Boundary and object detection in real world images. [by means of algorithms
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.
1974-01-01
A solution to the problem of automatic location of objects in digital pictures by computer is presented. A self-scaling local edge detector which can be applied in parallel on a picture is described. Clustering algorithms and boundary following algorithms which are sequential in nature process the edge data to locate images of objects.
Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.
NASA Astrophysics Data System (ADS)
Siregar, H.; Junaeti, E.; Hayatno, T.
2017-03-01
Activities correspondence is often used by agencies or companies, so that institutions or companies set up a special division to handle issues related to the letter management. Most of the distribution of letters using electronic media, then the letter should be kept confidential in order to avoid things that are not desirable. Techniques that can be done to meet the security aspect is by using cryptography or by giving a digital signature. The addition of asymmetric and symmetric algorithms, i.e. RSA and AES algorithms, on the digital signature had been done in this study to maintain data security. The RSA algorithm was used during the process of giving digital signature, while the AES algorithm was used during the process of encoding a message that will be sent to the receiver. Based on the research can be concluded that the additions of AES and RSA algorithms on the digital signature meet four objectives of cryptography: Secrecy, Data Integrity, Authentication and Non-repudiation.
Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.
1991-01-01
Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.
A Taxonomy of 3D Occluded Objects Recognition Techniques
NASA Astrophysics Data System (ADS)
Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh
2016-03-01
The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.
2007-02-23
approach for signal-level watermark inheritance. 15. SUBJECT TERMS EOARD, Steganography , Image Fusion, Data Mining, Image ...in watermarking algorithms , a program interface and protocol has been de - veloped, which allows control of the embedding and retrieval processes by the...watermarks in an image . Watermarking algorithm (DLL) Watermarking editor (Delphi) - User marks all objects: ci - class information oi - object instance
The Goddard Profiling Algorithm (GPROF): Description and Current Applications
NASA Technical Reports Server (NTRS)
Olson, William S.; Yang, Song; Stout, John E.; Grecu, Mircea
2004-01-01
Atmospheric scientists use different methods for interpreting satellite data. In the early days of satellite meteorology, the analysis of cloud pictures from satellites was primarily subjective. As computer technology improved, satellite pictures could be processed digitally, and mathematical algorithms were developed and applied to the digital images in different wavelength bands to extract information about the atmosphere in an objective way. The kind of mathematical algorithm one applies to satellite data may depend on the complexity of the physical processes that lead to the observed image, and how much information is contained in the satellite images both spatially and at different wavelengths. Imagery from satellite-borne passive microwave radiometers has limited horizontal resolution, and the observed microwave radiances are the result of complex physical processes that are not easily modeled. For this reason, a type of algorithm called a Bayesian estimation method is utilized to interpret passive microwave imagery in an objective, yet computationally efficient manner.
Information retrieval algorithms: A survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, P.
We give an overview of some algorithmic problems arising in the representation of text/image/multimedia objects in a form amenable to automated searching, and in conducting these searches efficiently. These operations are central to information retrieval and digital library systems.
NASA Astrophysics Data System (ADS)
Marwaha, Richa; Kumar, Anil; Kumar, Arumugam Senthil
2015-01-01
Our primary objective was to explore a classification algorithm for thermal hyperspectral data. Minimum noise fraction is applied to thermal hyperspectral data and eight pixel-based classifiers, i.e., constrained energy minimization, matched filter, spectral angle mapper (SAM), adaptive coherence estimator, orthogonal subspace projection, mixture-tuned matched filter, target-constrained interference-minimized filter, and mixture-tuned target-constrained interference minimized filter are tested. The long-wave infrared (LWIR) has not yet been exploited for classification purposes. The LWIR data contain emissivity and temperature information about an object. A highest overall accuracy of 90.99% was obtained using the SAM algorithm for the combination of thermal data with a colored digital photograph. Similarly, an object-oriented approach is applied to thermal data. The image is segmented into meaningful objects based on properties such as geometry, length, etc., which are grouped into pixels using a watershed algorithm and an applied supervised classification algorithm, i.e., support vector machine (SVM). The best algorithm in the pixel-based category is the SAM technique. SVM is useful for thermal data, providing a high accuracy of 80.00% at a scale value of 83 and a merge value of 90, whereas for the combination of thermal data with a colored digital photograph, SVM gives the highest accuracy of 85.71% at a scale value of 82 and a merge value of 90.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudipta; Deb, Debasis
2016-07-01
Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168
Comparison of analytic and iterative digital tomosynthesis reconstructions for thin slab objects
NASA Astrophysics Data System (ADS)
Yun, J.; Kim, D. W.; Ha, S.; Kim, H. K.
2017-11-01
For digital x-ray tomosynthesis of thin slab objects, we compare the tomographic imaging performances obtained from the filtered backprojection (FBP) and simultaneous algebraic reconstruction (SART) algorithms. The imaging performance includes the in-plane molulation-transfer function (MTF), the signal difference-to-noise ratio (SDNR), and the out-of-plane blur artifact or artifact-spread function (ASF). The MTF is measured using a thin tungsten-wire phantom, and the SDNR and the ASF are measured using a thin aluminum-disc phantom embedded in a plastic cylinder. The FBP shows a better MTF performance than the SART. On the contrary, the SART outperforms the FBP with regard to the SDNR and ASF performances. Detailed experimental results and their analysis results are described in this paper. For a more proper use of digital tomosynthesis technique, this study suggests to use a reconstuction algorithm suitable for application-specific purposes.
An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa
2013-01-01
Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.
An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System
Cengiz, Kubra
2013-01-01
Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468
State of the Art and Development Trends of the Digital Radiography Systems for Cargo Inspection
NASA Astrophysics Data System (ADS)
Udod, V.; Van, J.; Osipov, S.; Chakhlov, S.; Temnik, A.
2016-01-01
Increasing requirements for technical parameters of inspection digital radiography systems are caused by increasing incidences of terrorism, drug trafficking and explosives via variety of transport. These requirements have determined research for new technical solutions that enable to ensure the safety of passengers and cargos in real-time. The main efforts in the analyzed method of testing are aimed at the creation of new and modernization of operated now systems of digital radiography as a whole and their main components and elements in particular. The number of these main components and elements includes sources of X-ray recording systems and transformation of radiometric information as well as algorithms and software that implements these algorithms for processing, visualization and results interpretation of inspection. Recent developments of X-ray units and betatrons used for inspection of small- and large-sized objects that are made from different materials are deserve special attention. The most effective X-ray detectors are a line and a radiometric detector matrix based on various scintillators. The most promising methods among the algorithms of material identification of testing objects are dual-energy methods. The article describes various models of digital radiography systems applied in Russia and abroad to inspection of baggage, containers, vehicles and large trucks.
Jeong, Ji-Wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul
2016-01-01
We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.
Surface reconstruction from scattered data through pruning of unstructured grids
NASA Technical Reports Server (NTRS)
Maksymiuk, C. M.; Merriam, M. L.
1991-01-01
This paper describes an algorithm for reconstructing a surface from a randomly digitized object. Scan data (treated as a cloud of points) is first tesselated out to its convex hull using Delaunay triangulation. The line-of-sight between each surface point and the scanning device is traversed, and any tetrahedra which are pierced by it are removed. The remaining tetrahedra form an approximate solid model of the scanned object. Due to the inherently limited resolution of any scan, this algorithm requires two additional procedures to produce a smooth, polyhedral surface: one process removes long, narrow tetrahedra which span indentations in the surface between digitized points; the other smooths sharp edges. The results for a moderately resolved sample body and a highly resolved aircraft are displayed.
NASA Technical Reports Server (NTRS)
Seltzer, S. M.
1976-01-01
The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.
Solution of the problem of superposing image and digital map for detection of new objects
NASA Astrophysics Data System (ADS)
Rizaev, I. S.; Miftakhutdinov, D. I.; Takhavova, E. G.
2018-01-01
The problem of superposing the map of the terrain with the image of the terrain is considered. The image of the terrain may be represented in different frequency bands. Further analysis of the results of collation the digital map with the image of the appropriate terrain is described. Also the approach to detection of differences between information represented on the digital map and information of the image of the appropriate area is offered. The algorithm for calculating the values of brightness of the converted image area on the original picture is offered. The calculation is based on using information about the navigation parameters and information according to arranged bench marks. For solving the posed problem the experiments were performed. The results of the experiments are shown in this paper. The presented algorithms are applicable to the ground complex of remote sensing data to assess differences between resulting images and accurate geopositional data. They are also suitable for detecting new objects in the image, based on the analysis of the matching the digital map and the image of corresponding locality.
US National Large-scale City Orthoimage Standard Initiative
Zhou, G.; Song, C.; Benjamin, S.; Schickler, W.
2003-01-01
The early procedures and algorithms for National digital orthophoto generation in National Digital Orthophoto Program (NDOP) were based on earlier USGS mapping operations, such as field control, aerotriangulation (derived in the early 1920's), the quarter-quadrangle-centered (3.75 minutes of longitude and latitude in geographic extent), 1:40,000 aerial photographs, and 2.5 D digital elevation models. However, large-scale city orthophotos using early procedures have disclosed many shortcomings, e.g., ghost image, occlusion, shadow. Thus, to provide the technical base (algorithms, procedure) and experience needed for city large-scale digital orthophoto creation is essential for the near future national large-scale digital orthophoto deployment and the revision of the Standards for National Large-scale City Digital Orthophoto in National Digital Orthophoto Program (NDOP). This paper will report our initial research results as follows: (1) High-precision 3D city DSM generation through LIDAR data processing, (2) Spatial objects/features extraction through surface material information and high-accuracy 3D DSM data, (3) 3D city model development, (4) Algorithm development for generation of DTM-based orthophoto, and DBM-based orthophoto, (5) True orthophoto generation by merging DBM-based orthophoto and DTM-based orthophoto, and (6) Automatic mosaic by optimizing and combining imagery from many perspectives.
Wideband Agile Digital Microwave Radiometer
NASA Technical Reports Server (NTRS)
Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven
2012-01-01
The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.
Semi-Automated Digital Image Analysis of Pick’s Disease and TDP-43 Proteinopathy
Irwin, David J.; Byrne, Matthew D.; McMillan, Corey T.; Cooper, Felicia; Arnold, Steven E.; Lee, Edward B.; Van Deerlin, Vivianna M.; Xie, Sharon X.; Lee, Virginia M.-Y.; Grossman, Murray; Trojanowski, John Q.
2015-01-01
Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick’s disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. PMID:26538548
Semi-Automated Digital Image Analysis of Pick's Disease and TDP-43 Proteinopathy.
Irwin, David J; Byrne, Matthew D; McMillan, Corey T; Cooper, Felicia; Arnold, Steven E; Lee, Edward B; Van Deerlin, Vivianna M; Xie, Sharon X; Lee, Virginia M-Y; Grossman, Murray; Trojanowski, John Q
2016-01-01
Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick's disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Dorn-Wallenstein, Trevor Z.; Levesque, Emily
2017-11-01
Thanks to incredible advances in instrumentation, surveys like the Sloan Digital Sky Survey have been able to find and catalog billions of objects, ranging from local M dwarfs to distant quasars. Machine learning algorithms have greatly aided in the effort to classify these objects; however, there are regimes where these algorithms fail, where interesting oddities may be found. We present here an X-ray bright quasar misidentified as a red supergiant/X-ray binary, and a subsequent search of the SDSS quasar catalog for X-ray bright stars misidentified as quasars.
A Novel Optical/digital Processing System for Pattern Recognition
NASA Technical Reports Server (NTRS)
Boone, Bradley G.; Shukla, Oodaye B.
1993-01-01
This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.
NASA Astrophysics Data System (ADS)
Bosca, Ryan J.; Jackson, Edward F.
2016-01-01
Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland-Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms.
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
Shah, Sohil Atul
2017-01-01
Clustering is a fundamental procedure in the analysis of scientific data. It is used ubiquitously across the sciences. Despite decades of research, existing clustering algorithms have limited effectiveness in high dimensions and often require tuning parameters for different domains and datasets. We present a clustering algorithm that achieves high accuracy across multiple domains and scales efficiently to high dimensions and large datasets. The presented algorithm optimizes a smooth continuous objective, which is based on robust statistics and allows heavily mixed clusters to be untangled. The continuous nature of the objective also allows clustering to be integrated as a module in end-to-end feature learning pipelines. We demonstrate this by extending the algorithm to perform joint clustering and dimensionality reduction by efficiently optimizing a continuous global objective. The presented approach is evaluated on large datasets of faces, hand-written digits, objects, newswire articles, sensor readings from the Space Shuttle, and protein expression levels. Our method achieves high accuracy across all datasets, outperforming the best prior algorithm by a factor of 3 in average rank. PMID:28851838
Location-Based Augmented Reality for Mobile Learning: Algorithm, System, and Implementation
ERIC Educational Resources Information Center
Tan, Qing; Chang, William; Kinshuk
2015-01-01
AR technology can be considered as mainly consisting of two aspects: identification of real-world object and display of computer-generated digital contents related the identified real-world object. The technical challenge of mobile AR is to identify the real-world object that mobile device's camera aim at. In this paper, we will present a…
Creating objects and object categories for studying perception and perceptual learning.
Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay
2012-11-02
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties. Many innovative and useful methods currently exist for creating novel objects and object categories (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.
State-Estimation Algorithm Based on Computer Vision
NASA Technical Reports Server (NTRS)
Bayard, David; Brugarolas, Paul
2007-01-01
An algorithm and software to implement the algorithm are being developed as means to estimate the state (that is, the position and velocity) of an autonomous vehicle, relative to a visible nearby target object, to provide guidance for maneuvering the vehicle. In the original intended application, the autonomous vehicle would be a spacecraft and the nearby object would be a small astronomical body (typically, a comet or asteroid) to be explored by the spacecraft. The algorithm could also be used on Earth in analogous applications -- for example, for guiding underwater robots near such objects of interest as sunken ships, mineral deposits, or submerged mines. It is assumed that the robot would be equipped with a vision system that would include one or more electronic cameras, image-digitizing circuitry, and an imagedata- processing computer that would generate feature-recognition data products.
Samei, Ehsan; Buhr, Egbert; Granfors, Paul; Vandenbroucke, Dirk; Wang, Xiaohui
2005-08-07
The modulation transfer function (MTF) is well established as a metric to characterize the resolution performance of a digital radiographic system. Implemented by various laboratories, the edge technique is currently the most widespread approach to measure the MTF. However, there can be differences in the results attributed to differences in the analysis technique employed. The objective of this study was to determine whether comparable results can be obtained from different algorithms processing identical images representative of those of current digital radiographic systems. Five laboratories participated in a round-robin evaluation of six different algorithms including one prescribed in the International Electrotechnical Commission (IEC) 62220-1 standard. The algorithms were applied to two synthetic and 12 real edge images from different digital radiographic systems including CR, and direct- and indirect-conversion detector systems. The results were analysed in terms of variability as well as accuracy of the resulting presampled MTFs. The results indicated that differences between the individual MTFs and the mean MTF were largely below 0.02. In the case of the two simulated edge images, all algorithms yielded similar results within 0.01 of the expected true MTF. The findings indicated that all algorithms tested in this round-robin evaluation, including the IEC-prescribed algorithm, were suitable for accurate MTF determination from edge images, provided the images are not excessively noisy. The agreement of the MTF results was judged sufficient for the measurement of the MTF necessary for the determination of the DQE.
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; John, Renu
2015-12-01
Digital holographic microscope (DHM) is an emerging quantitative phase imaging technique with unique imaging scales and resolutions leading to multitude of applications. DHM is promising as a novel investigational and applied tool for cell imaging, studying the morphology and real time dynamics of cells and a number of related applications. The use of numerical propagation and computational digital optics offer unique flexibility to tune the depth of focus, and compensate for image aberrations. In this work, we report imaging the dynamics of cell division in E.coli and yeast cells using a DHM platform. We demonstrate 3-D and depth imaging as well as reconstruction of phase profiles of E.coli and yeast cells using the system. We record a digital hologram of E.coli and yeast cells and reconstruct the image using Fresnel propagation algorithm. We also use aberration compensation algorithms for correcting the aberrations that are introduced by the microscope objective in the object path using linear least square fitting techniques. This work demonstrates the strong potential of a DHM platform in 3-D live cell imaging, fast clinical quantifications and pathological applications.
NASA Astrophysics Data System (ADS)
Yu, Xu; Shao, Quanqin; Zhu, Yunhai; Deng, Yuejin; Yang, Haijun
2006-10-01
With the development of informationization and the separation between data management departments and application departments, spatial data sharing becomes one of the most important objectives for the spatial information infrastructure construction, and spatial metadata management system, data transmission security and data compression are the key technologies to realize spatial data sharing. This paper discusses the key technologies for metadata based on data interoperability, deeply researches the data compression algorithms such as adaptive Huffman algorithm, LZ77 and LZ78 algorithm, studies to apply digital signature technique to encrypt spatial data, which can not only identify the transmitter of spatial data, but also find timely whether the spatial data are sophisticated during the course of network transmission, and based on the analysis of symmetric encryption algorithms including 3DES,AES and asymmetric encryption algorithm - RAS, combining with HASH algorithm, presents a improved mix encryption method for spatial data. Digital signature technology and digital watermarking technology are also discussed. Then, a new solution of spatial data network distribution is put forward, which adopts three-layer architecture. Based on the framework, we give a spatial data network distribution system, which is efficient and safe, and also prove the feasibility and validity of the proposed solution.
An Efficient Image Recovery Algorithm for Diffraction Tomography Systems
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1993-01-01
A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...
Limited angle C-arm tomosynthesis reconstruction algorithms
NASA Astrophysics Data System (ADS)
Malalla, Nuhad A. Y.; Xu, Shiyu; Chen, Ying
2015-03-01
In this paper, C-arm tomosynthesis with digital detector was investigated as a novel three dimensional (3D) imaging technique. Digital tomosythses is an imaging technique to provide 3D information of the object by reconstructing slices passing through the object, based on a series of angular projection views with respect to the object. C-arm tomosynthesis provides two dimensional (2D) X-ray projection images with rotation (-/+20 angular range) of both X-ray source and detector. In this paper, four representative reconstruction algorithms including point by point back projection (BP), filtered back projection (FBP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were investigated. Dataset of 25 projection views of 3D spherical object that located at center of C-arm imaging space was simulated from 25 angular locations over a total view angle of 40 degrees. With reconstructed images, 3D mesh plot and 2D line profile of normalized pixel intensities on focus reconstruction plane crossing the center of the object were studied with each reconstruction algorithm. Results demonstrated the capability to generate 3D information from limited angle C-arm tomosynthesis. Since C-arm tomosynthesis is relatively compact, portable and can avoid moving patients, it has been investigated for different clinical applications ranging from tumor surgery to interventional radiology. It is very important to evaluate C-arm tomosynthesis for valuable applications.
Construct Abstraction for Automatic Information Abstraction from Digital Images
2006-05-30
objects and features and the names of objects of objects and features. For example, in Figure 15 the parts of the fish could be named the ‘mouth... fish -1 fish -2 fish -3 tennis shoe tennis racquet...of abstraction and generality. For example, an algorithm might usefully find a polygon ( blob ) in an image and calculate numbers such as the
The algorithm for automatic detection of the calibration object
NASA Astrophysics Data System (ADS)
Artem, Kruglov; Irina, Ugfeld
2017-06-01
The problem of the automatic image calibration is considered in this paper. The most challenging task of the automatic calibration is a proper detection of the calibration object. The solving of this problem required the appliance of the methods and algorithms of the digital image processing, such as morphology, filtering, edge detection, shape approximation. The step-by-step process of the development of the algorithm and its adopting to the specific conditions of the log cuts in the image's background is presented. Testing of the automatic calibration module was carrying out under the conditions of the production process of the logging enterprise. Through the tests the average possibility of the automatic isolating of the calibration object is 86.1% in the absence of the type 1 errors. The algorithm was implemented in the automatic calibration module within the mobile software for the log deck volume measurement.
Symmetrical group theory for mathematical complexity reduction of digital holograms
NASA Astrophysics Data System (ADS)
Perez-Ramirez, A.; Guerrero-Juk, J.; Sanchez-Lara, R.; Perez-Ramirez, M.; Rodriguez-Blanco, M. A.; May-Alarcon, M.
2017-10-01
This work presents the use of mathematical group theory through an algorithm to reduce the multiplicative computational complexity in the process of creating digital holograms. An object is considered as a set of point sources using mathematical symmetry properties of both the core in the Fresnel integral and the image, where the image is modeled using group theory. This algorithm has multiplicative complexity equal to zero and an additive complexity ( k - 1) × N for the case of sparse matrices and binary images, where k is the number of pixels other than zero and N is the total points in the image.
Practical algorithms for simulation and reconstruction of digital in-line holograms.
Latychevskaia, Tatiana; Fink, Hans-Werner
2015-03-20
Here we present practical methods for simulation and reconstruction of in-line digital holograms recorded with plane and spherical waves. The algorithms described here are applicable to holographic imaging of an object exhibiting absorption as well as phase-shifting properties. Optimal parameters, related to distances, sampling rate, and other factors for successful simulation and reconstruction of holograms are evaluated and criteria for the achievable resolution are worked out. Moreover, we show that the numerical procedures for the reconstruction of holograms recorded with plane and spherical waves are identical under certain conditions. Experimental examples of holograms and their reconstructions are also discussed.
Creating Objects and Object Categories for Studying Perception and Perceptual Learning
Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay
2012-01-01
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis. PMID:23149420
Marks, Daniel L; Oldenburg, Amy L; Reynolds, J Joshua; Boppart, Stephen A
2003-01-10
The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.
NASA Astrophysics Data System (ADS)
Marks, Daniel L.; Oldenburg, Amy L.; Reynolds, J. Joshua; Boppart, Stephen A.
2003-01-01
The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.
Advanced detection, isolation and accommodation of sensor failures: Real-time evaluation
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Delaat, John C.; Bruton, William M.
1987-01-01
The objective of the Advanced Detection, Isolation, and Accommodation (ADIA) Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines by using analytical redundacy to detect sensor failures. The results of a real time hybrid computer evaluation of the ADIA algorithm are presented. Minimum detectable levels of sensor failures for an F100 engine control system are determined. Also included are details about the microprocessor implementation of the algorithm as well as a description of the algorithm itself.
Making the most of missing values : object clustering with partial data in astronomy
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Laidler, Victoria G.
2004-01-01
We demonstrate a clustering analysis algorithm, KSC, that a) uses all observed values and b) does not discard the partially observed objects. KSC uses soft constraints defined by the fully observed objects to assist in the grouping of objects with missing values. We present an analysis of objects taken from the Sloan Digital Sky Survey to demonstrate how imputing the values can be misleading and why the KSC approach can produce more appropriate results.
In-camera automation of photographic composition rules.
Banerjee, Serene; Evans, Brian L
2007-07-01
At the time of image acquisition, professional photographers apply many rules of thumb to improve the composition of their photographs. This paper develops a joint optical-digital processing framework for automating composition rules during image acquisition for photographs with one main subject. Within the framework, we automate three photographic composition rules: repositioning the main subject, making the main subject more prominent, and making objects that merge with the main subject less prominent. The idea is to provide to the user alternate pictures obtained by applying photographic composition rules in addition to the original picture taken by the user. The proposed algorithms do not depend on prior knowledge of the indoor/outdoor setting or scene content. The proposed algorithms are also designed to be amenable to software implementation on fixed-point programmable digital signal processors available in digital still cameras.
Digital health technology and trauma: development of an app to standardize care.
Hsu, Jeremy M
2015-04-01
Standardized practice results in less variation, therefore reducing errors and improving outcome. Optimal trauma care is achieved through standardization, as is evidenced by the widespread adoption of the Advanced Trauma Life Support approach. The challenge for an individual institution is how does one educate and promulgate these standardized processes widely and efficiently? In today's world, digital health technology must be considered in the process. The aim of this study was to describe the process of developing an app, which includes standardized trauma algorithms. The objective of the app was to allow easy, real-time access to trauma algorithms, and therefore reduce omissions/errors. A set of trauma algorithms, relevant to the local setting, was derived from the best available evidence. After obtaining grant funding, a collaborative endeavour was undertaken with an external specialist app developing company. The process required 6 months to translate the existing trauma algorithms into an app. The app contains 32 separate trauma algorithms, formatted as a single-page flow diagram. It utilizes specific smartphone features such as 'pinch to zoom', jump-words and pop-ups to allow rapid access to the desired information. Improvements in trauma care outcomes result from reducing variation. By incorporating digital health technology, a trauma app has been developed, allowing easy and intuitive access to evidenced-based algorithms. © 2015 Royal Australasian College of Surgeons.
NASA Astrophysics Data System (ADS)
Wan, Yuhong; Man, Tianlong; Wu, Fan; Kim, Myung K.; Wang, Dayong
2016-11-01
We present a new self-interference digital holographic approach that allows single-shot capturing three-dimensional intensity distribution of the spatially incoherent objects. The Fresnel incoherent correlation holographic microscopy is combined with parallel phase-shifting technique to instantaneously obtain spatially multiplexed phase-shifting holograms. The compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed holograms. The scheme is verified with simulations. The validity of the proposed method is experimentally demonstrated in an indirectly way by simulating the use of specific parallel phase-shifting recording device.
Noise reduction in digital holography based on a filtering algorithm
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Zhang, Hua; Jin, Guofan; Brady, David
2018-02-01
Holography is a tool to record the object wavefront by interference. Complex amplitude of the object wave is coded into a two dimensional hologram. Unfortunately, the conjugate wave and background wave would also appear at the object plane during reconstruction, as noise, which blurs the reconstructed object. From the perspective of wave, we propose a filtering algorithm to get a noise-reduced reconstruction. Due to the fact that the hologram is a kind of amplitude grating, three waves would appear when reconstruction, which are object wave, conjugate wave and background wave. The background is easy to eliminate by frequency domain filtering. The object wave and conjugate wave are signals to be dealt with. These two waves, as a whole, propagate in the space. However, when detected at the original object plane, the object wave would diffract into a sparse pattern while the conjugate wave would diffract into a diffused pattern forming the noise. Hence, the noise can be reduced based on these difference with a filtering algorithm. Both amplitude and phase distributions are truthfully retrieved in our simulation and experimental demonstration.
Research on Bayes matting algorithm based on Gaussian mixture model
NASA Astrophysics Data System (ADS)
Quan, Wei; Jiang, Shan; Han, Cheng; Zhang, Chao; Jiang, Zhengang
2015-12-01
The digital matting problem is a classical problem of imaging. It aims at separating non-rectangular foreground objects from a background image, and compositing with a new background image. Accurate matting determines the quality of the compositing image. A Bayesian matting Algorithm Based on Gaussian Mixture Model is proposed to solve this matting problem. Firstly, the traditional Bayesian framework is improved by introducing Gaussian mixture model. Then, a weighting factor is added in order to suppress the noises of the compositing images. Finally, the effect is further improved by regulating the user's input. This algorithm is applied to matting jobs of classical images. The results are compared to the traditional Bayesian method. It is shown that our algorithm has better performance in detail such as hair. Our algorithm eliminates the noise well. And it is very effectively in dealing with the kind of work, such as interested objects with intricate boundaries.
3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform
NASA Astrophysics Data System (ADS)
Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul
2018-03-01
This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.
Direct Measurement of Large, Diffuse, Optical Structures
NASA Technical Reports Server (NTRS)
Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.
2004-01-01
Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara
2016-01-01
The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.
A new scale for the assessment of conjunctival bulbar redness.
Macchi, Ilaria; Bunya, Vatinee Y; Massaro-Giordano, Mina; Stone, Richard A; Maguire, Maureen G; Zheng, Yuanjie; Chen, Min; Gee, James; Smith, Eli; Daniel, Ebenezer
2018-06-05
Current scales for assessment of bulbar conjunctival redness have limitations for evaluating digital images. We developed a scale suited for evaluating digital images and compared it to the Validated Bulbar Redness (VBR) scale. From a digital image database of 4889 color corrected bulbar conjunctival images, we identified 20 images with varied degrees of redness. These images, ten each of nasal and temporal views, constitute the Digital Bulbar Redness (DBR) scale. The chromaticity of these images was assessed with an established image processing algorithm. Using 100 unique, randomly selected images from the database, three trained, non-physician graders applied the DBR scale and printed VBR scale. Agreement was assessed with weighted Kappa statistics (K w ). The DBR scale scores provide linear increments of 10 from 10-100 when redness is measured objectively with an established image processing algorithm. Exact agreement of all graders was 38% and agreement with no more than a difference of ten units between graders was 91%. K w for agreement between any two graders ranged from 0.57 to 0.73 for the DBR scale and from 0.38 to 0.66 for the VBR scale. The DBR scale allowed direct comparison of digital to digital images, could be used in dim lighting, had both temporal and nasal conjunctival reference images, and permitted viewing reference and test images at the same magnification. The novel DBR scale, with its objective linear chromatic steps, demonstrated improved reproducibility, fewer visualization artifacts and improved ease of use over the VBR scale for assessing conjunctival redness. Copyright © 2018. Published by Elsevier Inc.
AMLSA Algorithm for Hybrid Precoding in Millimeter Wave MIMO Systems
NASA Astrophysics Data System (ADS)
Liu, Fulai; Sun, Zhenxing; Du, Ruiyan; Bai, Xiaoyu
2017-10-01
In this paper, an effective algorithm will be proposed for hybrid precoding in mmWave MIMO systems, referred to as alternating minimization algorithm with the least squares amendment (AMLSA algorithm). To be specific, for the fully-connected structure, the presented algorithm is exploited to minimize the classical objective function and obtain the hybrid precoding matrix. It introduces an orthogonal constraint to the digital precoding matrix which is amended subsequently by the least squares after obtaining its alternating minimization iterative result. Simulation results confirm that the achievable spectral efficiency of our proposed algorithm is better to some extent than that of the existing algorithm without the least squares amendment. Furthermore, the number of iterations is reduced slightly via improving the initialization procedure.
Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.
Feng, Wei; Zhang, Fumin; Wang, Weijing; Xing, Wei; Qu, Xinghua
2017-05-01
In this paper, we overcome the limited dynamic range of the conventional digital camera, and propose a method of realizing high dynamic range imaging (HDRI) from a novel programmable imaging system called a digital micromirror device (DMD) camera. The unique feature of the proposed new method is that the spatial and temporal information of incident light in our DMD camera can be flexibly modulated, and it enables the camera pixels always to have reasonable exposure intensity by DMD pixel-level modulation. More importantly, it allows different light intensity control algorithms used in our programmable imaging system to achieve HDRI. We implement the optical system prototype, analyze the theory of per-pixel coded exposure for HDRI, and put forward an adaptive light intensity control algorithm to effectively modulate the different light intensity to recover high dynamic range images. Via experiments, we demonstrate the effectiveness of our method and implement the HDRI on different objects.
SlideJ: An ImageJ plugin for automated processing of whole slide images.
Della Mea, Vincenzo; Baroni, Giulia L; Pilutti, David; Di Loreto, Carla
2017-01-01
The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images-up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations.
SlideJ: An ImageJ plugin for automated processing of whole slide images
Baroni, Giulia L.; Pilutti, David; Di Loreto, Carla
2017-01-01
The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images—up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations. PMID:28683129
Tahara, Tatsuki; Otani, Reo; Omae, Kaito; Gotohda, Takuya; Arai, Yasuhiko; Takaki, Yasuhiro
2017-05-15
We propose multiwavelength in-line digital holography with wavelength-multiplexed phase-shifted holograms and arbitrary symmetric phase shifts. We use phase-shifting interferometry selectively extracting wavelength information to reconstruct multiwavelength object waves separately from wavelength-multiplexed monochromatic images. The proposed technique obtains systems of equations for real and imaginary parts of multiwavelength object waves from the holograms by introducing arbitrary symmetric phase shifts. Then, the technique derives each complex amplitude distribution of each object wave selectively and analytically by solving the two systems of equations. We formulate the algorithm in the case of an arbitrary number of wavelengths and confirm its validity numerically and experimentally in the cases where the number of wavelengths is two and three.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Editor)
1988-01-01
The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.
Compressive self-interference Fresnel digital holography with faithful reconstruction
NASA Astrophysics Data System (ADS)
Wan, Yuhong; Man, Tianlong; Han, Ying; Zhou, Hongqiang; Wang, Dayong
2017-05-01
We developed compressive self-interference digital holographic approach that allows retrieving three-dimensional information of the spatially incoherent objects from single-shot captured hologram. The Fresnel incoherent correlation holography is combined with parallel phase-shifting technique to instantaneously obtain spatial-multiplexed phase-shifting holograms. The recording scheme is regarded as compressive forward sensing model, thus the compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed sub-holograms. The concept was verified by simulations and experiments with simulating use of the polarizer array. The proposed technique has great potential to be applied in 3D tracking of spatially incoherent samples.
Digital mammography, cancer screening: Factors important for image compression
NASA Technical Reports Server (NTRS)
Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria
1993-01-01
The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.
Bunya, Vatinee Y; Chen, Min; Zheng, Yuanjie; Massaro-Giordano, Mina; Gee, James; Daniel, Ebenezer; O'Sullivan, Ryan; Smith, Eli; Stone, Richard A; Maguire, Maureen G
2017-10-01
Lissamine green (LG) staining of the conjunctiva is a key biomarker in evaluating ocular surface disease. The disease currently is assessed using relatively coarse subjective scales. Objective assessment would standardize comparisons over time and between clinicians. To develop a semiautomated, quantitative system to assess lissamine green staining of the bulbar conjunctiva on digital images. Using a standard photography protocol, 35 digital images of the conjunctiva of 11 patients with a diagnosis of dry eye disease based on characteristic signs and symptoms were obtained after topical administration of preservative-free LG, 1%, solution. Images were scored independently by 2 masked ophthalmologists in an academic medical center using the van Bijsterveld and National Eye Institute (NEI) scales. The region of interest was identified by manually marking 7 anatomic landmarks on the images. An objective measure was developed by segmenting the images, forming a vector of key attributes, and then performing a random forest regression. Subjective scores were correlated with the output from a computer algorithm using a cross-validation technique. The ranking of images from least to most staining was compared between the algorithm and the ophthalmologists. The study was conducted from April 26, 2012, through June 2, 2016. Correlation and level of agreement among computerized algorithm scores, van Bijsterveld scale clinical scores, and NEI scale clinical scores. The scores from the automated algorithm correlated well with the mean scores obtained from the gradings of 2 ophthalmologists for the 35 images using the van Bijsterveld scale (Spearman correlation coefficient, rs = 0.79), and moderately with the NEI scale (rs = 0.61) scores. For qualitative ranking of staining, the correlation between the automated algorithm and the 2 ophthalmologists was rs = 0.78 and rs = 0.83. The algorithm performed well when evaluating LG staining of the conjunctiva, as evidenced by good correlation with subjective gradings using 2 different grading scales. Future longitudinal studies are needed to assess the responsiveness of the algorithm to change of conjunctival staining over time.
SU-F-T-20: Novel Catheter Lumen Recognition Algorithm for Rapid Digitization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dise, J; McDonald, D; Ashenafi, M
Purpose: Manual catheter recognition remains a time-consuming aspect of high-dose-rate brachytherapy (HDR) treatment planning. In this work, a novel catheter lumen recognition algorithm was created for accurate and rapid digitization. Methods: MatLab v8.5 was used to create the catheter recognition algorithm. Initially, the algorithm searches the patient CT dataset using an intensity based k-means filter designed to locate catheters. Once the catheters have been located, seed points are manually selected to initialize digitization of each catheter. From each seed point, the algorithm searches locally in order to automatically digitize the remaining catheter. This digitization is accomplished by finding pixels withmore » similar image curvature and divergence parameters compared to the seed pixel. Newly digitized pixels are treated as new seed positions, and hessian image analysis is used to direct the algorithm toward neighboring catheter pixels, and to make the algorithm insensitive to adjacent catheters that are unresolvable on CT, air pockets, and high Z artifacts. The algorithm was tested using 11 HDR treatment plans, including the Syed template, tandem and ovoid applicator, and multi-catheter lung brachytherapy. Digitization error was calculated by comparing manually determined catheter positions to those determined by the algorithm. Results: he digitization error was 0.23 mm ± 0.14 mm axially and 0.62 mm ± 0.13 mm longitudinally at the tip. The time of digitization, following initial seed placement was less than 1 second per catheter. The maximum total time required to digitize all tested applicators was 4 minutes (Syed template with 15 needles). Conclusion: This algorithm successfully digitizes HDR catheters for a variety of applicators with or without CT markers. The minimal axial error demonstrates the accuracy of the algorithm, and its insensitivity to image artifacts and challenging catheter positioning. Future work to automatically place initial seed positions would improve the algorithm speed.« less
Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image
NASA Astrophysics Data System (ADS)
Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti
2016-06-01
An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.
Efficient method of image edge detection based on FSVM
NASA Astrophysics Data System (ADS)
Cai, Aiping; Xiong, Xiaomei
2013-07-01
For efficient object cover edge detection in digital images, this paper studied traditional methods and algorithm based on SVM. It analyzed Canny edge detection algorithm existed some pseudo-edge and poor anti-noise capability. In order to provide a reliable edge extraction method, propose a new detection algorithm based on FSVM. Which contains several steps: first, trains classify sample and gives the different membership function to different samples. Then, a new training sample is formed by increase the punishment some wrong sub-sample, and use the new FSVM classification model for train and test them. Finally the edges are extracted of the object image by using the model. Experimental result shows that good edge detection image will be obtained and adding noise experiments results show that this method has good anti-noise.
Digital signal processing algorithms for automatic voice recognition
NASA Technical Reports Server (NTRS)
Botros, Nazeih M.
1987-01-01
The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms.
Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms
NASA Astrophysics Data System (ADS)
Tleis, Mohamed; Verbeek, Fons J.
2014-04-01
Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.
Ji-Wook Jeong; Seung-Hoon Chae; Eun Young Chae; Hak Hee Kim; Young Wook Choi; Sooyeul Lee
2016-08-01
A computer-aided detection (CADe) algorithm for clustered microcalcifications (MCs) in reconstructed digital breast tomosynthesis (DBT) images is suggested. The MC-like objects were enhanced by a Hessian-based 3D calcification response function, and a signal-to-noise ratio (SNR) enhanced image was also generated to screen the MC clustering seed objects. A connected component segmentation method was used to detect the cluster seed objects, which were considered as potential clustering centers of MCs. Bounding cubes for the accepted clustering seed candidate were generated and the overlapping cubes were combined and examined. After the MC clustering and false-positive (FP) reduction step, the average number of FPs was estimated to be 0.87 per DBT volume with a sensitivity of 90.5%.
Holography of Wi-fi Radiation.
Holl, Philipp M; Reinhard, Friedemann
2017-05-05
Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light-electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram-a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.
NASA Astrophysics Data System (ADS)
Holl, Philipp M.; Reinhard, Friedemann
2017-05-01
Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light—electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram—a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.
NASA Technical Reports Server (NTRS)
Delaat, John C.; Merrill, Walter C.
1990-01-01
The objective of the Advanced Detection, Isolation, and Accommodation Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, an algorithm was developed which detects, isolates, and accommodates sensor failures by using analytical redundancy. The performance of this algorithm was evaluated on a real time engine simulation and was demonstrated on a full scale F100 turbofan engine. The real time implementation of the algorithm is described. The implementation used state-of-the-art microprocessor hardware and software, including parallel processing and high order language programming.
Blind color isolation for color-channel-based fringe pattern profilometry using digital projection
NASA Astrophysics Data System (ADS)
Hu, Yingsong; Xi, Jiangtao; Chicharo, Joe; Yang, Zongkai
2007-08-01
We present an algorithm for estimating the color demixing matrix based on the color fringe patterns captured from the reference plane or the surface of the object. The advantage of this algorithm is that it is a blind approach to calculating the demixing matrix in the sense that no extra images are required for color calibration before performing profile measurement. Simulation and experimental results convince us that the proposed algorithm can significantly reduce the influence of the color cross talk and at the same time improve the measurement accuracy of the color-channel-based phase-shifting profilometry.
NASA Astrophysics Data System (ADS)
Li, Liang; Chen, Zhiqiang; Zhao, Ziran; Wu, Dufan
2013-01-01
At present, there are mainly three x-ray imaging modalities for dental clinical diagnosis: radiography, panorama and computed tomography (CT). We develop a new x-ray digital intra-oral tomosynthesis (IDT) system for quasi-three-dimensional dental imaging which can be seen as an intermediate modality between traditional radiography and CT. In addition to normal x-ray tube and digital sensor used in intra-oral radiography, IDT has a specially designed mechanical device to complete the tomosynthesis data acquisition. During the scanning, the measurement geometry is such that the sensor is stationary inside the patient's mouth and the x-ray tube moves along an arc trajectory with respect to the intra-oral sensor. Therefore, the projection geometry can be obtained without any other reference objects, which makes it be easily accepted in clinical applications. We also present a compressed sensing-based iterative reconstruction algorithm for this kind of intra-oral tomosynthesis. Finally, simulation and experiment were both carried out to evaluate this intra-oral imaging modality and algorithm. The results show that IDT has its potentiality to become a new tool for dental clinical diagnosis.
3D interactive augmented reality-enhanced digital learning systems for mobile devices
NASA Astrophysics Data System (ADS)
Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie
2013-03-01
With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.
Abdellah, Marwan; Eldeib, Ayman; Owis, Mohamed I
2015-01-01
This paper features an advanced implementation of the X-ray rendering algorithm that harnesses the giant computing power of the current commodity graphics processors to accelerate the generation of high resolution digitally reconstructed radiographs (DRRs). The presented pipeline exploits the latest features of NVIDIA Graphics Processing Unit (GPU) architectures, mainly bindless texture objects and dynamic parallelism. The rendering throughput is substantially improved by exploiting the interoperability mechanisms between CUDA and OpenGL. The benchmarks of our optimized rendering pipeline reflect its capability of generating DRRs with resolutions of 2048(2) and 4096(2) at interactive and semi interactive frame-rates using an NVIDIA GeForce 970 GTX device.
Hansen, J H; Nandkumar, S
1995-01-01
The formulation of reliable signal processing algorithms for speech coding and synthesis require the selection of a prior criterion of performance. Though coding efficiency (bits/second) or computational requirements can be used, a final performance measure must always include speech quality. In this paper, three objective speech quality measures are considered with respect to quality assessment for American English, noisy American English, and noise-free versions of seven languages. The purpose is to determine whether objective quality measures can be used to quantify changes in quality for a given voice coding method, with a known subjective performance level, as background noise or language conditions are changed. The speech coding algorithm chosen is regular-pulse excitation with long-term prediction (RPE-LTP), which has been chosen as the standard voice compression algorithm for the European Digital Mobile Radio system. Three areas are considered for objective quality assessment which include: (i) vocoder performance for American English in a noise-free environment, (ii) speech quality variation for three additive background noise sources, and (iii) noise-free performance for seven languages which include English, Japanese, Finnish, German, Hindi, Spanish, and French. It is suggested that although existing objective quality measures will never replace subjective testing, they can be a useful means of assessing changes in performance, identifying areas for improvement in algorithm design, and augmenting subjective quality tests for voice coding/compression algorithms in noise-free, noisy, and/or non-English applications.
Image recognition of clipped stigma traces in rice seeds
NASA Astrophysics Data System (ADS)
Cheng, F.; Ying, YB
2005-11-01
The objective of this research is to develop algorithm to recognize clipped stigma traces in rice seeds using image processing. At first, the micro-configuration of clipped stigma traces was observed with electronic scanning microscope. Then images of rice seeds were acquired with a color machine vision system. A digital image-processing algorithm based on morphological operations and Hough transform was developed to inspect the occurrence of clipped stigma traces. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and you3207 were evaluated. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96%. The algorithm was proved to be insensitive to the different rice seed varieties.
Semi-automated location identification of catheters in digital chest radiographs
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Reeves, Anthony P.; Cham, Matthew D.; Henschke, Claudia I.; Yankelevitz, David F.
2007-03-01
Localization of catheter tips is the most common task in intensive care unit imaging. In this work, catheters appearing in digital chest radiographs acquired by portable chest x-rays were tracked using a semi-automatic method. Due to the fact that catheters are synthetic objects, its profile does not vary drastically over its length. Therefore, we use forward looking registration with normalized cross-correlation in order to take advantage of a priori information of the catheter profile. The registration is accomplished with a two-dimensional template representative of the catheter to be tracked generated using two seed points given by the user. To validate catheter tracking with this method, we look at two metrics: accuracy and precision. The algorithms results are compared to a ground truth established by catheter midlines marked by expert radiologists. Using 12 objects of interest comprised of naso-gastric, endo-tracheal tubes, and chest tubes, and PICC and central venous catheters, we find that our algorithm can fully track 75% of the objects of interest, with a average tracking accuracy and precision of 85.0%, 93.6% respectively using the above metrics. Such a technique would be useful for physicians wishing to verify the positioning of catheter tips using chest radiographs.
