The estimation is done by the method of Kalman Filter and the combination of Fuzzy logic-Fuzzy Kalman Filter called Kalman Filter, as well as optimal smooting. Based on the results of the study, the value of the output of the fuzzy results obtained from the sensor input value has been filtered before entering the calculation of the fuzzy. The results of the output of the fuzzy logic hasn’t been able to control dc motors are well balanced at the moment to be able to run. The results of the fuzzy logic by using membership function of triangular membership function or yet can control with good dc motor movement in order to be balanced
Energy Relations in Russia: Administration, Politics and Security
ERIC Educational Resources Information Center
Makarychev, Andrey
2005-01-01
This chapter analyses energy relations through a prism of three interlinked concepts: administration, politics and security. This triad describes the basic approaches to questions about technical, politicised and securitised energy. These three concepts are logically linked to one another and represent an elementary matrix; a prism through which…
Role of Computer Assisted Instruction (CAI) in an Introductory Computer Concepts Course.
ERIC Educational Resources Information Center
Skudrna, Vincent J.
1997-01-01
Discusses the role of computer assisted instruction (CAI) in undergraduate education via a survey of related literature and specific applications. Describes an undergraduate computer concepts course and includes appendices of instructions, flowcharts, programs, sample student work in accounting, COBOL instructional model, decision logic in a…
ERIC Educational Resources Information Center
Patil, Rajan R.
2011-01-01
Epidemiology is a difficult but an important subject in public health curriculum. As teachers, we need to be very innovative in teaching the core concepts in epidemiology since it is basically a research oriented subject that calls for enormous application of logic and mathematical skills. Very often, complex epidemiological concepts need to be…
ERIC Educational Resources Information Center
Akinwamide, T. K.; Adedara, O. G.
2012-01-01
The digitalization of academic interactions and collaborations in this present technologically conscious world is making collaborations between technology and pedagogy in the teaching and learning processes to display logical and systematic reasoning rather than the usual stereotyped informed decisions. This simply means, pedagogically, learning…
Preservation Health Check: Monitoring Threats to Digital Repository Content
ERIC Educational Resources Information Center
Kool, Wouter; van der Werf, Titia; Lavoie, Brian
2014-01-01
The Preservation Health Check (PHC) project, undertaken as a joint effort by Open Planets Foundation (OPF) and OCLC Research, aims to evaluate the usefulness of the preservation metadata created and maintained by operational repositories for assessing basic preservation properties. The PHC project seeks to develop an implementable logic to support…
Computers in Electrical Engineering Education at Virginia Polytechnic Institute.
ERIC Educational Resources Information Center
Bennett, A. Wayne
1982-01-01
Discusses use of computers in Electrical Engineering (EE) at Virginia Polytechnic Institute. Topics include: departmental background, level of computing power using large scale systems, mini and microcomputers, use of digital logic trainers and analog/hybrid computers, comments on integrating computers into EE curricula, and computer use in…
Highest integration in microelectronics: Development of digital ASICs for PARS3-LR
NASA Astrophysics Data System (ADS)
Scholler, Peter; Vonlutz, Rainer
Essential electronic system components by PARS3-LR, show high requirements in calculation power, power consumption and reliability, by immediately increasing integration thicknesses. These problems are solved by using integrated circuits, developed by LSI LOGIC, that uses the technical and economic advantages of this leading edge technology.
NASA Astrophysics Data System (ADS)
Liu, Xiang; Beckwitt, Kale; Wise, Frank
2000-05-01
We demonstrate theoretically and experimentally that spatiotemporal solitons can be generated through noncollinear second-harmonic generation. The resulting Y geometry could be used to implement an optical AND gate with ultrafast, high-contrast operation but without sensitivity to the phases of the input pulses.
Superconducting flux flow digital circuits
Hietala, V.M.; Martens, J.S.; Zipperian, T.E.
1995-02-14
A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.
Automatic ranging circuit for a digital panel meter
Mueller, Theodore R.; Ross, Harley H.
1976-01-01
This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to insure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit.
Digital adaptive flight controller development
NASA Technical Reports Server (NTRS)
Kaufman, H.; Alag, G.; Berry, P.; Kotob, S.
