Sample records for digital mirror device

  1. Optical scanning holography based on compressive sensing using a digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    A-qian, Sun; Ding-fu, Zhou; Sheng, Yuan; You-jun, Hu; Peng, Zhang; Jian-ming, Yue; xin, Zhou

    2017-02-01

    Optical scanning holography (OSH) is a distinct digital holography technique, which uses a single two-dimensional (2D) scanning process to record the hologram of a three-dimensional (3D) object. Usually, these 2D scanning processes are in the form of mechanical scanning, and the quality of recorded hologram may be affected due to the limitation of mechanical scanning accuracy and unavoidable vibration of stepper motor's start-stop. In this paper, we propose a new framework, which replaces the 2D mechanical scanning mirrors with a Digital Micro-mirror Device (DMD) to modulate the scanning light field, and we call it OSH based on Compressive Sensing (CS) using a digital micro-mirror device (CS-OSH). CS-OSH can reconstruct the hologram of an object through the use of compressive sensing theory, and then restore the image of object itself. Numerical simulation results confirm this new type OSH can get a reconstructed image with favorable visual quality even under the condition of a low sample rate.

  2. Design and fabrication of multimode interference couplers based on digital micro-mirror system

    NASA Astrophysics Data System (ADS)

    Wu, Sumei; He, Xingdao; Shen, Chenbo

    2008-03-01

    Multimode interference (MMI) couplers, based on the self-imaging effect (SIE), are accepted popularly in integrated optics. According to the importance of MMI devices, in this paper, we present a novel method to design and fabricate MMI couplers. A technology of maskless lithography to make MMI couplers based on a smart digital micro-mirror device (DMD) system is proposed. A 1×4 MMI device is designed as an example, which shows the present method is efficient and cost-effective.

  3. Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Valiya Peedikakkal, Liyana; Steventon, Victoria; Furley, Andrew; Cadby, Ashley J.

    2017-12-01

    We demonstrate a simple illumination system based on a digital mirror device which allows for fine control over the power and pattern of illumination. We apply this to localization microscopy (LM), specifically stochastic optical reconstruction microscopy (STORM). Using this targeted STORM, we were able to image a selected area of a labelled cell without causing photo-damage to the surrounding areas of the cell.

  4. Optimal micro-mirror tilt angle and sync mark design for digital micro-mirror device based collinear holographic data storage system.

    PubMed

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Liu, Jinyan; Huang, Yong; Tan, Xiaodi

    2017-06-01

    The collinear holographic data storage system (CHDSS) is a very promising storage system due to its large storage capacities and high transfer rates in the era of big data. The digital micro-mirror device (DMD) as a spatial light modulator is the key device of the CHDSS due to its high speed, high precision, and broadband working range. To improve the system stability and performance, an optimal micro-mirror tilt angle was theoretically calculated and experimentally confirmed by analyzing the relationship between the tilt angle of the micro-mirror on the DMD and the power profiles of diffraction patterns of the DMD at the Fourier plane. In addition, we proposed a novel chess board sync mark design in the data page to reduce the system bit error rate in circumstances of reduced aperture required to decrease noise and median exposure amount. It will provide practical guidance for future DMD based CHDSS development.

  5. Optical metrology for DMD™ characterization

    NASA Astrophysics Data System (ADS)

    Miller, Seth A.; Mezenner, Rabah; Doane, Dennis

    2001-01-01

    The Digital Micromirror Device™ (DMD™) developed at Texas Instruments is a spatial light modulator composed of 500,000 to 1.3 million movable micromachined aluminum mirrors. The DMD™ serves as the engine for the current generation of computer-driven slide and video projectors, and for next generation devices in digital television and movie projectors. Because of the unique architecture and applications of the device, Texas Instruments has developed a series of customized optical testers for characterizing DMD™ performance. This paper provides a general overview of the MirrorMaster, a custom optical inspection tool. Particular attention is given to Bias Adhesion Mapping (BAM) as a device performance metric. BAM is an optical test that monitors the performance of the mirrors as a function of an applied voltage. This voltage drives the mirrors to the `on' or `off' position, and as the bias is stepped down the mirrors return to their neutral orientations. Important forces involved in this process include the electrostatic field applied, the compliance of the hinge, and static friction (stiction). BAM curves can help characterize device stiction and allow us to examine the efficacy of the lubrication system over the lifetime of the device.

  6. Rotary encoding device using polygonal mirror with diffraction gratings on each facet

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror each have a low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  7. Manifold-Based Image Understanding

    DTIC Science & Technology

    2010-06-30

    3] employs a Texas Instruments digital micromirror device (DMD), which consists of an array of N electrostatically actuated micromirrors . The camera...image x) is reflected off a digital micromirror device (DMD) array whose mirror orientations are modulated in the pseudorandom pattern φm supplied by a

  8. Rotary encoding device

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets is presented. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  9. High Angular Sensitivity, Absolute Rotary Encoding Device with Polygonal Mirror and Stand-Alone Diffraction Gratings

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1996-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror direct the light beam to a stand-alone low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-lo-digital converter.

  10. Rotary encoding device with polygonal reflector and centroid detection

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1994-01-01

    A device for positioning encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the spots on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  11. Digital Mirror Device Application in Reduction of Wave-front Phase Errors

    PubMed Central

    Zhang, Yaping; Liu, Yan; Wang, Shuxue

    2009-01-01

    In order to correct the image distortion created by the mixing/shear layer, creative and effectual correction methods are necessary. First, a method combining adaptive optics (AO) correction with a digital micro-mirror device (DMD) is presented. Second, performance of an AO system using the Phase Diverse Speckle (PDS) principle is characterized in detail. Through combining the DMD method with PDS, a significant reduction in wavefront phase error is achieved in simulations and experiments. This kind of complex correction principle can be used to recovery the degraded images caused by unforeseen error sources. PMID:22574016

  12. Demonstration of a linear optical true-time delay device by use of a microelectromechanical mirror array.

    PubMed

    Rader, Amber; Anderson, Betty Lise

    2003-03-10

    We present the design and proof-of-concept demonstration of an optical device capable of producing true-time delay(s) (TTD)(s) for phased array antennas. This TTD device uses a free-space approach consisting of a single microelectromechanical systems (MEMS) mirror array in a multiple reflection spherical mirror configuration based on the White cell. Divergence is avoided by periodic refocusing by the mirrors. By using the MEMS mirror to switch between paths of different lengths, time delays are generated. Six different delays in 1-ns increments were demonstrated by using the Texas Instruments Digital Micromirror Device as the switching element. Losses of 1.6 to 5.2 dB per bounce and crosstalk of -27 dB were also measured, both resulting primarily from diffraction from holes in each pixel and the inter-pixel gaps of the MEMS.

  13. Optical system design of dynamic infrared scene projector based on DMD

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Fu, Yuegang; Liu, Zhiying; Li, Yandong

    2014-09-01

    Infrared scene simulator is now widely used to simulate infrared scene practicality in the laboratory, which can greatly reduce the research cost of the optical electrical system and offer economical experiment environment. With the advantage of large dynamic range and high spatial resolution, dynamic infrared projection technology, which is the key part of the infrared scene simulator, based on digital micro-mirror device (DMD) has been rapidly developed and widely applied in recent years. In this paper, the principle of the digital micro-mirror device is briefly introduced and the characteristics of the DLP (Digital Light Procession) system based on digital micromirror device (DMD) are analyzed. The projection system worked at 8~12μm with 1024×768 pixel DMD is designed by ZEMAX. The MTF curve is close to the diffraction limited curve and the radius of the spot diagram is smaller than that of the airy disk. The result indicates that the system meets the design requirements.

  14. Note: Suppression of kHz-frequency switching noise in digital micro-mirror devices

    NASA Astrophysics Data System (ADS)

    Hueck, Klaus; Mazurenko, Anton; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-01-01

    High resolution digital micro-mirror devices (DMDs) make it possible to produce nearly arbitrary light fields with high accuracy, reproducibility, and low optical aberrations. However, using these devices to trap and manipulate ultracold atomic systems for, e.g., quantum simulation is often complicated by the presence of kHz-frequency switching noise. Here we demonstrate a simple hardware extension that solves this problem and makes it possible to produce truly static light fields. This modification leads to a 47 fold increase in the time that we can hold ultracold 6Li atoms in a dipole potential created with the DMD. Finally, we provide reliable and user friendly APIs written in Matlab and Python to control the DMD.

  15. Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Zhang, Chonglei; Min, Changjun; Yuan, X.-C.

    2016-12-01

    We propose a technique to generate of perfect optical vortex (POV) via Fourier transformation of Bessel-Gauss (BG) beams through encoding of the amplitude of the optical field with binary amplitude digital micro-mirrors device (DMD). Furthermore, we confirm the correct phase patterns of the POV with the method of Mach-Zehnder interferometer. Our approach to generate the POV has the advantages that rapidly switch among the different modes, wide spectral regions and high energy tolerance. Since the POV possess propagation properties that not shape-invariant, we therefore suppose that our proposed approach will find potential applications in optical microscopy, optical fabrication, and optical communication.

  16. Near-infrared Compressive Line Sensing Imaging System using Individually Addressable Laser Diode Array

    DTIC Science & Technology

    2015-05-11

    Micromirror Device (DMD) is a microelectromechanical (MEMS) device. A DMD consists of millions of electrostatically actuated micro- mirrors (or pixels...digital micromirror device) were analyzed. We discussed the effort of developing such a prototype by Proc. of SPIE Vol. 9484 94840I-11 Downloaded...to Digital Micromirror Device (DMD) Technology”, (n.d.) Retrieved May 1, 2011, from http://www.ti.com/lit/an/dlpa008a/dlpa008a.pdf. [16

  17. Three-dimensional crossbar interconnection using planar-integrated free-space optics and digital mirror-device

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.

    2011-01-01

    We consider the implementation of a dynamic crossbar interconnect using planar-integrated free-space optics (PIFSO) and a digital mirror-device™ (DMD). Because of the 3D nature of free-space optics, this approach is able to solve geometrical problems with crossings of the signal paths that occur in waveguide optical and electrical interconnection, especially for large number of connections. The DMD device allows one to route the signals dynamically. Due to the large number of individual mirror elements in the DMD, different optical path configurations are possible, thus offering the chance for optimizing the network configuration. The optimization is achieved by using an evolutionary algorithm for finding best values for a skewless parallel interconnection. Here, we present results and experimental examples for the use of the PIFSO/DMD-setup.

  18. 78 FR 33098 - Prospective Grant of Co-Exclusive Licenses: Multi-Focal Structured Illumination Microscopy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ...-Exclusive Licenses: Multi-Focal Structured Illumination Microscopy Systems and Methods AGENCY: National... pertains to a system and method for digital confocal microscopy that rapidly processes enhanced images. In particular, the invention is a method for digital confocal microscopy that includes a digital mirror device...

  19. Cryo Power and Heat Transfer

    DTIC Science & Technology

    2004-09-01

    of DMD ...........................................................................................47 Figure 3.15: Lens used for intensity...51 Figure 3.18: Imaging system for DMD ...temperatures, converts to a ceramic material Digital Micromirror Device ( DMD ) – A MEMS device that consists of tiny mirror used for light modulation

  20. Dynamic modal characterization of musical instruments using digital holography

    NASA Astrophysics Data System (ADS)

    Demoli, Nazif; Demoli, Ivan

    2005-06-01

    This study shows that a dynamic modal characterization of musical instruments with membrane can be carried out using a low-cost device and that the obtained very informative results can be presented as a movie. The proposed device is based on a digital holography technique using the quasi-Fourier configuration and time-average principle. Its practical realization with a commercial digital camera and large plane mirrors allows relatively simple analyzing of big vibration surfaces. The experimental measurements given for a percussion instrument are supported by the mathematical formulation of the problem.

  1. Tablet PC interaction with digital micromirror device (DMD)

    NASA Astrophysics Data System (ADS)

    Refai, Hakki H.; Dahshan, Mostafa H.; Sluss, James J., Jr.

    2007-02-01

    Digital light processing (DLP) is an innovative display technology that uses an optical switch array, known as a digital micromirror device (DMD), which allows digital control of light. To date, DMDs have been used primarily as high-speed spatial light modulators for projector applications. A tablet PC is a notebook or slate-shaped mobile PC. Its touch screen or digitizing tablet technology allows the user to operate the notebook with a stylus or digital pen instead of using a keyboard or mouse. In this paper, we describe an interface solution that translates any sketch on the tablet PC screen to an identical mirror-copy over the cross-section of the DMD micromirrors such that the image of the sketch can be projected onto a special screen. An algorithm has been created to control each single micromirror of the hundreds of thousands of micromirrors that cover the DMD surface. We demonstrate the successful application of a DMD to a high-speed two-dimensional (2D) scanning environment, acquiring the data from the tablet screen and launching its contents to the projection screen; with very high accuracy up to 13.68 μm x 13.68 μm of mirror pitch.

  2. Enhanced optical alignment of a digital micro mirror device through Bayesian adaptive exploration

    NASA Astrophysics Data System (ADS)

    Wynne, Kevin B.; Knuth, Kevin H.; Petruccelli, Jonathan

    2017-12-01

    As the use of Digital Micro Mirror Devices (DMDs) becomes more prevalent in optics research, the ability to precisely locate the Fourier "footprint" of an image beam at the Fourier plane becomes a pressing need. In this approach, Bayesian adaptive exploration techniques were employed to characterize the size and position of the beam on a DMD located at the Fourier plane. It couples a Bayesian inference engine with an inquiry engine to implement the search. The inquiry engine explores the DMD by engaging mirrors and recording light intensity values based on the maximization of the expected information gain. Using the data collected from this exploration, the Bayesian inference engine updates the posterior probability describing the beam's characteristics. The process is iterated until the beam is located to within the desired precision. This methodology not only locates the center and radius of the beam with remarkable precision but accomplishes the task in far less time than a brute force search. The employed approach has applications to system alignment for both Fourier processing and coded aperture design.

  3. Single-beam, dual-view digital holographic interferometry for biomechanical strain measurements of biological objects

    NASA Astrophysics Data System (ADS)

    Pantelić, Dejan V.; Grujić, Dušan Ž.; Vasiljević, Darko M.

    2014-12-01

    We describe a method for dual-view biomechanical strain measurements of highly asymmetrical biological objects, like teeth or bones. By using a spherical mirror, we were able to simultaneously record a digital hologram of the object itself and the mirror image of its (otherwise invisible) rear side. A single laser beam was sufficient to illuminate both sides of the object, and to provide a reference beam. As a result, the system was mechanically very stable, enabling long exposure times (up to 2 min) without the need for vibration isolation. The setup is simple to construct and adjust, and can be used to interferometrically observe any object that is smaller than the mirror diameter. Parallel data processing on a CUDA-enabled (compute unified device architecture) graphics card was used to reconstruct digital holograms and to further correct image distortion. We used the setup to measure the deformation of a tooth due to mastication forces. The finite-element method was used to compare experimental results and theoretical predictions.

  4. Single-beam, dual-view digital holographic interferometry for biomechanical strain measurements of biological objects.

    PubMed

    Pantelić, Dejan V; Grujić, Dušan Ž; Vasiljević, Darko M

    2014-12-01

    We describe a method for dual-view biomechanical strain measurements of highly asymmetrical biological objects, like teeth or bones. By using a spherical mirror, we were able to simultaneously record a digital hologram of the object itself and the mirror image of its (otherwise invisible) rear side. A single laser beam was sufficient to illuminate both sides of the object, and to provide a reference beam. As a result, the system was mechanically very stable, enabling long exposure times (up to 2 min) without the need for vibration isolation. The setup is simple to construct and adjust, and can be used to interferometrically observe any object that is smaller than the mirror diameter. Parallel data processing on a CUDA-enabled (compute unified device architecture) graphics card was used to reconstruct digital holograms and to further correct image distortion. We used the setup to measure the deformation of a tooth due to mastication forces. The finite-element method was used to compare experimental results and theoretical predictions.

  5. Scattered light in a DMD based multi-object spectrometer

    NASA Astrophysics Data System (ADS)

    Fourspring, Kenneth D.; Ninkov, Zoran; Kerekes, John P.

    2010-07-01

    The DMD (Digital Micromirror Device) has an important future in both ground and space based multi-object spectrometers. A series of laboratory measurements have been performed to determine the scattered light properties of a DMD. The DMD under test had a 17 μm pitch and 1 μm gap between adjacent mirrors. Prior characterization of this device has focused on its use in DLP (TI Digital Light Processing) projector applications in which a whole pixel is illuminated by a uniform collimated source. The purpose of performing these measurements is to determine the limiting signal to noise ratio when utilizing the DMD as a slit mask in a spectrometer. The DMD pixel was determined to scatter more around the pixel edge and central via, indicating the importance of matching the telescope point spread function to the DMD. Also, the generation of DMD tested here was determined to have a significant mirror curvature. A maximum contrast ratio was determined at several wavelengths. Further measurements are underway on a newer generation DMD device, which has a smaller mirror pitch and likely different scatter characteristics. A previously constructed instrument, RITMOS (RIT Multi-Object Spectrometer) will be used to validate these scatter models and signal to noise ratio predications through imaging a star field.

  6. Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2011-03-01

    We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.

  7. Interactive display system having a digital micromirror imaging device

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin

    2006-04-11

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.

  8. Virtual reality 3D headset based on DMD light modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  9. A novel automotive headlight system based on digital micro-mirror devices and diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Su, Ping; Song, Yuming; Ma, Jianshe

    2018-01-01

    The DMD (Digital Micro-mirror Device) has the advantages of high refresh rate and high diffraction efficiency, and these make it become an ideal loader of multiple modes illumination. DOEs (Diffractive Optical Element) have the advantages of high degree of freedom, light weight, easy to copy, low cost etc., and can be used to reduce the weight, complexity, cost of optical system. A novel automotive headlamp system using DMD as the light distribution element and a DOE as the light field modulation device is proposed in this paper. The pure phase DOE is obtained by the GS algorithm using Rayleigh-Sommerfeld diffraction integral model. Based on the standard automotive headlamp light intensity distribution in the target plane, the amplitude distribution of DMD is obtained by numerical simulation, and the grayscale diagram loaded on the DMD can be obtained accordingly. Finally, according to simulation result, the light intensity distribution in the target plane is proportional to the national standard, hence verifies the validity of the novel system. The novel illumination system proposed in this paper provides a reliable hardware platform for the intelligent headlamps.

  10. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  11. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  12. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  13. A two-dimensional location method based on digital micromirror device used in interactive projection systems

    NASA Astrophysics Data System (ADS)

    Chen, Liangjun; Ni, Kai; Zhou, Qian; Cheng, Xuemin; Ma, Jianshe; Gao, Yuan; Sun, Peng; Li, Yi; Liu, Minxia

    2010-11-01

    Interactive projection systems based on CCD/CMOS have been greatly developed in recent years. They can locate and trace the movement of a pen equipped with an infrared LED, and displays the user's handwriting or react to the user's operation in real time. However, a major shortcoming is that the location device and the projector are independent with each other, including both the optical system and the control system. This requires construction of two optical systems, calibration of the differences between the projector view and the camera view, and also synchronization between two control systems, etc. In this paper, we introduced a two-dimensional location method based on digital micro-mirror device (DMD). The DMD is used as the display device and the position detector in turn. By serially flipping the micro-mirrors on the DMD according to a specially designed scheme and monitoring the reflected light energy, the image spot of the infrared LED can be quickly located. By using this method, the same optical system as well as the DMD can be multiplexed for projection and location, which will reduce the complexity and cost of the whole system. Furthermore, this method can also achieve high positioning accuracy and sampling rates. The results of location experiments are given.

  14. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.

    PubMed

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-08-28

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

  15. Spatial super-resolution of colored images by micro mirrors

    NASA Astrophysics Data System (ADS)

    Dahan, Daniel; Yaacobi, Ami; Pinsky, Ephraim; Zalevsky, Zeev

    2018-06-01

    In this paper, we present two methods of dealing with the geometric resolution limit of color imaging sensors. It is possible to overcome the pixel size limit by adding a digital micro-mirror device component on the intermediate image plane of an optical system, and adapting its pattern in a computerized manner before sampling each frame. The full RGB image can be reconstructed from the Bayer camera by building a dedicated optical design, or by adjusting the demosaicing process to the special format of the enhanced image.

  16. Portable plant chlorophyll fluorimeter based on blue LED rapid induced technology

    NASA Astrophysics Data System (ADS)

    Zheng, Yibo; Mi, Ting; Zhang, Lei; Zhao, Jun

    2018-01-01

    Fluorimeter is an effective device for detecting chlorophyll a content in plants. In order to realize real-time nondestructive detection of plant blades, a camera based fluorescence instrument based on two color mirrors has been developed. The blue light LED is used as the excitation light source, and the lens is used for shaping and focusing the excitation light to ensure the excitation intensity and uniform illumination of the light source. The device uses a 45 degree two color mirror to separate the chlorophyll a excited light path and the fluorescence receiving light path. Finally, the fluorescent signal is collected by the silicon photocell, and the signal is processed by the circuit to transmit the digital information to the display. Through the analysis of the experimental data, the device has the advantages of small size, easy to carry, fast induction, etc., and can be widely applied in outdoor teaching and field investigation.

  17. A design of optical modulation system with pixel-level modulation accuracy

    NASA Astrophysics Data System (ADS)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  18. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures

    PubMed Central

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-01-01

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system. PMID:26343682

  19. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  20. Driving without wings: The effect of different digital mirror locations on the visual behaviour, performance and opinions of drivers.

    PubMed

    Large, David R; Crundall, Elizabeth; Burnett, Gary; Harvey, Catherine; Konstantopoulos, Panos

    2016-07-01

    Drivers' awareness of the rearward road scene is critical when contemplating or executing lane-change manoeuvres, such as overtaking. Preliminary investigations have speculated on the use of rear-facing cameras to relay images to displays mounted inside the car to create 'digital mirrors'. These may overcome many of the limitations associated with traditional 'wing' and rear-view mirrors, yet will inevitably effect drivers' normal visual scanning behaviour, and may force them to consider the rearward road scene from an unfamiliar perspective that is incongruent with their mental model of the outside world. We describe a study conducted within a medium-fidelity simulator aiming to explore the visual behaviour, driving performance and opinions of drivers while using internally located digital mirrors during different overtaking manoeuvres. Using a generic UK motorway scenario, thirty-eight experienced drivers conducted overtaking manoeuvres using each of five different layouts of digital mirrors with varying degrees of 'real-world' mapping. The results showed reductions in decision time for lane changes and eyes-off road time while using the digital mirrors, when compared with baseline traditional reflective mirrors, suggesting that digital displays may enable drivers to more rapidly pick up the salient information from the rearward road scene. Subjectively, drivers preferred configurations that most closely matched existing mirror locations, where aspects of real-world mapping were largely preserved. The research highlights important human factors issues that require further investigation prior to further development/implementation of digital mirrors within vehicles. Future work should also aim to validate findings within real-world on-road environments whilst considering the effects of digital mirrors on other important visual behaviour characteristics, such as depth perception. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays

    NASA Astrophysics Data System (ADS)

    Hofmann, Ulrich; Oldsen, Marten; Quenzer, Hans-Joachim; Janes, Joachim; Heller, Martin; Weiss, Manfred; Fakas, Georgios; Ratzmann, Lars; Marchetti, Eleonora; D'Ascoli, Francesco; Melani, Massimiliano; Bacciarelli, Luca; Volpi, Emilio; Battini, Francesco; Mostardini, Luca; Sechi, Francesco; De Marinis, Marco; Wagner, Bernd

    2008-02-01

    Scanning laser projection using resonant actuated MEMS scanning mirrors is expected to overcome the current limitation of small display size of mobile devices like cell phones, digital cameras and PDAs. Recent progress in the development of compact modulated RGB laser sources enables to set up very small laser projection systems that become attractive not only for consumer products but also for automotive applications like head-up and dash-board displays. Within the last years continuous progress was made in increasing MEMS scanner performance. However, only little is reported on how mass-produceability of these devices and stable functionality even under harsh environmental conditions can be guaranteed. Automotive application requires stable MEMS scanner operation over a wide temperature range from -40° to +85°Celsius. Therefore, hermetic packaging of electrostatically actuated MEMS scanning mirrors becomes essential to protect the sensitive device against particle contamination and condensing moisture. This paper reports on design, fabrication and test of a resonant actuated two-dimensional micro scanning mirror that is hermetically sealed on wafer level. With resonant frequencies of 30kHz and 1kHz, an achievable Theta-D-product of 13mm.deg and low dynamic deformation <20nm RMS it targets Lissajous projection with SVGA-resolution. Inevitable reflexes at the vacuum package surface can be seperated from the projection field by permanent inclination of the micromirror.

  2. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination.

  3. Nonlinearity response correction in phase-shifting deflectometry

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh The; Kang, Pilseong; Ghim, Young-Sik; Rhee, Hyug-Gyo

    2018-04-01

    Owing to the nonlinearity response of digital devices such as screens and cameras in phase-shifting deflectometry, non-sinusoidal phase-shifted fringe patterns are generated and additional measurement errors are introduced. In this paper, a new deflectometry technique is described for overcoming these problems using a pre-distorted pattern combined with an advanced iterative algorithm. The experiment results show that this method can reconstruct the 3D surface map of a sample without fringe print-through caused by the nonlinearity response of digital devices. The proposed technique is verified by measuring the surface height variations in a deformable mirror and comparing them with the measurement result obtained using a coordinate measuring machine. The difference between the two measurement results is estimated to be less than 13 µm.

  4. Digital micromirror devices: principles and applications in imaging.

    PubMed

    Bansal, Vivek; Saggau, Peter

    2013-05-01

    A digital micromirror device (DMD) is an array of individually switchable mirrors that can be used in many advanced optical systems as a rapid spatial light modulator. With a DMD, several implementations of confocal microscopy, hyperspectral imaging, and fluorescence lifetime imaging can be realized. The DMD can also be used as a real-time optical processor for applications such as the programmable array microscope and compressive sensing. Advantages and disadvantages of the DMD for these applications as well as methods to overcome some of the limitations will be discussed in this article. Practical considerations when designing with the DMD and sample optical layouts of a completely DMD-based imaging system and one in which acousto-optic deflectors (AODs) are used in the illumination pathway are also provided.

  5. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Lei; Liu, Weiwei; Wang, Meng

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves themore » way for optical microscopy, trapping, and communication.« less

  6. A switchable digital microfluidic droplet dye-laser.

    PubMed

    Kuehne, Alexander J C; Gather, Malte C; Eydelnant, Irwin A; Yun, Seok-Hyun; Weitz, David A; Wheeler, Aaron R

    2011-11-07

    Digital microfluidic devices allow the manipulation of droplets between two parallel electrodes. These electrodes can act as mirrors generating a micro-cavity, which can be exploited for a droplet dye-laser. Three representative laser-dyes with emission wavelengths spanning the whole visible spectrum are chosen to show the applicability of this concept. Sub-microlitre droplets of laser-dye solution are moved in and out of a lasing site on-chip to down-convert the UV-excitation light into blue, green and red laser-pulses. This journal is © The Royal Society of Chemistry 2011

  7. DLP technolgy: applications in optical networking

    NASA Astrophysics Data System (ADS)

    Yoder, Lars A.; Duncan, Walter M.; Koontz, Elisabeth M.; So, John; Bartlett, Terry A.; Lee, Benjamin L.; Sawyers, Bryce D.; Powell, Donald; Rancuret, Paul

    2001-11-01

    For the past five years, Digital Light Processing (DLP) technology from Texas Instruments has made significant inroads in the projection display market. With products encompassing the world's smallest data & video projectors, HDTVs, and digital cinema, DLP is an extremely flexible technology. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based light switch array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator in the visible regime, the use of DLP technology under the constraints of coherent, infrared light for optical networking applications is being explored. As a coherent light modulator, the DMD device can be used in Dense Wavelength Division Multiplexed (DWDM) optical networks to dynamically manipulate and shape optical signals. This paper will present the fundamentals of using DLP with coherent wavefronts, discuss inherent advantages of the technology, and present several applications for DLP in dynamic optical networks.

  8. Digital 3D holographic display using scattering layers for enhanced viewing angle and image size

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, KyeoReh; Park, Jongchan; Park, YongKeun

    2017-05-01

    In digital 3D holographic displays, the generation of realistic 3D images has been hindered by limited viewing angle and image size. Here we demonstrate a digital 3D holographic display using volume speckle fields produced by scattering layers in which both the viewing angle and the image size are greatly enhanced. Although volume speckle fields exhibit random distributions, the transmitted speckle fields have a linear and deterministic relationship with the input field. By modulating the incident wavefront with a digital micro-mirror device, volume speckle patterns are controlled to generate 3D images of micrometer-size optical foci with 35° viewing angle in a volume of 2 cm × 2 cm × 2 cm.

  9. Ultra-high speed digital micro-mirror device based ptychographic iterative engine method

    PubMed Central

    Sun, Aihui; He, Xiaoliang; Kong, Yan; Cui, Haoyang; Song, Xiaojun; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2017-01-01

    To reduce the long data acquisition time of the common mechanical scanning based Ptychographic Iterative Engine (PIE) technique, the digital micro-mirror device (DMD) is used to form the fast scanning illumination on the sample. Since the transverse mechanical scanning in the common PIE is replaced by the on/off switching of the micro-mirrors, the data acquisition time can be reduced from more than 15 minutes to less than 20 seconds for recording 12 × 10 diffraction patterns to cover the same field of 147.08 mm2. Furthermore, since the precision of DMD fabricated with the optical lithography is always higher than 10 nm (1 μm for the mechanical translation stage), the time consuming position-error-correction procedure is not required in the iterative reconstruction. These two improvements fundamentally speed up both the data acquisition and the reconstruction procedures in PIE, and relax its requirements on the stability of the imaging system, therefore remarkably improve its applicability for many practices. It is demonstrated experimentally with both USAF resolution target and biological sample that, the spatial resolution of 5.52 μm and the field of view of 147.08 mm2 can be reached with the DMD based PIE method. In a word, by using the DMD to replace the translation stage, we can effectively overcome the main shortcomings of common PIE related to the mechanical scanning, while keeping its advantages on both the high resolution and large field of view. PMID:28717560

  10. Adaptive spatiotemporal optical pulse front tilt using a digital micromirror device and its terahertz application.

    PubMed

    Murate, Kosuke; Roshtkhari, Mehraveh Javan; Ropagnol, Xavier; Blanchard, François

    2018-05-01

    We report a new method to temporally and spatially manipulate the pulse front tilt (PFT) intensity profile of an ultrashort optical pulse using a commercial microelectromechanical system, also known as a digital micromirror device (DMD). For our demonstration, we show terahertz generation in a lithium niobate crystal using the PFT pumping scheme derived from a DMD chip. The adaptive functionality of the DMD could be a convenient alternative to the more conventional grating required to generate a laser beam with a PFT intensity profile that is typically used for efficient optical rectification in noncollinear phase-matching conditions. In contrast to a grating, PFT using DMD does not suffer from wavelength dispersion, and exhibits overlap properties between grating and a stair-step echelon mirror.

  11. Mirror Neurons, the Development of Empathy, and Digital Story Telling

    ERIC Educational Resources Information Center

    Hess, Mary

    2012-01-01

    This article explores the intersection of work in media education, religious education, concerns about digital cultures' impact on human relationality, and the possible role that mirror neurons might play in the development of empathy. Digital story telling--particularly as embodied in the work of the Center for Digital Storytelling…

  12. Emerging digital micromirror device (DMD) applications

    NASA Astrophysics Data System (ADS)

    Dudley, Dana; Duncan, Walter M.; Slaughter, John

    2003-01-01

    For the past six years, Digital Light Processing technology from Texas Instruments has made significant inroads in the projection display market. With products enabling the world"s smallest data and video projectors, HDTVs, and digital cinema, DLP technology is extremely powerful and flexible. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based "light switch" array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator for projector applications, dozens of new applications are now being enabled by general-use DMD products that are recently available to developers. The same light switching speed and "on-off" (contrast) ratio that have resulted in superior projector performance, along with the capability of operation outside the visible spectrum, make the DMD very attractive for many applications, including volumetric display, holographic data storage, lithography, scientific instrumentation, and medical imaging. This paper presents an overview of past and future DMD performance in the context of new DMD applications, cites several examples of emerging products, and describes the DMD components and tools now available to developers.

  13. Programmable Illumination and High-Speed, Multi-Wavelength, Confocal Microscopy Using a Digital Micromirror

    PubMed Central

    Martial, Franck P.; Hartell, Nicholas A.

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor. PMID:22937130

  14. Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.

    PubMed

    Martial, Franck P; Hartell, Nicholas A

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor.

  15. High Information Capacity Quantum Imaging

    DTIC Science & Technology

    2014-09-19

    single-pixel camera [41, 75]. An object is imaged onto a Digital Micromirror device ( DMD ), a 2D binary array of individually-addressable mirrors that...reflect light either to a single detector or a dump. Rows of the sensing matrix A consist of random, binary patterns placed sequentially on the DMD ...The single-pixel camera concept naturally adapts to imaging correlations by adding a second detector. Consider placing separate DMDs in the near-field

  16. Dynamic generation of Ince-Gaussian modes with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Gong, Lei; Huang, Kun; Chen, Yue; Lu, Rong-De

    2015-04-01

    Ince-Gaussian (IG) beam with elliptical profile, as a connection between Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams, has showed unique advantages in some applications such as quantum entanglement and optical micromanipulation. However, its dynamic generation with high switching frequency is still challenging. Here, we experimentally reported the quick generation of Ince-Gaussian beam by using a digital micro-mirror device (DMD), which has the highest switching frequency of 5.2 kHz in principle. The configurable properties of DMD allow us to observe the quasi-smooth variation from LG (with ellipticity ɛ = 0 ) to IG and HG ( ɛ = ∞ ) beam. This approach might pave a path to high-speed quantum communication in terms of IG beam. Additionally, the characterized axial plane intensity distribution exhibits a 3D mould potentially being employed for optical micromanipulation.

  17. Ultra-fast quantitative imaging using ptychographic iterative engine based digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Aihui; Tian, Xiaolin; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-01-01

    As a lensfree imaging technique, ptychographic iterative engine (PIE) method can provide both quantitative sample amplitude and phase distributions avoiding aberration. However, it requires field of view (FoV) scanning often relying on mechanical translation, which not only slows down measuring speed, but also introduces mechanical errors decreasing both resolution and accuracy in retrieved information. In order to achieve high-accurate quantitative imaging with fast speed, digital micromirror device (DMD) is adopted in PIE for large FoV scanning controlled by on/off state coding by DMD. Measurements were implemented using biological samples as well as USAF resolution target, proving high resolution in quantitative imaging using the proposed system. Considering its fast and accurate imaging capability, it is believed the DMD based PIE technique provides a potential solution for medical observation and measurements.

  18. Design of crossed-mirror array to form floating 3D LED signs

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hirotsugu; Bando, Hiroki; Kujime, Ryousuke; Suyama, Shiro

    2012-03-01

    3D representation of digital signage improves its significance and rapid notification of important points. Our goal is to realize floating 3D LED signs. The problem is there is no sufficient device to form floating 3D images from LEDs. LED lamp size is around 1 cm including wiring and substrates. Such large pitch increases display size and sometimes spoils image quality. The purpose of this paper is to develop optical device to meet the three requirements and to demonstrate floating 3D arrays of LEDs. We analytically investigate image formation by a crossed mirror structure with aerial aperture, called CMA (crossed-mirror array). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. We have fabricated CMA for 3D array of LEDs. One CMA unit contains 20 x 20 apertures that are located diagonally. Floating image of LEDs was formed in wide range of incident angle. The image size of focused beam agreed to the apparent aperture size. When LEDs were located three-dimensionally (LEDs in three depths), the focused distances were the same as the distance between the real LED and the CMA.

  19. Dynamic generation of Ince-Gaussian modes with a digital micromirror device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Yu-Xuan, E-mail: yxren@ustc.edu.cn; Fang, Zhao-Xiang; Chen, Yue

    Ince-Gaussian (IG) beam with elliptical profile, as a connection between Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams, has showed unique advantages in some applications such as quantum entanglement and optical micromanipulation. However, its dynamic generation with high switching frequency is still challenging. Here, we experimentally reported the quick generation of Ince-Gaussian beam by using a digital micro-mirror device (DMD), which has the highest switching frequency of 5.2 kHz in principle. The configurable properties of DMD allow us to observe the quasi-smooth variation from LG (with ellipticity ε=0) to IG and HG (ε=∞) beam. This approach might pave a path to high-speedmore » quantum communication in terms of IG beam. Additionally, the characterized axial plane intensity distribution exhibits a 3D mould potentially being employed for optical micromanipulation.« less

  20. Structured light stereo catadioptric scanner based on a spherical mirror

    NASA Astrophysics Data System (ADS)

    Barone, S.; Neri, P.; Paoli, A.; Razionale, A. V.

    2018-08-01

    The present paper describes the development and characterization of a structured light stereo catadioptric scanner for the omnidirectional reconstruction of internal surfaces. The proposed approach integrates two digital cameras, a multimedia projector and a spherical mirror, which is used to project the structured light patterns generated by the light emitter and, at the same time, to reflect into the cameras the modulated fringe patterns diffused from the target surface. The adopted optical setup defines a non-central catadioptric system, thus relaxing any geometrical constraint in the relative placement between optical devices. An analytical solution for the reflection on a spherical surface is proposed with the aim at modelling forward and backward projection tasks for a non-central catadioptric setup. The feasibility of the proposed active catadioptric scanner has been verified by reconstructing various target surfaces. Results demonstrated a great influence of the target surface distance from the mirror's centre on the measurement accuracy. The adopted optical configuration allows the definition of a metrological 3D scanner for surfaces disposed within 120 mm from the mirror centre.

  1. Characteristics of digital micromirror projection for 3D shape measurement at extreme speed

    NASA Astrophysics Data System (ADS)

    Höfling, Roland; Aswendt, Petra; Leischnig, Frank; Förster, Matthias

    2015-03-01

    3D shape measurement is one of the growing industrial applications of the Texas Instruments DLP® micro-mirror device. This paper presents investigations on precision and repeatability of that spatial light modulators output when it is driven up to its high-speed limit. The study concerns the basic switching behavior of the individual micro-mirror at different frame rates ranging over three orders of magnitude. The 3D shape measuring methodologies are focused on phase encoded triangulation, i.e. the projection of sinusoidal patterns. The DLP chip is a bi-stable device providing an on/off pattern at each certain moment in time, i.e. it has a native binary output. Sinusoidal patterns are the result of either a temporal integration of multiple on/off patterns or a spatial integration within one on/off pattern. Both approaches are studied experimentally with respect to precision and stability of the pattern output. The STAR-07 industrial projection unit, based upon the 0.7" DLP Discovery™4100 chipset, has been used for this work and the pattern frame rates cover the range from 225 frames per second (fps) to 50,000 fps. The STAR-07 output is detected by a photodiode, amplified, and analyzed in a Yokogawa digital storage oscilloscope. All results prove the very high precision and repeatability of the STAR-07 pattern projection, up to the extreme speed of 50,000 fps.

  2. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use in examination of the eye. (b) Classification. Class I (general controls). The device is exempt from the...

  3. Use of digital micromirror devices as dynamic pinhole arrays for adaptive confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Wilding, Dean; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

    2018-02-01

    In this work, we present a new confocal laser scanning microscope capable to perform sensorless wavefront optimization in real time. The device is a parallelized laser scanning microscope in which the excitation light is structured in a lattice of spots by a spatial light modulator, while a deformable mirror provides aberration correction and scanning. A binary DMD is positioned in an image plane of the detection optical path, acting as a dynamic array of reflective confocal pinholes, images by a high performance cmos camera. A second camera detects images of the light rejected by the pinholes for sensorless aberration correction.

  4. A novel bilateral lower extremity mirror therapy intervention for individuals with stroke.

    PubMed

    Crosby, Lucas D; Marrocco, Stephanie; Brown, Janet; Patterson, Kara K

    2016-12-01

    Despite improvements made in stroke rehabilitation, motor impairment and gait deficits persist at discharge. New interventions are needed. Mirror therapy has promise as one element of a rehabilitation program. The primary objectives were to 1) describe a bilateral, lower extremity mirror therapy (LE-MT) device and training protocol and 2) investigate the feasibility of LE-MT. A LE-MT device was constructed to train bilateral LE movements for 30 min, 3 times/week for 4 weeks, as an adjunct to physiotherapy in three individuals post-stroke. Sessions were digitally recorded and reviewed to extract feasibility measures; repetitions, rests and session duration. Pre and post measures of gait and motor impairment were taken. Two participants completed 100% of the sessions and a third completed 83% due to a recurrence of pre-existing back pain. Repetitions increased and session duration was maintained. Number of rests decreased for two participants and increased for one participant. Participants reported fatigue and mild muscle soreness but also that the intervention was tolerable. Positive gait changes included increased velocity and decreased variability. LE motor impairment also improved. A bilateral LE-MT adjunct intervention for stroke is feasible and may have positive effects. A history of low back pain should be a precaution.

  5. Direct-to-digital holography and holovision

    DOEpatents

    Thomas, Clarence E.; Baylor, Larry R.; Hanson, Gregory R.; Rasmussen, David A.; Voelkl, Edgar; Castracane, James; Simkulet, Michelle; Clow, Lawrence

    2000-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  6. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, L.R.; Thomas, C.E.; Voelkl, E.; Moore, J.A.; Simpson, M.L.; Paulus, M.J.

    1999-04-06

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made. 5 figs.

  7. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, Larry R.; Thomas, Clarence E.; Voelkl, Edgar; Moore, James A.; Simpson, Michael L.; Paulus, Michael J.

    1999-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  8. Shaping non-diffracting beams with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De

    2016-02-01

    The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.

  9. Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant Kumar; Chattopadhyay, Manju K.

    2018-03-01

    Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.

  10. High aperture off-axis parabolic mirror applied in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kalenkov, Georgy S.; Kalenkov, Sergey G.; Shtanko, Alexander E.

    2018-04-01

    An optical scheme of recording digital holograms of micro-objects based on high numerical aperture off-axis parabolic mirror forming a high aperture reference wave is suggested. Registration of digital holograms based on the proposed optical scheme is confirmed experimentally. Application of the proposed approach for hyperspectral holograms registration of micro-objects in incoherent light is discussed.

  11. High Throughput Optical Lithography by Scanning a Massive Array of Bowtie Aperture Antennas at Near-Field

    DTIC Science & Technology

    2015-11-03

    scale optical projection system powered by spatial light modulators, such as digital micro-mirror device ( DMD ). Figure 4 shows the parallel lithography ...1Scientific RepoRts | 5:16192 | DOi: 10.1038/srep16192 www.nature.com/scientificreports High throughput optical lithography by scanning a massive...array of bowtie aperture antennas at near-field X. Wen1,2,3,*, A. Datta1,*, L. M. Traverso1, L. Pan1, X. Xu1 & E. E. Moon4 Optical lithography , the

  12. Research study on stellar X-ray imaging experiment, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, H. H.; Vanspeybroeck, L. P.