The digital implementation of control compensators: The coefficient wordlength issue
NASA Technical Reports Server (NTRS)
Moroney, P.; Willsky, A. S.; Houpt, P. K.
1979-01-01
There exists a number of mathematical procedures for designing discrete-time compensators. However, the digital implementation of these designs, with a microprocessor for example, has not received nearly as thorough an investigation. The finite-precision nature of the digital hardware makes it necessary to choose an algorithm (computational structure) that will perform 'well-enough' with regard to the initial objectives of the design. This paper describes a procedure for estimating the required fixed-point coefficient wordlength for any given computational structure for the implementation of a single-input single-output LOG design. The results are compared to the actual number of bits necessary to achieve a specified performance index.
NASA Astrophysics Data System (ADS)
Lhamon, Michael Earl
A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.
New efficient algorithm for recognizing handwritten Hindi digits
NASA Astrophysics Data System (ADS)
El-Sonbaty, Yasser; Ismail, Mohammed A.; Karoui, Kamal
2001-12-01
In this paper a new algorithm for recognizing handwritten Hindi digits is proposed. The proposed algorithm is based on using the topological characteristics combined with statistical properties of the given digits in order to extract a set of features that can be used in the process of digit classification. 10,000 handwritten digits are used in the experimental results. 1100 digits are used for training and another 5500 unseen digits are used for testing. The recognition rate has reached 97.56%, a substitution rate of 1.822%, and a rejection rate of 0.618%.
Information surfing with the JHU/APL coherent imager
NASA Astrophysics Data System (ADS)
Ratto, Christopher R.; Shipley, Kara R.; Beagley, Nathaniel; Wolfe, Kevin C.
2015-05-01
The ability to perform remote forensics in situ is an important application of autonomous undersea vehicles (AUVs). Forensics objectives may include remediation of mines and/or unexploded ordnance, as well as monitoring of seafloor infrastructure. At JHU/APL, digital holography is being explored for the potential application to underwater imaging and integration with an AUV. In previous work, a feature-based approach was developed for processing the holographic imagery and performing object recognition. In this work, the results of the image processing method were incorporated into a Bayesian framework for autonomous path planning referred to as information surfing. The framework was derived assuming that the location of the object of interest is known a priori, but the type of object and its pose are unknown. The path-planning algorithm adaptively modifies the trajectory of the sensing platform based on historical performance of object and pose classification. The algorithm is called information surfing because the direction of motion is governed by the local information gradient. Simulation experiments were carried out using holographic imagery collected from submerged objects. The autonomous sensing algorithm was compared to a deterministic sensing CONOPS, and demonstrated improved accuracy and faster convergence in several cases.
Building Change Detection from Bi-Temporal Dense-Matching Point Clouds and Aerial Images.
Pang, Shiyan; Hu, Xiangyun; Cai, Zhongliang; Gong, Jinqi; Zhang, Mi
2018-03-24
In this work, a novel building change detection method from bi-temporal dense-matching point clouds and aerial images is proposed to address two major problems, namely, the robust acquisition of the changed objects above ground and the automatic classification of changed objects into buildings or non-buildings. For the acquisition of changed objects above ground, the change detection problem is converted into a binary classification, in which the changed area above ground is regarded as the foreground and the other area as the background. For the gridded points of each period, the graph cuts algorithm is adopted to classify the points into foreground and background, followed by the region-growing algorithm to form candidate changed building objects. A novel structural feature that was extracted from aerial images is constructed to classify the candidate changed building objects into buildings and non-buildings. The changed building objects are further classified as "newly built", "taller", "demolished", and "lower" by combining the classification and the digital surface models of two periods. Finally, three typical areas from a large dataset are used to validate the proposed method. Numerous experiments demonstrate the effectiveness of the proposed algorithm.
Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan
2017-01-01
ABSTRACT Background: Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Objective: Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. Methods: A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Results: Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3–100%) in the test set (n = 217) of manually labeled helminth eggs. Conclusions: In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images. PMID:28838305
Multi-camera digital image correlation method with distributed fields of view
NASA Astrophysics Data System (ADS)
Malowany, Krzysztof; Malesa, Marcin; Kowaluk, Tomasz; Kujawinska, Malgorzata
2017-11-01
A multi-camera digital image correlation (DIC) method and system for measurements of large engineering objects with distributed, non-overlapping areas of interest are described. The data obtained with individual 3D DIC systems are stitched by an algorithm which utilizes the positions of fiducial markers determined simultaneously by Stereo-DIC units and laser tracker. The proposed calibration method enables reliable determination of transformations between local (3D DIC) and global coordinate systems. The applicability of the method was proven during in-situ measurements of a hall made of arch-shaped (18 m span) self-supporting metal-plates. The proposed method is highly recommended for 3D measurements of shape and displacements of large and complex engineering objects made from multiple directions and it provides the suitable accuracy of data for further advanced structural integrity analysis of such objects.
Zvyagin, V N; Rakitin, V A; Fomina, E E
The objective of the present study was the development of the point-digital model for the scaless interpretation of the dermatoglyphic papillary patterns on human fingers that would allow to comprehensively describe, in digital terms, the main characteristics of the traits and perform the quantitative assessment of the frequency of their inheritance. A specially developed computer program, D.glyphic. 7-14 was used to mark the dermatoglyphic patterns on the fingerprints obtained from 30 familial triplets (father + mother + child).The values of all the studied traits for kinship diagnostics were found by calculating the ratios of the sums of differences between the traits in the parent-parent pairs to those in the respective parent-child pairs. The algorithms for the point marking of the traits and reading out the digital information about them have been developed. The traditional dermatoglyphic patterns were selected and the novel ones applied for the use in the framework of the point-digital model for the interpretation of the for diagnostics of consanguineous relationship. The present experimental study has demonstrated the high level of inheritance of the selected traits and the possibility to develop the algorithms and computation techniques for the calculation of consanguineous relationship coefficients based on these traits.
NASA Astrophysics Data System (ADS)
Neriani, Kelly E.; Herbranson, Travis J.; Reis, George A.; Pinkus, Alan R.; Goodyear, Charles D.
2006-05-01
While vast numbers of image enhancing algorithms have already been developed, the majority of these algorithms have not been assessed in terms of their visual performance-enhancing effects using militarily relevant scenarios. The goal of this research was to apply a visual performance-based assessment methodology to evaluate six algorithms that were specifically designed to enhance the contrast of digital images. The image enhancing algorithms used in this study included three different histogram equalization algorithms, the Autolevels function, the Recursive Rational Filter technique described in Marsi, Ramponi, and Carrato1 and the multiscale Retinex algorithm described in Rahman, Jobson and Woodell2. The methodology used in the assessment has been developed to acquire objective human visual performance data as a means of evaluating the contrast enhancement algorithms. Objective performance metrics, response time and error rate, were used to compare algorithm enhanced images versus two baseline conditions, original non-enhanced images and contrast-degraded images. Observers completed a visual search task using a spatial-forcedchoice paradigm. Observers searched images for a target (a military vehicle) hidden among foliage and then indicated in which quadrant of the screen the target was located. Response time and percent correct were measured for each observer. Results of the study and future directions are discussed.
Effective algorithm for routing integral structures with twolayer switching
NASA Astrophysics Data System (ADS)
Nazarov, A. V.; Shakhnov, V. A.; Vlasov, A. I.; Novikov, A. N.
2018-05-01
The paper presents an algorithm for routing switching objects such as large-scale integrated circuits (LSICs) with two layers of metallization, embossed printed circuit boards, microboards with pairs of wiring layers on each side, and other similar constructs. The algorithm allows eliminating the effect of mutual blocking of routes in the classical wave algorithm by implementing a special circuit of digital wave motion in two layers of metallization, allowing direct intersections of all circuit conductors in a combined layer. However, information about the belonging of the topology elements to the circuits is sufficient for layering and minimizing the number of contact holes. In addition, the paper presents a specific example which shows that, in contrast to the known routing algorithms using a wave model, just one byte of memory per discrete of the work field is sufficient to implement the proposed algorithm.
DSPSR: Digital Signal Processing Software for Pulsar Astronomy
NASA Astrophysics Data System (ADS)
van Straten, W.; Bailes, M.
2010-10-01
DSPSR, written primarily in C++, is an open-source, object-oriented, digital signal processing software library and application suite for use in radio pulsar astronomy. The library implements an extensive range of modular algorithms for use in coherent dedispersion, filterbank formation, pulse folding, and other tasks. The software is installed and compiled using the standard GNU configure and make system, and is able to read astronomical data in 18 different file formats, including FITS, S2, CPSR, CPSR2, PuMa, PuMa2, WAPP, ASP, and Mark5.
Removal of instrument signature from Mariner 9 television images of Mars
NASA Technical Reports Server (NTRS)
Green, W. B.; Jepsen, P. L.; Kreznar, J. E.; Ruiz, R. M.; Schwartz, A. A.; Seidman, J. B.
1975-01-01
The Mariner 9 spacecraft was inserted into orbit around Mars in November 1971. The two vidicon camera systems returned over 7300 digital images during orbital operations. The high volume of returned data and the scientific objectives of the Television Experiment made development of automated digital techniques for the removal of camera system-induced distortions from each returned image necessary. This paper describes the algorithms used to remove geometric and photometric distortions from the returned imagery. Enhancement processing of the final photographic products is also described.
Eypper, Elizabeth H; Lee, Johnson C; Tarasen, Ashley J; Weinberg, Maxene H; Adetayo, Oluwaseun A
2018-01-01
Objective: Infantile digital fibromatosis is a rare benign childhood tumor, infrequently cited in the literature. Hallmarks include nodular growths exclusive to fingers and toes and the presence of eosinophilic cytoplasmic inclusions on histology. This article aims to exemplify diagnoses of infantile digital fibromatosis and possible treatment options. Methods: A computerized English literature search was performed in the PubMed/MEDLINE database using MeSH headings "infantile," "juvenile," "digital," and "fibromatosis." Twenty electronic publications were selected and their clinical and histological data recorded and used to compile a treatment algorithm. Results: A 9-month-old male child was referred for a persistent, symptomatic nodule on the third left toe. A direct excision with Brunner-type incisions was performed under general anesthesia. The procedure was successful without complications. The patient has no recurrence at 2 years postsurgery and continues to be followed. Histological examination revealed a proliferation of bland, uniformly plump spindle cells with elongated nuclei and small central nucleoli without paranuclear inclusions consistent with fibromatosis. Conclusions: Asymptomatic nodules should be observed for spontaneous regression or treated with nonsurgical techniques such as chemotherapeutic or steroid injection. Surgical removal should be reserved for cases with structural or functional compromise.
Multidigit force control during unconstrained grasping in response to object perturbations
Haschke, Robert; Ritter, Helge; Santello, Marco; Ernst, Marc O.
2017-01-01
Because of the complex anatomy of the human hand, in the absence of external constraints, a large number of postures and force combinations can be used to attain a stable grasp. Motor synergies provide a viable strategy to solve this problem of motor redundancy. In this study, we exploited the technical advantages of an innovative sensorized object to study unconstrained hand grasping within the theoretical framework of motor synergies. Participants were required to grasp, lift, and hold the sensorized object. During the holding phase, we repetitively applied external disturbance forces and torques and recorded the spatiotemporal distribution of grip forces produced by each digit. We found that the time to reach the maximum grip force during each perturbation was roughly equal across fingers, consistent with a synchronous, synergistic stiffening across digits. We further evaluated this hypothesis by comparing the force distribution of human grasping vs. robotic grasping, where the control strategy was set by the experimenter. We controlled the global hand stiffness of the robotic hand and found that this control algorithm produced a force pattern qualitatively similar to human grasping performance. Our results suggest that the nervous system uses a default whole hand synergistic control to maintain a stable grasp regardless of the number of digits involved in the task, their position on the objects, and the type and frequency of external perturbations. NEW & NOTEWORTHY We studied hand grasping using a sensorized object allowing unconstrained finger placement. During object perturbation, the time to reach the peak force was roughly equal across fingers, consistently with a synergistic stiffening across fingers. Force distribution of a robotic grasping hand, where the control algorithm is based on global hand stiffness, was qualitatively similar to human grasping. This suggests that the central nervous system uses a default whole hand synergistic control to maintain a stable grasp. PMID:28228582
NASA Technical Reports Server (NTRS)
Martinko, Edward A.; Merchant, James W.
1988-01-01
During 1986 to 1987, the Kansas Applied Remote Sensing (KARS) Program continued to build upon long-term research efforts oriented towards enhancement and development of technologies for using remote sensing in the inventory and evaluation of land use and renewable resources (both natural and agricultural). These research efforts directly addressed needs and objectives of NASA's Land-Related Global Habitability Program as well as needs of and interests of public agencies and private firms. The KARS Program placed particular emphasis on two major areas: development of intelligent algorithms to improve automated classification of digital multispectral data; and integrating and merging digital multispectral data with ancillary data in spatial modes.
NASA Astrophysics Data System (ADS)
Ikhsanti, Mila Izzatul; Bouzida, Rana; Wijaya, Sastra Kusuma; Rohmadi, Muttakin, Imamul; Taruno, Warsito P.
2017-02-01
This research aims to explore the feasibility of capacitance-digital converter and impedance converter for measurement module in electrical capacitance tomography (ECT) system. ECT sensor used was a cylindrical sensor having 8 electrodes. Absolute capacitance measurement system based on Sigma Delta Capacitance-to-Digital-Converter AD7746 has been shown to produce measurement with high resolution. Whereas, capacitance measurement with wide range of frequency is possible using Impedance Converter AD5933. Comparison of measurement accuracy by both AD7746 and AD5933 with reference of LCR meter was evaluated. Biological matters represented in water and oil were treated as object reconstructed into image using linear back projection (LBP) algorithm.
Handwritten digits recognition based on immune network
NASA Astrophysics Data System (ADS)
Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe
2011-11-01
With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.
Calibration for single multi-mode fiber digital scanning microscopy imaging system
NASA Astrophysics Data System (ADS)
Yin, Zhe; Liu, Guodong; Liu, Bingguo; Gan, Yu; Zhuang, Zhitao; Chen, Fengdong
2015-11-01
Single multimode fiber (MMF) digital scanning imaging system is a development tendency of modern endoscope. We concentrate on the calibration method of the imaging system. Calibration method comprises two processes, forming scanning focused spots and calibrating the couple factors varied with positions. Adaptive parallel coordinate algorithm (APC) is adopted to form the focused spots at the multimode fiber (MMF) output. Compare with other algorithm, APC contains many merits, i.e. rapid speed, small amount calculations and no iterations. The ratio of the optics power captured by MMF to the intensity of the focused spots is called couple factor. We setup the calibration experimental system to form the scanning focused spots and calculate the couple factors for different object positions. The experimental result the couple factor is higher in the center than the edge.
Quantifying Void Ratio in Granular Materials Using Voronoi Tessellation
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; El-Saidany, Hany A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Voronoi technique was used to calculate the local void ratio distribution of granular materials. It was implemented in an application-oriented image processing and analysis algorithm capable of extracting object edges, separating adjacent particles, obtaining the centroid of each particle, generating Voronoi polygons, and calculating the local void ratio. Details of the algorithm capabilities and features are presented. Verification calculations included performing manual digitization of synthetic images using Oda's method and Voronoi polygon system. The developed algorithm yielded very accurate measurements of the local void ratio distribution. Voronoi tessellation has the advantage, compared to Oda's method, of offering a well-defined polygon generation criterion that can be implemented in an algorithm to automatically calculate local void ratio of particulate materials.
Fuzzy connectedness and object definition
NASA Astrophysics Data System (ADS)
Udupa, Jayaram K.; Samarasekera, Supun
1995-04-01
Approaches to object information extraction from images should attempt to use the fact that images are fuzzy. In past image segmentation research, the notion of `hanging togetherness' of image elements specified by their fuzzy connectedness has been lacking. We present a theory of fuzzy objects for n-dimensional digital spaces based on a notion of fuzzy connectedness of image elements. Although our definitions lead to problems of enormous combinatorial complexity, the theoretical results allow us to reduce this dramatically. We demonstrate the utility of the theory and algorithms in image segmentation based on several practical examples.
The effects of gray scale image processing on digital mammography interpretation performance.
Cole, Elodia B; Pisano, Etta D; Zeng, Donglin; Muller, Keith; Aylward, Stephen R; Park, Sungwook; Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Walsh, Ruth; Baker, Jay; Gimenez, Edgardo I; Freimanis, Rita
2005-05-01
To determine the effects of three image-processing algorithms on diagnostic accuracy of digital mammography in comparison with conventional screen-film mammography. A total of 201 cases consisting of nonprocessed soft copy versions of the digital mammograms acquired from GE, Fischer, and Trex digital mammography systems (1997-1999) and conventional screen-film mammograms of the same patients were interpreted by nine radiologists. The raw digital data were processed with each of three different image-processing algorithms creating three presentations-manufacturer's default (applied and laser printed to film by each of the manufacturers), MUSICA, and PLAHE-were presented in soft copy display. There were three radiologists per presentation. Area under the receiver operating characteristic curve for GE digital mass cases was worse than screen-film for all digital presentations. The area under the receiver operating characteristic for Trex digital mass cases was better, but only with images processed with the manufacturer's default algorithm. Sensitivity for GE digital mass cases was worse than screen film for all digital presentations. Specificity for Fischer digital calcifications cases was worse than screen film for images processed in default and PLAHE algorithms. Specificity for Trex digital calcifications cases was worse than screen film for images processed with MUSICA. Specific image-processing algorithms may be necessary for optimal presentation for interpretation based on machine and lesion type.
A new approach to pre-processing digital image for wavelet-based watermark
NASA Astrophysics Data System (ADS)
Agreste, Santa; Andaloro, Guido
2008-11-01
The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.
IMAGEP - A FORTRAN ALGORITHM FOR DIGITAL IMAGE PROCESSING
NASA Technical Reports Server (NTRS)
Roth, D. J.
1994-01-01
IMAGEP is a FORTRAN computer algorithm containing various image processing, analysis, and enhancement functions. It is a keyboard-driven program organized into nine subroutines. Within the subroutines are other routines, also, selected via keyboard. Some of the functions performed by IMAGEP include digitization, storage and retrieval of images; image enhancement by contrast expansion, addition and subtraction, magnification, inversion, and bit shifting; display and movement of cursor; display of grey level histogram of image; and display of the variation of grey level intensity as a function of image position. This algorithm has possible scientific, industrial, and biomedical applications in material flaw studies, steel and ore analysis, and pathology, respectively. IMAGEP is written in VAX FORTRAN for DEC VAX series computers running VMS. The program requires the use of a Grinnell 274 image processor which can be obtained from Mark McCloud Associates, Campbell, CA. An object library of the required GMR series software is included on the distribution media. IMAGEP requires 1Mb of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in VAX FILES-11 format. It is also available on a TK50 tape cartridge in VAX FILES-11 format. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation.
Increasing the UAV data value by an OBIA methodology
NASA Astrophysics Data System (ADS)
García-Pedrero, Angel; Lillo-Saavedra, Mario; Rodriguez-Esparragon, Dionisio; Rodriguez-Gonzalez, Alejandro; Gonzalo-Martin, Consuelo
2017-10-01
Recently, there has been a noteworthy increment of using images registered by unmanned aerial vehicles (UAV) in different remote sensing applications. Sensors boarded on UAVs has lower operational costs and complexity than other remote sensing platforms, quicker turnaround times as well as higher spatial resolution. Concerning this last aspect, particular attention has to be paid on the limitations of classical algorithms based on pixels when they are applied to high resolution images. The objective of this study is to investigate the capability of an OBIA methodology developed for the automatic generation of a digital terrain model of an agricultural area from Digital Elevation Model (DEM) and multispectral images registered by a Parrot Sequoia multispectral sensor board on a eBee SQ agricultural drone. The proposed methodology uses a superpixel approach for obtaining context and elevation information used for merging superpixels and at the same time eliminating objects such as trees in order to generate a Digital Terrain Model (DTM) of the analyzed area. Obtained results show the potential of the approach, in terms of accuracy, when it is compared with a DTM generated by manually eliminating objects.
Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder.
Chen, Shuoyang; Xu, Tingfa; Li, Daqun; Zhang, Jizhou; Jiang, Shenwang
2016-10-21
During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as "frame difference" and "optical flow", may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a "multi-block temporal-analyzing LBP (Local Binary Pattern)" algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) platforms and the high-precision intelligent holder.
Digital tripwire: a small automated human detection system
NASA Astrophysics Data System (ADS)
Fischer, Amber D.; Redd, Emmett; Younger, A. Steven
2009-05-01
A low cost, lightweight, easily deployable imaging sensor that can dependably discriminate threats from other activities within its field of view and, only then, alert the distant duty officer by transmitting a visual confirmation of the threat would provide a valuable asset to modern defense. At present, current solutions suffer from a multitude of deficiencies - size, cost, power endurance, but most notably, an inability to assess an image and conclude that it contains a threat. The human attention span cannot maintain critical surveillance over banks of displays constantly conveying such images from the field. DigitalTripwire is a small, self-contained, automated human-detection system capable of running for 1-5 days on two AA batteries. To achieve such long endurance, the DigitalTripwire system utilizes an FPGA designed with sleep functionality. The system uses robust vision algorithms, such as a partially unsupervised innovative backgroundmodeling algorithm, which employ several data reduction strategies to operate in real-time, and achieve high detection rates. When it detects human activity, either mounted or dismounted, it sends an alert including images to notify the command center. In this paper, we describe the hardware and software design of the DigitalTripwire system. In addition, we provide detection and false alarm rates across several challenging data sets demonstrating the performance of the vision algorithms in autonomously analyzing the video stream and classifying moving objects into four primary categories - dismounted human, vehicle, non-human, or unknown. Performance results across several challenging data sets are provided.
NASA Astrophysics Data System (ADS)
Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.
2016-05-01
The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.
A Heuristic Algorithm for Planning Personalized Learning Paths for Context-Aware Ubiquitous Learning
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Kuo, Fan-Ray; Yin, Peng-Yeng; Chuang, Kuo-Hsien
2010-01-01
In a context-aware ubiquitous learning environment, learning systems can detect students' learning behaviors in the real-world with the help of context-aware (sensor) technology; that is, students can be guided to observe or operate real-world objects with personalized support from the digital world. In this study, an optimization problem that…
3D measurement by digital photogrammetry
NASA Astrophysics Data System (ADS)
Schneider, Carl T.
1993-12-01
Photogrammetry is well known in geodetic surveys as aerial photogrammetry or close range applications as architectural photogrammetry. The photogrammetric methods and algorithms combined with digital cameras and digital image processing methods are now introduced for industrial applications as automation and quality control. The presented paper will describe the photogrammetric and digital image processing algorithms and the calibration methods. These algorithms and methods were demonstrated with application examples. These applications are a digital photogrammetric workstation as a mobil multi purpose 3D measuring tool and a tube measuring system as an example for a single purpose tool.
A novel strategy for load balancing of distributed medical applications.
Logeswaran, Rajasvaran; Chen, Li-Choo
2012-04-01
Current trends in medicine, specifically in the electronic handling of medical applications, ranging from digital imaging, paperless hospital administration and electronic medical records, telemedicine, to computer-aided diagnosis, creates a burden on the network. Distributed Service Architectures, such as Intelligent Network (IN), Telecommunication Information Networking Architecture (TINA) and Open Service Access (OSA), are able to meet this new challenge. Distribution enables computational tasks to be spread among multiple processors; hence, performance is an important issue. This paper proposes a novel approach in load balancing, the Random Sender Initiated Algorithm, for distribution of tasks among several nodes sharing the same computational object (CO) instances in Distributed Service Architectures. Simulations illustrate that the proposed algorithm produces better network performance than the benchmark load balancing algorithms-the Random Node Selection Algorithm and the Shortest Queue Algorithm, especially under medium and heavily loaded conditions.
Discrete-Time Demodulator Architectures for Free-Space Broadband Optical Pulse-Position Modulation
NASA Technical Reports Server (NTRS)
Gray, A. A.; Lee, C.
2004-01-01
The objective of this work is to develop discrete-time demodulator architectures for broadband optical pulse-position modulation (PPM) that are capable of processing Nyquist or near-Nyquist data rates. These architectures are motivated by the numerous advantages of realizing communications demodulators in digital very large scale integrated (VLSI) circuits. The architectures are developed within a framework that encompasses a large body of work in optical communications, synchronization, and multirate discrete-time signal processing and are constrained by the limitations of the state of the art in digital hardware. This work attempts to create a bridge between theoretical communication algorithms and analysis for deep-space optical PPM and modern digital VLSI. The primary focus of this work is on the synthesis of discrete-time processing architectures for accomplishing the most fundamental functions required in PPM demodulators, post-detection filtering, synchronization, and decision processing. The architectures derived are capable of closely approximating the theoretical performance of the continuous-time algorithms from which they are derived. The work concludes with an outline of the development path that leads to hardware.
NASA Astrophysics Data System (ADS)
Zhao, Yun-wei; Zhu, Zi-qiang; Lu, Guang-yin; Han, Bo
2018-03-01
The sine and cosine transforms implemented with digital filters have been used in the Transient electromagnetic methods for a few decades. Kong (2007) proposed a method of obtaining filter coefficients, which are computed in the sample domain by Hankel transform pair. However, the curve shape of Hankel transform pair changes with a parameter, which usually is set to be 1 or 3 in the process of obtaining the digital filter coefficients of sine and cosine transforms. First, this study investigates the influence of the parameter on the digital filter algorithm of sine and cosine transforms based on the digital filter algorithm of Hankel transform and the relationship between the sine, cosine function and the ±1/2 order Bessel function of the first kind. The results show that the selection of the parameter highly influences the precision of digital filter algorithm. Second, upon the optimal selection of the parameter, it is found that an optimal sampling interval s also exists to achieve the best precision of digital filter algorithm. Finally, this study proposes four groups of sine and cosine transform digital filter coefficients with different length, which may help to develop the digital filter algorithm of sine and cosine transforms, and promote its application.
Digital pulse processing for planar TlBr detectors
NASA Astrophysics Data System (ADS)
Nakhostin, M.; Hitomi, K.; Ishii, K.; Kikuchi, Y.
2010-04-01
We report on a digital pulse processing algorithm for correction of charge trapping in the planar TlBr detectors. The algorithm is performed on the signals digitized at the preamplifier stage. The algorithm is very simple and is implemented with little computational effort. By using a digitizer with a sampling rate of 250 MSample/s and 8 bit resolution, an energy resolution of 6.5% is achieved at 511 keV with a 0.7 mm thick detector.
Research on moving object detection based on frog's eyes
NASA Astrophysics Data System (ADS)
Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan
2008-12-01
On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.
Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing.
Sha, Bei; Liu, Xuan; Ge, Xiao-Lu; Guo, Cheng-Shan
2014-09-22
A method for fast reconstruction of off-axis digital holograms based on digital multiplexing algorithm is proposed. Instead of the existed angular multiplexing (AM), the new method utilizes a spatial multiplexing (SM) algorithm, in which four off-axis holograms recorded in sequence are synthesized into one SM function through multiplying each hologram with a tilted plane wave and then adding them up. In comparison with the conventional methods, the SM algorithm simplifies two-dimensional (2-D) Fourier transforms (FTs) of four N*N arrays into a 1.25-D FTs of one N*N arrays. Experimental results demonstrate that, using the SM algorithm, the computational efficiency can be improved and the reconstructed wavefronts keep the same quality as those retrieved based on the existed AM method. This algorithm may be useful in design of a fast preview system of dynamic wavefront imaging in digital holography.
NASA Astrophysics Data System (ADS)
Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.
2018-05-01
To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].
Research on measurement method of optical camouflage effect of moving object
NASA Astrophysics Data System (ADS)
Wang, Juntang; Xu, Weidong; Qu, Yang; Cui, Guangzhen
2016-10-01
Camouflage effectiveness measurement as an important part of the camouflage technology, which testing and measuring the camouflage effect of the target and the performance of the camouflage equipment according to the tactical and technical requirements. The camouflage effectiveness measurement of current optical band is mainly aimed at the static target which could not objectively reflect the dynamic camouflage effect of the moving target. This paper synthetical used technology of dynamic object detection and camouflage effect detection, the digital camouflage of the moving object as the research object, the adaptive background update algorithm of Surendra was improved, a method of optical camouflage effect detection using Lab-color space in the detection of moving-object was presented. The binary image of moving object is extracted by this measurement technology, in the sequence diagram, the characteristic parameters such as the degree of dispersion, eccentricity, complexity and moment invariants are constructed to construct the feature vector space. The Euclidean distance of moving target which through digital camouflage was calculated, the results show that the average Euclidean distance of 375 frames was 189.45, which indicated that the degree of dispersion, eccentricity, complexity and moment invariants of the digital camouflage graphics has a great difference with the moving target which not spray digital camouflage. The measurement results showed that the camouflage effect was good. Meanwhile with the performance evaluation module, the correlation coefficient of the dynamic target image range 0.1275 from 0.0035, and presented some ups and down. Under the dynamic condition, the adaptability of target and background was reflected. In view of the existing infrared camouflage technology, the next step, we want to carry out the camouflage effect measurement technology of the moving target based on infrared band.
Objective evaluation of linear and nonlinear tomosynthetic reconstruction algorithms
NASA Astrophysics Data System (ADS)
Webber, Richard L.; Hemler, Paul F.; Lavery, John E.
2000-04-01
This investigation objectively tests five different tomosynthetic reconstruction methods involving three different digital sensors, each used in a different radiologic application: chest, breast, and pelvis, respectively. The common task was to simulate a specific representative projection for each application by summation of appropriately shifted tomosynthetically generated slices produced by using the five algorithms. These algorithms were, respectively, (1) conventional back projection, (2) iteratively deconvoluted back projection, (3) a nonlinear algorithm similar to back projection, except that the minimum value from all of the component projections for each pixel is computed instead of the average value, (4) a similar algorithm wherein the maximum value was computed instead of the minimum value, and (5) the same type of algorithm except that the median value was computed. Using these five algorithms, we obtained data from each sensor-tissue combination, yielding three factorially distributed series of contiguous tomosynthetic slices. The respective slice stacks then were aligned orthogonally and averaged to yield an approximation of a single orthogonal projection radiograph of the complete (unsliced) tissue thickness. Resulting images were histogram equalized, and actual projection control images were subtracted from their tomosynthetically synthesized counterparts. Standard deviations of the resulting histograms were recorded as inverse figures of merit (FOMs). Visual rankings of image differences by five human observers of a subset (breast data only) also were performed to determine whether their subjective observations correlated with homologous FOMs. Nonparametric statistical analysis of these data demonstrated significant differences (P > 0.05) between reconstruction algorithms. The nonlinear minimization reconstruction method nearly always outperformed the other methods tested. Observer rankings were similar to those measured objectively.
Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images
Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; ...
2015-10-26
Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores inmore » Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.« less
Parametric embedding for class visualization.
Iwata, Tomoharu; Saito, Kazumi; Ueda, Naonori; Stromsten, Sean; Griffiths, Thomas L; Tenenbaum, Joshua B
2007-09-01
We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.
Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder
Chen, Shuoyang; Xu, Tingfa; Li, Daqun; Zhang, Jizhou; Jiang, Shenwang
2016-01-01
During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as “frame difference” and “optical flow”, may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a “multi-block temporal-analyzing LBP (Local Binary Pattern)” algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) platforms and the high-precision intelligent holder. PMID:27775671
Yuan, Tao; Zheng, Xinqi; Hu, Xuan; Zhou, Wei; Wang, Wei
2014-01-01
Objective and effective image quality assessment (IQA) is directly related to the application of optical remote sensing images (ORSI). In this study, a new IQA method of standardizing the target object recognition rate (ORR) is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.
"Smart" Electromechanical Shock Absorber
NASA Technical Reports Server (NTRS)
Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.
1989-01-01
Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.
NASA Astrophysics Data System (ADS)
Tomljenovic, Ivan; Tiede, Dirk; Blaschke, Thomas
2016-10-01
In the past two decades Object-Based Image Analysis (OBIA) established itself as an efficient approach for the classification and extraction of information from remote sensing imagery and, increasingly, from non-image based sources such as Airborne Laser Scanner (ALS) point clouds. ALS data is represented in the form of a point cloud with recorded multiple returns and intensities. In our work, we combined OBIA with ALS point cloud data in order to identify and extract buildings as 2D polygons representing roof outlines in a top down mapping approach. We performed rasterization of the ALS data into a height raster for the purpose of the generation of a Digital Surface Model (DSM) and a derived Digital Elevation Model (DEM). Further objects were generated in conjunction with point statistics from the linked point cloud. With the use of class modelling methods, we generated the final target class of objects representing buildings. The approach was developed for a test area in Biberach an der Riß (Germany). In order to point out the possibilities of the adaptation-free transferability to another data set, the algorithm has been applied ;as is; to the ISPRS Benchmarking data set of Toronto (Canada). The obtained results show high accuracies for the initial study area (thematic accuracies of around 98%, geometric accuracy of above 80%). The very high performance within the ISPRS Benchmark without any modification of the algorithm and without any adaptation of parameters is particularly noteworthy.
Higuchi Dimension of Digital Images
Ahammer, Helmut
2011-01-01
There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied. PMID:21931854
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dise, J; Liang, X; Lin, L
Purpose: To evaluate an automatic interstitial catheter digitization algorithm that reduces treatment planning time and provide means for adaptive re-planning in HDR Brachytherapy of Gynecologic Cancers. Methods: The semi-automatic catheter digitization tool utilizes a region growing algorithm in conjunction with a spline model of the catheters. The CT images were first pre-processed to enhance the contrast between the catheters and soft tissue. Several seed locations were selected in each catheter for the region growing algorithm. The spline model of the catheters assisted in the region growing by preventing inter-catheter cross-over caused by air or metal artifacts. Source dwell positions frommore » day one CT scans were applied to subsequent CTs and forward calculated using the automatically digitized catheter positions. This method was applied to 10 patients who had received HDR interstitial brachytherapy on an IRB approved image-guided radiation therapy protocol. The prescribed dose was 18.75 or 20 Gy delivered in 5 fractions, twice daily, over 3 consecutive days. Dosimetric comparisons were made between automatic and manual digitization on day two CTs. Results: The region growing algorithm, assisted by the spline model of the catheters, was able to digitize all catheters. The difference between automatic and manually digitized positions was 0.8±0.3 mm. The digitization time ranged from 34 minutes to 43 minutes with a mean digitization time of 37 minutes. The bulk of the time was spent on manual selection of initial seed positions and spline parameter adjustments. There was no significance difference in dosimetric parameters between the automatic and manually digitized plans. D90% to the CTV was 91.5±4.4% for the manual digitization versus 91.4±4.4% for the automatic digitization (p=0.56). Conclusion: A region growing algorithm was developed to semi-automatically digitize interstitial catheters in HDR brachytherapy using the Syed-Neblett template. This automatic digitization tool was shown to be accurate compared to manual digitization.« less
Realization and optimization of AES algorithm on the TMS320DM6446 based on DaVinci technology
NASA Astrophysics Data System (ADS)
Jia, Wen-bin; Xiao, Fu-hai
2013-03-01
The application of AES algorithm in the digital cinema system avoids video data to be illegal theft or malicious tampering, and solves its security problems. At the same time, in order to meet the requirements of the real-time, scene and transparent encryption of high-speed data streams of audio and video in the information security field, through the in-depth analysis of AES algorithm principle, based on the hardware platform of TMS320DM6446, with the software framework structure of DaVinci, this paper proposes the specific realization methods of AES algorithm in digital video system and its optimization solutions. The test results show digital movies encrypted by AES128 can not play normally, which ensures the security of digital movies. Through the comparison of the performance of AES128 algorithm before optimization and after, the correctness and validity of improved algorithm is verified.
Joint demosaicking and zooming using moderate spectral correlation and consistent edge map
NASA Astrophysics Data System (ADS)
Zhou, Dengwen; Dong, Weiming; Chen, Wengang
2014-07-01
The recently published joint demosaicking and zooming algorithms for single-sensor digital cameras all overfit the popular Kodak test images, which have been found to have higher spectral correlation than typical color images. Their performance perhaps significantly degrades on other datasets, such as the McMaster test images, which have weak spectral correlation. A new joint demosaicking and zooming algorithm is proposed for the Bayer color filter array (CFA) pattern, in which the edge direction information (edge map) extracted from the raw CFA data is consistently used in demosaicking and zooming. It also moderately utilizes the spectral correlation between color planes. The experimental results confirm that the proposed algorithm produces an excellent performance on both the Kodak and McMaster datasets in terms of both subjective and objective measures. Our algorithm also has high computational efficiency. It provides a better tradeoff among adaptability, performance, and computational cost compared to the existing algorithms.
An adaptive DPCM encoder for NTSC composite video signals
NASA Astrophysics Data System (ADS)
Cox, N. R.
An adaptive DPCM algorithm is proposed for encoding digitized National Television Systems Committee (NTSC) color video signals. This algorithm essentially predicts picture contours in the composite signal without resorting to component separation. Preliminary subjective and objective tests performed on an experimental encoder/simulator indicate that high quality color pictures can be encoded at 4.0 bits/pel or 42.95 Mbit/s. This requires the use of a 4/8 bit dual-word-length coder and buffer memory. Such a system might be useful in certain short hop applications if both large-signal and small-signal responses can be preserved.
Impact of input data (in)accuracy on overestimation of visible area in digital viewshed models
Klouček, Tomáš; Šímová, Petra
2018-01-01
Viewshed analysis is a GIS tool in standard use for more than two decades to perform numerous scientific and practical tasks. The reliability of the resulting viewshed model depends on the computational algorithm and the quality of the input digital surface model (DSM). Although many studies have dealt with improving viewshed algorithms, only a few studies have focused on the effect of the spatial accuracy of input data. Here, we compare simple binary viewshed models based on DSMs having varying levels of detail with viewshed models created using LiDAR DSM. The compared DSMs were calculated as the sums of digital terrain models (DTMs) and layers of forests and buildings with expertly assigned heights. Both elevation data and the visibility obstacle layers were prepared using digital vector maps differing in scale (1:5,000, 1:25,000, and 1:500,000) as well as using a combination of a LiDAR DTM with objects vectorized on an orthophotomap. All analyses were performed for 104 sample locations of 5 km2, covering areas from lowlands to mountains and including farmlands as well as afforested landscapes. We worked with two observer point heights, the first (1.8 m) simulating observation by a person standing on the ground and the second (80 m) as observation from high structures such as wind turbines, and with five estimates of forest heights (15, 20, 25, 30, and 35 m). At all height estimations, all of the vector-based DSMs used resulted in overestimations of visible areas considerably greater than those from the LiDAR DSM. In comparison to the effect from input data scale, the effect from object height estimation was shown to be secondary. PMID:29844982
Impact of input data (in)accuracy on overestimation of visible area in digital viewshed models.
Lagner, Ondřej; Klouček, Tomáš; Šímová, Petra
2018-01-01
Viewshed analysis is a GIS tool in standard use for more than two decades to perform numerous scientific and practical tasks. The reliability of the resulting viewshed model depends on the computational algorithm and the quality of the input digital surface model (DSM). Although many studies have dealt with improving viewshed algorithms, only a few studies have focused on the effect of the spatial accuracy of input data. Here, we compare simple binary viewshed models based on DSMs having varying levels of detail with viewshed models created using LiDAR DSM. The compared DSMs were calculated as the sums of digital terrain models (DTMs) and layers of forests and buildings with expertly assigned heights. Both elevation data and the visibility obstacle layers were prepared using digital vector maps differing in scale (1:5,000, 1:25,000, and 1:500,000) as well as using a combination of a LiDAR DTM with objects vectorized on an orthophotomap. All analyses were performed for 104 sample locations of 5 km 2 , covering areas from lowlands to mountains and including farmlands as well as afforested landscapes. We worked with two observer point heights, the first (1.8 m) simulating observation by a person standing on the ground and the second (80 m) as observation from high structures such as wind turbines, and with five estimates of forest heights (15, 20, 25, 30, and 35 m). At all height estimations, all of the vector-based DSMs used resulted in overestimations of visible areas considerably greater than those from the LiDAR DSM. In comparison to the effect from input data scale, the effect from object height estimation was shown to be secondary.
Area collapse algorithm computing new curve of 2D geometric objects
NASA Astrophysics Data System (ADS)
Buczek, Michał Mateusz
2017-06-01
The processing of cartographic data demands human involvement. Up-to-date algorithms try to automate a part of this process. The goal is to obtain a digital model, or additional information about shape and topology of input geometric objects. A topological skeleton is one of the most important tools in the branch of science called shape analysis. It represents topological and geometrical characteristics of input data. Its plot depends on using algorithms such as medial axis, skeletonization, erosion, thinning, area collapse and many others. Area collapse, also known as dimension change, replaces input data with lower-dimensional geometric objects like, for example, a polygon with a polygonal chain, a line segment with a point. The goal of this paper is to introduce a new algorithm for the automatic calculation of polygonal chains representing a 2D polygon. The output is entirely contained within the area of the input polygon, and it has a linear plot without branches. The computational process is automatic and repeatable. The requirements of input data are discussed. The author analyzes results based on the method of computing ends of output polygonal chains. Additional methods to improve results are explored. The algorithm was tested on real-world cartographic data received from BDOT/GESUT databases, and on point clouds from laser scanning. An implementation for computing hatching of embankment is described.
Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua
2016-11-21
Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed 'MPD-AwTTV'. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.
NASA Astrophysics Data System (ADS)
Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua
2016-11-01
Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed ‘MPD-AwTTV’. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.
Digitally Controlled Slot Coupled Patch Array
NASA Technical Reports Server (NTRS)
D'Arista, Thomas; Pauly, Jerry
2010-01-01
A four-element array conformed to a singly curved conducting surface has been demonstrated to provide 2 dB axial ratio of 14 percent, while maintaining VSWR (voltage standing wave ratio) of 2:1 and gain of 13 dBiC. The array is digitally controlled and can be scanned with the LMS Adaptive Algorithm using the power spectrum as the objective, as well as the Direction of Arrival (DoA) of the beam to set the amplitude of the power spectrum. The total height of the array above the conducting surface is 1.5 inches (3.8 cm). A uniquely configured microstrip-coupled aperture over a conducting surface produced supergain characteristics, achieving 12.5 dBiC across the 2-to-2.13- GHz and 2.2-to-2.3-GHz frequency bands. This design is optimized to retain VSWR and axial ratio across the band as well. The four elements are uniquely configured with respect to one another for performance enhancement, and the appropriate phase excitation to each element for scan can be found either by analytical beam synthesis using the genetic algorithm with the measured or simulated far field radiation pattern, or an adaptive algorithm implemented with the digitized signal. The commercially available tuners and field-programmable gate array (FPGA) boards utilized required precise phase coherent configuration control, and with custom code developed by Nokomis, Inc., were shown to be fully functional in a two-channel configuration controlled by FPGA boards. A four-channel tuner configuration and oscilloscope configuration were also demonstrated although algorithm post-processing was required.
Joint Calibration of 3d Laser Scanner and Digital Camera Based on Dlt Algorithm
NASA Astrophysics Data System (ADS)
Gao, X.; Li, M.; Xing, L.; Liu, Y.
2018-04-01
Design a calibration target that can be scanned by 3D laser scanner while shot by digital camera, achieving point cloud and photos of a same target. A method to joint calibrate 3D laser scanner and digital camera based on Direct Linear Transformation algorithm was proposed. This method adds a distortion model of digital camera to traditional DLT algorithm, after repeating iteration, it can solve the inner and external position element of the camera as well as the joint calibration of 3D laser scanner and digital camera. It comes to prove that this method is reliable.
Performance seeking control program overview
NASA Technical Reports Server (NTRS)
Orme, John S.
1995-01-01
The Performance Seeking Control (PSC) program evolved from a series of integrated propulsion-flight control research programs flown at NASA Dryden Flight Research Center (DFRC) on an F-15. The first of these was the Digital Electronic Engine Control (DEEC) program and provided digital engine controls suitable for integration. The DEEC and digital electronic flight control system of the NASA F-15 were ideally suited for integrated controls research. The Advanced Engine Control System (ADECS) program proved that integrated engine and aircraft control could improve overall system performance. The objective of the PSC program was to advance the technology for a fully integrated propulsion flight control system. Whereas ADECS provided single variable control for an average engine, PSC controlled multiple propulsion system variables while adapting to the measured engine performance. PSC was developed as a model-based, adaptive control algorithm and included four optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, maximum thrust, and minimum thrust. Subsonic and supersonic flight testing were conducted at NASA Dryden covering the four PSC optimization modes and over the full throttle range. Flight testing of the PSC algorithm, conducted in a series of five flight test phases, has been concluded at NASA Dryden covering all four of the PSC optimization modes. Over a three year period and five flight test phases 72 research flights were conducted. The primary objective of flight testing was to exercise each PSC optimization mode and quantify the resulting performance improvements.