1974-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Two designs are described for an example aircraft. Each of these designs uses a weighted least squares procedure to identify parameters defining the dynamics of the aircraft. The two designs differ in the way in which control law parameters are determined. One uses the solution of an optimal linear regulator problem to determine these parameters while the other uses a procedure called single stage optimization. Extensive simulation results and analysis leading to the designs are presented.
Advanced reliability modeling of fault-tolerant computer-based systems
NASA Technical Reports Server (NTRS)
Bavuso, S. J.
1982-01-01
Two methodologies for the reliability assessment of fault tolerant digital computer based systems are discussed. The computer-aided reliability estimation 3 (CARE 3) and gate logic software simulation (GLOSS) are assessment technologies that were developed to mitigate a serious weakness in the design and evaluation process of ultrareliable digital systems. The weak link is based on the unavailability of a sufficiently powerful modeling technique for comparing the stochastic attributes of one system against others. Some of the more interesting attributes are reliability, system survival, safety, and mission success.
Warburton, William K.; Zhou, Zhiquing
1999-01-01
A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.
Moving Digital Libraries into the Student Learning Space: The GetSmart Experience
ERIC Educational Resources Information Center
Marshall, Byron B.; Chen, Hsinchun; Shen, Rao; Fox, Edward A.
2006-01-01
The GetSmart system was built to support theoretically sound learning processes in a digital library environment by integrating course management, digital library, and concept mapping components to support a constructivist, six-step, information search process. In the fall of 2002 more than 100 students created 1400 concept maps as part of…
Digital Literacy and Sustainability--A Field Study in EFL Teacher Development
ERIC Educational Resources Information Center
Allen, Christopher; Berggren, Jan
2016-01-01
This project introduces the concept of digital literacy at a practical level to a group of EFL teachers within the context of a single work place; a technologically well-resourced upper secondary school in Sweden. English teachers were provided with a theoretical and practical overview of the digital literacy concept as described by Dudeney,…
NASA Astrophysics Data System (ADS)
Muzafar Shah, Mazlina; Fatah Wahab, Abdul
2017-09-01
There are an abnormal electric activities or irregular interference in brain of epilepsy patient. Then a sensor will be put in patient’s scalp to measure and records all electric activities in brain. The result of the records known as Electroencephalography (EEG). The EEG has been transfer to flat EEG because it’s easier to analyze. In this study, the uncertainty in flat EEG data will be considered as fuzzy digital space. The purpose of this research is to show that the flat EEG is fuzzy topological digital space. Therefore, the main focus for this research is to introduce fuzzy topological digital space concepts with their properties such as neighbourhood, interior and closure by using fuzzy set digital concept and Chang’s fuzzy topology approach. The product fuzzy topology digital also will be shown. By introduce this concept, the data in flat EEG can considering having fuzzy topology digital properties and can identify the area in fuzzy digital space that has been affected by epilepsy seizure in epileptic patient’s brain.
F-OWL: An Inference Engine for Semantic Web
NASA Technical Reports Server (NTRS)
Zou, Youyong; Finin, Tim; Chen, Harry
2004-01-01
Understanding and using the data and knowledge encoded in semantic web documents requires an inference engine. F-OWL is an inference engine for the semantic web language OWL language based on F-logic, an approach to defining frame-based systems in logic. F-OWL is implemented using XSB and Flora-2 and takes full advantage of their features. We describe how F-OWL computes ontology entailment and compare it with other description logic based approaches. We also describe TAGA, a trading agent environment that we have used as a test bed for F-OWL and to explore how multiagent systems can use semantic web concepts and technology.