    1972-01-01

    The use of microchannel plates as focal plane readout devices and the evaluation of mirrors for X-ray telescopes applied to stellar X-ray imaging is discussed. The microchannel plate outputs were either imaged on a phosphor screen which was viewed by a low light level vidicon or on a wire array which was read out by digitally processing the output of a charge division network attached to the wires. A service life test which was conducted on two image intensifiers is described.

  13. Subjective impressions do not mirror online reading effort: concurrent EEG-eyetracking evidence from the reading of books and digital media.

    PubMed

    Kretzschmar, Franziska; Pleimling, Dominique; Hosemann, Jana; Füssel, Stephan; Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias

    2013-01-01

    In the rapidly changing circumstances of our increasingly digital world, reading is also becoming an increasingly digital experience: electronic books (e-books) are now outselling print books in the United States and the United Kingdom. Nevertheless, many readers still view e-books as less readable than print books. The present study thus used combined EEG and eyetracking measures in order to test whether reading from digital media requires higher cognitive effort than reading conventional books. Young and elderly adults read short texts on three different reading devices: a paper page, an e-reader and a tablet computer and answered comprehension questions about them while their eye movements and EEG were recorded. The results of a debriefing questionnaire replicated previous findings in that participants overwhelmingly chose the paper page over the two electronic devices as their preferred reading medium. Online measures, by contrast, showed shorter mean fixation durations and lower EEG theta band voltage density--known to covary with memory encoding and retrieval--for the older adults when reading from a tablet computer in comparison to the other two devices. Young adults showed comparable fixation durations and theta activity for all three devices. Comprehension accuracy did not differ across the three media for either group. We argue that these results can be explained in terms of the better text discriminability (higher contrast) produced by the backlit display of the tablet computer. Contrast sensitivity decreases with age and degraded contrast conditions lead to longer reading times, thus supporting the conclusion that older readers may benefit particularly from the enhanced contrast of the tablet. Our findings thus indicate that people's subjective evaluation of digital reading media must be dissociated from the cognitive and neural effort expended in online information processing while reading from such devices.

  14. Subjective Impressions Do Not Mirror Online Reading Effort: Concurrent EEG-Eyetracking Evidence from the Reading of Books and Digital Media

    PubMed Central

    Kretzschmar, Franziska; Pleimling, Dominique; Hosemann, Jana; Füssel, Stephan; Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias

    2013-01-01

    In the rapidly changing circumstances of our increasingly digital world, reading is also becoming an increasingly digital experience: electronic books (e-books) are now outselling print books in the United States and the United Kingdom. Nevertheless, many readers still view e-books as less readable than print books. The present study thus used combined EEG and eyetracking measures in order to test whether reading from digital media requires higher cognitive effort than reading conventional books. Young and elderly adults read short texts on three different reading devices: a paper page, an e-reader and a tablet computer and answered comprehension questions about them while their eye movements and EEG were recorded. The results of a debriefing questionnaire replicated previous findings in that participants overwhelmingly chose the paper page over the two electronic devices as their preferred reading medium. Online measures, by contrast, showed shorter mean fixation durations and lower EEG theta band voltage density – known to covary with memory encoding and retrieval – for the older adults when reading from a tablet computer in comparison to the other two devices. Young adults showed comparable fixation durations and theta activity for all three devices. Comprehension accuracy did not differ across the three media for either group. We argue that these results can be explained in terms of the better text discriminability (higher contrast) produced by the backlit display of the tablet computer. Contrast sensitivity decreases with age and degraded contrast conditions lead to longer reading times, thus supporting the conclusion that older readers may benefit particularly from the enhanced contrast of the tablet. Our findings thus indicate that people's subjective evaluation of digital reading media must be dissociated from the cognitive and neural effort expended in online information processing while reading from such devices. PMID:23405265

  15. Aerial LED signage by use of crossed-mirror array

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hirotsugu; Kujime, Ryousuke; Bando, Hiroki; Suyama, Shiro

    2013-03-01

    3D representation of digital signage improves its significance and rapid notification of important points. Real 3D display techniques such as volumetric 3D displays are effective for use of 3D for public signs because it provides not only binocular disparity but also motion parallax and other cues, which will give 3D impression even people with abnormal binocular vision. Our goal is to realize aerial 3D LED signs. We have specially designed and fabricated a reflective optical device to form an aerial image of LEDs with a wide field angle. The developed reflective optical device composed of crossed-mirror array (CMA). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. The depth between LED lamps is represented in the same depth in the floating 3D image. Floating image of LEDs was formed in wide range of incident angle with a peak reflectance at 35 deg. The image size of focused beam (point spread function) agreed to the apparent aperture size.

  16. Programmable spectral engine design of hyperspectral image projectors based on digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    Wang, Xicheng; Gao, Jiaobo; Wu, Jianghui; Li, Jianjun; Cheng, Hongliang

    2017-02-01

    Recently, hyperspectral image projectors (HIP) have been developed in the field of remote sensing. For the advanced performance of system-level validation, target detection and hyperspectral image calibration, HIP has great possibility of development in military, medicine, commercial and so on. HIP is based on the digital micro-mirror device (DMD) and projection technology, which is capable to project arbitrary programmable spectra (controlled by PC) into the each pixel of the IUT1 (instrument under test), such that the projected image could simulate realistic scenes that hyperspectral image could be measured during its use and enable system-level performance testing and validation. In this paper, we built a visible hyperspectral image projector also called the visible target simulator with double DMDs, which the first DMD is used to product the selected monochromatic light from the wavelength of 410 to 720 um, and the light come to the other one. Then we use computer to load image of realistic scenes to the second DMD, so that the target condition and background could be project by the second DMD with the selected monochromatic light. The target condition can be simulated and the experiment could be controlled and repeated in the lab, making the detector instrument could be tested in the lab. For the moment, we make the focus on the spectral engine design include the optical system, research of DMD programmable spectrum and the spectral resolution of the selected spectrum. The detail is shown.

  17. Solutions to Challenges Facing a University Digital Library and Press

    PubMed Central

    D'Alessandro, Michael P.; Galvin, Jeffrey R.; Colbert, Stephana I.; D'Alessandro, Donna M.; Choi, Teresa A.; Aker, Brian D.; Carlson, William S.; Pelzer, Gay D.

    2000-01-01

    During the creation of a university digital library and press intended to serve as a medical reference and education tool for health care providers and their patients, six distinct and complex digital publishing challenges were encountered. Over nine years, through a multidisciplinary approach, solutions were devised to the challenges of digital content ownership, management, mirroring, translation, interactions with users, and archiving. The result is a unique, author-owned, internationally mirrored, university digital library and press that serves as an authoritative medical reference and education tool for users around the world. The purpose of this paper is to share the valuable digital publishing lessons learned and outline the challenges facing university digital libraries and presses. PMID:10833161

  18. Demonstration of the CDMA-mode CAOS smart camera.

    PubMed

    Riza, Nabeel A; Mazhar, Mohsin A

    2017-12-11

    Demonstrated is the code division multiple access (CDMA)-mode coded access optical sensor (CAOS) smart camera suited for bright target scenarios. Deploying a silicon CMOS sensor and a silicon point detector within a digital micro-mirror device (DMD)-based spatially isolating hybrid camera design, this smart imager first engages the DMD starring mode with a controlled factor of 200 high optical attenuation of the scene irradiance to provide a classic unsaturated CMOS sensor-based image for target intelligence gathering. Next, this CMOS sensor provided image data is used to acquire a focused zone more robust un-attenuated true target image using the time-modulated CDMA-mode of the CAOS camera. Using four different bright light test target scenes, successfully demonstrated is a proof-of-concept visible band CAOS smart camera operating in the CDMA-mode using up-to 4096 bits length Walsh design CAOS pixel codes with a maximum 10 KHz code bit rate giving a 0.4096 seconds CAOS frame acquisition time. A 16-bit analog-to-digital converter (ADC) with time domain correlation digital signal processing (DSP) generates the CDMA-mode images with a 3600 CAOS pixel count and a best spatial resolution of one micro-mirror square pixel size of 13.68 μm side. The CDMA-mode of the CAOS smart camera is suited for applications where robust high dynamic range (DR) imaging is needed for un-attenuated un-spoiled bright light spectrally diverse targets.

  19. Optical Evaluation of DMDs with UV-Grade FS, Sapphire, MgF2 Windows and Reflectance of Bare Devices

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Heap, Sara; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Roberto, Massimo

    2016-01-01

    Digital Micro-mirror Devices (DMDs) have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of a proposed Galactic Evolution Spectroscopic Explorer (GESE) that uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, Low Absorption Optical Sapphire (LAOS) and magnesium fluoride. We present reflectance measurements of the antireflection coated windows and a reflectance study of the DMDs active area (window removed). Furthermore, we investigated the long-term stability of the DMD reflectance and recoating device with fresh Al coatings.

  20. Single-atom trapping and transport in DMD-controlled optical tweezers

    NASA Astrophysics Data System (ADS)

    Stuart, Dustin; Kuhn, Axel

    2018-02-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 μm with laser cooling and 4 μm without. We discuss the limitations of the technique and the scope for technical improvements.

  1. Optical Evaluation of Digital Micromirror Devices (DMDs) with UV-Grade Fused Silica, Sapphire, and Magnesium Fluoride Windows and Longterm Reflectance of Bare Devices

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Robberto, Massimo; Heap, Sara

    2016-01-01

    Digital micromirror devices (DMDs) are commercial micro-electromechanical systems, consisting of millions of mirrors which can be individually addressed and tilted into one of two states (+/-12deg). These devices were developed to create binary patterns in video projectors, in the visible range. Commercially available DMDs are hermetically sealed and extremely reliable. Recently, DMDs have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of the proposed Galactic Evolution Spectroscopic Explorer (GESE) uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, low-absorption optical sapphire (LAOS) and magnesium fluoride (MgF2). We present transmission measurements of the antireflection coated windows and the reflectance of bare (window removed) DMDs. Furthermore, we investigated the long-term stability of the DMD reflectance and experiments for coating DMD active area with a layer of pure aluminum (Al) to boost reflectance performance in the UV spectral range (200-400 nm).

  2. Optical evaluation of digital micromirror devices (DMDs) with UV-grade fused silica, sapphire, and magnesium fluoride windows and long-term reflectance of bare devices

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Robberto, Massimo; Heap, Sara

    2016-07-01

    Digital micromirror devices (DMDs) are commercial micro-electromechanical systems, consisting of millions of mirrors which can be individually addressed and tilted into one of two states (+/-12°). These devices were developed to create binary patterns in video projectors, in the visible range. Commercially available DMDs are hermetically sealed and extremely reliable. Recently, DMDs have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of the proposed Galactic Evolution Spectroscopic Explorer (GESE) uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, low-absorption optical sapphire (LAOS) and magnesium fluoride (MgF2). We present transmission measurements of the antireflection coated windows and the reflectance of bare (window removed) DMDs. Furthermore, we investigated the long-term stability of the DMD reflectance and experiments for coating DMD active area with a layer of pure aluminum (Al) to boost reflectance performance in the UV spectral range (200-400 nm).

  3. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  4. Using Neurolinguistic Programming: Some Suggestions for the Remedial Teacher.

    ERIC Educational Resources Information Center

    Burton, Grace M.

    1986-01-01

    The use of neurolinguistic programming techniques is suggested as a means of enhancing rapport with students. Mirroring, digital mirroring, analog mirroring, metaphors, knowing persons, and how these aid in presenting content are each discussed. (MNS)

  5. Mirror Numbers and Wigner's ``Unreasonable Effectiveness''

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander

    2006-04-01

    Wigner's ``unreasonable effectiveness of mathematics in physics'' can be augmented by concept of mirror number (MN). It is defined as digital string infinite in both directions. Example is ()5141327182() where first 5 digits is Pi ``spelled'' backward (``mirrored'') and last 5 digits is the beginning of decimal exp1 string. Let MN be constructed from two different transcendental (or algebraically irrational) numbers, set of such MNs is Cantor-uncountable. Most MNs have contain any finite digital sequence repeated infinitely many times. In spirit of ``Contact'' (C.Sagan) each normal MN contains ``Library of Babel'' of all possible texts and patterns (J.L.Borges). Infinite at both ends, MN do not have any numerical values and, contrary to numbers written in positional systems, all digits in MNs have equal weight -- sort of ``numerological democracy''. In Pythagorean-Platonic models (space-time and physical world originating from pure numbers) idea of MN resolves paradox of ``beginning'' (or ``end'') of time. Because in MNs all digits have equal status, (quantum) randomness leads to more uniform and fully ergodic phase trajectories (cf. F.Dyson, Infinite in All Directions) .

  6. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  7. High-speed single-pixel digital holography

    NASA Astrophysics Data System (ADS)

    González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús

    2017-06-01

    The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.

  8. Fusion of current technologies with real-time 3D MEMS ladar for novel security and defense applications

    NASA Astrophysics Data System (ADS)

    Siepmann, James P.

    2006-05-01

    Through the utilization of scanning MEMS mirrors in ladar devices, a whole new range of potential military, Homeland Security, law enforcement, and civilian applications is now possible. Currently, ladar devices are typically large (>15,000 cc), heavy (>15 kg), and expensive (>$100,000) while current MEMS ladar designs are more than a magnitude less, opening up a myriad of potential new applications. One such application with current technology is a GPS integrated MEMS ladar unit, which could be used for real-time border monitoring or the creation of virtual 3D battlefields after being dropped or propelled into hostile territory. Another current technology that can be integrated into a MEMS ladar unit is digital video that can give high resolution and true color to a picture that is then enhanced with range information in a real-time display format that is easier for the user to understand and assimilate than typical gray-scale or false color images. The problem with using 2-axis MEMS mirrors in ladar devices is that in order to have a resonance frequency capable of practical real-time scanning, they must either be quite small and/or have a low maximum tilt angle. Typically, this value has been less than (< or = to 10 mg-mm2-kHz2)-degrees. We have been able to solve this problem by using angle amplification techniques that utilize a series of MEMS mirrors and/or a specialized set of optics to achieve a broad field of view. These techniques and some of their novel applications mentioned will be explained and discussed herein.

  9. The use of lower resolution viewing devices for mammographic interpretation: implications for education and training.

    PubMed

    Chen, Yan; James, Jonathan J; Turnbull, Anne E; Gale, Alastair G

    2015-10-01

    To establish whether lower resolution, lower cost viewing devices have the potential to deliver mammographic interpretation training. On three occasions over eight months, fourteen consultant radiologists and reporting radiographers read forty challenging digital mammography screening cases on three different displays: a digital mammography workstation, a standard LCD monitor, and a smartphone. Standard image manipulation software was available for use on all three devices. Receiver operating characteristic (ROC) analysis and ANOVA (Analysis of Variance) were used to determine the significance of differences in performance between the viewing devices with/without the application of image manipulation software. The effect of reader's experience was also assessed. Performance was significantly higher (p < .05) on the mammography workstation compared to the other two viewing devices. When image manipulation software was applied to images viewed on the standard LCD monitor, performance improved to mirror levels seen on the mammography workstation with no significant difference between the two. Image interpretation on the smartphone was uniformly poor. Film reader experience had no significant effect on performance across all three viewing devices. Lower resolution standard LCD monitors combined with appropriate image manipulation software are capable of displaying mammographic pathology, and are potentially suitable for delivering mammographic interpretation training. • This study investigates potential devices for training in mammography interpretation. • Lower resolution standard LCD monitors are potentially suitable for mammographic interpretation training. • The effect of image manipulation tools on mammography workstation viewing is insignificant. • Reader experience had no significant effect on performance in all viewing devices. • Smart phones are not suitable for displaying mammograms.

  10. Watch Your Step Children! Learning Two-Digit Numbers through Mirror-Based Observation of Self-Initiated Body Movements

    ERIC Educational Resources Information Center

    Ruiter, Margina; Loyens, Sofie; Paas, Fred

    2015-01-01

    It was investigated whether task-related body movements yield beneficial effects on children's learning of two-digit numbers and whether these learning effects are affected by mirror-based self-observation of those movements. Participants were 118 first-graders, who were randomly assigned to two movement conditions and two non-movement control…

  11. A two-in-one Faraday rotator mirror exempt of active optical alignment.

    PubMed

    Wan, Qiong; Wan, Zhujun; Liu, Hai; Liu, Deming

    2014-02-10

    A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46 dB/0.50 dB for the two independent ports, respectively.

  12. Evaluation of microfabricated deformable mirror systems

    NASA Astrophysics Data System (ADS)

    Cowan, William D.; Lee, Max K.; Bright, Victor M.; Welsh, Byron M.

    1998-09-01

    This paper presents recent result for aberration correction and beam steering experiments using polysilicon surface micromachined piston micromirror arrays. Microfabricated deformable mirrors offer a substantial cost reduction for adaptive optic systems. In addition to the reduced mirror cost, microfabricated mirrors typically require low control voltages, thus eliminating high voltage amplifiers. The greatly reduced cost per channel of adaptive optic systems employing microfabricated deformable mirrors promise high order aberration correction at low cost. Arrays of piston micromirrors with 128 active elements were tested. Mirror elements are on a 203 micrometers 12 by 12 square grid. The overall array size is 2.4 mm square. The arrays were fabricated in the commercially available DARPA supported MUMPs surface micromachining foundry process. The cost per mirror array in this prototyping process is less than 200 dollars. Experimental results are presented for a hybrid correcting element comprised of a lenslet array and piston micromirror array, and for a piston micromirror array only. Also presented is a novel digital deflection micromirror which requires no digital to analog converters, further reducing the cost of adaptive optics system.

  13. In vivo retinal imaging for fixational eye motion detection using a high-speed digital micromirror device (DMD)-based ophthalmoscope.

    PubMed

    Vienola, Kari V; Damodaran, Mathi; Braaf, Boy; Vermeer, Koenraad A; de Boer, Johannes F

    2018-02-01

    Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts.

  14. In vivo retinal imaging for fixational eye motion detection using a high-speed digital micromirror device (DMD)-based ophthalmoscope

    PubMed Central

    Vienola, Kari V.; Damodaran, Mathi; Braaf, Boy; Vermeer, Koenraad A.; de Boer, Johannes F.

    2018-01-01

    Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts. PMID:29552396

  15. The optical-mechanical design of DMD modulation imaging device

    NASA Astrophysics Data System (ADS)

    Li, Tianting; Xu, Xiping; Qiao, Yang; Li, Lei; Pan, Yue

    2014-09-01

    In order to avoid the phenomenon of some image information were lost, which is due to the jamming signals, such as incident laser, make the pixels dot on CCD saturated. In this article a device of optical-mechanical structure was designed, which utilized the DMD (Digital Micro mirror Device) to modulate the image. The DMD reflection imaging optical system adopts the telecentric light path. However, because the design is not only required to guarantee a 66° angle between the optical axis of the relay optics and the DMD, but also to ensure that the optical axis of the projection system keeps parallel with the perpendicular bisector of the micro-mirror which is in the "flat" state, so the TIR prism is introduced,and making the relay optics and the DMD satisfy the optical institution's requirements. In this paper, a mechanical structure of the imaging optical system was designed and at the meanwhile the lens assembly has been well connected and fixed and fine-tuned by detailed structural design, which included the tilt decentered lens, wedge flanges, prisms. By optimizing the design, the issues of mutual restraint between the inverting optical system and the projecting system were well resolved, and prevented the blocking of the two systems. In addition, the structure size of the whole DMD reflection imaging optical system was minimized; it reduced the energy loss and ensured the image quality.

  16. Micro-mirror arrays for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, W. M.

    2015-03-01

    In this research we study Raman and fluorescence spectroscopies as non-destructive and noninvasive methods for probing biological material and "living systems." Particularly for a living material any probe need be non-destructive and non-invasive, as well as provide real time measurement information and be cost effective to be generally useful. Over the past few years the components needed to measure weak and complex processes such as Raman scattering have evolved substantially with the ready availability of lasers, dichroic filters, low noise and sensitive detectors, digitizers and signal processors. A Raman spectrum consists of a wavelength or frequency spectrum that corresponds to the inelastic (Raman) photon signal that results from irradiating a "Raman active" material. Raman irradiation of a material usually and generally uses a single frequency laser. The Raman fingerprint spectrum that results from a Raman interaction can be determined from the frequencies scattered and received by an appropriate detector. Spectra are usually "digitized" and numerically matched to a reference sample or reference material spectra in performing an analysis. Fortunately today with the many "commercial off-the-shelf" components that are available, weak intensity effects such as Raman and fluorescence spectroscopy can be used for a number of analysis applications. One of the experimental limitations in Raman measurement is the spectrometer itself. The spectrometer is the section of the system that either by interference plus detection or by dispersion plus detection that "signal" amplitude versus energy/frequency signals are measured. Particularly in Raman spectroscopy, optical signals carrying desired "information" about the analyte are extraordinarily weak and require special considerations when measuring. We will discuss here the use of compact spectrometers and a micro-mirror array system (used is the digital micro-mirror device (DMD) supplied by the DLP® Products group of Texas Instruments Incorporated) for analyzing dispersed light as needed in Raman and fluorescent applications.

  17. Time-of-flight camera via a single-pixel correlation image sensor

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  18. Near-field flat focusing mirrors

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  19. Reconstruction of color images via Haar wavelet based on digital micromirror device

    NASA Astrophysics Data System (ADS)

    Liu, Xingjiong; He, Weiji; Gu, Guohua

    2015-10-01

    A digital micro mirror device( DMD) is introduced to form Haar wavelet basis , projecting on the color target image by making use of structured illumination, including red, green and blue light. The light intensity signals reflected from the target image are received synchronously by the bucket detector which has no spatial resolution, converted into voltage signals and then transferred into PC[1] .To reach the aim of synchronization, several synchronization processes are added during data acquisition. In the data collection process, according to the wavelet tree structure, the locations of significant coefficients at the finer scale are predicted by comparing the coefficients sampled at the coarsest scale with the threshold. The monochrome grayscale images are obtained under red , green and blue structured illumination by using Haar wavelet inverse transform algorithm, respectively. The color fusion algorithm is carried on the three monochrome grayscale images to obtain the final color image. According to the imaging principle, the experimental demonstration device is assembled. The letter "K" and the X-rite Color Checker Passport are projected and reconstructed as target images, and the final reconstructed color images have good qualities. This article makes use of the method of Haar wavelet reconstruction, reducing the sampling rate considerably. It provides color information without compromising the resolution of the final image.

  20. Controlling system for smart hyper-spectral imaging array based on liquid-crystal Fabry-Perot device

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Chen, Xin; Rong, Xin; Liu, Kan; Zhang, Xinyu; Ji, An; Xie, Changsheng

    2011-11-01

    A research for developing a kind of smart spectral imaging detection technique based on the electrically tunable liquidcrystal (LC) FP structure is launched. It has some advantages of low cost, highly compact integration, perfuming wavelength selection without moving any micro-mirror of FP device, and the higher reliability and stability. The controlling system for hyper-spectral imaging array based on LC-FP device includes mainly a MSP430F5438 as its core. Considering the characteristics of LC-FP device, the controlling system can provide a driving signal of 1-10 kHz and 0- 30Vrms for the device in a static driving mode. This paper introduces the hardware designing of the control system in detail. It presents an overall hardware solutions including: (1) the MSP430 controlling circuit, and (2) the operational amplifier circuit, and (3) the power supply circuit, and (4) the AD conversion circuit. The techniques for the realization of special high speed digital circuits, which is necessary for the PCB employed, is also discussed.

  1. Strained layer Fabry-Perot device

    DOEpatents

    Brennan, Thomas M.; Fritz, Ian J.; Hammons, Burrell E.

    1994-01-01

    An asymmetric Fabry-Perot reflectance modulator (AFPM) consists of an active region between top and bottom mirrors, the bottom mirror being affixed to a substrate by a buffer layer. The active region comprises a strained-layer region having a bandgap and thickness chosen for resonance at the Fabry-Perot frequency. The mirrors are lattice matched to the active region, and the buffer layer is lattice matched to the mirror at the interface. The device operates at wavelengths of commercially available semiconductor lasers.

  2. Image-rotating, 4-mirror, ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V.; Armstrong, Darrell J.

    2004-08-10

    A device for optical parametric amplification utilizing four mirrors oriented in a nonplanar configuration where the optical plane formed by two of the mirrors is orthogonal to the optical plane formed by the other two mirrors and with the ratio of lengths of the laser beam paths approximately constant regardless of the scale of the device. With a cavity length of less than approximately 110 mm, a conversion efficiency of greater than 45% can be achieved.

  3. Comparison of reproducibility of natural head position using two methods.

    PubMed

    Khan, Abdul Rahim; Rajesh, R N G; Dinesh, M R; Sanjay, N; Girish, K S; Venkataraghavan, Karthik

    2012-01-01

    Lateral cephalometric radiographs have become virtually indispensable to orthodontists in the treatment of patients. They are important in orthodontic growth analysis, diagnosis, treatment planning, monitoring of therapy and evaluation of final treatment outcome. The purpose of this study was to evaluate and compare the maximum reproducibility with minimum variation of natural head position using two methods, i.e. the mirror method and the fluid level device method. The study included two sets of 40 lateral cephalograms taken using two methods of obtaining natural head position: (1) The mirror method and (2) fluid level device method, with a time interval of 2 months. Inclusion criteria • Subjects were randomly selected aged between 18 to 26 years Exclusion criteria • History of orthodontic treatment • Any history of respiratory tract problem or chronic mouth breathing • Any congenital deformity • History of traumatically-induced deformity • History of myofacial pain syndrome • Any previous history of head and neck surgery. The result showed that both the methods for obtaining natural head position-the mirror method and fluid level device method were comparable, but maximum reproducibility was more with the fluid level device as shown by the Dahlberg's coefficient and Bland-Altman plot. The minimum variance was seen with the fluid level device method as shown by Precision and Pearson correlation. The mirror method and the fluid level device method used for obtaining natural head position were comparable without any significance, and the fluid level device method was more reproducible and showed less variance when compared to mirror method for obtaining natural head position. Fluid level device method was more reproducible and shows less variance when compared to mirror method for obtaining natural head position.

  4. A dual-waveband dynamic IR scene projector based on DMD

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Zheng, Ya-wei; Gao, Jiao-bo; Sun, Ke-feng; Li, Jun-na; Zhang, Lei; Zhang, Fang

    2016-10-01

    Infrared scene simulation system can simulate multifold objects and backgrounds to perform dynamic test and evaluate EO detecting system in the hardware in-the-loop test. The basic structure of a dual-waveband dynamic IR scene projector was introduced in the paper. The system's core device is an IR Digital Micro-mirror Device (DMD) and the radiant source is a mini-type high temperature IR plane black-body. An IR collimation optical system which transmission range includes 3-5μm and 8-12μm is designed as the projection optical system. Scene simulation software was developed with Visual C++ and Vega soft tools and a software flow chart was presented. The parameters and testing results of the system were given, and this system was applied with satisfying performance in an IR imaging simulation testing.

  5. Diffraction-Based Optical Switching with MEMS

    DOE PAGES

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin; ...

    2017-04-19

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  6. Diffraction-Based Optical Switching with MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  7. Optical configuration with fixed transverse magnification for self-interference incoherent digital holography.

    PubMed

    Imbe, Masatoshi

    2018-03-20

    The optical configuration proposed in this paper consists of a 4-f optical setup with the wavefront modulation device on the Fourier plane, such as a concave mirror and a spatial light modulator. The transverse magnification of reconstructed images with the proposed configuration is independent of locations of an object and an image sensor; therefore, reconstructed images of object(s) at different distances can be scaled with a fixed transverse magnification. It is yielded based on Fourier optics and mathematically verified with the optical matrix method. Numerical simulation results and experimental results are also given to confirm the fixity of the reconstructed images.

  8. Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System

    NASA Astrophysics Data System (ADS)

    Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.

    2016-10-01

    The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).

  9. Extracting information of fixational eye movements through pupil tracking

    NASA Astrophysics Data System (ADS)

    Xiao, JiangWei; Qiu, Jian; Luo, Kaiqin; Peng, Li; Han, Peng

    2018-01-01

    Human eyes are never completely static even when they are fixing a stationary point. These irregular, small movements, which consist of micro-tremors, micro-saccades and drifts, can prevent the fading of the images that enter our eyes. The importance of researching the fixational eye movements has been experimentally demonstrated recently. However, the characteristics of fixational eye movements and their roles in visual process have not been explained clearly, because these signals can hardly be completely extracted by now. In this paper, we developed a new eye movement detection device with a high-speed camera. This device includes a beam splitter mirror, an infrared light source and a high-speed digital video camera with a frame rate of 200Hz. To avoid the influence of head shaking, we made the device wearable by fixing the camera on a safety helmet. Using this device, the experiments of pupil tracking were conducted. By localizing the pupil center and spectrum analysis, the envelope frequency spectrum of micro-saccades, micro-tremors and drifts are shown obviously. The experimental results show that the device is feasible and effective, so that the device can be applied in further characteristic analysis.

  10. Optical fiber end-facet polymer suspended-mirror devices

    NASA Astrophysics Data System (ADS)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  11. Optical nulling apparatus and method for testing an optical surface

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor); Hannon, John J. (Inventor); Dey, Thomas W. (Inventor); Jensen, Arthur E. (Inventor)

    2008-01-01

    An optical nulling apparatus for testing an optical surface includes an aspheric mirror having a reflecting surface for imaging light near or onto the optical surface under test, where the aspheric mirror is configured to reduce spherical aberration of the optical surface under test. The apparatus includes a light source for emitting light toward the aspheric mirror, the light source longitudinally aligned with the aspheric mirror and the optical surface under test. The aspheric mirror is disposed between the light source and the optical surface under test, and the emitted light is reflected off the reflecting surface of the aspheric mirror and imaged near or onto the optical surface under test. An optical measuring device is disposed between the light source and the aspheric mirror, where light reflected from the optical surface under test enters the optical measuring device. An imaging mirror is disposed longitudinally between the light source and the aspheric mirror, and the imaging mirror is configured to again reflect light, which is first reflected from the reflecting surface of the aspheric mirror, onto the optical surface under test.

  12. Diffractive optical variable image devices generated by maskless interferometric lithography for optical security

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre; Rebordão, José M.

    2011-05-01

    In optical security (protection against forgery and counterfeit of products and documents) the problem is not exact reproduction but the production of something sufficiently similar to the original. Currently, Diffractive Optically Variable Image Devices (DOVID), that create dynamic chromatic effects which may be easily recognized but are difficult to reproduce, are often used to protect important products and documents. Well known examples of DOVID for security are 3D or 2D/3D holograms in identity documents and credit cards. Others are composed of shapes with different types of microstructures yielding by diffraction to chromatic dynamic effects. A maskless interferometric lithography technique to generate DOVIDs for optical security is presented and compared to traditional techniques. The approach can be considered as a self-masking focused holography on planes tilted with respect to the reference optical axes of the system, and is based on the Scheimpflug and Hinge rules. No physical masks are needed to ensure optimum exposure of the photosensitive film. The system built to demonstrate the technique relies on the digital mirrors device MOEMS technology from Texas Instruments' Digital Light Processing. The technique is linear on the number of specified colors and does not depend either on the area of the device or the number of pixels, factors that drive the complexity of dot-matrix based systems. The results confirmed the technique innovation and capabilities in the creation of diffractive optical elements for security against counterfeiting and forgery.

  13. Manufacturability: from design to SPC limits through "corner-lot" characterization

    NASA Astrophysics Data System (ADS)

    Hogan, Timothy J.; Baker, James C.; Wesneski, Lisa; Black, Robert S.; Rothenbury, Dave

    2004-12-01

    Texas Instruments" Digital Micro-mirror Device, is used in a wide variety of optical display applications ranging from fixed and portable projectors to high-definition television (HDTV) to digital cinema projection systems. A new DMD pixel architecture, called "FTP", was designed and qualified by Texas Instruments DLPTMTM Group in 2003 to meet increased performance objectives for brightness and contrast ratio. Coordination between design, test and fabrication groups was required to balance pixel performance requirements and manufacturing capability. "Corner Lot" designed experiments (DOE) were used to verify "fabrication space" available for the pixel design. The corner lot technique allows confirmation of manufacturability projections early in the design/qualification cycle. Through careful design and analysis of the corner-lot DOE, a balance of critical dimension (cd) "budgets" is possible so that specification and process control limits can be established that meet both customer and factory requirements. The application of corner-lot DOE is illustrated in a case history of the DMD "FTP" pixel. The process for balancing test parameter requirements with multiple critical dimension budgets is shown. MEMS/MOEMS device design and fabrication can use similar techniques to achieve agressive design-to-qualification goals.

  14. Manufacturability: from design to SPC limits through "corner-lot" characterization

    NASA Astrophysics Data System (ADS)

    Hogan, Timothy J.; Baker, James C.; Wesneski, Lisa; Black, Robert S.; Rothenbury, Dave

    2005-01-01

    Texas Instruments" Digital Micro-mirror Device, is used in a wide variety of optical display applications ranging from fixed and portable projectors to high-definition television (HDTV) to digital cinema projection systems. A new DMD pixel architecture, called "FTP", was designed and qualified by Texas Instruments DLPTMTM Group in 2003 to meet increased performance objectives for brightness and contrast ratio. Coordination between design, test and fabrication groups was required to balance pixel performance requirements and manufacturing capability. "Corner Lot" designed experiments (DOE) were used to verify "fabrication space" available for the pixel design. The corner lot technique allows confirmation of manufacturability projections early in the design/qualification cycle. Through careful design and analysis of the corner-lot DOE, a balance of critical dimension (cd) "budgets" is possible so that specification and process control limits can be established that meet both customer and factory requirements. The application of corner-lot DOE is illustrated in a case history of the DMD "FTP" pixel. The process for balancing test parameter requirements with multiple critical dimension budgets is shown. MEMS/MOEMS device design and fabrication can use similar techniques to achieve agressive design-to-qualification goals.

  15. Field curvature correction method for ultrashort throw ratio projection optics design using an odd polynomial mirror surface.

    PubMed

    Zhuang, Zhenfeng; Chen, Yanting; Yu, Feihong; Sun, Xiaowei

    2014-08-01

    This paper presents a field curvature correction method of designing an ultrashort throw ratio (TR) projection lens for an imaging system. The projection lens is composed of several refractive optical elements and an odd polynomial mirror surface. A curved image is formed in a direction away from the odd polynomial mirror surface by the refractive optical elements from the image formed on the digital micromirror device (DMD) panel, and the curved image formed is its virtual image. Then the odd polynomial mirror surface enlarges the curved image and a plane image is formed on the screen. Based on the relationship between the chief ray from the exit pupil of each field of view (FOV) and the corresponding predescribed position on the screen, the initial profile of the freeform mirror surface is calculated by using segments of the hyperbolic according to the laws of reflection. For further optimization, the value of the high-order odd polynomial surface is used to express the freeform mirror surface through a least-squares fitting method. As an example, an ultrashort TR projection lens that realizes projection onto a large 50 in. screen at a distance of only 510 mm is presented. The optical performance for the designed projection lens is analyzed by ray tracing method. Results show that an ultrashort TR projection lens modulation transfer function of over 60% at 0.5 cycles/mm for all optimization fields is achievable with f-number of 2.0, 126° full FOV, <1% distortion, and 0.46 TR. Moreover, in comparing the proposed projection lens' optical specifications to that of traditional projection lenses, aspheric mirror projection lenses, and conventional short TR projection lenses, results indicate that this projection lens has the advantages of ultrashort TR, low f-number, wide full FOV, and small distortion.

  16. Design method of freeform light distribution lens for LED automotive headlamp based on DMD

    NASA Astrophysics Data System (ADS)

    Ma, Jianshe; Huang, Jianwei; Su, Ping; Cui, Yao

    2018-01-01

    We propose a new method to design freeform light distribution lens for light-emitting diode (LED) automotive headlamp based on digital micro mirror device (DMD). With the Parallel optical path architecture, the exit pupil of the illuminating system is set in infinity. Thus the principal incident rays of micro lens in DMD is parallel. DMD is made of high speed digital optical reflection array, the function of distribution lens is to distribute the emergent parallel rays from DMD and get a lighting pattern that fully comply with the national regulation GB 25991-2010.We use DLP 4500 to design the light distribution lens, mesh the target plane regulated by the national regulation GB 25991-2010 and correlate the mesh grids with the active mirror array of DLP4500. With the mapping relations and the refraction law, we can build the mathematics model and get the parameters of freeform light distribution lens. Then we import its parameter into the three-dimensional (3D) software CATIA to construct its 3D model. The ray tracing results using Tracepro demonstrate that the Illumination value of target plane is easily adjustable and fully comply with the requirement of the national regulation GB 25991-2010 by adjusting the exit brightness value of DMD. The theoretical optical efficiencies of the light distribution lens designed using this method could be up to 92% without any other auxiliary lens.

  17. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  18. Digital Image Access & Retrieval.

    ERIC Educational Resources Information Center

    Heidorn, P. Bryan, Ed.; Sandore, Beth, Ed.

    Recent technological advances in computing and digital imaging technology have had immediate and permanent consequences for visual resource collections. Libraries are involved in organizing and managing large visual resource collections. The central challenges in working with digital image collections mirror those that libraries have sought to…

  19. Space evaluation of a MOEMs device for space instrumentation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Tangen, Kyrre; Lanzoni, Patrick; Grassi, Emmanuel; Barette, Rudy; Fabron, Christophe; Valenziano, Luca; Marchand, Laurent; Duvet, Ludovic

    2017-11-01

    Large field of view surveys with a high density of objects such as high-z galaxies or stars benefit of multi-object spectroscopy (MOS) technique. This technique is the best approach to eliminate the problem of spectral confusion, to optimize the quality and the SNR of the spectra, to reach fainter limiting fluxes and to maximize the scientific return. Next generation MOS for space like the Near Infrared Multi-Object Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) require a programmable multi-slit mask. The European EUCLID mission has also considered a MOS instrument in its early study phase. Conventional masks or complex fiber-optics-based mechanisms are not attractive for space. The programmable multi-slit mask requires remote control of the multi-slit configuration in real time. A promising possible solution is the use of MOEMS devices such as micromirror arrays (MMA) [1,2,3] or micro-shutter arrays (MSA) [4]. MMAs are designed for generating reflecting slits, while MSAs generate transmissive slits. MSA has been selected to be the multi-slit device for NIRSpec and is under development at NASA's Goddard Space Flight Center. In Europe, an effort is currently under way to develop single-crystalline silicon micromirror arrays for future generation infrared multi-object spectroscopy [5]. By placing the programmable slit mask in the focal plane of the telescope, the light from selected objects is directed toward the spectrograph, while the light from other objects and from the sky background is blocked. Visitech is an engineering company experienced in developing DMD solution for industrial customers. The Laboratoire d'Astrophysique de Marseille (LAM) has, over several years, developed different tools for modeling and characterization of MOEMS-based slit masks, especially during the design studies on JWSTNIRSpec [6,7]. ESA has engaged with Visitech and LAM in a technical assessment of using a Digital Micromirror Devices (DMD) from Texas Instruments for space applications (for example in ESA EUCLID mission). The DMD features 2048 x 1080 mirrors on a 13.68μm mirror pitch (left-hand side of Fig. 1). Typical operational parameters of this device are room temperature, atmospheric pressure and mirrors switching thousands of times in a second, while for MOS applications in space, the device should work in vacuum, at low temperature, and each MOS exposure would last for typically 1500s with micromirrors held in a static state (either ON or OFF) during that duration. A specific thermal / vacuum test chamber has been developed for test conditions down to -40°C at 10-5 mbar vacuum. Imaging capability for resolving each micro-mirror has also been developed for determining any single mirror failure. Dedicated electronics and software allows us to hold any pattern on the DMD for duration of up to 1500s. We present the summary of this ESA study, the electronic test vehicle as well as the cold temperature test set-up we have developed. Then, results of tests in vacuum at low temperature, including low temperature stress test, low temperature nominal test, thermal cycling, and life test are presented. Results after radiation (TID and proton), and vibration and shock are also shown.

  20. Applications and requirements for MEMS scanner mirrors

    NASA Astrophysics Data System (ADS)

    Wolter, Alexander; Hsu, Shu-Ting; Schenk, Harald; Lakner, Hubert K.

    2005-01-01

    Micro scanning mirrors are quite versatile MEMS devices for the deflection of a laser beam or a shaped beam from another light source. The most exciting application is certainly in laser-scanned displays. Laser television, home cinema and data projectors will display the most brilliant colors exceeding even plasma, OLED and CRT. Devices for front and rear projection will have advantages in size, weight and price. These advantages will be even more important in near-eye virtual displays like head-mounted displays or viewfinders in digital cameras and potentially in UMTS handsets. Optical pattern generation by scanning a modulated beam over an area can be used also in a number of other applications: laser printers, direct writing of photo resist for printed circuit boards or laser marking and with higher laser power laser ablation or material processing. Scanning a continuous laser beam over a printed pattern and analyzing the scattered reflection is the principle of barcode reading in 1D and 2D. This principle works also for identification of signatures, coins, bank notes, vehicles and other objects. With a focused white-light or RGB beam even full color imaging with high resolution is possible from an amazingly small device. The form factor is also very interesting for the application in endoscopes. Further applications are light curtains for intrusion control and the generation of arbitrary line patterns for triangulation. Scanning a measurement beam extends point measurements to 1D or 2D scans. Automotive LIDAR (laser RADAR) or scanning confocal microscopy are just two examples. Last but not least there is the field of beam steering. E.g. for all-optical fiber switches or positioning of read-/write heads in optical storage devices. The variety of possible applications also brings a variety of specifications. This publication discusses various applications and their requirements.

  1. The application of Big Data in medicine: current implications and future directions.

    PubMed

    Austin, Christopher; Kusumoto, Fred

    2016-10-01

    Since the mid 1980s, the world has experienced an unprecedented explosion in the capacity to produce, store, and communicate data, primarily in digital formats. Simultaneously, access to computing technologies in the form of the personal PC, smartphone, and other handheld devices has mirrored this growth. With these enhanced capabilities of data storage and rapid computation as well as real-time delivery of information via the internet, the average daily consumption of data by an individual has grown exponentially. Unbeknownst to many, Big Data has silently crept into our daily routines and, with continued development of cheap data storage and availability of smart devices both regionally and in developing countries, the influence of Big Data will continue to grow. This influence has also carried over to healthcare. This paper will provide an overview of Big Data, its benefits, potential pitfalls, and the projected impact on the future of medicine in general and cardiology in particular.