Automated analysis of art object surfaces using time-averaged digital speckle pattern interferometry
NASA Astrophysics Data System (ADS)
Lukomski, Michal; Krzemien, Leszek
2013-05-01
Technical development and practical evaluation of a laboratory built, out-of-plane digital speckle pattern interferometer (DSPI) are reported. The instrument was used for non-invasive, non-contact detection and characterization of early-stage damage, like fracturing and layer separation, of painted objects of art. A fully automated algorithm was developed for recording and analysis of vibrating objects utilizing continuous-wave laser light. The algorithm uses direct, numerical fitting or Hilbert transformation for an independent, quantitative evaluation of the Bessel function at every point of the investigated surface. The procedure does not require phase modulation and thus can be implemented within any, even the simplest, DSPI apparatus. The proposed deformation analysis is fast and computationally inexpensive. Diagnosis of physical state of the surface of a panel painting attributed to Nicolaus Haberschrack (a late-mediaeval painter active in Krakow) from the collection of the National Museum in Krakow is presented as an example of an in situ application of the developed methodology. It has allowed the effectiveness of the deformation analysis to be evaluated for the surface of a real painting (heterogeneous colour and texture) in a conservation studio where vibration level was considerably higher than in the laboratory. It has been established that the methodology, which offers automatic analysis of the interferometric fringe patterns, has a considerable potential to facilitate and render more precise the condition surveys of works of art.
Recursive Algorithms for Real-Time Digital CR-RCn Pulse Shaping
NASA Astrophysics Data System (ADS)
Nakhostin, M.
2011-10-01
This paper reports on recursive algorithms for real-time implementation of CR-(RC)n filters in digital nuclear spectroscopy systems. The algorithms are derived by calculating the Z-transfer function of the filters for filter orders up to n=4 . The performances of the filters are compared with the performance of the conventional digital trapezoidal filter using a noise generator which separately generates pure series, 1/f and parallel noise. The results of our study enable one to select the optimum digital filter for different noise and rate conditions.
Adaptive Two Dimensional RLS (Recursive Least Squares) Algorithms
1989-03-01
in Monterey wonderful. IX I. INTRODUCTION Adaptive algorithms have been used successfully for many years in a wide range of digital signal...SIMULATION RESULTS The 2-D FRLS algorithm was tested both on computer-generated data and on digitized images. For a baseline reference the 2-D L:rv1S...Alexander, S. T. Adaptivt Signal Processing: Theory and Applications. Springer- Verlag, New York. 1986. 7. Bellanger, Maurice G. Adaptive Digital
Three-dimensional volume containing multiple two-dimensional information patterns
NASA Astrophysics Data System (ADS)
Nakayama, Hirotaka; Shiraki, Atsushi; Hirayama, Ryuji; Masuda, Nobuyuki; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2013-06-01
We have developed an algorithm for recording multiple gradated two-dimensional projection patterns in a single three-dimensional object. When a single pattern is observed, information from the other patterns can be treated as background noise. The proposed algorithm has two important features: the number of patterns that can be recorded is theoretically infinite and no meaningful information can be seen outside of the projection directions. We confirmed the effectiveness of the proposed algorithm by performing numerical simulations of two laser crystals: an octagonal prism that contained four patterns in four projection directions and a dodecahedron that contained six patterns in six directions. We also fabricated and demonstrated an actual prototype laser crystal from a glass cube engraved by a laser beam. This algorithm has applications in various fields, including media art, digital signage, and encryption technology.
A framework for analysis of large database of old art paintings
NASA Astrophysics Data System (ADS)
Da Rugna, Jérome; Chareyron, Ga"l.; Pillay, Ruven; Joly, Morwena
2011-03-01
For many years, a lot of museums and countries organize the high definition digitalization of their own collections. In consequence, they generate massive data for each object. In this paper, we only focus on art painting collections. Nevertheless, we faced a very large database with heterogeneous data. Indeed, image collection includes very old and recent scans of negative photos, digital photos, multi and hyper spectral acquisitions, X-ray acquisition, and also front, back and lateral photos. Moreover, we have noted that art paintings suffer from much degradation: crack, softening, artifact, human damages and, overtime corruption. Considering that, it appears necessary to develop specific approaches and methods dedicated to digital art painting analysis. Consequently, this paper presents a complete framework to evaluate, compare and benchmark devoted to image processing algorithms.
A cryptologic based trust center for medical images.
Wong, S T
1996-01-01
OBJECTIVE: To investigate practical solutions that can integrate cryptographic techniques and picture archiving and communication systems (PACS) to improve the security of medical images. DESIGN: The PACS at the University of California San Francisco Medical Center consolidate images and associated data from various scanners into a centralized data archive and transmit them to remote display stations for review and consultation purposes. The purpose of this study is to investigate the model of a digital trust center that integrates cryptographic algorithms and protocols seamlessly into such a digital radiology environment to improve the security of medical images. MEASUREMENTS: The timing performance of encryption, decryption, and transmission of the cryptographic protocols over 81 volumetric PACS datasets has been measured. Lossless data compression is also applied before the encryption. The transmission performance is measured against three types of networks of different bandwidths: narrow-band Integrated Services Digital Network, Ethernet, and OC-3c Asynchronous Transfer Mode. RESULTS: The proposed digital trust center provides a cryptosystem solution to protect the confidentiality and to determine the authenticity of digital images in hospitals. The results of this study indicate that diagnostic images such as x-rays and magnetic resonance images could be routinely encrypted in PACS. However, applying encryption in teleradiology and PACS is a tradeoff between communications performance and security measures. CONCLUSION: Many people are uncertain about how to integrate cryptographic algorithms coherently into existing operations of the clinical enterprise. This paper describes a centralized cryptosystem architecture to ensure image data authenticity in a digital radiology department. The system performance has been evaluated in a hospital-integrated PACS environment. PMID:8930857
Krecsák, László; Micsik, Tamás; Kiszler, Gábor; Krenács, Tibor; Szabó, Dániel; Jónás, Viktor; Császár, Gergely; Czuni, László; Gurzó, Péter; Ficsor, Levente; Molnár, Béla
2011-01-18
The immunohistochemical detection of estrogen (ER) and progesterone (PR) receptors in breast cancer is routinely used for prognostic and predictive testing. Whole slide digitalization supported by dedicated software tools allows quantization of the image objects (e.g. cell membrane, nuclei) and an unbiased analysis of immunostaining results. Validation studies of image analysis applications for the detection of ER and PR in breast cancer specimens provided strong concordance between the pathologist's manual assessment of slides and scoring performed using different software applications. The effectiveness of two connected semi-automated image analysis software (NuclearQuant v. 1.13 application for Pannoramic™ Viewer v. 1.14) for determination of ER and PR status in formalin-fixed paraffin embedded breast cancer specimens immunostained with the automated Leica Bond Max system was studied. First the detection algorithm was calibrated to the scores provided an independent assessors (pathologist), using selected areas from 38 small digital slides (created from 16 cases) containing a mean number of 195 cells. Each cell was manually marked and scored according to the Allred-system combining frequency and intensity scores. The performance of the calibrated algorithm was tested on 16 cases (14 invasive ductal carcinoma, 2 invasive lobular carcinoma) against the pathologist's manual scoring of digital slides. The detection was calibrated to 87 percent object detection agreement and almost perfect Total Score agreement (Cohen's kappa 0.859, quadratic weighted kappa 0.986) from slight or moderate agreement at the start of the study, using the un-calibrated algorithm. The performance of the application was tested against the pathologist's manual scoring of digital slides on 53 regions of interest of 16 ER and PR slides covering all positivity ranges, and the quadratic weighted kappa provided almost perfect agreement (κ = 0.981) among the two scoring schemes. NuclearQuant v. 1.13 application for Pannoramic™ Viewer v. 1.14 software application proved to be a reliable image analysis tool for pathologists testing ER and PR status in breast cancer.
New Directions in the Digital Signal Processing of Image Data.
1987-05-01
and identify by block number) FIELD GROUP SUB-GROUP Object detection and idLntification 12 01 restoration of photon noise limited imagery 15 04 image...from incomplete information, restoration of blurred images in additive and multiplicative noise , motion analysis with fast hierarchical algorithms...different resolutions. As is well known, the solution to the matched filter problem under additive white noise conditions is the correlation receiver
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)
1987-01-01
The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.
3-D Object Recognition from Point Cloud Data
NASA Astrophysics Data System (ADS)
Smith, W.; Walker, A. S.; Zhang, B.
2011-09-01
The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be valuable in robotics and UAV applications. The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex roofs. Several case studies have been conducted using a variety of point densities, terrain types and building densities. The results have been encouraging. More work is required for better processing of, for example, forested areas, buildings with sides that are not at right angles or are not straight, and single trees that impinge on buildings. Further work may also be required to ensure that the buildings extracted are of fully cartographic quality. A first version will be included in production software later in 2011. In addition to the standard geospatial applications and the UAV navigation, the results have a further advantage: since LiDAR data tends to be accurately georeferenced, the building models extracted can be used to refine image metadata whenever the same buildings appear in imagery for which the GPS/IMU values are poorer than those for the LiDAR.
NASA Technical Reports Server (NTRS)
Yin, L. I.; Trombka, J. I.; Bielefeld, M. J.; Seltzer, S. M.
1984-01-01
The results of two computer simulations demonstrate the feasibility of using the nonoverlapping redundant array (NORA) to form three-dimensional images of objects with X-rays. Pinholes admit the X-rays to nonoverlapping points on a detector. The object is reconstructed in the analog mode by optical correlation and in the digital mode by tomographic computations. Trials were run with a stick-figure pyramid and extended objects with out-of-focus backgrounds. Substitution of spherical optical lenses for the pinholes increased the light transmission sufficiently that objects could be easily viewed in a dark room. Out-of-focus aberrations in tomographic reconstruction could be eliminated using Chang's (1976) algorithm.
Evaluation of clinical image processing algorithms used in digital mammography.
Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde
2009-03-01
Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the same six pairs of modalities were significantly different, but the JAFROC confidence intervals were about 32% smaller than ROC confidence intervals. This study shows that image processing has a significant impact on the detection of microcalcifications in digital mammograms. Objective measurements, such as described here, should be used by the manufacturers to select the optimal image processing algorithm.
Geometric analysis and restitution of digital multispectral scanner data arrays
NASA Technical Reports Server (NTRS)
Baker, J. R.; Mikhail, E. M.
1975-01-01
An investigation was conducted to define causes of geometric defects within digital multispectral scanner (MSS) data arrays, to analyze the resulting geometric errors, and to investigate restitution methods to correct or reduce these errors. Geometric transformation relationships for scanned data, from which collinearity equations may be derived, served as the basis of parametric methods of analysis and restitution of MSS digital data arrays. The linearization of these collinearity equations is presented. Algorithms considered for use in analysis and restitution included the MSS collinearity equations, piecewise polynomials based on linearized collinearity equations, and nonparametric algorithms. A proposed system for geometric analysis and restitution of MSS digital data arrays was used to evaluate these algorithms, utilizing actual MSS data arrays. It was shown that collinearity equations and nonparametric algorithms both yield acceptable results, but nonparametric algorithms possess definite advantages in computational efficiency. Piecewise polynomials were found to yield inferior results.
The robot's eyes - Stereo vision system for automated scene analysis
NASA Technical Reports Server (NTRS)
Williams, D. S.
1977-01-01
Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.
NASA Astrophysics Data System (ADS)
Moriya, Gentaro; Chikatsu, Hirofumi
2011-07-01
Recently, pixel numbers and functions of consumer grade digital camera are amazingly increasing by modern semiconductor and digital technology, and there are many low-priced consumer grade digital cameras which have more than 10 mega pixels on the market in Japan. In these circumstances, digital photogrammetry using consumer grade cameras is enormously expected in various application fields. There is a large body of literature on calibration of consumer grade digital cameras and circular target location. Target location with subpixel accuracy had been investigated as a star tracker issue, and many target location algorithms have been carried out. It is widely accepted that the least squares models with ellipse fitting is the most accurate algorithm. However, there are still problems for efficient digital close range photogrammetry. These problems are reconfirmation of the target location algorithms with subpixel accuracy for consumer grade digital cameras, relationship between number of edge points along target boundary and accuracy, and an indicator for estimating the accuracy of normal digital close range photogrammetry using consumer grade cameras. With this motive, an empirical testing of several algorithms for target location with subpixel accuracy and an indicator for estimating the accuracy are investigated in this paper using real data which were acquired indoors using 7 consumer grade digital cameras which have 7.2 mega pixels to 14.7 mega pixels.
The use of Merging and Aggregation Operators for MRDB Data Feeding
NASA Astrophysics Data System (ADS)
Kozioł, Krystian; Lupa, Michał
2013-12-01
This paper presents the application of two generalization operators - merging and displacement - in the process of automatic data feeding in a multiresolution data base of topographic objects from large-scale data-bases (1 : 500-1 : 5000). An ordered collection of objects makes a layer of development that in the process of generalization is subjected to the processes of merging and displacement in order to maintain recognizability in the reduced scale of the map. The solution to the above problem is the algorithms described in the work; these algorithms use the standard recognition of drawings (Chrobak 2010), independent of the user. A digital cartographic generalization process is a set of consecutive operators where merging and aggregation play a key role. The proper operation has a significant impact on the qualitative assessment of data generalization
Statistical modeling, detection, and segmentation of stains in digitized fabric images
NASA Astrophysics Data System (ADS)
Gururajan, Arunkumar; Sari-Sarraf, Hamed; Hequet, Eric F.
2007-02-01
This paper will describe a novel and automated system based on a computer vision approach, for objective evaluation of stain release on cotton fabrics. Digitized color images of the stained fabrics are obtained, and the pixel values in the color and intensity planes of these images are probabilistically modeled as a Gaussian Mixture Model (GMM). Stain detection is posed as a decision theoretic problem, where the null hypothesis corresponds to absence of a stain. The null hypothesis and the alternate hypothesis mathematically translate into a first order GMM and a second order GMM respectively. The parameters of the GMM are estimated using a modified Expectation-Maximization (EM) algorithm. Minimum Description Length (MDL) is then used as the test statistic to decide the verity of the null hypothesis. The stain is then segmented by a decision rule based on the probability map generated by the EM algorithm. The proposed approach was tested on a dataset of 48 fabric images soiled with stains of ketchup, corn oil, mustard, ragu sauce, revlon makeup and grape juice. The decision theoretic part of the algorithm produced a correct detection rate (true positive) of 93% and a false alarm rate of 5% on these set of images.
The beam stop array method to measure object scatter in digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, Haeng-hwa; Kim, Ye-seul; Park, Hye-Suk; Kim, Hee-Joung; Choi, Jae-Gu; Choi, Young-Wook
2014-03-01
Scattered radiation is inevitably generated in the object. The distribution of the scattered radiation is influenced by object thickness, filed size, object-to-detector distance, and primary energy. One of the investigations to measure scatter intensities involves measuring the signal detected under the shadow of the lead discs of a beam-stop array (BSA). The measured scatter by BSA includes not only the scattered radiation within the object (object scatter), but also the external scatter source. The components of external scatter source include the X-ray tube, detector, collimator, x-ray filter, and BSA. Excluding background scattered radiation can be applied to different scanner geometry by simple parameter adjustments without prior knowledge of the scanned object. In this study, a method using BSA to differentiate scatter in phantom (object scatter) from external background was used. Furthermore, this method was applied to BSA algorithm to correct the object scatter. In order to confirm background scattered radiation, we obtained the scatter profiles and scatter fraction (SF) profiles in the directions perpendicular to the chest wall edge (CWE) with and without scattering material. The scatter profiles with and without the scattering material were similar in the region between 127 mm and 228 mm from chest wall. This result indicated that the measured scatter by BSA included background scatter. Moreover, the BSA algorithm with the proposed method could correct the object scatter because the total radiation profiles of object scatter correction corresponded to original image in the region between 127 mm and 228 mm from chest wall. As a result, the BSA method to measure object scatter could be used to remove background scatter. This method could apply for different scanner geometry after background scatter correction. In conclusion, the BSA algorithm with the proposed method is effective to correct object scatter.
A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT
NASA Astrophysics Data System (ADS)
Yuxia, Zhao; Jingbo, Fan
A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.
Towards Automatic Image Segmentation Using Optimised Region Growing Technique
NASA Astrophysics Data System (ADS)
Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi
Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.
NASA Astrophysics Data System (ADS)
Basoglu, Burak; Halicioglu, Kerem; Albayrak, Muge; Ulug, Rasit; Tevfik Ozludemir, M.; Deniz, Rasim
2017-04-01
In the last decade, the importance of high-precise geoid determination at local or national level has been pointed out by Turkish National Geodesy Commission. The Commission has also put objective of modernization of national height system of Turkey to the agenda. Meanwhile several projects have been realized in recent years. In Istanbul city, a GNSS/Levelling geoid was defined in 2005 for the metropolitan area of the city with an accuracy of ±3.5cm. In order to achieve a better accuracy in this area, "Local Geoid Determination with Integration of GNSS/Levelling and Astro-Geodetic Data" project has been conducted in Istanbul Technical University and Bogazici University KOERI since January 2016. The project is funded by The Scientific and Technological Research Council of Turkey. With the scope of the project, modernization studies of Digital Zenith Camera System are being carried on in terms of hardware components and software development. Accentuated subjects are the star catalogues, and centroiding algorithm used to identify the stars on the zenithal star field. During the test observations of Digital Zenith Camera System performed between 2013-2016, final results were calculated using the PSF method for star centroiding, and the second USNO CCD Astrograph Catalogue (UCAC2) for the reference star positions. This study aims to investigate the position accuracy of the star images by comparing different centroiding algorithms and available star catalogs used in astro-geodetic observations conducted with the digital zenith camera system.
Digital Sound Synthesis Algorithms: a Tutorial Introduction and Comparison of Methods
NASA Astrophysics Data System (ADS)
Lee, J. Robert
The objectives of the dissertation are to provide both a compendium of sound-synthesis methods with detailed descriptions and sound examples, as well as a comparison of the relative merits of each method based on ease of use, observed sound quality, execution time, and data storage requirements. The methods are classified under the general headings of wavetable-lookup synthesis, additive synthesis, subtractive synthesis, nonlinear methods, and physical modelling. The nonlinear methods comprise a large group that ranges from the well-known frequency-modulation synthesis to waveshaping. The final category explores computer modelling of real musical instruments and includes numerical and analytical solutions to the classical wave equation of motion, along with some of the more sophisticated time -domain models that are possible through the prudent combination of simpler synthesis techniques. The dissertation is intended to be understandable by a musician who is mathematically literate but who does not necessarily have a background in digital signal processing. With this limitation in mind, a brief and somewhat intuitive description of digital sampling theory is provided in the introduction. Other topics such as filter theory are discussed as the need arises. By employing each of the synthesis methods to produce the same type of sound, interesting comparisons can be made. For example, a struck string sound, such as that typical of a piano, can be produced by algorithms in each of the synthesis classifications. Many sounds, however, are peculiar to a single algorithm and must be examined independently. Psychoacoustic studies were conducted as an aid in the comparison of the sound quality of several implementations of the synthesis algorithms. Other psychoacoustic experiments were conducted to supplement the established notions of which timbral issues are important in the re -synthesis of the sounds of acoustic musical instruments.
Method for detecting a mass density image of an object
Wernick, Miles N [Chicago, IL; Yang, Yongyi [Westmont, IL
2008-12-23
A method for detecting a mass density image of an object. An x-ray beam is transmitted through the object and a transmitted beam is emitted from the object. The transmitted beam is directed at an angle of incidence upon a crystal analyzer. A diffracted beam is emitted from the crystal analyzer onto a detector and digitized. A first image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a first angular position. A second image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a second angular position. A refraction image is obtained and a regularized mathematical inversion algorithm is applied to the refraction image to obtain a mass density image.
A novel orthoimage mosaic method using the weighted A* algorithm for UAV imagery
NASA Astrophysics Data System (ADS)
Zheng, Maoteng; Zhou, Shunping; Xiong, Xiaodong; Zhu, Junfeng
2017-12-01
A weighted A* algorithm is proposed to select optimal seam-lines in orthoimage mosaic for UAV (Unmanned Aircraft Vehicle) imagery. The whole workflow includes four steps: the initial seam-line network is firstly generated by standard Voronoi Diagram algorithm; an edge diagram is then detected based on DSM (Digital Surface Model) data; the vertices (conjunction nodes) of initial network are relocated since some of them are on the high objects (buildings, trees and other artificial structures); and, the initial seam-lines are finally refined using the weighted A* algorithm based on the edge diagram and the relocated vertices. The method was tested with two real UAV datasets. Preliminary results show that the proposed method produces acceptable mosaic images in both the urban and mountainous areas, and is better than the result of the state-of-the-art methods on the datasets.
Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA
NASA Astrophysics Data System (ADS)
Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie
2008-04-01
The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.
NASA Technical Reports Server (NTRS)
Deckert, J. C.
1983-01-01
The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.
De-Dopplerization of Acoustic Measurements
2017-08-10
band energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An...energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An equation...fractional octave representation and smearing that occurs within the spectrum11, digital filtering techniques were not considered by these earlier
The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284
Guidi, G; Beraldin, J A; Ciofi, S; Atzeni, C
2003-01-01
The generation of three-dimensional (3-D) digital models produced by optical technologies in some cases involves metric errors. This happens when small high-resolution 3-D images are assembled together in order to model a large object. In some applications, as for example 3-D modeling of Cultural Heritage, the problem of metric accuracy is a major issue and no methods are currently available for enhancing it. The authors present a procedure by which the metric reliability of the 3-D model, obtained through iterative alignments of many range maps, can be guaranteed to a known acceptable level. The goal is the integration of the 3-D range camera system with a close range digital photogrammetry technique. The basic idea is to generate a global coordinate system determined by the digital photogrammetric procedure, measuring the spatial coordinates of optical targets placed around the object to be modeled. Such coordinates, set as reference points, allow the proper rigid motion of few key range maps, including a portion of the targets, in the global reference system defined by photogrammetry. The other 3-D images are normally aligned around these locked images with usual iterative algorithms. Experimental results on an anthropomorphic test object, comparing the conventional and the proposed alignment method, are finally reported.
ERIC Educational Resources Information Center
Williamson, Ben
2015-01-01
The emergence of digitized health and physical education, or "eHPE", embeds software algorithms in the organization of health and physical education pedagogies. Particularly with the emergence of wearable and mobile activity trackers, biosensors and personal analytics apps, algorithmic processes have an increasingly powerful part to play…
Mental Computation or Standard Algorithm? Children's Strategy Choices on Multi-Digit Subtractions
ERIC Educational Resources Information Center
Torbeyns, Joke; Verschaffel, Lieven
2016-01-01
This study analyzed children's use of mental computation strategies and the standard algorithm on multi-digit subtractions. Fifty-eight Flemish 4th graders of varying mathematical achievement level were individually offered subtractions that either stimulated the use of mental computation strategies or the standard algorithm in one choice and two…
High-speed line-scan camera with digital time delay integration
NASA Astrophysics Data System (ADS)
Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert
2007-02-01
Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.
Reconstruction of a digital core containing clay minerals based on a clustering algorithm.
He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling
2017-10-01
It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.
Parallel digital forensics infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebrock, Lorie M.; Duggan, David Patrick
2009-10-01
This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexicomore » Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.« less
Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio
2017-01-10
The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.
Orthoscopic real-image display of digital holograms.
Makowski, P L; Kozacki, T; Zaperty, W
2017-10-01
We present a practical solution for the long-standing problem of depth inversion in real-image holographic display of digital holograms. It relies on a field lens inserted in front of the spatial light modulator device addressed by a properly processed hologram. The processing algorithm accounts for pixel size and wavelength mismatch between capture and display devices in a way that prevents image deformation. Complete images of large dimensions are observable from one position with a naked eye. We demonstrate the method experimentally on a 10-cm-long 3D object using a single full-HD spatial light modulator, but it can supplement most holographic displays designed to form a real image, including circular wide angle configurations.
ERIC Educational Resources Information Center
Schulz, Andreas
2018-01-01
Theoretical analysis of whole number-based calculation strategies and digit-based algorithms for multi-digit multiplication and division reveals that strategy use includes two kinds of reasoning: reasoning about the relations between numbers and reasoning about the relations between operations. In contrast, algorithms aim to reduce the necessary…
Moire measuring technology for three-dimensional profile of the object
NASA Astrophysics Data System (ADS)
Fu, Yanjun; Yang, Kuntao
2006-02-01
An optical system is designed to get projection of the transmission grating, the deformed grating is obtained on surface of the object. The image of the deformed grating is given by the lens, the reference grating is put on the place of the image, and then the moire fringe is obtained. The amplify principle of the moire fringe is used to measure the profile of the object. The optical principle of the projection is analyzed. And the relation between the phase and the height of object is deduced. From the different point of geometry optics and the physics opticsl, the optical system is analyzed, the factors that influence the image equality and the measuring result are obtained. So the betterment of improving the measuring precision is brought forward, and in the later information processing, because of the diffuse reflection, the image equality is not very well. In order to get a good image, the digital filter is used to filter the noise and smooth the image firstly. Then in order to improve the measure precision, the subdivision technology is applied. The Fourier transform profilometry and phase shifting technology is used in the calculation. A detail analyses is done both in time field and frequency field. And the method of improving the measuring precision is put forward. A good digital filter algorithm is brought forward in the Fourier transform profilometry. In the phase shifting technology, the detail formula of three-step and four-step is given. At last the phase that is relational with the high information of the object is get, but the phase is disconnected phase, after the unwrapping algorithm,the disconnected phase is changed to be the continuous phase. Taking use of the relation between the phase and height, the height is obtained. Then the three-dimensional profile of the measured object can be reconstructed. The system is very convenient for non-contact measure of profile of some objects.
Detecting Edges in Images by Use of Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Klinko, Steve
2003-01-01
A method of processing digital image data to detect edges includes the use of fuzzy reasoning. The method is completely adaptive and does not require any advance knowledge of an image. During initial processing of image data at a low level of abstraction, the nature of the data is indeterminate. Fuzzy reasoning is used in the present method because it affords an ability to construct useful abstractions from approximate, incomplete, and otherwise imperfect sets of data. Humans are able to make some sense of even unfamiliar objects that have imperfect high-level representations. It appears that to perceive unfamiliar objects or to perceive familiar objects in imperfect images, humans apply heuristic algorithms to understand the images
Linearization of digital derived rate algorithm for use in linear stability analysis
NASA Technical Reports Server (NTRS)
Graham, R. E.; Porada, T. W.
1985-01-01
The digital derived rate (DDR) algorithm is used to calculate the rate of rotation of the Centaur upper-stage rocket. The DDR is highly nonlinear algorithm, and classical linear stability analysis of the spacecraft cannot be performed without linearization. The performance of this rate algorithm is characterized by a gain and phase curve that drop off at the same frequency. This characteristic is desirable for many applications. A linearization technique for the DDR algorithm is investigated. The linearization method is described. Examples of the results of the linearization technique are illustrated, and the effects of linearization are described. A linear digital filter may be used as a substitute for performing classical linear stability analyses, while the DDR itself may be used in time response analysis.
Investigation of the Iterative Phase Retrieval Algorithm for Interferometric Applications
NASA Astrophysics Data System (ADS)
Gombkötő, Balázs; Kornis, János
2010-04-01
Sequentially recorded intensity patterns reflected from a coherently illuminated diffuse object can be used to reconstruct the complex amplitude of the scattered beam. Several iterative phase retrieval algorithms are known in the literature to obtain the initially unknown phase from these longitudinally displaced intensity patterns. When two sequences are recorded in two different states of a centimeter sized object in optical setups that are similar to digital holographic interferometry-but omitting the reference wave-, displacement, deformation, or shape measurement is theoretically possible. To do this, the retrieved phase pattern should contain information not only about the intensities and locations of the point sources of the object surface, but their relative phase as well. Not only experiments require strict mechanical precision to record useful data, but even in simulations several parameters influence the capabilities of iterative phase retrieval, such as object to camera distance range, uniform or varying camera step sequence, speckle field characteristics, and sampling. Experiments were done to demonstrate this principle with an as large as 5×5 cm sized deformable object as well. Good initial results were obtained in an imaging setup, where the intensity pattern sequences were recorded near the image plane.
Multi-Disciplinary Techniques for Understanding Time-Varying Space-Based Imagery.
1985-05-10
problem, and I V WY" 3 discuss the impgrtage of this work to Air Force technology and to related Air Force programs. Section 1.5 provides a summary of...development of new algorithms and their realization in a hybrid optical/digital architecture. However, devices and architectures being developed in related ...and relate these representntions to object and surface contour properties of the scene. The techniques studied included Probabilistic Graph Matching
An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction.
Li, Jiaojiao; Niu, Shanzhou; Huang, Jing; Bian, Zhaoying; Feng, Qianjin; Yu, Gaohang; Liang, Zhengrong; Chen, Wufan; Ma, Jianhua
2015-01-01
Statistical iterative reconstruction (SIR) for X-ray computed tomography (CT) under the penalized weighted least-squares criteria can yield significant gains over conventional analytical reconstruction from the noisy measurement. However, due to the nonlinear expression of the objective function, most exiting algorithms related to the SIR unavoidably suffer from heavy computation load and slow convergence rate, especially when an edge-preserving or sparsity-based penalty or regularization is incorporated. In this work, to address abovementioned issues of the general algorithms related to the SIR, we propose an adaptive nonmonotone alternating direction algorithm in the framework of augmented Lagrangian multiplier method, which is termed as "ALM-ANAD". The algorithm effectively combines an alternating direction technique with an adaptive nonmonotone line search to minimize the augmented Lagrangian function at each iteration. To evaluate the present ALM-ANAD algorithm, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present ALM-ANAD algorithm can achieve noticeable gains over the classical nonlinear conjugate gradient algorithm and state-of-the-art split Bregman algorithm in terms of noise reduction, contrast-to-noise ratio, convergence rate, and universal quality index metrics.
Land Survey from Unmaned Aerial Veichle
NASA Astrophysics Data System (ADS)
Peterman, V.; Mesarič, M.
2012-07-01
In this paper we present, how we use a quadrocopter unmanned aerial vehicle with a camera attached to it, to do low altitude photogrammetric land survey. We use the quadrocopter to take highly overlapping photos of the area of interest. A "structure from motion" algorithm is implemented to get parameters of camera orientations and to generate a sparse point cloud representation of objects in photos. Than a patch based multi view stereo algorithm is applied to generate a dense point cloud. Ground control points are used to georeference the data. Further processing is applied to generate digital orthophoto maps, digital surface models, digital terrain models and assess volumes of various types of material. Practical examples of land survey from a UAV are presented in the paper. We explain how we used our system to monitor the reconstruction of commercial building, then how our UAV was used to assess the volume of coal supply for Ljubljana heating plant. Further example shows the usefulness of low altitude photogrammetry for documentation of archaeological excavations. In the final example we present how we used our UAV to prepare an underlay map for natural gas pipeline's route planning. In the final analysis we conclude that low altitude photogrammetry can help bridge the gap between laser scanning and classic tachymetric survey, since it offers advantages of both techniques.
Objective measures for quality assessment of automatic skin enhancement algorithms
NASA Astrophysics Data System (ADS)
Ciuc, Mihai; Capata, Adrian; Florea, Corneliu
2010-01-01
Automatic portrait enhancement by attenuating skin flaws (pimples, blemishes, wrinkles, etc.) has received considerable attention from digital camera manufacturers thanks to its impact on the public. Subsequently, a number of algorithms have been developed to meet this need. One central aspect to developing such an algorithm is quality assessment: having a few numbers that precisely indicate the amount of beautification brought by an algorithm (as perceived by human observers) is of great help, as it works on circumvent time-costly human evaluation. In this paper, we propose a method to numerically evaluate the quality of a skin beautification algorithm. The most important aspects we take into account and quantize to numbers are the quality of the skin detector, the amount of smoothing performed by the method, the preservation of intrinsic skin texture, and the preservation of facial features. We combine these measures into two numbers that assess the quality of skin detection and beautification. The derived measures are highly correlated with human perception, therefore they constitute a helpful tool for tuning and comparing algorithms.
Digital compression algorithms for HDTV transmission
NASA Technical Reports Server (NTRS)
Adkins, Kenneth C.; Shalkhauser, Mary JO; Bibyk, Steven B.
1990-01-01
Digital compression of video images is a possible avenue for high definition television (HDTV) transmission. Compression needs to be optimized while picture quality remains high. Two techniques for compression the digital images are explained and comparisons are drawn between the human vision system and artificial compression techniques. Suggestions for improving compression algorithms through the use of neural and analog circuitry are given.
NASA Astrophysics Data System (ADS)
Bogoutdinov, Sh. R.; Gvishiani, A. D.; Agayan, S. M.; Solovyev, A. A.; Kin, E.
2010-11-01
The International Real-time Magnetic Observatory Network (INTERMAGNET) is the world's biggest international network of ground-based observatories, providing geomagnetic data almost in real time (within 72 hours of collection) [Kerridge, 2001]. The observation data are rapidly transferred by the observatories participating in the program to regional Geomagnetic Information Nodes (GINs), which carry out a global exchange of data and process the results. The observations of the main (core) magnetic field of the Earth and its study are one of the key problems of geophysics. The INTERMAGNET system is the basis of monitoring the state of the Earth's magnetic field; therefore, the information provided by the system is required to be very reliable. Despite the rigid high-quality standard of the recording devices, they are subject to external effects that affect the quality of the records. Therefore, an objective and formalized recognition with the subsequent remedy of the anomalies (artifacts) that occur on the records is an important task. Expanding on the ideas of Agayan [Agayan et al., 2005] and Gvishiani [Gvishiani et al., 2008a; 2008b], this paper suggests a new algorithm of automatic recognition of anomalies with specified morphology, capable of identifying both physically- and anthropogenically-derived spikes on the magnetograms. The algorithm is constructed using fuzzy logic and, as such, is highly adaptive and universal. The developed algorithmic system formalizes the work of the expert-interpreter in terms of artificial intelligence. This ensures identical processing of large data arrays, almost unattainable manually. Besides the algorithm, the paper also reports on the application of the developed algorithmic system for identifying spikes at the INTERMAGNET observatories. The main achievement of the work is the creation of an algorithm permitting the almost unmanned extraction of spike-free (definitive) magnetograms from preliminary records. This automated system is developed for the first time with the application of fuzzy logic system for geomagnetic measurements. It is important to note that the recognition of time disturbances is formalized and identical. The algorithm presented here appreciably increases the reliability of spike-free INTERMAGNET magnetograms, thus increasing the objectivity of our knowledge of the Earth's magnetic field. At the same time, the created system can accomplish identical, formalized, and retrospective analysis of large archives of digital and digitized magnetograms, accumulated in the system of Worldwide Data Centers. The relevant project has already been initiated as a collaborative initiative of the Worldwide Data Center at Geophysical Center (Russian Academy of Sciences) and the NOAA National Geophysical Data Center (Unite States). Thus, by improving and adding objectivity to both new and historical initial data, the developed algorithmic system may contribute appreciably to improving our understanding of the Earth's magnetic field.
NASA Astrophysics Data System (ADS)
Rogala, Eric W.; Bankman, Isaac N.
2008-04-01
The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.
Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems
NASA Astrophysics Data System (ADS)
Lee, Changwoo; Han, Minah; Baek, Jongduk
2017-03-01
Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.
Implementation of digital image encryption algorithm using logistic function and DNA encoding
NASA Astrophysics Data System (ADS)
Suryadi, MT; Satria, Yudi; Fauzi, Muhammad
2018-03-01
Cryptography is a method to secure information that might be in form of digital image. Based on past research, in order to increase security level of chaos based encryption algorithm and DNA based encryption algorithm, encryption algorithm using logistic function and DNA encoding was proposed. Digital image encryption algorithm using logistic function and DNA encoding use DNA encoding to scramble the pixel values into DNA base and scramble it in DNA addition, DNA complement, and XOR operation. The logistic function in this algorithm used as random number generator needed in DNA complement and XOR operation. The result of the test show that the PSNR values of cipher images are 7.98-7.99 bits, the entropy values are close to 8, the histogram of cipher images are uniformly distributed and the correlation coefficient of cipher images are near 0. Thus, the cipher image can be decrypted perfectly and the encryption algorithm has good resistance to entropy attack and statistical attack.
Fink, Christine; Uhlmann, Lorenz; Klose, Christina; Haenssle, Holger A
2018-05-17
Reliable and accurate assessment of severity in psoriasis is very important in order to meet indication criteria for initiation of systemic treatment or to evaluate treatment efficacy. The most acknowledged tool for measuring the extent of psoriatic skin changes is the Psoriasis Area and Severity Index (PASI). However, the calculation of PASI can be tedious and subjective and high intraobserver and interobserver variability is an important concern. Therefore, there is a great need for a standardised and objective method that guarantees a reproducible PASI calculation. Within this study we will investigate the precision and reproducibility of automated, computer-guided PASI measurements in comparison to trained physicians to address these limitations. Non-interventional analyses of PASI calculations by either physicians in a prospective versus retrospective setting or an automated computer-guided algorithm in 120 patients with plaque psoriasis. All retrospective PASI calculations by physicians or by the computer algorithm are based on total body digital images. The primary objective of this study is comparison of automated computer-guided PASI measurements by means of digital image analysis versus conventional, prospective or retrospective physicians' PASI assessments. Secondary endpoints include (1) the assessment of physicians' interobserver variance in PASI calculations, (2) the assessment of physicians' intraobserver variance in PASI assessments of the same patients' images after a time interval of at least 4 weeks, (3) the assessment of the deviation between physicians' prospective versus retrospective PASI calculations, and (4) the reproducibility of automated computer-guided PASI measurements by assessment of two sets of total body digital images of the same patients taken at one time point. Ethical approval was provided by the Ethics Committee of the Medical Faculty of the University of Heidelberg (ethics approval number S-379/2016). DRKS00011818; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Motivation for DOC III: 64-bit digital optical computer
NASA Astrophysics Data System (ADS)
Guilfoyle, Peter S.
1991-09-01
The objective of this paper is to motivate a new class of digital logic. OptiComp has focused on a digital optical logic family in order to capitalize on the inherent benefits of optical computing, which include: (1) high FAN-IN and FAN-OUT, (2) low power consumption, (3) high noise margin, (4) high algorithmic efficiency using 'smart' interconnects, (5) free space leverage of GIBP (gate interconnect bandwidth product). Other well-known secondary advantages of optical logic include (but are not limited to): zero capacitive loading of signals at a detector, zero cross-talk between signals, zero signal dispersion, and minimal clock skew (a few picoseconds or less in an imaging system). The primary focus of this paper is on demonstrating how each of the five advantages can be used to leverage other logic family performance such as GaAs; the secondary attributes will be discussed only in the context of introducing the DOC III architecture.
NASA Astrophysics Data System (ADS)
Gao, Xinya; Wang, Yonghong; Li, Junrui; Dan, Xizuo; Wu, Sijin; Yang, Lianxiang
2017-06-01
It is difficult to measure absolute three-dimensional deformation using traditional digital speckle pattern interferometry (DSPI) when the boundary condition of an object being tested is not exactly given. In practical applications, the boundary condition cannot always be specifically provided, limiting the use of DSPI in real-world applications. To tackle this problem, a DSPI system that is integrated by the spatial carrier method and a color camera has been established. Four phase maps are obtained simultaneously by spatial carrier color-digital speckle pattern interferometry using four speckle interferometers with different illumination directions. One out-of-plane and two in-plane absolute deformations can be acquired simultaneously without knowing the boundary conditions using the absolute deformation extraction algorithm based on four phase maps. Finally, the system is proved by experimental results through measurement of the deformation of a flat aluminum plate with a groove.
Algorithms and methodology used in constructing high-resolution terrain databases
NASA Astrophysics Data System (ADS)
Williams, Bryan L.; Wilkosz, Aaron
1998-07-01
This paper presents a top-level description of methods used to generate high-resolution 3D IR digital terrain databases using soft photogrammetry. The 3D IR database is derived from aerial photography and is made up of digital ground plane elevation map, vegetation height elevation map, material classification map, object data (tanks, buildings, etc.), and temperature radiance map. Steps required to generate some of these elements are outlined. The use of metric photogrammetry is discussed in the context of elevation map development; and methods employed to generate the material classification maps are given. The developed databases are used by the US Army Aviation and Missile Command to evaluate the performance of various missile systems. A discussion is also presented on database certification which consists of validation, verification, and accreditation procedures followed to certify that the developed databases give a true representation of the area of interest, and are fully compatible with the targeted digital simulators.
Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging
NASA Astrophysics Data System (ADS)
Micó, Vicente; Zalevsky, Zeev
2010-07-01
Digital in-line holographic microscopy (DIHM) is a modern approach capable of achieving micron-range lateral and depth resolutions in three-dimensional imaging. DIHM in combination with numerical imaging reconstruction uses an extremely simplified setup while retaining the advantages provided by holography with enhanced capabilities derived from algorithmic digital processing. We introduce superresolved DIHM incoming from time and angular multiplexing of the sample spatial frequency information and yielding in the generation of a synthetic aperture (SA). The SA expands the cutoff frequency of the imaging system, allowing submicron resolutions in both transversal and axial directions. The proposed approach can be applied when imaging essentially transparent (low-concentration dilutions) and static (slow dynamics) samples. Validation of the method for both a synthetic object (U.S. Air Force resolution test) to quantify the resolution improvement and a biological specimen (sperm cells biosample) are reported showing the generation of high synthetic numerical aperture values working without lenses.
Deep frequency modulation interferometry.
Gerberding, Oliver
2015-06-01
Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers.
Forest Roadidentification and Extractionof Through Advanced Log Matching Techniques
NASA Astrophysics Data System (ADS)
Zhang, W.; Hu, B.; Quist, L.
2017-10-01
A novel algorithm for forest road identification and extraction was developed. The algorithm utilized Laplacian of Gaussian (LoG) filter and slope calculation on high resolution multispectral imagery and LiDAR data respectively to extract both primary road and secondary road segments in the forest area. The proposed method used road shape feature to extract the road segments, which have been further processed as objects with orientation preserved. The road network was generated after post processing with tensor voting. The proposed method was tested on Hearst forest, located in central Ontario, Canada. Based on visual examination against manually digitized roads, the majority of roads from the test area have been identified and extracted from the process.
A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting
NASA Astrophysics Data System (ADS)
Jan, Chia-Ming; Lin, Ying-Chieh
2016-03-01
This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.
A Subsystem Test Bed for Chinese Spectral Radioheliograph
NASA Astrophysics Data System (ADS)
Zhao, An; Yan, Yihua; Wang, Wei
2014-11-01
The Chinese Spectral Radioheliograph is a solar dedicated radio interferometric array that will produce high spatial resolution, high temporal resolution, and high spectral resolution images of the Sun simultaneously in decimetre and centimetre wave range. Digital processing of intermediate frequency signal is an important part in a radio telescope. This paper describes a flexible and high-speed digital down conversion system for the CSRH by applying complex mixing, parallel filtering, and extracting algorithms to process IF signal at the time of being designed and incorporates canonic-signed digit coding and bit-plane method to improve program efficiency. The DDC system is intended to be a subsystem test bed for simulation and testing for CSRH. Software algorithms for simulation and hardware language algorithms based on FPGA are written which use less hardware resources and at the same time achieve high performances such as processing high-speed data flow (1 GHz) with 10 MHz spectral resolution. An experiment with the test bed is illustrated by using geostationary satellite data observed on March 20, 2014. Due to the easy alterability of the algorithms on FPGA, the data can be recomputed with different digital signal processing algorithms for selecting optimum algorithm.
Pisano, E D; Cole, E B; Major, S; Zong, S; Hemminger, B M; Muller, K E; Johnston, R E; Walsh, R; Conant, E; Fajardo, L L; Feig, S A; Nishikawa, R M; Yaffe, M J; Williams, M B; Aylward, S R
2000-09-01
To determine the preferences of radiologists among eight different image processing algorithms applied to digital mammograms obtained for screening and diagnostic imaging tasks. Twenty-eight images representing histologically proved masses or calcifications were obtained by using three clinically available digital mammographic units. Images were processed and printed on film by using manual intensity windowing, histogram-based intensity windowing, mixture model intensity windowing, peripheral equalization, multiscale image contrast amplification (MUSICA), contrast-limited adaptive histogram equalization, Trex processing, and unsharp masking. Twelve radiologists compared the processed digital images with screen-film mammograms obtained in the same patient for breast cancer screening and breast lesion diagnosis. For the screening task, screen-film mammograms were preferred to all digital presentations, but the acceptability of images processed with Trex and MUSICA algorithms were not significantly different. All printed digital images were preferred to screen-film radiographs in the diagnosis of masses; mammograms processed with unsharp masking were significantly preferred. For the diagnosis of calcifications, no processed digital mammogram was preferred to screen-film mammograms. When digital mammograms were preferred to screen-film mammograms, radiologists selected different digital processing algorithms for each of three mammographic reading tasks and for different lesion types. Soft-copy display will eventually allow radiologists to select among these options more easily.