Wei, Duo; Bodenreider, Olivier
2015-01-01
Objectives To investigate errors identified in SNOMED CT by human reviewers with help from the Abstraction Network methodology and examine why they had escaped detection by the Description Logic (DL) classifier. Case study; Two examples of errors are presented in detail (one missing IS-A relation and one duplicate concept). After correction, SNOMED CT is reclassified to ensure that no new inconsistency was introduced. Conclusions DL-based auditing techniques built in terminology development environments ensure the logical consistency of the terminology. However, complementary approaches are needed for identifying and addressing other types of errors. PMID:20841848
Wei, Duo; Bodenreider, Olivier
2010-01-01
To investigate errors identified in SNOMED CT by human reviewers with help from the Abstraction Network methodology and examine why they had escaped detection by the Description Logic (DL) classifier. Case study; Two examples of errors are presented in detail (one missing IS-A relation and one duplicate concept). After correction, SNOMED CT is reclassified to ensure that no new inconsistency was introduced. DL-based auditing techniques built in terminology development environments ensure the logical consistency of the terminology. However, complementary approaches are needed for identifying and addressing other types of errors.
Extended Logic Intelligent Processing System for a Sensor Fusion Processor Hardware
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Thomas, Tyson; Li, Wei-Te; Daud, Taher; Fabunmi, James
2000-01-01
The paper presents the hardware implementation and initial tests from a low-power, highspeed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) is described, which combines rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor signals in compact low power VLSI. The development of the ELIPS concept is being done to demonstrate the interceptor functionality which particularly underlines the high speed and low power requirements. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Processing speeds of microseconds have been demonstrated using our test hardware.
Molecular computational elements encode large populations of small objects
NASA Astrophysics Data System (ADS)
Prasanna de Silva, A.; James, Mark R.; McKinney, Bernadine O. F.; Pears, David A.; Weir, Sheenagh M.
2006-10-01
Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1nm) and large `on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100μm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a `wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.
Molecular computational elements encode large populations of small objects.
de Silva, A Prasanna; James, Mark R; McKinney, Bernadine O F; Pears, David A; Weir, Sheenagh M
2006-10-01
Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1 nm) and large 'on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100 microm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a 'wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.
ERIC Educational Resources Information Center
Pooley, Robert C.; Golub, Lester S.
Emphasizing the behavioral and social aspects of language as a foundation for instruction, 16 concepts for learning the structure of English in grades 7-9 are outlined in an attempt to set down in logical order the basic concepts involved in the understanding of the English language. The concepts begin with a recognition of the social purposes of…
An Embedded Reconfigurable Logic Module
NASA Technical Reports Server (NTRS)
Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)
2002-01-01
A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.
GaAs VLSI technology and circuit elements for DSP
NASA Astrophysics Data System (ADS)
Mikkelson, James M.
1990-10-01
Recent progress in digital GaAs circuit performance and complexity is presented to demonstrate the current capabilities of GaAs components. High density GaAs process technology and circuit design techniques are described and critical issues for achieving favorable complexity speed power and cost tradeoffs are reviewed. Some DSP building blocks are described to provide examples of what types of DSP systems could be implemented with present GaAs technology. DIGITAL GaAs CIRCUIT CAPABILITIES In the past few years the capabilities of digital GaAs circuits have dramatically increased to the VLSI level. Major gains in circuit complexity and power-delay products have been achieved by the use of silicon-like process technologies and simple circuit topologies. The very high speed and low power consumption of digital GaAs VLSI circuits have made GaAs a desirable alternative to high performance silicon in hardware intensive high speed system applications. An example of the performance and integration complexity available with GaAs VLSI circuits is the 64x64 crosspoint switch shown in figure 1. This switch which is the most complex GaAs circuit currently available is designed on a 30 gate GaAs gate array. It operates at 200 MHz and dissipates only 8 watts of power. The reasons for increasing the level of integration of GaAs circuits are similar to the reasons for the continued increase of silicon circuit complexity. The market factors driving GaAs VLSI are system design methodology system cost power and reliability. System designers are hesitant or unwilling to go backwards to previous design techniques and lower levels of integration. A more highly integrated system in a lower performance technology can often approach the performance of a system in a higher performance technology at a lower level of integration. Higher levels of integration also lower the system component count which reduces the system cost size and power consumption while improving the system reliability. For large gate count circuits the power per gate must be minimized to prevent reliability and cooling problems. The technical factors which favor increasing GaAs circuit complexity are primarily related to reducing the speed and power penalties incurred when crossing chip boundaries. Because the internal GaAs chip logic levels are not compatible with standard silicon I/O levels input receivers and output drivers are needed to convert levels. These I/O circuits add significant delay to logic paths consume large amounts of power and use an appreciable portion of the die area. The effects of these I/O penalties can be reduced by increasing the ratio of core logic to I/O on a chip. DSP operations which have a large number of logic stages between the input and the output are ideal candidates to take advantage of the performance of GaAs digital circuits. Figure 2 is a schematic representation of the I/O penalties encountered when converting from ECL levels to GaAs
2007-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and
Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong
2014-08-07
DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a "lab-on-a-nanoparticle", the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology.