  2. A 3D Polymer Based Printed Two-Dimensional Laser Scanner

    NASA Astrophysics Data System (ADS)

    Oyman, H. A.; Gokdel, Y. D.; Ferhanoglu, O.; Yalcinkaya, A. D.

    2016-10-01

    A two-dimensional (2D) polymer based scanning mirror with magnetic actuation is developed for imaging applications. Proposed device consists of a circular suspension holding a rectangular mirror and can generate a 2D scan pattern. Three dimensional (3D) printing technology which is used for implementation of the device, offers added flexibility in controlling the cross-sectional profile as well as the stress distribution compared to the traditional planar process technologies. The mirror device is developed to meet a portable, miniaturized confocal microscope application in mind, delivering 4.5 and 4.8 degrees of optical scan angles at 111 and 267 Hz, respectively. As a result of this mechanical performance, the resulting microscope incorporating the mirror is estimated to accomplish a field of view (FOV) of 350 µm × 350 µm.

  3. Motion detection using extended fractional Fourier transform and digital speckle photography.

    PubMed

    Bhaduri, Basanta; Tay, C J; Quan, C; Sheppard, Colin J R

    2010-05-24

    Digital speckle photography is a useful tool for measuring the motion of optically rough surfaces from the speckle shift that takes place at the recording plane. A simple correlation based digital speckle photographic system has been proposed that implements two simultaneous optical extended fractional Fourier transforms (EFRTs) of different orders using only a single lens and detector to simultaneously detect both the magnitude and direction of translation and tilt by capturing only two frames: one before and another after the object motion. The dynamic range and sensitivity of the measurement can be varied readily by altering the position of the mirror/s used in the optical setup. Theoretical analysis and experiment results are presented.

  4. Multiple-image oscilloscope camera

    DOEpatents

    Yasillo, Nicholas J.

    1978-01-01

    An optical device for placing automatically a plurality of images at selected locations on one film comprises a stepping motor coupled to a rotating mirror and lens. A mechanical connection from the mirror controls an electronic logical system to allow rotation of the mirror to place a focused image at the desired preselected location. The device is of especial utility when used to place four images on a single film to record oscilloscope views obtained in gamma radiography.

  5. Multipass optical device and process for gas and analyte determination

    DOEpatents

    Bernacki, Bruce E [Kennewick, WA

    2011-01-25

    A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length.

  6. Nano-stepper-driven optical shutter for applications in free-space micro-optics

    NASA Astrophysics Data System (ADS)

    Zawadzka, Justyna; Li, Lijie; Unamuno, Anartz; Uttamchandani, Deepak G.

    2002-09-01

    In this paper we report a simple design of a micro-optical shutter/attenuator. The standard MUMPS process was used to fabricate the device. A vertically erected, gold-coated, 200x300 mm side length micro-mirror was precisely placed between the end faces of two closely spaced optical fibers. The position of the micro-mirror with respect to the optical fiber end face was controlled by a nano-stepping motor array. Optical and mechanical tests were performed on the device. A 1.55 mm laser beam was sent along the optical fiber. When the micro-mirror was removed from the front of the fiber, the coupling efficiency between two fibers was -10 dBm. Once the micro-mirror was placed in the optical path the coupling efficiency dropped to -51.5 dBm. The best attenuation was obtained when the micro-mirror blocked the whole cross-section of the laser beam diameter. It is evident that the device can operate as a high precision fiber optic attenuator or shutter.

  7. Instabilities excited by an energetic ion beam and electron temperature anisotropy in tandem mirrors

    NASA Technical Reports Server (NTRS)

    Da Jornada, E. H.; Gaffey, J. D., Jr.; Winske, D.

    1985-01-01

    Tandem mirrors are magnetic confinement devices, which have the objective to prevent a leaking out of ions in a central (solenoidal) cell at the end. This is accomplished by making use of an electrostatic potential, which is maintained by a denser plasma in mirror end cells. In the Tandem Mirror Experiment (TMX), Correll et al. (1982) have successfully verified the basic concepts involved in the design of the considered device. However, it was also found that the simple tandem mirror could not be easily scaled to a reactor-size device. Approaches for solving the arising problems were studied, taking into account also the utilization of a thermal barrier. In this connection, Winske et al. (1985) studied the nonlinear development of the instability in a finite beta plasma with isotropic electrons. The present investigation is concerned with an extension of the calculations conducted by Winske et al., giving attention to the parameter regime of the TMX. It is found that three instabilities can occur.

  8. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  9. Vertical viewing angle enhancement for the 360  degree integral-floating display using an anamorphic optic system.

    PubMed

    Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam

    2014-04-15

    We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.

  10. Deflectometry using portable devices

    NASA Astrophysics Data System (ADS)

    Butel, Guillaume P.; Smith, Greg A.; Burge, James H.

    2015-02-01

    Deflectometry is a powerful metrology technique that uses off-the-shelf equipment to achieve nanometer-level accuracy surface measurements. However, there is no portable device to quickly measure eyeglasses, lenses, or mirrors. We present an entirely portable new deflectometry technique that runs on any Android™ smartphone with a front-facing camera. Our technique overcomes some specific issues of portable devices like screen nonlinearity and automatic gain control. We demonstrate our application by measuring an amateur telescope mirror and simulating a measurement of the faulty Hubble Space Telescope primary mirror. Our technique can, in less than 1 min, measure surface errors with accuracy up to 50 nm RMS, simply using a smartphone.

  11. Digital holographic interferometry for characterizing deformable mirrors in aero-optics

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme

    2016-08-01

    Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.

  12. Practical design and evaluation methods of omnidirectional vision sensors

    NASA Astrophysics Data System (ADS)

    Ohte, Akira; Tsuzuki, Osamu

    2012-01-01

    A practical omnidirectional vision sensor, consisting of a curved mirror, a mirror-supporting structure, and a megapixel digital imaging system, can view a field of 360 deg horizontally and 135 deg vertically. The authors theoretically analyzed and evaluated several curved mirrors, namely, a spherical mirror, an equidistant mirror, and a single viewpoint mirror (hyperboloidal mirror). The focus of their study was mainly on the image-forming characteristics, position of the virtual images, and size of blur spot images. The authors propose here a practical design method that satisfies the required characteristics. They developed image-processing software for converting circular images to images of the desired characteristics in real time. They also developed several prototype vision sensors using spherical mirrors. Reports dealing with virtual images and blur-spot size of curved mirrors are few; therefore, this paper will be very useful for the development of omnidirectional vision sensors.

  13. Micromirror array nanostructures for anticounterfeiting applications

    NASA Astrophysics Data System (ADS)

    Lee, Robert A.

    2004-06-01

    The optical characteristics of pixellated passive micro mirror arrays are derived and applied in the context of their use as reflective optically variable device (OVD) nanostructures for the protection of documents from counterfeiting. The traditional design variables of foil based diffractive OVDs are shown to be able to be mapped to a corresponding set of design parameters for reflective optical micro mirror array (OMMA) devices. The greatly increased depth characteristics of micro mirror array OVDs provides an opportunity for directly printing the OVD microstructure onto the security document in-line with the normal printing process. The micro mirror array OVD architecture therefore eliminates the need for hot stamping foil as the carrier of the OVD information, thereby reducing costs. The origination of micro mirror array devices via a palette based data format and a combination electron beam lithography and photolithography techniques is discussed via an artwork example and experimental tests. Finally the application of the technology to the design of a generic class of devices which have the interesting property of allowing for both application and customer specific OVD image encoding and data encoding at the end user stage of production is described. Because of the end user nature of the image and data encoding process these devices are particularly well suited to ID document applications and for this reason we refer this new OVD concept as biometric OVD technology.

  14. High-resolution laser-projection display system using a grating electromechanical system (GEMS)

    NASA Astrophysics Data System (ADS)

    Brazas, John C.; Kowarz, Marek W.

    2004-01-01

    Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.

  15. Replicated Composite Optics Development

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell

    1997-01-01

    Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in ten-ns of fine surface finish and figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicate optic is not better than the master or mandrel from which it is made. This task is a continuance of previous studies to identify methods and materials for forming these extremely low roughness optical components.

  16. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  17. Laser focus compensating sensing and imaging device

    DOEpatents

    Vann, Charles S.

    1993-01-01

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  18. Laser focus compensating sensing and imaging device

    DOEpatents

    Vann, C.S.

    1993-08-31

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a Cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the Cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the Cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a Cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  19. Visible-Infrared Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew

    2013-01-01

    The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.

  20. Digital Booktalk: Digital Media for Reluctant Readers

    ERIC Educational Resources Information Center

    Gunter, Glenda; Kenny, Robert

    2008-01-01

    New learning and communications paradigms of today's learners are extending the definition of literacy and directly affecting how reading and writing skills are acquired (Leu, 2000). Mirroring an ever-expanding definition of literacy, new college and K-12 curricular programs that redefine digital media are popping up all over the country. Story is…

  1. Do Mirror Glasses Have the Same Effect on Brain Activity as a Mirror Box? Evidence from a Functional Magnetic Resonance Imaging Study with Healthy Subjects

    PubMed Central

    Milde, Christopher; Rance, Mariela; Kirsch, Pinar; Trojan, Jörg; Fuchs, Xaver; Foell, Jens; Bekrater-Bodmann, Robin

    2015-01-01

    Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on conceptual differences between MVF devices. However, our findings need to be validated within specific patient groups. PMID:26018572

  2. Investigating the Suitability of Mirrorless Cameras in Terrestrial Photogrammetric Applications

    NASA Astrophysics Data System (ADS)

    Incekara, A. H.; Seker, D. Z.; Delen, A.; Acar, A.

    2017-11-01

    Digital single-lens reflex cameras (DSLR) which are commonly referred as mirrored cameras are preferred for terrestrial photogrammetric applications such as documentation of cultural heritage, archaeological excavations and industrial measurements. Recently, digital cameras which are called as mirrorless systems that can be used with different lens combinations have become available for using similar applications. The main difference between these two camera types is the presence of the mirror mechanism which means that the incoming beam towards the lens is different in the way it reaches the sensor. In this study, two different digital cameras, one with a mirror (Nikon D700) and the other without a mirror (Sony a6000), were used to apply close range photogrammetric application on the rock surface at Istanbul Technical University (ITU) Ayazaga Campus. Accuracy of the 3D models created by means of photographs taken with both cameras were compared with each other using difference values between field and model coordinates which were obtained after the alignment of the photographs. In addition, cross sections were created on the 3D models for both data source and maximum area difference between them is quite small because they are almost overlapping. The mirrored camera has become more consistent in itself with respect to the change of model coordinates for models created with photographs taken at different times, with almost the same ground sample distance. As a result, it has been determined that mirrorless cameras and point cloud produced using photographs obtained from these cameras can be used for terrestrial photogrammetric studies.

  3. Grating exchange system of independent mirror supported by floating rotary stage

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhuan; Tao, Jin; Liu, Yan; Nan, Yan

    2015-10-01

    The performance of The Grating Exchange System can satisfy the Thirty Meter Telescope - TMT for astronomical observation WFOS index requirements and satisfy the requirement of accuracy in the grating exchange. It is used to install in the MOBIE and a key device of MOBIE. The Wide Field Optical Spectrograph (WFOS) is one of the three first-light observing capabilities selected by the TMT Science Advisory Committee. The Multi-Object Broadband Imaging Echellette (MOBIE) instrument design concept has been developed to address the WFOS requirements as described in the TMT Science-Based Requirements Document (SRD). The Grating Exchange System uses a new type of separate movement way of three grating devices and a mirror device. Three grating devices with a mirror are able to achieve independence movement. This kind of grating exchange system can effectively solve the problem that the volume of the grating change system is too large and that the installed space of MOBIE instruments is too limit. This system adopts the good stability, high precision of rotary stage - a kind of using air bearing (Air bearing is famous for its ultra-high precision, and can meet the optical accuracy requirement) and rotation positioning feedback gauge turntable to support grating device. And with a kind of device which can carry greater weight bracket fixed on the MOBIE instrument, with two sets of servo motor control rotary stage and the mirror device respectively. And we use the control program to realize the need of exercising of the grating device and the mirror device. Using the stress strain analysis software--SolidWorks for stress and strain analysis of this structure. And then checking the structure of the rationality and feasibility. And prove that this system can realize the positioning precision under different working conditions can meet the requirements of imaging optical grating diffraction efficiency and error by the calculation and optical performance analysis.

  4. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  5. Micro ring cavity resonator incorporating total internal reflection mirrors

    NASA Astrophysics Data System (ADS)

    Kim, Doo Gun; Choi, Woon Kyung; Choi, Young Wan; Yi, Jong Chang; Chung, Youngchul; Dagli, Nadir

    2007-02-01

    We investigate the properties of a multimode-interference (MMI) coupled micro ring cavity resonator with total-internal-reflection (TIR) mirrors and a semiconductor optical amplifier (SOA). The TIR mirrors were fabricated by the self-aligned process with a loss of 0.7 dB per mirror. The length and width of an MMI are 142 μm and 10 μm, respectively. The resulting free spectral range (FSR) of the resonator was approximately 1.698 nm near 1571 nm and the extinction ratio was about 17 dB. These devices might be useful as optical switching and add-drop filters in a photonic integrated circuit or as small and fast resonator devices.

  6. Monolithic device for modelocking and stabilization of frequency combs.

    PubMed

    Lee, C-C; Hayashi, Y; Silverman, K L; Feldman, A; Harvey, T; Mirin, R P; Schibli, T R

    2015-12-28

    We demonstrate a device that integrates a III-V semiconductor saturable absorber mirror with a graphene electro-optic modulator, which provides a monolithic solution to modelocking and noise suppression in a frequency comb. The device offers a pure loss modulation bandwidth exceeding 5 MHz and only requires a low voltage driver. This hybrid device provides not only compactness and simplicity in laser cavity design, but also small insertion loss, compared to the previous metallic-mirror-based modulators. We believe this work paves the way to portable and fieldable phase-coherent frequency combs.

  7. Preparing and probing many-body correlated systems in a Quantum Gas Microscope by engineering arbitrary landscape potentials

    NASA Astrophysics Data System (ADS)

    Rispoli, Matthew; Lukin, Alexander; Ma, Ruichao; Preiss, Philipp; Tai, M. Eric; Islam, Rajibul; Greiner, Markus

    2015-05-01

    Ultracold atoms in optical lattices provide a versatile tool box for observing the emergence of strongly correlated physics in quantum systems. Dynamic control of optical potentials on the single-site level allows us to prepare and probe many-body quantum states through local Hamiltonian engineering. We achieve these high precision levels of optical control through spatial light modulation with a DMD (digital micro-mirror device). This allows for both arbitrary beam shaping and aberration compensation in our imaging system to produce high fidelity optical potentials. We use these techniques to control state initialization, Hamiltonian dynamics, and measurement in experiments investigating low-dimensional many-body physics - from one-dimensional correlated quantum walks to characterizing entanglement.

  8. Introduction to Data Acquisition 3.Let’s Acquire Data!

    NASA Astrophysics Data System (ADS)

    Nakanishi, Hideya; Okumura, Haruhiko

    In fusion experiments, diagnostic control and logging devices are usually connected through the field bus, e.g. GP-IB. Internet technologies are often applied for their remote operation. All equipment and digitizers are driven by pre-programmed sequences, in which clocks and triggers give the essential timing for data acquisition. Data production rate and amount must be checked in comparison with the transfer and store rates. To store binary raw data safely, journaling file systems are preferably used with redundant disks (RAID) or mirroring mechanism, such as “rsync”. A proper choice of the data compression method not only reduces the storage size but also improves the I/O throughputs. DBMS is even applicable to quick search or security around the table data.

  9. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  10. Extraction and analysis of the image in the sight field of comparison goniometer to measure IR mirrors assembly

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-shan; Zhao, Yue-jin; Li, Zhuo; Dong, Liquan; Chu, Xuhong; Li, Ping

    2010-11-01

    The comparison goniometer is widely used to measure and inspect small angle, angle difference, and parallelism of two surfaces. However, the common manner to read a comparison goniometer is to inspect the ocular of the goniometer by one eye of the operator. To read an old goniometer that just equips with one adjustable ocular is a difficult work. In the fabrication of an IR reflecting mirrors assembly, a common comparison goniometer is used to measure the angle errors between two neighbor assembled mirrors. In this paper, a quick reading technique image-based for the comparison goniometer used to inspect the parallelism of mirrors in a mirrors assembly is proposed. One digital camera, one comparison goniometer and one set of computer are used to construct a reading system, the image of the sight field in the comparison goniometer will be extracted and recognized to get the angle positions of the reflection surfaces to be measured. In order to obtain the interval distance between the scale lines, a particular technique, left peak first method, based on the local peak values of intensity in the true color image is proposed. A program written in VC++6.0 has been developed to perform the color digital image processing.

  11. Evaluation of digital micromirror devices for use in space-based multiobject spectrometer application

    NASA Astrophysics Data System (ADS)

    Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Quijada, Manuel A.; Smee, Stephen A.; Pellish, Jonathan A.; Schwartz, Tim; Robberto, Massimo; Heap, Sara; Conley, Devin; Benavides, Carlos; Garcia, Nicholas; Bredl, Zach; Yllanes, Sebastian

    2017-07-01

    The astronomical community continues to be interested in suitable programmable slit masks for use in multiobject spectrometers (MOSs) on space missions. There have been ground-based MOS utilizing digital micromirror devices (DMDs), and they have proven to be highly accurate and reliable instruments. This paper summarizes the results of a continuing study to investigate the performance of DMDs under conditions associated with space deployment. This includes the response of DMDs to accelerated heavy-ion radiation, to the vibration and mechanical shock loads associated with launch, and the operability of DMD under cryogenic temperatures. The optical contrast ratio and a study of the long-term reflectance of a bare device have also been investigated. The results of the radiation testing demonstrate that DMDs in orbit would experience negligible heavy-ion-induced single event upset (SEU) rate burden; we predict an SEU rate of 5.6 micromirrors/24 h. Vibration and mechanical shock testing was performed according to the NASA General Environmental Verification Standard; there were no failed mirrors in the devices tested. The results of low temperature testing suggest that DMDs are not affected by the thermal load and operate smoothly at temperatures at least as low as 78 K. The reflectivity of a bare DMD did not measurably change even after being exposed to ambient conditions over a period of 13 months even. The measured contrast ratio ("on state" versus "off state" of the DMD micromirrors) was greater than 6000∶1 when illuminated with an f/4 optical beam. Overall DMDs are extremely robust and promise to provide a reliable alternative to microshutter arrays to be used in space as remotely programmable slit masks for MOS design.

  12. PLASMA DEVICE

    DOEpatents

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  13. Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.

    2002-01-01

    Ohio State University developed a new spectrally filtered light-scattering apparatus based on a diode laser injected-locked titanium: sapphire laser and rubidium vapor filter at 780.2 nm. When the device was combined with a stimulated Brillouin scattering phase conjugate mirror, the realizable peak attenuation of elastic scattering interferences exceeded 105. The potential of the system was demonstrated by performing Thomson scattering measurements. Under USAF-NASA funding, West Virginia University developed a Doppler global velocimetry system using inexpensive 8-bit charged coupled device cameras and digitizers and a CW argon ion laser. It has demonstrated a precision of +/- 2.5 m/sec in a swirling jet flow. Low-noise silicon-micromachined microphones developed and incorporated in a novel two-tier, hybrid packaging scheme at the University of Florida used printed circuit board technology to realize a MEMS-based directional acoustic array. The array demonstrated excellent performance relative to conventional sensor technologies and provides scaling technologies that can reduce cost and increase speed and mobility.

  14. Study of hollow corner retroreflectors for use in a synchronous orbit

    NASA Technical Reports Server (NTRS)

    Yoder, P. R., Jr.

    1975-01-01

    The performance of a hollow corner cube retroreflector made up of three mutually perpendicular optically flat mirrors when undergoing the thermal-mechanical strains induced by a spacecraft environment was studied. Of particular interest was a device of 200 square centimeter optical aperture used on a satellite in a synchronous orbit. It was assumed that the reflector always faces the earth. The effects of direct solar irradiance, earthshine, and albedo were considered. The results included the maximum mirror surface temperature during the orbit as well as the worst-case loss of optical performance due to thermally-induced mirror distortions. It was concluded that a device made of three suitably coated flat ULE mirrors, optically contacted to each other and supported mechanically in a nonrigid mount, would be expected to concentrate over 80 percent of the theoretical maximum energy in the central of the far field diffraction pattern. Continued development of the device through a detailed design, fabrication, and test phase was recommended.

  15. Photoacoustic characterization of optical laser components for 10.6 {mu}m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, J.; Meja, P.; Reisse, G.

    1995-12-31

    The paper deals with the study of characteristics of damage and damage onset of mirrors and substrates at 10.6 {mu}m wavelength of by means of photoacoustics using laser pulse irradiation with up to 10 pulses per on site. One group of the mirrors which have been investigated are commercially available polished uncoated Mo - and Cu - mirrors. A second set of mirrors consists of copper mirrors coated with NiCu - or Au - layer systems for enhanced reflectivity. NaCl - and ZnSe - substrates were selected as IR - transparent materials. For measuring the photoacoustic waves generated by lasermore » pulse irradiation a piezoceramic detector is used. The simplified signal of the detector is sampled by a digital oscilloscope.« less

  16. Gondola for High Altitude Planetary Science (GHAPS) Telescope Secondary Mirror Positioning Hexapod Issues and Alternatives

    NASA Technical Reports Server (NTRS)

    Wells, Mark

    2017-01-01

    Active positioning of the GHAPS secondary telescope mirror is desired to correct for rigid body deflections due to temperature variations and gravity sag in the telescope structure that may impact optical performance. The current design concept for the secondary mirror mount uses a Commercial-Off -the-Shelf hexapod for mirror positioning and fine adjustment. The Hexapod specification states that motions as small as 0.1 microns along the optical axis and 2 microns perpendicular to the optical axis will cause optical aberrations that will require correction by repositioning the secondary mirror. In addition, the secondary mirror mount and positioning system must survive a 15g shock of parachute opening and landing during the instrument recovery operation. The secondary mirror positioning system must operate at a minimum specified temperature of -50 C. The telescope operates in the IR and the secondary mirror mount and positioning device is in the metering path between the primary and secondary mirrors. I2R losses in positioning system actuator devices, which may cause heating of the positioning system and secondary mirror, must be minimized due to the previously mentioned alignment sensitivity and the viewing spectrum of interest. The GHAPs project was cancelled on June 30, 2017. The purpose of this study is to address some of the issues identified with the hexapod secondary mirror positioning system and identify alternative approaches. This information may be used if the project is re-started at a later date.

  17. First light on a new fully digital camera based on SiPM for CTA SST-1M telescope

    NASA Astrophysics Data System (ADS)

    della Volpe, Domenico; Al Samarai, Imen; Alispach, Cyril; Bulik, Tomasz; Borkowski, Jerzy; Cadoux, Franck; Coco, Victor; Favre, Yannick; Grudzińska, Mira; Heller, Matthieu; Jamrozy, Marek; Kasperek, Jerzy; Lyard, Etienne; Mach, Emil; Mandat, Dusan; Michałowski, Jerzy; Moderski, Rafal; Montaruli, Teresa; Neronov, Andrii; Niemiec, Jacek; Njoh Ekoume, T. R. S.; Ostrowski, Michal; Paśko, Paweł; Pech, Miroslav; Rajda, Pawel; Rafalski, Jakub; Schovanek, Petr; Seweryn, Karol; Skowron, Krzysztof; Sliusar, Vitalii; Stawarz, Łukasz; Stodulska, Magdalena; Stodulski, Marek; Travnicek, Petr; Troyano Pujadas, Isaac; Walter, Roland; Zagdański, Adam; Zietara, Krzysztof

    2017-08-01

    The Cherenkov Telescope Array (CTA) will explore with unprecedented precision the Universe in the gammaray domain covering an energy range from 50 GeV to more the 300 TeV. To cover such a broad range with a sensitivity which will be ten time better than actual instruments, different types of telescopes are needed: the Large Size Telescopes (LSTs), with a ˜24 m diameter mirror, a Medium Size Telescopes (MSTs), with a ˜12 m mirror and the small size telescopes (SSTs), with a ˜4 m diameter mirror. The single mirror small size telescope (SST-1M), one of the proposed solutions to become part of the small-size telescopes of CTA, will be equipped with an innovative camera. The SST-1M has a Davies-Cotton optical design with a mirror dish of 4 m diameter and focal ratio 1.4 focussing the Cherenkov light produced in atmospheric showers onto a 90 cm wide hexagonal camera providing a FoV of 9 degrees. The camera is an innovative design based on silicon photomultipliers (SiPM ) and adopting a fully digital trigger and readout architecture. The camera features 1296 custom designed large area hexagonal SiPM coupled to hollow optical concentrators to achieve a pixel size of almost 2.4 cm. The SiPM is a custom design developed with Hamamatsu and with its active area of almost 1 cm2 is one of the largest monolithic SiPM existing. Also the optical concentrators are innovative being light funnels made of a polycarbonate substrate coated with a custom designed UV-enhancing coating. The analog signals coming from the SiPM are fed into the fully digital readout electronics, where digital data are processed by high-speed FPGAs both for trigger and readout. The trigger logic, implemented into an Virtex 7 FPGA, uses the digital data to elaborate a trigger decision by matching data against predefined patterns. This approach is extremely flexible and allows improvements and continued evolutions of the system. The prototype camera is being tested in laboratory prior to its installation expected in fall 2017 on the telescope prototype in Krakow (Poland). In this contribution, we will describe the design of the camera and show the performance measured in laboratory.

  18. Opto-mechanical design of small infrared cloud measuring device

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.

  19. Electrochromic mirror using viologen-anchored nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Han Na; University of Science and Technology, Advanced Device Technology, 217 Gajeong-roYuseong-gu, Daejeon 305-350; Cho, Seong M.

    Highlights: • Three types of ECM device were fabricated using viologen-anchored ECDs. • The devices were investigated according to their optical structures. • The anti-reflection material affects the reflectance and the coloration efficiency. • The device design of ECMs is a crucial factor for clear reflected images. - Abstract: Electrochromic mirrors (ECMs) that are used in automobile mirrors need to have high reflectance, a high contrast ratio, and a clear image. In particular, it is critical that distortions of clear images are minimized for safety. Therefore, an ECM is fabricated using viologen-anchored nanoparticles and a magnesium fluoride (MgF{sub 2}) layermore » with an anti-reflection function. The ECM has approximately 30.42% in the reflectance dynamic range and 125 cm{sup 2}/C high coloration efficiency.« less

  20. Developments in holographic-based scanner designs

    NASA Astrophysics Data System (ADS)

    Rowe, David M.

    1997-07-01

    Holographic-based scanning systems have been used for years in the high resolution prepress markets where monochromatic lasers are generally utilized. However, until recently, due to the dispersive properties of holographic optical elements (HOEs), along with the high cost associated with recording 'master' HOEs, holographic scanners have not been able to penetrate major scanning markets such as the laser printer and digital copier markets, low to mid-range imagesetter markets, and the non-contact inspection scanner market. Each of these markets has developed cost effective laser diode based solutions using conventional scanning approaches such as polygon/f-theta lens combinations. In order to penetrate these markets, holographic-based systems must exhibit low cost and immunity to wavelength shifts associated with laser diodes. This paper describes recent developments in the design of holographic scanners in which multiple HOEs, each possessing optical power, are used in conjunction with one curved mirror to passively correct focal plane position errors and spot size changes caused by the wavelength instability of laser diodes. This paper also describes recent advancements in low cost production of high quality HOEs and curved mirrors. Together these developments allow holographic scanners to be economically competitive alternatives to conventional devices in every segment of the laser scanning industry.

  1. An Investigation of the Relation Between Contact Thermometry and Dew-Point Temperature Realization

    NASA Astrophysics Data System (ADS)

    Benyon, R.; Böse, N.; Mitter, H.; Mutter, D.; Vicente, T.

    2012-09-01

    Precision optical dew-point hygrometers are the most commonly used transfer standards for the comparison of dew-point temperature realizations at National Metrology Institutes (NMIs) and for disseminating traceability to calibration laboratories. These instruments have been shown to be highly reproducible when properly used. In order to obtain the best performance, the resistance of the platinum resistance thermometer (PRT) embedded in the mirror is usually measured with an external, traceable resistance bridge or digital multimeter. The relation between the conventional calibration of miniature PRTs, prior to their assembly in the mirrors of state-of-the-art optical dew-point hygrometers and their subsequent calibration as dew-point temperature measurement devices, has been investigated. Standard humidity generators of three NMIs were used to calibrate hygrometers of different designs, covering the dew-point temperature range from -75 °C to + 95 °C. The results span more than a decade, during which time successive improvements and modifications were implemented by the manufacturer. The findings are presented and discussed in the context of enabling the optimum use of these transfer standards and as a basis for determining contributions to the uncertainty in their calibration.

  2. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi

    2015-11-01

    In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc.

  3. Feedback-controlled radiation pressure cooling

    NASA Astrophysics Data System (ADS)

    Prior, Yehiam; Vilensky, Mark; Averbukh, Ilya Sh.

    2008-03-01

    We propose a new approach to laser cooling of micromechanical devices, which is based on the phenomenon of optical bistability. These devices are modeled as a Fabry-Perot resonator with one fixed and one oscillating mirror. The bistability may be induced by an external feedback loop. When excited by an external laser, the cavity field has two co-existing stable steady-states depending on the position of the moving mirror. If the latter moves slow enough, the field in the cavity adjusts itself adiabatically to the mirror's instantaneous position. The mirror experiences radiation pressure corresponding to the intensity value. A sharp transition between two values of the radiation pressure force happens twice per every period of the mirror oscillation at non-equivalent positions (hysteresis effect), which leads to a non-zero net energy loss. The cooling mechanism resembles Sisyphus cooling in which the cavity mode performs sudden transitions between two stable states. We provide a dynamical stability analysis of the coupled moving mirror -- cavity field system, and find the parameters for efficient cooling. Direct numerical simulations show that a bistable cavity provides much more efficient cooling compared to the regular one.

  4. Do 'literate' pigeons (Columba livia) show mirror-word generalization?

    PubMed

    Scarf, Damian; Corballis, Michael C; Güntürkün, Onur; Colombo, Michael

    2017-09-01

    Many children pass through a mirror stage in reading, where they write individual letters or digits in mirror and find it difficult to correctly utilize letters that are mirror images of one another (e.g., b and d). This phenomenon is thought to reflect the fact that the brain does not naturally discriminate left from right. Indeed, it has been argued that reading acquisition involves the inhibition of this default process. In the current study, we tested the ability of literate pigeons, which had learned to discriminate between 30 and 62 words from 7832 nonwords, to discriminate between words and their mirror counterparts. Subjects were sensitive to the left-right orientation of the individual letters, but not the order of letters within a word. This finding may reflect the fact that, in the absence of human-unique top-down processes, the inhibition of mirror generalization may be limited.

  5. Mirror, Mirror on the Wall: Email as an Object of Practitioner Inquiry

    ERIC Educational Resources Information Center

    Maxwell, Sally V.

    2015-01-01

    As new communication technologies enter the classroom, teachers must attend to how digital platforms impact the interpersonal practices of teaching and learning. In this article, I study email exchanges with three of my students--Jorge, Adriana, and Jason--over the course of one year in an 11th-grade English class at River High School, a…

  6. A nonlinear disturbance-decoupled elevation axis controller for the Multiple Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Clark, Dusty; Trebisky, Tom; Powell, Keith

    2008-07-01

    The Multiple Mirror Telescope (MMT), upgraded in 2000 to a monolithic 6.5m primary mirror from its original array of six 1.8m primary mirrors, was commissioned with axis controllers designed early in the upgrade process without regard to structural resonances or the possibility of the need for digital filtering of the control axis signal path. Post-commissioning performance issues led us to investigate replacement of the original control system with a more modern digital controller with full control over the system filters and gain paths. This work, from system identification through controller design iteration by simulation, and pre-deployment hardware-in-the-loop testing, was performed using latest-generation tools with Matlab® and Simulink®. Using Simulink's Real Time Workshop toolbox to automatically generate C source code for the controller from the Simulink diagram and a custom target build script, we were able to deploy the new controller into our existing software infrastructure running Wind River's VxWorks™real-time operating system. This paper describes the process of the controller design, including system identification data collection, with discussion of implementation of non-linear control modes and disturbance decoupling, which became necessary to obtain acceptable wind buffeting rejection.

  7. Districts Deploy Digital Tools to Engage Parents

    ERIC Educational Resources Information Center

    Fleming, Nora

    2012-01-01

    Digital technology is providing a growing variety of methods for school leaders to connect with parents anywhere, anytime--a tactic mirroring how technology is used to engage students. Through Twitter feeds, Facebook pages, and text messages sent in multiple languages, school staff members are giving parents instant updates, news, and information…

  8. Characterization and Measurement of Passive and Active Metamaterial Devices

    DTIC Science & Technology

    2010-03-01

    A periodic bound- ary mirrors the computational domain along an axis. Unit cell boundary conditions mirror the computational domain along two axes... mirrored a number of times in each direction to create a square matrix of ring resonators. Figure 33(b) shows a 4× 4 array. The frequency domain...created by mirroring the previous structure three times. Thus, the dimensions of the particles are identical. The same boundary conditions and spacing

  9. Ultrahigh precision nonlinear reflectivity measurement system for saturable absorber mirrors with self-referenced fluence characterization.

    PubMed

    Orsila, Lasse; Härkönen, Antti; Hyyti, Janne; Guina, Mircea; Steinmeyer, Günter

    2014-08-01

    Measurement of nonlinear optical reflectivity of saturable absorber devices is discussed. A setup is described that enables absolute accuracy of reflectivity measurements better than 0.3%. A repeatability within 0.02% is shown for saturable absorbers with few-percent modulation depth. The setup incorporates an in situ knife-edge characterization of beam diameters, making absolute reflectivity estimations and determination of saturation fluences significantly more reliable. Additionally, several measures are discussed to substantially improve the reliability of the reflectivity measurements. At its core, the scheme exploits the limits of state-of-the-art digital lock-in technology but also greatly benefits from a fiber-based master-oscillator power-amplifier source, the use of an integrating sphere, and simultaneous comparison with a linear reflectivity standard.

  10. Color film spectral properties test experiment for target simulation

    NASA Astrophysics Data System (ADS)

    Liu, Xinyue; Ming, Xing; Fan, Da; Guo, Wenji

    2017-04-01

    In hardware-in-loop test of the aviation spectra camera, the liquid crystal light valve and digital micro-mirror device could not simulate the spectrum characteristics of the landmark. A test system frame was provided based on the color film for testing the spectra camera; and the spectrum characteristics of the color film was test in the paper. The result of the experiment shows that difference was existed between the landmark and the film spectrum curse. However, the spectrum curse peak should change according to the color, and the curse is similar with the standard color traps. So, if the quantity value of error between the landmark and the film was calibrated and the error could be compensated, the film could be utilized in the hardware-in-loop test for the aviation spectra camera.

  11. Apparatus for providing a servo drive signal in a high-speed stepping interferometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A. (Inventor)

    1979-01-01

    An analog voltage approximately linearly proportional to a desired offset from the present null position of a moving mirror in an interferometer is applied to the mirror moving means. As the mirror moves to the next null position, as determined by the analog voltage, the fringes of a laser reference interference pattern are detected. At the occurrence of each fringe the analog voltage is reduced proportionally so that when the next null position is reached, this driving analog is effectively zero. A binary up/down counter, by its internal count, causes a digital/analog converter to supply the analog voltage to the mirror moving means. Fringe detection and direction of movement logic cause the binary up/down counter to be decremented from its offset count as the mirror is moved to the new null position. Undesirable movement of the mirror due to vibration or other sources causes a correcting drive signal to be applied to the mirror moving means that is proportional to the distance of movement.

  12. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  13. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...

  14. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...

  15. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...

  16. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...

  17. A single pixel camera video ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Lochocki, B.; Gambin, A.; Manzanera, S.; Irles, E.; Tajahuerce, E.; Lancis, J.; Artal, P.

    2017-02-01

    There are several ophthalmic devices to image the retina, from fundus cameras capable to image the whole fundus to scanning ophthalmoscopes with photoreceptor resolution. Unfortunately, these devices are prone to a variety of ocular conditions like defocus and media opacities, which usually degrade the quality of the image. Here, we demonstrate a novel approach to image the retina in real-time using a single pixel camera, which has the potential to circumvent those optical restrictions. The imaging procedure is as follows: a set of spatially coded patterns is projected rapidly onto the retina using a digital micro mirror device. At the same time, the inner product's intensity is measured for each pattern with a photomultiplier module. Subsequently, an image of the retina is reconstructed computationally. Obtained image resolution is up to 128 x 128 px with a varying real-time video framerate up to 11 fps. Experimental results obtained in an artificial eye confirm the tolerance against defocus compared to a conventional multi-pixel array based system. Furthermore, the use of a multiplexed illumination offers a SNR improvement leading to a lower illumination of the eye and hence an increase in patient's comfort. In addition, the proposed system could enable imaging in wavelength ranges where cameras are not available.

  18. Alternative approaches to plasma confinement

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1978-01-01

    The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.

  19. Device and method for redirecting electromagnetic signals

    DOEpatents

    Garcia, Ernest J.

    1999-01-01

    A device fabricated to redirect electromagnetic signals, the device including a primary driver adapted to provide a predetermined force, a linkage system coupled to the primary driver, a pusher rod rotationally coupled to the linkage system, a flexible rod element attached to the pusher rod and adapted to buckle upon the application of the predetermined force, and a mirror structure attached to the flexible rod element at one end and to the substrate at another end. When the predetermined force buckles the flexible rod element, the mirror structure and the flexible rod element both move to thereby allow a remotely-located electromagnetic signal directed towards the device to be redirected.

  20. ["Mirror, mirror on the wall", the issue of digital technology in adolescent mental healthcare].

    PubMed

    Pommereau, Xavier

    The digital revolution is turning lifestyles and mentalities upside down. The intuitiveness, immediacy and connectivity which characterise new information and communication technologies appeal to teenagers who find in them ways to gain recognition from their peers and to exchange with each other, without having to yield to adults. However, they expect mental health professionals to talk to them, to be engaged in their discussions and to agree to use connected tools as platforms for exchange. A wide variety of such methods can form part of the therapeutic relationship, from smartphones to chat rooms, from teleconsultations to 'cybertherapies', and from video games to serious games. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Temperature dependence of the properties of DBR mirrors used in surface normal optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Dudley, J. J.; Crawford, D. L.; Bowers, J. E.

    1992-01-01

    The variation in the center wavelength of distributed Bragg reflectors used in optoelectronic devices, such as surface emitting lasers and Fabry-Perot modulators, is measured as the temperature of the mirrors changes over the range 25 C to 105 C. An analytic expression for the shift in center wavelength with temperature is presented. The mirrors measured are made of InP/InGaAsP, GaAs/AlAs, and Si/SiN(x). The linear shifts in center wavelength are 0.110 +/- 0.003 nm/C, 0.087 +/- 0.003 nm/C, and 0.067 +/- 0.007 nm/C for the InP/InGaAsP, GaAs/AlAs, and Si/SiN mirrors, respectively. Based on these data, the change in penetration depth with temperature is calculated.

  2. Advanced Modeling of Micromirror Devices

    NASA Technical Reports Server (NTRS)

    Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.

    1995-01-01

    The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.

  3. The use of volumetric projections in Digital Human Modelling software for the identification of Large Goods Vehicle blind spots.

    PubMed

    Summerskill, Stephen; Marshall, Russell; Cook, Sharon; Lenard, James; Richardson, John

    2016-03-01

    The aim of the study is to understand the nature of blind spots in the vision of drivers of Large Goods Vehicles caused by vehicle design variables such as the driver eye height, and mirror designs. The study was informed by the processing of UK national accident data using cluster analysis to establish if vehicle blind spots contribute to accidents. In order to establish the cause and nature of blind spots six top selling trucks in the UK, with a range of sizes were digitized and imported into the SAMMIE Digital Human Modelling (DHM) system. A novel CAD based vision projection technique, which has been validated in a laboratory study, allowed multiple mirror and window aperture projections to be created, resulting in the identification and quantification of a key blind spot. The identified blind spot was demonstrated to have the potential to be associated with the scenarios that were identified in the accident data. The project led to the revision of UNECE Regulation 46 that defines mirror coverage in the European Union, with new vehicle registrations in Europe being required to meet the amended standard after June of 2015. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Multi-view line-scan inspection system using planar mirrors

    NASA Astrophysics Data System (ADS)

    Holländer, Bransilav; Štolc, Svorad; Huber-Mörk, Reinhold

    2013-04-01

    We demonstrate the design, setup, and results for a line-scan stereo image acquisition system using a single area- scan sensor, single lens and two planar mirrors attached to the acquisition device. The acquired object is moving relatively to the acquisition device and is observed under three different angles at the same time. Depending on the specific configuration it is possible to observe the object under a straight view (i.e., looking along the optical axis) and two skewed views. The relative motion between an object and the acquisition device automatically fulfills the epipolar constraint in stereo vision. The choice of lines to be extracted from the CMOS sensor depends on various factors such as the number, position and size of the mirrors, the optical and sensor configuration, or other application-specific parameters like desired depth resolution. The acquisition setup presented in this paper is suitable for the inspection of a printed matter, small parts or security features such as optical variable devices and holograms. The image processing pipeline applied to the extracted sensor lines is explained in detail. The effective depth resolution achieved by the presented system, assembled from only off-the-shelf components, is approximately equal to the spatial resolution and can be smoothly controlled by changing positions and angles of the mirrors. Actual performance of the device is demonstrated on a 3D-printed ground-truth object as well as two real-world examples: (i) the EUR-100 banknote - a high-quality printed matter and (ii) the hologram at the EUR-50 banknote { an optical variable device.

  5. A Mirror of Voices: A Collaborative Learning Community of Culturally Responsive Digital Storytelling

    ERIC Educational Resources Information Center

    Harris, Kim Diann

    2013-01-01

    This action research study acknowledged the possibilities of culturally responsive pedagogy by examining digital storytelling via online workshops that were facilitated for a group of educators and educational leaders. The presence of cultural biases and cultural discontinuities in Pre-K-12 education has the propensity to contribute to the…

  6. Parabolic lithium mirror for a laser-driven hot plasma producing device

    DOEpatents

    Baird, James K.

    1979-06-19

    A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.

  7. Investigation of improved designs for rotational micromirrors using multiuser MEMS processes

    NASA Astrophysics Data System (ADS)

    Lin, Julianna E.; Michael, Feras S. J.; Kirk, Andrew G.