Overview of Digital Forensics Algorithms in Dslr Cameras
NASA Astrophysics Data System (ADS)
Aminova, E.; Trapeznikov, I.; Priorov, A.
2017-05-01
The widespread usage of the mobile technologies and the improvement of the digital photo devices getting has led to more frequent cases of falsification of images including in the judicial practice. Consequently, the actual task for up-to-date digital image processing tools is the development of algorithms for determining the source and model of the DSLR (Digital Single Lens Reflex) camera and improve image formation algorithms. Most research in this area based on the mention that the extraction of unique sensor trace of DSLR camera could be possible on the certain stage of the imaging process into the camera. It is considered that the study focuses on the problem of determination of unique feature of DSLR cameras based on optical subsystem artifacts and sensor noises.
Advanced digital SAR processing study
NASA Technical Reports Server (NTRS)
Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.
1982-01-01
A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.
Tan, A C; Richards, R
1989-01-01
Three-dimensional (3D) medical graphics is becoming popular in clinical use on tomographic scanners. Research work in 3D reconstructive display of computerized tomography (CT) and magnetic resonance imaging (MRI) scans on conventional computers has produced many so-called pseudo-3D images. The quality of these images depends on the rendering algorithm, the coarseness of the digitized object, the number of grey levels and the image screen resolution. CT and MRI data are fundamentally voxel based and they produce images that are coarse because of the resolution of the data acquisition system. 3D images produced by the Z-buffer depth shading technique suffer loss of detail when complex objects with fine textural detail need to be displayed. Attempts have been made to improve the display of voxel objects, and existing techniques have shown the improvement possible using these post-processing algorithms. The improved rendering technique works on the Z-buffer image to generate a shaded image using a single light source in any direction. The effectiveness of the technique in generating a shaded image has been shown to be a useful means of presenting 3D information for clinical use.
NASA Astrophysics Data System (ADS)
Eilbert, Richard F.; Krug, Kristoph D.
1993-04-01
The Vivid Rapid Explosives Detection Systems is a true dual energy x-ray machine employing precision x-ray data acquisition in combination with unique algorithms and massive computation capability. Data from the system's 960 detectors is digitally stored and processed by powerful supermicro-computers organized as an expandable array of parallel processors. The algorithms operate on the dual energy attenuation image data to recognize and define objects in the milieu of the baggage contents. Each object is then systematically examined for a match to a specific effective atomic number, density, and mass threshold. Material properties are determined by comparing the relative attenuations of the 75 kVp and 150 kVp beams and electronically separating the object from its local background. Other heuristic algorithms search for specific configurations and provide additional information. The machine automatically detects explosive materials and identifies bomb components in luggage with high specificity and throughput, X-ray dose is comparable to that of current airport x-ray machines. The machine is also configured to find heroin, cocaine, and US currency by selecting appropriate settings on-site. Since January 1992, production units have been operationally deployed at U.S. and European airports for improved screening of checked baggage.
The impact of the condenser on cytogenetic image quality in digital microscope system.
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.
NASA Technical Reports Server (NTRS)
Russell, B. Don
1989-01-01
This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.
Three-dimension reconstruction based on spatial light modulator
NASA Astrophysics Data System (ADS)
Deng, Xuejiao; Zhang, Nanyang; Zeng, Yanan; Yin, Shiliang; Wang, Weiyu
2011-02-01
Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .
Super-Nyquist shaping and processing technologies for high-spectral-efficiency optical systems
NASA Astrophysics Data System (ADS)
Jia, Zhensheng; Chien, Hung-Chang; Zhang, Junwen; Dong, Ze; Cai, Yi; Yu, Jianjun
2013-12-01
The implementations of super-Nyquist pulse generation, both in a digital field using a digital-to-analog converter (DAC) or an optical filter at transmitter side, are introduced. Three corresponding signal processing algorithms at receiver are presented and compared for high spectral-efficiency (SE) optical systems employing the spectral prefiltering. Those algorithms are designed for the mitigation towards inter-symbol-interference (ISI) and inter-channel-interference (ICI) impairments by the bandwidth constraint, including 1-tap constant modulus algorithm (CMA) and 3-tap maximum likelihood sequence estimation (MLSE), regular CMA and digital filter with 2-tap MLSE, and constant multi-modulus algorithm (CMMA) with 2-tap MLSE. The principles and prefiltering tolerance are given through numerical and experimental results.
Low-Light Image Enhancement Using Adaptive Digital Pixel Binning
Yoo, Yoonjong; Im, Jaehyun; Paik, Joonki
2015-01-01
This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP). Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor. PMID:26121609
Authenticity techniques for PACS images and records
NASA Astrophysics Data System (ADS)
Wong, Stephen T. C.; Abundo, Marco; Huang, H. K.
1995-05-01
Along with the digital radiology environment supported by picture archiving and communication systems (PACS) comes a new problem: How to establish trust in multimedia medical data that exist only in the easily altered memory of a computer. Trust is characterized in terms of integrity and privacy of digital data. Two major self-enforcing techniques can be used to assure the authenticity of electronic images and text -- key-based cryptography and digital time stamping. Key-based cryptography associates the content of an image with the originator using one or two distinct keys and prevents alteration of the document by anyone other than the originator. A digital time stamping algorithm generates a characteristic `digital fingerprint' for the original document using a mathematical hash function, and checks that it has not been modified. This paper discusses these cryptographic algorithms and their appropriateness for a PACS environment. It also presents experimental results of cryptographic algorithms on several imaging modalities.
Histopathological Image Analysis: A Review
Gurcan, Metin N.; Boucheron, Laura; Can, Ali; Madabhushi, Anant; Rajpoot, Nasir; Yener, Bulent
2010-01-01
Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement to the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe. PMID:20671804
Image compression evaluation for digital cinema: the case of Star Wars: Episode II
NASA Astrophysics Data System (ADS)
Schnuelle, David L.
2003-05-01
A program of evaluation of compression algorithms proposed for use in a digital cinema application is described and the results presented in general form. The work was intended to aid in the selection of a compression system to be used for the digital cinema release of Star Wars: Episode II, in May 2002. An additional goal was to provide feedback to the algorithm proponents on what parameters and performance levels the feature film industry is looking for in digital cinema compression. The primary conclusion of the test program is that any of the current digital cinema compression proponents will work for digital cinema distribution to today's theaters.
Optimizing of a high-order digital filter using PSO algorithm
NASA Astrophysics Data System (ADS)
Xu, Fuchun
2018-04-01
A self-adaptive high-order digital filter, which offers opportunity to simplify the process of tuning parameters and further improve the noise performance, is presented in this paper. The parameters of traditional digital filter are mainly tuned by complex calculation, whereas this paper presents a 5th order digital filter to obtain outstanding performance and the parameters of the proposed filter are optimized by swarm intelligent algorithm. Simulation results with respect to the proposed 5th order digital filter, SNR>122dB and the noise floor under -170dB are obtained in frequency range of [5-150Hz]. In further simulation, the robustness of the proposed 5th order digital is analyzed.
NASA Astrophysics Data System (ADS)
Zhang, Zheng
2017-10-01
Concept of radio direction finding systems, which use radio direction finding is based on digital signal processing algorithms. Thus, the radio direction finding system becomes capable to locate and track signals by the both. Performance of radio direction finding significantly depends on effectiveness of digital signal processing algorithms. The algorithm uses the Direction of Arrival (DOA) algorithms to estimate the number of incidents plane waves on the antenna array and their angle of incidence. This manuscript investigates implementation of the DOA algorithms (MUSIC) on the uniform linear array in the presence of white noise. The experiment results exhibit that MUSIC algorithm changed well with the radio direction.
Distributed Pheromone-Based Swarming Control of Unmanned Air and Ground Vehicles for RSTA
2008-03-20
Forthcoming in Proceedings of SPIE Defense & Security Conference, March 2008, Orlando, FL Distributed Pheromone -Based Swarming Control of Unmanned...describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of...onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm
NASA Astrophysics Data System (ADS)
Gamshadzaei, Mohammad Hossein; Rahimzadegan, Majid
2017-10-01
Identification of water extents in Landsat images is challenging due to surfaces with similar reflectance to water extents. The objective of this study is to provide stable and accurate methods for identifying water extents in Landsat images based on meta-heuristic algorithms. Then, seven Landsat images were selected from various environmental regions in Iran. Training of the algorithms was performed using 40 water pixels and 40 nonwater pixels in operational land imager images of Chitgar Lake (one of the study regions). Moreover, high-resolution images from Google Earth were digitized to evaluate the results. Two approaches were considered: index-based and artificial intelligence (AI) algorithms. In the first approach, nine common water spectral indices were investigated. AI algorithms were utilized to acquire coefficients of optimal band combinations to extract water extents. Among the AI algorithms, the artificial neural network algorithm and also the ant colony optimization, genetic algorithm, and particle swarm optimization (PSO) meta-heuristic algorithms were implemented. Index-based methods represented different performances in various regions. Among AI methods, PSO had the best performance with average overall accuracy and kappa coefficient of 93% and 98%, respectively. The results indicated the applicability of acquired band combinations to extract accurately and stably water extents in Landsat imagery.
Quantitative holographic interferometry applied to combustion and compressible flow research
NASA Astrophysics Data System (ADS)
Bryanston-Cross, Peter J.; Towers, D. P.
1993-03-01
The application of holographic interferometry to phase object analysis is described. Emphasis has been given to a method of extracting quantitative information automatically from the interferometric fringe data. To achieve this a carrier frequency has been added to the holographic data. This has made it possible, firstly to form a phase map using a fast Fourier transform (FFT) algorithm. Then to `solve,' or unwrap, this image to give a contiguous density map using a minimum weight spanning tree (MST) noise immune algorithm, known as fringe analysis (FRAN). Applications of this work to a burner flame and a compressible flow are presented. In both cases the spatial frequency of the fringes exceed the resolvable limit of conventional digital framestores. Therefore, a flatbed scanner with a resolution of 3200 X 2400 pixels has been used to produce very high resolution digital images from photographs. This approach has allowed the processing of data despite the presence of caustics, generated by strong thermal gradients at the edge of the combustion field. A similar example is presented from the analysis of a compressible transonic flow in the shock wave and trailing edge regions.
Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory.
Delgado-Friedrichs, Olaf; Robins, Vanessa; Sheppard, Adrian
2015-03-01
We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling.
3D refractive index measurements of special optical fibers
NASA Astrophysics Data System (ADS)
Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun
2016-09-01
A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.
Devaprakash, Daniel; Weir, Gillian J; Dunne, James J; Alderson, Jacqueline A; Donnelly, Cyril J
2016-12-01
There is a large and growing body of surface electromyography (sEMG) research using laboratory-specific signal processing procedures (i.e., digital filter type and amplitude normalisation protocols) and data analyses methods (i.e., co-contraction algorithms) to acquire practically meaningful information from these data. As a result, the ability to compare sEMG results between studies is, and continues to be challenging. The aim of this study was to determine if digital filter type, amplitude normalisation method, and co-contraction algorithm could influence the practical or clinical interpretation of processed sEMG data. Sixteen elite female athletes were recruited. During data collection, sEMG data was recorded from nine lower limb muscles while completing a series of calibration and clinical movement assessment trials (running and sidestepping). Three analyses were conducted: (1) signal processing with two different digital filter types (Butterworth or critically damped), (2) three amplitude normalisation methods, and (3) three co-contraction ratio algorithms. Results showed the choice of digital filter did not influence the clinical interpretation of sEMG; however, choice of amplitude normalisation method and co-contraction algorithm did influence the clinical interpretation of the running and sidestepping task. Care is recommended when choosing amplitude normalisation method and co-contraction algorithms if researchers/clinicians are interested in comparing sEMG data between studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Construct validation of an interactive digital algorithm for ostomy care.
Beitz, Janice M; Gerlach, Mary A; Schafer, Vickie
2014-01-01
The purpose of this study was to evaluate construct validity for a previously face and content validated Ostomy Algorithm using digital real-life clinical scenarios. A cross-sectional, mixed-methods Web-based survey design study was conducted. Two hundred ninety-seven English-speaking RNs completed the study; participants practiced in both acute care and postacute settings, with 1 expert ostomy nurse (WOC nurse) and 2 nonexpert nurses. Following written consent, respondents answered demographic questions and completed a brief algorithm tutorial. Participants were then presented with 7 ostomy-related digital scenarios consisting of real-life photos and pertinent clinical information. Respondents used the 11 assessment components of the digital algorithm to choose management options. Participant written comments about the scenarios and the research process were collected. The mean overall percentage of correct responses was 84.23%. Mean percentage of correct responses for respondents with a self-reported basic ostomy knowledge was 87.7%; for those with a self-reported intermediate ostomy knowledge was 85.88% and those who were self-reported experts in ostomy care achieved 82.77% correct response rate. Five respondents reported having no prior ostomy care knowledge at screening and achieved an overall 45.71% correct response rate. No negative comments regarding the algorithm were recorded by participants. The new standardized Ostomy Algorithm remains the only face, content, and construct validated digital clinical decision instrument currently available. Further research on application at the bedside while tracking patient outcomes is warranted.
A novel orthoimage mosaic method using a weighted A∗ algorithm - Implementation and evaluation
NASA Astrophysics Data System (ADS)
Zheng, Maoteng; Xiong, Xiaodong; Zhu, Junfeng
2018-04-01
The implementation and evaluation of a weighted A∗ algorithm for orthoimage mosaic with UAV (Unmanned Aircraft Vehicle) imagery is proposed. The initial seam-line network is firstly generated by standard Voronoi Diagram algorithm; an edge diagram is generated based on DSM (Digital Surface Model) data; the vertices (conjunction nodes of seam-lines) of the initial network are relocated if they are on high objects (buildings, trees and other artificial structures); and the initial seam-lines are refined using the weighted A∗ algorithm based on the edge diagram and the relocated vertices. Our method was tested with three real UAV datasets. Two quantitative terms are introduced to evaluate the results of the proposed method. Preliminary results show that the method is suitable for regular and irregular aligned UAV images for most terrain types (flat or mountainous areas), and is better than the state-of-the-art method in both quality and efficiency based on the test datasets.
NASA Astrophysics Data System (ADS)
Baillard, C.; Dissard, O.; Jamet, O.; Maître, H.
Above-ground analysis is a key point to the reconstruction of urban scenes, but it is a difficult task because of the diversity of the involved objects. We propose a new method to above-ground extraction from an aerial stereo pair, which does not require any assumption about object shape or nature. A Digital Surface Model is first produced by a stereoscopic matching stage preserving discontinuities, and then processed by a region-based Markovian classification algorithm. The produced above-ground areas are finally characterized as man-made or natural according to the grey level information. The quality of the results is assessed and discussed.
Multispectral high-resolution hologram generation using orthographic projection images
NASA Astrophysics Data System (ADS)
Muniraj, I.; Guo, C.; Sheridan, J. T.
2016-08-01
We present a new method of synthesizing a digital hologram of three-dimensional (3D) real-world objects from multiple orthographic projection images (OPI). A high-resolution multiple perspectives of 3D objects (i.e., two dimensional elemental image array) are captured under incoherent white light using synthetic aperture integral imaging (SAII) technique and their OPIs are obtained respectively. The reference beam is then multiplied with the corresponding OPI and integrated to form a Fourier hologram. Eventually, a modified phase retrieval algorithm (GS/HIO) is applied to reconstruct the hologram. The principle is validated experimentally and the results support the feasibility of the proposed method.
The Cognitive Visualization System with the Dynamic Projection of Multidimensional Data
NASA Astrophysics Data System (ADS)
Gorohov, V.; Vitkovskiy, V.
2008-08-01
The phenomenon of cognitive machine drawing consists in the generation on the screen the special graphic representations, which create in the brain of human operator entertainment means. These means seem man by aesthetically attractive and, thus, they stimulate its descriptive imagination, closely related to the intuitive mechanisms of thinking. The essence of cognitive effect lies in the fact that man receives the moving projection as pseudo-three-dimensional object characterizing multidimensional means in the multidimensional space. After the thorough qualitative study of the visual aspects of multidimensional means with the aid of the enumerated algorithms appears the possibility, using algorithms of standard machine drawing to paint the interesting user separate objects or the groups of objects. Then it is possible to again return to the dynamic behavior of the rotation of means for the purpose of checking the intuitive ideas of user about the clusters and the connections in multidimensional data. Is possible the development of the methods of cognitive machine drawing in combination with other information technologies, first of all with the packets of digital processing of images and multidimensional statistical analysis.
A Double Perturbation Method for Reducing Dynamical Degradation of the Digital Baker Map
NASA Astrophysics Data System (ADS)
Liu, Lingfeng; Lin, Jun; Miao, Suoxia; Liu, Bocheng
2017-06-01
The digital Baker map is widely used in different kinds of cryptosystems, especially for image encryption. However, any chaotic map which is realized on the finite precision device (e.g. computer) will suffer from dynamical degradation, which refers to short cycle lengths, low complexity and strong correlations. In this paper, a novel double perturbation method is proposed for reducing the dynamical degradation of the digital Baker map. Both state variables and system parameters are perturbed by the digital logistic map. Numerical experiments show that the perturbed Baker map can achieve good statistical and cryptographic properties. Furthermore, a new image encryption algorithm is provided as a simple application. With a rather simple algorithm, the encrypted image can achieve high security, which is competitive to the recently proposed image encryption algorithms.
Dai, Meiling; Yang, Fujun; He, Xiaoyuan
2012-04-20
A simple but effective fringe projection profilometry is proposed to measure 3D shape by using one snapshot color sinusoidal fringe pattern. One color fringe pattern encoded with a sinusoidal fringe (as red component) and one uniform intensity pattern (as blue component) is projected by a digital video projector, and the deformed fringe pattern is recorded by a color CCD camera. The captured color fringe pattern is separated into its RGB components and division operation is applied to red and blue channels to reduce the variable reflection intensity. Shape information of the tested object is decoded by applying an arcsine algorithm on the normalized fringe pattern with subpixel resolution. In the case of fringe discontinuities caused by height steps, or spatially isolated surfaces, the separated blue component is binarized and used for correcting the phase demodulation. A simple and robust method is also introduced to compensate for nonlinear intensity response of the digital video projector. The experimental results demonstrate the validity of the proposed method.
Eliminating "Hotspots" in Digital Image Processing
NASA Technical Reports Server (NTRS)
Salomon, P. M.
1984-01-01
Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.
A comparative study of Message Digest 5(MD5) and SHA256 algorithm
NASA Astrophysics Data System (ADS)
Rachmawati, D.; Tarigan, J. T.; Ginting, A. B. C.
2018-03-01
The document is a collection of written or printed data containing information. The more rapid advancement of technology, the integrity of a document should be kept. Because of the nature of an open document means the document contents can be read and modified by many parties so that the integrity of the information as a content of the document is not preserved. To maintain the integrity of the data, it needs to create a mechanism which is called a digital signature. A digital signature is a specific code which is generated from the function of producing a digital signature. One of the algorithms that used to create the digital signature is a hash function. There are many hash functions. Two of them are message digest 5 (MD5) and SHA256. Those both algorithms certainly have its advantages and disadvantages of each. The purpose of this research is to determine the algorithm which is better. The parameters which used to compare that two algorithms are the running time and complexity. The research results obtained from the complexity of the Algorithms MD5 and SHA256 is the same, i.e., ⊖ (N), but regarding the speed is obtained that MD5 is better compared to SHA256.
Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji
2013-04-01
Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.
NASA Astrophysics Data System (ADS)
Zacharek, M.; Delis, P.; Kedzierski, M.; Fryskowska, A.
2017-05-01
These studies have been conductedusing non-metric digital camera and dense image matching algorithms, as non-contact methods of creating monuments documentation.In order toprocess the imagery, few open-source software and algorithms of generating adense point cloud from images have been executed. In the research, the OSM Bundler, VisualSFM software, and web application ARC3D were used. Images obtained for each of the investigated objects were processed using those applications, and then dense point clouds and textured 3D models were created. As a result of post-processing, obtained models were filtered and scaled.The research showedthat even using the open-source software it is possible toobtain accurate 3D models of structures (with an accuracy of a few centimeters), but for the purpose of documentation and conservation of cultural and historical heritage, such accuracy can be insufficient.
Failure detection and isolation analysis of a redundant strapdown inertial measurement unit
NASA Technical Reports Server (NTRS)
Motyka, P.; Landey, M.; Mckern, R.
1981-01-01
The objective of this study was to define and develop techniques for failure detection and isolation (FDI) algorithms for a dual fail/operational redundant strapdown inertial navigation system are defined and developed. The FDI techniques chosen include provisions for hard and soft failure detection in the context of flight control and navigation. Analyses were done to determine error detection and switching levels for the inertial navigation system, which is intended for a conventional takeoff or landing (CTOL) operating environment. In addition, investigations of false alarms and missed alarms were included for the FDI techniques developed, along with the analyses of filters to be used in conjunction with FDI processing. Two specific FDI algorithms were compared: the generalized likelihood test and the edge vector test. A deterministic digital computer simulation was used to compare and evaluate the algorithms and FDI systems.
System for uncollimated digital radiography
Wang, Han; Hall, James M.; McCarrick, James F.; Tang, Vincent
2015-08-11
The inversion algorithm based on the maximum entropy method (MEM) removes unwanted effects in high energy imaging resulting from an uncollimated source interacting with a finitely thick scintillator. The algorithm takes as input the image from the thick scintillator (TS) and the radiography setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesimally thin scintillator (ITS). Inversion is accomplished by numerically generating a probabilistic model relating the ITS image to the TS image and then inverting this model on the TS image through MEM. This reconstruction technique can reduce the exposure time or the required source intensity without undesirable object blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer source-to-detector distances to maximize incident radiation flux. The technique is applicable in radiographic applications including fast neutron, high-energy gamma and x-ray radiography using thick scintillators.
The computation of pi to 29,360,000 decimal digits using Borweins' quartically convergent algorithm
NASA Technical Reports Server (NTRS)
Bailey, David H.
1988-01-01
The quartically convergent numerical algorithm developed by Borwein and Borwein (1987) for 1/pi is implemented via a prime-modulus-transform multiprecision technique on the NASA Ames Cray-2 supercomputer to compute the first 2.936 x 10 to the 7th digits of the decimal expansion of pi. The history of pi computations is briefly recalled; the most recent algorithms are characterized; the implementation procedures are described; and samples of the output listing are presented. Statistical analyses show that the present decimal expansion is completely random, with only acceptable numbers of long repeating strings and single-digit runs.
A method for digital image registration using a mathematical programming technique
NASA Technical Reports Server (NTRS)
Yao, S. S.
1973-01-01
A new algorithm based on a nonlinear programming technique to correct the geometrical distortions of one digital image with respect to another is discussed. This algorithm promises to be superior to existing ones in that it is capable of treating localized differential scaling, translational and rotational errors over the whole image plane. A series of piece-wise 'rubber-sheet' approximations are used, constrained in such a manner that a smooth approximation over the entire image can be obtained. The theoretical derivation is included. The result of using the algorithm to register four channel S065 Apollo IX digitized photography over Imperial Valley, California, is discussed in detail.
NASA Astrophysics Data System (ADS)
Qian, Feng; Li, Guoqiang
2001-12-01
In this paper a generalized look-ahead logic algorithm for number conversion from signed-digit to its complement representation is developed. By properly encoding the signed digits, all the operations are performed by binary logic, and unified logical expressions can be obtained for conversion from modified-signed-digit (MSD) to 2's complement, trinary signed-digit (TSD) to 3's complement, and quaternary signed-digit (QSD) to 4's complement. For optical implementation, a parallel logical array module using electron-trapping device is employed, which is suitable for realizing complex logic functions in the form of sum-of-product. The proposed algorithm and architecture are compatible with a general-purpose optoelectronic computing system.
Multipurpose image watermarking algorithm based on multistage vector quantization.
Lu, Zhe-Ming; Xu, Dian-Guo; Sun, Sheng-He
2005-06-01
The rapid growth of digital multimedia and Internet technologies has made copyright protection, copy protection, and integrity verification three important issues in the digital world. To solve these problems, the digital watermarking technique has been presented and widely researched. Traditional watermarking algorithms are mostly based on discrete transform domains, such as the discrete cosine transform, discrete Fourier transform (DFT), and discrete wavelet transform (DWT). Most of these algorithms are good for only one purpose. Recently, some multipurpose digital watermarking methods have been presented, which can achieve the goal of content authentication and copyright protection simultaneously. However, they are based on DWT or DFT. Lately, several robust watermarking schemes based on vector quantization (VQ) have been presented, but they can only be used for copyright protection. In this paper, we present a novel multipurpose digital image watermarking method based on the multistage vector quantizer structure, which can be applied to image authentication and copyright protection. In the proposed method, the semi-fragile watermark and the robust watermark are embedded in different VQ stages using different techniques, and both of them can be extracted without the original image. Simulation results demonstrate the effectiveness of our algorithm in terms of robustness and fragility.
Ciesielski, Krzysztof Chris; Udupa, Jayaram K.
2011-01-01
In the current vast image segmentation literature, there seems to be considerable redundancy among algorithms, while there is a serious lack of methods that would allow their theoretical comparison to establish their similarity, equivalence, or distinctness. In this paper, we make an attempt to fill this gap. To accomplish this goal, we argue that: (1) every digital segmentation algorithm A should have a well defined continuous counterpart MA, referred to as its model, which constitutes an asymptotic of A when image resolution goes to infinity; (2) the equality of two such models MA and MA′ establishes a theoretical (asymptotic) equivalence of their digital counterparts A and A′. Such a comparison is of full theoretical value only when, for each involved algorithm A, its model MA is proved to be an asymptotic of A. So far, such proofs do not appear anywhere in the literature, even in the case of algorithms introduced as digitizations of continuous models, like level set segmentation algorithms. The main goal of this article is to explore a line of investigation for formally pairing the digital segmentation algorithms with their asymptotic models, justifying such relations with mathematical proofs, and using the results to compare the segmentation algorithms in this general theoretical framework. As a first step towards this general goal, we prove here that the gradient based thresholding model M∇ is the asymptotic for the fuzzy connectedness Udupa and Samarasekera segmentation algorithm used with gradient based affinity A∇. We also argue that, in a sense, M∇ is the asymptotic for the original front propagation level set algorithm of Malladi, Sethian, and Vemuri, thus establishing a theoretical equivalence between these two specific algorithms. Experimental evidence of this last equivalence is also provided. PMID:21442014
Threshold automatic selection hybrid phase unwrapping algorithm for digital holographic microscopy
NASA Astrophysics Data System (ADS)
Zhou, Meiling; Min, Junwei; Yao, Baoli; Yu, Xianghua; Lei, Ming; Yan, Shaohui; Yang, Yanlong; Dan, Dan
2015-01-01
Conventional quality-guided (QG) phase unwrapping algorithm is hard to be applied to digital holographic microscopy because of the long execution time. In this paper, we present a threshold automatic selection hybrid phase unwrapping algorithm that combines the existing QG algorithm and the flood-filled (FF) algorithm to solve this problem. The original wrapped phase map is divided into high- and low-quality sub-maps by selecting a threshold automatically, and then the FF and QG unwrapping algorithms are used in each level to unwrap the phase, respectively. The feasibility of the proposed method is proved by experimental results, and the execution speed is shown to be much faster than that of the original QG unwrapping algorithm.
Gao, Zheng; Gui, Ping
2012-07-01
In this paper, we present a digital predistortion technique to improve the linearity and power efficiency of a high-voltage class-AB power amplifier (PA) for ultrasound transmitters. The system is composed of a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), and a field-programmable gate array (FPGA) in which the digital predistortion (DPD) algorithm is implemented. The DPD algorithm updates the error, which is the difference between the ideal signal and the attenuated distorted output signal, in the look-up table (LUT) memory during each cycle of a sinusoidal signal using the least-mean-square (LMS) algorithm. On the next signal cycle, the error data are used to equalize the signal with negative harmonic components to cancel the amplifier's nonlinear response. The algorithm also includes a linear interpolation method applied to the windowed sinusoidal signals for the B-mode and Doppler modes. The measurement test bench uses an arbitrary function generator as the DAC to generate the input signal, an oscilloscope as the ADC to capture the output waveform, and software to implement the DPD algorithm. The measurement results show that the proposed system is able to reduce the second-order harmonic distortion (HD2) by 20 dB and the third-order harmonic distortion (HD3) by 14.5 dB, while at the same time improving the power efficiency by 18%.
Reconstruction of noisy and blurred images using blur kernel
NASA Astrophysics Data System (ADS)
Ellappan, Vijayan; Chopra, Vishal
2017-11-01
Blur is a common in so many digital images. Blur can be caused by motion of the camera and scene object. In this work we proposed a new method for deblurring images. This work uses sparse representation to identify the blur kernel. By analyzing the image coordinates Using coarse and fine, we fetch the kernel based image coordinates and according to that observation we get the motion angle of the shaken or blurred image. Then we calculate the length of the motion kernel using radon transformation and Fourier for the length calculation of the image and we use Lucy Richardson algorithm which is also called NON-Blind(NBID) Algorithm for more clean and less noisy image output. All these operation will be performed in MATLAB IDE.
Use of the Hotelling observer to optimize image reconstruction in digital breast tomosynthesis
Sánchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan
2015-01-01
Abstract. We propose an implementation of the Hotelling observer that can be applied to the optimization of linear image reconstruction algorithms in digital breast tomosynthesis. The method is based on considering information within a specific region of interest, and it is applied to the optimization of algorithms for detectability of microcalcifications. Several linear algorithms are considered: simple back-projection, filtered back-projection, back-projection filtration, and Λ-tomography. The optimized algorithms are then evaluated through the reconstruction of phantom data. The method appears robust across algorithms and parameters and leads to the generation of algorithm implementations which subjectively appear optimized for the task of interest. PMID:26702408
Quantum digital-to-analog conversion algorithm using decoherence
NASA Astrophysics Data System (ADS)
SaiToh, Akira
2015-08-01
We consider the problem of mapping digital data encoded on a quantum register to analog amplitudes in parallel. It is shown to be unlikely that a fully unitary polynomial-time quantum algorithm exists for this problem; NP becomes a subset of BQP if it exists. In the practical point of view, we propose a nonunitary linear-time algorithm using quantum decoherence. It tacitly uses an exponentially large physical resource, which is typically a huge number of identical molecules. Quantumness of correlation appearing in the process of the algorithm is also discussed.
Application of digital image processing techniques to astronomical imagery, 1979
NASA Technical Reports Server (NTRS)
Lorre, J. J.
1979-01-01
Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.
Pose and motion recovery from feature correspondences and a digital terrain map.
Lerner, Ronen; Rivlin, Ehud; Rotstein, Héctor P
2006-09-01
A novel algorithm for pose and motion estimation using corresponding features and a Digital Terrain Map is proposed. Using a Digital Terrain (or Digital Elevation) Map (DTM/DEM) as a global reference enables the elimination of the ambiguity present in vision-based algorithms for motion recovery. As a consequence, the absolute position and orientation of a camera can be recovered with respect to the external reference frame. In order to do this, the DTM is used to formulate a constraint between corresponding features in two consecutive frames. Explicit reconstruction of the 3D world is not required. When considering a number of feature points, the resulting constraints can be solved using nonlinear optimization in terms of position, orientation, and motion. Such a procedure requires an initial guess of these parameters, which can be obtained from dead-reckoning or any other source. The feasibility of the algorithm is established through extensive experimentation. Performance is compared with a state-of-the-art alternative algorithm, which intermediately reconstructs the 3D structure and then registers it to the DTM. A clear advantage for the novel algorithm is demonstrated in variety of scenarios.
Four-Digit Numbers Which Are Squared Sums
ERIC Educational Resources Information Center
Coughlin, Heather; Jue, Brian
2009-01-01
There is a very natural way to divide a four-digit number into 2 two-digit numbers. Applying an algorithm to this pair of numbers, determine how often the original four-digit number reappears. (Contains 3 tables.)
Separation of overlapping dental arch objects using digital records of illuminated plaster casts.
Yadollahi, Mohammadreza; Procházka, Aleš; Kašparová, Magdaléna; Vyšata, Oldřich; Mařík, Vladimír
2015-07-11
Plaster casts of individual patients are important for orthodontic specialists during the treatment process and their analysis is still a standard diagnostical tool. But the growing capabilities of information technology enable their replacement by digital models obtained by complex scanning systems. This paper presents the possibility of using a digital camera as a simple instrument to obtain the set of digital images for analysis and evaluation of the treatment using appropriate mathematical tools of image processing. The methods studied in this paper include the segmentation of overlapping dental bodies and the use of different illumination sources to increase the reliability of the separation process. The circular Hough transform, region growing with multiple seed points, and the convex hull detection method are applied to the segmentation of orthodontic plaster cast images to identify dental arch objects and their sizes. The proposed algorithm presents the methodology of improving the accuracy of segmentation of dental arch components using combined illumination sources. Dental arch parameters and distances between the canines and premolars for different segmentation methods were used as a measure to compare the results obtained. A new method of segmentation of overlapping dental arch components using digital records of illuminated plaster casts provides information with the precision required for orthodontic treatment. The distance between corresponding teeth was evaluated with a mean error of 1.38% and the Dice similarity coefficient of the evaluated dental bodies boundaries reached 0.9436 with a false positive rate [Formula: see text] and false negative rate [Formula: see text].
Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Whyte, Wayne A., Jr.
1989-01-01
Advances in very large-scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible and potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for a DPCM-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the CODEC are described, and performance results are provided.
Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Whyte, Wayne A.
1991-01-01
Advances in very large scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible an potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for DPCM (differential pulse code midulation)-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the codec are described, and performance results are provided.
Automated Ontology Generation Using Spatial Reasoning
NASA Astrophysics Data System (ADS)
Coalter, Alton; Leopold, Jennifer L.
Recently there has been much interest in using ontologies to facilitate knowledge representation, integration, and reasoning. Correspondingly, the extent of the information embodied by an ontology is increasing beyond the conventional is_a and part_of relationships. To address these requirements, a vast amount of digitally available information may need to be considered when building ontologies, prompting a desire for software tools to automate at least part of the process. The main efforts in this direction have involved textual information retrieval and extraction methods. For some domains extension of the basic relationships could be enhanced further by the analysis of 2D and/or 3D images. For this type of media, image processing algorithms are more appropriate than textual analysis methods. Herein we present an algorithm that, given a collection of 3D image files, utilizes Qualitative Spatial Reasoning (QSR) to automate the creation of an ontology for the objects represented by the images, relating the objects in terms of is_a and part_of relationships and also through unambiguous Relational Connection Calculus (RCC) relations.
Automatic segmentation of bones from digital hand radiographs
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Taira, Ricky K.; Shim, Hyeonjoon; Keaton, Patricia
1995-05-01
The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The algorithm uses an object-oriented approach comprising several stages beginning with the most general objects to be segmented, such as the outline of the hand from background, and proceeding in a succession of stages to the most specific object, such as a specific phalangeal bone from a digit of the hand. Each stage carries custom operators unique to the needs of that specific stage which will aid in more accurate results. The method is further aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. Shape models, 1-D wrist profiles, as well as an interpretation tree are used to map model and data contour segments. Shape analysis is performed using an arc-length orientation transform. The method is tested on close to 340 phalangeal and epiphyseal objects to be segmented from 17 cases of pediatric hand images obtained from our clinical PACS. Patient age ranges from 2 - 16 years. A pediatric radiologist preliminarily assessed the results of the object contours and were found to be accurate to within 95% for cases with non-fused bones and to within 85% for cases with fused bones. With accurate and robust results, the method can be applied toward areas such as the determination of bone age, the development of a normal hand atlas, and the characterization of many congenital and acquired growth diseases. Furthermore, this method's architecture can be applied to other image segmentation problems.
Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao
2009-01-01
Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization.
HYBRID FAST HANKEL TRANSFORM ALGORITHM FOR ELECTROMAGNETIC MODELING
A hybrid fast Hankel transform algorithm has been developed that uses several complementary features of two existing algorithms: Anderson's digital filtering or fast Hankel transform (FHT) algorithm and Chave's quadrature and continued fraction algorithm. A hybrid FHT subprogram ...
In Pursuit of LSST Science Requirements: A Comparison of Photometry Algorithms
NASA Astrophysics Data System (ADS)
Becker, Andrew C.; Silvestri, Nicole M.; Owen, Russell E.; Ivezić, Željko; Lupton, Robert H.
2007-12-01
We have developed an end-to-end photometric data-processing pipeline to compare current photometric algorithms commonly used on ground-based imaging data. This test bed is exceedingly adaptable and enables us to perform many research and development tasks, including image subtraction and co-addition, object detection and measurements, the production of photometric catalogs, and the creation and stocking of database tables with time-series information. This testing has been undertaken to evaluate existing photometry algorithms for consideration by a next-generation image-processing pipeline for the Large Synoptic Survey Telescope (LSST). We outline the results of our tests for four packages: the Sloan Digital Sky Survey's Photo package, DAOPHOT and ALLFRAME, DOPHOT, and two versions of Source Extractor (SExtractor). The ability of these algorithms to perform point-source photometry, astrometry, shape measurements, and star-galaxy separation and to measure objects at low signal-to-noise ratio is quantified. We also perform a detailed crowded-field comparison of DAOPHOT and ALLFRAME, and profile the speed and memory requirements in detail for SExtractor. We find that both DAOPHOT and Photo are able to perform aperture photometry to high enough precision to meet LSST's science requirements, and less adequately at PSF-fitting photometry. Photo performs the best at simultaneous point- and extended-source shape and brightness measurements. SExtractor is the fastest algorithm, and recent upgrades in the software yield high-quality centroid and shape measurements with little bias toward faint magnitudes. ALLFRAME yields the best photometric results in crowded fields.
BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana
2006-01-01
Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.
Dataflow computing approach in high-speed digital simulation
NASA Technical Reports Server (NTRS)
Ercegovac, M. D.; Karplus, W. J.
1984-01-01
New computational tools and methodologies for the digital simulation of continuous systems were explored. Programmability, and cost effective performance in multiprocessor organizations for real time simulation was investigated. Approach is based on functional style languages and data flow computing principles, which allow for the natural representation of parallelism in algorithms and provides a suitable basis for the design of cost effective high performance distributed systems. The objectives of this research are to: (1) perform comparative evaluation of several existing data flow languages and develop an experimental data flow language suitable for real time simulation using multiprocessor systems; (2) investigate the main issues that arise in the architecture and organization of data flow multiprocessors for real time simulation; and (3) develop and apply performance evaluation models in typical applications.
Quantitative phase-contrast digital holographic microscopy for cell dynamic evaluation
NASA Astrophysics Data System (ADS)
Yu, Lingfeng; Mohanty, Samarendra; Berns, Michael W.; Chen, Zhongping
2009-02-01
The laser microbeam uses lasers to alter and/or to ablate intracellular organelles and cellular and tissue samples, and, today, has become an important tool for cell biologists to study the molecular mechanism of complex biological systems by removing individual cells or sub-cellular organelles. However, absolute quantitation of the localized alteration/damage to transparent phase objects, such as the cell membrane or chromosomes, was not possible using conventional phase-contrast or differential interference contrast microscopy. We report the development of phase-contrast digital holographic microscopy for quantitative evaluation of cell dynamic changes in real time during laser microsurgery. Quantitative phase images are recorded during the process of laser microsurgery and thus, the dynamic change in phase can be continuously evaluated. Out-of-focus organelles are re-focused by numerical reconstruction algorithms.
NASA Astrophysics Data System (ADS)
Li, Guoqiang; Qian, Feng
2001-11-01
We present, for the first time to our knowledge, a generalized lookahead logic algorithm for number conversion from signed-digit to complement representation. By properly encoding the signed-digits, all the operations are performed by binary logic, and unified logical expressions can be obtained for conversion from modified-signed- digit (MSD) to 2's complement, trinary signed-digit (TSD) to 3's complement, and quarternary signed-digit (QSD) to 4's complement. For optical implementation, a parallel logical array module using an electron-trapping device is employed and experimental results are shown. This optical module is suitable for implementing complex logic functions in the form of the sum of the product. The algorithm and architecture are compatible with a general-purpose optoelectronic computing system.
NASA Astrophysics Data System (ADS)
Fotin, Sergei V.; Yin, Yin; Haldankar, Hrishikesh; Hoffmeister, Jeffrey W.; Periaswamy, Senthil
2016-03-01
Computer-aided detection (CAD) has been used in screening mammography for many years and is likely to be utilized for digital breast tomosynthesis (DBT). Higher detection performance is desirable as it may have an impact on radiologist's decisions and clinical outcomes. Recently the algorithms based on deep convolutional architectures have been shown to achieve state of the art performance in object classification and detection. Similarly, we trained a deep convolutional neural network directly on patches sampled from two-dimensional mammography and reconstructed DBT volumes and compared its performance to a conventional CAD algorithm that is based on computation and classification of hand-engineered features. The detection performance was evaluated on the independent test set of 344 DBT reconstructions (GE SenoClaire 3D, iterative reconstruction algorithm) containing 328 suspicious and 115 malignant soft tissue densities including masses and architectural distortions. Detection sensitivity was measured on a region of interest (ROI) basis at the rate of five detection marks per volume. Moving from conventional to deep learning approach resulted in increase of ROI sensitivity from 0:832 +/- 0:040 to 0:893 +/- 0:033 for suspicious ROIs; and from 0:852 +/- 0:065 to 0:930 +/- 0:046 for malignant ROIs. These results indicate the high utility of deep feature learning in the analysis of DBT data and high potential of the method for broader medical image analysis tasks.
Self-tuning control of attitude and momentum management for the Space Station
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.
1992-01-01
This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.
A digitally implemented preambleless demodulator for maritime and mobile data communications
NASA Astrophysics Data System (ADS)
Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.
The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.
A digital prediction algorithm for a single-phase boost PFC
NASA Astrophysics Data System (ADS)
Qing, Wang; Ning, Chen; Weifeng, Sun; Shengli, Lu; Longxing, Shi
2012-12-01
A novel digital control algorithm for digital control power factor correction is presented, which is called the prediction algorithm and has a feature of a higher PF (power factor) with lower total harmonic distortion, and a faster dynamic response with the change of the input voltage or load current. For a certain system, based on the current system state parameters, the prediction algorithm can estimate the track of the output voltage and the inductor current at the next switching cycle and get a set of optimized control sequences to perfectly track the trajectory of input voltage. The proposed prediction algorithm is verified at different conditions, and computer simulation and experimental results under multi-situations confirm the effectiveness of the prediction algorithm. Under the circumstances that the input voltage is in the range of 90-265 V and the load current in the range of 20%-100%, the PF value is larger than 0.998. The startup and the recovery times respectively are about 0.1 s and 0.02 s without overshoot. The experimental results also verify the validity of the proposed method.
Application of Oversampling to obtain the MTF of Digital Radiology Equipment.
NASA Astrophysics Data System (ADS)
Narváez, M.; Graffigna, J. P.; Gómez, M. E.; Romo, R.
2016-04-01
Within the objectives of theproject Medical Image Processing for QualityAssessment ofX Ray Imaging, the present research work is aimed at developinga phantomX ray image and itsassociated processing algorithms in order to evaluatethe image quality rendered by digital X ray equipment. These tools are used to measure various image parameters, among which spatial resolution shows afundamental property that can be characterized by the Modulation Transfer Function (MTF)of an imaging system [1]. After performing a thorough literature surveyon imaging quality control in digital X film in Argentine and international publications, it was decided to adopt for this work the Norm IEC 62220 1:2003 that recommends using an image edge as a testingmethod. In order to obtain the characterizing MTF, a protocol was designedfor unifying the conditions under which the images are acquired for later evaluation. The protocol implied acquiring a radiography image by means of a specific referential technique, i.e. referred either to voltage, current, time, distance focus plate (/film?) distance, or other referential parameter, and to interpret the image through a system of computed radiology or direct digital radiology. The contribution of the work stems from the fact that, even though the traditional way of evaluating an X film image quality has relied mostly on subjective methods, this work presents an objective evaluative toolfor the images obtained with a givenequipment, followed by a contrastive analysis with the renderings from other X filmimaging sets.Once the images were obtained, specific calculations were carried out. Though there exist some methods based on the subjective evaluation of the quality of image, this work offers an objective evaluation of the equipment under study. Finally, we present the results obtained on different equipment.
Merging Digital Medicine and Economics: Two Moving Averages Unlock Biosignals for Better Health.
Elgendi, Mohamed
2018-01-06
Algorithm development in digital medicine necessitates ongoing knowledge and skills updating to match the current demands and constant progression in the field. In today's chaotic world there is an increasing trend to seek out simple solutions for complex problems that can increase efficiency, reduce resource consumption, and improve scalability. This desire has spilled over into the world of science and research where many disciplines have taken to investigating and applying more simplistic approaches. Interestingly, through a review of current literature and research efforts, it seems that the learning and teaching principles in digital medicine continue to push towards the development of sophisticated algorithms with a limited scope and has not fully embraced or encouraged a shift towards more simple solutions that yield equal or better results. This short note aims to demonstrate that within the world of digital medicine and engineering, simpler algorithms can offer effective and efficient solutions, where traditionally more complex algorithms have been used. Moreover, the note demonstrates that bridging different research disciplines is very beneficial and yields valuable insights and results.