A Logic Model for Evaluating the Academic Health Department.
Erwin, Paul Campbell; McNeely, Clea S; Grubaugh, Julie H; Valentine, Jennifer; Miller, Mark D; Buchanan, Martha
2016-01-01
Academic Health Departments (AHDs) are collaborative partnerships between academic programs and practice settings. While case studies have informed our understanding of the development and activities of AHDs, there has been no formal published evaluation of AHDs, either singularly or collectively. Developing a framework for evaluating AHDs has potential to further aid our understanding of how these relationships may matter. In this article, we present a general theory of change, in the form of a logic model, for how AHDs impact public health at the community level. We then present a specific example of how the logic model has been customized for a specific AHD. Finally, we end with potential research questions on the AHD based on these concepts. We conclude that logic models are valuable tools, which can be used to assess the value and ultimate impact of the AHD.
Jahoda, G
2000-08-01
Levy-Bruhl exerted a powerful influence, seldom considered, on Piaget. The Levy-Bruhlian thesis of a "pre-logical mentality" characterized by "mystical participation" is outlined, together with its initial reception. The first evidence of Piaget's interest in it dates from 1920, and when he began his studies of children's thinking he compared it with that of 'primitives," also adopting Levy-Bruhl's concept of "participation." By 1928 Piaget had elaborated a theory of the social foundations of different types of thought, which he regarded as also explaining the alleged similarity between the thinking of primitives and children. Both are subject to constraint, primitives by elders and children by parents and teachers. Logical as opposed to pre-logical thought was said to depend on cooperation in free social interaction. Piaget continued to maintain essentially the same views long after Levy-Bruhl himself had renounced the notion of pre-logicality.
Quantum Structure in Cognition and the Foundations of Human Reasoning
NASA Astrophysics Data System (ADS)
Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas
2015-12-01
Traditional cognitive science rests on a foundation of classical logic and probability theory. This foundation has been seriously challenged by several findings in experimental psychology on human decision making. Meanwhile, the formalism of quantum theory has provided an efficient resource for modeling these classically problematical situations. In this paper, we start from our successful quantum-theoretic approach to the modeling of concept combinations to formulate a unifying explanatory hypothesis. In it, human reasoning is the superposition of two processes - a conceptual reasoning, whose nature is emergence of new conceptuality, and a logical reasoning, founded on an algebraic calculus of the logical type. In most cognitive processes however, the former reasoning prevails over the latter. In this perspective, the observed deviations from classical logical reasoning should not be interpreted as biases but, rather, as natural expressions of emergence in its deepest form.
Multi-objective decision-making under uncertainty: Fuzzy logic methods
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1994-01-01
Selecting the best option among alternatives is often a difficult process. This process becomes even more difficult when the evaluation criteria are vague or qualitative, and when the objectives vary in importance and scope. Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.
The Otto-engine-equivalent vehicle concept
NASA Technical Reports Server (NTRS)
Dowdy, M. W.; Couch, M. D.
1978-01-01
A vehicle comparison methodology based on the Otto-Engine Equivalent (OEE) vehicle concept is described. As an illustration of this methodology, the concept is used to make projections of the fuel economy potential of passenger cars using various alternative power systems. Sensitivities of OEE vehicle results to assumptions made in the calculational procedure are discussed. Factors considered include engine torque boundary, rear axle ratio, performance criteria, engine transient response, and transmission shift logic.
Visual unit analysis: a descriptive approach to landscape assessment
R. J. Tetlow; S. R. J. Sheppard
1979-01-01
Analysis of the visible attributes of landscapes is an important component of the planning process. When landscapes are at regional scale, economical and effective methodologies are critical. The Visual Unit concept appears to offer a logical and useful framework for description and evaluation. The concept subdivides landscape into coherent, spatially-defined units....