    2001-04-01

    In recent years, the design of rotational micromirrors for use in optical cross connects has received much attention. Although several companies have already produced and marketed a number of torsional mirror devices, more work is still needed to determine how these mirrors can be integrated into optical systems to form compact optical switches. However, recently several commercial MEMS foundry services have become available. Thus, due to the low cost of these prototyping services, new devices can be fabricated in short amounts of time and the designs adapted to meet the needs of different applications. The purpose of this work is to investigate the fabrication of new micromirror designs using the Multi-User MEMS Processes (MUMPs) foundry service available from Cronos Integrated Microsystems, located in North Carolina, USA). Several sets of mirror designs were submitted for fabrication and the resulting structures characterized using a phase-shifting Mirau interferometer. The results of these devices are presented.

  8. Controllable light filters using an all-solid-state switchable mirror with a Mg-Ir thin film for preterm infant incubators

    NASA Astrophysics Data System (ADS)

    Tajima, Kazuki; Shimoike, Mika; Li, Heng; Inagaki, Masumi; Izumi, Hitomi; Akiyama, Misaki; Matsushima, Yukiko; Ohta, Hidenobu

    2013-04-01

    We have fabricated a controllable light filter using an all-solid-state switchable mirror incorporating a Mg-Ir thin film for use in preterm infant incubators. The solid-state switchable mirror device was fabricated by depositing a multilayer on a glass substrate. The mixed hydride of MgH2 and Mg6Ir2H11 created from the Mg-Ir thin film is red in the transparent state. The optical switching speeds between the reflective and transparent red states depended on applied voltage. The device showed three states, namely, reflective, black, and transparent red, due to the properties of the switchable mirror material. These results suggest that the material could be used as a controllable light filter for preterm infant incubators, since it eliminates the light wavelength that disturbs regular sleep-wake cycles of preterm infants.

  9. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior chamber. The device may have angled mirrors to facilitate visualization of anatomical features. (b...

  10. Space Adaptation of Active Mirror Segment Concepts

    NASA Technical Reports Server (NTRS)

    Ames, Gregory H.

    1999-01-01

    This report summarizes the results of a three year effort by Blue Line Engineering Co. to advance the state of segmented mirror systems in several separate but related areas. The initial set of tasks were designed to address the issues of system level architecture, digital processing system, cluster level support structures, and advanced mirror fabrication concepts. Later in the project new tasks were added to provide support to the existing segmented mirror testbed at Marshall Space Flight Center (MSFC) in the form of upgrades to the 36 subaperture wavefront sensor. Still later, tasks were added to build and install a new system processor based on the results of the new system architecture. The project was successful in achieving a number of important results. These include the following most notable accomplishments: 1) The creation of a new modular digital processing system that is extremely capable and may be applied to a wide range of segmented mirror systems as well as many classes of Multiple Input Multiple Output (MIMO) control systems such as active structures or industrial automation. 2) A new graphical user interface was created for operation of segmented mirror systems. 3) The development of a high bit rate serial data loop that permits bi-directional flow of data to and from as many as 39 segments daisy-chained to form a single cluster of segments. 4) Upgrade of the 36 subaperture Hartmann type Wave Front Sensor (WFS) of the Phased Array Mirror, Extendible Large Aperture (PAMELA) testbed at MSFC resulting in a 40 to 5OX improvement in SNR which in turn enabled NASA personnel to achieve many significant strides in improved closed-loop system operation in 1998. 5) A new system level processor was built and delivered to MSFC for use with the PAMELA testbed. This new system featured a new graphical user interface to replace the obsolete and non-supported menu system originally delivered with the PAMELA system. The hardware featured Blue Line's new stackable processing system which included fiber optic data links, a WFS digital interface, and a very compact and reliable electronics package. The project also resulted in substantial advances in the evolution of concepts for integrated structures to be used to support clusters of segments while also serving as the means to distribute power, timing, and data communications resources. A prototype cluster base was built and delivered that would support a small array of 7 cm mirror segments. Another conceptual design effort led to substantial progress in the area of laminated silicon mirror segments. While finished mirrors were never successfully produced in this exploratory effort, the basic feasibility of the concept was established through a significant amount of experimental development in microelectronics processing laboratories at the University of Colorado in Colorado Springs. Ultimately lightweighted aluminum mirrors with replicated front surfaces were produced and delivered as part of a separate contract to develop integrated segmented mirror assemblies. Overall the project was very successful in advancing segmented mirror system architectures on several fronts. In fact, the results of this work have already served as the basic foundation for the system architectures of several projects proposed by Blue Line for different missions and customers. These include the NMSD and AMSD procurements for NASA's Next Generation Space Telescope, the HET figure maintenance system, and the 1 meter FAST telescope project.

  11. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability.

    PubMed

    Morrison, Jessica; Imboden, Matthias; Little, Thomas D C; Bishop, D J

    2015-04-06

    MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between -0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems.

  12. Current Status of the Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2002-01-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). An experimental GDM device has been constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. An initial shakedown of the device is currently underway with initial experiments slated to occur in late 2001. This device would operate at much higher plasma densities and with much larger L/D ratios than previous mirror machines. The high L/D ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. The high plasma density results in the plasma behaving much more like a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with 'loss cone' microinstabilities. The device has been constructed to allow a considerable degree of flexibility in its configuration thus permitting the experiment to grow over time without necessitating a great deal of additional fabrication.

  13. Simulation of continuously logical base cells (CL BC) with advanced functions for analog-to-digital converters and image processors

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2017-10-01

    The paper considers results of design and modeling of continuously logical base cells (CL BC) based on current mirrors (CM) with functions of preliminary analogue and subsequent analogue-digital processing for creating sensor multichannel analog-to-digital converters (SMC ADCs) and image processors (IP). For such with vector or matrix parallel inputs-outputs IP and SMC ADCs it is needed active basic photosensitive cells with an extended electronic circuit, which are considered in paper. Such basic cells and ADCs based on them have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level for linear and matrix structures. We show design of the CL BC and ADC of photocurrents and their various possible implementations and its simulations. We consider CL BC for methods of selection and rank preprocessing and linear array of ADCs with conversion to binary codes and Gray codes. In contrast to our previous works here we will dwell more on analogue preprocessing schemes for signals of neighboring cells. Let us show how the introduction of simple nodes based on current mirrors extends the range of functions performed by the image processor. Each channel of the structure consists of several digital-analog cells (DC) on 15-35 CMOS. The amount of DC does not exceed the number of digits of the formed code, and for an iteration type, only one cell of DC, complemented by the device of selection and holding (SHD), is required. One channel of ADC with iteration is based on one DC-(G) and SHD, and it has only 35 CMOS transistors. In such ADCs easily parallel code can be realized and also serial-parallel output code. The circuits and simulation results of their design with OrCAD are shown. The supply voltage of the DC is 1.8÷3.3V, the range of an input photocurrent is 0.1÷24μA, the transformation time is 20÷30nS at 6-8 bit binary or Gray codes. The general power consumption of the ADC with iteration is only 50÷100μW, if the maximum input current is 4μA. Such simple structure of linear array of ADCs with low power consumption and supply voltage 3.3V, and at the same time with good dynamic characteristics (frequency of digitization even for 1.5μm CMOS-technologies is 40÷50 MHz, and can be increased up to 10 times) and accuracy characteristics are show. The SMC ADCs based on CL BC and CM opens new prospects for realization of linear and matrix IP and photo-electronic structures with matrix operands, which are necessary for neural networks, digital optoelectronic processors, neural-fuzzy controllers.

  14. Speaking with a mirror: engagement of mirror neurons via choral speech and its derivatives induces stuttering inhibition.

    PubMed

    Kalinowski, Joseph; Saltuklaroglu, Tim

    2003-04-01

    'Choral speech', 'unison speech', or 'imitation speech' has long been known to immediately induce reflexive, spontaneous, and natural sounding fluency, even the most severe cases of stuttering. Unlike typical post-therapeutic speech, a hallmark characteristic of choral speech is the sense of 'invulnerability' to stuttering, regardless of phonetic context, situational environment, or audience size. We suggest that choral speech immediately inhibits stuttering by engaging mirror systems of neurons, innate primitive neuronal substrates that dominate the initial phases of language development due to their predisposition to reflexively imitate gestural action sequences in a fluent manner. Since mirror systems are primordial in nature, they take precedence over the much later developing stuttering pathology. We suggest that stuttering may best be ameliorated by reengaging mirror neurons via choral speech or one of its derivatives (using digital signal processing technology) to provide gestural mirrors, that are nature's way of immediately overriding the central stuttering block. Copyright 2003 Elsevier Science Ltd.

  15. Light-weighting, polishing and bonding for the SEOSAT/Ingenio telescope mirrors

    NASA Astrophysics Data System (ADS)

    Harel, Emmanuelle

    2017-11-01

    Sagem presents its recent developments in light-weighting, polishing, bonding and testing of Zerodur space mirrors equipped with pads and fixation devices. The presentation is based on Sagem's recent successful project for the SEOSAT/Ingenio satellite.

  16. Fast ion motion in the plasma part of a stellarator-mirror fission-fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.

    2016-06-01

    Recent developments of a stellarator-mirror (SM) fission-fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1-2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1-1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field, which would be spontaneously created by the ambipolar radial particle losses, can make drift trajectories closed, which substantially improves particle confinement. It is remarkable that the improvement acts both for positive and negative charges.

  17. The vertical-cavity surface-emitting laser incorporating a high contrast grating mirror as a sensing device

    NASA Astrophysics Data System (ADS)

    Marciniak, Magdalena; Gebski, Marcin; Piskorski, Łukasz; Dems, Maciej; Wasiak, M.; Panajotov, Krassimir; Lott, James A.; Czyszanowski, Tomasz

    2018-02-01

    We propose a novel optical sensing system based on one device that both emits and detects light consisting of a verticalcavity surface-emitting laser (VCSEL) incorporating an high contrast grating (HCG) as a top mirror. Since HCGs can be very sensitive to the optical properties of surrounding media, they can be used to detect gases and liquid. The presence of a gas or a liquid around an HCG mirror causes changes of the power reflectance of the mirror, which corresponds to changes of the VCSEL's cavity quality factor and current-voltage characteristic. By observation of the current-voltage characteristic we can collect information about the medium around the HCG. In this paper we investigate how the properties of the HCG mirror depend on the refractive index of the HCG surroundings. We present results of a computer simulation performed with a three-dimensional fully vectorial model. We consider silicon HCGs on silica and designed for a 1300 nm VCSEL emission wavelength. We demonstrate that our approach can be applied to other wavelengths and material systems.

  18. /III-V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices

    NASA Astrophysics Data System (ADS)

    Koeninger, Anna; Boehm, Gerhard; Meyer, Ralf; Amann, Markus-Christian

    2014-12-01

    Semiconductor devices such as vertical-cavity surface-emitting lasers (VCSELs) or semiconductor-saturable absorber mirrors (SESAMs) require high-reflection mirrors. Moreover, in VCSELs, it is beneficial to have a crystalline mirror, which is as thin as possible in order to ensure a high thermal conductivity for efficient heat-sinking of the laser. On the other hand, the wavelength tuning range of a SESAM is limited by the reflection bandwidth of its distributed Bragg reflector (DBR). Thus, broadband mirrors are preferable here. This paper reports a three-pair DBR grown by molecular beam epitaxy (MBE) using BaCaF2 and GaAs on a GaAs (100) substrate. Due to the high ratio in refractive indices of GaAs and the group-IIa-fluorides, high-reflectivity mirrors and wide bandwidths can be obtained with low total thicknesses. We also investigated growth and stability of the material BaCaF2, as well as its thermal conductivity both as single layer and Bragg reflector. Observed peeling of the layers could be avoided by implementing a fluorine treatment previous to the BaCaF2 growth.

  19. Lacan’s Construction and Deconstruction of the Double-Mirror Device

    PubMed Central

    Vanheule, Stijn

    2011-01-01

    In the 1950s Jacques Lacan developed a set-up with a concave mirror and a plane mirror, based on which he described the nature of human identification. He also formulated ideas on how psychoanalysis, qua clinical practice, responds to identification. In this paper Lacan’s schema of the two mirrors is described in detail and the theoretical line of reasoning he aimed to articulate with aid of this spatial model is discussed. It is argued that Lacan developed his double-mirror device to clarify the relationship between the drive, the ego, the ideal ego, the ego-ideal, the other, and the Other. This model helped Lacan describe the dynamics of identification and explain how psychoanalytic treatment works. He argued that by working with free association, psychoanalysis aims to articulate unconscious desire, and bypass the tendency of the ego for misrecognition. The reasons why Lacan stressed the limits of his double-mirror model and no longer considered it useful from the early 1960s onward are examined. It is argued that his concept of the gaze, which he qualifies as a so-called “object a,” prompted Lacan move away from his double-mirror set-up. In those years Lacan gradually began to study the tension between drive and signifier. The schema of the two mirrors, by contrast, focused on the tension between image and signifier, and missed the point Lacan aimed to address in this new era of his work. PMID:21949511

  20. Phase-Controlled Magnetic Mirror for Wavefront Correction

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Wollack, Edward

    2011-01-01

    Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the initial wavefront of the device and fore optics. A wavefront correction is calculated, and voltage profile for each nanowire strip is determined. The voltage is applied, modifying the local index of refraction of the dielectric under the nanowire strip. This modifies the phase of the reflected light to allow wavefront correction.

  1. Digitally-bypassed transducers: interfacing digital mockups to real-time medical equipment.

    PubMed

    Sirowy, Scott; Givargis, Tony; Vahid, Frank

    2009-01-01

    Medical device software is sometimes initially developed by using a PC simulation environment that executes models of both the device and a physiological system, and then later by connecting the actual medical device to a physical mockup of the physiological system. An alternative is to connect the medical device to a digital mockup of the physiological system, such that the device believes it is interacting with a physiological system, but in fact all interaction is entirely digital. Developing medical device software by interfacing with a digital mockup enables development without costly or dangerous physical mockups, and enables execution that is faster or slower than real time. We introduce digitally-bypassed transducers, which involve a small amount of hardware and software additions, and which enable interfacing with digital mockups.

  2. [Design of High Frequency Signal Detecting Circuit of Human Body Impedance Used for Ultrashort Wave Diathermy Apparatus].

    PubMed

    Fan, Xu; Wang, Yunguang; Cheng, Haiping; Chong, Xiaochen

    2016-02-01

    The present circuit was designed to apply to human tissue impedance tuning and matching device in ultra-short wave treatment equipment. In order to judge if the optimum status of circuit parameter between energy emitter circuit and accepter circuit is in well syntony, we designed a high frequency envelope detect circuit to coordinate with automatic adjust device of accepter circuit, which would achieve the function of human tissue impedance matching and tuning. Using the sampling coil to receive the signal of amplitude-modulated wave, we compared the voltage signal of envelope detect circuit with electric current of energy emitter circuit. The result of experimental study was that the signal, which was transformed by the envelope detect circuit, was stable and could be recognized by low speed Analog to Digital Converter (ADC) and was proportional to the electric current signal of energy emitter circuit. It could be concluded that the voltage, transformed by envelope detect circuit can mirror the real circuit state of syntony and realize the function of human tissue impedance collecting.

  3. Additive manufacturing of microfluidic glass chips

    NASA Astrophysics Data System (ADS)

    Kotz, F.; Helmer, D.; Rapp, B. E.

    2018-02-01

    Additive manufacturing has gained great interest in the microfluidic community due to the numerous channel designs which can be tested in the early phases of a lab-on-a-chip device development. High resolution additive manufacturing like microstereolithography is largely associated with polymers. Polymers are at a disadvantage compared to other materials due to their softness and low chemical resistance. Whenever high chemical and thermal resistance combined with high optical transparency is needed, glasses become the material of choice. However, glasses are difficult to structure at the microscale requiring hazardous chemicals for etching processes. In this work we present additive manufacturing and high resolution patterning of microfluidic chips in transparent fused silica glass using stereolithography and microlithography. We print an amorphous silica nanocomposite at room temperature using benchtop stereolithography printers and a custom built microlithography system based on a digital mirror device. Using microlithography we printed structures with tens of micron resolution. The printed part is then converted to a transparent fused silica glass using thermal debinding and sintering. Printing of a microfluidic chip can be done within 30 minutes. The heat treatment can be done within two days.

  4. GMAG Dissertation Award Talk: All Spin Logic -- Multimagnet Networks interacting via Spin currents

    NASA Astrophysics Data System (ADS)

    Srinivasan, Srikant

    2012-02-01

    Digital logic circuits have traditionally been based on storing information as charge on capacitors, and the stored information is transferred by controlling the flow of charge. However, electrons carry both charge and spin, the latter being responsible for magnetic phenomena. In the last few decades, there has been a significant improvement in our ability to control spins and their interaction with magnets. All Spin Logic (ASL) represents a new approach to information processing where spins and magnets now mirror the roles of charges and capacitors in conventional logic circuits. In this talk I first present a model [1] that couples non-collinear spin transport with magnet-dynamics to predict the switching behavior of the basic ASL device. This model is based on established physics and is benchmarked against available experimental data that demonstrate spin-torque switching in lateral structures. Next, the model is extended to simulate multi-magnet networks coupled with spin transport channels. The simulations suggest ASL devices have the essential characteristics for building logic circuits. In particular, (1) the example of an ASL ring oscillator [2, 3] is used to provide a clear signature of directed information transfer in cascaded ASL devices without the need for external control circuitry and (2) a simulated NAND [4] gate with fan-out of 2 suggests that ASL can implement universal logic and drive subsequent stages. Finally I will discuss how ASL based circuits could also have potential use in the design of neuromorphic circuits suitable for hybrid analog/digital information processing because of the natural mapping of ASL devices to neurons [4]. [4pt] [1] B. Behin-Aein, A. Sarkar, S. Srinivasan, and S. Datta, ``Switching Energy-Delay of All-Spin Logic devices,'' Appl. Phys. Lett., 98, 123510 (2011).[0pt] [2] S. Srinivasan, A. Sarkar, B. Behin-Aein, and S. Datta, ``All Spin Logic Device with Inbuilt Non-reciprocity,'' IEEE Trans. Magn., 47, 10 (2011).[0pt] [3] S. Srinivasan, A. Sarkar, B. Behin-Aein and S. Datta, ``Unidirectional Information transfer with cascaded All Spin Logic devices: A Ring Oscillator,'' IEEE Device Research Conference (2011).[0pt] [4] A. Sarkar, S. Srinivasan, B. Behin-Aein and S. Datta, ``Multimagnet networks interacting via spin currents'' IEEE International Electron Devices Meeting 2011. (to appear).

  5. Assessing symmetry using the mirror stand device with manual and software-assisted methods in postoperative zygomatic fracture patients

    NASA Astrophysics Data System (ADS)

    Syarif, A. N.; Bangun, K.

    2017-08-01

    Zygomatic fractures are among the most common fractures to the facial skeleton. However, because no standard and reliable method of evaluation is available to assess postoperative patients, we often rely on photographs and subjective assessments. A portable mirror stand device (MiRS), which is a new method for the standardization of photography, was developed in our institution. Used with image analysis software, this device provides a new method for evaluating outcomes after the open reduction and internal fixation of zygomatic fractures. The portable mirror stand device was set up in our outpatient clinic at the Cleft Craniofacial Center at Cipto Mangunkusumo Hospital. Photographs of 11 postoperative patients were taken using the device, and they were analyzed both manually and using image analysis software (ImageJ 1.46) for symmetry. The two methods were then compared to assess the correlation and agreement of the results. The measurements taken using the manual method and the software-assisted method did not differ significantly, which indicated the good agreement between the two methods. The results of the symmetry achieved atour center were similar to other centers in the Asian region (ΔZy = 3.4±1.5 mm, ΔBc = 2.6±1.6 mm, ΔCh = 2.3±2.4 mm) compared with (ΔZy = 3.2±1.7 mm, ΔBc = 2.6±1.6 mm, ΔCh = 2.3±2.5 mm). The treatment of zygomatic fracture a tour center achieved good results. The portable mirror stand device assisted the image analysis software (ImageJ 1.46), which could be beneficial in assessing symmetry in postoperative zygomatic fracture patients.

  6. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser.

    PubMed

    Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping

    2017-03-17

    A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing.

  7. Research of influence of nonlinear optical effects in fine-grained glasses on the transmitted pulse signal

    NASA Astrophysics Data System (ADS)

    Sultanov, Albert H.; Kanakov, Vladimir I.; Vinogradova, Irina L.

    2005-06-01

    The present paper is devoted to probing of a possibility of application of the transparent nanostructure quartz at build-up of components of all-optical networks. Nanostructure photos are obtained and diagrams of allocation of grains on the reference sizes built. Measurements of stimulated Mandelshtam-Brillouin (SSMB) scattering in such samples are carried out. It is established, that there is build-down SSMB on 7...10%. The analysis of distortions of a digital signal is theoretically carried theoretically out by action of nonlinear and dispersion optical effects on the part of managing radiation. The theoretical estimation of importance of transmission rate and reflectivity of mirrors of the interference device of management in which limits dispersion distortions will stay in the frames installed by the specifications and tecimical documentation is carried out.

  8. Design of LED projector based on gradient-index lens

    NASA Astrophysics Data System (ADS)

    Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang

    2018-01-01

    In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.

  9. High-speed and high-resolution quantitative phase imaging with digital-micromirror device-based illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Jin, Di; Yaqoob, Zahid; So, Peter T. C.

    2017-02-01

    Due to the large number of available mirrors, the patterning speed, low-cost, and compactness, digital-micromirror devices (DMDs) have been extensively used in biomedical imaging system. Recently, DMDs have been brought to the quantitative phase microscopy (QPM) field to achieve synthetic-aperture imaging and tomographic imaging. Last year, our group demonstrated using DMD for QPM, where the phase-retrieval is based on a recently developed Fourier ptychography algorithm. In our previous system, the illumination angle was varied through coding the aperture plane of the illumination system, which has a low efficiency on utilizing the laser power. In our new DMD-based QPM system, we use the Lee-holograms, which is conjugated to the sample plane, to change the illumination angles for much higher power efficiency. Multiple-angle illumination can also be achieved with this method. With this versatile system, we can achieve FPM-based high-resolution phase imaging with 250 nm lateral resolution using the Rayleigh criteria. Due to the use of a powerful laser, the imaging speed would only be limited by the camera acquisition speed. With a fast camera, we expect to achieve close to 100 fps phase imaging speed that has not been achieved in current FPM imaging systems. By adding reference beam, we also expect to achieve synthetic-aperture imaging while directly measuring the phase of the sample fields. This would reduce the phase-retrieval processing time to allow for real-time imaging applications in the future.

  10. Active modulation of laser coded systems using near infrared video projection system based on digital micromirror device (DMD)

    NASA Astrophysics Data System (ADS)

    Khalifa, Aly A.; Aly, Hussein A.; El-Sherif, Ashraf F.

    2016-02-01

    Near infrared (NIR) dynamic scene projection systems are used to perform hardware in-the-loop (HWIL) testing of a unit under test operating in the NIR band. The common and complex requirement of a class of these units is a dynamic scene that is spatio-temporal variant. In this paper we apply and investigate active external modulation of NIR laser in different ranges of temporal frequencies. We use digital micromirror devices (DMDs) integrated as the core of a NIR projection system to generate these dynamic scenes. We deploy the spatial pattern to the DMD controller to simultaneously yield the required amplitude by pulse width modulation (PWM) of the mirror elements as well as the spatio-temporal pattern. Desired modulation and coding of high stable, high power visible (Red laser at 640 nm) and NIR (Diode laser at 976 nm) using the combination of different optical masks based on DMD were achieved. These spatial versatile active coding strategies for both low and high frequencies in the range of kHz for irradiance of different targets were generated by our system and recorded using VIS-NIR fast cameras. The temporally-modulated laser pulse traces were measured using array of fast response photodetectors. Finally using a high resolution spectrometer, we evaluated the NIR dynamic scene projection system response in terms of preserving the wavelength and band spread of the NIR source after projection.

  11. Heterogeneous MEMS Device Assembly and Integration

    DTIC Science & Technology

    2014-04-01

    included a camera, a He-Ne laser, attenuation filters, folding mirrors, the micromirror under test (MUT) and the observation plane. The MUT was...non activated mirror (the initial incidence plane) was horizontal. Figure 4: Micromirror characterization setup. The static response of a beam

  12. Integrated packaging of 2D MOEMS mirrors with optical position feedback

    NASA Astrophysics Data System (ADS)

    Baumgart, M.; Lenzhofer, M.; Kremer, M. P.; Tortschanoff, A.

    2015-02-01

    Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.

  13. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  14. Simulation of Aluminum Micro-mirrors for Space Applications at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Kuhn, J. L.; Dutta, S. B.; Greenhouse, M. A.; Mott, D. B.

    2000-01-01

    Closed form and finite element models are developed to predict the device response of aluminum electrostatic torsion micro-mirrors fabricated on silicon substrate for space applications at operating temperatures of 30K. Initially, closed form expressions for electrostatic pressure arid mechanical restoring torque are used to predict the pull-in and release voltages at room temperature. Subsequently, a detailed mechanical finite element model is developed to predict stresses and vertical beam deflection induced by the electrostatic and thermal loads. An incremental and iterative solution method is used in conjunction with the nonlinear finite element model and closed form electrostatic equations to solve. the coupled electro-thermo-mechanical problem. The simulation results are compared with experimental measurements at room temperature of fabricated micro-mirror devices.

  15. Focusing light through strongly scattering media by controlling binary amplitude optimization using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Zhipeng; Zhang, Bin; Feng, Qi; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun

    2017-06-01

    Focusing light through strongly scattering media plays an important role in biomedical imaging and therapy. Here, we experimentally demonstrate light focusing through ZnO sample by controlling binary amplitude optimization using genetic algorithm. In the experiment, we use a Micro Electro-Mechanical System (MEMS)-based digital micromirror device (DMD) which is in amplitude-only modulation mode. The DMD consists of 1920×1080 square mirrors that can be independently controlled to reflect light to a desired position. We control only 160 thousand mirrors which are divided into 400 segments to modulate light focusing through the scattering media using advanced genetic algorithm. Light intensity at the target position is enhanced up to 50+/-5 times the average speckle intensity. The diameters of focusing spot can be changed ranging from 7 μm to 70 μm at arbitrary positions and multiple foci are obtained simultaneously. The spatial arrangement of multiple foci can be flexibly controlled. The advantage of DMDs lies in their switching speed up to 30 kHz, which has the potential to generate a focus in an ultra-short period of time. Our work provides a reference for the study of high speed wavefront shaping that is required in vivo tissues imaging.

  16. Long-Wavelength Beam Steerer Based on a Micro-Electromechanical Mirror

    PubMed Central

    Kos, Anthony B; Gerecht, Eyal

    2013-01-01

    Commercially available mirrors for scanning long-wavelength beams are too large for high-speed imaging. There is a need for a smaller, more agile pointing apparatus to provide images in seconds, not minutes or hours. A fast long-wavelength beam steerer uses a commercial micro-electro-mechanical system (MEMS) mirror controlled by a high-performance digital signal processor (DSP). The DSP allows high-speed raster scanning of the incident radiation, which is focused to a small waist onto the 9mm2, gold-coated, MEMS mirror surface, while simultaneously acquiring an undistorted, high spatial-resolution image of an object. The beam steerer hardware, software and performance are described. The system can also serve as a miniaturized, high-performance long-wavelength beam chopper for lock-in detection. PMID:26401426

  17. Alignment method for solar collector arrays

    DOEpatents

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  18. Shell Separation for Mirror Replication

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.

  19. A Low-Cost, Man-Portable, Free-Space Optics Communications Device for Ethernet Applications

    DTIC Science & Technology

    2004-12-01

    ix LIST OF FIGURES Figure 1. Patent for the Photophone filed by Alexander Graham Bell and Charles S. Tainter. (From Ref. [8...Tainter patented a device they called the Photophone in 1880 (Fig. 1.) By using a series of mirrors and lenses, they were able to modulate a voice...signal on to a ray of sunlight and send it to a receiver 200 meters away [8]. In the Photophone , voice sound waves were directed on to a mirror that

  20. Finite element analysis of a micromechanical deformable mirror device

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.; Nelson, W. E.; Hornbeck, L. J.

    1989-01-01

    A monolithic spatial light modulator chip was developed consisting of a large number of micrometer-scale mirror cells which can be rotated through an angle by application of an electrostatic field. The field is generated by electronics integral to the chip. The chip has application in photoreceptor based non-impact printing technologies. Chips containing over 16000 cells were fabricated, and were tested to several billions of cycles. Finite Element Analysis (FEA) of the device was used to model both the electrical and mechanical characteristics.

  1. Stellar figure sensor

    NASA Technical Reports Server (NTRS)

    Peters, W. N.

    1973-01-01

    A compilation of analytical and experimental data is presented concerning the stellar figure sensor. The sensor is an interferometric device which is located in the focal plane of an orbiting large space telescope (LST). The device was designed to perform interferometry on the optical wavefront of a single star after it has propagated through the LST. An analytical model of the device was developed and its accuracy was verified by an operating laboratory breadboard. A series of linear independent control equations were derived which define the operations required for utilizing a focal plane figure sensor in the control loop for the secondary mirror position and for active control of the primary mirror.

  2. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  3. Remote artificial eyes using micro-optical circuit for long-distance 3D imaging perception.

    PubMed

    Thammawongsa, Nopparat; Yupapin, Preecha P

    2016-01-01

    A small-scale optical device incorporated with an optical nano-antenna is designed to operate as the remote artificial eye using a tiny conjugate mirror. A basic device known as a conjugate mirror can be formed using the artificial eye device, the partially reflected light intensities from input source are interfered and the 3D whispering gallery modes formed within the ring centers, which can be modulated and propagated to the object. The image pixel is obtained at the center ring and linked with the optic nerve in the remote area via the nano-antenna, which is useful for blind people.

  4. Agreement and reading time for differently-priced devices for the digital capture of X-ray films.

    PubMed

    Salazar, Antonio José; Camacho, Juan Camilo; Aguirre, Diego Andrés

    2012-03-01

    We assessed the reliability of three digital capture devices: a film digitizer (which cost US $15,000), a flat-bed scanner (US $1800) and a digital camera (US $450). Reliability was measured as the agreement between six observers when reading images acquired from a single device and also in terms of the pair-device agreement. The images were 136 chest X-ray cases. The variables measured were the interstitial opacities distribution, interstitial patterns, nodule size and percentage pneumothorax size. The agreement between the six readers when reading images acquired from a single device was similar for the three devices. The pair-device agreements were moderate for all variables. There were significant differences in reading-time between devices: the mean reading-time for the film digitizer was 93 s, it was 59 s for the flat-bed scanner and 70 s for the digital camera. Despite the differences in their cost, there were no substantial differences in the performance of the three devices.

  5. Improved Electrostatic Optical System

    NASA Technical Reports Server (NTRS)

    Lewis, B. F.

    1984-01-01

    Device suitable for molecular epitaxial formation of semiconductor components. Improved electrostatic lens system uses cylindrical mirror as central element between two tubular lenses. Abberations introduced by mirror tend to cancel those introduced by tubular lenses. Result is order-of-magnitude improvement in chromatic or spherical compensation.

  6. A contribution to laser range imaging technology

    NASA Technical Reports Server (NTRS)

    Defigueiredo, Rui J. P.; Denney, Bradley S.

    1991-01-01

    The goal of the project was to develop a methodology for fusion of a Laser Range Imaging Device (LRID) and camera data. Our initial work in the project led to the conclusion that none of the LRID's that were available were sufficiently adequate for this purpose. Thus we spent the time and effort on the development of the new LRID with several novel features which elicit the desired fusion objectives. In what follows, we describe the device developed and built under contract. The Laser Range Imaging Device (LRID) is an instrument which scans a scene using a laser and returns range and reflection intensity data. Such a system would be extremely useful in scene analysis in industry and space applications. The LRID will be eventually implemented on board a mobile robot. The current system has several advantages over some commercially available systems. One improvement is the use of X-Y galvonometer scanning mirrors instead of polygonal mirrors present in some systems. The advantage of the X-Y scanning mirrors is that the mirror system can be programmed to provide adjustable scanning regions. For each mirror there are two controls accessible by the computer. The first is the mirror position and the second is a zoom factor which modifies the amplitude of the position of the parameter. Another advantage of the LRID is the use of a visible low power laser. Some of the commercial systems use a higher intensity invisible laser which causes safety concerns. By using a low power visible laser, not only can one see the beam and avoid direct eye contact, but also the lower intensity reduces the risk of damage to the eye, and no protective eyeware is required.

  7. Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Kim, J. E.; Lim, H.; Nam, J. W.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, H. S.; Grossan, B.; Huang, M. A.; Jeong, S.; Jung, A.; Kim, M. B.; Kim, S.-W.; Lee, J.; Linder, E. V.; Liu, T.-C.; Na, G. W.; Panasyuk, M. I.; Park, I. H.; Ripa, J.; Reglero, V.; Smoot, G. F.; Svertilov, S.; Vedenkin, N.; Yashin, I.

    2013-07-01

    The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its target within a second after triggering by an X-ray coded mask camera, which makes unnecessary a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accomplished by a 10 cm aperture Ritchey-Chrètien telescope and the focal plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200-650 nm in wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of 104-106 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340 interline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA). The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of the slewing mirror, the ICCD high voltage adjustments, power distribution, and system monitoring by interfacing to the UFFO-pathfinder. These functions are realized in the FPGA to minimize power consumption and to enhance processing time. The SMT readout electronics are designed and built to meet the spacecraft's constraints of power consumption, mass, and volume. The entire system is integrated with the SMT optics, as is the UFFO-pathfinder. The system has been tested and satisfies the conditions of launch and those of operation in space: those associated with shock and vibration and those associated with thermal and vacuum, respectively. In this paper, we present the SMT readout electronics: the design, construction, and performance, as well as the results of space environment test.

  8. Galaxy evolution spectroscopic explorer: scientific rationale

    NASA Astrophysics Data System (ADS)

    Heap, Sara; Ninkov, Zoran; Robberto, Massimo; Hull, Tony; Purves, Lloyd

    2016-07-01

    GESE is a mission concept consisting of a 1.5-m space telescope and UV multi-object slit spectrograph designed to help understand galaxy evolution in a critical era in the history of the universe, where the rate of star-formation stopped increasing and started to decline. To isolate and identify the various processes driving the evolution of these galaxies, GESE will obtain rest-frame far-UV spectra of 100,000 galaxies at redshifts, z 1-2. To obtain such a large number of spectra, multiplexing over a wide field is an absolute necessity. A slit device such as a digital micro-mirror device (DMD) or a micro-shutter array (MSA) enables spectroscopy of a hundred or more sources in a single exposure while eliminating overlapping spectra of other sources and blocking unwanted background like zodiacal light. We find that a 1.5-m space telescope with a MSA slit device combined with a custom orbit enabling long, uninterrupted exposures ( 10 hr) are optimal for this spectroscopic survey. GESE will not be operating alone in this endeavor. Together with x-ray telescopes and optical/near-IR telescopes like Subaru/Prime Focus Spectrograph, GESE will detect "feedback" from young massive stars and massive black holes (AGN's), and other drivers of galaxy evolution.

  9. Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator.

    PubMed

    Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2009-06-22

    Liquid crystal on Silicon (LCOS) spatial phase modulators offer enhanced possibilities for adaptive optics applications in terms of response velocity and fidelity. Unlike deformable mirrors, they present a capability for reproducing discontinuous phase profiles. This ability also allows an increase in the effective stroke of the device by means of phase wrapping. The latter is only limited by the diffraction related effects that become noticeable as the number of phase cycles increase. In this work we estimated the ranges of generation of the Zernike polynomials as a means for characterizing the performance of the device. Sets of images systematically degraded with the different Zernike polynomials generated using a LCOS phase modulator have been recorded and compared with their theoretical digital counterparts. For each Zernike mode, we have found that image degradation reaches a limit for a certain coefficient value; further increase in the aberration amount has no additional effect in image quality. This behavior is attributed to the intensification of the 0-order diffraction. These results have allowed determining the usable limits of the phase modulator virtually free from diffraction artifacts. The results are particularly important for visual simulation and ophthalmic testing applications, although they are equally interesting for any adaptive optics application with liquid crystal based devices.

  10. Galaxy Evolution Spectroscopic Explorer: Scientific Rationale

    NASA Technical Reports Server (NTRS)

    Heap, Sara; Ninkov, Zoran; Robberto, Massimo; Hull, Tony; Purves, Lloyd

    2016-01-01

    GESE is a mission concept consisting of a 1.5-m space telescope and UV multi-object slit spectrograph designed to help understand galaxy evolution in a critical era in the history of the universe, where the rate of star-formation stopped increasing and started to decline. To isolate and identify the various processes driving the evolution of these galaxies, GESE will obtain rest-frame far-UV spectra of 100,000 galaxies at redshifts, z approximately 1-2. To obtain such a large number of spectra, multiplexing over a wide field is an absolute necessity. A slit device such as a digital micro-mirror device (DMD) or a micro-shutter array (MSA) enables spectroscopy of a hundred or more sources in a single exposure while eliminating overlapping spectra of other sources and blocking unwanted background like zodiacal light. We find that a 1.5-m space telescope with a MSA slit device combined with a custom orbit enabling long, uninterrupted exposures (approximately 10 hr) are optimal for this spectroscopic survey. GESE will not be operating alone in this endeavor. Together with x-ray telescopes and optical/near-IR telescopes like Subaru/Prime Focus Spectrograph, GESE will detect "feedback" from young massive stars and massive black holes (AGN's), and other drivers of galaxy evolution.

  11. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.

  12. Medical devices; radiology devices; reclassification of full-field digital mammography system. Final rule.

    PubMed

    2010-11-05

    The Food and Drug Administration (FDA) is announcing the reclassification of the full-field digital mammography (FFDM) system from class III (premarket approval) to class II (special controls). The device type is intended to produce planar digital x-ray images of the entire breast; this generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component parts, and accessories. The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Full-Field Digital Mammography System." FDA is reclassifying the device into class II (special controls) because general controls along with special controls will provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.

  13. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  14. 21 CFR 886.5870 - Low-vision telescope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low-vision telescope. 886.5870 Section 886.5870...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5870 Low-vision telescope. (a) Identification. A low-vision telescope is a device that consists of an arrangement of lenses or mirrors intended for...

  15. 21 CFR 886.5870 - Low-vision telescope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-vision telescope. 886.5870 Section 886.5870...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5870 Low-vision telescope. (a) Identification. A low-vision telescope is a device that consists of an arrangement of lenses or mirrors intended for...

  16. 21 CFR 886.5870 - Low-vision telescope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low-vision telescope. 886.5870 Section 886.5870...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5870 Low-vision telescope. (a) Identification. A low-vision telescope is a device that consists of an arrangement of lenses or mirrors intended for...

  17. 21 CFR 886.5870 - Low-vision telescope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low-vision telescope. 886.5870 Section 886.5870...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5870 Low-vision telescope. (a) Identification. A low-vision telescope is a device that consists of an arrangement of lenses or mirrors intended for...

  18. 21 CFR 886.5870 - Low-vision telescope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low-vision telescope. 886.5870 Section 886.5870...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5870 Low-vision telescope. (a) Identification. A low-vision telescope is a device that consists of an arrangement of lenses or mirrors intended for...

  19. Machine Protection System for the Stepper Motor Actuated SyLMAND Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, V. R.; Dolton, W.; Wells, G.

    2010-06-23

    SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices at the Canadian Light Source, consists of a dedicated X-ray lithography beamline on a bend magnet port, and process support laboratories in a clean room environment. The beamline includes a double mirror system with flat, chromium-coated silicon mirrors operated at varying grazing angles of incidence (4 mrad to 45 mrad) for spectral adjustment by high energy cut-off. Each mirror can be independently moved by two stepper motors to precisely control the pitch and vertical position. We present in this paper the machine protection system implemented in the double mirror system tomore » allow for safe operation of the two mirrors and to avoid consequences of potential stepper motor malfunction.« less

  20. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  1. Two mirror X-ray pulse split and delay instrument for femtosecond time resolved investigations at the LCLS free electron laser facility

    DOE PAGES

    Berrah, Nora; Fang, Li; Murphy, Brendan F.; ...

    2016-05-20

    We built a two-mirror based X-ray split and delay (XRSD) device for soft X-rays at the Linac Coherent Light Source free electron laser facility. The instrument is based on an edge-polished mirror design covering an energy range of 250 eV-1800 eV and producing a delay between the two split pulses variable up to 400 femtoseconds with a sub-100 attosecond resolution. We present experimental and simulation results regarding molecular dissociation dynamics in CH3I and CO probed by the XRSD device. In conclusion, we observed ion kinetic energy and branching ratio dependence on the delay times which were reliably produced by themore » XRSD instrument.« less

  2. The pressure control technology of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Daxing

    2010-10-01

    The active stressed lap polishing technology is a kind of new polishing technology that can actively deform the lap surface to become an off-axis asphere according to different lap position on mirror surface and different angle of lap. The pressure of the lap on the mirror is an important factor affecting the grinding efficiency of the optics mirror. The active stressed lap technology using dynamic pressure control solution in the process of polishing astronomical Aspheric Mirror with faster asphericity will provide the advantage like high polishing speed and natural smooth, etc. This article puts emphases on the pressure control technology of the active stressed lap technology. It requires that the active stressed lap keeps symmetrical vertical compression on the mirrors in the process of grinding mirrors. With a background of an active stressed lap 450mm in diameter, this article gives an outline of the pressure control organization, analyzes the principle of pressure control and proposes the limitations of the present pressure control organization and the relevant solutions, designs a digital pressure controller with C32-bit RISC embedded and gives the relevant experimental test result finally.

  3. Development of advanced micromirror arrays by flip-chip assembly

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper presents the design, commercial prefabrication, modeling and testing of advanced micromirror arrays fabricated using a novel, simple and inexpensive flip-chip assembly technique. Several polar piston arrays and rectangular cantilever arrays were fabricated using flip-chip assembly by which the upper layers of the array are fabricated on a separate chip and then transferred to a receiving module containing the lower layers. Typical polar piston arrays boast 98.3% active surface area, highly planarized surfaces, low address potentials compatible with CMOS electronics, highly standardized actuation between devices, and complex segmentation of mirror surfaces which allows for custom aberration configurations. Typical cantilever arrays boast large angles of rotation as well as an average surface planarity of only 1.779 nm of RMS roughness across 100 +m mirrors. Continuous torsion devices offer stable operation through as much as six degrees of rotation while binary operation devices offer stable activated positions with as much as 20 degrees of rotation. All arrays have desirable features of costly fabrication services like five structural layers and planarized mirror surfaces, but are prefabricated in the less costly MUMPs process. Models are developed for all devices and used to compare empirical data.