Concepts and algorithms in digital photogrammetry
NASA Technical Reports Server (NTRS)
Schenk, T.
1994-01-01
Despite much progress in digital photogrammetry, there is still a considerable lack of understanding of theories and methods which would allow a substantial increase in the automation of photogrammetric processes. The purpose of this paper is to raise awareness that the automation problem is one that cannot be solved in a bottom-up fashion by a trial-and-error approach. We present a short overview of concepts and algorithms used in digital photogrammetry. This is followed by a more detailed presentation of perceptual organization, a typical middle-level task.
Gross, Colin A; Reddy, Chandan K; Dazzo, Frank B
2010-02-01
Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system's uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at http://cme.msu.edu/cmeias/ . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most, thereby strengthening quantitative microscopy-based approaches to advance microbial ecology in situ at individual single-cell resolution.
NASA Astrophysics Data System (ADS)
Lv, Zeqian; Xu, Xiaohai; Yan, Tianhao; Cai, Yulong; Su, Yong; Zhang, Qingchuan
2018-01-01
In the measurement of plate specimens, traditional two-dimensional (2D) digital image correlation (DIC) is challenged by two aspects: (1) the slant optical axis (misalignment of the optical camera axis and the object surface) and (2) out-of-plane motions (including translations and rotations) of the specimens. There are measurement errors in the results measured by 2D DIC, especially when the out-of-plane motions are big enough. To solve this problem, a novel compensation method has been proposed to correct the unsatisfactory results. The proposed compensation method consists of three main parts: 1) a pre-calibration step is used to determine the intrinsic parameters and lens distortions; 2) a compensation panel (a rigid panel with several markers located at known positions) is mounted to the specimen to track the specimen's motion so that the relative coordinate transformation between the compensation panel and the 2D DIC setup can be calculated using the coordinate transform algorithm; 3) three-dimensional world coordinates of measuring points on the specimen can be reconstructed via the coordinate transform algorithm and used to calculate deformations. Simulations have been carried out to validate the proposed compensation method. Results come out that when the extensometer length is 400 pixels, the strain accuracy reaches 10 με no matter out-of-plane translations (less than 1/200 of the object distance) nor out-of-plane rotations (rotation angle less than 5°) occur. The proposed compensation method leads to good results even when the out-of-plane translation reaches several percents of the object distance or the out-of-plane rotation angle reaches tens of degrees. The proposed compensation method has been applied in tensile experiments to obtain high-accuracy results as well.
Random lattice structures. Modelling, manufacture and FEA of their mechanical response
NASA Astrophysics Data System (ADS)
Maliaris, G.; Sarafis, I. T.; Lazaridis, T.; Varoutoglou, A.; Tsakataras, G.
2016-11-01
The implementation of lightweight structures in various applications, especially in Aerospace/ Automotive industries and Orthopaedics, has become a necessity due to their exceptional mechanical properties with respect to reduced weight. In this work we present a Voronoi tessellation based algorithm, which has been developed for modelling stochastic lattice structures. With the proposed algorithm, is possible to generate CAD geometry with controllable structural parameters, such as porosity, cell number and strut thickness. The digital structures were transformed into physical objects through the combination of 3D printing technics and investment casting. This process was applied to check the mechanical behaviour of generated digital models. Until now, the only way to materialize such structures into physical objects, was feasible through 3D printing methods such as Selective Laser Sintering/ Melting (SLS/ SLM). Investment casting possesses numerous advantages against SLS or SLA, with the major one being the material variety. On the other hand, several trials are required in order to calibrate the process parameters to have successful castings, which is the major drawback of investment casting. The manufactured specimens were subjected to compression tests, where their mechanical response was registered in the form of compressive load - displacement curves. Also, a finite element model was developed, using the specimens’ CAD data and compression test parameters. The FE assisted calculation of specimen plastic deformation is identical with the one of the physical object, which validates the conclusions drawn from the simulation results. As it was observed, strut contact is initiated when specimen deformation is approximately 5mm. Although FE calculated compressive force follows the same trend for the first 3mm of compression, then diverges because of the elasto-plastic FE model type definition and the occurred remeshing steps.
Lee, Junghoon; Lee, Joosung; Song, Sangha; Lee, Hyunsook; Lee, Kyoungjoung; Yoon, Youngro
2008-01-01
Automatic detection of suspicious pain regions is very useful in the medical digital infrared thermal imaging research area. To detect those regions, we use the SOFES (Survival Of the Fitness kind of the Evolution Strategy) algorithm which is one of the multimodal function optimization methods. We apply this algorithm to famous diseases, such as a foot of the glycosuria, the degenerative arthritis and the varicose vein. The SOFES algorithm is available to detect some hot spots or warm lines as veins. And according to a hundred of trials, the algorithm is very fast to converge.
Precision pointing and control of flexible spacecraft
NASA Technical Reports Server (NTRS)
Bantell, M. H., Jr.
1987-01-01
The problem and long term objectives for the precision pointing and control of flexible spacecraft are given. The four basic objectives are stated in terms of two principle tasks. Under Task 1, robust low order controllers, improved structural modeling methods for control applications and identification methods for structural dynamics are being developed. Under Task 2, a lab test experiment for verification of control laws and system identification algorithms is being developed. For Task 1, work has focused on robust low order controller design and some initial considerations for structural modeling in control applications. For Task 2, work has focused on experiment design and fabrication, along with sensor selection and initial digital controller implementation. Conclusions are given.
NASA Technical Reports Server (NTRS)
Feinstein, S. P.; Girard, M. A.
1979-01-01
An automated technique for measuring particle diameters and their spatial coordinates from holographic reconstructions is being developed. Preliminary tests on actual cold-flow holograms of impinging jets indicate that a suitable discriminant algorithm consists of a Fourier-Gaussian noise filter and a contour thresholding technique. This process identifies circular as well as noncircular objects. The desired objects (in this case, circular or possibly ellipsoidal) are then selected automatically from the above set and stored with their parametric representations. From this data, dropsize distributions as a function of spatial coordinates can be generated and combustion effects due to hardware and/or physical variables studied.
A new morphology algorithm for shoreline extraction from DEM data
NASA Astrophysics Data System (ADS)
Yousef, Amr H.; Iftekharuddin, Khan; Karim, Mohammad
2013-03-01
Digital elevation models (DEMs) are a digital representation of elevations at regularly spaced points. They provide an accurate tool to extract the shoreline profiles. One of the emerging sources of creating them is light detection and ranging (LiDAR) that can capture a highly dense cloud points with high resolution that can reach 15 cm and 100 cm in the vertical and horizontal directions respectively in short periods of time. In this paper we present a multi-step morphological algorithm to extract shorelines locations from the DEM data and a predefined tidal datum. Unlike similar approaches, it utilizes Lowess nonparametric regression to estimate the missing values within the DEM file. Also, it will detect and eliminate the outliers and errors that result from waves, ships, etc by means of anomality test with neighborhood constrains. Because, there might be some significant broken regions such as branches and islands, it utilizes a constrained morphological open and close to reduce these artifacts that can affect the extracted shorelines. In addition, it eliminates docks, bridges and fishing piers along the extracted shorelines by means of Hough transform. Based on a specific tidal datum, the algorithm will segment the DEM data into water and land objects. Without sacrificing the accuracy and the spatial details of the extracted boundaries, the algorithm should smooth and extract the shoreline profiles by tracing the boundary pixels between the land and the water segments. For given tidal values, we qualitatively assess the visual quality of the extracted shorelines by superimposing them on the available aerial photographs.
Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery
NASA Technical Reports Server (NTRS)
Zavorin, Ilya; Le Moigne, Jacqueline
2005-01-01
The problem of image registration, or the alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast, and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times and that would provide subpixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the bandpass wavelets obtained from the steerable pyramid due to Simoncelli performs best in terms of accuracy and consistency, while the low-pass wavelets obtained from the same pyramid give the best results in terms of the radius of convergence. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.
Use of Multi-Resolution Wavelet Feature Pyramids for Automatic Registration of Multi-Sensor Imagery
NASA Technical Reports Server (NTRS)
Zavorin, Ilya; LeMoigne, Jacqueline
2003-01-01
The problem of image registration, or alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times, and that would provide sub-pixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the band-pass wavelets obtained from the Steerable Pyramid due to Simoncelli perform better than two types of low-pass pyramids when the images being registered have relatively small amount of nonlinear radiometric variations between them. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.
Updating National Topographic Data Base Using Change Detection Methods
NASA Astrophysics Data System (ADS)
Keinan, E.; Felus, Y. A.; Tal, Y.; Zilberstien, O.; Elihai, Y.
2016-06-01
The traditional method for updating a topographic database on a national scale is a complex process that requires human resources, time and the development of specialized procedures. In many National Mapping and Cadaster Agencies (NMCA), the updating cycle takes a few years. Today, the reality is dynamic and the changes occur every day, therefore, the users expect that the existing database will portray the current reality. Global mapping projects which are based on community volunteers, such as OSM, update their database every day based on crowdsourcing. In order to fulfil user's requirements for rapid updating, a new methodology that maps major interest areas while preserving associated decoding information, should be developed. Until recently, automated processes did not yield satisfactory results, and a typically process included comparing images from different periods. The success rates in identifying the objects were low, and most were accompanied by a high percentage of false alarms. As a result, the automatic process required significant editorial work that made it uneconomical. In the recent years, the development of technologies in mapping, advancement in image processing algorithms and computer vision, together with the development of digital aerial cameras with NIR band and Very High Resolution satellites, allow the implementation of a cost effective automated process. The automatic process is based on high-resolution Digital Surface Model analysis, Multi Spectral (MS) classification, MS segmentation, object analysis and shape forming algorithms. This article reviews the results of a novel change detection methodology as a first step for updating NTDB in the Survey of Israel.
van den Tillaart-Haverkate, Maj; de Ronde-Brons, Inge; Dreschler, Wouter A; Houben, Rolph
2017-01-01
Single-microphone noise reduction leads to subjective benefit, but not to objective improvements in speech intelligibility. We investigated whether response times (RTs) provide an objective measure of the benefit of noise reduction and whether the effect of noise reduction is reflected in rated listening effort. Twelve normal-hearing participants listened to digit triplets that were either unprocessed or processed with one of two noise-reduction algorithms: an ideal binary mask (IBM) and a more realistic minimum mean square error estimator (MMSE). For each of these three processing conditions, we measured (a) speech intelligibility, (b) RTs on two different tasks (identification of the last digit and arithmetic summation of the first and last digit), and (c) subjective listening effort ratings. All measurements were performed at four signal-to-noise ratios (SNRs): -5, 0, +5, and +∞ dB. Speech intelligibility was high (>97% correct) for all conditions. A significant decrease in response time, relative to the unprocessed condition, was found for both IBM and MMSE for the arithmetic but not the identification task. Listening effort ratings were significantly lower for IBM than for MMSE and unprocessed speech in noise. We conclude that RT for an arithmetic task can provide an objective measure of the benefit of noise reduction. For young normal-hearing listeners, both ideal and realistic noise reduction can reduce RTs at SNRs where speech intelligibility is close to 100%. Ideal noise reduction can also reduce perceived listening effort.
Visually lossless compression of digital hologram sequences
NASA Astrophysics Data System (ADS)
Darakis, Emmanouil; Kowiel, Marcin; Näsänen, Risto; Naughton, Thomas J.
2010-01-01
Digital hologram sequences have great potential for the recording of 3D scenes of moving macroscopic objects as their numerical reconstruction can yield a range of perspective views of the scene. Digital holograms inherently have large information content and lossless coding of holographic data is rather inefficient due to the speckled nature of the interference fringes they contain. Lossy coding of still holograms and hologram sequences has shown promising results. By definition, lossy compression introduces errors in the reconstruction. In all of the previous studies, numerical metrics were used to measure the compression error and through it, the coding quality. Digital hologram reconstructions are highly speckled and the speckle pattern is very sensitive to data changes. Hence, numerical quality metrics can be misleading. For example, for low compression ratios, a numerically significant coding error can have visually negligible effects. Yet, in several cases, it is of high interest to know how much lossy compression can be achieved, while maintaining the reconstruction quality at visually lossless levels. Using an experimental threshold estimation method, the staircase algorithm, we determined the highest compression ratio that was not perceptible to human observers for objects compressed with Dirac and MPEG-4 compression methods. This level of compression can be regarded as the point below which compression is perceptually lossless although physically the compression is lossy. It was found that up to 4 to 7.5 fold compression can be obtained with the above methods without any perceptible change in the appearance of video sequences.
Frank, M S; Schultz, T; Dreyer, K
2001-06-01
To provide a standardized and scaleable mechanism for exchanging digital radiologic educational content between software systems that use disparate authoring, storage, and presentation technologies. Our institution uses two distinct software systems for creating educational content for radiology. Each system is used to create in-house educational content as well as commercial educational products. One system is an authoring and viewing application that facilitates the input and storage of hierarchical knowledge and associated imagery, and is capable of supporting a variety of entity relationships. This system is primarily used for the production and subsequent viewing of educational CD-ROMS. Another software system is primarily used for radiologic education on the world wide web. This system facilitates input and storage of interactive knowledge and associated imagery, delivering this content over the internet in a Socratic manner simulating in-person interaction with an expert. A subset of knowledge entities common to both systems was derived. An additional subset of knowledge entities that could be bidirectionally mapped via algorithmic transforms was also derived. An extensible markup language (XML) object model and associated lexicon were then created to represent these knowledge entities and their interactive behaviors. Forward-looking attention was exercised in the creation of the object model in order to facilitate straightforward future integration of other sources of educational content. XML generators and interpreters were written for both systems. Deriving the XML object model and lexicon was the most critical and time-consuming aspect of the project. The coding of the XML generators and interpreters required only a few hours for each environment. Subsequently, the transfer of hundreds of educational cases and thematic presentations between the systems can now be accomplished in a matter of minutes. The use of algorithmic transforms results in nearly 100% transfer of context as well as content, thus providing "presentation-ready" outcomes. The automation of knowledge exchange between dissimilar digital teaching environments magnifies the efforts of educators and enriches the learning experience for participants. XML is a powerful and useful mechanism for transfering educational content, as well as the context and interactive behaviors of such content, between disparate systems.
AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis.
Kayser, Klaus; Görtler, Jürgen; Bogovac, Milica; Bogovac, Aleksandar; Goldmann, Torsten; Vollmer, Ekkehard; Kayser, Gian
2009-01-01
The technological progress in digitalization of complete histological glass slides has opened a new door in tissue--based diagnosis. The presentation of microscopic images as a whole in a digital matrix is called virtual slide. A virtual slide allows calculation and related presentation of image information that otherwise can only be seen by individual human performance. The digital world permits attachments of several (if not all) fields of view and the contemporary visualization on a screen. The presentation of all microscopic magnifications is possible if the basic pixel resolution is less than 0.25 microns. To introduce digital tissue--based diagnosis into the daily routine work of a surgical pathologist requires a new setup of workflow arrangement and procedures. The quality of digitized images is sufficient for diagnostic purposes; however, the time needed for viewing virtual slides exceeds that of viewing original glass slides by far. The reason lies in a slower and more difficult sampling procedure, which is the selection of information containing fields of view. By application of artificial intelligence, tissue--based diagnosis in routine work can be managed automatically in steps as follows: 1. The individual image quality has to be measured, and corrected, if necessary. 2. A diagnostic algorithm has to be applied. An algorithm has be developed, that includes both object based (object features, structures) and pixel based (texture) measures. 3. These measures serve for diagnosis classification and feedback to order additional information, for example in virtual immunohistochemical slides. 4. The measures can serve for automated image classification and detection of relevant image information by themselves without any labeling. 5. The pathologists' duty will not be released by such a system; to the contrary, it will manage and supervise the system, i.e., just working at a "higher level". Virtual slides are already in use for teaching and continuous education in anatomy and pathology. First attempts to introduce them into routine work have been reported. Application of AI has been established by automated immunohistochemical measurement systems (EAMUS, www.diagnomX.eu). The performance of automated diagnosis has been reported for a broad variety of organs at sensitivity and specificity levels >85%). The implementation of a complete connected AI supported system is in its childhood. Application of AI in digital tissue--based diagnosis will allow the pathologists to work as supervisors and no longer as primary "water carriers". Its accurate use will give them the time needed to concentrating on difficult cases for the benefit of their patients.
Processing Digital Imagery to Enhance Perceptions of Realism
NASA Technical Reports Server (NTRS)
Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur
2003-01-01
Multi-scale retinex with color restoration (MSRCR) is a method of processing digital image data based on Edwin Land s retinex (retina + cortex) theory of human color vision. An outgrowth of basic scientific research and its application to NASA s remote-sensing mission, MSRCR is embodied in a general-purpose algorithm that greatly improves the perception of visual realism and the quantity and quality of perceived information in a digitized image. In addition, the MSRCR algorithm includes provisions for automatic corrections to accelerate and facilitate what could otherwise be a tedious image-editing process. The MSRCR algorithm has been, and is expected to continue to be, the basis for development of commercial image-enhancement software designed to extend and refine its capabilities for diverse applications.
Fuzzy set methods for object recognition in space applications
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed.
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems.
Glover, Jack L; Hudson, Lawrence T
2016-06-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard.
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems
Glover, Jack L.; Hudson, Lawrence T.
2016-01-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard. PMID:27499586
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems
NASA Astrophysics Data System (ADS)
Glover, Jack L.; Hudson, Lawrence T.
2016-06-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in an international aviation security standard.
Automatic voice recognition using traditional and artificial neural network approaches
NASA Technical Reports Server (NTRS)
Botros, Nazeih M.
1989-01-01
The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.
Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters
NASA Astrophysics Data System (ADS)
Vasumathi, B.; Moorthi, S.
2011-11-01
In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.
Research on AHP decision algorithms based on BP algorithm
NASA Astrophysics Data System (ADS)
Ma, Ning; Guan, Jianhe
2017-10-01
Decision making is the thinking activity that people choose or judge, and scientific decision-making has always been a hot issue in the field of research. Analytic Hierarchy Process (AHP) is a simple and practical multi-criteria and multi-objective decision-making method that combines quantitative and qualitative and can show and calculate the subjective judgment in digital form. In the process of decision analysis using AHP method, the rationality of the two-dimensional judgment matrix has a great influence on the decision result. However, in dealing with the real problem, the judgment matrix produced by the two-dimensional comparison is often inconsistent, that is, it does not meet the consistency requirements. BP neural network algorithm is an adaptive nonlinear dynamic system. It has powerful collective computing ability and learning ability. It can perfect the data by constantly modifying the weights and thresholds of the network to achieve the goal of minimizing the mean square error. In this paper, the BP algorithm is used to deal with the consistency of the two-dimensional judgment matrix of the AHP.
An adaptive deep Q-learning strategy for handwritten digit recognition.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min
2018-02-22
Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar.
Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun; Huang, Yuan-Hao
2018-04-05
Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.
Momeni, Saba; Pourghassem, Hossein
2014-08-01
Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.
Using Alternative Multiplication Algorithms to "Offload" Cognition
ERIC Educational Resources Information Center
Jazby, Dan; Pearn, Cath
2015-01-01
When viewed through a lens of embedded cognition, algorithms may enable aspects of the cognitive work of multi-digit multiplication to be "offloaded" to the environmental structure created by an algorithm. This study analyses four multiplication algorithms by viewing different algorithms as enabling cognitive work to be distributed…
A survey of the state-of-the-art and focused research in range systems
NASA Technical Reports Server (NTRS)
Kung, Yao; Balakrishnan, A. V.
1988-01-01
In this one-year renewal of NASA Contract No. 2-304, basic research, development, and implementation in the areas of modern estimation algorithms and digital communication systems have been performed. In the first area, basic study on the conversion of general classes of practical signal processing algorithms into systolic array algorithms is considered, producing four publications. Also studied were the finite word length effects and convergence rates of lattice algorithms, producing two publications. In the second area of study, the use of efficient importance sampling simulation technique for the evaluation of digital communication system performances were studied, producing two publications.
Spectroscopic analysis and control
Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles
2017-04-18
Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.
NASA Astrophysics Data System (ADS)
Saxena, Shefali; Hawari, Ayman I.
2017-07-01
Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.
NASA Astrophysics Data System (ADS)
Zhang, K.; Sheng, Y. H.; Li, Y. Q.; Han, B.; Liang, Ch.; Sha, W.
2006-10-01
In the field of digital photogrammetry and computer vision, the determination of conjugate points in a stereo image pair, referred to as "image matching," is the critical step to realize automatic surveying and recognition. Traditional matching methods encounter some problems in the digital close-range stereo photogrammetry, because the change of gray-scale or texture is not obvious in the close-range stereo images. The main shortcoming of traditional matching methods is that geometric information of matching points is not fully used, which will lead to wrong matching results in regions with poor texture. To fully use the geometry and gray-scale information, a new stereo image matching algorithm is proposed in this paper considering the characteristics of digital close-range photogrammetry. Compared with the traditional matching method, the new algorithm has three improvements on image matching. Firstly, shape factor, fuzzy maths and gray-scale projection are introduced into the design of synthetical matching measure. Secondly, the topology connecting relations of matching points in Delaunay triangulated network and epipolar-line are used to decide matching order and narrow the searching scope of conjugate point of the matching point. Lastly, the theory of parameter adjustment with constraint is introduced into least square image matching to carry out subpixel level matching under epipolar-line constraint. The new algorithm is applied to actual stereo images of a building taken by digital close-range photogrammetric system. The experimental result shows that the algorithm has a higher matching speed and matching accuracy than pyramid image matching algorithm based on gray-scale correlation.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.
1974-01-01
The MIDAS System is described as a third-generation fast multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turnaround time and significant gains in throughput. The hardware and software are described. The system contains a mini-computer to control the various high-speed processing elements in the data path, and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 200,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation.
Single-shot dual-wavelength in-line and off-axis hybrid digital holography
NASA Astrophysics Data System (ADS)
Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie
2018-02-01
We propose an in-line and off-axis hybrid holographic real-time imaging technique. The in-line and off-axis digital holograms are generated simultaneously by two lasers with different wavelengths, and they are recorded using a color camera with a single shot. The reconstruction is carried using an iterative algorithm in which the initial input is designed to include the intensity of the in-line hologram and the approximate phase distributions obtained from the off-axis hologram. In this way, the complex field in the object plane and the output by the iterative procedure can produce higher quality amplitude and phase images compared to traditional iterative phase retrieval. The performance of the technique has been demonstrated by acquiring the amplitude and phase images of a green lacewing's wing and a living moon jellyfish.
Comprehensive time average digital holographic vibrometry
NASA Astrophysics Data System (ADS)
Psota, Pavel; Lédl, Vít; Doleček, Roman; Mokrý, Pavel; Vojtíšek, Petr; Václavík, Jan
2016-12-01
This paper presents a method that simultaneously deals with drawbacks of time-average digital holography: limited measurement range, limited spatial resolution, and quantitative analysis of the measured Bessel fringe patterns. When the frequency of the reference wave is shifted by an integer multiple of frequency at which the object oscillates, the measurement range of the method can be shifted either to smaller or to larger vibration amplitudes. In addition, phase modulation of the reference wave is used to obtain a sequence of phase-modulated fringe patterns. Such fringe patterns can be combined by means of phase-shifting algorithms, and amplitudes of vibrations can be straightforwardly computed. This approach independently calculates the amplitude values in every single pixel. The frequency shift and phase modulation are realized by proper control of Bragg cells and therefore no additional hardware is required.
Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels.
Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R
2018-01-01
Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.
Naessens, James M; Visscher, Sue L; Peterson, Stephanie M; Swanson, Kristi M; Johnson, Matthew G; Rahman, Parvez A; Schindler, Joe; Sonneborn, Mark; Fry, Donald E; Pine, Michael
2015-01-01
Objective Assess algorithms for linking patients across de-identified databases without compromising confidentiality. Data Sources/Study Setting Hospital discharges from 11 Mayo Clinic hospitals during January 2008–September 2012 (assessment and validation data). Minnesota death certificates and hospital discharges from 2009 to 2012 for entire state (application data). Study Design Cross-sectional assessment of sensitivity and positive predictive value (PPV) for four linking algorithms tested by identifying readmissions and posthospital mortality on the assessment data with application to statewide data. Data Collection/Extraction Methods De-identified claims included patient gender, birthdate, and zip code. Assessment records were matched with institutional sources containing unique identifiers and the last four digits of Social Security number (SSNL4). Principal Findings Gender, birthdate, and five-digit zip code identified readmissions with a sensitivity of 98.0 percent and a PPV of 97.7 percent and identified postdischarge mortality with 84.4 percent sensitivity and 98.9 percent PPV. Inclusion of SSNL4 produced nearly perfect identification of readmissions and deaths. When applied statewide, regions bordering states with unavailable hospital discharge data had lower rates. Conclusion Addition of SSNL4 to administrative data, accompanied by appropriate data use and data release policies, can enable trusted repositories to link data with nearly perfect accuracy without compromising patient confidentiality. States maintaining centralized de-identified databases should add SSNL4 to data specifications. PMID:26073819
Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing
2015-01-01
A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.
Method and apparatus for digitally based high speed x-ray spectrometer
Warburton, W.K.; Hubbard, B.
1997-11-04
A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ``hardwired`` processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs.
Method and apparatus for digitally based high speed x-ray spectrometer
Warburton, William K.; Hubbard, Bradley
1997-01-01
A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a "hardwired" processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer.
Spatial analysis of fluvial terraces in GRASS GIS accessing R functionality
NASA Astrophysics Data System (ADS)
Józsa, Edina
2017-04-01
Terrace research along the Danube is a major topic of Hungarian traditional geomorphology because of the socio-economic role of terrace surfaces and their importance in paleo-environmental reconstructions. Semi-automated mapping of fluvial landforms from a coherent digital elevation dataset allow objective analysis of hydrogeomorphic characteristics with low time and cost requirements. New results obtained with unified GIS-based algorithms can be integrated with previous findings regarding landscape evolution. The complementary functionality of GRASS GIS and R provides the possibility to develop a flexible terrain analysing tool for the delineation and quantifiable analysis of terrace remnants. Using R as an intermediate analytical environment and visualisation tool gives great added value to the algorithm, while GRASS GIS is capable of handling the large digital elevation datasets and perform the demanding computations to prepare necessary raster derivatives (Bivand, R.S. et al. 2008). The proposed terrace mapping algorithm is based on the work of Demoulin, A. et al. (2007), but it is further improved in the form of GRASS GIS script tool accessing R functionality. In the first step the hydrogeomorphic signatures of the given study site are explored and the area is divided along clearly recognizable structural-morphological boundaries.The algorithm then cuts up the subregions into parallel sections in the flow direction and determines cells potentially belonging to terrace surfaces based on local slope characteristics and a minimum area size threshold. As a result an output report is created that contains a histogram of altitudes, a swath-profile of the landscape, scatter plots to represent the relation of the relative elevations and slope values in the analysed sections and a final plot showing the longitudinal profile of the river with the determined height ranges of terrace levels. The algorithm also produces a raster map of extracted terrace remnants. From this dataset it is possible to interpolate a new digital elevation model approximating the former terraced valley surface using the Ordinary Kriging method (Troiani, F. and Della Seta, M. 2011). The applicability of the algorithm was tested on the northern foreland of Gerecse Mountains, an antecedent valley section of the Danube, with terrace remnants expected in 6 to 8 altitude ranges. Methodological issues arising from determining the optimal threshold values were explored using an artificial hillslope model, while the terrace profiles and terrace-top surfaces raster generated from the digital elevation model were validated with the previous findings of traditional geomorphological surveys. This research was supported by the Human Capacities Grant Management Office and the Hungarian Ministry of Human Capacities in the framework of the NTP-NFTÖ-16 project. References: Bivand, R.S. et al. (2008). Applied Spatial Data Analysis with R. New York: Springer. 378 p. Demoulin, A. et al. (2007). An automated method to extract fluvial terraces from digital elevation models: The Vesdre valley, a case study in eastern Belgium. - Geomorphology 91 (1-2): 51-64. Troiani, E. and Della Seta, M. (2011). Geomorphological response of fluvial and coastal terraces to Quaternary tectonics and climate as revealed by geostatistical topographic analysis. - Earth Surface Processes and Landforms 36: 1193-1208.
ERIC Educational Resources Information Center
Xu, Beijie; Recker, Mimi; Qi, Xiaojun; Flann, Nicholas; Ye, Lei
2013-01-01
This article examines clustering as an educational data mining method. In particular, two clustering algorithms, the widely used K-means and the model-based Latent Class Analysis, are compared, using usage data from an educational digital library service, the Instructional Architect (IA.usu.edu). Using a multi-faceted approach and multiple data…
Comparison of rotation algorithms for digital images
NASA Astrophysics Data System (ADS)
Starovoitov, Valery V.; Samal, Dmitry
1999-09-01
The paper presents a comparative study of several algorithms developed for digital image rotation. No losing generality we studied gray scale images. We have tested methods preserving gray values of the original images, performing some interpolation and two procedures implemented into the Corel Photo-paint and Adobe Photoshop soft packages. By the similar way methods for rotation of color images may be evaluated also.
2014-01-01
Background Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage. Methods A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm’s robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods. Results Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage. Conclusions Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues. PMID:24521154
NASA Astrophysics Data System (ADS)
Shih, Chihhsiong
2005-01-01
Two efficient workflow are developed for the reconstruction of a 3D full color building model. One uses a point wise sensing device to sample an unknown object densely and attach color textures from a digital camera separately. The other uses an image based approach to reconstruct the model with color texture automatically attached. The point wise sensing device reconstructs the CAD model using a modified best view algorithm that collects the maximum number of construction faces in one view. The partial views of the point clouds data are then glued together using a common face between two consecutive views. Typical overlapping mesh removal and coarsening procedures are adapted to generate a unified 3D mesh shell structure. A post processing step is then taken to combine the digital image content from a separate camera with the 3D mesh shell surfaces. An indirect uv mapping procedure first divide the model faces into groups within which every face share the same normal direction. The corresponding images of these faces in a group is then adjusted using the uv map as a guidance. The final assembled image is then glued back to the 3D mesh to present a full colored building model. The result is a virtual building that can reflect the true dimension and surface material conditions of a real world campus building. The image based modeling procedure uses a commercial photogrammetry package to reconstruct the 3D model. A novel view planning algorithm is developed to guide the photos taking procedure. This algorithm successfully generate a minimum set of view angles. The set of pictures taken at these view angles can guarantee that each model face shows up at least in two of the pictures set and no more than three. The 3D model can then be reconstructed with minimum amount of labor spent in correlating picture pairs. The finished model is compared with the original object in both the topological and dimensional aspects. All the test cases show exact same topology and reasonably low dimension error ratio. Again proving the applicability of the algorithm.
Development of method for quantifying essential tremor using a small optical device.
Chen, Kai-Hsiang; Lin, Po-Chieh; Chen, Yu-Jung; Yang, Bing-Shiang; Lin, Chin-Hsien
2016-06-15
Clinical assessment scales are the most common means used by physicians to assess tremor severity. Some scientific tools that may be able to replace these scales to objectively assess the severity, such as accelerometers, digital tablets, electromyography (EMG) measurement devices, and motion capture cameras, are currently available. However, most of the operational modes of these tools are relatively complex or are only able to capture part of the clinical information; furthermore, using these tools is sometimes time consuming. Currently, there is no tool available for automatically quantifying tremor severity in clinical environments. We aimed to develop a rapid, objective, and quantitative system for measuring the severity of finger tremor using a small portable optical device (Leap Motion). A single test took 15s to conduct, and three algorithms were proposed to quantify the severity of finger tremor. The system was tested with four patients diagnosed with essential tremor. The proposed algorithms were able to quantify different characteristics of tremor in clinical environments, and could be used as references for future clinical assessments. A portable, easy-to-use, small-sized, and noncontact device (Leap Motion) was used to clinically detect and record finger movement, and three algorithms were proposed to describe tremor amplitudes. Copyright © 2016 Elsevier B.V. All rights reserved.
The use of digital images in pathology.
Furness, P N
1997-11-01
Digital images are routinely used by the publishing industry, but most diagnostic pathologists are unfamiliar with the technology and its possibilities. This review aims to explain the basic principles of digital image acquisition, storage, manipulation and use, and the possibilities provided not only in research, but also in teaching and in routine diagnostic pathology. Images of natural objects are usually expressed digitally as 'bitmaps'--rectilinear arrays of small dots. The size of each dot can vary, but so can its information content in terms, for example, of colour, greyscale or opacity. Various file formats and compression algorithms are available. Video cameras connected to microscopes are familiar to most pathologists; video images can be converted directly to a digital form by a suitably equipped computer. Digital cameras and scanners are alternative acquisition tools of relevance to pathologists. Once acquired, a digital image can easily be subjected to the digital equivalent of any conventional darkroom manipulation and modern software allows much more flexibility, to such an extent that a new tool for scientific fraud has been created. For research, image enhancement and analysis is an increasingly powerful and affordable tool. Morphometric measurements are, after many predictions, at last beginning to be part of the toolkit of the diagnostic pathologist. In teaching, the potential to create dramatic yet informative presentations is demonstrated daily by the publishing industry; such methods are readily applicable to the classroom. The combination of digital images and the Internet raises many possibilities; for example, instead of seeking one expert diagnostic opinion, one could simultaneously seek the opinion of many, all around the globe. It is inevitable that in the coming years the use of digital images will spread from the laboratory to the medical curriculum and to the whole of diagnostic pathology.
Maxwell, Susan K.
2010-01-01
Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. PMID:21135917
1981-04-30
VILLE 99000 VILLE OOUICILIArION 5ANCAfR( OU VENDEUR PAIS0((VN PA’’ CIE DES’NAT ON) COOT BANQUE CODE GUICHET COMMr CLIENI ctfl"OCNS OE ,PA(SON c ( 4’r...tj~r. ttm - has -J-Ay 4:-,se (in Chr -r. *.nd 10i) .K. ’-" Wihu’ua le ~...only part of the-forvard rnergy_ ks ~ open i ..- ’s:". Ct-.,-~11) and 16
Majumdar, Satya N
2003-08-01
We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.
NASA Astrophysics Data System (ADS)
Majumdar, Satya N.
2003-08-01
We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.
Qian, F; Li, G; Ruan, H; Jing, H; Liu, L
1999-09-10
A novel, to our knowledge, two-step digit-set-restricted modified signed-digit (MSD) addition-subtraction algorithm is proposed. With the introduction of the reference digits, the operand words are mapped into an intermediate carry word with all digits restricted to the set {1, 0} and an intermediate sum word with all digits restricted to the set {0, 1}, which can be summed to form the final result without carry generation. The operation can be performed in parallel by use of binary logic. An optical system that utilizes an electron-trapping device is suggested for accomplishing the required binary logic operations. By programming of the illumination of data arrays, any complex logic operations of multiple variables can be realized without additional temporal latency of the intermediate results. This technique has a high space-bandwidth product and signal-to-noise ratio. The main structure can be stacked to construct a compact optoelectronic MSD adder-subtracter.
Algorithmic psychometrics and the scalable subject.
Stark, Luke
2018-04-01
Recent public controversies, ranging from the 2014 Facebook 'emotional contagion' study to psychographic data profiling by Cambridge Analytica in the 2016 American presidential election, Brexit referendum and elsewhere, signal watershed moments in which the intersecting trajectories of psychology and computer science have become matters of public concern. The entangled history of these two fields grounds the application of applied psychological techniques to digital technologies, and an investment in applying calculability to human subjectivity. Today, a quantifiable psychological subject position has been translated, via 'big data' sets and algorithmic analysis, into a model subject amenable to classification through digital media platforms. I term this position the 'scalable subject', arguing it has been shaped and made legible by algorithmic psychometrics - a broad set of affordances in digital platforms shaped by psychology and the behavioral sciences. In describing the contours of this 'scalable subject', this paper highlights the urgent need for renewed attention from STS scholars on the psy sciences, and on a computational politics attentive to psychology, emotional expression, and sociality via digital media.
Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.
Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo
2015-05-01
It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reconstructing photorealistic 3D models from image sequence using domain decomposition method
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei
2009-11-01
In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Structured light and photogrammetry are two main methods to acquire 3D information, and both are expensive. Even if these expensive instruments are used, photorealistic 3D models are seldom available. In this paper, a new method to reconstruction photorealistic 3D models using a single camera is proposed. A square plate glued with coded marks is used to place the objects, and a sequence of about 20 images is taken. From the coded marks, the images are calibrated, and a snake algorithm is used to segment object from the background. A rough 3d model is obtained using shape from silhouettes algorithm. The silhouettes are decomposed into a combination of convex curves, which are used to partition the rough 3d model into some convex mesh patches. For each patch, the multi-view photo consistency constraints and smooth regulations are expressed as a finite element formulation, which can be resolved locally, and the information can be exchanged along the patches boundaries. The rough model is deformed into a fine 3d model through such a domain decomposition finite element method. The textures are assigned to each element mesh, and a photorealistic 3D model is got finally. A toy pig is used to verify the algorithm, and the result is exciting.
Jolivet, Frédéric; Momey, Fabien; Denis, Loïc; Méès, Loïc; Faure, Nicolas; Grosjean, Nathalie; Pinston, Frédéric; Marié, Jean-Louis; Fournier, Corinne
2018-04-02
Reconstruction of phase objects is a central problem in digital holography, whose various applications include microscopy, biomedical imaging, and fluid mechanics. Starting from a single in-line hologram, there is no direct way to recover the phase of the diffracted wave in the hologram plane. The reconstruction of absorbing and phase objects therefore requires the inversion of the non-linear hologram formation model. We propose a regularized reconstruction method that includes several physically-grounded constraints such as bounds on transmittance values, maximum/minimum phase, spatial smoothness or the absence of any object in parts of the field of view. To solve the non-convex and non-smooth optimization problem induced by our modeling, a variable splitting strategy is applied and the closed-form solution of the sub-problem (the so-called proximal operator) is derived. The resulting algorithm is efficient and is shown to lead to quantitative phase estimation on reconstructions of accurate simulations of in-line holograms based on the Mie theory. As our approach is adaptable to several in-line digital holography configurations, we present and discuss the promising results of reconstructions from experimental in-line holograms obtained in two different applications: the tracking of an evaporating droplet (size ∼ 100μm) and the microscopic imaging of bacteria (size ∼ 1μm).
Humphrey, Clinton D; Tollefson, Travis T; Kriet, J David
2010-05-01
Facial plastic surgeons are accumulating massive digital image databases with the evolution of photodocumentation and widespread adoption of digital photography. Managing and maximizing the utility of these vast data repositories, or digital asset management (DAM), is a persistent challenge. Developing a DAM workflow that incorporates a file naming algorithm and metadata assignment will increase the utility of a surgeon's digital images. Copyright 2010 Elsevier Inc. All rights reserved.
High-Speed Digital Scan Converter for High-Frequency Ultrasound Sector Scanners
Chang, Jin Ho; Yen, Jesse T.; Shung, K. Kirk
2008-01-01
This paper presents a high-speed digital scan converter (DSC) capable of providing more than 400 images per second, which is necessary to examine the activities of the mouse heart whose rate is 5–10 beats per second. To achieve the desired high-speed performance in cost-effective manner, the DSC developed adopts a linear interpolation algorithm in which two nearest samples to each object pixel of a monitor are selected and only angular interpolation is performed. Through computer simulation with the Field II program, its accuracy was investigated by comparing it to that of bilinear interpolation known as the best algorithm in terms of accuracy and processing speed. The simulation results show that the linear interpolation algorithm is capable of providing an acceptable image quality, which means that the difference of the root mean square error (RMSE) values of the linear and bilinear interpolation algorithms is below 1 %, if the sample rate of the envelope samples is at least four times higher than the Nyquist rate for the baseband component of echo signals. The designed DSC was implemented with a single FPGA (Stratix EP1S60F1020C6, Altera Corporation, San Jose, CA) on a DSC board that is a part of a high-speed ultrasound imaging system developed. The temporal and spatial resolutions of the implemented DSC were evaluated by examining its maximum processing time with a time stamp indicating when an image is completely formed and wire phantom testing, respectively. The experimental results show that the implemented DSC is capable of providing images at the rate of 400 images per second with negligible processing error. PMID:18430449
An improved ASIFT algorithm for indoor panorama image matching
NASA Astrophysics Data System (ADS)
Fu, Han; Xie, Donghai; Zhong, Ruofei; Wu, Yu; Wu, Qiong
2017-07-01
The generation of 3D models for indoor objects and scenes is an attractive tool for digital city, virtual reality and SLAM purposes. Panoramic images are becoming increasingly more common in such applications due to their advantages to capture the complete environment in one single image with large field of view. The extraction and matching of image feature points are important and difficult steps in three-dimensional reconstruction, and ASIFT is a state-of-the-art algorithm to implement these functions. Compared with the SIFT algorithm, more feature points can be generated and the matching accuracy of ASIFT algorithm is higher, even for the panoramic images with obvious distortions. However, the algorithm is really time-consuming because of complex operations and performs not very well for some indoor scenes under poor light or without rich textures. To solve this problem, this paper proposes an improved ASIFT algorithm for indoor panoramic images: firstly, the panoramic images are projected into multiple normal perspective images. Secondly, the original ASIFT algorithm is simplified from the affine transformation of tilt and rotation with the images to the only tilt affine transformation. Finally, the results are re-projected to the panoramic image space. Experiments in different environments show that this method can not only ensure the precision of feature points extraction and matching, but also greatly reduce the computing time.
Algorithms for extraction of structural attitudes from 3D outcrop models
NASA Astrophysics Data System (ADS)
Duelis Viana, Camila; Endlein, Arthur; Ademar da Cruz Campanha, Ginaldo; Henrique Grohmann, Carlos
2016-05-01
The acquisition of geological attitudes on rock cuts using traditional field compass survey can be a time consuming, dangerous, or even impossible task depending on the conditions and location of outcrops. The importance of this type of data in rock-mass classifications and structural geology has led to the development of new techniques, in which the application of photogrammetric 3D digital models has had an increasing use. In this paper we present two algorithms for extraction of attitudes of geological discontinuities from virtual outcrop models: ply2atti and scanline, implemented with the Python programming language. The ply2atti algorithm allows for the virtual sampling of planar discontinuities appearing on the 3D model as individual exposed surfaces, while the scanline algorithm allows the sampling of discontinuities (surfaces and traces) along a virtual scanline. Application to digital models of a simplified test setup and a rock cut demonstrated a good correlation between the surveys undertaken using traditional field compass reading and virtual sampling on 3D digital models.
Digital Terrain from a Two-Step Segmentation and Outlier-Based Algorithm
NASA Astrophysics Data System (ADS)
Hingee, Kassel; Caccetta, Peter; Caccetta, Louis; Wu, Xiaoliang; Devereaux, Drew
2016-06-01
We present a novel ground filter for remotely sensed height data. Our filter has two phases: the first phase segments the DSM with a slope threshold and uses gradient direction to identify candidate ground segments; the second phase fits surfaces to the candidate ground points and removes outliers. Digital terrain is obtained by a surface fit to the final set of ground points. We tested the new algorithm on digital surface models (DSMs) for a 9600km2 region around Perth, Australia. This region contains a large mix of land uses (urban, grassland, native forest and plantation forest) and includes both a sandy coastal plain and a hillier region (elevations up to 0.5km). The DSMs are captured annually at 0.2m resolution using aerial stereo photography, resulting in 1.2TB of input data per annum. Overall accuracy of the filter was estimated to be 89.6% and on a small semi-rural subset our algorithm was found to have 40% fewer errors compared to Inpho's Match-T algorithm.
NASA Astrophysics Data System (ADS)
Cook, Perry R.
This chapter covers algorithms, technologies, computer languages, and systems for computer music. Computer music involves the application of computers and other digital/electronic technologies to music composition, performance, theory, history, and the study of perception. The field combines digital signal processing, computational algorithms, computer languages, hardware and software systems, acoustics, psychoacoustics (low-level perception of sounds from the raw acoustic signal), and music cognition (higher-level perception of musical style, form, emotion, etc.).
An FPGA Noise Resistant Digital Temperature Sensor with Auto Calibration
2012-03-01
temperature sensor [6] . . . . . . . . . . . . . . 14 9 Two different digital temperature sensor placement algorithms: (a) Grid placement (b) Optimal...create a grid over the FPGA. While this method works reasonably well, it requires many sensors, some of which are unnecessary. The optimal placement, on...temperature sensor placement algorithms: (a) Grid placement (b) Optimal Placement [7] 16 2.4 Summary Integrated circuits’ sensitivity to temperatures has
Interactive Digital Signal Processor
NASA Technical Reports Server (NTRS)
Mish, W. H.