ERIC Educational Resources Information Center
Weber, Keith
2009-01-01
This paper presents a case study of a highly successful student whose exploration of an advanced mathematical concept relies predominantly on syntactic reasoning, such as developing formal representations of mathematical ideas and making logical deductions. This student is observed as he learns a new mathematical concept and then completes…
Visualizing Accounting Transaction Flows into Financial Statements
ERIC Educational Resources Information Center
Jones, Daniel J.
2012-01-01
Professors who teach the introductory accounting course should ask themselves: "What are the core concepts that I wish to have my non-majors remember if I meet them at their ten-year alumni class reunion?" There is a fundamental logic to financial accounting. This teaching note presents foundational accounting concepts in a manner that…
Leadership, the Logic of Sufficiency and the Sustainability of Education
ERIC Educational Resources Information Center
Bottery, Mike
2012-01-01
The notion of sufficiency has not yet entered mainstream educational thinking, and it still has to make its mark upon educational leadership. However, a number of related concepts--particularly those of sustainability and complexity theory--are beginning to be noticed. This article examines these two concepts and uses them to critique the…
How Learning Logic Programming Affects Recursion Comprehension
ERIC Educational Resources Information Center
Haberman, Bruria
2004-01-01
Recursion is a central concept in computer science, yet it is difficult for beginners to comprehend. Israeli high-school students learn recursion in the framework of a special modular program in computer science (Gal-Ezer & Harel, 1999). Some of them are introduced to the concept of recursion in two different paradigms: the procedural…
Fuzzy health, illness, and disease.
Sadegh-Zadeh, K
2000-10-01
The notions of health, illness, and disease are fuzzy-theoretically analyzed. They present themselves as non-Aristotelian concepts violating basic principles of classical logic. A recursive scheme for defining the controversial notion of disease is proposed that also supports a concept of fuzzy disease. A sketch is given of the prototype resemblance theory of disease.
Clashes within One Teacher's Racial Logic: Space of Possibles?
ERIC Educational Resources Information Center
Shim, Jenna Min
2013-01-01
This study is to empirically investigate both residual and emergent factors that undergird one teacher's understanding of race, racism, and racialization as he responds to two fictional stories and one film. Informed by an assemblage of Bourdieu's concept of habitus and his sociological theory of practice, Gee's concept of primary Discourses, and…
Method and system for analyzing and classifying electronic information
McGaffey, Robert W.; Bell, Michael Allen; Kortman, Peter J.; Wilson, Charles H.
2003-04-29
A data analysis and classification system that reads the electronic information, analyzes the electronic information according to a user-defined set of logical rules, and returns a classification result. The data analysis and classification system may accept any form of computer-readable electronic information. The system creates a hash table wherein each entry of the hash table contains a concept corresponding to a word or phrase which the system has previously encountered. The system creates an object model based on the user-defined logical associations, used for reviewing each concept contained in the electronic information in order to determine whether the electronic information is classified. The data analysis and classification system extracts each concept in turn from the electronic information, locates it in the hash table, and propagates it through the object model. In the event that the system can not find the electronic information token in the hash table, that token is added to a missing terms list. If any rule is satisfied during propagation of the concept through the object model, the electronic information is classified.
Integrating a Digital Concept Mapping into a PPT Slide Writing Project
ERIC Educational Resources Information Center
Yen, Ai Chun; Yang, Pei Yi
2013-01-01
Carried out during a semester-long EFL (English as a foreign language) drama class, this research aimed to scrutinize the effects of digital concept mapping via LMS on English majors' (N = 38) PowerPoint (PPT) slide writing skills in Taiwan. Students were instructed to follow the concept mapping agenda via university learning management system…
NASA Astrophysics Data System (ADS)
Šujaková, Monika; Golejová, Simona; Sakál, Peter
2017-09-01
In the contribution the authors deal with the design and use of a sustainable marketing communication strategy of an ideal industrial enterprise in the Slovak Republic. The concept of an ideal enterprise is designed to increase the enterprise's sustainable competitiveness through the formation of a corporate image. In the framework of the research, the practical application of the draft concept was realized through a semi-structured interview in the form of propositional logic.