  4. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  5. Realization and testing of a deployable space telescope based on tape springs

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Li, Chuang; Zhong, Peifeng; Chong, Yaqin; Jing, Nan

    2017-08-01

    For its compact size and light weight, space telescope with deployable support structure for its secondary mirror is very suitable as an optical payload for a nanosatellite or a cubesat. Firstly the realization of a prototype deployable space telescope based on tape springs is introduced in this paper. The deployable telescope is composed of primary mirror assembly, secondary mirror assembly, 6 foldable tape springs to support the secondary mirror assembly, deployable baffle, aft optic components, and a set of lock-released devices based on shape memory alloy, etc. Then the deployment errors of the secondary mirror are measured with three-coordinate measuring machine to examine the alignment accuracy between the primary mirror and the deployed secondary mirror. Finally modal identification is completed for the telescope in deployment state to investigate its dynamic behavior with impact hammer testing. The results of the experimental modal identification agree with those from finite element analysis well.

  6. Semikinematic mount for spatially constrained high aspect ratio spacecraft fold mirrors

    NASA Astrophysics Data System (ADS)

    Sahu, Rupali; Arora, Hemant; Munjal, Bhawdeep Singh

    2017-12-01

    An attempt has been made to propose a passive flexure-based semikinematic optimized mounting design for mirror fixing devices (MFDs) to mount spacecraft mirrors made of brittle materials, especially for high aspect ratio mirrors with low available space for mounting in satellites. The traditionally used tangent cantilever spiders occupy a lot of space and are suitable only for small mirrors. Similarly, the efficiency of flexural bipods is lost if not placed 120 deg apart, which is not possible in high aspect ratio mirrors. Two mounting configurations, one with collinear MFDs and the other with staggered MFDs, have been studied. An optimization problem is set up with dimensions of the proposed design as design variables and constraints imposed on structural performance of the mirror assembly. Investigations indicate that both configurations have potential applications in spacecrafts as they have provided feasible results and have satisfactory optical performance as well.

  7. 47 CFR 90.212 - Provisions relating to the use of scrambling devices and digital voice modulation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... devices and digital voice modulation. 90.212 Section 90.212 Telecommunication FEDERAL COMMUNICATIONS... Standards § 90.212 Provisions relating to the use of scrambling devices and digital voice modulation. (a... emission, subject to the provision of paragraph (d) of this section. (b) The use of digital scrambling...

  8. 47 CFR 90.212 - Provisions relating to the use of scrambling devices and digital voice modulation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... devices and digital voice modulation. 90.212 Section 90.212 Telecommunication FEDERAL COMMUNICATIONS... Standards § 90.212 Provisions relating to the use of scrambling devices and digital voice modulation. (a... emission, subject to the provision of paragraph (d) of this section. (b) The use of digital scrambling...

  9. 78 FR 29392 - Embedded Digital Devices in Safety-Related Systems, Systems Important to Safety, and Items Relied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0098] Embedded Digital Devices in Safety-Related Systems... (NRC) is issuing for public comment Draft Regulatory Issue Summary (RIS) 2013-XX, ``Embedded Digital... requirements for the quality and reliability of basic components with embedded digital devices. DATES: Submit...

  10. Comparison between different cost devices for digital capture of X-ray films: an image characteristics detection approach.

    PubMed

    Salazar, Antonio José; Camacho, Juan Camilo; Aguirre, Diego Andrés

    2012-02-01

    A common teleradiology practice is digitizing films. The costs of specialized digitizers are very high, that is why there is a trend to use conventional scanners and digital cameras. Statistical clinical studies are required to determine the accuracy of these devices, which are very difficult to carry out. The purpose of this study was to compare three capture devices in terms of their capacity to detect several image characteristics. Spatial resolution, contrast, gray levels, and geometric deformation were compared for a specialized digitizer ICR (US$ 15,000), a conventional scanner UMAX (US$ 1,800), and a digital camera LUMIX (US$ 450, but require an additional support system and a light box for about US$ 400). Test patterns printed in films were used. The results detected gray levels lower than real values for all three devices; acceptable contrast and low geometric deformation with three devices. All three devices are appropriate solutions, but a digital camera requires more operator training and more settings.

  11. Implementation of Hadamard spectroscopy using MOEMS as a coded aperture

    NASA Astrophysics Data System (ADS)

    Vasile, T.; Damian, V.; Coltuc, D.; Garoi, F.; Udrea, C.

    2015-02-01

    Although nowadays spectrometers reached a high level of performance, output signals are often weak and traditional slit spectrometers still confronts the problem of poor optical throughput, minimizing their efficiency in low light setup conditions. In order to overcome these issues, Hadamard Spectroscopy (HS) was implemented in a conventional Ebert Fastie type of spectrometer setup, by substituting the exit slit with a digital micro-mirror device (DMD) who acts like a coded aperture. The theory behind HS and the functionality of the DMD are presented. The improvements brought using HS are enlightened by means of a spectrometric experiment and higher SNR spectrum is acquired. Comparative experiments were conducted in order to emphasize the SNR differences between HS and scanning slit method. Results provide a SNR gain of 3.35 favoring HS. One can conclude the HS method effectiveness to be a great asset for low light spectrometric experiments.

  12. High throughput dual-wavelength temperature distribution imaging via compressive imaging

    NASA Astrophysics Data System (ADS)

    Yao, Xu-Ri; Lan, Ruo-Ming; Liu, Xue-Feng; Zhu, Ge; Zheng, Fu; Yu, Wen-Kai; Zhai, Guang-Jie

    2018-03-01

    Thermal imaging is an essential tool in a wide variety of research areas. In this work we demonstrate high-throughput double-wavelength temperature distribution imaging using a modified single-pixel camera without the requirement of a beam splitter (BS). A digital micro-mirror device (DMD) is utilized to display binary masks and split the incident radiation, which eliminates the necessity of a BS. Because the spatial resolution is dictated by the DMD, this thermal imaging system has the advantage of perfect spatial registration between the two images, which limits the need for the pixel registration and fine adjustments. Two bucket detectors, which measures the total light intensity reflected from the DMD, are employed in this system and yield an improvement in the detection efficiency of the narrow-band radiation. A compressive imaging algorithm is utilized to achieve under-sampling recovery. A proof-of-principle experiment was presented to demonstrate the feasibility of this structure.

  13. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser

    PubMed Central

    Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping

    2017-01-01

    A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing. PMID:28304371

  14. Optical joint transform correlation on the DMD. [deformable mirror device

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome; Juday, Richard D.

    1989-01-01

    Initial experimental investigation of the deformable mirror device (DMD) in a joint optical transform correlation is reported. The inverted cloverleaf version of the DMD, in which form the DMD is phase-mostly but of limited phase range, is used. Binarized joint Fourier transforms were calculated for similar and dissimilar objects and written onto the DMD. Inverse Fourier transform was done in a diffraction order for which the DMD shows phase-mostly modulation. Matched test objects produced sharp correlation, distinct objects did not. Further studies are warranted and they are outlined.

  15. A Novel Device for Grasping Assessment during Functional Tasks: Preliminary Results

    PubMed Central

    Rocha, Ana Carolinne Portela; Tudella, Eloisa; Pedro, Leonardo M.; Appel, Viviane Cristina Roma; da Silva, Louise Gracelli Pereira; Caurin, Glauco Augusto de Paula

    2016-01-01

    This paper presents a methodology and first results obtained in a study with a novel device that allows the analysis of grasping quality. Such a device is able to acquire motion information of upper limbs allowing kinetic of manipulation analysis as well. A pilot experiment was carried out with six groups of typically developing children aged between 5 and 10 years, with seven to eight children in each one. The device, designed to emulate a glass, has an optical system composed by one digital camera and a special convex mirror that together allow image acquisition of grasping hand posture when it is grasped and manipulated. It also carries an Inertial Measurement Unit that captures motion data as acceleration, orientation, and angular velocities. The novel instrumented object is used in our approach to evaluate functional tasks performance in quantitative terms. During tests, each child was invited to grasp the cylindrical part of the device that was placed on the top of a table, simulating the task of drinking a glass of water. In the sequence, the child was oriented to transport the device back to the starting position and release it. The task was repeated three times for each child. A grasping hand posture evaluation is presented as an example to evaluate grasping quality. Additionally, motion patterns obtained with the trials performed with the different groups are presented and discussed. This device is attractive due to its portable characteristics, the small size, and its ability to evaluate grasping form. The results may be also useful to analyze the evolution of the rehabilitation process through reach-to-grasping movement and the grasping images analysis. PMID:26942178

  16. Usability of digital media in patients with COPD: a pilot study.

    PubMed

    Cheung, Amy; Janssen, Anton; Amft, Oliver; Wouters, Emiel F M; Spruit, Martijn A

    2013-04-01

    Digital media can be integrated in tele-monitoring solutions, serving as the main interface between the patient and the caregiver. Consequently, the selection of the most appropriate digital medium for the specified target group is critical to ensure compliance with the tele-monitoring system. This pilot study aims to gather insights from patients with chronic obstructive pulmonary disease (COPD) on the ease-of-use, efficacy, effectiveness, and satisfaction of different types of digital media. Five off-the-shelf digital media devices were tested on nine patients at CIRO+ in Horn, The Netherlands. Usability was evaluated by asking patients to use each device to answer questions related to their symptoms and health status. Subsequently, patients completed a paper-based device usability questionnaire, which assessed prior experience with digital media, device dimensions, device controllability, response speed, screen readability, ease-of-use, and overall satisfaction. After testing all the devices, patients ranked the devices according to their preference. We identified the netbook as the preferred type of device due to its good controllability, fast response time, and large screen size. The smartphone was the least favorite device as patients found the size of the screen to be too small, which made it difficult to interact with. The pilot study has provided important insights to guide the selection of the most appropriate type of digital medium for implementation in tele-monitoring solutions for patients with COPD. As the digital medium is an important interface to the patient in tele-monitoring solutions, it is essential that patients feel motivated to interact with the digital medium on a regular basis.

  17. Image quality method as a possible way of in situ monitoring of in-vessel mirrors in a fusion reactor

    NASA Astrophysics Data System (ADS)

    Konovalov, V. G.; Voitsenya, V. S.; Makhov, M. N.; Ryzhkov, I. V.; Shapoval, A. N.; Solodovchenko, S. I.; Stan, A. F.; Bondarenko, V. N.; Donné, A. J. H.; Litnovsky, A.

    2016-09-01

    The plasma-facing (first) mirrors in ITER will be subject to sputtering and/or contamination with rates that will depend on the precise mirror locations. The resulting influence of both these factors can reduce the mirror reflectance (R) and worsen the transmitted image quality (IQ). This implies that monitoring the mirror quality in situ is an actual desire, and the present work is an attempt towards a solution. The method we propose is able to elucidate the reason for degradation of the mirror reflectance: sputtering by charge exchange atoms or deposition of contaminated layers. In case of deposition of contaminants, the mirror can be cleaned in situ, but a rough mirror (due to sputtering) cannot be used anymore and has to be replaced. To demonstrate the feasibility of the IQ method, it was applied to mirror specimens coated with carbon film in laboratory conditions and to mirrors coated with contaminants during exposure in fusion devices (TRIAM-1M and Tore Supra), as well as to mirrors of different materials exposed to sputtering by plasma ions in the DSM-2 plasma stand (in IPP NSC KIPT).

  18. 76 FR 59737 - In the Matter of Certain Digital Photo Frames and Image Display Devices and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... Frames and Image Display Devices and Components Thereof; Notice of Institution of Investigation... United States after importation of certain digital photo frames and image display devices and components... certain digital photo frames and image display devices and components thereof that infringe one or more of...

  19. Wide acceptance angle, high concentration ratio, optical collector

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A. (Inventor)

    1991-01-01

    A cassegrain optical system provides improved collection of off-axis light yet is still characterized by a high concentration ratio. The optical system includes a primary mirror for collecting incoming light and reflecting the light to a secondary mirror which, in turn, reflects the light to a solar cell or other radiation collection device. The primary mirror reflects incoming on-axis light onto an annular section of the secondary mirror and results in the reflection of a substantial amount of incoming off-axis light onto the remainder of the secondary mirror. Thus light which would otherwise be lost to the system will be captured by the collector. Furthermore, the off-axis sections of the secondary mirror may be of a different geometrical shape than the on-axis annular section so as to optimize the amount of off-axis light collected.

  20. Space Science

    NASA Image and Video Library

    1999-04-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.

  1. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

    PubMed Central

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.

    2014-01-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030

  2. Memory device for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included

  3. The Silhouette Zoetrope: A New Blend of Motion, Mirroring, Depth, and Size Illusions

    PubMed Central

    Veras, Christine; Pham, Quang-Cuong

    2017-01-01

    Here, we report a novel combination of visual illusions in one stimulus device, a contemporary innovation of the traditional zoetrope, called Silhouette Zoetrope. In this new device, an animation of moving silhouettes is created by sequential cutouts placed outside a rotating empty cylinder, with slits illuminating the cutouts successively from the back. This “inside-out” zoetrope incurs the following visual effects: the resulting animated figures are perceived (a) horizontally flipped, (b) inside the cylinder, and (c) appear to be of different size than the actual cutout object. Here, we explore the unique combination of illusions in this new device. We demonstrate how the geometry of the device leads to a retinal image consistent with a mirrored and distorted image and binocular disparities consistent with the perception of an object inside the cylinder. PMID:28473908

  4. Optical MEMS for Earth observation

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan

    2017-11-01

    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  5. 78 FR 16707 - Certain Digital Photo Frames and Image Display Devices and Components Thereof; Issuance of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Image Display Devices and Components Thereof; Issuance of a Limited Exclusion Order and Cease and Desist... within the United States after importation of certain digital photo frames and image display devices and...: (1) The unlicensed entry of digital photo frames and image display devices and components thereof...

  6. An assessment of the Crossed Porro Prism Resonator

    NASA Astrophysics Data System (ADS)

    See, B. A.; Fueloep, K.; Seymour, R.

    1980-08-01

    Lasers with crossed porro prism resonators for military laser rangefinder and designator applications are studied. Properties of these devices are reviewed and advantages over normal mirror resonators are examined. The theory of operating is treated and the mechanical stability and other features of the laser are examined and compared to standard mirror resonators.

  7. Development of replicated optics for AXAF-1 XDA testing

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell; Wilson, Michele; Martin, Greg

    1995-01-01

    Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in terms of fine finish and surface figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicated optic is not better than the master or mandrel from which it is made. This task identifies methods and materials for forming these extremely low roughness optical components. The objectives of this contract were to (1) prepare replication samples of electroless nickel coated aluminum, and determine process requirements for plating XDA test optic; (2) prepare and assemble plating equipment required to process a demonstration optic; (3) characterize mandrels, replicas and test samples for residual stress, surface contamination and surface roughness and figure using equipment at MSFC and; (4) provide technical expertise in establishing the processes, procedures, supplies and equipment needed to process the XDA test optics.

  8. NASA Tech Briefs, February 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics discussed include: Nearly Direct Measurement of Relative Permittivity; DCS-Neural-Network Program for Aircraft Control and Testing; Dielectric Heaters for Testing Spacecraft Nuclear Reactors; Using Doppler Shifts of GPS Signals To Measure Angular Speed; Monitoring Temperatures of Tires Using Luminescent Materials; Highly Efficient Multilayer Thermoelectric Devices; Very High-Speed Digital Video Capability for In-Flight Use; MMIC DHBT Common-Base Amplifier for 172 GHz; Modular, Microprocessor-Controlled Flash Lighting System; Generic Environment for Simulating Launch Operations; Modular Aero-Propulsion System Simulation; X-Windows Socket Widget Class; Infrastructure for Rapid Development of Java GUI Programs; Processing Raman Spectra of High-Pressure Hydrogen Flames; X-Windows Information Sharing Protocol Widget Class; Simulating Humans as Integral Parts of Spacecraft Missions; Analyzing Power Supply and Demand on the ISS; Polyimides From a-BPDA and Aromatic Diamines; Making Plant-Support Structures From Waste Plant Fiber; Large Deployable Reflectarray Antenna; Periodically Discharging, Gas-Coalescing Filter; Ion Milling On Steps for Fabrication of Nanowires; Neuro-Prosthetic Implants With Adjustable Electrode Arrays; Microfluidic Devices for Studying Biomolecular Interactions; Studying Functions of All Yeast Genes Simultaneously; Polarization Phase-Compensating Coats for Metallic Mirrors; Tunable-Bandwidth Filter System; Methodology for Designing Fault-Protection Software; and Ground-Based Localization of Mars Rovers.

  9. Modeling of stress-induced curvature in surface-micromachined devices

    NASA Astrophysics Data System (ADS)

    Cowan, William D.; Bright, Victor M.; Elvin, Alex A.; Koester, David A.

    1997-09-01

    This paper compares measured to modeled stress-induced curvature of simple piston micromirrors. Two similar flexure-beam micromirror designs were fabricate using the 11th DARPA-supported multi-user MEMS processes (MUMPs) run. The test devices vary only in the MUMPs layers used for fabrication. In one case the mirror plate is the 1.5 micrometers thick Poly2 layer. The other mirror design employs stacked Poly1 and Poly2 layers for a total thickness of 3.5 micrometers . Both mirror structures are covered with the standard MUMPs metallization of approximately 200 angstrom of chromium and 0.5 micrometers of gold. Curvature of these devices was measured to within +/- 5 nm with a computer controlled microscope laser interferometer system. As intended, the increased thickness of the stacked polysilicon layers reduces the mirror curvature by a factor of 4. The two micromirror designs were modeled using IntelliCAD, a commercial CAD system for MEMS. The basis of analysis was the finite element method. Simulated results using MUMPs 11 film parameters showed qualitative agreement with measured data, but obvious quantitative differences. Subsequent remeasurement of the metal stress and use of the new value significantly improved model agreement with the measured data. The paper explores the effect of several film parameters on the modeled structures. Implications for MEMS film metrology, and test structures are considered.

  10. MEMS scanner with 2D tilt, piston, and focus motion

    NASA Astrophysics Data System (ADS)

    Lani, S.; Bayat, D.; Petremand, Y.; Regamey, Y.-J.; Onillon, E.; Pierer, J.; Grossmann, S.

    2017-02-01

    A MEMS scanner with a high level of motion freedom has been developed. It includes a 2D mechanical tilting capability of +/- 15°, a piston motion of 50μm and a focus/defocus control system of a 2mm diameter mirror. The tilt and piston motion is achieved with an electromagnetic actuation (moving magnet) and the focus control with a deformation of the reflective surface with pneumatic actuation. This required the fabrication of at least one channel on the compliant membrane and a closed cavity below the mirror surface and connected to an external pressure regulator (vacuum to several bars). The fabrication relies on 3 SOI wafers, 2 for forming the compliant membranes and the integrated channel, and 1 to form the cavity mirror. All wafers were then assembled by fusion bonding. Pneumatic actuation for focus control can be achieved from front or back side; function of packaging concept. A reflective coating can be added at the mirror surface depending of the application. The tilt and piston actuation is achieved by electromagnetic actuation for which a magnet is fixed on the moving part of the MEMS device. Finally the MEMS device is mounted on a ceramic PCB, containing the actuation micro-coils. Concept, fabrication, and testing of the devices will be presented. A case study for application in an endoscope with an integrated high power laser and a MEMS steering mechanism will be presented.

  11. Adaptive optics with a magnetic deformable mirror: applications in the human eye

    NASA Astrophysics Data System (ADS)

    Fernandez, Enrique J.; Vabre, Laurent; Hermann, Boris; Unterhuber, Angelika; Povazay, Boris; Drexler, Wolfgang

    2006-10-01

    A novel deformable mirror using 52 independent magnetic actuators (MIRAO 52, Imagine Eyes) is presented and characterized for ophthalmic applications. The capabilities of the device to reproduce different surfaces, in particular Zernike polynomials up to the fifth order, are investigated in detail. The study of the influence functions of the deformable mirror reveals a significant linear response with the applied voltage. The correcting device also presents a high fidelity in the generation of surfaces. The ranges of production of Zernike polynomials fully cover those typically found in the human eye, even for the cases of highly aberrated eyes. Data from keratoconic eyes are confronted with the obtained ranges, showing that the deformable mirror is able to compensate for these strong aberrations. Ocular aberration correction with polychromatic light, using a near Gaussian spectrum of 130 nm full width at half maximum centered at 800 nm, in five subjects is accomplished by simultaneously using the deformable mirror and an achromatizing lens, in order to compensate for the monochromatic and chromatic aberrations, respectively. Results from living eyes, including one exhibiting 4.66 D of myopia and a near pathologic cornea with notable high order aberrations, show a practically perfect aberration correction. Benefits and applications of simultaneous monochromatic and chromatic aberration correction are finally discussed in the context of retinal imaging and vision.

  12. EUV mirror based absolute incident flux detector

    DOEpatents

    Berger, Kurt W.

    2004-03-23

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  13. 75 FR 28058 - In the Matter of Certain Digital Imaging Devices and Related Software; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... Devices and Related Software; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION... certain digital imaging devices and related software by reason of infringement of certain claims of U.S... digital imaging devices and related software that infringe one or more of claim 1-3 and 5-8 of U.S. Patent...

  14. Analysis of the Measurement and Modeling of a Digital Inverter Based on a Ferroelectric Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Sayyah, Rana; Ho, Fat D.

    2009-01-01

    The use of ferroelectric materials for digital memory devices is widely researched and implemented, but ferroelectric devices also possess unique characteristics that make them have interesting and useful properties in digital circuits. Because ferroelectric transistors possess the properties of hysteresis and nonlinearity, a digital inverter containing a FeFET has very different characteristics than one with a traditional FET. This paper characterizes the properties of the measurement and modeling of a FeFET based digital inverter. The circuit was set up using discrete FeFETs. The purpose of this circuit was not to produce a practical integrated circuit that could be inserted directly into existing digital circuits, but to explore the properties and characteristics of such a device and to look at possible future uses. Input and output characteristics are presented, as well as timing measurements. Comparisons are made between the ferroelectric device and the properties of a standard digital inverter. Potential benefits and possible uses of such a device are presented.

  15. Comparing 3-dimensional virtual methods for reconstruction in craniomaxillofacial surgery.

    PubMed

    Benazzi, Stefano; Senck, Sascha

    2011-04-01

    In the present project, the virtual reconstruction of digital osteomized zygomatic bones was simulated using different methods. A total of 15 skulls were scanned using computed tomography, and a virtual osteotomy of the left zygomatic bone was performed. Next, virtual reconstructions of the missing part using mirror imaging (with and without best fit registration) and thin plate spline interpolation functions were compared with the original left zygomatic bone. In general, reconstructions using thin plate spline warping showed better results than the mirroring approaches. Nevertheless, when dealing with skulls characterized by a low degree of asymmetry, mirror imaging and subsequent registration can be considered a valid and easy solution for zygomatic bone reconstruction. The mirroring tool is one of the possible alternatives in reconstruction, but it might not always be the optimal solution (ie, when the hemifaces are asymmetrical). In the present pilot study, we have verified that best fit registration of the mirrored unaffected hemiface and thin plate spline warping achieved better results in terms of fitting accuracy, overcoming the evident limits of the mirroring approach. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, James J.

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention,more » a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.« less

  17. Review of infrared scene projector technology-1993

    NASA Astrophysics Data System (ADS)

    Driggers, Ronald G.; Barnard, Kenneth J.; Burroughs, E. E.; Deep, Raymond G.; Williams, Owen M.

    1994-07-01

    The importance of testing IR imagers and missile seekers with realistic IR scenes warrants a review of the current technologies used in dynamic infrared scene projection. These technologies include resistive arrays, deformable mirror arrays, mirror membrane devices, liquid crystal light valves, laser writers, laser diode arrays, and CRTs. Other methods include frustrated total internal reflection, thermoelectric devices, galvanic cells, Bly cells, and vanadium dioxide. A description of each technology is presented along with a discussion of their relative benefits and disadvantages. The current state of each methodology is also summarized. Finally, the methods are compared and contrasted in terms of their performance parameters.

  18. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  19. Calibration and optimization of an x-ray bendable mirror using displacement-measuring sensors.

    PubMed

    Vannoni, Maurizio; Martín, Idoia Freijo; Music, Valerija; Sinn, Harald

    2016-07-25

    We propose a method to control and to adjust in a closed-loop a bendable x-ray mirror using displacement-measuring devices. For this purpose, the usage of capacitive and interferometric sensors is investigated and compared. We installed the sensors in a bender setup and used them to continuously measure the position and shape of the mirror in the lab. The sensors are vacuum-compatible such that the same concept can also be applied in final conditions. The measurement is used to keep the calibration of the system and to create a closed-loop control compensating for external influences: in a demonstration measurement, using a 950 mm long bendable mirror, the mirror sagitta is kept stable inside a range of 10 nm Peak-To-Valley (P-V).

  20. Method and device for remotely monitoring an area using a low peak power optical pump

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.

    2014-07-22

    A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.

  1. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  2. Current Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACS), among others.

  3. Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.

    2003-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others.

  4. 37 CFR 201.28 - Statements of Account for digital audio recording devices or media.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... digital audio recording devices or media. 201.28 Section 201.28 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT OFFICE AND PROCEDURES GENERAL PROVISIONS § 201.28 Statements of Account for digital audio recording devices or media. (a) General. This section prescribes rules...

  5. 37 CFR 201.28 - Statements of Account for digital audio recording devices or media.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... digital audio recording devices or media. 201.28 Section 201.28 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT OFFICE AND PROCEDURES GENERAL PROVISIONS § 201.28 Statements of Account for digital audio recording devices or media. (a) General. This section prescribes rules...

  6. 37 CFR 201.28 - Statements of Account for digital audio recording devices or media.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... digital audio recording devices or media. 201.28 Section 201.28 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT OFFICE AND PROCEDURES GENERAL PROVISIONS § 201.28 Statements of Account for digital audio recording devices or media. (a) General. This section prescribes rules...

  7. Virtual reality 3D headset based on DMD light modulators

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-01

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.

  8. Design, fabrication and characterization of MEMS deformable mirrors for ocular adaptive optics

    NASA Astrophysics Data System (ADS)

    Park, Hyunkyu

    This dissertation describes the design and modeling of MEMS-based bimorph deformable mirrors for adaptive optics as well as the characterization of fabricated devices. The objective of this research is to create a compact and low-cost deformable mirror that can be used as a phase corrector particularly for vision science applications. A fundamental theory of adaptive optics is reviewed, paying attention to the phase corrector which is a key component of the adaptive optics system. Several types of phase corrector are presented and the minimization of their size and cost using micro electromechanical systems (MEMS) technology is also discussed. Since this research is targeted towards the ophthalmic applications of adaptive optics, aberrations of the human eye are illustrated and the benefits of corrections by adaptive optics are explained. A couple of actuator types of the phase corrector that can be used in vision science are introduced and discussed their suitability for the purpose. The requirements to be an ideal deformable mirror for ocular adaptive optics are presented. The characteristics of bimorph deformable mirrors originally developed for laser communications are investigated in an effort to understand their suitability for ophthalmological adaptive optics applications. A Phase shifting interferometer setup is developed for optical characterization and fundamental theory of interferogram analysis is described along with wavefront reconstruction. The theoretical analysis of the bimorph deformable mirror begins with developing an analytical model of the laminated structure. The finite element models are also developed using COMSOL Multiphysics. Using the FEM results, the performance of deformable mirrors under various structure dimensions and operating conditions is analyzed for optimization. A basic theory of piezoelectricity is explained, followed by introduction of applications to MEMS devices. The material properties of single crystal PMN-PT adopted in this research are described and characterized. The fabrication process of the optimized deformable mirror is presented and advanced techniques used in the process are described in detail. The fabricated deformable mirrors are characterized and the comparison with FEM is described. Finally, the dissertation ends up with suggestions for further developments and tests for the mirror.

  9. Design and fabrication of embedded micro-mirror inserts for out-of-plane coupling in PCB-level optical interconnections

    NASA Astrophysics Data System (ADS)

    Van Erps, Jurgen; Hendrickx, Nina; Bosman, Erwin; Van Daele, Peter; Debaes, Christof; Thienpont, Hugo

    2010-05-01

    Optical interconnections have gained interest over the last years, and several approaches have been presented for the integration of optics to the printed circuit board (PCB)-level. The use of a polymer optical waveguide layer appears to be the prevailing solution to route optical signals on the PCB. The most difficult issue is the efficient out-of-plane coupling of light between surface-normal optoelectronic devices (lasers and photodetectors) and PCB-integrated waveguides. The most common approach consists of using 45° reflecting micro-mirrors. The micro-mirror performance significantly affects the total insertion loss of the optical interconnect system, and hence has a crucial role on the system's bit error rate (BER) characteristics. Several technologies have been proposed for the fabrication of 45° reflector micro-mirrors directly into waveguides. Alternatively, it is possible to make use of discrete coupling components which have to be inserted into cavities formed in the PCB-integrated waveguides. In this paper, we present a hybrid approach where we try to combine the advantages of integrated and discrete coupling mirrors, i.e. low coupling loss and maintenance of the planararity of the top surface of the optical layer, allowing the lamination of additional layers or the mounting of optoelectronic devices. The micro-mirror inserts are designed through non-sequential ray tracing simulations, including a tolerance analysis, and subsequently prototyped with Deep Proton Writing (DPW). The DPW prototypes are compatible with mass fabrication at low cost in a wide variety of high-tech plastics. The DPW micro-mirror insert is metallized and inserted in a laser ablated cavity in the optical layer and in a next step covered with cladding material. Surface roughness measurements confirm the excellent quality of the mirror facet. An average mirror loss of 0.35-dB was measured in a receiver scheme, which is the most stringent configuration. Finally, the configuration is robust, since the mirror is embedded and thus protected from environmental contamination, like dust or moisture adsorption, which makes them interesting candidates for out-of-plane coupling in high-end boards.

  10. Novel high-bandwidth bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, Michael S.; Laycock, Leslie C.; Archer, Nick J.

    2004-12-01

    Adaptive Optics (AO) is a critical underpinning technology for future laser delivery (including free-space optical communications), target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS Advanced Technology Centre is developing multi-element bimorph deformable mirrors for such an applications. Our initial designs were based on a standard construction and exhibited a resonant frequency of 1kHz with a maximum stroke of +/-20μm for an active aperture of 50mm. These devices were limited by the necessity to have a 'dead space' between the inner active area and the mirror boundary; this ensured that both the requirements for the stroke and the fixed boundary conditions could be met simultaneously. However, there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of iteration steps, we have created novel mounting arrangements that reduce dead space and thus provide the optimum trade-off between bandwidth and stroke. These schemes include supporting the mirror from underneath, rather than at its edge. As a result, models of 60mm active diameter mirrors predict a resonance in excess of 5kHz, combined with a maximum stroke greater than +/-40μm. This paper will discuss a number of different mirror designs and present experimental results for recently assembled devices.

  11. Microoptoelectromechanical system (MOEMS) based laser

    DOEpatents

    Hutchinson, Donald P.

    2003-11-04

    A method for forming a folded laser and associated laser device includes providing a waveguide substrate, micromachining the waveguide substrate to form a folded waveguide structure including a plurality of intersecting folded waveguide paths, forming a single fold mirror having a plurality of facets which bound all ends of said waveguide paths except those reserved for resonator mirrors, and disposing a pair of resonator mirrors on opposite sides of the waveguide to form a lasing cavity. A lasing material is provided in the lasing cavity. The laser can be sealed by disposing a top on the waveguide substrate. The laser can include a re-entrant cavity, where the waveguide substrate is disposed therein, the re-entrant cavity including the single fold mirror.

  12. High-speed wavefront control using MEMS micromirrors

    NASA Astrophysics Data System (ADS)

    Bifano, T. G.; Stewart, J. B.

    2005-08-01

    Over the past decade, a number of electrostatically-actuated MEMS deformable mirror devices have been used for adaptive control in beam-forming and imaging applications. One architecture that has been widely used is the silicon device developed by Boston University, consisting of a continuous or segmented mirror supported by post attachments to an array of parallel plate electrostatic actuators. MEMS deformable mirrors and segmented mirrors with up to 1024 of these actuators have been used in open loop and closed loop control systems to control wavefront errors. Frame rates as high as 11kHz have been demonstrated. Mechanically, the actuators used in this device exhibit a first-mode resonant frequency that is in the range of many tens of kilohertz up to a few hundred kilohertz. Viscous air damping has been found to limit operation at such high frequencies in air at standard pressure. Some applications in high-speed tracking and beam-forming could benefit from increased speed. In this paper, several approaches to achieving critically-damped performance with such MEMS DMs are detailed, and theoretical and experimental results are presented. One approach is to seal the MEMS DM in a full or partial vacuum environment, thereby affecting air damping. After vacuum sealing the device's predicted resonant behavior at tens of kilohertz was observed. In vacuum, the actuator's intrinsic material damping is quite small, resulting in considerable oscillation in step response. To alleviate this problem, a two-step actuation algorithm was employed. Precise control of a single actuator frequencies up to 100kHz without overshoot was demonstrated using this approach. Another approach to increasing actuation speed was to design actuators that reduce air damping effects. This is also demonstrated in the paper.

  13. Digital video system for on-line portal verification

    NASA Astrophysics Data System (ADS)

    Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott

    1990-07-01

    A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.

  14. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs

    NASA Astrophysics Data System (ADS)

    Inoue, Shunya; Kashino, Junichi; Matsutani, Akihiro; Ohtsuki, Hideo; Miyashita, Takahiro; Koyama, Fumio

    2014-09-01

    We report on the design and fabrication of a highly angular dependent high contrast grating (HCG) mirror. The modeling and experiment on amorphous-Si/SiO2 HCG clearly show the large angular dependence of reflectivity, which enables single transverse-mode operations of large-area VCSELs. We fabricate 980 nm VCSELs with the angular dependent HCG functioning as a spatial frequency filter. We obtained the single transverse mode operation of the fabricated device in contrast to conventional VCSELs with semiconductor multilayer mirrors.

  15. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  16. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  17. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y

    2013-10-07

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias.

  18. Feasibility Study of Compressive Sensing Underwater Imaging Lidar

    DTIC Science & Technology

    2014-03-28

    Texas Instruments Digital Micromirror Devices development system. In addition, through these studies, the deficiencies and/or areas of lack...device, such as the Digital Micromirror Device (DMD), to spatially modulate the laser source that illuminates the target plane. The same binary patterns...Digital Micromirror Device (DMD) Applications," Proc. of SPIE, 2003, 4985, 14-25. [8] T. E. Giddings and J. J. Shirron, "Numerical Simulation of the

  19. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  20. 37 CFR 201.27 - Initial notice of distribution of digital audio recording devices or media.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... distribution of digital audio recording devices or media. 201.27 Section 201.27 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT OFFICE AND PROCEDURES GENERAL PROVISIONS § 201.27 Initial notice of distribution of digital audio recording devices or media. (a) General. This section...

  1. 37 CFR 201.27 - Initial notice of distribution of digital audio recording devices or media.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... distribution of digital audio recording devices or media. 201.27 Section 201.27 Patents, Trademarks, and Copyrights U.S. COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT OFFICE AND PROCEDURES GENERAL PROVISIONS § 201.27 Initial notice of distribution of digital audio recording devices or media. (a) General. This...

  2. 37 CFR 201.28 - Statements of Account for digital audio recording devices or media.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... digital audio recording devices or media. 201.28 Section 201.28 Patents, Trademarks, and Copyrights U.S. COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT OFFICE AND PROCEDURES GENERAL PROVISIONS § 201.28 Statements of Account for digital audio recording devices or media. (a) General. This section prescribes rules...

  3. 37 CFR 201.27 - Initial notice of distribution of digital audio recording devices or media.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... distribution of digital audio recording devices or media. 201.27 Section 201.27 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT OFFICE AND PROCEDURES GENERAL PROVISIONS § 201.27 Initial notice of distribution of digital audio recording devices or media. (a) General. This section...

  4. 37 CFR 201.27 - Initial notice of distribution of digital audio recording devices or media.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... distribution of digital audio recording devices or media. 201.27 Section 201.27 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT OFFICE AND PROCEDURES GENERAL PROVISIONS § 201.27 Initial notice of distribution of digital audio recording devices or media. (a) General. This section...

  5. 37 CFR 201.27 - Initial notice of distribution of digital audio recording devices or media.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... distribution of digital audio recording devices or media. 201.27 Section 201.27 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT OFFICE AND PROCEDURES GENERAL PROVISIONS § 201.27 Initial notice of distribution of digital audio recording devices or media. (a) General. This section...

  6. A PSD (position sensing device) to map the shift and tilt of the SRT secondary mirror

    NASA Astrophysics Data System (ADS)

    Pisanu, Tonino; Buffa, Franco; Concu, Raimondo; Marongiu, Pasqualino; Pili, Mauro; Poppi, Sergio; Serra, Giampaolo; Urru, Enrico; Vargiu, Gianpaolo

    2014-07-01

    The Sardinia Radio Telescope (SRT) Metrology team has started to install the initial group of devices on the new 64 meters radio-telescope. These devices will be devoted for the realization of the antenna deformation control system: an electronic inclinometer able to monitor the alidade deformations and a Position Sensing Device (PSD) able to map the secondary mirror (M2) displacements and tilts. The inclinometer is used to map the rail conditions, the azimuthal axis inclination and the thermal effects on the alidade structure. The PSD will be used to measure the secondary mirror displacements induced by the gravity and by the thermal deformations that produce shifts and tilts with respect to it s ideal optical alignment. The PSD will be traced by a laser diode installed on a mechanically stable position inside the vertex room. Preliminarly we decided to characterize excursion range of M2, in order to know if the PSD measuring range of about +/- 10 mm is enough for our purposes. We designed, built and tested an optical measuring device, based on commercial CMOS with a wider measurement range of +/- 40 mm and with a resolution of around 0.1 mm. After a laboratory characterization at the 23 meters real distance, the PSD and the laser have been installed in the antenna. In this paper we show the results of the measurements performed by moving the antenna in elevation.

  7. Wavelength tunable MEMS VCSELs for OCT imaging

    NASA Astrophysics Data System (ADS)

    Sahoo, Hitesh Kumar; Ansbæk, Thor; Ottaviano, Luisa; Semenova, Elizaveta; Hansen, Ole; Yvind, Kresten

    2018-02-01

    MEMS VCSELs are one of the most promising swept source (SS) lasers for optical coherence tomography (OCT) and one of the best candidates for future integration with endoscopes, surgical probes and achieving an integrated OCT system. However, the current MEMS-based SS are processed on the III-V wafers, which are small, expensive and challenging to work with. Furthermore, the actuating part, i.e., the MEMS, is on the top of the structure which causes a strong dependence on packaging to decrease its sensitivity to the operating environment. This work addresses these design drawbacks and proposes a novel design framework. The proposed device uses a high contrast grating mirror on a Si MEMS stage as the bottom mirror, all of which is defined in an SOI wafer. The SOI wafer is then bonded to an InP III-V wafer with the desired active layers, thereby sealing the MEMS. Finally, the top mirror, a dielectric DBR (7 pairs of TiO2 - SiO2), is deposited on top. The new device is based on a silicon substrate with MEMS defined on a silicon membrane in an enclosed cavity. Thus the device is much more robust than the existing MEMS VCSELs. This design also enables either a two-way actuation on the MEMS or a smaller optical cavity (pull-away design), i.e., wider FSR (Free Spectral Range) to increase the wavelength sweep. Fabrication of the proposed device is outlined and the results of device characterization are reported.

  8. Magnetic switching of optical reflectivity in nanomagnet/micromirror suspensions: colloid displays as a potential alternative to liquid crystal displays.

    PubMed

    Bubenhofer, S B; Athanassiou, E K; Grass, R N; Koehler, F M; Rossier, M; Stark, W J

    2009-12-02

    Two-particle colloids containing nanomagnets and microscale mirrors can be prepared from iron oxide nanoparticles, microscale metal flakes and high-density liquids stabilizing the mirror suspension against sedimentation by matching the constituent's density. The free Brownian rotation of the micromirrors can be magnetically controlled through an anisotropic change in impulse transport arising from impacts of the magnetic nanoparticles onto the anisotropic flakes. The resulting rapid mirror orientation allows large changes in light transmission and switchable optical reflectivity. The preparation of a passive display was conceptually demonstrated through colloid confinement in a planar cavity over an array of individually addressable solenoids and resulted in 4 x 4 digit displays with a reaction time of less than 100 ms.

  9. Validation of Observations Obtained with a Liquid Mirror Telescope by Comparison with Sloan Digital Sky Survey Observations

    NASA Astrophysics Data System (ADS)

    Borra, E. F.

    2015-06-01

    The results of a search for peculiar astronomical objects using very low resolution spectra obtained with the NASA Orbital Debris Observatory (NODO) 3 m diameter liquid mirror telescope (LMT) are compared with results of spectra obtained with the Sloan Digital Sky Survey (SDSS). The main purpose of this comparison is to verify whether observations taken with this novel type of telescope are reliable. This comparison is important because LMTs are an inexpensive novel type of telescope that is very useful for astronomical surveys, particularly surveys in the time domain, and validation of the data taken with an LMT by comparison with data from a classical telescope will validate their reliability. We start from a published data analysis that classified as peculiar only 206 of the 18,000 astronomical objects observed with the NODO LMT. A total of 29 of these 206 objects were found in the SDSS. The reliability of the NODO data can be seen through the results of the detailed analysis that, in practice, incorrectly identified less than 0.3% of the 18,000 spectra as peculiar objects, most likely because they are variable stars. We conclude that the LMT gave reliable observations, comparable to those that would have been obtained with a telescope using a glass mirror.

  10. Using MountainsMap (Digital Surf) surface analysis software as an analysis tool for x-ray mirror optical metrology data

    NASA Astrophysics Data System (ADS)

    Duffy, Alan; Yates, Brian; Takacs, Peter

    2012-09-01

    The Optical Metrology Facility at the Canadian Light Source (CLS) has recently purchased MountainsMap surface analysis software from Digital Surf and we report here our experiences with this package and its usefulness as a tool for examining metrology data of synchrotron x-ray mirrors. The package has a number of operators that are useful for determining surface roughness and slope error including compliance with ISO standards (viz. ISO 4287 and ISO 25178). The software is extensible with MATLAB scripts either by loading an m-file or by a user written script. This makes it possible to apply a custom operator to measurement data sets. Using this feature we have applied the simple six-line MATLAB code for the direct least square fitting of ellipses developed by Fitzgibbon et. al. to investigate the residual slope error of elliptical mirrors upon the removal of the best-fit-ellipse. The software includes support for many instruments (e.g. Zygo, MicroMap, etc...) and can import ASCII data (e.g. LTP data). The stitching module allows the user to assemble overlapping images and we report on our experiences with this feature applied to MicroMap surface roughness data. The power spectral density function was determined for the stitched and unstitched data and compared.