1985-01-01
Interactive Digital Signal Processor, IDSP, consists of set of time series analysis "operators" based on various algorithms commonly used for digital signal analysis. Processing of digital signal time series to extract information usually achieved by applications of number of fairly standard operations. IDSP excellent teaching tool for demonstrating application for time series operators to artificially generated signals.
Automation of aggregate characterization using laser profiling and digital image analysis
NASA Astrophysics Data System (ADS)
Kim, Hyoungkwan
2002-08-01
Particle morphological properties such as size, shape, angularity, and texture are key properties that are frequently used to characterize aggregates. The characteristics of aggregates are crucial to the strength, durability, and serviceability of the structure in which they are used. Thus, it is important to select aggregates that have proper characteristics for each specific application. Use of improper aggregate can cause rapid deterioration or even failure of the structure. The current standard aggregate test methods are generally labor-intensive, time-consuming, and subject to human errors. Moreover, important properties of aggregates may not be captured by the standard methods due to a lack of an objective way of quantifying critical aggregate properties. Increased quality expectations of products along with recent technological advances in information technology are motivating new developments to provide fast and accurate aggregate characterization. The resulting information can enable a real time quality control of aggregate production as well as lead to better design and construction methods of portland cement concrete and hot mix asphalt. This dissertation presents a system to measure various morphological characteristics of construction aggregates effectively. Automatic measurement of various particle properties is of great interest because it has the potential to solve such problems in manual measurements as subjectivity, labor intensity, and slow speed. The main efforts of this research are placed on three-dimensional (3D) laser profiling, particle segmentation algorithms, particle measurement algorithms, and generalized particle descriptors. First, true 3D data of aggregate particles obtained by laser profiling are transformed into digital images. Second, a segmentation algorithm and a particle measurement algorithm are developed to separate particles and process each particle data individually with the aid of various kinds of digital image technologies. Finally, in order to provide a generalized, quantitative, and representative way to characterize aggregate particles, 3D particle descriptors are developed using the multi-resolution analysis feature of wavelet transforms. Verification tests show that this approach could characterize various aggregate properties in a fast, accurate, and reliable way. When implemented, this ability to automatically analyze multiple characteristics of an aggregate sample is expected to provide not only economic but also intangible strategic gains.
Real-time demonstration hardware for enhanced DPCM video compression algorithm
NASA Technical Reports Server (NTRS)
Bizon, Thomas P.; Whyte, Wayne A., Jr.; Marcopoli, Vincent R.
1992-01-01
The lack of available wideband digital links as well as the complexity of implementation of bandwidth efficient digital video CODECs (encoder/decoder) has worked to keep the cost of digital television transmission too high to compete with analog methods. Terrestrial and satellite video service providers, however, are now recognizing the potential gains that digital video compression offers and are proposing to incorporate compression systems to increase the number of available program channels. NASA is similarly recognizing the benefits of and trend toward digital video compression techniques for transmission of high quality video from space and therefore, has developed a digital television bandwidth compression algorithm to process standard National Television Systems Committee (NTSC) composite color television signals. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a non-adaptive predictor, non-uniform quantizer and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The non-adaptive predictor and multilevel Huffman coder combine to set this technique apart from other DPCM encoding algorithms. All processing is done on a intra-field basis to prevent motion degradation and minimize hardware complexity. Computer simulations have shown the algorithm will produce broadcast quality reconstructed video at an average transmission rate of 1.8 bits/pixel. Hardware implementation of the DPCM circuit, non-adaptive predictor and non-uniform quantizer has been completed, providing realtime demonstration of the image quality at full video rates. Video sampling/reconstruction circuits have also been constructed to accomplish the analog video processing necessary for the real-time demonstration. Performance results for the completed hardware compare favorably with simulation results. Hardware implementation of the multilevel Huffman encoder/decoder is currently under development along with implementation of a buffer control algorithm to accommodate the variable data rate output of the multilevel Huffman encoder. A video CODEC of this type could be used to compress NTSC color television signals where high quality reconstruction is desirable (e.g., Space Station video transmission, transmission direct-to-the-home via direct broadcast satellite systems or cable television distribution to system headends and direct-to-the-home).
Evaluation of security algorithms used for security processing on DICOM images
NASA Astrophysics Data System (ADS)
Chen, Xiaomeng; Shuai, Jie; Zhang, Jianguo; Huang, H. K.
2005-04-01
In this paper, we developed security approach to provide security measures and features in PACS image acquisition and Tele-radiology image transmission. The security processing on medical images was based on public key infrastructure (PKI) and including digital signature and data encryption to achieve the security features of confidentiality, privacy, authenticity, integrity, and non-repudiation. There are many algorithms which can be used in PKI for data encryption and digital signature. In this research, we select several algorithms to perform security processing on different DICOM images in PACS environment, evaluate the security processing performance of these algorithms, and find the relationship between performance with image types, sizes and the implementation methods.
Digital sorting of complex tissues for cell type-specific gene expression profiles.
Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong
2013-03-07
Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.
Efficient threshold for volumetric segmentation
NASA Astrophysics Data System (ADS)
Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel
2015-07-01
Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.
The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors
NASA Astrophysics Data System (ADS)
Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.
2015-12-01
Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and the most popular ones in each category were selected (Arc 3D, Visual SfM, Sure, Agisoft). Also four small objects with distinct geometric properties and especial complexities were chosen and their accurate models as reliable true data was created using ATOS Compact Scan 2M 3D scanner. Images were taken using Fujifilm Real 3D stereo camera, Apple iPhone 5 and Nikon D3200 professional camera and three dimensional models of the objects were obtained using each of the software. Finally, a comprehensive comparison between the detailed reviews of the results on the data set showed that the best combination of software and sensors for generating three-dimensional models is directly related to the object shape as well as the expected accuracy of the final model. Generally better quantitative and qualitative results were obtained by using the Nikon D3200 professional camera, while Fujifilm Real 3D stereo camera and Apple iPhone 5 were the second and third respectively in this comparison. On the other hand, three software of Visual SfM, Sure and Agisoft had a hard competition to achieve the most accurate and complete model of the objects and the best software was different according to the geometric properties of the object.
Three Dimentional Reconstruction of Large Cultural Heritage Objects Based on Uav Video and Tls Data
NASA Astrophysics Data System (ADS)
Xu, Z.; Wu, T. H.; Shen, Y.; Wu, L.
2016-06-01
This paper investigates the synergetic use of unmanned aerial vehicle (UAV) and terrestrial laser scanner (TLS) in 3D reconstruction of cultural heritage objects. Rather than capturing still images, the UAV that equips a consumer digital camera is used to collect dynamic videos to overcome its limited endurance capacity. Then, a set of 3D point-cloud is generated from video image sequences using the automated structure-from-motion (SfM) and patch-based multi-view stereo (PMVS) methods. The TLS is used to collect the information that beyond the reachability of UAV imaging e.g., partial building facades. A coarse to fine method is introduced to integrate the two sets of point clouds UAV image-reconstruction and TLS scanning for completed 3D reconstruction. For increased reliability, a variant of ICP algorithm is introduced using local terrain invariant regions in the combined designation. The experimental study is conducted in the Tulou culture heritage building in Fujian province, China, which is focused on one of the TuLou clusters built several hundred years ago. Results show a digital 3D model of the Tulou cluster with complete coverage and textural information. This paper demonstrates the usability of the proposed method for efficient 3D reconstruction of heritage object based on UAV video and TLS data.
Assessing land leveling needs and performance with unmanned aerial system
NASA Astrophysics Data System (ADS)
Enciso, Juan; Jung, Jinha; Chang, Anjin; Chavez, Jose Carlos; Yeom, Junho; Landivar, Juan; Cavazos, Gabriel
2018-01-01
Land leveling is the initial step for increasing irrigation efficiencies in surface irrigation systems. The objective of this paper was to evaluate potential utilization of an unmanned aerial system (UAS) equipped with a digital camera to map ground elevations of a grower's field and compare them with field measurements. A secondary objective was to use UAS data to obtain a digital terrain model before and after land leveling. UAS data were used to generate orthomosaic images and three-dimensional (3-D) point cloud data by applying the structure for motion algorithm to the images. Ground control points (GCPs) were established around the study area, and they were surveyed using a survey grade dual-frequency GPS unit for accurate georeferencing of the geospatial data products. A digital surface model (DSM) was then generated from the 3-D point cloud data before and after laser leveling to determine the topography before and after the leveling. The UAS-derived DSM was compared with terrain elevation measurements acquired from land surveying equipment for validation. Although 0.3% error or root mean square error of 0.11 m was observed between UAS derived and ground measured ground elevation data, the results indicated that UAS could be an efficient method for determining terrain elevation with an acceptable accuracy when there are no plants on the ground, and it can be used to assess the performance of a land leveling project.
Illuminant color estimation based on pigmentation separation from human skin color
NASA Astrophysics Data System (ADS)
Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi
2015-03-01
Human has the visual system called "color constancy" that maintains the perceptive colors of same object across various light sources. The effective method of color constancy algorithm was proposed to use the human facial color in a digital color image, however, this method has wrong estimation results by the difference of individual facial colors. In this paper, we present the novel color constancy algorithm based on skin color analysis. The skin color analysis is the method to separate the skin color into the components of melanin, hemoglobin and shading. We use the stationary property of Japanese facial color, and this property is calculated from the components of melanin and hemoglobin. As a result, we achieve to propose the method to use subject's facial color in image and not depend on the individual difference among Japanese facial color.
Generation of high-dynamic range image from digital photo
NASA Astrophysics Data System (ADS)
Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han
2016-10-01
A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
The FBI compression standard for digitized fingerprint images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brislawn, C.M.; Bradley, J.N.; Onyshczak, R.J.
1996-10-01
The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the currentmore » status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.« less
FBI compression standard for digitized fingerprint images
NASA Astrophysics Data System (ADS)
Brislawn, Christopher M.; Bradley, Jonathan N.; Onyshczak, Remigius J.; Hopper, Thomas
1996-11-01
The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.
A Nonlinear Digital Control Solution for a DC/DC Power Converter
NASA Technical Reports Server (NTRS)
Zhu, Minshao
2002-01-01
A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.
Color constancy by characterization of illumination chromaticity
NASA Astrophysics Data System (ADS)
Nikkanen, Jarno T.
2011-05-01
Computational color constancy algorithms play a key role in achieving desired color reproduction in digital cameras. Failure to estimate illumination chromaticity correctly will result in invalid overall colour cast in the image that will be easily detected by human observers. A new algorithm is presented for computational color constancy. Low computational complexity and low memory requirement make the algorithm suitable for resource-limited camera devices, such as consumer digital cameras and camera phones. Operation of the algorithm relies on characterization of the range of possible illumination chromaticities in terms of camera sensor response. The fact that only illumination chromaticity is characterized instead of the full color gamut, for example, increases robustness against variations in sensor characteristics and against failure of diagonal model of illumination change. Multiple databases are used in order to demonstrate the good performance of the algorithm in comparison to the state-of-the-art color constancy algorithms.
Fu, Qiushi; Zhang, Wei; Santello, Marco
2010-07-07
Dexterous object manipulation requires anticipatory control of digit positions and forces. Despite extensive studies on sensorimotor learning of digit forces, how humans learn to coordinate digit positions and forces has never been addressed. Furthermore, the functional role of anticipatory modulation of digit placement to object properties remains to be investigated. We addressed these questions by asking human subjects (12 females, 12 males) to grasp and lift an inverted T-shaped object using precision grip at constrained or self-chosen locations. The task requirement was to minimize object roll during lift. When digit position was not constrained, subjects could have implemented many equally valid digit position-force coordination patterns. However, choice of digit placement might also have resulted in large trial-to-trial variability of digit position, hence challenging the extent to which the CNS could have relied on sensorimotor memories for anticipatory control of digit forces. We hypothesized that subjects would modulate digit placement for optimal force distribution and digit forces as a function of variable digit positions. All subjects learned to minimize object roll within the first three trials, and the unconstrained device was associated with significantly smaller grip forces but larger variability of digit positions. Importantly, however, digit load force modulation compensated for position variability, thus ensuring consistent object roll minimization on each trial. This indicates that subjects learned object manipulation by integrating sensorimotor memories with sensory feedback about digit positions. These results are discussed in the context of motor equivalence and sensorimotor integration of grasp kinematics and kinetics.
EROS Data Center Landsat digital enhancement techniques and imagery availability
Rohde, Wayne G.; Lo, Jinn Kai; Pohl, Russell A.
1978-01-01
The US Geological Survey's EROS Data Center (EDC) is experimenting with the production of digitally enhanced Landsat imagery. Advanced digital image processing techniques are used to perform geometric and radiometric corrections and to perform contrast and edge enhancements. The enhanced image product is produced from digitally preprocessed Landsat computer compatible tapes (CCTs) on a laser beam film recording system. Landsat CCT data have several geometric distortions which are corrected when NASA produces the standard film products. When producing film images from CCT's, geometric correction of the data is required. The EDC Digital Image Enhancement System (EDIES) compensates for geometric distortions introduced by Earth's rotation, variable line length, non-uniform mirror scan velocity, and detector misregistration. Radiometric anomalies such as bad data lines and striping are common to many Landsat film products and are also in the CCT data. Bad data lines or line segments with more than 150 contiguous bad pixels are corrected by inserting data from the previous line in place of the bad data. Striping, caused by variations in detector gain and offset, is removed with a destriping algorithm applied after digitally enhancing the data. Image enhancement is performed by applying a linear contrast stretch and an edge enhancement algorithm. The linear contrast enhancement algorithm is designed to expand digitally the full range of useful data recorded on the CCT over the range of 256 digital counts. This minimizes the effect of atmospheric scattering and saturates the relative brightness of highly reflecting features such as clouds or snow. It is the intent that no meaningful terrain data are eliminated by the digital processing. The edge enhancement algorithm is designed to enhance boundaries between terrain features that exhibit subtle differences in brightness values along edges of features. After the digital data have been processed, data for each Landsat band are recorded on black-and-white film with a laser beam film recorder (LBR). The LBR corrects for aspect ratio distortions as the digital data are recorded on the recording film over a preselected density range. Positive transparencies of MSS bands 4, 5, and 7 produced by the LBR are used to make color composite transparencies. Color film positives are made photographically from first generation black-and-white products generated on the LBR.
Automatic focusing in digital holography and its application to stretched holograms.
Memmolo, P; Distante, C; Paturzo, M; Finizio, A; Ferraro, P; Javidi, B
2011-05-15
The searching and recovering of the correct reconstruction distance in digital holography (DH) can be a cumbersome and subjective procedure. Here we report on an algorithm for automatically estimating the in-focus image and recovering the correct reconstruction distance for speckle holograms. We have tested the approach in determining the reconstruction distances of stretched digital holograms. Stretching a hologram with a variable elongation parameter makes it possible to change the in-focus distance of the reconstructed image. In this way, the proposed algorithm can be verified at different distances by dispensing the recording of different holograms. Experimental results are shown with the aim of demonstrating the usefulness of the proposed method, and a comparative analysis has been performed with respect to other existing algorithms developed for DH. © 2011 Optical Society of America
Digital micromirror device-based laser-illumination Fourier ptychographic microscopy
Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.
2015-01-01
We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems. PMID:26480361
Digital micromirror device-based laser-illumination Fourier ptychographic microscopy.
Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R; Yaqoob, Zahid; So, Peter T C
2015-10-19
We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems.
NASA Technical Reports Server (NTRS)
Bentley, P. B.
1975-01-01
The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.
A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar
Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun
2018-01-01
Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256×13 real-time radar image display with a throughput of 28.2 frames per second. PMID:29621170
Characterization techniques for incorporating backgrounds into DIRSIG
NASA Astrophysics Data System (ADS)
Brown, Scott D.; Schott, John R.
2000-07-01
The appearance of operation hyperspectral imaging spectrometers in both solar and thermal regions has lead to the development of a variety of spectral detection algorithms. The development and testing of these algorithms requires well characterized field collection campaigns that can be time and cost prohibitive. Radiometrically robust synthetic image generation (SIG) environments that can generate appropriate images under a variety of atmospheric conditions and with a variety of sensors offers an excellent supplement to reduce the scope of the expensive field collections. In addition, SIG image products provide the algorithm developer with per-pixel truth, allowing for improved characterization of the algorithm performance. To meet the needs of the algorithm development community, the image modeling community needs to supply synthetic image products that contain all the spatial and spectral variability present in real world scenes, and that provide the large area coverage typically acquired with actual sensors. This places a heavy burden on synthetic scene builders to construct well characterized scenes that span large areas. Several SIG models have demonstrated the ability to accurately model targets (vehicles, buildings, etc.) Using well constructed target geometry (from CAD packages) and robust thermal and radiometry models. However, background objects (vegetation, infrastructure, etc.) dominate the percentage of real world scene pixels and utilizing target building techniques is time and resource prohibitive. This paper discusses new methods that have been integrated into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model to characterize backgrounds. The new suite of scene construct types allows the user to incorporate both terrain and surface properties to obtain wide area coverage. The terrain can be incorporated using a triangular irregular network (TIN) derived from elevation data or digital elevation model (DEM) data from actual sensors, temperature maps, spectral reflectance cubes (possible derived from actual sensors), and/or material and mixture maps. Descriptions and examples of each new technique are presented as well as hybrid methods to demonstrate target embedding in real world imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, D; Mlady, G; Selwyn, R
Purpose: To bring together radiologists, technologists, and physicists to utilize post-processing techniques in digital radiography (DR) in order to optimize image acquisition and improve image quality. Methods: Sub-optimal images acquired on a new General Electric (GE) DR system were flagged for follow-up by radiologists and reviewed by technologists and medical physicists. Various exam types from adult musculoskeletal (n=35), adult chest (n=4), and pediatric (n=7) were chosen for review. 673 total images were reviewed. These images were processed using five customized algorithms provided by GE. An image score sheet was created allowing the radiologist to assign a numeric score to eachmore » of the processed images, this allowed for objective comparison to the original images. Each image was scored based on seven properties: 1) overall image look, 2) soft tissue contrast, 3) high contrast, 4) latitude, 5) tissue equalization, 6) edge enhancement, 7) visualization of structures. Additional space allowed for additional comments not captured in scoring categories. Radiologists scored the images from 1 – 10 with 1 being non-diagnostic quality and 10 being superior diagnostic quality. Scores for each custom algorithm for each image set were summed. The algorithm with the highest score for each image set was then set as the default processing. Results: Images placed into the PACS “QC folder” for image processing reasons decreased. Feedback from radiologists was, overall, that image quality for these studies had improved. All default processing for these image types was changed to the new algorithm. Conclusion: This work is an example of the collaboration between radiologists, technologists, and physicists at the University of New Mexico to add value to the radiology department. The significant amount of work required to prepare the processing algorithms, reprocessing and scoring of the images was eagerly taken on by all team members in order to produce better quality images and improve patient care.« less
NASA Astrophysics Data System (ADS)
Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.
2014-12-01
Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.
NASA Astrophysics Data System (ADS)
Nakhostin, M.; Hitomi, K.
2012-05-01
The energy resolution of thallium bromide (TlBr) detectors is significantly limited by charge-trapping effect and pulse ballistic deficit, caused by the slow charge collection time. A digital pulse processing algorithm has been developed aiming to compensate for charge-trapping effect, while minimizing pulse ballistic deficit. The algorithm is examined using a 1 mm thick TlBr detector and an excellent energy resolution of 3.37% at 662 keV is achieved at room temperature. The pulse processing algorithms are presented in recursive form, suitable for real-time implementations.
Experiences on developing digital down conversion algorithms using Xilinx system generator
NASA Astrophysics Data System (ADS)
Xu, Chengfa; Yuan, Yuan; Zhao, Lizhi
2013-07-01
The Digital Down Conversion (DDC) algorithm is a classical signal processing method which is widely used in radar and communication systems. In this paper, the DDC function is implemented by Xilinx System Generator tool on FPGA. System Generator is an FPGA design tool provided by Xilinx Inc and MathWorks Inc. It is very convenient for programmers to manipulate the design and debug the function, especially for the complex algorithm. Through the developing process of DDC function based on System Generator, the results show that System Generator is a very fast and efficient tool for FPGA design.
Fang, Simin; Zhou, Sheng; Wang, Xiaochun; Ye, Qingsheng; Tian, Ling; Ji, Jianjun; Wang, Yanqun
2015-01-01
To design and improve signal processing algorithms of ophthalmic ultrasonography based on FPGA. Achieved three signal processing modules: full parallel distributed dynamic filter, digital quadrature demodulation, logarithmic compression, using Verilog HDL hardware language in Quartus II. Compared to the original system, the hardware cost is reduced, the whole image shows clearer and more information of the deep eyeball contained in the image, the depth of detection increases from 5 cm to 6 cm. The new algorithms meet the design requirements and achieve the system's optimization that they can effectively improve the image quality of existing equipment.
Comparative Study Of Image Enhancement Algorithms For Digital And Film Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado-Gonzalez, A.; Sanmiguel, R. E.
2008-08-11
Here we discuss the application of edge enhancement algorithms on images obtained with a Mammography System which has a Selenium Detector and on the other hand, on images obtained from digitized film mammography. Comparative analysis of such images includes the study of technical aspects of image acquisition, storage, compression and display. A protocol for a local database has been created as a result of this study.
Robust and real-time rotor control with magnetic bearings
NASA Technical Reports Server (NTRS)
Sinha, A.; Wang, K. W.; Mease, K. L.
1991-01-01
This paper deals with the sliding mode control of a rigid rotor via radial magnetic bearings. The digital control algorithm and the results from numerical simulations are presented for an experimental rig. The experimental system which has been set up to digitally implement and validate the sliding mode control algorithm is described. Two methods for the development of control softwares are presented. Experimental results for individual rotor axis are discussed.
Information theoretic analysis of linear shift-invariant edge-detection operators
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2012-06-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the influences by the image gathering process. However, experiments show that the image gathering process has a profound impact on the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. We perform an end-to-end information theory based system analysis to assess linear shift-invariant edge-detection algorithms. We evaluate the performance of the different algorithms as a function of the characteristics of the scene and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge-detection algorithm is regarded as having high performance only if the information rate from the scene to the edge image approaches its maximum possible. This goal can be achieved only by jointly optimizing all processes. Our information-theoretic assessment provides a new tool that allows us to compare different linear shift-invariant edge detectors in a common environment.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The Midas System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in Phase I of the overall program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 2 x 100,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. The MIDAS construction and wiring diagrams are given.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The MIDAS System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughout. The hardware and software generated in Phase I of the over-all program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating 2 x 105 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. Diagnostic programs used to test MIDAS' operations are presented.
Computer image processing: Geologic applications
NASA Technical Reports Server (NTRS)
Abrams, M. J.
1978-01-01
Computer image processing of digital data was performed to support several geological studies. The specific goals were to: (1) relate the mineral content to the spectral reflectance of certain geologic materials, (2) determine the influence of environmental factors, such as atmosphere and vegetation, and (3) improve image processing techniques. For detection of spectral differences related to mineralogy, the technique of band ratioing was found to be the most useful. The influence of atmospheric scattering and methods to correct for the scattering were also studied. Two techniques were used to correct for atmospheric effects: (1) dark object subtraction, (2) normalization of use of ground spectral measurements. Of the two, the first technique proved to be the most successful for removing the effects of atmospheric scattering. A digital mosaic was produced from two side-lapping LANDSAT frames. The advantages were that the same enhancement algorithm can be applied to both frames, and there is no seam where the two images are joined.
Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels
Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V.; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R.
2018-01-01
Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. Conclusions: The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods. PMID:29619277
NASA Astrophysics Data System (ADS)
Leidi, Tiziano; Scocchi, Giulio; Grossi, Loris; Pusterla, Simone; D'Angelo, Claudio; Thiran, Jean-Philippe; Ortona, Alberto
2012-11-01
In recent decades, finite element (FE) techniques have been extensively used for predicting effective properties of random heterogeneous materials. In the case of very complex microstructures, the choice of numerical methods for the solution of this problem can offer some advantages over classical analytical approaches, and it allows the use of digital images obtained from real material samples (e.g., using computed tomography). On the other hand, having a large number of elements is often necessary for properly describing complex microstructures, ultimately leading to extremely time-consuming computations and high memory requirements. With the final objective of reducing these limitations, we improved an existing freely available FE code for the computation of effective conductivity (electrical and thermal) of microstructure digital models. To allow execution on hardware combining multi-core CPUs and a GPU, we first translated the original algorithm from Fortran to C, and we subdivided it into software components. Then, we enhanced the C version of the algorithm for parallel processing with heterogeneous processors. With the goal of maximizing the obtained performances and limiting resource consumption, we utilized a software architecture based on stream processing, event-driven scheduling, and dynamic load balancing. The parallel processing version of the algorithm has been validated using a simple microstructure consisting of a single sphere located at the centre of a cubic box, yielding consistent results. Finally, the code was used for the calculation of the effective thermal conductivity of a digital model of a real sample (a ceramic foam obtained using X-ray computed tomography). On a computer equipped with dual hexa-core Intel Xeon X5670 processors and an NVIDIA Tesla C2050, the parallel application version features near to linear speed-up progression when using only the CPU cores. It executes more than 20 times faster when additionally using the GPU.
NASA Astrophysics Data System (ADS)
Noh, M. J.; Howat, I. M.; Porter, C. C.; Willis, M. J.; Morin, P. J.
2016-12-01
The Arctic is undergoing rapid change associated with climate warming. Digital Elevation Models (DEMs) provide critical information for change measurement and infrastructure planning in this vulnerable region, yet the existing quality and coverage of DEMs in the Arctic is poor. Low contrast and repeatedly-textured surfaces, such as snow and glacial ice and mountain shadows, all common in the Arctic, challenge existing stereo-photogrammetric techniques. Submeter resolution, stereoscopic satellite imagery with high geometric and radiometric quality, and wide spatial coverage are becoming increasingly accessible to the scientific community. To utilize these imagery for extracting DEMs at a large scale over glaciated and high latitude regions we developed the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm. SETSM is fully automatic (i.e. no search parameter settings are needed) and uses only the satellite rational polynomial coefficients (RPCs). Using SETSM, we have generated a large number of DEMs (> 100,000 scene pair) from WorldView, GeoEye and QuickBird stereo images collected by DigitalGlobe Inc. and archived by the Polar Geospatial Center (PGC) at the University of Minnesota through an academic licensing program maintained by the US National Geospatial-Intelligence Agency (NGA). SETSM is the primary DEM generation software for the US National Science Foundation's ArcticDEM program, with the objective of generating high resolution (2-8m) topography for the entire Arctic landmass, including seamless DEM mosaics and repeat DEM strips for change detection. ArcticDEM is collaboration between multiple US universities, governmental agencies and private companies, as well as international partners assisting with quality control and registration. ArcticDEM is being produced using the petascale Blue Waters supercomputer at the National Center for Supercomputer Applications at the University of Illinois. In this paper, we introduce the SETSM algorithm and the processing system used for the ArcticDEM project, as well as provide notable examples of ArcticDEM products.
Korycki, Rafal
2014-05-01
Since the appearance of digital audio recordings, audio authentication has been becoming increasingly difficult. The currently available technologies and free editing software allow a forger to cut or paste any single word without audible artifacts. Nowadays, the only method referring to digital audio files commonly approved by forensic experts is the ENF criterion. It consists in fluctuation analysis of the mains frequency induced in electronic circuits of recording devices. Therefore, its effectiveness is strictly dependent on the presence of mains signal in the recording, which is a rare occurrence. Recently, much attention has been paid to authenticity analysis of compressed multimedia files and several solutions were proposed for detection of double compression in both digital video and digital audio. This paper addresses the problem of tampering detection in compressed audio files and discusses new methods that can be used for authenticity analysis of digital recordings. Presented approaches consist in evaluation of statistical features extracted from the MDCT coefficients as well as other parameters that may be obtained from compressed audio files. Calculated feature vectors are used for training selected machine learning algorithms. The detection of multiple compression covers up tampering activities as well as identification of traces of montage in digital audio recordings. To enhance the methods' robustness an encoder identification algorithm was developed and applied based on analysis of inherent parameters of compression. The effectiveness of tampering detection algorithms is tested on a predefined large music database consisting of nearly one million of compressed audio files. The influence of compression algorithms' parameters on the classification performance is discussed, based on the results of the current study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors
NASA Astrophysics Data System (ADS)
Alharbi, T.
2015-01-01
The development of compact, battery-powered digital liquid scintillation neutron detection systems for field applications requires digital pulse processing (DPP) algorithms with minimum computational overhead. To meet this demand, two DPP algorithms for the discrimination of neutron and γ-rays with liquid scintillation detectors were developed and examined by using a NE213 liquid scintillation detector in a mixed radiation field. The first algorithm is based on the relation between the amplitude of a current pulse at the output of a photomultiplier tube and the amount of charge contained in the pulse. A figure-of-merit (FOM) value of 0.98 with 450 keVee (electron equivalent energy) energy threshold was achieved with this method when pulses were sampled at 250 MSample/s and with 8-bit resolution. Compared to the similar method of charge-comparison this method requires only a single integration window, thereby reducing the amount of computations by approximately 40%. The second approach is a digital version of the trailing-edge constant-fraction discrimination method. A FOM value of 0.84 with an energy threshold of 450 keVee was achieved with this method. In comparison with the similar method of rise-time discrimination this method requires a single time pick-off, thereby reducing the amount of computations by approximately 50%. The algorithms described in this work are useful for developing portable detection systems for applications such as homeland security, radiation dosimetry and environmental monitoring.
A parallel algorithm for viewshed analysis in three-dimensional Digital Earth
NASA Astrophysics Data System (ADS)
Feng, Wang; Gang, Wang; Deji, Pan; Yuan, Liu; Liuzhong, Yang; Hongbo, Wang
2015-02-01
Viewshed analysis, often supported by geographic information systems, is widely used in the three-dimensional (3D) Digital Earth system. Many of the analyzes involve the siting of features and real-timedecision-making. Viewshed analysis is usually performed at a large scale, which poses substantial computational challenges, as geographic datasets continue to become increasingly large. Previous research on viewshed analysis has been generally limited to a single data structure (i.e., DEM), which cannot be used to analyze viewsheds in complicated scenes. In this paper, a real-time algorithm for viewshed analysis in Digital Earth is presented using the parallel computing of graphics processing units (GPUs). An occlusion for each geometric entity in the neighbor space of the viewshed point is generated according to line-of-sight. The region within the occlusion is marked by a stencil buffer within the programmable 3D visualization pipeline. The marked region is drawn with red color concurrently. In contrast to traditional algorithms based on line-of-sight, the new algorithm, in which the viewshed calculation is integrated with the rendering module, is more efficient and stable. This proposed method of viewshed generation is closer to the reality of the virtual geographic environment. No DEM interpolation, which is seen as a computational burden, is needed. The algorithm was implemented in a 3D Digital Earth system (GeoBeans3D) with the DirectX application programming interface (API) and has been widely used in a range of applications.
On the Rapid Computation of Various Polylogarithmic Constants
NASA Technical Reports Server (NTRS)
Bailey, David H.; Borwein, Peter; Plouffe, Simon
1996-01-01
We give algorithms for the computation of the d-th digit of certain transcendental numbers in various bases. These algorithms can be easily implemented (multiple precision arithmetic is not needed), require virtually no memory, and feature run times that scale nearly linearly with the order of the digit desired. They make it feasible to compute, for example, the billionth binary digit of log(2) or pi on a modest workstation in a few hours run time. We demonstrate this technique by computing the ten billionth hexadecimal digit of pi, the billionth hexadecimal digits of pi-squared, log(2) and log-squared(2), and the ten billionth decimal digit of log(9/10). These calculations rest on the observation that very special types of identities exist for certain numbers like pi, pi-squared, log(2) and log-squared(2). These are essentially polylogarithmic ladders in an integer base. A number of these identities that we derive in this work appear to be new, for example a critical identity for pi.
A novel blinding digital watermark algorithm based on lab color space
NASA Astrophysics Data System (ADS)
Dong, Bing-feng; Qiu, Yun-jie; Lu, Hong-tao
2010-02-01
It is necessary for blinding digital image watermark algorithm to extract watermark information without any extra information except the watermarked image itself. But most of the current blinding watermark algorithms have the same disadvantage: besides the watermarked image, they also need the size and other information about the original image when extracting the watermark. This paper presents an innovative blinding color image watermark algorithm based on Lab color space, which does not have the disadvantages mentioned above. This algorithm first marks the watermark region size and position through embedding some regular blocks called anchor points in image spatial domain, and then embeds the watermark into the image. In doing so, the watermark information can be easily extracted after doing cropping and scale change to the image. Experimental results show that the algorithm is particularly robust against the color adjusting and geometry transformation. This algorithm has already been used in a copyright protecting project and works very well.
Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B; Sturm, Benjamin W
2014-11-11
A scintillator radiation detector system according to one embodiment includes a scintillator; and a processing device for processing pulse traces corresponding to light pulses from the scintillator, wherein pulse digitization is used to improve energy resolution of the system. A scintillator radiation detector system according to another embodiment includes a processing device for fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times and performing a direct integration of fit parameters. A method according to yet another embodiment includes processing pulse traces corresponding to light pulses from a scintillator, wherein pulse digitization is used to improve energy resolution of the system. A method in a further embodiment includes fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times; and performing a direct integration of fit parameters. Additional systems and methods are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Brad M.; Nathan, Diane L.; Wang Yan
Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') andmore » vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r= 0.82, p < 0.001) and processed (r= 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r= 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's {kappa}{>=} 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.« less
Keller, Brad M.; Nathan, Diane L.; Wang, Yan; Zheng, Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina
2012-01-01
Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies. PMID:22894417
Keller, Brad M; Nathan, Diane L; Wang, Yan; Zheng, Yuanjie; Gee, James C; Conant, Emily F; Kontos, Despina
2012-08-01
The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., "FOR PROCESSING") and vendor postprocessed (i.e., "FOR PRESENTATION"), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.
Accurate and cost-effective MTF measurement system for lens modules of digital cameras
NASA Astrophysics Data System (ADS)
Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu
2007-01-01
For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO
Zhang, Chaozhu; Han, Jinan; Li, Ke
2014-01-01
The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750
Real-time PM10 concentration monitoring on Penang Bridge by using traffic monitoring CCTV
NASA Astrophysics Data System (ADS)
Low, K. L.; Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Wong, C. J.
2007-04-01
For this study, an algorithm was developed to determine concentration of particles less than 10μm (PM10) from still images captured by a CCTV camera on the Penang Bridge. The objective of this study is to remotely monitor the PM10 concentrations on the Penang Bridge through the internet. So, an algorithm was developed based on the relationship between the atmospheric reflectance and the corresponding air quality. By doing this, the still images were separated into three bands namely red, green and blue and their digital number values were determined. A special transformation was then performed to the data. Ground PM10 measurements were taken by using DustTrak TM meter. The algorithm was calibrated using a regression analysis. The proposed algorithm produced a high correlation coefficient (R) and low root-mean-square error (RMS) between the measured and produced PM10. Later, a program was written by using Microsoft Visual Basic 6.0 to download still images from the camera over the internet and implement the newly developed algorithm. Meanwhile, the program is running in real time and the public will know the air pollution index from time to time. This indicates that the technique using the CCTV camera images can provide a useful tool for air quality studies.
When Machines Think: Radiology's Next Frontier.
Dreyer, Keith J; Geis, J Raymond
2017-12-01
Artificial intelligence (AI), machine learning, and deep learning are terms now seen frequently, all of which refer to computer algorithms that change as they are exposed to more data. Many of these algorithms are surprisingly good at recognizing objects in images. The combination of large amounts of machine-consumable digital data, increased and cheaper computing power, and increasingly sophisticated statistical models combine to enable machines to find patterns in data in ways that are not only cost-effective but also potentially beyond humans' abilities. Building an AI algorithm can be surprisingly easy. Understanding the associated data structures and statistics, on the other hand, is often difficult and obscure. Converting the algorithm into a sophisticated product that works consistently in broad, general clinical use is complex and incompletely understood. To show how these AI products reduce costs and improve outcomes will require clinical translation and industrial-grade integration into routine workflow. Radiology has the chance to leverage AI to become a center of intelligently aggregated, quantitative, diagnostic information. Centaur radiologists, formed as a synergy of human plus computer, will provide interpretations using data extracted from images by humans and image-analysis computer algorithms, as well as the electronic health record, genomics, and other disparate sources. These interpretations will form the foundation of precision health care, or care customized to an individual patient. © RSNA, 2017.
Parallel Processing Systems for Passive Ranging During Helicopter Flight
NASA Technical Reports Server (NTRS)
Sridhar, Bavavar; Suorsa, Raymond E.; Showman, Robert D. (Technical Monitor)
1994-01-01
The complexity of rotorcraft missions involving operations close to the ground result in high pilot workload. In order to allow a pilot time to perform mission-oriented tasks, sensor-aiding and automation of some of the guidance and control functions are highly desirable. Images from an electro-optical sensor provide a covert way of detecting objects in the flight path of a low-flying helicopter. Passive ranging consists of processing a sequence of images using techniques based on optical low computation and recursive estimation. The passive ranging algorithm has to extract obstacle information from imagery at rates varying from five to thirty or more frames per second depending on the helicopter speed. We have implemented and tested the passive ranging algorithm off-line using helicopter-collected images. However, the real-time data and computation requirements of the algorithm are beyond the capability of any off-the-shelf microprocessor or digital signal processor. This paper describes the computational requirements of the algorithm and uses parallel processing technology to meet these requirements. Various issues in the selection of a parallel processing architecture are discussed and four different computer architectures are evaluated regarding their suitability to process the algorithm in real-time. Based on this evaluation, we conclude that real-time passive ranging is a realistic goal and can be achieved with a short time.
Maxwell, Susan K
2010-12-01
Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. Copyright © 2010. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo
2011-11-01
The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.
Digital accumulators in phase and frequency tracking loops
NASA Technical Reports Server (NTRS)
Hinedi, Sami; Statman, Joseph I.
1990-01-01
Results on the effects of digital accumulators in phase and frequency tracking loops are presented. Digital accumulators or summers are used extensively in digital signal processing to perform averaging or to reduce processing rates to acceptable levels. For tracking the Doppler of high-dynamic targets at low carrier-to-noise ratios, it is shown through simulation and experiment that digital accumulators can contribute an additional loss in operating threshold. This loss was not considered in any previous study and needs to be accounted for in performance prediction analysis. Simulation and measurement results are used to characterize the loss due to the digital summers for three different tracking loops: a digital phase-locked loop, a cross-product automatic frequency tracking loop, and an extended Kalman filter. The tracking algorithms are compared with respect to their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. It is shown that failure to account for the effect of accumulators can result in an inaccurate performance prediction, the extent of which depends highly on the algorithm used.
Development of a compact and cost effective multi-input digital signal processing system
NASA Astrophysics Data System (ADS)
Darvish-Molla, Sahar; Chin, Kenrick; Prestwich, William V.; Byun, Soo Hyun
2018-01-01
A prototype digital signal processing system (DSP) was developed using a microcontroller interfaced with a 12-bit sampling ADC, which offers a considerably inexpensive solution for processing multiple detectors with high throughput. After digitization of the incoming pulses, in order to maximize the output counting rate, a simple algorithm was employed for pulse height analysis. Moreover, an algorithm aiming at the real-time pulse pile-up deconvolution was implemented. The system was tested using a NaI(Tl) detector in comparison with a traditional analogue and commercial digital systems for a variety of count rates. The performance of the prototype system was consistently superior to the analogue and the commercial digital systems up to the input count rate of 61 kcps while was slightly inferior to the commercial digital system but still superior to the analogue system in the higher input rates. Considering overall cost, size and flexibility, this custom made multi-input digital signal processing system (MMI-DSP) was the best reliable choice for the purpose of the 2D microdosimetric data collection, or for any measurement in which simultaneous multi-data collection is required.
Fringe pattern demodulation with a two-dimensional digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-dimensional digital phase-locked loop (DPLL) for fringe pattern demodulation is presented. This algorithm is more suitable for demodulation of fringe patterns with varying phase in two directions than the existing DPLL techniques that assume that the phase of the fringe patterns varies only in one direction. The two-dimensional DPLL technique assumes that the phase of a fringe pattern is continuous in both directions and takes advantage of the phase continuity; consequently, the algorithm has better noise performance than the existing DPLL schemes. The two-dimensional DPLL algorithm is also suitable for demodulation of fringe patterns with low sampling rates, and it outperforms the Fourier fringe analysis technique in this aspect.
DSP Synthesis Algorithm for Generating Florida Scrub Jay Calls
NASA Technical Reports Server (NTRS)
Lane, John; Pittman, Tyler
2017-01-01
A prototype digital signal processing (DSP) algorithm has been developed to approximate Florida scrub jay calls. The Florida scrub jay (Aphelocoma coerulescens), believed to have been in existence for 2 million years, living only in Florida, has a complicated social system that is evident by examining the spectrograms of its calls. Audio data was acquired at the Helen and Allan Cruickshank Sanctuary, Rockledge, Florida during the 2016 mating season using three digital recorders sampling at 44.1 kHz. The synthesis algorithm is a first step at developing a robust identification and call analysis algorithm. Since the Florida scrub jay is severely threatened by loss of habitat, it is important to develop effective methods to monitor their threatened population using autonomous means.
Gamut extension for cinema: psychophysical evaluation of the state of the art and a new algorithm
NASA Astrophysics Data System (ADS)
Zamir, Syed Waqas; Vazquez-Corral, Javier; Bertalmío, Marcelo
2015-03-01
Wide gamut digital display technology, in order to show its full potential in terms of colors, is creating an opportunity to develop gamut extension algorithms (GEAs). To this end, in this work we present two contributions. First we report a psychophysical evaluation of GEAs specifically for cinema using a digital cinema projector under cinematic (low ambient light) conditions; to the best of our knowledge this is the first evaluation of this kind reported in the literature. Second, we propose a new GEA by introducing simple but key modifications to the algorithm of Zamir et al. This new algorithm performs well in terms of skin tones and memory colors, with results that look natural and which are free from artifacts.
An Invisible Text Watermarking Algorithm using Image Watermark
NASA Astrophysics Data System (ADS)
Jalil, Zunera; Mirza, Anwar M.
Copyright protection of digital contents is very necessary in today's digital world with efficient communication mediums as internet. Text is the dominant part of the internet contents and there are very limited techniques available for text protection. This paper presents a novel algorithm for protection of plain text, which embeds the logo image of the copyright owner in the text and this logo can be extracted from the text later to prove ownership. The algorithm is robust against content-preserving modifications and at the same time, is capable of detecting malicious tampering. Experimental results demonstrate the effectiveness of the algorithm against tampering attacks by calculating normalized hamming distances. The results are also compared with a recent work in this domain
NASA Astrophysics Data System (ADS)
Noh, Myoung-Jong; Howat, Ian M.
2018-02-01
The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.
Castillo-García, Maria; Chevalier, Margarita; Garayoa, Julia; Rodriguez-Ruiz, Alejandro; García-Pinto, Diego; Valverde, Julio
2017-07-01
The study aimed to compare the breast density estimates from two algorithms on full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) and to analyze the clinical implications. We selected 561 FFDM and DBT examinations from patients without breast pathologies. Two versions of a commercial software (Quantra 2D and Quantra 3D) calculated the volumetric breast density automatically in FFDM and DBT, respectively. Other parameters such as area breast density and total breast volume were evaluated. We compared the results from both algorithms using the Mann-Whitney U non-parametric test and the Spearman's rank coefficient for data correlation analysis. Mean glandular dose (MGD) was calculated following the methodology proposed by Dance et al. Measurements with both algorithms are well correlated (r ≥ 0.77). However, there are statistically significant differences between the medians (P < 0.05) of most parameters. The volumetric and area breast density median values from FFDM are, respectively, 8% and 77% higher than DBT estimations. Both algorithms classify 35% and 55% of breasts into BIRADS (Breast Imaging-Reporting and Data System) b and c categories, respectively. There are no significant differences between the MGD calculated using the breast density from each algorithm. DBT delivers higher MGD than FFDM, with a lower difference (5%) for breasts in the BIRADS d category. MGD is, on average, 6% higher than values obtained with the breast glandularity proposed by Dance et al. Breast density measurements from both algorithms lead to equivalent BIRADS classification and MGD values, hence showing no difference in clinical outcomes. The median MGD values of FFDM and DBT examinations are similar for dense breasts (BIRADS d category). Published by Elsevier Inc.
Algorithm-Based Motion Magnification for Video Processing in Urological Laparoscopy.