Programmable computing with a single magnetoresistive element
NASA Astrophysics Data System (ADS)
Ney, A.; Pampuch, C.; Koch, R.; Ploog, K. H.
2003-10-01
The development of transistor-based integrated circuits for modern computing is a story of great success. However, the proved concept for enhancing computational power by continuous miniaturization is approaching its fundamental limits. Alternative approaches consider logic elements that are reconfigurable at run-time to overcome the rigid architecture of the present hardware systems. Implementation of parallel algorithms on such `chameleon' processors has the potential to yield a dramatic increase of computational speed, competitive with that of supercomputers. Owing to their functional flexibility, `chameleon' processors can be readily optimized with respect to any computer application. In conventional microprocessors, information must be transferred to a memory to prevent it from getting lost, because electrically processed information is volatile. Therefore the computational performance can be improved if the logic gate is additionally capable of storing the output. Here we describe a simple hardware concept for a programmable logic element that is based on a single magnetic random access memory (MRAM) cell. It combines the inherent advantage of a non-volatile output with flexible functionality which can be selected at run-time to operate as an AND, OR, NAND or NOR gate.
Concept Development of the Eindhoven Diabetes Education Simulator Project.
Maas, Anne H; van der Molen, Pieta; van de Vijver, Reinier; Chen, Wei; van Pul, Carola; Cottaar, Eduardus J E; van Riel, Natal A W; Hilbers, Peter A J; Haak, Harm R
2016-04-01
This study was designed to define the concept of an educational diabetes game following a user-centered design approach. The concept development of the Eindhoven Diabetes Education Simulator (E-DES) project can be divided in two phases: concept generation and concept evaluation. Four concepts were designed by the multidisciplinary development team based on the outcomes of user interviews. Four other concepts resulted from the Diabetes Game Jam. Several users and experts evaluated the concepts. These user evaluations and a feasibility analysis served as input for an overall evaluation and discussion by the development team resulting in the final concept choice. The four concepts of the development team are a digital board game, a quiz platform, a lifestyle simulator, and a puzzle game. The Diabetes Game Jam resulted in another digital board game, two mobile swipe games, and a fairy tale-themed adventure game. The combined user evaluations and feasibility analysis ranked the quiz platform and the digital board game equally high. Each of these games fits one specific subgroup of users best: the quiz platform best fits an eager-to-learn, more individualistic patient, whereas the board game best fits a less-eager-to-learn, family-oriented patient. The choice for a specific concept is therefore highly dependent on the choice of our specific target audience. The user-centered design approach with multiple evaluations has enabled us to choose the most promising concept from eight different options. A digital board game is chosen for further development because the target audience for E-DES is the less-motivated, family-oriented patients.
From Prosumer to Prodesigner: Participatory News Consumption
ERIC Educational Resources Information Center
Hernández-Serrano, María-José; Renés-Arellano, Paula; Graham, Gary; Greenhill, Anita
2017-01-01
New democratic participation forms and collaborative productions of diverse audiences have emerged as a result of digital innovations in the online access to and consumption of news. The aim of this paper is to propose a conceptual framework based on the possibilities of Web 2.0. outlining the construction of a "social logic," which…
Introduction to Digital Logic Systems for Energy Monitoring and Control Systems.
1985-05-01
computer were first set down by Charles Babbage in 1830. An additional criteria was proposed by Von Neumann in 1947. These criteria state: (1) An input means...criteria requirements as set down by Babbage and Von Neumann. The computer equipment ("hardware") and internal operating system ("software
ASIC For Complex Fixed-Point Arithmetic
NASA Technical Reports Server (NTRS)
Petilli, Stephen G.; Grimm, Michael J.; Olson, Erlend M.
1995-01-01
Application-specific integrated circuit (ASIC) performs 24-bit, fixed-point arithmetic operations on arrays of complex-valued input data. High-performance, wide-band arithmetic logic unit (ALU) designed for use in computing fast Fourier transforms (FFTs) and for performing ditigal filtering functions. Other applications include general computations involved in analysis of spectra and digital signal processing.