  11. An optical microsystem based on vertical silicon-air Bragg mirror for liquid substances monitoring

    NASA Astrophysics Data System (ADS)

    De Stefano, Luca; Rendina, Ivo; Rea, Ilaria; Rotiroti, Lucia; De Tommasi, Edoardo; Barillaro, Giuseppe

    2007-05-01

    In this work, an integrated optical microsystems for the continuous detection of flammable liquids has been fabricated and characterized. The proposed system is composed of a the transducer element, which is a vertical silicon/air Bragg mirror fabricated by silicon electrochemical micromachining, sealed with a cover glass anodically bonded on its top. The device has been optically characterized in presence of liquid substances of environmental interest, such as ethanol and isopropanol. The preliminary experimental results are in good agreement with the theoretical calculations and show the possibility to use the device as an optical sensor based on the change of its reflectivity spectrum.

  12. Utilizing Mobile Devices to Enrich the Learning Style of Students

    ERIC Educational Resources Information Center

    McGovern, Enda F.; Luna-Nevarez, Cuauhtemoc; Baruca, Arne

    2017-01-01

    As digital technologies evolve in education, business faculty have increased access to an extensive range of mobile devices and online applications to help them inspire students' passion for learning. Adopting new digital approaches to teaching can also enhance the learning style of students who are immersed in the use of digital devices. How can…

  13. Scholastic Journalism Teacher Use of Digital Devices and Social Networking Tools in a Poor, Largely Rural State

    ERIC Educational Resources Information Center

    Plopper, Bruce L.; Conaway, Anne Fleming

    2013-01-01

    Research showing adolescents' ever-increasing use of digital devices, combined with calls from governmental officials to incorporate more technology into classroom activities, prompted this survey of Arkansas scholastic journalism advisers. The goal was to determine how they used digital communication devices in their teaching. Results showed lack…

  14. High Bandwidth, Fine Resolution Deformable Mirror Design.

    DTIC Science & Technology

    1980-03-01

    Low Temperature Solders 68 B.6 Influence Function Parameters 68 APPENDIX C 19 Capacitance Measurement 69 ACCESSION for NTIS white Sectloo ODC Buff...Multilayer actuator: Dilatation versus applied electric field 10 Figure 3 - Multilayer actuator: Influence function 11 Figure 4 - Honeycomb device...bimorph 20 Figure 8 - Bimorph device: Influence function of a bimorph device which has a glass plate 0.20 cm thick 24 Figure 9 - Bimorph device

  15. Statics and dynamics of electrothermal micromirrors

    NASA Astrophysics Data System (ADS)

    Morrison, Jessica A.

    Adaptive and smart systems are growing in popularity as we shift toward personalization as a culture. With progressive demands on energy efficiency, it is increasingly important to focus on the utilization of energy in a novel way. This thesis investigates a microelectromechanical system (MEMS) mirror with the express intent to provide flexibility in solid state lighting (SSL). By coupling the micromirror to an optical source, the reflected light may be reshaped and directed so as to optimize the overall illumination profile. In addition, the light may be redirected in order to provide improved signal strength in visible light communications (VLC) with negligible impact on energy demands. With flexibility and full analog control in mind, the design of a fully integrated tip-tilt-piston micromirror with an additional variable focus degree of freedom is outlined. Electrothermal actuators are used to both steer the light and tune the focal length. A detailed discussion of the underlying physics behind composite beams and thermal actuators is addressed. This leads directly into an overview of the two main mirror components, namely the segmented mirror and the deflection actuators. An in-depth characterization of the dynamics of the mirror is discussed including the linearity of the thermal response. Frequency domain analysis of such a system provides insight into tunable mechanical properties such as the resonant frequency and quality factor. The degenerate resonant modes can be separated significantly. It is shown that the frequency response may be tuned by straining specific actuators and that it follows a predictable pattern. As a result, the system can be scanned at increasingly large angles. In other words, coupled mechanical modes allow variable damping and amplification. A means to determine the level of coupling is examined and the mode shape variations are tracked as a function of the tuning parameters. Finally, the applications of such a device are explored and tested. Such applications include reliable signal-to-noise ratio (SNR) enhancements in VLC of 30 dB and color tunable steerable lights using laser diodes. A brief discussion of the implications of dynamic illumination and tunable systems is juxtaposed with an explanation behind the integration of an electrothermal micromirror and an all digital driver.

  16. EPICS-based control and data acquisition for the APS slope profiler (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sullivan, Joseph; Assoufid, Lahsen; Qian, Jun; Jemian, Peter R.; Mooney, Tim; Rivers, Mark L.; Goetze, Kurt; Sluiter, Ronald L.; Lang, Keenan

    2016-09-01

    The motion control, data acquisition and analysis system for APS Slope Measuring Profiler was implemented using the Experimental Physics and Industrial Control System (EPICS). EPICS was designed as a framework with software tools and applications that provide a software infrastructure used in building distributed control systems to operate devices such as particle accelerators, large experiments and major telescopes. EPICS was chosen to implement the APS Slope Measuring Profiler because it is also applicable to single purpose systems. The control and data handling capability available in the EPICS framework provides the basic functionality needed for high precision X-ray mirror measurement. Those built in capabilities include hardware integration of high-performance motion control systems (3-axis gantry and tip-tilt stages), mirror measurement devices (autocollimator, laser spot camera) and temperature sensors. Scanning the mirror and taking measurements was accomplished with an EPICS feature (the sscan record) which synchronizes motor positioning with measurement triggers and data storage. Various mirror scanning modes were automatically configured using EPICS built-in scripting. EPICS tools also provide low-level image processing (areaDetector). Operation screens were created using EPICS-aware GUI screen development tools.

  17. Fully digital data processing during cardiovascular implantable electronic device follow-up in a high-volume tertiary center.

    PubMed

    Staudacher, Ingo; Nalpathamkalam, Asha Roy; Uhlmann, Lorenz; Illg, Claudius; Seehausen, Sebastian; Akhavanpoor, Mohammadreza; Buchauer, Anke; Geis, Nicolas; Lugenbiel, Patrick; Schweizer, Patrick A; Xynogalos, Panagiotis; Zylla, Maura M; Scholz, Eberhard; Zitron, Edgar; Katus, Hugo A; Thomas, Dierk

    2017-10-11

    Increasing numbers of patients with cardiovascular implantable electronic devices (CIEDs) and limited follow-up capacities highlight unmet challenges in clinical electrophysiology. Integrated software (MediConnect ® ) enabling fully digital processing of device interrogation data has been commercially developed to facilitate follow-up visits. We sought to assess feasibility of fully digital data processing (FDDP) during ambulatory device follow-up in a high-volume tertiary hospital to provide guidance for future users of FDDP software. A total of 391 patients (mean age, 70 years) presenting to the outpatient department for routine device follow-up were analyzed (pacemaker, 44%; implantable cardioverter defibrillator, 39%; cardiac resynchronization therapy device, 16%). Quality of data transfer and follow-up duration were compared between digital (n = 265) and manual processing of device data (n = 126). Digital data import was successful, complete and correct in 82% of cases when early software versions were used. When using the most recent software version the rate of successful digital data import increased to 100%. Software-based import of interrogation data was complete and without failure in 97% of cases. The mean duration of a follow-up visit did not differ between the two groups (digital 18.7 min vs. manual data transfer 18.2 min). FDDP software was successfully implemented into the ambulatory follow-up of patients with implanted pacemakers and defibrillators. Digital data import into electronic patient management software was feasible and supported the physician's workflow. The total duration of follow-up visits comprising technical device interrogation and clinical actions was not affected in the present tertiary center outpatient cohort.

  18. Membrane adaptive optics

    NASA Astrophysics Data System (ADS)

    Marker, Dan K.; Wilkes, James M.; Ruggiero, Eric J.; Inman, Daniel J.

    2005-08-01

    An innovative adaptive optic is discussed that provides a range of capabilities unavailable with either existing, or newly reported, research devices. It is believed that this device will be inexpensive and uncomplicated to construct and operate, with a large correction range that should dramatically relax the static and dynamic structural tolerances of a telescope. As the areal density of a telescope primary is reduced, the optimal optical figure and the structural stiffness are inherently compromised and this phenomenon will require a responsive, range-enhanced wavefront corrector. In addition to correcting for the aberrations in such innovative primary mirrors, sufficient throw remains to provide non-mechanical steering to dramatically improve the Field of regard. Time dependent changes such as thermal disturbances can also be accommodated. The proposed adaptive optic will overcome some of the issues facing conventional deformable mirrors, as well as current and proposed MEMS-based deformable mirrors and liquid crystal based adaptive optics. Such a device is scalable to meter diameter apertures, eliminates high actuation voltages with minimal power consumption, provides long throw optical path correction, provides polychromatic dispersion free operation, dramatically reduces the effects of adjacent actuator influence, and provides a nearly 100% useful aperture. This article will reveal top-level details of the proposed construction and include portions of a static, dynamic, and residual aberration analysis. This device will enable certain designs previously conceived by visionaries in the optical community.

  19. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Geels, Randall Scott

    The theory, design, fabrication, and testing of vertical-cavity surface-emitting lasers (VCSELs) is explored in depth. The design of the distributed Bragg reflector (DBR) mirrors is thoroughly treated and both analytic and numerical approaches for computing the reflectivity are covered. The electrical properties of the DBR mirrors are also considered and graded interfaces are found to be critical in reducing the series voltage drop in the mirrors. Thickness variations due to growth rate uncertainties are considered and the permissible thickness inaccuracies are discussed. Layer thickness variations of several percent can be tolerated without large changes in the threshold current. The growth of VCSELs by molecular beam epitaxy (MBE) is described in detail as is the device processing technology for broad area as well as small area devices. Results from numerous devices are reported. Broad area in-plane lasers were used to characterize the material and determine the internal parameters. Broad area VCSELs were fabricated to determine the characteristics of the VCSEL cavity. Small area VCSELs were fabricated and extensively tested. Measured and derived parameters from small area devices include: threshold current (~0.7 mA), peak output power (>3 mW), maximum operation temperature (>110^ circC), output power at 100^ circC (~0.4 mW), and linewidth (85 MHz). The near field, far field, and polarization characteristics were also measured.

  20. The GOL-NB program: further steps in multiple-mirror confinement research

    NASA Astrophysics Data System (ADS)

    Postupaev, V. V.; Batkin, V. I.; Beklemishev, A. D.; Burdakov, A. V.; Burmasov, V. S.; Chernoshtanov, I. S.; Gorbovsky, A. I.; Ivanov, I. A.; Kuklin, K. N.; Mekler, K. I.; Rovenskikh, A. F.; Sidorov, E. N.; Yurov, D. V.

    2017-03-01

    Physical and technical details of the GOL-NB project are presented. GOL-NB is a medium-scale multiple-mirror trap that is under development in the Budker Institute, Novosibirsk, Russia. This device will be created in several years as a deep conversion of the existing GOL-3 facility. It will consist of a central trap with two 0.75 MW neutral beams, two multiple-mirror solenoids, two expander tanks and a plasma gun that creates the start plasma. The central trap with the neutral beam injection-heated plasma is a compact gas-dynamic system. The multiple-mirror sections should decrease the power and particle losses along the magnetic field. The confinement improvement factor depends on plasma parameters and on the magnetic configuration in the multiple mirrors. The main physical task of GOL-NB is direct demonstration of the performance of multiple-mirror sections that will change equilibrium plasma parameters in the central trap. In this paper we discuss results of the scenario modeling and progress in the hardware.

  1. A novel ultra-planar, long-stroke and low-voltage piezoelectric micromirror

    NASA Astrophysics Data System (ADS)

    Bakke, Thor; Vogl, Andreas; Żero, Oleg; Tyholdt, Frode; Johansen, Ib-Rune; Wang, Dag

    2010-06-01

    A novel piston-type micromirror with a stroke of up to 20 µm at 20 V formed out of a silicon-on-insulator wafer with integrated piezoelectric actuators was designed, fabricated and characterized. The peak-to-valley planarity of a 2 mm diameter mirror was better than 15 nm, and tip-to-tip tilt upon actuation less than 30 nm. A resonance frequency of 9.8 kHz was measured. Analytical and finite element models were developed and compared to measurements. The design is based on a silicon-on-insulator wafer where the circular mirror is formed out of the handle silicon, thus forming a thick, highly rigid and ultra-planar mirror surface. The mirror plate is connected to a supporting frame through a membrane formed out of the device silicon layer. A piezoelectric actuator made of lead-zirconate-titanate (PZT) thin film is structured on top of the membrane, providing mirror deflection by deformation of the membrane. Two actuator designs were tested: one with a single ring and the other with a double ring providing bidirectional movement of the mirror. The fabricated mirrors were characterized by white light interferometry to determine the static and temporal response as well as mirror planarity.

  2. Micro-assembly of three-dimensional rotary MEMS mirrors

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Mills, James K.; Cleghorn, William L.

    2009-02-01

    We present a novel approach to construct three-dimensional rotary micro-mirrors, which are fundamental components to build 1×N or N×M optical switching systems. A rotary micro-mirror consists of two microparts: a rotary micro-motor and a micro-mirror. Both of the two microparts are fabricated with PolyMUMPs, a surface micromachining process. A sequential robotic microassembly process is developed to join the two microparts together to construct a threedimensional device. In order to achieve high positioning accuracy and a strong mechanical connection, the micro-mirror is joined to the micro-motor using an adhesive mechanical fastener. The mechanical fastener has self-alignment ability and provides a temporary joint between the two microparts. The adhesive bonding can create a strong permanent connection, which does not require extra supporting plates for the micro-mirror. A hybrid manipulation strategy, which includes pick-and-place and pushing-based manipulations, is utilized to manipulation the micro-mirror. The pick-andplace manipulation has the ability to globally position the micro-mirror in six degrees of freedom. The pushing-based manipulation can achieve high positioning accuracy. This microassembly approach has great flexibility and high accuracy; furthermore, it does not require extra supporting plates, which greatly simplifies the assembly process.

  3. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Chang-Diaz, F. R.

    1988-01-01

    This paper discusses a novel concept in electrodeless plasma propulsion, in which the materials problems are ameliorated by an electrodeless magnetic confinement scheme borrowed from the tandem mirror approach to controlled thermonuclear fusion. The concept also features a two-stage magnetic nozzle with an annular hypersonic coaxial gas injector near the throat. The nozzle produces hybrid plume by the coaxial injection of hypersonic neutral gas, and the gas layer thus formed protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The tandem mirror plasma propulsion facility is capable of delivering a variable I(sp). The results of numerical simulation of this concept are presented together with those from an experimental tandem-mirror plasma propulsion device.

  4. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y.

    2013-01-01

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias. PMID:24104304

  5. The Development and Optimisation of High Bandwidth Bimorph Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Rowe, D.; Laycock, L.; Griffith, M.; Archer, N.

    Our first mirror designs were based on a standard bimorph construction and exhibited a resonant frequency of 1 kHz with a maximum stroke of ±5 μm. These devices were limited by the requirement to have a "dead space" between the inner active area and the mirror boundary. This was necessary to ensure that the requirements for both the stroke and the static boundary conditions at the edge of the mirror could be met simultaneously, but there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of design iteration steps, we have created mounting arrangements that seek not only to reduce dead space, but also to improve ruggedness and temperature stability through the use of a repeatable and reliable assembly procedure. As a result, the most recently modeled mirrors display a resonance in excess of 5 kHz, combined with a maximum stroke in excess of ±10 μm. This has been achieved by virtually eliminating the "dead space" around the mirror. By careful thermal matching of the mirror and piezoelectric substrates, operation over a wide temperature range is possible. This paper will discuss the outcomes from the design study and present our initial experimental results for the most recently assembled mirror.

  6. Electrostatic artificial eyelid actuator as an analog micromirror device

    NASA Astrophysics Data System (ADS)

    Goodwin, Scott H.; Dausch, David E.; Solomon, Steven L.; Lamvik, Michael K.

    2005-05-01

    An electrostatic MEMS actuator is described for use as an analog micromirror device (AMD) for high performance, broadband, hardware-in-the-loop (HWIL) scene generation. Current state-of-the-art technology is based on resistively heated pixel arrays. As these arrays drive to the higher scene temperatures required by missile defense scenarios, the power required to drive the large format resistive arrays will ultimately become prohibitive. Existing digital micromirrors (DMD) are, in principle, capable of generating the required scene irradiances, but suffer from limited dynamic range, resolution and flicker effects. An AMD would be free of these limitations, and so represents a viable alternative for high performance UV/VIS/IR scene generation. An electrostatic flexible film actuator technology, developed for use as "artificial eyelid" shutters for focal plane sensors to protect against damaging radiation, is suitable as an AMD for analog control of projection irradiance. In shutter applications, the artificial eyelid actuator contained radius of curvature as low as 25um and operated at high voltage (>200V). Recent testing suggests that these devices are capable of analog operation as reflective microcantilever mirrors appropriate for scene projector systems. In this case, the device would possess larger radius and operate at lower voltages (20-50V). Additionally, frame rates have been measured at greater than 5kHz for continuous operation. The paper will describe the artificial eyelid technology, preliminary measurements of analog test pixels, and design aspects related to application for scene projection systems. We believe this technology will enable AMD projectors with at least 5122 spatial resolution, non-temporally-modulated output, and pixel response times of <1.25ms.

  7. Focusing short-wavelength surface plasmons by a plasmonic mirror.

    PubMed

    Ogut, Erdem; Yanik, Cenk; Kaya, Ismet Inonu; Ow-Yang, Cleva; Sendur, Kursat

    2018-05-01

    Emerging applications in nanotechnology, such as superresolution imaging, ultra-sensitive biomedical detection, and heat-assisted magnetic recording, require plasmonic devices that can generate intense optical spots beyond the diffraction limit. One of the important drawbacks of surface plasmon focusing structures is their complex design, which is significant for ease of integration with other nanostructures and fabrication at low cost. In this study, a planar plasmonic mirror without any nanoscale features is investigated that can focus surface plasmons to produce intense optical spots having lateral and vertical dimensions of λ/9.7 and λ/80, respectively. Intense optical spots beyond the diffraction limit were produced from the plasmonic parabolic mirror by exciting short-wavelength surface plasmons. The refractive index and numerical aperture of the plasmonic parabolic mirror were varied to excite short-wavelength surface plasmons. Finite-element method simulations of the plasmonic mirror and scanning near-field optical microscopy experiments have shown very good agreement.

  8. Tunable system for production of mirror and cusp configurations using chassis of permanent magnets

    NASA Astrophysics Data System (ADS)

    Hyde, Alexander; Bushmelov, Maxim; Batishchev, Oleg

    2018-03-01

    Compact arrays of permanent magnets have shown promise as replacements for electromagnets in applications requiring magnetic cusps and mirrors. An adjustable system capable of suspending and translating a pair of light, nonmagnetic chassis carrying such sources of magnetic field has been designed and constructed. Using this device to align two cylindrical chassis, strong solenoid-like domains of field, as well as classic biconic cusp and magnetic mirror topologies, are generated. Employing a pair of ring-shaped chassis instead, the superposition of their naturally-emitted cusps is demonstrated to produce sextupolar and octupolar magnetic fields.

  9. The simplest possible design for a KB microfocus mirror system?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, S. P., E-mail: steve.collins@diamond.ac.uk; Scott, S. M.; Hawkins, D. M.

    2016-07-27

    We report a design for a Kirkpatrick-Baez (KB) microfocussing mirror system. The main components are described, with emphasis on a ‘tripod’ manipulator, where we outline the required coordinate transformation calculations. The merit of this device lies in its simplicity of design, minimal degrees of freedom, and speed and ease of setup on a beamline. Test results and an example of the mirrors in use on Diamond Beamline I16, showing a high-resolution polar domain map of KTiOPO{sub 4} with a spot size of 1.25 µm × 1.5 µm, are presented.

  10. Lessons from Helen Keller: How to Make the Comics Accessible?

    PubMed

    Dupire, Jérôme; Boude, Yvan

    2017-01-01

    This paper addresses the lack of accessibility of the comics for deaf or hard-of-hearing readers. Comics are a major cultural object, used in many different contexts with, as much as different purposes (leisure, education, advertising, etc.). We report here the results of an experimentation during a communication operation, including a regular exhibition made of panels and a digital mirroring of the contents, with extra materials and information. This digital part, accessible through our institution website, is the basement of this paper.

  11. Maui Optical Tracking and Identification Facility Transition Program.

    DTIC Science & Technology

    1981-08-01

    USED) 2 OFFICE 19 LASER SUPPORT ROO 35 SERVICE CELL TECHT LIBARY 20 LASLAL 5 ATA LAB 36 UNDERGROUND WATER RESERVOIR S OFFICE 21 LOBBY 37 PUMP VAULT 8...precision at a rate of 50 samples per second on the system digital recorder along with time, housekeeping and ten selected dc channels which are recorded...with 12-bit precision at a rate of 90 samples per second (45 per mirror state). The digitally recorded ac and dc data can be retrieved post-mission and

  12. How To Improve Work In Planetarium?

    NASA Astrophysics Data System (ADS)

    Pavicic, G.

    2009-09-01

    Planetariums can provide an immersive environment for scientific education, virtual reality, and entertainment (Shaw 1998). Digital projection into domes, called "full dome projection", can be a technically challenging and expensive exercise, particularly for installation with a modest budget. Here we present an alternative full dome digital projection system, which consists of a single projector and a spherical mirror that scatter the light onto the dome surface. This approach offers many advantages over the fisheye lens alternatives, and results in a similar quality for just a fraction of costs.

  13. Design of two-DMD based zoom MW and LW dual-band IRSP using pixel fusion

    NASA Astrophysics Data System (ADS)

    Pan, Yue; Xu, Xiping; Qiao, Yang

    2018-06-01

    In order to test the anti-jamming ability of mid-wave infrared (MWIR) and long-wave infrared (LWIR) dual-band imaging system, a zoom mid-wave (MW) and long-wave (LW) dual-band infrared scene projector (IRSP) based on two-digital micro-mirror device (DMD) was designed by using a projection method of pixel fusion. Two illumination systems, which illuminate the two DMDs directly with Kohler telecentric beam respectively, were combined with projection system by a spatial layout way. The distances of projection entrance pupil and illumination exit pupil were also analyzed separately. MWIR and LWIR virtual scenes were generated respectively by two DMDs and fused by a dichroic beam combiner (DBC), resulting in two radiation distributions in projected image. The optical performance of each component was evaluated by ray tracing simulations. Apparent temperature and image contrast were demonstrated by imaging experiments. On the basis of test and simulation results, the aberrations of optical system were well corrected, and the quality of projected image meets test requirements.

  14. Fast Fourier single-pixel imaging via binary illumination.

    PubMed

    Zhang, Zibang; Wang, Xueying; Zheng, Guoan; Zhong, Jingang

    2017-09-20

    Fourier single-pixel imaging (FSI) employs Fourier basis patterns for encoding spatial information and is capable of reconstructing high-quality two-dimensional and three-dimensional images. Fourier-domain sparsity in natural scenes allows FSI to recover sharp images from undersampled data. The original FSI demonstration, however, requires grayscale Fourier basis patterns for illumination. This requirement imposes a limitation on the imaging speed as digital micro-mirror devices (DMDs) generate grayscale patterns at a low refreshing rate. In this paper, we report a new strategy to increase the speed of FSI by two orders of magnitude. In this strategy, we binarize the Fourier basis patterns based on upsampling and error diffusion dithering. We demonstrate a 20,000 Hz projection rate using a DMD and capture 256-by-256-pixel dynamic scenes at a speed of 10 frames per second. The reported technique substantially accelerates image acquisition speed of FSI. It may find broad imaging applications at wavebands that are not accessible using conventional two-dimensional image sensors.

  15. Photonic Landau levels on cones

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-05-01

    We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids.

  16. Optical measurements of the mirrors and of the interferential filter of the Metis coronagraph on Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sandri, P.; Sarra, P.; Radaelli, P.; Morea, D.; Melich, R.; Berlicki, A.; Antonucci, E.; Castronuovo, M. M.; Fineschi, S.; Naletto, G.; Nicolini, G.; Romoli, M.

    2017-08-01

    The paper describes the wavefront error measurements of the concave ellipsoidal mirrors M1 and M2, of the concave spherical mirror M0 and of the flat interferential filter IF of the Metis coronagraph. Metis is an inverted occultation coronagraph on board of the ESA Solar Orbiter mission providing a broad-band imaging of the full corona in linearly polarized visible-light (580 - 640 nm) and a narrow-band imaging of the full corona in the ultraviolet Lyman α (121.6 nm). Metis will observe the solar outer atmosphere from a close distance to the Sun as 0.28 A.U. and from up to 35deg out-of-ecliptic. The measurements of wavefront error of the mirrors and of the interferential filter of Metis have been performed in a ISO5 clean room both at component level and at assembly level minimizing, during the integration, the stress introduced by the mechanical hardware. The wavefront error measurements have been performed with a digital interferometer for mirrors M0, M1 and M2 and with a Shack-Hartmann wavefront sensor for the interferential filter.

  17. Devices, Distractions and Digital Literacy: "Bring Your Own Device" to Polytech

    ERIC Educational Resources Information Center

    Drew, Leoni; Forbes, Dianne

    2017-01-01

    The purpose of this study is to investigate the ways polytechnic students use personal mobile devices to support their learning. This study used purposive sampling and mixed methods to generate data about student ownership and use of mobile digital devices within a single institution. Findings reveal patterns of device ownership, insights into how…

  18. 1000 X Difference Between Current Displays and Capability of Human Visual System: Payoff Potential for Affordable Defense Systems

    DTIC Science & Technology

    2000-01-01

    second tier technologies: digital micromirror devices (DMD); alternating current gas plasma (ACGP); inorganic electroluminescent (EL, TFEL, AMEL... Micromirror Device (DMD) - Alternating Current Gas Plasma (ACGP) - Electroluminescent (EL, TFEL, AMEL) - Vacuum Fluorescent Display (VFD) - Inorganic Light...Instruments Digital Micromirror Device (DMD) Digital Light Processing technology and another, the Qualcomm/Hughes-JVC CRT/Liquid Crystal Light Valve

  19. A Longitudinal Study on the Uses of Mobile Tablet Devices and Changes in Digital Media Literacy of Young Adults

    ERIC Educational Resources Information Center

    Park, Sora; Burford, Sally

    2013-01-01

    This study examined whether gaining access to a new digital device enhanced the digital media literacy of young adults and what factors determine such change. Thirty-five young adults were given a mobile tablet device and observed for one year. Participants engaged in an online community, responding regularly to online surveys and discussion…

  20. Teachers' Dispositions towards the Role of Digital Devices in Play-Based Pedagogy in Early Childhood Education

    ERIC Educational Resources Information Center

    Palaiologou, Ioanna

    2016-01-01

    A body of research is emerging on early childhood education teachers' views on the integration of digital technologies in their practice. Despite evidence of the digitalisation of homes in affluent societies and children's interactions in highly mediated digital environments, few teachers so far have integrated digital devices into a play-based…

  1. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2005-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  2. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Winkelmann, Joseph P. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface is a state machine, such as an ASIC, that operates independent of a processor in communicating with the bus controller and data channels.

  3. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor); Grant, Robert L. (Inventor)

    2004-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  4. High-precision processing and detection of the high-caliber off-axis aspheric mirror

    NASA Astrophysics Data System (ADS)

    Dai, Chen; Li, Ang; Xu, Lingdi; Zhang, Yingjie

    2017-10-01

    To achieve the efficient, controllable, digital processing and high-precision detection of the high-caliber off-axis aspheric mirror, meeting the high-level development needs of the modern high-resolution, large field of space optical remote sensing camera, we carried out the research on high precision machining and testing technology of off-axis aspheric mirror. First, we forming the off-axis aspheric sample with diameter of 574mm × 302mm by milling it with milling machine, and then the intelligent robot equipment was used for off-axis aspheric high precision polishing. Surface detection of the sample will be proceed with the off-axis aspheric contact contour detection technology and offaxis non-spherical surface interference detection technology after its fine polishing using ion beam equipment. The final surface accuracy RMS is 12nm.

  5. Developing Intercultural Awareness Using Digital Storytelling

    ERIC Educational Resources Information Center

    Ribiero, Sandre P. M.

    2016-01-01

    Higher Education mirrors the shifting nature of society and work. Mobility may provide unparalleled learning opportunities for all stakeholders; however, in order to live and work in plural societies as socially responsible and intercultural knowledgeable citizens, intercultural awareness and intercultural communication skills need to be mastered.…

  6. Digital holographic profilometry of the inner surface of a pipe using a current-induced wavelength change of a laser diode.

    PubMed

    Yokota, Masayuki; Adachi, Toru

    2011-07-20

    Phase-shifting digital holography is applied to the measurement of the surface profile of the inner surface of a pipe for the detection of a hole in its wall. For surface contouring of the inner wall, a two-wavelength method involving an injection-current-induced wavelength change of a laser diode is used. To illuminate and obtain information on the inner surface, a cone-shaped mirror is set inside the pipe and moved along in a longitudinal direction. The distribution of a calculated optical path length in an experimental alignment is used to compensate for the distortion due to the misalignment of the mirror in the pipe. Using the proposed method, two pieces of metal sheet pasted on the inner wall of the pipe and a hole in the wall are detected. This shows that the three-dimensional profile of a metal plate on the inner wall of a pipe can be measured using simple image processing. © 2011 Optical Society of America

  7. Recent Advances in High-Resolution MEMS DM Fabrication and Integration

    NASA Astrophysics Data System (ADS)

    Bifano, T.; Cornelissen, S.; Bierden, P.

    2010-09-01

    Deformable mirrors fabricated using microelectromechanical systems technology (MEMS-DMs) have been studied at Boston University (BU) and developed/commercialized by Boston Micromachines Corporation (BMC) over the past decade. Recent advances that might have an impact on surveillance telescopes include demonstration of 4092 actuator DMs with continuous mirror face-sheets, and segmented DMs capable of frame rates of greater than 20kHz for devices with up to 1020 independent segments. The 4092 actuator DM, developed by BMC for the Gemini Planet Imaging GPI instrument, was recently delivered to the GPI instrument development team. Its packaging and platform development are described, and the performance results for the latest prototype devices are presented.

  8. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  9. Two-dimensional radiant energy array computers and computing devices

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1976-01-01

    Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.

  10. Digital Mammography with a Mosaic of CCD-Arrays

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); McAdoo, James A. (Inventor)

    1996-01-01

    The present invention relates generally to a mammography device and method and more particularly to a novel digital mammography device and method to detect microcalcifications of precancerous tissue. A digital mammography device uses a mosaic of electronic digital imaging arrays to scan an x-ray image. The mosaic of arrays is repositioned several times to expose different portions of the image, until the entire image is scanned. The data generated by the arrays during each exposure is stored in a computer. After the final exposure, the computer combines data of the several partial images to produce a composite of the original x-ray image. An aperture plate is used to reduce scatter and the overall exposure of the patient to x-rays. The novelty of this invention is that it provides a digital mammography device with large field coverage, high spatial resolution, scatter rejection, excellent contrast characteristics and lesion detectability under clinical conditions. This device also shields the patient from excessive radiation, can detect extremely small calcifications and allows manipulation and storage of the image.

  11. Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  12. Exposing Vital Forensic Artifacts of USB Devices in the Windows 10 Registry

    DTIC Science & Technology

    2015-06-01

    12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Digital media devices are regularly seized pursuant to criminal investigations and...ABSTRACT Digital media devices are regularly seized pursuant to criminal investigations and Microsoft Windows is the most commonly encountered... digital footprints available on seized computers that assist in re-creating a crime scene and telling the story of the events that occurred. Part of this

  13. Advanced Relay Design and Technology for Energy-Efficient Electronics

    DTIC Science & Technology

    2011-07-07

    Estimates and Unique Failure Mechanisms of the Digital Micromirror Device (DMD),” in Proceedings of the IEEE Annual International Reliability Physics...Symposium (IRPS 󈨦), pp. 9-16, March 1998. [18] A. B. Sontheimer, “Digital Micromirror Device (DMD) Hinge Memory Lifetime Reliability Modeling,” in...Mechanisms of the Digital Micromirror Device (DMD),” in Proceedings of the IEEE Annual International Reliability Physics Symposium (IRPS 󈨦), pp. 9-16

  14. Integrated Real-Time Control and Imaging System for Microbiorobotics and Nanobiostructures

    DTIC Science & Technology

    2016-01-11

    kit with a control board and ALP 4.1 basic controller suite. The digital micromirror device is the highest resolution 16:9 aspect ratio system. This...in Figure 1, consisted of the following: (1) digital micromirror device (DMD) and controller, (2) an inverted epifluorescence microscope with a flat...accompanying control board and ALP 4.1 basic controller suite. The digital micromirror device is currently the highest commercially available

  15. Advanced optical technologies for space exploration

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2007-09-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems

  16. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  17. Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon. Degree awarded by Colorado Univ., Boulder, CO

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1997-01-01

    The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating. The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A wavelength shift of 120nm with 53V applied bias was demonstrated by one device geometry using 6.27 micrometer air gap. The finesse of the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1 micrometer results in an increased wavelength tuning range of 175 nm with a CMOS compatible 4.75V.

  18. Flat Retroreflectors

    NASA Technical Reports Server (NTRS)

    Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2018-01-01

    A retroreflector device is described, which includes a lens component operable for focusing radiation, which is incident thereto at an angle of incidence. The retroreflector also includes a mirror component operable for reflecting the radiation focused by the lens component back along the angle of incidence. The lens component and/or the mirror component includes a quasi-periodic array of elements, each of which comprises a dimension smaller than a wavelength of the radiation.

  19. Flat Retroreflectors

    NASA Technical Reports Server (NTRS)

    Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    A retroreflector device is described, which includes a lens component operable for focusing radiation, which is incident thereto at an angle of incidence. The retroreflector also includes a mirror component operable for reflecting the radiation focused by the lens component back along the angle of incidence. The lens component and/or the mirror component includes a quasi-periodic array of elements, each of which comprises a dimension smaller than a wavelength of the radiation.

  20. Development of a miniature multiple reference optical coherence tomography imaging device

    NASA Astrophysics Data System (ADS)

    McNamara, Paul M.; O'Riordan, Colm; Collins, Seán.; O'Brien, Peter; Wilson, Carol; Hogan, Josh; Leahy, Martin J.

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) is a new technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short sweep of a miniature voice coil motor on which the scanning mirror is mounted. Applications of this technology include biometric security, ophthalmology, personal health monitoring and non-destructive testing. This work details early-stage development of the first iteration of a miniature MR-OCT device. This device utilizes a fiber-coupled input from an off-board superluminescent diode (SLD). Typical dimensions of the module are 40 × 57 mm, but future designs are expected to be more compact. Off-the-shelf miniature optical components, voice coil motors and photodetectors are used, with the complexity of design depending on specific applications. The photonic module can be configured as either polarized or non-polarized and can include balanced detection. The photodetectors are directly connected to a printed circuit board under the module containing a transimpedance amplifier with complimentary outputs. The results shown in this work are from the non-polarized device. Assembly of the photonic modules requires extensive planning. In choosing the optical components, Zemax simulations are performed to model the beam characteristics. The physical layout is modeled using Solidworks and each component is placed and aligned via a well-designed alignment procedure involving an active-alignment pick-and-place assembly system.

  1. Gamma ray spectroscopy employing divalent europium-doped alkaline earth halides and digital readout for accurate histogramming

    DOEpatents

    Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B.; Sturm, Benjamin W.

    2016-02-09

    According to one embodiment, a scintillator radiation detector system includes a scintillator, and a processing device for processing pulse traces corresponding to light pulses from the scintillator, where the processing device is configured to: process each pulse trace over at least two temporal windows and to use pulse digitization to improve energy resolution of the system. According to another embodiment, a scintillator radiation detector system includes a processing device configured to: fit digitized scintillation waveforms to an algorithm, perform a direct integration of fit parameters, process multiple integration windows for each digitized scintillation waveform to determine a correction factor, and apply the correction factor to each digitized scintillation waveform.

  2. Static and dynamic micro deformable mirror characterization by phase-shifting and time-averaged interferometry

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Zamkotsian, Frédéric

    2017-11-01

    The micro-opto-electro-mechanical systems (MOEMS), based on mature technologies of micro-electronics, are essential in the design of future astronomical instruments. One of these key-components is the microdeformable mirror for wave-front correction. Very challenging topics like search of exo-planets could greatly benefit from this technology. Design, realization and characterization of micro-Deformable Mirrors are under way at Laboratoire d'Astrophysique de Marseille (LAM) in collaboration with Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS). In order to measure the surface shape and the deformation parameters during operation of these devices, a high-resolution Twyman-Green interferometer has been developed. Measurements have been done on a tiltable micro-mirror (170*100μm2) designed by LAM-LAAS and realized by an American foundry, and also on an OKO deformable mirror (15mm diameter). Static characterization is made by phase shifting interferometry and dynamic measurements have been made by quantitative time-averaged interferometry. The OKO mirror has an actuator stroke of 370+/-10nm for 150V applied and its resonant frequency is 1170+/-50 Hz, and the tiltable mirror has a rotation cut-off frequency of 31+/-3 kHz.

  3. A novel plane mirror interferometer without using corner cube reflectors

    NASA Astrophysics Data System (ADS)

    Büchner, H.-J.; Jäger, G.

    2006-04-01

    The conception and properties will be introduced of an interferometer that exclusively uses plane mirrors as reflectors; thus, these interferometers correspond well to the original Michelson interferometer. First, the relationship between the interference conditions and the detection with photodiodes will be discussed using the example of known interferometers as well as reasons given for primarily using corner cube reflectors in these devices. Next, the conceptual design of the plane mirror interferometer will be presented. This type of interferometer possesses new properties which are significant for metrological and technical applications. Only one measuring beam exists between the polarizing beam splitter and the measuring mirror and this beam alone represents the Abbe axis. This property allows the significant reduction of the Abbe error. The interferometer is able to tolerate tilting on the order of about 1'. This ensures the orthogonality between the measuring beam and the measuring mirror during the measurement. This property can be used in three-dimensional measurements to erect the three measuring beams as a x-y-z Cartesian coordinate system on the basis of three orthogonal mirrors. The plane-mirror interferometer also allows non-contact measurements of planar and curved surfaces, e.g. silicon wafers.

  4. Development of a Sunspot Tracking System

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    1998-01-01

    Large solar flares produce a significant amount of energetic particles which pose a hazard for human activity in space. In the hope of understanding flare mechanisms and thus better predicting solar flares, NASA's Marshall Space Flight Center (MSFC) developed an experimental vector magnetograph (EXVM) polarimeter to measure the Sun's magnetic field. The EXVM will be used to perform ground-based solar observations and will provide a proof of concept for the design of a similar instrument for the Japanese Solar-B space mission. The EXVM typically operates for a period of several minutes. During this time there is image motion due to atmospheric fluctuation and telescope wind loading. To optimize the EXVM performance an image motion compensation device (sunspot tracker) is needed. The sunspot tracker consists of two parts, an image motion determination system and an image deflection system. For image motion determination a CCD or CID camera is used to digitize an image, than an algorithm is applied to determine the motion. This motion or error signal is sent to the image deflection system which moves the image back to its original location. Both of these systems are under development. Two algorithms are available for sunspot tracking which require the use of only one row and one column of image data. To implement these algorithms, two identical independent systems are being developed, one system for each axis of motion. Two CID cameras have been purchased; the data from each camera will be used to determine image motion for each direction. The error signal generated by the tracking algorithm will be sent to an image deflection system consisting of an actuator and a mirror constrained to move about one axis. Magnetostrictive actuators were chosen to move the mirror over piezoelectrics due to their larger driving force and larger range of motion. The actuator and mirror mounts are currently under development.

  5. Low-Cost Elimination of Plasma Lines in Raman Spectra.

    ERIC Educational Resources Information Center

    Behlow, Herbert W., Jr.; Petersen, John D.

    1985-01-01

    Describes a low-cost ($120) device which eliminates plasma lines in Raman spectra. The device consists of two prisms and two mirrors which are held in a symmetrical relationship to one another so that a particular position will allow only one wavelength to pass through on a given axis. (JN)

  6. Content-based fused off-axis object illumination direct-to-digital holography

    DOEpatents

    Price, Jeffery R.

    2006-05-02

    Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  7. 78 FR 36478 - Accessibility of User Interfaces, and Video Programming Guides and Menus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... equipment: ``digital apparatus'' and ``navigation devices.'' Specifically, section 204 applies to ``digital... apparatus, including equipment purchased at retail by a consumer to access video programming, would be..., and video programming guides, and menus provided by digital apparatus and navigation devices are...

  8. Two-dimensional designed fabrication of subwavelength grating HCG mirror on silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Hong, Kuo-Bin; Lu, Tien-Chang; He, Sailing

    2016-03-01

    We designed and fabricated a two dimensional high contrast subwavelength grating (HCG) mirrors. The computer-aided software was employed to verify the structural parameters including grating periods and filling factors. From the optimized simulation results, the designed HCG structure has a wide reflection stopband (reflectivity (R) >90%) of over 200 nm, which centered at telecommunication wavelength. The optimized HCG mirrors were fabricated by electron beam lithography and inductively coupled plasma process technique. The experimental result was almost consistent with calculated data. This achievement should have an impact on numerous photonic devices helpful attribution to the integrated HCG VCSELs in the future.

  9. Effect of mirror use on lower extremity muscle strength of patients with chronic stroke.

    PubMed

    Kim, Myoung-Kwon; Choe, Yu-Won; Shin, Young-Jun; Peng, Cheng; Choi, Eun-Hong

    2018-02-01

    [Purpose] This study examines the effect on muscle strength of lower extremity muscle strength exercise while using a mirror on the non-paretic side in patients with chronic stroke. [Subjects and Methods] Subjects were randomly assigned to a non-mirror lower extremity exercise group (n=10), a mirror lower extremity exercise group (n=10), or a mirror lower extremity muscle strength exercise group (n=10). Subjects were asked to do the exercise assigned to their group (5 sets 30 times a day, 5 times weekly for 4 weeks) with general physical therapy in the hospital. Muscle strength in the knee extensor and flexor of paretic and non-paretic side were measured using electrical muscle testing device before and after the intervention. [Results] Muscle strength significantly increased within each group after intervention. No significant differences were found among the three groups. [Conclusion] This study showed that the lower extremity muscle strength exercise of the non-paretic side using a mirror has a positive effect on muscle strength in patient with chronic stroke.

  10. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  11. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application.

    PubMed

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-03-05

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively.

  12. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application

    PubMed Central

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-01-01

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively. PMID:28273880

  13. Study on the system-level test method of digital metering in smart substation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Yang, Min; Hu, Juan; Li, Fuchao; Luo, Ruixi; Li, Jinsong; Ai, Bing

    2017-03-01

    Nowadays, the test methods of digital metering system in smart substation are used to test and evaluate the performance of a single device, but these methods can only effectively guarantee the accuracy and reliability of the measurement results of a digital metering device in a single run, it does not completely reflect the performance when each device constitutes a complete system. This paper introduced the shortages of the existing test methods. A system-level test method of digital metering in smart substation was proposed, and the feasibility of the method was proved by the actual test.