Adams, Fabian; Schoelly, Reto; Schlager, Daniel; Schoenthaler, Martin; Schoeb, Dominik S; Wilhelm, Konrad; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz
2017-06-01
Minimally invasive surgery is in constant further development and has replaced many conventional operative procedures. If vascular structure movement could be detected during these procedures, it could reduce the risk of vascular injury and conversion to open surgery. The recently proposed motion-amplifying algorithm, Eulerian Video Magnification (EVM), has been shown to substantially enhance minimal object changes in digitally recorded video that is barely perceptible to the human eye. We adapted and examined this technology for use in urological laparoscopy. Video sequences of routine urological laparoscopic interventions were recorded and further processed using spatial decomposition and filtering algorithms. The freely available EVM algorithm was investigated for its usability in real-time processing. In addition, a new image processing technology, the CRS iimotion Motion Magnification (CRSMM) algorithm, was specifically adjusted for endoscopic requirements, applied, and validated by our working group. Using EVM, no significant motion enhancement could be detected without severe impairment of the image resolution, motion, and color presentation. The CRSMM algorithm significantly improved image quality in terms of motion enhancement. In particular, the pulsation of vascular structures could be displayed more accurately than in EVM. Motion magnification image processing technology has the potential for clinical importance as a video optimizing modality in endoscopic and laparoscopic surgery. Barely detectable (micro)movements can be visualized using this noninvasive marker-free method. Despite these optimistic results, the technology requires considerable further technical development and clinical tests.
FPGA implementation of digital down converter using CORDIC algorithm
NASA Astrophysics Data System (ADS)
Agarwal, Ashok; Lakshmi, Boppana
2013-01-01
In radio receivers, Digital Down Converters (DDC) are used to translate the signal from Intermediate Frequency level to baseband. It also decimates the oversampled signal to a lower sample rate, eliminating the need of a high end digital signal processors. In this paper we have implemented architecture for DDC employing CORDIC algorithm, which down converts an IF signal of 70MHz (3G) to 200 KHz baseband GSM signal, with an SFDR greater than 100dB. The implemented architecture reduces the hardware resource requirements by 15 percent when compared with other architecture available in the literature due to elimination of explicit multipliers and a quadrature phase shifter for mixing.
Data Embedding for Covert Communications, Digital Watermarking, and Information Augmentation
2000-03-01
proposed an image authentication algorithm based on the fragility of messages embedded in digital images using LSB encoding. In [Walt95], he proposes...Invertibility 2/ 3 SAMPLE DATA EMBEDDING TECHNIQUES 23 3.1 SPATIAL TECHNIQUES 23 LSB Encoding in Intensity Images 23 Data embedding...ATTACK 21 FIGURE 6. EFFECTS OF LSB ENCODING 25 FIGURE 7. ALGORITHM FOR EZSTEGO 28 FIGURE 8. DATA EMBEDDING IN THE FREQUENCY DOMAIN 30 FIGURE 9
An image encryption algorithm based on 3D cellular automata and chaotic maps
NASA Astrophysics Data System (ADS)
Del Rey, A. Martín; Sánchez, G. Rodríguez
2015-05-01
A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.
NASA Astrophysics Data System (ADS)
Lasher, Mark E.; Henderson, Thomas B.; Drake, Barry L.; Bocker, Richard P.
1986-09-01
The modified signed-digit (MSD) number representation offers full parallel, carry-free addition. A MSD adder has been described by the authors. This paper describes how the adder can be used in a tree structure to implement an optical multiply algorithm. Three different optical schemes, involving position, polarization, and intensity encoding, are proposed for realizing the trinary logic system. When configured in the generic multiplier architecture, these schemes yield the combinatorial logic necessary to carry out the multiplication algorithm. The optical systems are essentially three dimensional arrangements composed of modular units. Of course, this modularity is important for design considerations, while the parallelism and noninterfering communication channels of optical systems are important from the standpoint of reduced complexity. The authors have also designed electronic hardware to demonstrate and model the combinatorial logic required to carry out the algorithm. The electronic and proposed optical systems will be compared in terms of complexity and speed.
Real-time object tracking based on scale-invariant features employing bio-inspired hardware.
Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya
2016-09-01
We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.
de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell
2007-01-10
We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
AISL-CRYPTO is a library of cryptography functions supporting other AISL software. It provides various crypto functions for Common Lisp, including Digital Signature Algorithm, Data Encryption Standard, Secure Hash Algorithm, and public-key cryptography.
NASA Astrophysics Data System (ADS)
Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing
2017-02-01
As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.
Real social analytics: A contribution towards a phenomenology of a digital world.
Couldry, Nick; Fotopoulou, Aristea; Dickens, Luke
2016-03-01
This article argues against the assumption that agency and reflexivity disappear in an age of 'algorithmic power' (Lash 2007). Following the suggestions of Beer (2009), it proposes that, far from disappearing, new forms of agency and reflexivity around the embedding in everyday practice of not only algorithms but also analytics more broadly are emerging, as social actors continue to pursue their social ends but mediated through digital interfaces: this is the consequence of many social actors now needing their digital presence, regardless of whether they want this, to be measured and counted. The article proposes 'social analytics' as a new topic for sociology: the sociological study of social actors' uses of analytics not for the sake of measurement itself (or to make profit from measurement) but in order to fulfil better their social ends through an enhancement of their digital presence. The article places social analytics in the context of earlier debates about categorization, algorithmic power, and self-presentation online, and describes in detail a case study with a UK community organization which generated the social analytics approach. The article concludes with reflections on the implications of this approach for further sociological fieldwork in a digital world. © London School of Economics and Political Science 2016.
Digital camera with apparatus for authentication of images produced from an image file
NASA Technical Reports Server (NTRS)
Friedman, Gary L. (Inventor)
1993-01-01
A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely based upon the private key that digital data encrypted with the private key by the processor may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating at any time the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match, since even one bit change in the image hash will cause the image hash to be totally different from the secure hash.
Digital Camera with Apparatus for Authentication of Images Produced from an Image File
NASA Technical Reports Server (NTRS)
Friedman, Gary L. (Inventor)
1996-01-01
A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely related to the private key that digital data encrypted with the private key may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The authenticating apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match. Other techniques to address time-honored methods of deception, such as attaching false captions or inducing forced perspectives, are included.
Digital Timing Recovery for High Speed Optical Drives
NASA Astrophysics Data System (ADS)
Ko, Seok Jun; Kim, Pan Soo; Choi, Hyung Jin; Lee, Jae-Wook
2002-03-01
A new digital timing recovery scheme for the optical drive system is presented. By comparative simulations using digital versatile disc (DVD) patterns with marginal input conditions, the proposed algorithm shows enhanced performances in jitter variance and signal-to-noise ratio (SNR) margin by four times and 3 [dB], respectively.
ERIC Educational Resources Information Center
Williamson, Ben
2015-01-01
This article examines the emergence of "digital governance" in public education in England. Drawing on and combining concepts from software studies, policy and political studies, it identifies some specific approaches to digital governance facilitated by network-based communications and database-driven information processing software…
NASA Astrophysics Data System (ADS)
Bruynooghe, Michel M.
1998-04-01
In this paper, we present a robust method for automatic object detection and delineation in noisy complex images. The proposed procedure is a three stage process that integrates image segmentation by multidimensional pixel clustering and geometrically constrained optimization of deformable contours. The first step is to enhance the original image by nonlinear unsharp masking. The second step is to segment the enhanced image by multidimensional pixel clustering, using our reducible neighborhoods clustering algorithm that has a very interesting theoretical maximal complexity. Then, candidate objects are extracted and initially delineated by an optimized region merging algorithm, that is based on ascendant hierarchical clustering with contiguity constraints and on the maximization of average contour gradients. The third step is to optimize the delineation of previously extracted and initially delineated objects. Deformable object contours have been modeled by cubic splines. An affine invariant has been used to control the undesired formation of cusps and loops. Non linear constrained optimization has been used to maximize the external energy. This avoids the difficult and non reproducible choice of regularization parameters, that are required by classical snake models. The proposed method has been applied successfully to the detection of fine and subtle microcalcifications in X-ray mammographic images, to defect detection by moire image analysis, and to the analysis of microrugosities of thin metallic films. The later implementation of the proposed method on a digital signal processor associated to a vector coprocessor would allow the design of a real-time object detection and delineation system for applications in medical imaging and in industrial computer vision.
NASA Astrophysics Data System (ADS)
Guarnieri, Vittorio; Francini, Franco
1997-12-01
Last generation of digital printer is usually characterized by a spatial resolution enough high to allow the designer to realize a binary CGH directly on a transparent film avoiding photographic reduction techniques. These devices are able to produce slides or offset prints. Furthermore, services supplied by commercial printing company provide an inexpensive method to rapidly verify the validity of the design by means of a test-and-trial process. Notably, this low-cost approach appears to be suitable for a didactical environment. On the basis of these considerations, a set of software tools able to design CGH's has been developed. The guidelines inspiring the work have been the following ones: (1) ray-tracing approach, considering the object to be reproduced as source of spherical waves; (2) Optimization and speed-up of the algorithms used, in order to produce a portable code, runnable on several hardware platforms. In this paper calculation methods to obtain some fundamental geometric functions (points, lines, curves) are described. Furthermore, by the juxtaposition of these primitives functions it is possible to produce the holograms of more complex objects. Many examples of generated CGHs are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Meng, E-mail: mengwu@stanford.edu; Fahrig, Rebecca
2014-11-01
Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images thatmore » are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT volume. Conclusions: Their proposed prior CT-augmented OPAST reconstruction algorithm improves lung nodule visibility and depth resolution for the SBDX system.« less
Limited data tomographic image reconstruction via dual formulation of total variation minimization
NASA Astrophysics Data System (ADS)
Jang, Kwang Eun; Sung, Younghun; Lee, Kangeui; Lee, Jongha; Cho, Seungryong
2011-03-01
The X-ray mammography is the primary imaging modality for breast cancer screening. For the dense breast, however, the mammogram is usually difficult to read due to tissue overlap problem caused by the superposition of normal tissues. The digital breast tomosynthesis (DBT) that measures several low dose projections over a limited angle range may be an alternative modality for breast imaging, since it allows the visualization of the cross-sectional information of breast. The DBT, however, may suffer from the aliasing artifact and the severe noise corruption. To overcome these problems, a total variation (TV) regularized statistical reconstruction algorithm is presented. Inspired by the dual formulation of TV minimization in denoising and deblurring problems, we derived a gradient-type algorithm based on statistical model of X-ray tomography. The objective function is comprised of a data fidelity term derived from the statistical model and a TV regularization term. The gradient of the objective function can be easily calculated using simple operations in terms of auxiliary variables. After a descending step, the data fidelity term is renewed in each iteration. Since the proposed algorithm can be implemented without sophisticated operations such as matrix inverse, it provides an efficient way to include the TV regularization in the statistical reconstruction method, which results in a fast and robust estimation for low dose projections over the limited angle range. Initial tests with an experimental DBT system confirmed our finding.
Keivanian, Farshid; Mehrshad, Nasser; Bijari, Abolfazl
2016-01-01
D Flip-Flop as a digital circuit can be used as a timing element in many sophisticated circuits. Therefore the optimum performance with the lowest power consumption and acceptable delay time will be critical issue in electronics circuits. The newly proposed Dual-Edge Triggered Static D Flip-Flop circuit layout is defined as a multi-objective optimization problem. For this, an optimum fuzzy inference system with fuzzy rules is proposed to enhance the performance and convergence of non-dominated sorting Genetic Algorithm-II by adaptive control of the exploration and exploitation parameters. By using proposed Fuzzy NSGA-II algorithm, the more optimum values for MOSFET channel widths and power supply are discovered in search space than ordinary NSGA types. What is more, the design parameters involving NMOS and PMOS channel widths and power supply voltage and the performance parameters including average power consumption and propagation delay time are linked. To do this, the required mathematical backgrounds are presented in this study. The optimum values for the design parameters of MOSFETs channel widths and power supply are discovered. Based on them the power delay product quantity (PDP) is 6.32 PJ at 125 MHz Clock Frequency, L = 0.18 µm, and T = 27 °C.
A visually guided collision warning system with a neuromorphic architecture.
Okuno, Hirotsugu; Yagi, Tetsuya
2008-12-01
We have designed a visually guided collision warning system with a neuromorphic architecture, employing an algorithm inspired by the visual nervous system of locusts. The system was implemented with mixed analog-digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The resistive network processes the interaction between the laterally spreading excitatory and inhibitory signals instantaneously, which is essential for real-time computation of collision avoidance with a low power consumption and a compact hardware. The system responded selectively to approaching objects of simulated movie images at close range. The system was, however, confronted with serious noise problems due to the vibratory ego-motion, when it was installed in a mobile miniature car. To overcome this problem, we developed the algorithm, which is also installable in FPGA circuits, in order for the system to respond robustly during the ego-motion.
Citrus fruit recognition using color image analysis
NASA Astrophysics Data System (ADS)
Xu, Huirong; Ying, Yibin
2004-10-01
An algorithm for the automatic recognition of citrus fruit on the tree was developed. Citrus fruits have different color with leaves and branches portions. Fifty-three color images with natural citrus-grove scenes were digitized and analyzed for red, green, and blue (RGB) color content. The color characteristics of target surfaces (fruits, leaves, or branches) were extracted using the range of interest (ROI) tool. Several types of contrast color indices were designed and tested. In this study, the fruit image was enhanced using the (R-B) contrast color index because results show that the fruit have the highest color difference among the objects in the image. A dynamic threshold function was derived from this color model and used to distinguish citrus fruit from background. The results show that the algorithm worked well under frontlighting or backlighting condition. However, there are misclassifications when the fruit or the background is under a brighter sunlight.
Scanning for Digitization Projects
ERIC Educational Resources Information Center
Wentzel, Larry
2007-01-01
Librarians and archivists find themselves facing the prospect of digitization. Everyone is doing it, everyone needs it. Discussions rage nationally and internationally concerning what to digitize and the best means to present and retain digital objects. Digitization is the act of making something digital, expressing a physical object "in numerical…
Application of square-root filtering for spacecraft attitude control
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Schmidt, S. F.; Goka, T.
1978-01-01
Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.
A new approach of watermarking technique by means multichannel wavelet functions
NASA Astrophysics Data System (ADS)
Agreste, Santa; Puccio, Luigia
2012-12-01
The digital piracy involving images, music, movies, books, and so on, is a legal problem that has not found a solution. Therefore it becomes crucial to create and to develop methods and numerical algorithms in order to solve the copyright problems. In this paper we focus the attention on a new approach of watermarking technique applied to digital color images. Our aim is to describe the realized watermarking algorithm based on multichannel wavelet functions with multiplicity r = 3, called MCWM 1.0. We report a large experimentation and some important numerical results in order to show the robustness of the proposed algorithm to geometrical attacks.
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1990-01-01
A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.
A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Rao, Hariprasad Nannapaneni
1989-01-01
The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.
Digital SAR processing using a fast polynomial transform
NASA Technical Reports Server (NTRS)
Butman, S.; Lipes, R.; Rubin, A.; Truong, T. K.
1981-01-01
A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network.
NASA Astrophysics Data System (ADS)
Cobos Arribas, Pedro; Monasterio Huelin Macia, Felix
2003-04-01
A FPGA based hardware implementation of the Santos-Victor optical flow algorithm, useful in robot guidance applications, is described in this paper. The system used to do contains an ALTERA FPGA (20K100), an interface with a digital camera, three VRAM memories to contain the data input and some output memories (a VRAM and a EDO) to contain the results. The system have been used previously to develop and test other vision algorithms, such as image compression, optical flow calculation with differential and correlation methods. The designed system let connect the digital camera, or the FPGA output (results of algorithms) to a PC, throw its Firewire or USB port. The problems take place in this occasion have motivated to adopt another hardware structure for certain vision algorithms with special requirements, that need a very hard code intensive processing.
Digital codec for real-time processing of broadcast quality video signals at 1.8 bits/pixel
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Whyte, Wayne A., Jr.
1989-01-01
The authors present the hardware implementation of a digital television bandwidth compression algorithm which processes standard NTSC (National Television Systems Committee) composite color television signals and produces broadcast-quality video in real time at an average of 1.8 b/pixel. The sampling rate used with this algorithm results in 768 samples over the active portion of each video line by 512 active video lines per video frame. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a nonadaptive predictor, nonuniform quantizer, and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The nonadaptive predictor and multilevel Huffman coder combine to set this technique apart from prior-art DPCM encoding algorithms. The authors describe the data compression algorithm and the hardware implementation of the codec and provide performance results.
The objective assessment of experts' and novices' suturing skills using an image analysis program.
Frischknecht, Adam C; Kasten, Steven J; Hamstra, Stanley J; Perkins, Noel C; Gillespie, R Brent; Armstrong, Thomas J; Minter, Rebecca M
2013-02-01
To objectively assess suturing performance using an image analysis program and to provide validity evidence for this assessment method by comparing experts' and novices' performance. In 2009, the authors used an image analysis program to extract objective variables from digital images of suturing end products obtained during a previous study involving third-year medical students (novices) and surgical faculty and residents (experts). Variables included number of stitches, stitch length, total bite size, travel, stitch orientation, total bite-size-to-travel ratio, and symmetry across the incision ratio. The authors compared all variables between groups to detect significant differences and two variables (total bite-size-to-travel ratio and symmetry across the incision ratio) to ideal values. Five experts and 15 novices participated. Experts' and novices' performances differed significantly (P < .05) with large effect sizes attributable to experience (Cohen d > 0.8) for total bite size (P = .009, d = 1.5), travel (P = .045, d = 1.1), total bite-size-to-travel ratio (P < .0001, d = 2.6), stitch orientation (P = .014,d = 1.4), and symmetry across the incision ratio (P = .022, d = 1.3). The authors found that a simple computer algorithm can extract variables from digital images of a running suture and rapidly provide quantitative summative assessment feedback. The significant differences found between groups confirm that this system can discriminate between skill levels. This image analysis program represents a viable training tool for objectively assessing trainees' suturing, a foundational skill for many medical specialties.
NASA Astrophysics Data System (ADS)
Jorge, Marco G.; Brennand, Tracy A.
2017-07-01
Relict drumlin and mega-scale glacial lineation (positive relief, longitudinal subglacial bedforms - LSBs) morphometry has been used as a proxy for paleo ice-sheet dynamics. LSB morphometric inventories have relied on manual mapping, which is slow and subjective and thus potentially difficult to reproduce. Automated methods are faster and reproducible, but previous methods for LSB semi-automated mapping have not been highly successful. Here, two new object-based methods for the semi-automated extraction of LSBs (footprints) from digital terrain models are compared in a test area in the Puget Lowland, Washington, USA. As segmentation procedures to create LSB-candidate objects, the normalized closed contour method relies on the contouring of a normalized local relief model addressing LSBs on slopes, and the landform elements mask method relies on the classification of landform elements derived from the digital terrain model. For identifying which LSB-candidate objects correspond to LSBs, both methods use the same LSB operational definition: a ruleset encapsulating expert knowledge, published morphometric data, and the morphometric range of LSBs in the study area. The normalized closed contour method was separately applied to four different local relief models, two computed in moving windows and two hydrology-based. Overall, the normalized closed contour method outperformed the landform elements mask method. The normalized closed contour method performed on a hydrological relief model from a multiple direction flow routing algorithm performed best. For an assessment of its transferability, the normalized closed contour method was evaluated on a second area, the Chautauqua drumlin field, Pennsylvania and New York, USA where it performed better than in the Puget Lowland. A broad comparison to previous methods suggests that the normalized relief closed contour method may be the most capable method to date, but more development is required.
Image correlation method for DNA sequence alignment.
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.
Array signal recovery algorithm for a single-RF-channel DBF array
NASA Astrophysics Data System (ADS)
Zhang, Duo; Wu, Wen; Fang, Da Gang
2016-12-01
An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.
NASA Astrophysics Data System (ADS)
Gilbert, B. K.; Robb, R. A.; Chu, A.; Kenue, S. K.; Lent, A. H.; Swartzlander, E. E., Jr.
1981-02-01
Rapid advances during the past ten years of several forms of computer-assisted tomography (CT) have resulted in the development of numerous algorithms to convert raw projection data into cross-sectional images. These reconstruction algorithms are either 'iterative,' in which a large matrix algebraic equation is solved by successive approximation techniques; or 'closed form'. Continuing evolution of the closed form algorithms has allowed the newest versions to produce excellent reconstructed images in most applications. This paper will review several computer software and special-purpose digital hardware implementations of closed form algorithms, either proposed during the past several years by a number of workers or actually implemented in commercial or research CT scanners. The discussion will also cover a number of recently investigated algorithmic modifications which reduce the amount of computation required to execute the reconstruction process, as well as several new special-purpose digital hardware implementations under development in laboratories at the Mayo Clinic.
Quantum Simulation of Tunneling in Small Systems
Sornborger, Andrew T.
2012-01-01
A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution, eliminating at least half of the quantum gates required for the algorithm and more than that in the general case. Such simulations are within reach of current quantum computer architectures. PMID:22916333
Digital Audio Signal Processing and Nde: AN Unlikely but Valuable Partnership
NASA Astrophysics Data System (ADS)
Gaydecki, Patrick
2008-02-01
In the Digital Signal Processing (DSP) group, within the School of Electrical and Electronic Engineering at The University of Manchester, research is conducted into two seemingly distinct and disparate subjects: instrumentation for nondestructive evaluation, and DSP systems & algorithms for digital audio. We have often found that many of the hardware systems and algorithms employed to recover, extract or enhance audio signals may also be applied to signals provided by ultrasonic or magnetic NDE instruments. Furthermore, modern DSP hardware is so fast (typically performing hundreds of millions of operations per second), that much of the processing and signal reconstruction may be performed in real time. Here, we describe some of the hardware systems we have developed, together with algorithms that can be implemented both in real time and offline. A next generation system has now been designed, which incorporates a processor operating at 0.55 Giga MMACS, six input and eight output analogue channels, digital input/output in the form of S/PDIF, a JTAG and a USB interface. The software allows the user, with no knowledge of filter theory or programming, to design and run standard or arbitrary FIR, IIR and adaptive filters. Using audio as a vehicle, we can demonstrate the remarkable properties of modern reconstruction algorithms when used in conjunction with such hardware; applications in NDE include signal enhancement and recovery in acoustic, ultrasonic, magnetic and eddy current modalities.
An all digital phase locked loop for FM demodulation.
NASA Technical Reports Server (NTRS)
Greco, J.; Garodnick, J.; Schilling, D. L.
1972-01-01
A phase-locked loop designed with all-digital circuitry which avoids certain problems, and a digital voltage controlled oscillator algorithm are described. The system operates synchronously and performs all required digital calculations within one sampling period, thereby performing as a real-time special-purpose computer. The SNR ratio is computed for frequency offsets and sinusoidal modulation, and experimental results verify the theoretical calculations.
A satellite AOT derived from the ground sky transmittance measurements
NASA Astrophysics Data System (ADS)
Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Tan, K. C.; Wong, C. J.; Saleh, N. Mohd.
2008-10-01
The optical properties of aerosols such as smoke from burning vary due to aging processes and these particles reach larger sizes at high concentrations. The objectives of this study are to develop and evaluate an algorithm for estimating atmospheric optical thickness from Landsat TM image. This study measured the sky transmittance at the ground using a handheld spectroradiometer in a wide wavelength spectrum to retrieve atmospheric optical thickness. The in situ measurement of atmospheric transmittance data were collected simultaneously with the acquisition of remotely sensed satellite data. The digital numbers for the three visible bands corresponding to the in situ locations were extracted and then converted into reflectance values. The reflectance measured from the satellite was subtracted by the amount given by the surface reflectance to obtain the atmospheric reflectance. These atmospheric reflectance values were used for calibration of the AOT algorithm. This study developed an empirical method to estimate the AOT values from the sky transmittance values. Finally, a AOT map was generated using the proposed algorithm and colour-coded for visual interpretation.
Reliable clarity automatic-evaluation method for optical remote sensing images
NASA Astrophysics Data System (ADS)
Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen
2015-10-01
Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.
Kramers-Kronig receiver operable without digital upsampling.
Bo, Tianwai; Kim, Hoon
2018-05-28
The Kramers-Kronig (KK) receiver is capable of retrieving the phase information of optical single-sideband (SSB) signal from the optical intensity when the optical signal satisfies the minimum phase condition. Thus, it is possible to direct-detect the optical SSB signal without suffering from the signal-signal beat interference and linear transmission impairments. However, due to the spectral broadening induced by nonlinear operations in the conventional KK algorithm, it is necessary to employ the digital upsampling at the beginning of the digital signal processing (DSP). The increased number of samples at the DSP would hinder the real-time implementation of this attractive receiver. Hence, we propose a new DSP algorithm for KK receiver operable at 2 samples per symbol. We adopt a couple of mathematical approximations to avoid the use of nonlinear operations such as logarithm and exponential functions. By using the proposed algorithm, we demonstrate the transmission of 112-Gb/s SSB orthogonal frequency-division-multiplexed signal over an 80-km fiber link. The results show that the proposed algorithm operating at 2 samples per symbol exhibits similar performance to the conventional KK one operating at 6 samples per symbol. We also present the error analysis of the proposed algorithm for KK receiver in comparison with the conventional one.
The Clustering of High-redshift (2.9 ≤ z ≤ 5.1) Quasars in SDSS Stripe 82
NASA Astrophysics Data System (ADS)
Timlin, John D.; Ross, Nicholas P.; Richards, Gordon T.; Myers, Adam D.; Pellegrino, Andrew; Bauer, Franz E.; Lacy, Mark; Schneider, Donald P.; Wollack, Edward J.; Zakamska, Nadia L.
2018-05-01
We present a measurement of the two-point autocorrelation function of photometrically selected high-z quasars over ∼100 deg2 on the Sloan Digital Sky Survey Stripe 82 field. Selection is performed using three machine-learning algorithms in a six-dimensional optical/mid-infrared color space. Optical data from the Sloan Digital Sky Survey are combined with overlapping deep mid-infrared data from the Spitzer IRAC Equatorial Survey and the Spitzer-HETDEX Exploratory Large-Area survey. Our selection algorithms are trained on the colors of known high-z quasars. The selected quasar sample consists of 1378 objects and contains both spectroscopically confirmed quasars and photometrically selected quasar candidates. These objects span a redshift range of 2.9 ≤ z ≤ 5.1 and are generally fainter than i = 20.2, a regime that has lacked sufficient number density to perform autocorrelation function measurements of photometrically classified quasars. We compute the angular correlation function of these data, marginally detecting quasar clustering. We fit a single power law with an index of δ = 1.39 ± 0.618 and amplitude of θ 0 = 0.‧71 ± 0.‧546 . A dark matter model is fit to the angular correlation function to estimate the linear bias. At the average redshift of our survey (< z> =3.38), the bias is b = 6.78 ± 1.79. Using this bias, we calculate a characteristic dark matter halo mass of 1.70–9.83× {10}12{h}-1 {M}ȯ . Our bias estimate suggests that quasar feedback intermittently shuts down the accretion of gas onto the central supermassive black hole at early times. If confirmed, these results hint at a level of luminosity dependence in the clustering of quasars at high-z.
MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahesh, M; Gingold, E; Jones, A
2014-06-15
Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panelmore » digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose.« less
NASA Astrophysics Data System (ADS)
Sharif, Harlina Md; Hazumi, Hazman; Hafizuddin Meli, Rafiq
2018-01-01
3D imaging technologies have undergone massive revolution in recent years. Despite this rapid development, documentation of 3D cultural assets in Malaysia is still very much reliant upon conventional techniques such as measured drawings and manual photogrammetry. There is very little progress towards exploring new methods or advanced technologies to convert 3D cultural assets into 3D visual representation and visualization models that are easily accessible for information sharing. In recent years, however, the advent of computer vision (CV) algorithms make it possible to reconstruct 3D geometry of objects by using image sequences from digital cameras, which are then processed by web services and freeware applications. This paper presents a completed stage of an exploratory study that investigates the potentials of using CV automated image-based open-source software and web services to reconstruct and replicate cultural assets. By selecting an intricate wooden boat, Petalaindera, this study attempts to evaluate the efficiency of CV systems and compare it with the application of 3D laser scanning, which is known for its accuracy, efficiency and high cost. The final aim of this study is to compare the visual accuracy of 3D models generated by CV system, and 3D models produced by 3D scanning and manual photogrammetry for an intricate subject such as the Petalaindera. The final objective is to explore cost-effective methods that could provide fundamental guidelines on the best practice approach for digital heritage in Malaysia.
ERIC Educational Resources Information Center
Kahn, Robert E.; Lyons, Patrice A.; Brahms, Ewald; Brand, Amy; van den Bergen, Mieke
2001-01-01
Includes four articles that discuss the use of digital objects to represent value in a network environment; digital library initiatives at the central public funding organization for academic research in Germany; an application of the Digital Object Identifier System; and the Web site of the Fermi National Accelerator Laboratory. (LRW)
Nonrigid Image Registration in Digital Subtraction Angiography Using Multilevel B-Spline
2013-01-01
We address the problem of motion artifact reduction in digital subtraction angiography (DSA) using image registration techniques. Most of registration algorithms proposed for application in DSA, have been designed for peripheral and cerebral angiography images in which we mainly deal with global rigid motions. These algorithms did not yield good results when applied to coronary angiography images because of complex nonrigid motions that exist in this type of angiography images. Multiresolution and iterative algorithms are proposed to cope with this problem, but these algorithms are associated with high computational cost which makes them not acceptable for real-time clinical applications. In this paper we propose a nonrigid image registration algorithm for coronary angiography images that is significantly faster than multiresolution and iterative blocking methods and outperforms competing algorithms evaluated on the same data sets. This algorithm is based on a sparse set of matched feature point pairs and the elastic registration is performed by means of multilevel B-spline image warping. Experimental results with several clinical data sets demonstrate the effectiveness of our approach. PMID:23971026
Qi, Xin; Xing, Fuyong; Foran, David J.; Yang, Lin
2013-01-01
Summary Background Automated analysis of imaged histopathology specimens could potentially provide support for improved reliability in detection and classification in a range of investigative and clinical cancer applications. Automated segmentation of cells in the digitized tissue microarray (TMA) is often the prerequisite for quantitative analysis. However overlapping cells usually bring significant challenges for traditional segmentation algorithms. Objectives In this paper, we propose a novel, automatic algorithm to separate overlapping cells in stained histology specimens acquired using bright-field RGB imaging. Methods It starts by systematically identifying salient regions of interest throughout the image based upon their underlying visual content. The segmentation algorithm subsequently performs a quick, voting based seed detection. Finally, the contour of each cell is obtained using a repulsive level set deformable model using the seeds generated in the previous step. We compared the experimental results with the most current literature, and the pixel wise accuracy between human experts' annotation and those generated using the automatic segmentation algorithm. Results The method is tested with 100 image patches which contain more than 1000 overlapping cells. The overall precision and recall of the developed algorithm is 90% and 78%, respectively. We also implement the algorithm on GPU. The parallel implementation is 22 times faster than its C/C++ sequential implementation. Conclusion The proposed overlapping cell segmentation algorithm can accurately detect the center of each overlapping cell and effectively separate each of the overlapping cells. GPU is proven to be an efficient parallel platform for overlapping cell segmentation. PMID:22526139
Vergnaud, Anne-Claire; Aresu, Maria; McRobie, Dennis; Singh, Deepa; Spear, Jeanette; Heard, Andy; Elliott, Paul
2016-07-01
Terrestrial Trunked Radio (TETRA) is a digital communication system progressively adopted by Police Forces in Great Britain since 2001. In 2000, the UK Independent Expert Group on Mobile Phones suggested that exposure to TETRA-like signal modulation might have adverse effects on health. The Airwave Health Monitoring Study was established to investigate possible long-term effects of TETRA use on health. This requires estimation of TETRA use among Police Force employees participating in the study. We investigated TETRA usage among 42,112 Police officers and staff. An algorithm was created to link each personal radio user to his/her objective radio usage records for the 26,035 participants with available data. We linked 16,577 personal radio users to their objective radio usage records and compared self-reported usage with data from the TETRA operator for those individuals. For weekly usage, the correlation between self-reported and operator-derived personal radio usage was r=0.69 for number and r=0.59 for the duration of calls. Compared with objective data, participants under-reported the number of calls and over-reported the duration of calls by a factor of around 4 and 1.6 respectively. Correlations were lower and bias higher when looking at daily usage. Where both objective and self-reported information were available, our study showed substantial misreporting in self-reported TETRA usage. Successful linkage of large numbers of TETRA users to objective data on their personal radios will allow objective assessment of TETRA radio usage for these participants and development of algorithms to correct bias in self-reported data for the remainder. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of a digital method for neutron/gamma-ray discrimination based on matched filtering
NASA Astrophysics Data System (ADS)
Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.
2016-09-01
Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.
Recognition of digital characteristics based new improved genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, Meng; Xu, Guoqiang; Lin, Zihao
2017-08-01
In the field of digital signal processing, Estimating the characteristics of signal modulation parameters is an significant research direction. The paper determines the set of eigenvalue which can show the difference of the digital signal modulation based on the deep research of the new improved genetic algorithm. Firstly take them as the best gene pool; secondly, The best gene pool will be changed in the genetic evolvement by selecting, overlapping and eliminating each other; Finally, Adapting the strategy of futher enhance competition and punishment to more optimizer the gene pool and ensure each generation are of high quality gene. The simulation results show that this method not only has the global convergence, stability and faster convergence speed.
Linder, Nina; Turkki, Riku; Walliander, Margarita; Mårtensson, Andreas; Diwan, Vinod; Rahtu, Esa; Pietikäinen, Matti; Lundin, Mikael; Lundin, Johan
2014-01-01
Microscopy is the gold standard for diagnosis of malaria, however, manual evaluation of blood films is highly dependent on skilled personnel in a time-consuming, error-prone and repetitive process. In this study we propose a method using computer vision detection and visualization of only the diagnostically most relevant sample regions in digitized blood smears. Giemsa-stained thin blood films with P. falciparum ring-stage trophozoites (n = 27) and uninfected controls (n = 20) were digitally scanned with an oil immersion objective (0.1 µm/pixel) to capture approximately 50,000 erythrocytes per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image features (local binary patterns, local contrast and Scale-invariant feature transform descriptors) used as input to a support vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples. The diagnostic accuracy was tested on 31 samples (19 infected and 12 controls). From each digitized area of a blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum. The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers respectively using the diagnostic tool. Parasitemia was separately calculated by the automated system and the correlation coefficient between manual and automated parasitemia counts was 0.97. We developed a decision support system for detecting malaria parasites using a computer vision algorithm combined with visualization of sample areas with the highest probability of malaria infection. The system provides a novel method for blood smear screening with a significantly reduced need for visual examination and has a potential to increase the throughput in malaria diagnostics.
Optical digitizing and strategies to combine different views of an optical sensor
NASA Astrophysics Data System (ADS)
Duwe, Hans P.
1997-09-01
Non-contact digitization of objects and surfaces with optical sensors based on fringe or pattern projection in combination with a CCD-camera allows a representation of surfaces with pointclouds equals x, y, z data points. To digitize the total surface of an object, it is necessary to combine the different measurement data obtained by the optical sensor from different views. Depending on the size of the object and the required accuracy of the measured data, different sensor set-ups with handling system or a combination of linear and rotation axes are described. Furthermore, strategies to match the overlapping pointclouds of a digitized object are introduced. This is very important especially for the digitization of large objects like 1:1 car models, etc. With different sensor sizes, it is possible to digitize small objects like teeth, crowns, inlays, etc. with an overall accuracy of 20 micrometer as well as large objects like car models, with a total accuracy of 0.5 mm. The various applications in the field of optical digitization are described.
NASA Astrophysics Data System (ADS)
Bertin, Stephane; Friedrich, Heide; Delmas, Patrice; Chan, Edwin; Gimel'farb, Georgy
2015-03-01
Grain-scale monitoring of fluvial morphology is important for the evaluation of river system dynamics. Significant progress in remote sensing and computer performance allows rapid high-resolution data acquisition, however, applications in fluvial environments remain challenging. Even in a controlled environment, such as a laboratory, the extensive acquisition workflow is prone to the propagation of errors in digital elevation models (DEMs). This is valid for both of the common surface recording techniques: digital stereo photogrammetry and terrestrial laser scanning (TLS). The optimisation of the acquisition process, an effective way to reduce the occurrence of errors, is generally limited by the use of commercial software. Therefore, the removal of evident blunders during post processing is regarded as standard practice, although this may introduce new errors. This paper presents a detailed evaluation of a digital stereo-photogrammetric workflow developed for fluvial hydraulic applications. The introduced workflow is user-friendly and can be adapted to various close-range measurements: imagery is acquired with two Nikon D5100 cameras and processed using non-proprietary "on-the-job" calibration and dense scanline-based stereo matching algorithms. Novel ground truth evaluation studies were designed to identify the DEM errors, which resulted from a combination of calibration errors, inaccurate image rectifications and stereo-matching errors. To ensure optimum DEM quality, we show that systematic DEM errors must be minimised by ensuring a good distribution of control points throughout the image format during calibration. DEM quality is then largely dependent on the imagery utilised. We evaluated the open access multi-scale Retinex algorithm to facilitate the stereo matching, and quantified its influence on DEM quality. Occlusions, inherent to any roughness element, are still a major limiting factor to DEM accuracy. We show that a careful selection of the camera-to-object and baseline distance reduces errors in occluded areas and that realistic ground truths help to quantify those errors.
Understand your Algorithm: Drill Down to Sample Visualizations in Jupyter Notebooks
NASA Astrophysics Data System (ADS)
Mapes, B. E.; Ho, Y.; Cheedela, S. K.; McWhirter, J.
2017-12-01
Statistics are the currency of climate dynamics, but the space of all possible algorithms is fathomless - especially for 4-dimensional weather-resolving data that many "impact" variables depend on. Algorithms are designed on data samples, but how do you know if they measure what you expect when turned loose on Big Data? We will introduce the year-1 prototype of a 3-year scientist-led, NSF-supported, Unidata-quality software stack called DRILSDOWN (https://brianmapes.github.io/EarthCube-DRILSDOWN/) for automatically extracting, integrating, and visualizing multivariate 4D data samples. Based on a customizable "IDV bundle" of data sources, fields and displays supplied by the user, the system will teleport its space-time coordinates to fetch Cases of Interest (edge cases, typical cases, etc.) from large aggregated repositories. These standard displays can serve as backdrops to overlay with your value-added fields (such as derived quantities stored on a user's local disk). Fields can be readily pulled out of the visualization object for further processing in Python. The hope is that algorithms successfully tested in this visualization space will then be lifted out and added to automatic processing toolchains, lending confidence in the next round of processing, to seek the next Cases of Interest, in light of a user's statistical measures of "Interest". To log the scientific work done in this vein, the visualizations are wrapped in iPython-based Jupyter notebooks for rich, human-readable documentation (indeed, quasi-publication with formatted text, LaTex math, etc.). Such notebooks are readable and executable, with digital replicability and provenance built in. The entire digital object of a case study can be stored in a repository, where libraries of these Case Study Notebooks can be examined in a browser. Model data (the session topic) are of course especially convenient for this system, but observations of all sorts can also be brought in, overlain, and differenced or otherwise co-processed. The system is available in various tiers, from minimal-install GUI visualizations only, to GUI+Notebook system, to the full system with the repository software. We seek interested users, initially in a "beta tester" mode with the goodwill to offer reports and requests to help drive improvements in project years 2 and 3.
Digitally balanced detection for optical tomography.
Hafiz, Rehan; Ozanyan, Krikor B
2007-10-01
Analog balanced Photodetection has found extensive usage for sensing of a weak absorption signal buried in laser intensity noise. This paper proposes schemes for compact, affordable, and flexible digital implementation of the already established analog balanced detection, as part of a multichannel digital tomography system. Variants of digitally balanced detection (DBD) schemes, suitable for weak signals on a largely varying background or weakly varying envelopes of high frequency carrier waves, are introduced analytically and elaborated in terms of algorithmic and hardware flow. The DBD algorithms are implemented on a low-cost general purpose reconfigurable hardware (field-programmable gate array), utilizing less than half of its resources. The performance of the DBD schemes compare favorably with their analog counterpart: A common mode rejection ratio of 50 dB was observed over a bandwidth of 300 kHz, limited mainly by the host digital hardware. The close relationship between the DBD outputs and those of known analog balancing circuits is discussed in principle and shown experimentally in the example case of propane gas detection.
Single-camera three-dimensional tracking of natural particulate and zooplankton
NASA Astrophysics Data System (ADS)
Troutman, Valerie A.; Dabiri, John O.
2018-07-01
We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm × 10 cm × 24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.
Plenoptic camera image simulation for reconstruction algorithm verification
NASA Astrophysics Data System (ADS)
Schwiegerling, Jim
2014-09-01
Plenoptic cameras have emerged in recent years as a technology for capturing light field data in a single snapshot. A conventional digital camera can be modified with the addition of a lenslet array to create a plenoptic camera. Two distinct camera forms have been proposed in the literature. The first has the camera image focused onto the lenslet array. The lenslet array is placed over the camera sensor such that each lenslet forms an image of the exit pupil onto the sensor. The second plenoptic form has the lenslet array relaying the image formed by the camera lens to the sensor. We have developed a raytracing package that can simulate images formed by a generalized version of the plenoptic camera. Several rays from each sensor pixel are traced backwards through the system to define a cone of rays emanating from the entrance pupil of the camera lens. Objects that lie within this cone are integrated to lead to a color and exposure level for that pixel. To speed processing three-dimensional objects are approximated as a series of planes at different depths. Repeating this process for each pixel in the sensor leads to a simulated plenoptic image on which different reconstruction algorithms can be tested.
Automated Classification of Heritage Buildings for As-Built Bim Using Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Bassier, M.; Vergauwen, M.; Van Genechten, B.
2017-08-01
Semantically rich three dimensional models such as Building Information Models (BIMs) are increasingly used in digital heritage. They provide the required information to varying stakeholders during the different stages of the historic buildings life cyle which is crucial in the conservation process. The creation of as-built BIM models is based on point cloud data. However, manually interpreting this data is labour intensive and often leads to misinterpretations. By automatically classifying the point cloud, the information can be proccesed more effeciently. A key aspect in this automated scan-to-BIM process is the classification of building objects. In this research we look to automatically recognise elements in existing buildings to create compact semantic information models. Our algorithm efficiently extracts the main structural components such as floors, ceilings, roofs, walls and beams despite the presence of significant clutter and occlusions. More specifically, Support Vector Machines (SVM) are proposed for the classification. The algorithm is evaluated using real data of a variety of existing buildings. The results prove that the used classifier recognizes the objects with both high precision and recall. As a result, entire data sets are reliably labelled at once. The approach enables experts to better document and process heritage assets.
Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN
2006-02-14
Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.
Internet Protocol Security (IPSEC): Testing and Implications on IPv4 and IPv6 Networks
2008-08-27
Message Authentication Code-Message Digest 5-96). Due to the processing power consumption and slowness of public key authentication methods, RSA ...MODP) group with a 768 -bit modulus 2. a MODP group with a 1024-bit modulus 3. an Elliptic Curve Group over GF[ 2n ] (EC2N) group with a 155-bit...nonces, digital signatures using the Digital Signature Algorithm, and the Rivest-Shamir- Adelman ( RSA ) algorithm. For more information about the
In-vivo study of blood flow in capillaries using μPIV method
NASA Astrophysics Data System (ADS)
Kurochkin, Maxim A.; Fedosov, Ivan V.; Tuchin, Valery V.
2014-01-01
A digital optical system for intravital capillaroscopy has been developed. It implements the particle image velocimetry (PIV) based approach for measurements of red blood cells velocity in individual capillary of human nailfold. We propose to use a digital real time stabilization technique for compensation of impact of involuntary movements of a finger on results of measurements. Image stabilization algorithm is based on correlation of feature tracking. The efficiency of designed image stabilization algorithm was experimentally demonstrated.
Digital SAR processing using a fast polynomial transform
NASA Technical Reports Server (NTRS)
Truong, T. K.; Lipes, R. G.; Butman, S. A.; Reed, I. S.; Rubin, A. L.
1984-01-01
A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network. Previously announced in STAR as N82-11295
Bhattacharyya, Parthasarathi; Mondal, Ashok; Dey, Rana; Saha, Dipanjan; Saha, Goutam
2015-05-01
Auscultation is an important part of the clinical examination of different lung diseases. Objective analysis of lung sounds based on underlying characteristics and its subsequent automatic interpretations may help a clinical practice. We collected the breath sounds from 8 normal subjects and 20 diffuse parenchymal lung disease (DPLD) patients using a newly developed instrument and then filtered off the heart sounds using a novel technology. The collected sounds were thereafter analysed digitally on several characteristics as dynamical complexity, texture information and regularity index to find and define their unique digital signatures for differentiating normality and abnormality. For convenience of testing, these characteristic signatures of normal and DPLD lung sounds were transformed into coloured visual representations. The predictive power of these images has been validated by six independent observers that include three physicians. The proposed method gives a classification accuracy of 100% for composite features for both the normal as well as lung sound signals from DPLD patients. When tested by independent observers on the visually transformed images, the positive predictive value to diagnose the normality and DPLD remained 100%. The lung sounds from the normal and DPLD subjects could be differentiated and expressed according to their digital signatures. On visual transformation to coloured images, they retain 100% predictive power. This technique may assist physicians to diagnose DPLD from visual images bearing the digital signature of the condition. © 2015 Asian Pacific Society of Respirology.