  14. Bring Your Own Device or Bring Your Own Distraction

    ERIC Educational Resources Information Center

    Laxman, Kumar; Holt, Craig

    2017-01-01

    The purpose of this exploratory case study was to investigate the utilisation of Bring Your Own Device (BYOD) technologies in the classroom to determine if students and teachers perceive that the use of a digital device increased a learner's access to learning opportunities within the classroom, and, if the use of digital devices increased their…

  15. Digital methods of recording color television images on film tape

    NASA Astrophysics Data System (ADS)

    Krivitskaya, R. Y.; Semenov, V. M.

    1985-04-01

    Three methods are now available for recording color television images on film tape, directly or after appropriate finish of signal processing. Conventional recording of images from the screens of three kinescopes with synthetic crystal face plates is still most effective for high fidelity. This method was improved by digital preprocessing of brightness color-difference signal. Frame-by-frame storage of these signals in the memory in digital form is followed by gamma and aperture correction and electronic correction of crossover distortions in the color layers of the film with fixing in accordance with specific emulsion procedures. The newer method of recording color television images with line arrays of light-emitting diodes involves dichromic superposing mirrors and a movable scanning mirror. This method allows the use of standard movie cameras, simplifies interlacing-to-linewise conversion and the mechanical equipment, and lengthens exposure time while it shortens recording time. The latest image transform method requires an audio-video recorder, a memory disk, a digital computer, and a decoder. The 9-step procedure includes preprocessing the total color television signal with reduction of noise level and time errors, followed by frame frequency conversion and setting the number of lines. The total signal is then resolved into its brightness and color-difference components and phase errors and image blurring are also reduced. After extraction of R,G,B signals and colorimetric matching of TV camera and film tape, the simultaneous R,B, B signals are converted from interlacing to sequential triades of color-quotient frames with linewise scanning at triple frequency. Color-quotient signals are recorded with an electron beam on a smoothly moving black-and-white film tape under vacuum. While digital techniques improve the signal quality and simplify the control of processes, not requiring stabilization of circuits, image processing is still analog.

  16. 77 FR 68829 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Request for Statements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-796] Certain Electronic Digital Media... electronic digital media devices and components thereof imported by respondents Samsung Electronics Co, Ltd... Samsung. FOR FURTHER INFORMATION CONTACT: Cathy Chen, Office of the General Counsel, U.S. International...

  17. Curbing Digital Distractions in the Classroom

    ERIC Educational Resources Information Center

    Seemiller, Corey

    2017-01-01

    Whether banking, communicating, watching television, or shopping, people can now do nearly anything on their personal digital devices. This digital access even extends to the college classroom where students use their personal devices for a multitude of non-class related purposes. Findings from a survey of 193 college undergraduates found that…

  18. 77 FR 74220 - Certain Digital Photo Frames and Image Display Devices and Components Thereof; Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-807] Certain Digital Photo Frames and Image Display Devices and Components Thereof; Commission Determination Not To Review an Initial... importation, and the sale within the United States after importation of certain digital photo frames and image...

  19. Mobile technology and the digitization of healthcare

    PubMed Central

    Bhavnani, Sanjeev P.; Narula, Jagat; Sengupta, Partho P.

    2016-01-01

    The convergence of science and technology in our dynamic digital era has resulted in the development of innovative digital health devices that allow easy and accurate characterization in health and disease. Technological advancements and the miniaturization of diagnostic instruments to modern smartphone-connected and mobile health (mHealth) devices such as the iECG, handheld ultrasound, and lab-on-a-chip technologies have led to increasing enthusiasm for patient care with promises to decrease healthcare costs and to improve outcomes. This ‘hype’ for mHealth has recently intersected with the ‘real world’ and is providing important insights into how patients and practitioners are utilizing digital health technologies. It is also raising important questions regarding the evidence supporting widespread device use. In this state-of-the-art review, we assess the current literature of mHealth and aim to provide a framework for the advances in mHealth by understanding the various device, patient, and clinical factors as they relate to digital health from device designs and patient engagement, to clinical workflow and device regulation. We also outline new strategies for generation and analysis of mHealth data at the individual and population-based levels. PMID:26873093

  20. Computer Science Professionals and Greek Library Science

    ERIC Educational Resources Information Center

    Dendrinos, Markos N.

    2008-01-01

    This paper attempts to present the current state of computer science penetration into librarianship in terms of both workplace and education issues. The shift from material libraries into digital libraries is mirrored in the corresponding shift from librarians into information scientists. New library data and metadata, as well as new automated…

  1. About Turn: How Object Orientation Affects Categorisation and Mental Rotation

    ERIC Educational Resources Information Center

    Milivojevic, Branka; Hamm, Jeff P.; Corballis, Michael C.

    2011-01-01

    High-density ERPs evoked by rotated alphanumeric characters were examined to determine how neural processing is affected by stimulus orientation during letter/digit classifications and during mirror/normal discriminations. The former task typically produces response times that are unaffected by stimulus orientation while the latter is thought to…

  2. High-speed schlieren videography of vortex-ring impact on a wall

    NASA Astrophysics Data System (ADS)

    Kissner, Benjamin; Hargather, Michael; Settles, Gary

    2011-11-01

    Ring vortices of approximately 20 cm diameter are generated through the use of an Airzooka toy. To make the vortex visible, it is seeded with difluoroethane gas, producing a refractive-index difference with the air. A 1-meter-diameter, single-mirror, double-pass schlieren system is used to visualize the ring-vortex motion, and also to provide the wall with which the vortex collides. High-speed imaging is provided by a Photron SA-1 digital video camera. The Airzooka is fired toward the mirror almost along the optical axis of the schlieren system, so that the view of the vortex-mirror collision is normal to the path of vortex motion. Vortex-wall interactions similar to those first observed by Walker et al. (JFM 181, 1987) are recorded at high speed. The presentation will consist of a screening and discussion of these video results.

  3. Damping system for torsion modes of mirror isolation filters in TAMA300

    NASA Astrophysics Data System (ADS)

    Arase, Y.; Takahashi, R.; Arai, K.; Tatsumi, D.; Fukushima, M.; Yamazaki, T.; Fujimoto, Masa-Katsu; Agatsuma, K.; Nakagawa, N.

    2008-07-01

    The seismic attenuation system (SAS) in TAMA300 consists of a three-legged inverted pendulum and mirror isolation filters in order to provide a high level of seismic isolation. However, the mirror isolation filters have torsion modes with long decay time which disturb the interferometer operation for about half an hour if they get excited. In order to damp the torsion modes of the filters, we constructed a digital damping system using reflective photosensors with a large linear range. This system was installed to all of four SASs. By damping of the target torsion modes, the effective quality factors of the torsion modes are reduced to less than 10 or to unmeasurable level. This system is expected to reduce the inoperative period by the torsion mode excitation, and thus will contribute to improve the duty time of the gravitational wave detector.

  4. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.

  5. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor)

    2007-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. In some embodiments, network device interfaces associated with different data channels coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  6. Three-dimensional ultrasonic scanning.

    PubMed

    Fredfeldt, K E; Holm, H H; Pedersen, J F

    1984-01-01

    Simple experiments which form the basis for a true 3-D demonstration of sectional images are presented and a method for genuine 3-D display of dynamic ultrasound images is described. Eight ultrasound images are recorded with a slightly different angulation of the transducer. The images are extracted from the video signal from a conventional ultrasound scanner and stored in eight digital memories. After recording, each image is displayed on an oscilloscope screen, which is viewed via a fast oscillating mirror. The position of the mirror determines which of the eight images are to be displayed and thereby ensures a correct spatial relationship of the images, resulting in a true 3-D scan presentation.

  7. A real-time sub-μrad laser beam tracking system

    NASA Astrophysics Data System (ADS)

    Buske, Ivo; Schragner, Ralph; Riede, Wolfgang

    2007-10-01

    We present a rugged and reliable real-time laser beam tracking system operating with a high speed, high resolution piezo-electric tip/tilt mirror. Characteristics of the piezo mirror and position sensor are investigated. An industrial programmable automation controller is used to develop a real-time digital PID controller. The controller provides a one million field programmable gate array (FPGA) to realize a high closed-loop frequency of 50 kHz. Beam tracking with a root-mean-squared accuracy better than 0.15 μrad has been laboratory confirmed. The system is intended as an add-on module for established mechanical mrad tracking systems.

  8. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  9. A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

    PubMed Central

    Wang, Wei; Chen, Jiapin; Zivkovic, Aleksandar. S.; Xie, Huikai

    2016-01-01

    A Fourier transform spectrometer (FTS) that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS) micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF) bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD) for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work. PMID:27690047

  10. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    PubMed Central

    Poole, P. L.; Krygier, A.; Cochran, G. E.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-01-01

    We describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating. Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors. PMID:27557592

  11. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    DOE PAGES

    Poole, P. L.; Krygier, A.; Cochran, G. E.; ...

    2016-08-25

    Here, we describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating.more » Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors.« less

  12. Application of biomimetics in x-ray optics

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Remisova, K.

    2017-05-01

    The principles of biomimetics were successfully applied in X ray optics in the past and recently, e.g. in Lobster-Eye optical systems. However, the recent growing knowledge of sea vision, especially of peculiar mirror eyes of scallops, crustaceans, and deep sea fishes, makes it possible to consider other such applications. One of the most important discoveries is finding of mirror eyes in deep sea fish Dolichopteryx longipes based on large large numbers of very small mirror plates organized in specific positions. This arrangement may even include principles of active optics. We report on ongoing study with focus on understanding of very specific mirror eyes of sea animals and how they may help us to design and develop special optics for scientific applications. We study the ways these mirror eyes work, what are the advantages of these peculiar eye arrangements, and whether these optics can be used in advanced devices, e. g. X-ray optics. We will briefly present and discuss the preliminary results.

  13. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.

    PubMed

    Baranec, Christoph; Dekany, Richard

    2008-10-01

    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.

  14. Mirror writing in 5- to 6-year-old children: The preferred hand is not the explanation.

    PubMed

    Fischer, Jean-Paul; Koch, Anne-Marie

    2016-01-01

    Non-pathological, spontaneous mirror writing, whether complete or partial, has long been associated with writing with the left hand and attributed to the fact that abductive writing, which most people find easier, is from right to left when people write with their left hand. However, recent research suggests another explanation: children who do not know the orientation of the letters and digits may apply an implicit right-writing rule which causes them to invert mainly left-oriented characters (e.g., J, 3). But would left-hand writers apply such a rule? The present study examines the relationship between these two explanations of mirror writing and asks whether they coexist in children who write with their left hand. Is the abductive writing explanation specific to mirror writing by left-hand writers and the implicit right-writing rule specific to right-hand writers? A comparison of 59 children who wrote with their left hand and 59 children who wrote with their right hand (matched for age and school experience) provided clear evidence against the abductive-writing explanation and in favour of the right-writing rule for both groups. Therefore, spontaneous mirror writing in typical 5- to 6-year-olds does not seem to be a function of preferred writing hand.

  15. [A Method for Selecting Self-Adoptive Chromaticity of the Projected Markers].

    PubMed

    Zhao, Shou-bo; Zhang, Fu-min; Qu, Xing-hua; Zheng, Shi-wei; Chen, Zhe

    2015-04-01

    The authors designed a self-adaptive projection system which is composed of color camera, projector and PC. In detail, digital micro-mirror device (DMD) as a spatial light modulator for the projector was introduced in the optical path to modulate the illuminant spectrum based on red, green and blue light emitting diodes (LED). However, the color visibility of active markers is affected by the screen which has unknown reflective spectrum as well. Here active markers are projected spot array. And chromaticity feature of markers is sometimes submerged in similar spectral screen. In order to enhance the color visibility of active markers relative to screen, a method for selecting self-adaptive chromaticity of the projected markers in 3D scanning metrology is described. Color camera with 3 channels limits the accuracy of device characterization. For achieving interconversion of device-independent color space and device-dependent color space, high-dimensional linear model of reflective spectrum was built. Prior training samples provide additional constraints to yield high-dimensional linear model with more than three degrees of freedom. Meanwhile, spectral power distribution of ambient light was estimated. Subsequently, markers' chromaticity in CIE color spaces was selected via maximization principle of Euclidean distance. The setting values of RGB were easily estimated via inverse transform. Finally, we implemented a typical experiment to show the performance of the proposed approach. An 24 Munsell Color Checker was used as projective screen. Color difference in the chromaticity coordinates between the active marker and the color patch was utilized to evaluate the color visibility of active markers relative to the screen. The result comparison between self-adaptive projection system and traditional diode-laser light projector was listed and discussed to highlight advantage of our proposed method.

  16. Dry immunochemical sensor for the detection of PETN vapor

    NASA Astrophysics Data System (ADS)

    Lukens, Herbert Richard

    1992-05-01

    Giaever (1973) showed that an indium semi-mirror coated with a monolayer of a substance would undergo reduced optical reflectance after incubation with a solution of the substance's antibody. He was able to see the effect with the naked eye. Lukens and Williams (1977) reversed the process by first attaching the target substance's antibody to the semi-mirror, after which the device would show a decline in optical density when exposed to a solution of the target substance. Lukens and Williams (1982) subsequently found that the device could also be used as an immunochemical film badge (IFB) to detect an airborne target substance. Early efforts to develop the IFB for the detection of airborne substances were plagued by such a high degree of performance variability that there were doubts in some quarters that an airborne target substance could bind to its antibody until Lukens (1990) demonstrated such binding in experiments with radiolabeled cocaine and morphine. Recently improved semi-mirrors and densitometry have been obtained and have led to improved performance of IFB's. As shown in this paper, IFB's can now be constructed that detect PETN vapor in a few seconds.

  17. High performance organic distributed Bragg reflector lasers fabricated by dot matrix holography.

    PubMed

    Wan, Wenqiang; Huang, Wenbin; Pu, Donglin; Qiao, Wen; Ye, Yan; Wei, Guojun; Fang, Zongbao; Zhou, Xiaohong; Chen, Linsen

    2015-12-14

    We report distributed Bragg reflector (DBR) polymer lasers fabricated using dot matrix holography. Pairs of distributed Bragg reflector mirrors with variable mirror separations are fabricated and a novel energy transfer blend consisting of a blue-emitting conjugated polymer and a red-emitting one is spin-coated onto the patterned substrate to complete the device. Under optical pumping, the device emits sing-mode lasing around 622 nm with a bandwidth of 0.41 nm. The working threshold is as low as 13.5 μJ/cm² (~1.68 kW/cm²) and the measured slope efficiency reaches 5.2%. The distributed feedback (DFB) cavity and the DBR cavity resonate at the same lasing wavelength while the DFB laser shows a much higher threshold. We further show that flexible DBR lasers can be conveniently fabricated through the UV-imprinting technique by using the patterned silica substrate as the mold. Dot matrix holography represents a versatile approach to control the number, the size, the location and the orientation of DBR mirrors, thus providing great flexibility in designing DBR lasers.

  18. A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator.

    PubMed

    Koh, Kah How; Kobayashi, Takeshi; Lee, Chengkuo

    2011-07-18

    A novel dynamic excitation of an S-shaped PZT piezoelectric actuator, which is conceptualized by having two superimposed AC voltages, is characterized in this paper through the evaluation of the 2-D scanning characteristics of an integrated silicon micromirror. The device is micromachined from a SOI wafer with a 5 μm thick Si device layer and multilayers of Pt/Ti/PZT//Pt/Ti deposited as electrode and actuation materials. A large mirror (1.65 mm x 2mm) and an S-shaped PZT actuator are formed after the backside release process. Three modes of operation are investigated: bending, torsional and mixed. The resonant frequencies obtained for bending and torsional modes are 27Hz and 70Hz respectively. The maximum measured optical deflection angles obtained at 3Vpp are ± 38.9° and ± 2.1° respectively for bending and torsional modes. Various 2-D Lissajous patterns are demonstrated by superimposing two ac sinusoidal electrical signals of different frequencies (27 Hz and 70 Hz) into one signal to be used to actuate the mirror.

  19. Multi-photon vertical cross-sectional imaging with a dynamically-balanced thin-film PZT z-axis microactuator.

    PubMed

    Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2017-10-01

    Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.

  20. Low-profile heliostat design for solar central receiver systems

    NASA Technical Reports Server (NTRS)

    Fourakis, E.; Severson, A. M.

    1977-01-01

    Heliostat designs intended to reduce costs and the effect of adverse wind loads on the devices were developed. Included was the low-profile heliostat consisting of a stiff frame with sectional focusing reflectors coupled together to turn as a unit. The entire frame is arranged to turn angularly about a center point. The ability of the heliostat to rotate about both the vertical and horizontal axes permits a central computer control system to continuously aim the sun's reflection onto a selected target. An engineering model of the basic device was built and is being tested. Control and mirror parameters, such as roughness and need for fine aiming, are being studied. The fabrication of these prototypes is in process. The model was also designed to test mirror focusing techniques, heliostat geometry, mechanical functioning, and tracking control. The model can be easily relocated to test mirror imaging on a tower from various directions. In addition to steering and aiming studies, the tests include the effects of temperature changes, wind gusting and weathering. The results of economic studies on this heliostat are also presented.

  1. Mobile Learning Devices. Essentials for Principals

    ERIC Educational Resources Information Center

    Rogers, Kipp D.

    2011-01-01

    In "Mobile Learning Devices," the author helps educators confront and overcome their fears and doubts about using mobile learning devices (MLDs) such as cell phones, personal digital assistants, MP3 players, handheld games, digital audio players, and laptops in classrooms. School policies that ban such tools are outdated, the author suggests;…

  2. Analysis of Polarizing Optical Systems for Digital Optical Computing with Symmetric Self Electrooptic Devices

    DTIC Science & Technology

    1991-03-31

    I AD-A232 768 I Annual Report Analysis of Polarizing Optical Systems for Digital Optical Computing with I ’ Symmetric Self Electrooptic Devices I To...TTU AND SuSiIU S. PUNDIN mUMBERS Polarizing Optical Systems for Digital Optical Computing with Symmetric Self Electrooptic Devices AFOSR-89-0542 C...UTION COO$ UNLIMITED 13. ABSTRACT (MAxnum00woUw Two architectural approaches have dominated the field of optical computing . The first appAch uses

  3. Terminal digit bias is not an issue for properly trained healthcare personnel using manual or semi-automated devices - biomed 2010.

    PubMed

    Butler, Kenneth R; Minor, Deborah S; Benghuzzi, Hamed A; Tucci, Michelle

    2010-01-01

    The objective of this study was to evaluate terminal digit preference in blood pressure (BP) measurements taken from a sample of clinics at a large academic health sciences center. We hypothesized that terminal digit preference would occur more frequently in BP measurements taken with manual mercury sphygmomanometry compared to those obtained with semi-automated instruments. A total of 1,393 BP measures were obtained in 16 ambulatory and inpatient sites by personnel using both mercury (n=1,286) and semi-automated (n=107) devices For the semi-automated devices, a trained observer repeated the patients BP following American Heart Association recommendations using a similar device with a known calibration history. At least two recorded systolic and diastolic blood pressures (average of two or more readings for each) were obtained for all manual mercury readings. Data were evaluated using descriptive statistics and Chi square as appropriate (SPSS software, 17.0). Overall, zero and other terminal digit preference was observed more frequently in systolic (?2 = 883.21, df = 9, p < 0.001) and diastolic readings (?2 = 1076.77, df = 9, p < 0.001) from manual instruments, while all end digits obtained by clinic staff using semi-automated devices were more evenly distributed (?2 = 8.23, df = 9, p = 0.511 for systolic and ?2 = 10.48, df = 9, p = 0.313 for diastolic). In addition to zero digit bias in mercury readings, even numbers were reported with significantly higher frequency than odd numbers. There was no detectable digit preference observed when examining semi-automated measurements by clinic staff or device type for either systolic or diastolic BP measures. These findings demonstrate that terminal digit preference was more likely to occur with manual mercury sphygmomanometry. This phenomenon was most likely the result of mercury column graduation in 2 mm Hg increments producing a higher than expected frequency of even digits.

  4. Finger-Powered Electro-Digital-Microfluidics.

    PubMed

    Peng, Cheng; Ju, Y Sungtaek

    2017-01-01

    Portable microfluidic devices are promising for point-of-care (POC) diagnosis and bio- and environmental surveillance in resource-constrained or non-laboratory environments. Lateral-flow devices, some built off paper or strings, have been widely developed but the fixed layouts of their underlying wicking/microchannel structures limit their flexibility and present challenges in implementing multistep reactions. Digital microfluidics can circumvent these difficulties by addressing discrete droplets individually. Existing approaches to digital microfluidics, however, often require bulky power supplies/batteries and high voltage circuits. We present a scheme to drive digital microfluidic devices by converting mechanical energy of human fingers to electrical energy using an array of piezoelectric elements. We describe the integration our scheme into two promising digital microfluidics platforms: one based on the electro-wetting-on-dielectric (EWOD) phenomenon and the other on the electrophoretic control of droplet (EPD). Basic operations of droplet manipulations, such as droplet transport, merging and splitting, are demonstrated using the finger-powered digital-microfluidics.

  5. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (Inventor)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  6. Picosecond pulse generation in a hybrid Q-switched laser source by using a microelectromechanical mirror.

    PubMed

    Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain

    2012-02-27

    We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.

  7. 3D mapping of turbulence: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Le Louarn, Miska; Dainty, Christopher; Paterson, Carl; Tallon, Michel

    2000-07-01

    In this paper, we present the first experimental results of the 3D mapping method. 3D mapping of turbulence is a method to remove the cone effect with multiple laser guide stars and multiple deformable mirrors. A laboratory experiment was realized to verify the theoretical predictions. The setup consisted of two turbulent phase screens (made with liquid crystal devices) and a Shack-Hartmann wavefront sensor. We describe the interaction matrix involved in reconstructing Zernike commands for multiple deformable mirror from the slope measurements made from laser guide stars. It is shown that mirror commands can indeed be reconstructed with the 3D mapping method. Limiting factors of the method, brought to light by this experiment are discussed.

  8. Asymmetrical design for non-relaxed near-UV AlGaN/GaN distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Moudakir, T.; Abid, M.; Doan, B.-T.; Demarly, E.; Gautier, S.; Orsal, G.; Jacquet, J.; Ougazzaden, A.; Genty, F.

    2010-10-01

    Towards the development of high efficient GaN-based Vertical Cavity devices, the fabrication of cracks-free high reflective semiconductor mirrors is still an issue. For near-UV operating devices, one of the best solution is the use of AlGaN/GaN materials family. With a relatively high Al molar fraction in AlGaN, a large enough index contrast can be achieved to fabricate high reflectivity mirrors. However, the lattice mismatch between AlGaN and GaN increases with the Al molar fraction and induces a lot of cracks in the structure which affect its optical and electrical properties. Moreover, for a regrowth of an active layer on the top of the mirror, it is necessary to suppress crack generations to achieve a smooth surface. In this work, asymmetrical designs were investigated for the modeling of fully-strained AlGaN/GaN distributed Bragg Reflectors with crack-free surfaces. First, the critical thickness of MOVPE-grown AlGaN on GaN-on-sapphire templates was experimentally determined and modeled. Then, several AlGaN/GaN mirrors with various Al molar fractions and asymmetry factors were simulated demonstrating that non relaxed DBRs could be obtained with adequate parameters. Finally, it has also been shown that there is a best suited Al molar fraction in AlGaN for each DBR centering wavelength.

  9. Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials.

    PubMed

    Yang, Shengyan; Tang, Chengchun; Liu, Zhe; Wang, Bo; Wang, Chun; Li, Junjie; Wang, Li; Gu, Changzhi

    2017-07-10

    Achieving high-Q-factor resonances allows dramatic enhancement of performance of many plasmonic devices. However, the excitation of high-Q-factor resonance, especially multiple high-Q-factor resonances, has been a big challenge in traditional metamaterials due to the ohmic and radiation losses. Here, we experimentally demonstrate simultaneous excitation of double extremely sharp resonances in a terahertz metamaterial composed of mirror-symmetric-broken double split ring resonators (MBDSRRs). In a regular mirror-arranged SRR array, only the low-Q-factor dipole resonance can be excited with the external electric field perpendicular to the SRR gap. Breaking the mirror-symmetry of the metamaterial leads to the occurrence of two distinct otherwise inaccessible ultrahigh-Q-factor modes, which consists of one trapped mode in addition to an octupolar mode. By tuning the asymmetry parameter, the Q factor of the trapped mode can be linearly modulated, while the Q factor of the octupolar mode can be tailored exponentially. For specific degree of asymmetry, our simulations revealed a significantly high Q factor (Q>100) for the octupolar mode, which is more than one order of magnitude larger than that of conventional metamaterials. The mirror-symmetry-broken metamaterial offers the advantage of enabling access to two distinct high-Q-factor resonances which could be exploited for ultrasensitive sensors, multiband filters, and slow light devices.

  10. OPS laser EPI design for different wavelengths

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Hader, J.; Li, H.; Kaneda, Y.; Wang, T. S.; Yarborough, M.; Koch, S. W.; Stolz, W.; Kunert, B.; Bueckers, C.; Chaterjee, S.; Hardesty, G.

    2009-02-01

    Design of optimized semiconductor optically-pumped semiconductor lasers (OPSLs) depends on many ingredients starting from the quantum wells, barrier and cladding layers all the way through to the resonant-periodic gain (RPG) and high reflectivity Bragg mirror (DBR) making up the OPSL active mirror. Accurate growth of the individual layers making up the RPG region is critical if performance degradation due to cavity misalignment is to be avoided. Optimization of the RPG+DBR structure requires knowledge of the heat generation and heating sinking of the active mirror. Nonlinear Control Strategies SimuLaseTM software, based on rigorous many-body calculations of the semiconductor optical response, allows for quantum well and barrier optimization by correlating low intensity photoluminescence spectra computed for the design, with direct experimentally measured wafer-level edge and surface PL spectra. Consequently, an OPSL device optimization procedure ideally requires a direct iterative interaction between designer and grower. In this article, we discuss the application of the many-body microscopic approach to OPSL devices lasing at 850nm, 1040nm and 2μm. The latter device involves and application of the many-body approach to mid-IR OPSLs based on antimonide materials. Finally we will present results on based on structural modifications of the epitaxial structure and/or novel material combinations that offer the potential to extend OPSL technology to new wavelength ranges.

  11. A kinematic flexure-based mechanism for precise parallel motion for the Hertz Variable-delay Polarization Modulator (VPM)

    NASA Astrophysics Data System (ADS)

    Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.

    2006-06-01

    We describe the design and construction of a Variable-delay Polarization Modulator (VPM) that has been built and integrated into the Hertz ground-based, submillimeter polarimeter at the SMTO on Mt. Graham in Arizona. VPMs allow polarization modulation by controlling the phase difference between two linear, orthogonal polarizations. This is accomplished by utilizing a grid-mirror pair with a controlled separation. The size of the gap between the mirror and the polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. The necessity of controlling the phase of the radiation across this device drives the two novel features of the VPM. First, a novel, kinematic, flexure is employed that passively maintains the parallelism of the mirror and the grid to 1.5 μm over a 150 mm diameter, with a 400 μm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. Second, the VPM uses a grid flattener that highly constrains the planarity of the polarizing grid. In doing so, the phase error across the device is minimized. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.

  12. Printed products for digital cameras and mobile devices

    NASA Astrophysics Data System (ADS)

    Fageth, Reiner; Schmidt-Sacht, Wulf

    2005-01-01

    Digital photography is no longer simply a successor to film. The digital market is now driven by additional devices such as mobile phones with camera and video functions (camphones) as well as innovative products derived from digital files. A large number of consumers do not print their images and non-printing has become the major enemy of wholesale printers, home printing suppliers and retailers. This paper addresses the challenge facing our industry, namely how to encourage the consumer to print images easily and conveniently from all types of digital media.

  13. Mobile technology and the digitization of healthcare.

    PubMed

    Bhavnani, Sanjeev P; Narula, Jagat; Sengupta, Partho P

    2016-05-07

    The convergence of science and technology in our dynamic digital era has resulted in the development of innovative digital health devices that allow easy and accurate characterization in health and disease. Technological advancements and the miniaturization of diagnostic instruments to modern smartphone-connected and mobile health (mHealth) devices such as the iECG, handheld ultrasound, and lab-on-a-chip technologies have led to increasing enthusiasm for patient care with promises to decrease healthcare costs and to improve outcomes. This 'hype' for mHealth has recently intersected with the 'real world' and is providing important insights into how patients and practitioners are utilizing digital health technologies. It is also raising important questions regarding the evidence supporting widespread device use. In this state-of-the-art review, we assess the current literature of mHealth and aim to provide a framework for the advances in mHealth by understanding the various device, patient, and clinical factors as they relate to digital health from device designs and patient engagement, to clinical workflow and device regulation. We also outline new strategies for generation and analysis of mHealth data at the individual and population-based levels. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  14. Recent Radiation Damage and Single Event Effect Results for Candidate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; LaBel, Kenneth A.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Buchner, Stephen P.; Barth, Janet L.; Kniffen, Scott D.; Seidleck, Christina M.; Marshall, Cheryl J.; hide

    2001-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy-ion induced single-event effects and proton-induced damage. Devices tested include optoelectronics, digital, analog, linear bipolar, hybrid devices, Analog-to-Digital Converters (ADCs), Digital-to-Analog Converters (DACs), and DC-DC converters, among others.

  15. Current Single Event Effects and Radiation Damage Results for Candidate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; LaBel, Kenneth A.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Kniffin, Scott D.; Poivey, Christian; Buchner, Stephen P.; Bings, John P.; Titus, Jeff L.

    2002-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects, total ionizing dose and proton-induced damage. Devices tested include optoelectronics, digital, analog, linear bipolar, hybrid devices, Analog-to-Digital Converters (ADCs), Digital-to-Analog Converters (DACs), and DC-DC converters, among others.

  16. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  17. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.

    PubMed

    Hasan, Md Mehedi; Alam, Mohammad Wajih; Wahid, Khan A; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size.

  18. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability

    PubMed Central

    Hasan, Md. Mehedi; Wahid, Khan A.; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size. PMID:27977709

  19. Fabrication and test of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.

  20. Ambient and Cryogenic Alignment Verification and Performance of the Infrared Multi-Object Spectrometer

    NASA Technical Reports Server (NTRS)

    Connelly, Joseph A.; Ohl, Raymond G.; Mink, Ronald G.; Mentzell, J. Eric; Saha, Timo T.; Tveekrem, June L.; Hylan, Jason E.; Sparr, Leroy M.; Chambers, V. John; Hagopian, John G.

    2003-01-01

    The Infrared Multi-Object Spectrometer (IRMOS) is a facility instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low- to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view using a commercial Micro Electro-Mechanical Systems (MEMS) Digital Micro-mirror Device (DMD) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the DMD field stop, and the spectrograph images the DMD onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and the ambient and cryogenic imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve to venfy alignment, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides further verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides spectral lines at 546.1 nm and 1550 nm, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard test results validate this prediction. We conclude with an instrument performance prediction for first light.

  1. Multi-point measurement using two-channel reflectometer with antenna switching for study of high-frequency fluctuations in GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2017-03-01

    A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.

  2. Confocal reflectance quantitative phase microscope system for cellular membranes dynamics study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.

    2017-02-01

    Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.

  3. Space Science

    NASA Image and Video Library

    1999-04-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. MSFC's Space Optics Manufacturing Technology Center (SOMTC) has grinding and polishing equipment ranging from conventional spindles to custom-designed polishers. These capabilities allow us to grind precisely and polish a variety of optical devices, including x-ray mirror mandrels. This image shows Charlie Griffith polishing the half-meter mandrel at SOMTC.

  4. Digital capture, design, and manufacturing of an extraoral device for a clarinet player with Bell's palsy.

    PubMed

    Aita-Holmes, Cynthia; Liacouras, Peter; Wilson, William O; Grant, Gerald T

    2015-08-01

    An extraoral device was fabricated to assist a clarinet player with Bell's palsy. The device was fabricated by using stereophotogrammetry, digital design, and additive manufacturing technologies. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Small Form Factor Information Storage Devices for Mobile Applications in Korea

    NASA Astrophysics Data System (ADS)

    Park, Young-Pil; Park, No-Cheol; Kim, Chul-Jin

    Recently, the ubiquitous environment in which anybody can reach a lot of information data without any limitations on the place and time has become an important social issue. There are two basic requirements in the field of information storage devices which have to be satisfied; the first is the demand for the improvement of memory capacity to manage the increased data capacity in personal and official purposes. The second is the demand for new development of information storage devices small enough to be applied to mobile multimedia digital electronics, including digital camera, PDA and mobile phones. To summarize, for the sake of mobile applications, it is necessary to develop information storage devices which have simultaneously a large capacity and a small size. Korea possesses the necessary infrastructure for developing such small sized information storage devices. It has a good digital market, major digital companies, and various research institutes. Nowadays, many companies and research institutes including university cooperate together in the research on small sized information storage devices. Thus, it is expected that small form factor optical disk drives will be commercialized in the very near future in Korea.

  6. Single-camera stereo-digital image correlation with a four-mirror adapter: optimized design and validation

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2016-12-01

    A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.

  7. A tandem mirror plasma source for a hybrid plume plasma propulsion concept

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.

    1985-01-01

    This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.

  8. Recent progress in InP/polymer-based devices for telecom and data center applications

    NASA Astrophysics Data System (ADS)

    Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert

    2015-02-01

    Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.

  9. A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS

    NASA Astrophysics Data System (ADS)

    Wu, Mingching; Fang, Weileun

    2006-02-01

    This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.

  10. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  11. Portable device to assess dynamic accuracy of global positioning systems (GPS) receivers used in agricultural aircraft

    USDA-ARS?s Scientific Manuscript database

    A device was designed to test the dynamic accuracy of Global Positioning System (GPS) receivers used in aerial vehicles. The system works by directing a sun-reflected light beam from the ground to the aircraft using mirrors. A photodetector is placed pointing downward from the aircraft and circuitry...

  12. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Nonlinear optical devices: basic elements of a future optical digital computer?

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Müller, R.

    1989-08-01

    It is shown that nonlinear optical devices are the most promising elements for an optical digital supercomputer. The basic characteristics of various developed nonlinear elements are presented, including bistable Fabry-Perot etalons, interference filters, self-electrooptic effect devices, quantum-well devices utilizing transitions between the lowest electron states in the conduction band of GaAs, etc.

  13. Integrated digital metamaterials enables ultra-compact optical diodes

    DOE PAGES

    Shen, Bing; Polson, Randy; Menon, Rajesh

    2015-01-01

    We applied nonlinear optimization to design integrated digital metamaterials in silicon for unidirectional energy flow. Two devices, one for each polarization state, were designed, fabricated, and characterized. Both devices offer comparable or higher transmission efficiencies and extinction ratios, are easier to fabricate, exhibit larger bandwidths and are more tolerant to fabrication errors, when compared to alternatives. Furthermore, each device footprint is only 3μm × 3μm, which is the smallest optical diode ever reported. To illustrate the versatility of digital metamaterials, we also designed a polarization-independent optical diode.

  14. Laboratory Instrumentation Design Research for Scalable Next Generation Epitaxy: Non-Equilibrium Wide Application Epitaxial Patterning by Intelligent Control (NEW-EPIC). Volume 1. 3D Composition/Doping Control via Micromiror Patterned Deep UV Photodesorption: Revolutionary in situ Characterization/Control

    DTIC Science & Technology

    2009-02-19

    magnesium dopant concentration. A digital micromirror device is introduced to pattern incident UV radiation during InGaN growth, demonstrating that the...magnesium dopant concentration. A digital micromirror device is introduced to pattern incident UV radiation during InGaN growth, demonstrating that the...successful compositional patterning of InGaN using in situ digital micromirror device (DMD) patterning of ultraviolet (UV

  15. Fourier emission infrared microspectrophotometer for surface analysis. I - Application to lubrication problems

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; King, V. W.

    1979-01-01

    A far-infrared interferometer was converted into an emission microspectrophotometer for surface analysis. To cover the mid-infrared as well as the far-infrared the Mylar beamsplitter was made replaceable by a germanium-coated salt plate, and the Moire fringe counting system used to locate the moveable Michelson mirror was improved to read 0.5 micron of mirror displacement. Digital electronics and a dedicated minicomputer were installed for data collection and processing. The most critical element for the recording of weak emission spectra from small areas was, however, a reflecting microscope objective and phase-locked signal detection with simultaneous referencing to a blackbody source. An application of the technique to lubrication problems is shown.

  16. BATMAN: a DMD-based MOS demonstrator on Galileo Telescope

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Spanò, Paolo; Bon, William; Riva, Marco; Lanzoni, Patrick; Nicastro, Luciano; Molinari, Emilio; Cosentino, Rosario; Ghedina, Adriano; Gonzalez, Manuel; Di Marcantonio, Paolo; Coretti, Igor; Cirami, Roberto; Manetta, Marco; Zerbi, Filippo; Tresoldi, Daniela; Valenziano, Luca

    2012-09-01

    Multi-Object Spectrographs (MOS) are the major instruments for studying primary galaxies and remote and faint objects. Current object selection systems are limited and/or difficult to implement in next generation MOS for space and groundbased telescopes. A promising solution is the use of MOEMS devices such as micromirror arrays which allow the remote control of the multi-slit configuration in real time. We are developing a Digital Micromirror Device (DMD) - based spectrograph demonstrator called BATMAN. We want to access the largest FOV with the highest contrast. The selected component is a DMD chip from Texas Instruments in 2048 x 1080 mirrors format, with a pitch of 13.68μm. Our optical design is an all-reflective spectrograph design with F/4 on the DMD component. This demonstrator permits the study of key parameters such as throughput, contrast and ability to remove unwanted sources in the FOV (background, spoiler sources), PSF effect, new observational modes. This study will be conducted in the visible with possible extension in the IR. A breadboard on an optical bench, ROBIN, has been developed for a preliminary determination of these parameters. The demonstrator on the sky is then of prime importance for characterizing the actual performance of this new family of instruments, as well as investigating the operational procedures on astronomical objects. BATMAN will be placed on the Nasmyth focus of Telescopio Nazionale Galileo (TNG) during next year.

  17. Context-Aided Tracking with Adaptive Hyperspectral Imagery

    DTIC Science & Technology

    2011-06-01

    narrow spectral bands (e). . . . . . . . . . . . . . . . . . . . . 14 ix Figure Page 2.2. An illustration of a small portion of a digital micromirror ...incorporates two light paths: imaging and spectroscopy. Each pixel is steered towards a light path indepen- dently via the digital micromirror device (DMD...With the advent of digital micromirror device (DMD) arrays (DMA), the Rochester Institute of Technology Multi-Object Spectrometer (RITMOS) [36

  18. Photonic Devices and Systems for Optical Signal Processing

    DTIC Science & Technology

    1993-08-01

    efficiency can either increase or decrease with improving mirror quality depending on the relative amounts of optical loss due to the mirror...Gs is dependent on the degree of confinement of the TE and TM modes in the wave guide and the average intensity of light in the cavity. It is given...Approximately 80% of the optical power from the main laser with the 36 mA threshold can be quenched. Note the linear decrease in main laser intensity as the

  19. Joint Services Electronics Program: Electronics Research at the University of Texas at Austin

    DTIC Science & Technology

    1990-12-31

    large area 2-dimensional phased arrays , and improved beam qualities . This device structure is expected to impact laser technology over a wide range...energy. In the following pages we report on two significant accomplishments. The first involves the influence oi mirror-quantum well optical coupling on... intensity enhancements in the normal direction to the mirror of a 24 (Research Unit SSE89-1, "Growth of Ill-V Compounds by Molecular Beam Epitaxy") factor of

  20. Compact Fiber-Parametric Devices for Biophotonics Applications

    DTIC Science & Technology

    2012-03-01

    coming in the fiber from the pump overlap temporally and spatially with the pulses fed back from a Fabry -Perot cavity (Sharping, 2010). Fiber optical...Some laser systems such as the Nd:YAG system used in this study, uses a Fabry -Perot cavity in which two mirrors are arranged parallel to one another... Fabry -Perot cavity formed between one end of the PCF and a metallic mirror (M3). The output coupler is a short-pass dielectric (SPD) or a long-pass

  1. The Process of Digitizing of Old Globe

    NASA Astrophysics Data System (ADS)

    Ambrožová, K.; Havrlanta, J.; Talich, M.; Böhm, O.

    2016-06-01

    This paper describes the process of digitalization of old globes that brings with it the possibility to use globes in their digital form. Created digital models are available to the general public through modern technology in the Internet network. This gives an opportunity to study old globes located in various historical collections, and prevent damage of the originals. Another benefit of digitization is also a possibility of comparing different models both among themselves and with current map data by increasing the transparency of individual layers. Digitization is carried out using special device that allows digitizing globes with a diameter ranging from 5 cm to 120 cm. This device can be easily disassembled, and it is fully mobile therefore the globes can be digitized in the place of its storage. Image data of globe surface are acquired by digital camera firmly fastened to the device. Acquired image data are then georeferenced by using a method of complex adjustment. The last step of digitization is publication of the final models that is realized by two ways. The first option is in the form of 3D model through JavaScript library Cesium or Google Earth plug-in in the Web browser. The second option is as a georeferenced map using Tile Map Service.

  2. Applications of Digital Micromirror Devices to Astronomical Instrumentation

    NASA Astrophysics Data System (ADS)

    Robberto, M.

    MEMS devices are among the major technological breakthroughs of the last two decades. Besides finding widespread use in high-tech and consumer market electronics, MEMS enable new types of astronomical instruments. I concentrate on Digital Micromirror Devices, which have been already adopted in astronomy and can enable scientific investigations that would otherwise remain beyond our technical capabilities.

  3. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor); Konz, Daniel W. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  4. Effect of a mirror-like illusion on activation in the precuneus assessed with functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mehnert, Jan; Brunetti, Maddalena; Steinbrink, Jens; Niedeggen, Michael; Dohle, Christian

    2013-06-01

    Mirror therapy is a therapy to treat patients with pain syndromes or hemiparesis after stroke. However, the underlying neurophysiologic mechanisms are not clearly understood. In order to determine the effect of a mirror-like illusion (MIR) on brain activity using functional near-infrared spectroscopy, 20 healthy right-handed subjects were examined. A MIR was induced by a digital horizontal inversion of the subjects' filmed hand. Optodes were placed on the primary motor cortex (M1) and the occipito-parietal cortex (precuneus, PC). Regions of interest (ROI) were defined a priori based on previous results of similar studies and confirmed by the analysis of effect sizes. Analysis of variance of the ROI signal revealed a dissociated pattern: at the PC, the MIR caused a significant inversion of a hemispheric lateralization opposite to the perceived hand, independent of the moving hand. In contrast, activity in M1 showed lateralization opposite to the moving hand, but revealed no mirror effect. These findings extend our understanding on interhemispheric rivalry and indicate that a MIR is integrated into visuomotor coordination similar to normal view, irrespective of the hand that is actually performing the task.

  5. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  6. Automatic Detection and Reproduction of Natural Head Position in Stereo-Photogrammetry.

    PubMed

    Hsung, Tai-Chiu; Lo, John; Li, Tik-Shun; Cheung, Lim-Kwong

    2015-01-01

    The aim of this study was to develop an automatic orientation calibration and reproduction method for recording the natural head position (NHP) in stereo-photogrammetry (SP). A board was used as the physical reference carrier for true verticals and NHP alignment mirror orientation. Orientation axes were detected and saved from the digital mesh model of the board. They were used for correcting the pitch, roll and yaw angles of the subsequent captures of patients' facial surfaces, which were obtained without any markings or sensors attached onto the patient. We tested the proposed method on two commercial active (3dMD) and passive (DI3D) SP devices. The reliability of the pitch, roll and yaw for the board placement were within ±0.039904°, ±0.081623°, and ±0.062320°; where standard deviations were 0.020234°, 0.045645° and 0.027211° respectively. Orientation-calibrated stereo-photogrammetry is the most accurate method (angulation deviation within ±0.1°) reported for complete NHP recording with insignificant clinical error.

  7. Automatic Detection and Reproduction of Natural Head Position in Stereo-Photogrammetry

    PubMed Central

    Hsung, Tai-Chiu; Lo, John; Li, Tik-Shun; Cheung, Lim-Kwong

    2015-01-01

    The aim of this study was to develop an automatic orientation calibration and reproduction method for recording the natural head position (NHP) in stereo-photogrammetry (SP). A board was used as the physical reference carrier for true verticals and NHP alignment mirror orientation. Orientation axes were detected and saved from the digital mesh model of the board. They were used for correcting the pitch, roll and yaw angles of the subsequent captures of patients’ facial surfaces, which were obtained without any markings or sensors attached onto the patient. We tested the proposed method on two commercial active (3dMD) and passive (DI3D) SP devices. The reliability of the pitch, roll and yaw for the board placement were within ±0.039904°, ±0.081623°, and ±0.062320°; where standard deviations were 0.020234°, 0.045645° and 0.027211° respectively. Conclusion: Orientation-calibrated stereo-photogrammetry is the most accurate method (angulation deviation within ±0.1°) reported for complete NHP recording with insignificant clinical error. PMID:26125616

  8. Topological photonics: an observation of Landau levels for optical photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Sommer, Ariel; Simon, Jonathan

    We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids. This work was supported by DOE, DARPA, and AFOSR.

  9. A digital FDIRC prototype for isotopic identification in astroparticle physics

    NASA Astrophysics Data System (ADS)

    Suh, J. E.; Marrocchesi, P. S.; Bigongiari, G.; Brogi, P.; Collazuol, G.; Sulaj, A.

    2017-12-01

    Experimental results obtained with a prototype of a Focused Internal Reflection Cherenkov, equipped with 16 high-granularity arrays of NUV-SiPM and tested at CERN SPS in March 2015, are discussed. The detector was exposed to relativistic ions of 13, 19 and 30 GeV/amu obtained from fragmentation of a primary Ar beam. The FDIRC included a single Fused Silica radiator bar optically connected to a cylindrical mirror and an imaging focal plane of dimensions ∼4 cm×∼3 cm, covered with a total of 1024 SiPM photosensors. It was operated in photon counting mode thanks to the excellent performance of the SiPM arrays. The complete simulation of the detector was extended to the case of a planar device with multiple bars covering a sensitive area of the order of 1 m2. MC simulation is performed to evaluate its expected mass resolution for the identification of cosmic isotopes of astrophysical interest as 9Be and 10Be at energies of several GeV/amu with the goal to extend the energy reach of the present available data.

  10. Correcting Hubble Vision.

    ERIC Educational Resources Information Center

    Shaw, John M.; Sheahen, Thomas P.

    1994-01-01

    Describes the theory behind the workings of the Hubble Space Telescope, the spherical aberration in the primary mirror that caused a reduction in image quality, and the corrective device that compensated for the error. (JRH)

  11. Network device interface for digitally interfacing data channels to a controller a via network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. In one embodiment, the bus controller transmits messages to the network device interface containing a plurality of bits having a value defined by a transition between first and second states in the bits. The network device interface determines timing of the data sequence of the message and uses the determined timing to communicate with the bus controller.

  12. Digital pyramid wavefront sensor with tunable modulation.

    PubMed

    Akondi, Vyas; Castillo, Sara; Vohnsen, Brian

    2013-07-29

    The pyramid wavefront sensor is known for its high sensitivity and dynamic range that can be tuned by mechanically altering its modulation amplitude. Here, a novel modulating digital scheme employing a reflecting phase only spatial light modulator is demonstrated. The use of the modulator allows an easy reconfigurable pyramid with digital control of the apex angle and modulation geometry without the need of any mechanically moving parts. Aberrations introduced by a 140-actuator deformable mirror were simultaneously sensed with the help of a commercial Hartmann-Shack wavefront sensor. The wavefronts reconstructed using the digital pyramid wavefront sensor matched very closely with those sensed by the Hartmann-Shack. It is noted that a tunable modulation is necessary to operate the wavefront sensor in the linear regime and to accurately sense aberrations. Through simulations, it is shown that the wavefront sensor can be extended to astronomical applications as well. This novel digital pyramid wavefront sensor has the potential to become an attractive option in both open and closed loop adaptive optics systems.

  13. Excitation of high-radial-order Laguerre-Gaussian modes in a solid-state laser using a lower-loss digitally controlled amplitude mask

    NASA Astrophysics Data System (ADS)

    Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.

    2017-10-01

    In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre-Gaussian (LG p or LG{}p,0) modes with radial order p = 1-4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).

  14. Inverse mirror plasma experimental device (IMPED) - a magnetized linear plasma device for wave studies

    NASA Astrophysics Data System (ADS)

    Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.

    2015-04-01

    In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.

  15. Simpler Adaptive Optics using a Single Device for Processing and Control

    NASA Astrophysics Data System (ADS)

    Zovaro, A.; Bennet, F.; Rye, D.; D'Orgeville, C.; Rigaut, F.; Price, I.; Ritchie, I.; Smith, C.

    The management of low Earth orbit is becoming more urgent as satellite and debris densities climb, in order to avoid a Kessler syndrome. A key part of this management is to precisely measure the orbit of both active satellites and debris. The Research School of Astronomy and Astrophysics at the Australian National University have been developing an adaptive optics (AO) system to image and range orbiting objects. The AO system provides atmospheric correction for imaging and laser ranging, allowing for the detection of smaller angular targets and drastically increasing the number of detectable objects. AO systems are by nature very complex and high cost systems, often costing millions of dollars and taking years to design. It is not unusual for AO systems to comprise multiple servers, digital signal processors (DSP) and field programmable gate arrays (FPGA), with dedicated tasks such as wavefront sensor data processing or wavefront reconstruction. While this multi-platform approach has been necessary in AO systems to date due to computation and latency requirements, this may no longer be the case for those with less demanding processing needs. In recent years, large strides have been made in FPGA and microcontroller technology, with todays devices having clock speeds in excess of 200 MHz whilst using a < 5 V power supply. AO systems using a single such device for all data processing and control may present a far simpler, cheaper, smaller and more efficient solution than existing systems. A novel AO system design based around a single, low-cost controller is presented. The objective is to determine the performance which can be achieved in terms of bandwidth and correction order, with a focus on optimisation and parallelisation of AO algorithms such as wavefront measurement and reconstruction. The AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror to correct light from a 1.8 m telescope for the purpose of imaging orbiting satellites. The microcontroller or FPGA interfaces directly with the wavefront sensor detector and deformable mirror. Wavefront slopes are calculated from each detector frame and converted into actuator commands to complete the closed loop AO control system. A particular challenge of this system is to optimise the AO algorithms to achieve a high rate (> 1kHz) with low latency (< 1ms) to achieve a good AO correction. As part of the Space Environment Cooperative Research Centre (SERC) this AO system design will be used as a demonstrator for what is possible with ground based AO corrected satellite imaging and ranging systems. The ability to directly and efficiently interface the wavefront sensor and deformable mirror is an important step in reducing the cost and complexity of an AO system. It is hoped that in the future this design can be modified for use in general AO applications, such as in 1-3 m telescopes for space surveillance, or even for amateur astronomy.

  16. Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering

    PubMed Central

    Wang, M.; Gong, Q. H.; Ficek, Z.; He, Q. Y.

    2015-01-01

    A practical scheme for the demonstration of perfect one-sided device-independent quantum secret sharing is proposed. The scheme involves a three-mode optomechanical system in which a pair of independent cavity modes is driven by short laser pulses and interact with a movable mirror. We demonstrate that by tuning the laser frequency to the blue (anti-Stokes) sideband of the average frequency of the cavity modes, the modes become mutually coherent and then may collectively steer the mirror mode to a perfect Einstein-Podolsky-Rosen state. The scheme is shown to be experimentally feasible, it is robust against the frequency difference between the modes, mechanical thermal noise and damping, and coupling strengths of the cavity modes to the mirror. PMID:26212901

  17. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  18. Research Technology

    NASA Image and Video Library

    1999-05-12

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  19. Accuracy and eligibility of CBCT to digitize dental plaster casts.

    PubMed

    Becker, Kathrin; Schmücker, Ulf; Schwarz, Frank; Drescher, Dieter

    2018-05-01

    Software-based dental planning requires digital casts and oftentimes cone-beam computed tomography (CBCT) radiography. However, buying a dedicated model digitizing device can be expensive and might not be required. The present study aimed to assess whether digital models derived from CBCT and models digitized using a dedicated optical device are of comparable accuracy. A total of 20 plaster casts were digitized with eight CBCT and five optical model digitizers. Corresponding models were superimposed using six control points and subsequent iterative closest point matching. Median distances were calculated among all registered models. Data were pooled per scanner and model. Boxplots were generated, and the paired t test, a Friedman test, and a post-hoc Nemenyi test were employed for statistical comparison. Results were found significant at p < 0.05. All CBCT devices allowed the digitization of plaster casts, but failed to reach the accuracy of the dedicated model digitizers (p < 0.001). Median distances between CBCT and optically digitized casts were 0.064 + - 0.005 mm. Qualitative differences among the CBCT systems were detected (χ 2  = 78.07, p < 0.001), and one CBCT providing a special plaster cast digitization mode was found superior to the competitors (p < 0.05). CBCT systems failed to reach the accuracy from optical digitizers, but within the limits of the study, accuracy appeared to be sufficient for digital planning and forensic purposes. Most CBCT systems enabled digitization of plaster casts, and accuracy was found sufficient for digital planning and storage purposes.

  20. 76 FR 54251 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Certain Digital Photo Frames and Image Display Devices and Components Thereof, DN 2842; the Commission is... importation of certain digital photo frames and image display devices and components thereof. The complaint...

  1. Expanding Notions of Digital Access: Parents' Negotiation of School-Based Technology Initiatives in New Immigrant Communities

    ERIC Educational Resources Information Center

    Noguerón-Liu, Silvia

    2017-01-01

    Initiatives to integrate technology in schools are continuously increasing, with efforts to bridge the "homework gap" and provide technology access in low-income households. However, it is critical to include nondominant parents in technology adoption decisions in order to avoid mirroring past patterns of inequality in home-school…

  2. Technology Counts 2011: K-12 Seeks Custom Fit--Schools Test Individualized Digital Learning

    ERIC Educational Resources Information Center

    Education Week, 2011

    2011-01-01

    A growing number of educators around the country are turning to technology and different teaching and learning approaches to give students personalized learning experiences that mirror the customized experiences they take for granted outside of school. To meet students' individual needs, they are putting in place 1-to-1 computing programs and…

  3. Spectrally Adaptable Compressive Sensing Imaging System

    DTIC Science & Technology

    2014-05-01

    signal recovering [?, ?]. The time-varying coded apertures can be implemented using micro-piezo motors [?] or through the use of Digital Micromirror ...feasibility of this testbed by developing a Digital- Micromirror -Device-based Snapshot Spectral Imaging (DMD-SSI) system, which implements CS measurement...Y. Wu, I. O. Mirza, G. R. Arce, and D. W. Prather, ”Development of a digital- micromirror - device- based multishot snapshot spectral imaging

  4. Creating Collaborative and Convenient Learning Environment Using Cloud-Based Moodle LMS: An Instructor and Administrator Perspective

    ERIC Educational Resources Information Center

    Kumar, Vikas; Sharma, Deepika

    2016-01-01

    Students in the digital era are habitual of using digital devices not only for playing and interacting with their friends and peers, but also as a tool for education and learning. These digital natives are highly obsessed with the internet driven portable devices and always demand for a multimedia rich content. This specific demand needs to be…

  5. Spectral colors capture and reproduction based on digital camera

    NASA Astrophysics Data System (ADS)

    Chen, Defen; Huang, Qingmei; Li, Wei; Lu, Yang

    2018-01-01

    The purpose of this work is to develop a method for the accurate reproduction of the spectral colors captured by digital camera. The spectral colors being the purest color in any hue, are difficult to reproduce without distortion on digital devices. In this paper, we attempt to achieve accurate hue reproduction of the spectral colors by focusing on two steps of color correction: the capture of the spectral colors and the color characterization of digital camera. Hence it determines the relationship among the spectral color wavelength, the RGB color space of the digital camera device and the CIEXYZ color space. This study also provides a basis for further studies related to the color spectral reproduction on digital devices. In this paper, methods such as wavelength calibration of the spectral colors and digital camera characterization were utilized. The spectrum was obtained through the grating spectroscopy system. A photo of a clear and reliable primary spectrum was taken by adjusting the relative parameters of the digital camera, from which the RGB values of color spectrum was extracted in 1040 equally-divided locations. Calculated using grating equation and measured by the spectrophotometer, two wavelength values were obtained from each location. The polynomial fitting method for the camera characterization was used to achieve color correction. After wavelength calibration, the maximum error between the two sets of wavelengths is 4.38nm. According to the polynomial fitting method, the average color difference of test samples is 3.76. This has satisfied the application needs of the spectral colors in digital devices such as display and transmission.

  6. Professor Jesse W. Beams and the first practical magnetic suspension

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Humphris, R. R.; Lewis, D. W.

    1992-01-01

    Dr. Jesse W. Beams developed the first practical magnetic suspension for high speed rotating devices. The devices included high speed rotating mirrors, ultracentrifuges, and high speed centrifugal field rotors. A brief biography of Dr. Beams is presented, and the following topics are discussed: (1) early axial magnetic suspension for ultracentrifuges; and (2) magnetic suspension for high centrifugal fields.

  7. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto Fast Flyby mission was evaluated at JPL. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers.

  8. Modeling of a Micro-Electronic Mechanical Systems (MEMS) Deformable Mirror for Simulation and Characterization

    DTIC Science & Technology

    2016-09-01

    1  II.  MODEL DESIGN ...Figure 10.  Experimental Optical Layout for the Boston DM Characterization ..........13  Figure 11.  Side View Showing the Curved Surface on a DM...of different methods for deposition, patterning, and etching until the desired design of the device is achieved. While a large number of devices

  9. Panoramic Stokes-polarimeter

    NASA Astrophysics Data System (ADS)

    Syniavskyi, I. I.; Ivanov, Yu. S.; Vidmachenko, A. P.; Karpov, N. V.

    2013-12-01

    This article proposes optical layout of the imaging polarimeter based on the polarization films to measure the linear polarization of point and extended celestial objects. The spectral range of device is 420-850 nm, field of view 0.25°x0.25°. The device is designed to equip the telescope with a diameter of primary mirror about 400 mm and aperture f/12.

  10. Ultra-thin layer packaging for implantable electronic devices

    NASA Astrophysics Data System (ADS)

    Hogg, A.; Aellen, T.; Uhl, S.; Graf, B.; Keppner, H.; Tardy, Y.; Burger, J.

    2013-07-01

    State of the art packaging for long-term implantable electronic devices generally uses reliable metal and glass housings; however, these are limited in the miniaturization potential and cost reduction. This paper focuses on the development of biocompatible hermetic thin-film packaging based on poly-para-xylylene (Parylene-C) and silicon oxide (SiOx) multilayers for smart implantable microelectromechanical systems (MEMS) devices. For the fabrication, a combined Parylene/SiOx single-chamber deposition system was developed. Topological aspects of multilayers were characterized by atomic force microscopy and scanning electron microscopy. Material compositions and layer interfaces were analyzed by Fourier transform infrared spectrometry and x-ray photoelectron spectroscopy. To evaluate the multilayer corrosion protection, water vapor permeation was investigated using a calcium mirror test. The calcium mirror test shows very low water permeation rates of 2 × 10-3 g m-2 day-1 (23 °C, 45% RH) for a 4.7 µm multilayer, which is equivalent to a 1.9 mm pure Parylene-C coating. According to the packaging standard MIL-STD-883, the helium gas tightness was investigated. These helium permeation measurements predict that a multilayer of 10 µm achieves the hermeticity acceptance criterion required for long-term implantable medical devices.

  11. Digital Devices and Teaching the Whole Student: Developing and Validating an Instrument to Measure Educators' Attitudes and Beliefs

    ERIC Educational Resources Information Center

    Cho, Vincent; Littenberg-Tobias, Joshua

    2016-01-01

    Even as digital devices (e.g., tablets, smart phones, laptops) have become increasingly ubiquitous in schools, concerns have also been raised that such devices might hinder students' social, emotional, and personal development. Educators' perspectives on such matters could shape the success or failure of 1:1 technology initiatives. Thus, there is…

  12. Bathed, Strained, Attenuated, Annihilated: Towards Quantum Optomechanics

    NASA Astrophysics Data System (ADS)

    Pepper, Brian Jeffrey

    The field of optomechanics studies tiny devices that can be pushed mechanically by light. It is an extremely promising avenue towards tests of quantum mechanics on a macroscopic scale, by transferring quantum states of light to nano- or micromechanical objects. This dissertation concerns a long term research program to create quantum superpositions of a macroscopic mirror in an optomechanical cavity. This dissertation has two broad thrusts. The first focuses on microfabrication of a new type of device called optomechanical trampoline resonators, consisting of a small mirror on a cross-shaped tensed silicon nitride membrane. Devices have been fabricated with high mechanical and optical quality, including a 300 kHz device with quality factor 480,000, as well as a device of optical finesse 107,000. These devices are well into the sideband-resolved regime and suitable for optical cooling to the quantum ground state. One such device has been optically cooled to approximately 10 phonons. The second major thrust is theoretical. Creating a macroscopic superposition is a challenging problem, requiring optical cooling to the ground state, strong coupling, extremely high optical finesse and extremely low frequency. A realistic assessment of achievable parameters indicates that it is possible to achieve ground state cooling or strong coupling, but not both. This dissertation proposes a new technique using postselection to achieve macroscopic superpositions with only weak coupling. This relaxes some of the required parameters by orders of magnitude. Prospects for observing hypothetical novel decoherence mechanisms are also discussed.

  13. A microwave resonance dew-point hygrometer

    NASA Astrophysics Data System (ADS)

    Underwood, R. J.; Cuccaro, R.; Bell, S.; Gavioso, R. M.; Madonna Ripa, D.; Stevens, M.; de Podesta, M.

    2012-08-01

    We report the first measurements of a quasi-spherical microwave resonator used as a dew-point hygrometer. In conventional dew-point hygrometers, the condensation of water from humid gas flowing over a mirror is detected optically, and the mirror surface is then temperature-controlled to yield a stable condensed layer. In our experiments we flowed moist air from a humidity generator through a quasi-spherical resonator and detected the onset of condensation by measuring the frequency ratio of selected microwave modes. We verified the basic operation of the device over the dew-point range 9.5-13.5 °C by comparison with calibrated chilled-mirror hygrometers. These tests indicate that the microwave method may allow a quantitative estimation of the volume and thickness of the water layer which is condensed on the inner surface of the resonator. The experiments reported here are preliminary due to the limited time available for the work, but show the potential of the method for detecting not only water but a variety of other liquid or solid condensates. The robust all-metal construction should make the device appropriate for use in industrial applications over a wide range of temperatures and pressures.

  14. Microelectromechanical systems-based visible-near infrared Fabry-Perot tunable filters using quartz substrate

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam; Tan, Songsheng; Zander, Dennis R.

    2012-07-01

    There is a need to develop miniature optical tunable filters for small hyperspectral imagers. We plan to develop a number of miniature Fabry-Perot tunable filters (FPTFs) using microelectromechanical systems (MEMS) technology, each operating over a different wavelength region, to cover spectral regions from the visible to the longwave infrared (IR). Use of a MEMS-based FPTF as a dispersive element will reduce the size, weight, and power requirements of hyperspectral imagers and make them less expensive. A key requirement for such a filter is a large optical aperture. Recently, we succeeded in fabricating FPTFs with a 6 mm optical aperture operating in the visible to near IR spectral region (400 to 800 nm) using commercially available thin quartz wafers as the substrate. The FPTF design contains one fixed silver (Ag) mirror and one electrostatically movable Ag mirror, each grown on a quartz substrate with a low total thickness variation. Gold (Au) bumps are used to control the initial air gap distance between the two mirrors, and Au-Au bonding is used to bond the device. We describe material selection, device design, modeling, fabrication, interferometric, and spectral characterizations.

  15. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  16. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  17. A GDT-based fusion neutron source for academic and industrial applications

    NASA Astrophysics Data System (ADS)

    Anderson, J. K.; Forest, C. B.; Mirnov, V. V.; Peterson, E. E.; Waleffe, R.; Wallace, J.; Harvey, R. W.

    2017-10-01

    The design of a fusion neutron source based on the gas dynamic trap (GDT) configuration is underway. The motivation is both the ends and the means. There are immediate applications for neutrons including medical isotope production and actinide burners. Taking the next step in the magnetic mirror path will leverage advances in high-temperature superconducting magnets and additive manufacturing in confining a fusion plasma, and both the technological and physics bases exist. Recent breakthrough results at the GDT facility in Russia demonstrate stable confinement of a beta 60% mirror plasma at high Te ( 1 keV). These scale readily to a fusion neutron source with an increase in magnetic field, mirror ratio, and ion energy. Studies of a next-step compact device focus on calculations of MHD equilibrium and stability, and Fokker-Planck modeling to optimize the heating scenario. The conceptualized device uses off-the-shelf MRI magnets for a 1 T central field, REBCO superconducting mirror coils (which can currently produce fields in excess of 30T), and existing 75 keV NBI and 140 GHz ECRH. High harmonic fast wave injection is damped on beam ions, dramatically increasing the fusion reactivity for an incremental bump in input power. MHD stability is achieved with the vortex confinement scheme, where a biasing profile imposes optimal ExB rotation of the plasma. Liquid metal divertors are being considered in the end cells. Work supported by the Wisconsin Alumni Research Foundation.

  18. Experiments on the transportation of a magnetized plasma stream in the GOL-3 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Batkin, V. I.; Burdakov, A. V.

    2016-04-15

    The program of the deep upgrade of the GOL-3 multiple-mirror trap is presented. The upgrade is aimed at creating a new GOL-NB open trap located at the GOL-3 site and intended to directly demonstrate the efficiency of using multiple-mirror magnetic cells to improve longitudinal plasma confinement in a gasdynamic open trap. The GOL-NB device will consist of a new central trap, adjoint cells with a multiple-mirror magnetic field, and end tanks (magnetic flux expanders). Plasma in the central trap will be heated by neutral beam injection with a power of up to 1.5 MW and duration of 1 ms. Atmore » present, physical experiments directed at developing plasma technologies that are novel for this facility are being carried out using the 6-m-long autonomous part of the GOL-3 solenoid. The aim of this work was to develop a method for filling the central trap with a low-temperature start plasma. Transportation of a plasma stream from an arc source over a distance of 3 m in a uniform magnetic field with an induction of 0.5–4.5 T is demonstrated. In these experiments, the axial plasma density was (1–4) × 10{sup 20} m{sup –3} and the mirror ratio varied from 5 to 60. In general, the experiments confirmed the correctness of the adopted decisions for the start plasma source of the GOL-NB device.« less

  19. Creating Digital Elevation Model Using a Mobile Device

    NASA Astrophysics Data System (ADS)

    Durmaz, A. İ.

    2017-11-01

    DEM (Digital Elevation Models) is the best way to interpret topography on the ground. In recent years, lidar technology allows to create more accurate elevation models. However, the problem is this technology is not common all over the world. Also if Lidar data are not provided by government agencies freely, people have to pay lots of money to reach these point clouds. In this article, we will discuss how we can create digital elevation model from less accurate mobile devices' GPS data. Moreover, we will evaluate these data on the same mobile device which we collected data to reduce cost of this modeling.

  20. Ray Tracing with Virtual Objects.

    ERIC Educational Resources Information Center

    Leinoff, Stuart

    1991-01-01

    Introduces the method of ray tracing to analyze the refraction or reflection of real or virtual images from multiple optical devices. Discusses ray-tracing techniques for locating images using convex and concave lenses or mirrors. (MDH)

  1. Properties of a Variable-Delay Polarization Modulator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Henry, Ross; Hui, Howard; Juarez, Aaron J.; Krenjy, Megan; Moseley, Harvey; Novak, Giles

    2011-01-01

    We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM). The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mirror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires that comprise the grid, the phase delay derived from the geometric separation between the mirror and the grid is sufficient to characterize the device. However, outside of this range, additional parameters describing the polarizing grid geometry must be included to fully characterize the modulator response. In this paper, we report test results of a VPM at wavelengths of 350 micron and 3 mm. Electromagnetic simulations of wire grid polarizers were performed and are summarized using a simple circuit model that incorporates the loss and polarization properties of the device.

  2. Imaging performance of a normal incidence soft X-ray telescope

    NASA Technical Reports Server (NTRS)

    Henry, J. P.; Spiller, E.; Weisskopf, M.

    1982-01-01

    Measurements are presented of the imaging performance of a normal incidence spherical soft X-ray mirror at BK-alpha (67.6 A). The reflector was a 124-layer coating consisting of alternating Re-W alloy and C layers with a protective C overcoat 34 A thick deposited on a Zerodur substrate. Measurements made at an angle of 1.5 deg off axis with the prototype of the Einstein Observatory high resolution imager reveal the resolution of the mirror to be about 1 arcsec FWHM, with 50% of the reflected power within the detector field of 512 arcsec contained within a diameter of 5 arcsec. The data demonstrate the practicality and potential good performance of normal-incidence soft X-ray optics, and show that the scattering performances of such devices may be as good or better than the best grazing incidence devices.

  3. Semiconductor Nonlinear Waveguide Devices and Integrated-Mirror Etalons

    NASA Astrophysics Data System (ADS)

    Chuang, Chih-Li.

    This dissertation investigates different III-V semiconductor devices for applications in nonlinear photonics. These include passive and active nonlinear directional couplers, current-controlled optical phase shifter, and integrated -mirror etalons. A novel method to find the propagation constants of an optical waveguide is introduced. The same method is applied, with minor modifications, to find the coupling length of a directional coupler. The method presented provides a tool for the design of optical waveguide devices. The design, fabrication, and performance of a nonlinear directional coupler are presented. This device uses light intensity to control the direction of light coming out. This is achieved through photo-generated-carriers mechanism in the picosecond regime and through the optical Stark effect in the femtosecond regime. A two-transverse -dimensions beam-propagation computation is used to model the switching behavior in the nonlinear directional coupler. It is found that, by considering the pulse degradation effect, the computation agrees well with experiments. The possibility of operating a nonlinear directional coupler with gain is investigated. It is concluded that by injecting current into the nonlinear directional coupler does not provide the advantages hoped for and the modelling using 2-D beam -propagation methods verifies that. Using current injection to change the refractive index of a waveguide, an optical phase shifter is constructed. This device has the merit of delivering large phase shift with almost no intensity modulation. A phase shift as large as 3pi is produced in a waveguide 400 μm in length. Finally, a new structure, grown by the molecular beam epitaxy machine, is described. The structure consists of two quarter-wave stacks and a spacer layer to form an integrated-mirror etalon. The theory, design principles, spectral analyses are discussed with design examples to clarify the ideas. Emphasis is given to the vertical-cavity surface-emitting laser constructed from this structure. Here we demonstrated the cw operation of the VCSEL at room temperature.

  4. Characterization and Design of Digital Pointing Subsystem for Optical Communication Demonstrator

    NASA Technical Reports Server (NTRS)

    Racho, C.; Portillo, A.

    1998-01-01

    The Optical Communications Demonstrator (OCD) is a laboratory-based lasercom demonstration terminal designed to validate several key technologies, including beacon acquisition, high bandwidth tracking, precision bearn pointing, and point-ahead compensation functions. It has been under active development over the past few years. The instrument uses a CCD array detector for both spatial acquisition and high-bandwidth tracking, and a fiber coupled laser transmitter. The array detector tracking concept provides wide field-of-view acquisition and permits effective platform jitter compensation and point-ahead control using only one steering mirror. This paper describes the detailed design and characterization of the digital control loop system which includes the Fast Steering Mirror (FSM), the CCD image tracker, and the associated electronics. The objective is to improve the overall system performance using laboratory measured data. The. design of the digital control loop is based on a linear time invariant open loop model. The closed loop performance is predicted using the theoretical model. With the digital filter programmed into the OCD control software, data is collected to verify the predictions. This paper presents the results of the, system modeling and performance analysis. It has been shown that measurement data closely matches theoretical predictions. An important part of the laser communication experiment is the ability of FSM to track the laser beacon within the. required tolerances. The pointing must be maintained to an accuracy that is much smaller than the transmit signal beamwidth. For an earth orbit distance, the system must be able to track the receiving station to within a few microradians. The failure. to do so will result in a severely degraded system performance.

  5. Analysis of a digital RF memory in a signal-delay application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinek, D.A.

    1992-03-01

    Laboratory simulation of the approach of a radar fuze towards a target is an important factor in our ability to accurately measure the radar's performance. This simulation is achieved, in part, by dynamically delaying and attenuating the radar's transmitted pulse and sending the result back to the radar's receiver. Historically, the device used to perform the dynamic delay has been a limiting factor in the evaluation of a radar's performance and characteristics. A new device has been proposed that appears to have more capability than previous dynamic delay devices. This device is the digital RF memory. This report presents themore » results of an analysis of a digital RF memory used in a signal-delay application. 2 refs.« less

  6. The effect of mirror therapy integrating functional electrical stimulation on the gait of stroke patients.

    PubMed

    Ji, Sang-Goo; Cha, Hyun-Gyu; Kim, Myoung-Kwon; Lee, Chang-Ryeol

    2014-04-01

    [Purpose] The aim of the present study was to examine whether mirror therapy in conjunction with FES in stroke patients can improve gait ability. [Subjects] This study was conducted with 30 subjects who were diagnosed with hemiparesis due to stroke. [Methods] Experimental group I contained 10 subjects who received mirror therapy in conjunction with functional electrical stimulation, experimental group II contained 10 subjects who received mirror therapy, and the control group contained 10 subjects who received a sham therapy. A gait analysis was performed using a three-dimensional motion capture system, which was a real-time tracking device that delivers data in an infrared mode via reflective markers using six cameras. [Results] The results showed a significant difference in gait velocity between groups after the experiment, and post hoc analysis revealed significant differences between experimental group I and the control group and between experimental group II and the control group, respectively. There were also significant differences in step length and stride length between the groups after the experiment, and post hoc analysis revealed significant differences between experimental group I and control group. [Conclusion] The present study showed that mirror therapy in conjunction with FES is more effective for improving gait ability than mirror therapy alone.

  7. A high capacity data recording device based on a digital audio processor and a video cassette recorder.

    PubMed

    Bezanilla, F

    1985-03-01

    A modified digital audio processor, a video cassette recorder, and some simple added circuitry are assembled into a recording device of high capacity. The unit converts two analog channels into digital form at 44-kHz sampling rate and stores the information in digital form in a common video cassette. Bandwidth of each channel is from direct current to approximately 20 kHz and the dynamic range is close to 90 dB. The total storage capacity in a 3-h video cassette is 2 Gbytes. The information can be retrieved in analog or digital form.

  8. A high capacity data recording device based on a digital audio processor and a video cassette recorder.

    PubMed Central

    Bezanilla, F

    1985-01-01

    A modified digital audio processor, a video cassette recorder, and some simple added circuitry are assembled into a recording device of high capacity. The unit converts two analog channels into digital form at 44-kHz sampling rate and stores the information in digital form in a common video cassette. Bandwidth of each channel is from direct current to approximately 20 kHz and the dynamic range is close to 90 dB. The total storage capacity in a 3-h video cassette is 2 Gbytes. The information can be retrieved in analog or digital form. PMID:3978213

  9. Re-thinking Reading in the Context of a New Wave of Electronic Reading Devices

    NASA Astrophysics Data System (ADS)

    Kratky, Andreas

    We are currently witnessing a new wave of digital reading devices that will probably significantly change the way we read and publish. This is not the first digital revolution of aspects of cultural production and perception. This paper compares the previous digital revolutions of the music, film and publishing industries and attempts a prognosis of coming changes in the way we will work with digital texts. As a conclusion a new notion of interface design for the emerging reading ecology is proposed.

  10. Cost and Information Effectiveness Analysis (CIEA): A Methodology for Evaluating a Training Device Operational Readiness Assessment Capability (DORAC).

    DTIC Science & Technology

    1981-02-01

    Report 528 COST AIND I*FO•?JidTH ?i EFFECT•• ES1BS ANALYSIS (CDEA): A METiBLOBU Y FOR EVALUATIN1G A TRAINING DEMCE OPERATMDN1AL MAEA3 ],SE 3SSESS$ iElT ...8217, N. Within a military setting, the uses of training devices in performance evaluation have generally mirrored civilian uses and primarily...Technical Report 528 COST AND INFORMATION EFFECTIVENESS ANALYSIS (CIEA): A METHODOLOGY FOR EVALUATING A TRAINING DEVICE OPERATIONAL READINESS

  11. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress.

    PubMed

    Wang, Jin Min; Sun, Xiao Wei; Jiao, Zhihui

    2010-11-26

    The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO₃, crystalline WO₃ nanoparticles and nanorods, mesoporous WO₃ and TiO₂, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed.

  12. ROTATING PLASMA DEVICE

    DOEpatents

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  13. Growth of Nanoscale BaTiO3/SrTiO3 Superlattices by Molecular-Beam Epitaxy

    DTIC Science & Technology

    2008-05-01

    also of interest for novel acous- tic phonon devices including mirrors, filters, and cavities for coherent acoustic phonon generation and control...phonon “laser”).4 The structure of these devices is de- termined by the acoustic phonon wavelength, which is typically in the range of a few nanometers...nanoscale [(BaTiO3)n /(SrTiO3)m]p superlattices with atomically abrupt interfaces that are vital for the perfor- mance of acoustic phonon devices as

  14. Projection display technologies for the new millennium

    NASA Astrophysics Data System (ADS)

    Kahn, Frederic J.

    2000-04-01

    Although analog CRTs continue to enable most of the world's electronic projection displays such as US consumer rear projection televisions, discrete pixel (digital) active matrix LCD and DLP reflective mirror array projectors have rapidly created large nonconsumer markets--primarily for business. Recent advances in image quality, compactness and cost effectiveness of digital projectors have the potential to revolutionize major consumer and entertainment markets as well. Digital penetration of the mainstream consumer projection TV market will begin in the hear 2000. By 2005 digital projection HDTVs could take the major share of the consumer HDTV projection market. Digital projection is expected to dominate both the consumer HDTV and the cinema market by 2010, resulting in potential shipments for all projection markets exceeding 10 M units per year. Digital projection is improving at a rate 10X faster than analog CRT projectors and 5X faster than PDP flat panels. Continued rapid improvement of digital projection is expected due to its relative immaturity and due to the wide diversity of technological improvements being pursued. Key technology enablers are the imaging panels, light sources and micro-optics. Market shares of single panel projectors, MEMs panels, LCOS panels and low T p-Si TFT LCD panel variants are expected to increase.

  15. Dynamic Loading Assembly for Testing Actuators of Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Deshmukh, Prasanna Gajanan; Parihar, Padmakar; Balasubramaniam, Karthik A.; Mishra, Deepta Sundar; Mahesh, P. K.

    Upcoming large telescopes are based on Segmented Mirror Telescope (SMT) technology which uses small hexagonal mirror segments placed side by side to form the large monolithic surface. The segments alignment needs to be maintained against external disturbances like wind, gravity, temperature and structural vibration. This is achieved by using three position actuators per segment working at few-nanometer scale range along with a local closed loop controller. The actuator along with a controller is required to meet very stringent performance requirements, such as track rates up to 300nm/s (90mN/s) with tracking errors less than 5nm, dynamical forces of up to ±40N, ability to reject disturbances introduced by the wind as well as by mechanical vibration generated in the mirror cell, etc. To conduct these performance tests in more realistic manner, we have designed and developed a Dynamic Loading Assembly (DLA) at Indian Institute of Astrophysics (IIA), Bangalore. DLA is a computer controlled force-inducing device, designed in a modular fashion to generate different types of user-defined disturbances in extremely precise and controlled manner. Before realizing the device, using a simple spring-mass-damper-based mathematical model, we ensured that the concept would indeed work. Subsequently, simple concept was converted into a detailed mechanical design and parts were manufactured and assembled. DLA has static and dynamic loading capabilities up to 250N and 18N respectively, with a bandwidth sufficient to generate wind disturbances. In this paper, we present various performance requirements of SMT actuators as well as our effort to develop a dynamic loading device which can be used to test these actuators. Well before using DLA for meaningful testing of the actuator, the DLA itself have gone through various tests and improvements phases. We have successfully demonstrated that DLA can be used to check the extreme performance of two different SMT actuators, which are expected to track the position/force with a few nanometer accuracy.

  16. Virtual reconstruction of very large skull defects featuring partly and completely missing midsagittal planes.

    PubMed

    Senck, Sascha; Coquerelle, Michael; Weber, Gerhard W; Benazzi, Stefano

    2013-05-01

    Despite the development of computer-based methods, cranial reconstruction of very large skull defects remains a challenge particularly if the damage affects the midsagittal region hampering the usage of mirror imaging techniques. This pilot study aims to deliver a new method that goes beyond mirror imaging, giving the possibility to reconstruct crania characterized by large missing areas, which might be useful in the fields of paleoanthropology, bioarcheology, and forensics. We test the accuracy of digital reconstructions in cases where two-thirds or more of a human cranium were missing. A three-dimensional (3D) virtual model of a human cranium was virtually damaged twice to compare two destruction-reconstruction scenarios. In the first case, a small fraction of the midsagittal region was still preserved, allowing the application of mirror imaging techniques. In the second case, the damage affected the complete midsagittal region, which demands a new approach to estimate the position of the midsagittal plane. Reconstructions were carried out using CT scans from a sample of modern humans (12 males and 13 females), to which 3D digital modeling techniques and geometric morphometric methods were applied. As expected, the second simulation showed a larger variability than the first one, which underlines the fact that the individual midsagittal plane is of course preferable in order to minimize the reconstruction error. However, in both simulations the Procrustes mean shape was an effective reference for the reconstruction of the entire cranium, producing models that showed a remarkably low error of about 3 mm, given the extent of missing data. Copyright © 2013 Wiley Periodicals, Inc.

  17. Development of an inherently digital transducer

    NASA Technical Reports Server (NTRS)

    Richard, R. R.

    1972-01-01

    The term digital transducer normally implies the combination of conventional analog sensors with encoders or analog-to-digital converters. Because of the objectionable characteristics of most digital transducers, a program was instituted to investigate the possibility of producing a transducer that is inherently digital, instead of a transducer that is digital in the usual sense. Such a device would have improved accuracy and reliability and would have reduced power and bulk requirements because two processes, sensing and conditioning, would be combined into one processes. A Curie-point-temperature sensor is described that represents realization of the stated goal. Also, a metal-insulator semiconductor is described that does not conform precisely to the program goals but that appears to have applications as a new and interesting transduction device.

  18. Development of an optical parallel logic device and a half-adder circuit for digital optical processing

    NASA Technical Reports Server (NTRS)

    Athale, R. A.; Lee, S. H.

    1978-01-01

    The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.

  19. Mirror, mirror on my Facebook wall: effects of exposure to Facebook on self-esteem.

    PubMed

    Gonzales, Amy L; Hancock, Jeffrey T

    2011-01-01

    Contrasting hypotheses were posed to test the effect of Facebook exposure on self-esteem. Objective Self-Awareness (OSA) from social psychology and the Hyperpersonal Model from computer-mediated communication were used to argue that Facebook would either diminish or enhance self-esteem respectively. The results revealed that, in contrast to previous work on OSA, becoming self-aware by viewing one's own Facebook profile enhances self-esteem rather than diminishes it. Participants that updated their profiles and viewed their own profiles during the experiment also reported greater self-esteem, which lends additional support to the Hyperpersonal Model. These findings suggest that selective self-presentation in digital media, which leads to intensified relationship formation, also influences impressions of the self.

  20. Stroboscopic Interferometer for Measuring Mirror Vibrations

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Robers, Ted

    2005-01-01

    Stroboscopic interferometry is a technique for measuring the modes of vibration of mirrors that are lightweight and, therefore, unavoidably flexible. The technique was conceived especially for modal characterization of lightweight focusing mirror segments to be deployed in outer space; however, the technique can be applied to lightweight mirrors designed for use on Earth as well as the modal investigation of other optical and mechanical structures. To determine the modal structure of vibration of a mirror, it is necessary to excite the mirror by applying a force that varies periodically with time at a controllable frequency. The excitation can utilize sinusoidal, square, triangular, or even asynchronous waveforms. Because vibrational modes occur at specific resonant frequencies, it is necessary to perform synchronous measurements and sweep the frequency to locate the significant resonant modes. For a given mode it is possible to step the phase of data acquisition in order to capture the modal behavior over a single cycle of the resonant frequency. In order to measure interferometrically the vibrational response of the mirror at a given frequency, an interferometer must be suitably aligned with the mirror and adjustably phase-locked with the excitation signal. As in conventional stroboscopic photography, the basic idea in stroboscopic interferometry is to capture an image of the shape of a moving object (in this case, the vibrating mirror) at a specified instant of time in the vibration cycle. Adjusting the phase difference over a full cycle causes the interference fringes to vary over the full range of motion for the mode at the excitation frequency. The interference-fringe pattern is recorded as a function of the phase difference, and, from the resulting data, the surface shape of the mirror for the given mode is extracted. In addition to the interferometer and the mirror to be tested, the equipment needed for stroboscopic interferometry includes an arbitrary-function generator (that is, a signal generator), an oscilloscope, a trigger filter, and an advanced charge-coupled-device (CCD) camera. The optical components are positioned to form a pupil image of the mirror under test on the CCD chip, so that the interference pattern representative of the instantaneous mirror shape is imaged on the CCD chip.

Top