Design of minimum multiplier fractional order differentiator based on lattice wave digital filter.
Barsainya, Richa; Rawat, Tarun Kumar; Kumar, Manjeet
2017-01-01
In this paper, a novel design of fractional order differentiator (FOD) based on lattice wave digital filter (LWDF) is proposed which requires minimum number of multiplier for its structural realization. Firstly, the FOD design problem is formulated as an optimization problem using the transfer function of lattice wave digital filter. Then, three optimization algorithms, namely, genetic algorithm (GA), particle swarm optimization (PSO) and cuckoo search algorithm (CSA) are applied to determine the optimal LWDF coefficients. The realization of FOD using LWD structure increases the design accuracy, as only N number of coefficients are to be optimized for Nth order FOD. Finally, two design examples of 3rd and 5th order lattice wave digital fractional order differentiator (LWDFOD) are demonstrated to justify the design accuracy. The performance analysis of the proposed design is carried out based on magnitude response, absolute magnitude error (dB), root mean square (RMS) magnitude error, arithmetic complexity, convergence profile and computation time. Simulation results are attained to show the comparison of the proposed LWDFOD with the published works and it is observed that an improvement of 29% is obtained in the proposed design. The proposed LWDFOD approximates the ideal FOD and surpasses the existing ones reasonably well in mid and high frequency range, thereby making the proposed LWDFOD a promising technique for the design of digital FODs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Devalla, Sripad Krishna; Chin, Khai Sing; Mari, Jean-Martial; Tun, Tin A; Strouthidis, Nicholas G; Aung, Tin; Thiéry, Alexandre H; Girard, Michaël J A
2018-01-01
To develop a deep learning approach to digitally stain optical coherence tomography (OCT) images of the optic nerve head (ONH). A horizontal B-scan was acquired through the center of the ONH using OCT (Spectralis) for one eye of each of 100 subjects (40 healthy and 60 glaucoma). All images were enhanced using adaptive compensation. A custom deep learning network was then designed and trained with the compensated images to digitally stain (i.e., highlight) six tissue layers of the ONH. The accuracy of our algorithm was assessed (against manual segmentations) using the dice coefficient, sensitivity, specificity, intersection over union (IU), and accuracy. We studied the effect of compensation, number of training images, and performance comparison between glaucoma and healthy subjects. For images it had not yet assessed, our algorithm was able to digitally stain the retinal nerve fiber layer + prelamina, the RPE, all other retinal layers, the choroid, and the peripapillary sclera and lamina cribrosa. For all tissues, the dice coefficient, sensitivity, specificity, IU, and accuracy (mean) were 0.84 ± 0.03, 0.92 ± 0.03, 0.99 ± 0.00, 0.89 ± 0.03, and 0.94 ± 0.02, respectively. Our algorithm performed significantly better when compensated images were used for training (P < 0.001). Besides offering a good reliability, digital staining also performed well on OCT images of both glaucoma and healthy individuals. Our deep learning algorithm can simultaneously stain the neural and connective tissues of the ONH, offering a framework to automatically measure multiple key structural parameters of the ONH that may be critical to improve glaucoma management.
Rajpara, S M; Botello, A P; Townend, J; Ormerod, A D
2009-09-01
Dermoscopy improves diagnostic accuracy of the unaided eye for melanoma, and digital dermoscopy with artificial intelligence or computer diagnosis has also been shown useful for the diagnosis of melanoma. At present there is no clear evidence regarding the diagnostic accuracy of dermoscopy compared with artificial intelligence. To evaluate the diagnostic accuracy of dermoscopy and digital dermoscopy/artificial intelligence for melanoma diagnosis and to compare the diagnostic accuracy of the different dermoscopic algorithms with each other and with digital dermoscopy/artificial intelligence for the detection of melanoma. A literature search on dermoscopy and digital dermoscopy/artificial intelligence for melanoma diagnosis was performed using several databases. Titles and abstracts of the retrieved articles were screened using a literature evaluation form. A quality assessment form was developed to assess the quality of the included studies. Heterogeneity among the studies was assessed. Pooled data were analysed using meta-analytical methods and comparisons between different algorithms were performed. Of 765 articles retrieved, 30 studies were eligible for meta-analysis. Pooled sensitivity for artificial intelligence was slightly higher than for dermoscopy (91% vs. 88%; P = 0.076). Pooled specificity for dermoscopy was significantly better than artificial intelligence (86% vs. 79%; P < 0.001). Pooled diagnostic odds ratio was 51.5 for dermoscopy and 57.8 for artificial intelligence, which were not significantly different (P = 0.783). There were no significance differences in diagnostic odds ratio among the different dermoscopic diagnostic algorithms. Dermoscopy and artificial intelligence performed equally well for diagnosis of melanocytic skin lesions. There was no significant difference in the diagnostic performance of various dermoscopy algorithms. The three-point checklist, the seven-point checklist and Menzies score had better diagnostic odds ratios than the others; however, these results need to be confirmed by a large-scale high-quality population-based study.
Information theoretic analysis of edge detection in visual communication
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2010-08-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the artifacts introduced into the process by the image gathering process. However, experiments show that the image gathering process profoundly impacts the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. In this paper, we perform an end-to-end information theory based system analysis to assess edge detection methods. We evaluate the performance of the different algorithms as a function of the characteristics of the scene, and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge detection algorithm is regarded to have high performance only if the information rate from the scene to the edge approaches the maximum possible. This goal can be achieved only by jointly optimizing all processes. People generally use subjective judgment to compare different edge detection methods. There is not a common tool that can be used to evaluate the performance of the different algorithms, and to give people a guide for selecting the best algorithm for a given system or scene. Our information-theoretic assessment becomes this new tool to which allows us to compare the different edge detection operators in a common environment.
NASA Astrophysics Data System (ADS)
Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing
2016-11-01
The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.
The application of digital image plane holography technology to identify Chinese herbal medicine
NASA Astrophysics Data System (ADS)
Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui
2012-03-01
In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.
Comparison of different phantoms used in digital diagnostic imaging
NASA Astrophysics Data System (ADS)
Bor, Dogan; Unal, Elif; Uslu, Anil
2015-09-01
The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.
NASA Astrophysics Data System (ADS)
Costache, G. N.; Gavat, I.
2004-09-01
Along with the aggressive growing of the amount of digital data available (text, audio samples, digital photos and digital movies joined all in the multimedia domain) the need for classification, recognition and retrieval of this kind of data became very important. In this paper will be presented a system structure to handle multimedia data based on a recognition perspective. The main processing steps realized for the interesting multimedia objects are: first, the parameterization, by analysis, in order to obtain a description based on features, forming the parameter vector; second, a classification, generally with a hierarchical structure to make the necessary decisions. For audio signals, both speech and music, the derived perceptual features are the melcepstral (MFCC) and the perceptual linear predictive (PLP) coefficients. For images, the derived features are the geometric parameters of the speaker mouth. The hierarchical classifier consists generally in a clustering stage, based on the Kohonnen Self-Organizing Maps (SOM) and a final stage, based on a powerful classification algorithm called Support Vector Machines (SVM). The system, in specific variants, is applied with good results in two tasks: the first, is a bimodal speech recognition which uses features obtained from speech signal fused to features obtained from speaker's image and the second is a music retrieval from large music database.
An Interactive Program on Digitizing Historical Seismograms
NASA Astrophysics Data System (ADS)
Xu, Y.; Xu, T.
2013-12-01
Retrieving information from historical seismograms is of great importance since they are considered the unique sources that provide quantitative information of historical earthquakes. Modern techniques of seismology require digital forms of seismograms that are essentially a sequence of time-amplitude pairs. However, the historical seismograms, after scanned into computers, are two dimensional arrays. Each element of the arrays contains the grayscale value or RGB value of the corresponding pixel. The problem of digitizing historical seismograms, referred to as converting historical seismograms to digital seismograms, can be formulated as an inverse problem that generating sequences of time-amplitude pairs from a two dimension arrays. This problem has infinite solutions. The algorithm for automatic digitization of historical seismogram presented considers several features of seismograms, including continuity, smoothness of the seismic traces as the prior information, and assumes that the amplitude is a single-valued function of time. An interactive program based on the algorithm is also presented. The program is developed using Matlab GUI and has both automatic and manual modality digitization. Users can easily switch between them, and try different combinations to get the optimal results. Several examples are given to illustrate the results of digitizing seismograms using the program, including a photographic record and a wide-angle reflection/refraction seismogram. Digitized result of the program (redrawn using Golden Software Surfer for high resolution image). (a) shows the result of automatic digitization, and (b) is the result after manual correction.
Ant-cuckoo colony optimization for feature selection in digital mammogram.
Jona, J B; Nagaveni, N
2014-01-15
Digital mammogram is the only effective screening method to detect the breast cancer. Gray Level Co-occurrence Matrix (GLCM) textural features are extracted from the mammogram. All the features are not essential to detect the mammogram. Therefore identifying the relevant feature is the aim of this work. Feature selection improves the classification rate and accuracy of any classifier. In this study, a new hybrid metaheuristic named Ant-Cuckoo Colony Optimization a hybrid of Ant Colony Optimization (ACO) and Cuckoo Search (CS) is proposed for feature selection in Digital Mammogram. ACO is a good metaheuristic optimization technique but the drawback of this algorithm is that the ant will walk through the path where the pheromone density is high which makes the whole process slow hence CS is employed to carry out the local search of ACO. Support Vector Machine (SVM) classifier with Radial Basis Kernal Function (RBF) is done along with the ACO to classify the normal mammogram from the abnormal mammogram. Experiments are conducted in miniMIAS database. The performance of the new hybrid algorithm is compared with the ACO and PSO algorithm. The results show that the hybrid Ant-Cuckoo Colony Optimization algorithm is more accurate than the other techniques.
Multiresolution image registration in digital x-ray angiography with intensity variation modeling.
Nejati, Mansour; Pourghassem, Hossein
2014-02-01
Digital subtraction angiography (DSA) is a widely used technique for visualization of vessel anatomy in diagnosis and treatment. However, due to unavoidable patient motions, both externally and internally, the subtracted angiography images often suffer from motion artifacts that adversely affect the quality of the medical diagnosis. To cope with this problem and improve the quality of DSA images, registration algorithms are often employed before subtraction. In this paper, a novel elastic registration algorithm for registration of digital X-ray angiography images, particularly for the coronary location, is proposed. This algorithm includes a multiresolution search strategy in which a global transformation is calculated iteratively based on local search in coarse and fine sub-image blocks. The local searches are accomplished in a differential multiscale framework which allows us to capture both large and small scale transformations. The local registration transformation also explicitly accounts for local variations in the image intensities which incorporated into our model as a change of local contrast and brightness. These local transformations are then smoothly interpolated using thin-plate spline interpolation function to obtain the global model. Experimental results with several clinical datasets demonstrate the effectiveness of our algorithm in motion artifact reduction.
Plancoulaine, Benoît; Laurinaviciene, Aida; Meskauskas, Raimundas; Baltrusaityte, Indra; Besusparis, Justinas; Herlin, Paulette; Laurinavicius, Arvydas
2014-01-01
Digital image analysis (DIA) enables better reproducibility of immunohistochemistry (IHC) studies. Nevertheless, accuracy of the DIA methods needs to be ensured, demanding production of reference data sets. We have reported on methodology to calibrate DIA for Ki67 IHC in breast cancer tissue based on reference data obtained by stereology grid count. To produce the reference data more efficiently, we propose digital IHC wizard generating initial cell marks to be verified by experts. Digital images of proliferation marker Ki67 IHC from 158 patients (one tissue microarray spot per patient) with an invasive ductal carcinoma of the breast were used. Manual data (mD) were obtained by marking Ki67-positive and negative tumour cells, using a stereological method for 2D object enumeration. DIA was used as an initial step in stereology grid count to generate the digital data (dD) marks by Aperio Genie and Nuclear algorithms. The dD were collected into XML files from the DIA markup images and overlaid on the original spots along with the stereology grid. The expert correction of the dD marks resulted in corrected data (cD). The percentages of Ki67 positive tumour cells per spot in the mD, dD, and cD sets were compared by single linear regression analysis. Efficiency of cD production was estimated based on manual editing effort. The percentage of Ki67-positive tumor cells was in very good agreement in the mD, dD, and cD sets: regression of cD from dD (R2=0.92) reflects the impact of the expert editing the dD as well as accuracy of the DIA used; regression of the cD from the mD (R2=0.94) represents the consistency of the DIA-assisted ground truth (cD) with the manual procedure. Nevertheless, the accuracy of detection of individual tumour cells was much lower: in average, 18 and 219 marks per spot were edited due to the Genie and Nuclear algorithm errors, respectively. The DIA-assisted cD production in our experiment saved approximately 2/3 of manual marking. Digital IHC wizard enabled DIA-assisted stereology to produce reference data in a consistent and efficient way. It can provide quality control measure for appraising accuracy of the DIA steps.
2014-01-01
Background Digital image analysis (DIA) enables better reproducibility of immunohistochemistry (IHC) studies. Nevertheless, accuracy of the DIA methods needs to be ensured, demanding production of reference data sets. We have reported on methodology to calibrate DIA for Ki67 IHC in breast cancer tissue based on reference data obtained by stereology grid count. To produce the reference data more efficiently, we propose digital IHC wizard generating initial cell marks to be verified by experts. Methods Digital images of proliferation marker Ki67 IHC from 158 patients (one tissue microarray spot per patient) with an invasive ductal carcinoma of the breast were used. Manual data (mD) were obtained by marking Ki67-positive and negative tumour cells, using a stereological method for 2D object enumeration. DIA was used as an initial step in stereology grid count to generate the digital data (dD) marks by Aperio Genie and Nuclear algorithms. The dD were collected into XML files from the DIA markup images and overlaid on the original spots along with the stereology grid. The expert correction of the dD marks resulted in corrected data (cD). The percentages of Ki67 positive tumour cells per spot in the mD, dD, and cD sets were compared by single linear regression analysis. Efficiency of cD production was estimated based on manual editing effort. Results The percentage of Ki67-positive tumor cells was in very good agreement in the mD, dD, and cD sets: regression of cD from dD (R2=0.92) reflects the impact of the expert editing the dD as well as accuracy of the DIA used; regression of the cD from the mD (R2=0.94) represents the consistency of the DIA-assisted ground truth (cD) with the manual procedure. Nevertheless, the accuracy of detection of individual tumour cells was much lower: in average, 18 and 219 marks per spot were edited due to the Genie and Nuclear algorithm errors, respectively. The DIA-assisted cD production in our experiment saved approximately 2/3 of manual marking. Conclusions Digital IHC wizard enabled DIA-assisted stereology to produce reference data in a consistent and efficient way. It can provide quality control measure for appraising accuracy of the DIA steps. PMID:25565221
Si, Jian-min; Luo, A-li; Wu, Fu-zhao; Wu, Yi-hong
2015-03-01
There are many valuable rare and unusual objects in spectra dataset of Sloan Digital Sky Survey (SDSS) Data Release eight (DR8), such as special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on, so it is extremely significant to search for rare and unusual celestial objects from massive spectra dataset. A novel algorithm based on Kernel dense estimation and K-nearest neighborhoods (KNN) has been presented, and applied to search for rare and unusual celestial objects from 546 383 stellar spectra of SDSS DR8. Their densities are estimated using Gaussian kernel density estimation, the top 5 000 spectra in descend order by their densities are selected as rare objects, and the top 300 000 spectra in ascend order by their densities are selected as normal objects. Then, KNN were used to classify the rest objects, and simultaneously K nearest neighbors of the 5 000 rare spectra are also selected as rare objects. As a result, there are totally 21 193 spectra selected as initial rare spectra, which include error spectra caused by deletion, redden, bad calibration, spectra consisting of different physically irrelevant components, planetary nebulas, QSOs, special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on. By cross identification with SIMBAD, NED, ADS and major literature, it is found that three DZ white dwarfs, one WDMS, two CVs with company of G-type star, three CVs candidates, six DC white dwarfs, one DC white dwarf candidate and one BL Lacertae (BL lac) candidate are our new findings. We also have found one special DA white dwarf with emission lines of Ca II triple and Mg I, and one unknown object whose spectrum looks like a late M star with emission lines and its image looks like a galaxy or nebula.
A digitalized silicon microgyroscope based on embedded FPGA.
Xia, Dunzhu; Yu, Cheng; Wang, Yuliang
2012-09-27
This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system.
A Digitalized Silicon Microgyroscope Based on Embedded FPGA
Xia, Dunzhu; Yu, Cheng; Wang, Yuliang
2012-01-01
This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system. PMID:23201990
Programming the Gesture of Writing: On the Algorithmic Paratexts of the Digital
ERIC Educational Resources Information Center
Adams, Catherine
2016-01-01
In the wake of the digital, some have recommended that we abandon the tedium of teaching handwriting to children in service of promoting "more creative" digital literacies. Others worry that an early diet of keyboard and screen may have deleterious effects on children's social, emotional, and cognitive development, as well as their…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki
2007-02-01
We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontallymore » placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine.« less
NASA Astrophysics Data System (ADS)
Yu, Fei; Hui, Mei; Zhao, Yue-jin
2009-08-01
The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.
Siamese convolutional networks for tracking the spine motion
NASA Astrophysics Data System (ADS)
Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong
2017-09-01
Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.
Dimension Reduction With Extreme Learning Machine.
Kasun, Liyanaarachchi Lekamalage Chamara; Yang, Yan; Huang, Guang-Bin; Zhang, Zhengyou
2016-08-01
Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP), and auto-encoder (AE), is to reduce the noise or irrelevant information of the data. The features of PCA (eigenvectors) and linear AE are not able to represent data as parts (e.g. nose in a face image). On the other hand, NMF and non-linear AE are maimed by slow learning speed and RP only represents a subspace of original data. This paper introduces a dimension reduction framework which to some extend represents data as parts, has fast learning speed, and learns the between-class scatter subspace. To this end, this paper investigates a linear and non-linear dimension reduction framework referred to as extreme learning machine AE (ELM-AE) and sparse ELM-AE (SELM-AE). In contrast to tied weight AE, the hidden neurons in ELM-AE and SELM-AE need not be tuned, and their parameters (e.g, input weights in additive neurons) are initialized using orthogonal and sparse random weights, respectively. Experimental results on USPS handwritten digit recognition data set, CIFAR-10 object recognition, and NORB object recognition data set show the efficacy of linear and non-linear ELM-AE and SELM-AE in terms of discriminative capability, sparsity, training time, and normalized mean square error.
NASA Astrophysics Data System (ADS)
Wang, P.; Huang, C.
2017-12-01
The three-dimensional (3D) structure of buildings and infrastructures is fundamental to understanding and modelling of the impacts and challenges of urbanization in terms of energy use, carbon emissions, and earthquake vulnerabilities. However, spatially detailed maps of urban 3D structure have been scarce, particularly in fast-changing developing countries. We present here a novel methodology to map the volume of buildings and infrastructures at 30 meter resolution using a synergy of Landsat imagery and openly available global digital surface models (DSMs), including the Shuttle Radar Topography Mission (SRTM), ASTER Global Digital Elevation Map (GDEM), ALOS World 3D - 30m (AW3D30), and the recently released global DSM from the TanDEM-X mission. Our method builds on the concept of object-based height profile to extract height metrics from the DSMs and use a machine learning algorithm to predict height and volume from the height metrics. We have tested this algorithm in the entire England and assessed our result using Lidar measurements in 25 England cities. Our initial assessments achieved a RMSE of 1.4 m (R2 = 0.72) for building height and a RMSE of 1208.7 m3 (R2 = 0.69) for building volume, demonstrating the potential of large-scale applications and fully automated mapping of urban structure.
Pedersen, Nicklas Juel; Jensen, David Hebbelstrup; Lelkaitis, Giedrius; Kiss, Katalin; Charabi, Birgitte; Specht, Lena; von Buchwald, Christian
2017-01-01
It is challenging to identify at diagnosis those patients with early oral squamous cell carcinoma (OSCC), who have a poor prognosis and those that have a high risk of harboring occult lymph node metastases. The aim of this study was to develop a standardized and objective digital scoring method to evaluate the predictive value of tumor budding. We developed a semi-automated image-analysis algorithm, Digital Tumor Bud Count (DTBC), to evaluate tumor budding. The algorithm was tested in 222 consecutive patients with early-stage OSCC and major endpoints were overall (OS) and progression free survival (PFS). We subsequently constructed and cross-validated a binary logistic regression model and evaluated its clinical utility by decision curve analysis. A high DTBC was an independent predictor of both poor OS and PFS in a multivariate Cox regression model. The logistic regression model was able to identify patients with occult lymph node metastases with an area under the curve (AUC) of 0.83 (95% CI: 0.78–0.89, P <0.001) and a 10-fold cross-validated AUC of 0.79. Compared to other known histopathological risk factors, the DTBC had a higher diagnostic accuracy. The proposed, novel risk model could be used as a guide to identify patients who would benefit from an up-front neck dissection. PMID:28212555
Zeng, Dong; Gao, Yuanyuan; Huang, Jing; Bian, Zhaoying; Zhang, Hua; Lu, Lijun; Ma, Jianhua
2016-10-01
Multienergy computed tomography (MECT) allows identifying and differentiating different materials through simultaneous capture of multiple sets of energy-selective data belonging to specific energy windows. However, because sufficient photon counts are not available in each energy window compared with that in the whole energy window, the MECT images reconstructed by the analytical approach often suffer from poor signal-to-noise and strong streak artifacts. To address the particular challenge, this work presents a penalized weighted least-squares (PWLS) scheme by incorporating the new concept of structure tensor total variation (STV) regularization, which is henceforth referred to as 'PWLS-STV' for simplicity. Specifically, the STV regularization is derived by penalizing higher-order derivatives of the desired MECT images. Thus it could provide more robust measures of image variation, which can eliminate the patchy artifacts often observed in total variation (TV) regularization. Subsequently, an alternating optimization algorithm was adopted to minimize the objective function. Extensive experiments with a digital XCAT phantom and meat specimen clearly demonstrate that the present PWLS-STV algorithm can achieve more gains than the existing TV-based algorithms and the conventional filtered backpeojection (FBP) algorithm in terms of both quantitative and visual quality evaluations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Dong; Bian, Zhaoying; Gong, Changfei; Huang, Jing; He, Ji; Zhang, Hua; Lu, Lijun; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua
2016-03-01
Multienergy computed tomography (MECT) has the potential to simultaneously offer multiple sets of energy- selective data belonging to specific energy windows. However, because sufficient photon counts are not available in the specific energy windows compared with that in the whole energy window, the MECT images reconstructed by the analytical approach often suffer from poor signal-to-noise (SNR) and strong streak artifacts. To eliminate this drawback, in this work we present a penalized weighted least-squares (PWLS) scheme by incorporating the new concept of structure tensor total variation (STV) regularization to improve the MECT images quality from low-milliampere-seconds (low-mAs) data acquisitions. Henceforth the present scheme is referred to as `PWLS- STV' for simplicity. Specifically, the STV regularization is derived by penalizing the eigenvalues of the structure tensor of every point in the MECT images. Thus it can provide more robust measures of image variation, which can eliminate the patchy artifacts often observed in total variation regularization. Subsequently, an alternating optimization algorithm was adopted to minimize the objective function. Experiments with a digital XCAT phantom clearly demonstrate that the present PWLS-STV algorithm can achieve more gains than the existing TV-based algorithms and the conventional filtered backpeojection (FBP) algorithm in terms of noise-induced artifacts suppression, resolution preservation, and material decomposition assessment.
ERIC Educational Resources Information Center
Hill, Linda L.; Crosier, Scott J.; Smith, Terrence R.; Goodchild, Michael; Iannella, Renato; Erickson, John S.; Reich, Vicky; Rosenthal, David S. H.
2001-01-01
Includes five articles. Topics include requirements for a content standard to describe computational models; architectures for digital rights management systems; access control for digital information objects; LOCKSS (Lots of Copies Keep Stuff Safe) that allows libraries to run Web caches for specific journals; and a Web site from the U.S.…
Digital Sound Encryption with Logistic Map and Number Theoretic Transform
NASA Astrophysics Data System (ADS)
Satria, Yudi; Gabe Rizky, P. H.; Suryadi, MT
2018-03-01
Digital sound security has limits on encrypting in Frequency Domain. Number Theoretic Transform based on field (GF 2521 – 1) improve and solve that problem. The algorithm for this sound encryption is based on combination of Chaos function and Number Theoretic Transform. The Chaos function that used in this paper is Logistic Map. The trials and the simulations are conducted by using 5 different digital sound files data tester in Wave File Extension Format and simulated at least 100 times each. The key stream resulted is random with verified by 15 NIST’s randomness test. The key space formed is very big which more than 10469. The processing speed of algorithm for encryption is slightly affected by Number Theoretic Transform.
Integrating digital topology in image-processing libraries.
Lamy, Julien
2007-01-01
This paper describes a method to integrate digital topology informations in image-processing libraries. This additional information allows a library user to write algorithms respecting topological constraints, for example, a seed fill or a skeletonization algorithm. As digital topology is absent from most image-processing libraries, such constraints cannot be fulfilled. We describe and give code samples for all the structures necessary for this integration, and show a use case in the form of a homotopic thinning filter inside ITK. The obtained filter can be up to a hundred times as fast as ITK's thinning filter and works for any image dimension. This paper mainly deals of integration within ITK, but can be adapted with only minor modifications to other image-processing libraries.
SOA-based digital library services and composition in biomedical applications.
Zhao, Xia; Liu, Enjie; Clapworthy, Gordon J; Viceconti, Marco; Testi, Debora
2012-06-01
Carefully collected, high-quality data are crucial in biomedical visualization, and it is important that the user community has ready access to both this data and the high-performance computing resources needed by the complex, computational algorithms that will process it. Biological researchers generally require data, tools and algorithms from multiple providers to achieve their goals. This paper illustrates our response to the problems that result from this. The Living Human Digital Library (LHDL) project presented in this paper has taken advantage of Web Services to build a biomedical digital library infrastructure that allows clinicians and researchers not only to preserve, trace and share data resources, but also to collaborate at the data-processing level. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Barbier, Paolo; Alimento, Marina; Berna, Giovanni; Celeste, Fabrizio; Gentile, Francesco; Mantero, Antonio; Montericcio, Vincenzo; Muratori, Manuela
2007-05-01
Large files produced by standard compression algorithms slow down spread of digital and tele-echocardiography. We validated echocardiographic video high-grade compression with the new Motion Pictures Expert Groups (MPEG)-4 algorithms with a multicenter study. Seven expert cardiologists blindly scored (5-point scale) 165 uncompressed and compressed 2-dimensional and color Doppler video clips, based on combined diagnostic content and image quality (uncompressed files as references). One digital video and 3 MPEG-4 algorithms (WM9, MV2, and DivX) were used, the latter at 3 compression levels (0%, 35%, and 60%). Compressed file sizes decreased from 12 to 83 MB to 0.03 to 2.3 MB (1:1051-1:26 reduction ratios). Mean SD of differences was 0.81 for intraobserver variability (uncompressed and digital video files). Compared with uncompressed files, only the DivX mean score at 35% (P = .04) and 60% (P = .001) compression was significantly reduced. At subcategory analysis, these differences were still significant for gray-scale and fundamental imaging but not for color or second harmonic tissue imaging. Original image quality, session sequence, compression grade, and bitrate were all independent determinants of mean score. Our study supports use of MPEG-4 algorithms to greatly reduce echocardiographic file sizes, thus facilitating archiving and transmission. Quality evaluation studies should account for the many independent variables that affect image quality grading.
Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio
2016-02-04
Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle's location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent.
Navigable points estimation for mobile robots using binary image skeletonization
NASA Astrophysics Data System (ADS)
Martinez S., Fernando; Jacinto G., Edwar; Montiel A., Holman
2017-02-01
This paper describes the use of image skeletonization for the estimation of all the navigable points, inside a scene of mobile robots navigation. Those points are used for computing a valid navigation path, using standard methods. The main idea is to find the middle and the extreme points of the obstacles in the scene, taking into account the robot size, and create a map of navigable points, in order to reduce the amount of information for the planning algorithm. Those points are located by means of the skeletonization of a binary image of the obstacles and the scene background, along with some other digital image processing algorithms. The proposed algorithm automatically gives a variable number of navigable points per obstacle, depending on the complexity of its shape. As well as, the way how the algorithm can change some of their parameters in order to change the final number of the resultant key points is shown. The results shown here were obtained applying different kinds of digital image processing algorithms on static scenes.
Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio
2016-01-01
Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle’s location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent. PMID:26861320
Digital correlation of DDRS data
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1981-01-01
The reduction of digital SAR (synthetic aperture radar) data to radar images for use in remote sensing applications was investigated. The critical software operations are discussed in detail, and suggestions and recommendations are made for improving the algorithms currently being used.
Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung
2016-02-01
Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low-contrast microcalcifications, the FBP reduced detectability due to its increased noise. The EM algorithm yielded high conspicuity for both microcalcifications and masses and yielded better ASFs in terms of the full width at half maximum. The higher contrast and lower homogeneity in terms of texture analysis were shown in FBP algorithm than in other algorithms. The patient images using the EM algorithm resulted in high visibility of low-contrast mass with clear border. In this study, we compared three reconstruction algorithms by using various kinds of breast phantoms and patient cases. Future work using these algorithms and considering the type of the breast and the acquisition techniques used (e.g., angular range, dose distribution) should include the use of actual patients or patient-like phantoms to increase the potential for practical applications.
NASA Astrophysics Data System (ADS)
Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding
2018-04-01
The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.
Video rate morphological processor based on a redundant number representation
NASA Astrophysics Data System (ADS)
Kuczborski, Wojciech; Attikiouzel, Yianni; Crebbin, Gregory A.
1992-03-01
This paper presents a video rate morphological processor for automated visual inspection of printed circuit boards, integrated circuit masks, and other complex objects. Inspection algorithms are based on gray-scale mathematical morphology. Hardware complexity of the known methods of real-time implementation of gray-scale morphology--the umbra transform and the threshold decomposition--has prompted us to propose a novel technique which applied an arithmetic system without carrying propagation. After considering several arithmetic systems, a redundant number representation has been selected for implementation. Two options are analyzed here. The first is a pure signed digit number representation (SDNR) with the base of 4. The second option is a combination of the base-2 SDNR (to represent gray levels of images) and the conventional twos complement code (to represent gray levels of structuring elements). Operation principle of the morphological processor is based on the concept of the digit level systolic array. Individual processing units and small memory elements create a pipeline. The memory elements store current image windows (kernels). All operation primitives of processing units apply a unified direction of digit processing: most significant digit first (MSDF). The implementation technology is based on the field programmable gate arrays by Xilinx. This paper justified the rationality of a new approach to logic design, which is the decomposition of Boolean functions instead of Boolean minimization.
Quantifying seasonal variation of leaf area index using near-infrared digital camera in a rice paddy
NASA Astrophysics Data System (ADS)
Hwang, Y.; Ryu, Y.; Kim, J.
2017-12-01
Digital camera has been widely used to quantify leaf area index (LAI). Numerous simple and automatic methods have been proposed to improve the digital camera based LAI estimates. However, most studies in rice paddy relied on arbitrary thresholds or complex radiative transfer models to make binary images. Moreover, only a few study reported continuous, automatic observation of LAI over the season in rice paddy. The objective of this study is to quantify seasonal variations of LAI using raw near-infrared (NIR) images coupled with a histogram shape-based algorithm in a rice paddy. As vegetation highly reflects the NIR light, we installed NIR digital camera 1.8 m above the ground surface and acquired unsaturated raw format images at one-hour intervals between 15 to 80 º solar zenith angles over the entire growing season in 2016 (from May to September). We applied a sub-pixel classification combined with light scattering correction method. Finally, to confirm the accuracy of the quantified LAI, we also conducted direct (destructive sampling) and indirect (LAI-2200) manual observations of LAI once per ten days on average. Preliminary results show that NIR derived LAI agreed well with in-situ observations but divergence tended to appear once rice canopy is fully developed. The continuous monitoring of LAI in rice paddy will help to understand carbon and water fluxes better and evaluate satellite based LAI products.
Digital image classification with the help of artificial neural network by simple histogram
Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant
2016-01-01
Background: Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. Aims and Objectives: In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. Materials and Methods: A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. Result: A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. Conclusion: The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations. PMID:27279679
Integration of aerial remote sensing imaging data in a 3D-GIS environment
NASA Astrophysics Data System (ADS)
Moeller, Matthias S.
2003-03-01
For some years sensor systems have been available providing digital images of a new quality. Especially aerial stereo scanners acquire digital multispectral images with an extremely high ground resolution of about 0.10 - 0.15m and provide in addition a Digital Surface Models (DSM). These imaging products both can be used for a detailed monitoring at scales up to 1:500. The processed georeferenced multispectral orthoimages can be readily integrated into GIS making them useful for a number of applications. The DSM, derived from forward and backward facing sensors of an aerial imaging system provides a ground resolution of 0.5 m and can be used for 3D visualization purposes. In some cases it is essential, to store the ground elevation as a Digital Terrain Model (DTM) and also the height of 3-dimensional objects in a separated database. Existing automated algorithms do not work precise for the extraction of DTM from aerial scanner DSM. This paper presents a new approach which combines the visible image data and the DSM data for the generation of DTM with a reliable geometric accuracy. Already existing cadastral data can be used as a knowledge base for the extraction of building heights in cities. These elevation data is the essential source for a GIS based urban information system with a 3D visualization component.
Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies
Ferrara, Maria Antonietta; De Tommasi, Edoardo; Coppola, Giuseppe; De Stefano, Luca; Rea, Ilaria; Dardano, Principia
2016-01-01
The frustule of diatoms, unicellular microalgae, shows very interesting photonic features, generally related to its complicated and quasi-periodic micro- and nano-structure. In order to simulate light propagation inside and through this natural structure, it is important to develop three-dimensional (3D) models for synthetic replica with high spatial resolution. In this paper, we present a new method that generates images of microscopic diatoms with high definition, by merging scanning electron microscopy and digital holography microscopy or atomic force microscopy data. Starting from two digital images, both acquired separately with standard characterization procedures, a high spatial resolution (Δz = λ/20, Δx = Δy ≅ 100 nm, at least) 3D model of the object has been generated. Then, the two sets of data have been processed by matrix formalism, using an original mathematical algorithm implemented on a commercially available software. The developed methodology could be also of broad interest in the design and fabrication of micro-opto-electro-mechanical systems. PMID:27690008
Fault tolerant, radiation hard, high performance digital signal processor
NASA Technical Reports Server (NTRS)
Holmann, Edgar; Linscott, Ivan R.; Maurer, Michael J.; Tyler, G. L.; Libby, Vibeke
1990-01-01
An architecture has been developed for a high-performance VLSI digital signal processor that is highly reliable, fault-tolerant, and radiation-hard. The signal processor, part of a spacecraft receiver designed to support uplink radio science experiments at the outer planets, organizes the connections between redundant arithmetic resources, register files, and memory through a shuffle exchange communication network. The configuration of the network and the state of the processor resources are all under microprogram control, which both maps the resources according to algorithmic needs and reconfigures the processing should a failure occur. In addition, the microprogram is reloadable through the uplink to accommodate changes in the science objectives throughout the course of the mission. The processor will be implemented with silicon compiler tools, and its design will be verified through silicon compilation simulation at all levels from the resources to full functionality. By blending reconfiguration with redundancy the processor implementation is fault-tolerant and reliable, and possesses the long expected lifetime needed for a spacecraft mission to the outer planets.
Reconstruction and Simulation of Neocortical Microcircuitry.
Markram, Henry; Muller, Eilif; Ramaswamy, Srikanth; Reimann, Michael W; Abdellah, Marwan; Sanchez, Carlos Aguado; Ailamaki, Anastasia; Alonso-Nanclares, Lidia; Antille, Nicolas; Arsever, Selim; Kahou, Guy Antoine Atenekeng; Berger, Thomas K; Bilgili, Ahmet; Buncic, Nenad; Chalimourda, Athanassia; Chindemi, Giuseppe; Courcol, Jean-Denis; Delalondre, Fabien; Delattre, Vincent; Druckmann, Shaul; Dumusc, Raphael; Dynes, James; Eilemann, Stefan; Gal, Eyal; Gevaert, Michael Emiel; Ghobril, Jean-Pierre; Gidon, Albert; Graham, Joe W; Gupta, Anirudh; Haenel, Valentin; Hay, Etay; Heinis, Thomas; Hernando, Juan B; Hines, Michael; Kanari, Lida; Keller, Daniel; Kenyon, John; Khazen, Georges; Kim, Yihwa; King, James G; Kisvarday, Zoltan; Kumbhar, Pramod; Lasserre, Sébastien; Le Bé, Jean-Vincent; Magalhães, Bruno R C; Merchán-Pérez, Angel; Meystre, Julie; Morrice, Benjamin Roy; Muller, Jeffrey; Muñoz-Céspedes, Alberto; Muralidhar, Shruti; Muthurasa, Keerthan; Nachbaur, Daniel; Newton, Taylor H; Nolte, Max; Ovcharenko, Aleksandr; Palacios, Juan; Pastor, Luis; Perin, Rodrigo; Ranjan, Rajnish; Riachi, Imad; Rodríguez, José-Rodrigo; Riquelme, Juan Luis; Rössert, Christian; Sfyrakis, Konstantinos; Shi, Ying; Shillcock, Julian C; Silberberg, Gilad; Silva, Ricardo; Tauheed, Farhan; Telefont, Martin; Toledo-Rodriguez, Maria; Tränkler, Thomas; Van Geit, Werner; Díaz, Jafet Villafranca; Walker, Richard; Wang, Yun; Zaninetta, Stefano M; DeFelipe, Javier; Hill, Sean L; Segev, Idan; Schürmann, Felix
2015-10-08
We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.
Prediction of Disease Case Severity Level To Determine INA CBGs Rate
NASA Astrophysics Data System (ADS)
Puspitorini, Sukma; Kusumadewi, Sri; Rosita, Linda
2017-03-01
Indonesian Case-Based Groups (INA CBGs) is case-mix payment system using software grouper application. INA CBGs consisting of four digits code where the last digits indicating the severity level of disease cases. Severity level influence by secondary diagnosis (complications and co-morbidity) related to resource intensity level. It is medical resources used to treat a hospitalized patient. Objectives of this research is developing decision support system to predict severity level of disease cases and illustrate INA CBGs rate by using data mining decision tree classification model. Primary diagnosis (DU), first secondary diagnosis (DS 1), and second secondary diagnosis (DS 2) are attributes that used as input of severity level. The training process using C4.5 algorithm and the rules will represent in the IF-THEN form. Credibility of the system analyzed through testing process and confusion matrix present the results. Outcome of this research shows that first secondary diagnosis influence significant to form severity level predicting rules from new disease cases and INA CBGs rate illustration.
Bayer Demosaicking with Polynomial Interpolation.
Wu, Jiaji; Anisetti, Marco; Wu, Wei; Damiani, Ernesto; Jeon, Gwanggil
2016-08-30
Demosaicking is a digital image process to reconstruct full color digital images from incomplete color samples from an image sensor. It is an unavoidable process for many devices incorporating camera sensor (e.g. mobile phones, tablet, etc.). In this paper, we introduce a new demosaicking algorithm based on polynomial interpolation-based demosaicking (PID). Our method makes three contributions: calculation of error predictors, edge classification based on color differences, and a refinement stage using a weighted sum strategy. Our new predictors are generated on the basis of on the polynomial interpolation, and can be used as a sound alternative to other predictors obtained by bilinear or Laplacian interpolation. In this paper we show how our predictors can be combined according to the proposed edge classifier. After populating three color channels, a refinement stage is applied to enhance the image quality and reduce demosaicking artifacts. Our experimental results show that the proposed method substantially improves over existing demosaicking methods in terms of objective performance (CPSNR, S-CIELAB E, and FSIM), and visual performance.
Random-subset fitting of digital holograms for fast three-dimensional particle tracking [invited].
Dimiduk, Thomas G; Perry, Rebecca W; Fung, Jerome; Manoharan, Vinothan N
2014-09-20
Fitting scattering solutions to time series of digital holograms is a precise way to measure three-dimensional dynamics of microscale objects such as colloidal particles. However, this inverse-problem approach is computationally expensive. We show that the computational time can be reduced by an order of magnitude or more by fitting to a random subset of the pixels in a hologram. We demonstrate our algorithm on experimentally measured holograms of micrometer-scale colloidal particles, and we show that 20-fold increases in speed, relative to fitting full frames, can be attained while introducing errors in the particle positions of 10 nm or less. The method is straightforward to implement and works for any scattering model. It also enables a parallelization strategy wherein random-subset fitting is used to quickly determine initial guesses that are subsequently used to fit full frames in parallel. This approach may prove particularly useful for studying rare events, such as nucleation, that can only be captured with high frame rates over long times.
Pilot study of an automated method to determine Melasma Area and Severity Index.
Tay, E Y; Gan, E Y; Tan, V W D; Lin, Z; Liang, Y; Lin, F; Wee, S; Thng, T G
2015-06-01
Objective outcome measures for melasma severity are essential for the evaluation of severity as well as results of treatment. The modified Melasma Area and Severity Index (mMASI) score is a validated tool for assessing melasma severity but is often subject to inter-observer variability. To develop and validate a novel image analysis software designed to automatically calculate the area and degree of hyperpigmentation in melasma from computer image analysis of whole-face digital photographs, thereby deriving an automated mMASI score (aMASI). The algorithm was developed in collaboration between dermatologists and image analysis experts. Firstly, using an adaptive threshold method, the algorithm identifies, segments and calculates the areas involved. It then calculates the darkness. Finally, the derived area and darkness are then used to calculate mMASI. The scores derived from the algorithm are validated prospectively. Twenty-nine patients with melasma using depigmenting agents were recruited for validation. Three dermatologists scored mMASI at baseline and post-treatment using standardized photographs. These scores were compared with aMASI scores derived from computer analysis. aMASI scores correlated well with clinical mMASI pre-treatment (r = 0·735, P < 0·001) and post-treatment (r = 0·608, P < 0·001). aMASI was reliable in detecting changes with treatment. These changes in aMASI scores correlated well with changes in clinician-assessed mMASI (r = 0·622, P < 0·001). This study proposes a novel approach in melasma scoring using digital image analysis. It holds promise as a tool that would enable clinicians worldwide to standardize melasma severity scoring and outcome measures in an easy and reproducible manner, enabling different treatment options to be compared accurately. © 2015 British Association of Dermatologists.
Digital terrain model generalization incorporating scale, semantic and cognitive constraints
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Papadogiorgaki, Maria
2014-05-01
Cartographic generalization is a well-known process accommodating spatial data compression, visualization and comprehension under various scales. In the last few years, there are several international attempts to construct tangible GIS systems, forming real 3D surfaces using a vast number of mechanical parts along a matrix formation (i.e., bars, pistons, vacuums). Usually, moving bars upon a structured grid push a stretching membrane resulting in a smooth visualization for a given surface. Most of these attempts suffer either in their cost, accuracy, resolution and/or speed. Under this perspective, the present study proposes a surface generalization process that incorporates intrinsic constrains of tangible GIS systems including robotic-motor movement and surface stretching limitations. The main objective is to provide optimized visualizations of 3D digital terrain models with minimum loss of information. That is, to minimize the number of pixels in a raster dataset used to define a DTM, while reserving the surface information. This neighborhood type of pixel relations adheres to the basics of Self Organizing Map (SOM) artificial neural networks, which are often used for information abstraction since they are indicative of intrinsic statistical features contained in the input patterns and provide concise and characteristic representations. Nevertheless, SOM remains more like a black box procedure not capable to cope with possible particularities and semantics of the application at hand. E.g. for coastal monitoring applications, the near - coast areas, surrounding mountains and lakes are more important than other features and generalization should be "biased"-stratified to fulfill this requirement. Moreover, according to the application objectives, we extend the SOM algorithm to incorporate special types of information generalization by differentiating the underlying strategy based on topologic information of the objects included in the application. The final research scheme comprises of the combination of SOM with the variations of other widely used generalization algorithms. For instance, an adaptation of the Douglas-Peucker line simplification method in 3D data is used in order to reduce the initial nodes, while maintaining their actual coordinates. Furthermore, additional methods are deployed, aiming to corroborate and verify the significance of each node, such as mathematical algorithms exploiting the pixel's nearest neighbors. Finally, besides the quantitative evaluation of error vs information preservation in a DTM, cognitive inputs from geoscience experts are incorporated in order to test, fine-tune and advance our algorithm. Under the described strategy that incorporates mechanical, topology, semantic and cognitive restrains, results demonstrate the necessity to integrate these characteristics in describing raster DTM surfaces. Acknowledgements: This work is partially supported under the framework of the "Cooperation 2011" project ATLANTAS (11_SYN_6_1937) funded from the Operational Program "Competitiveness and Entrepreneurship" (co-funded by the European Regional Development Fund (ERDF)) and managed by the Greek General Secretariat for Research and Technology.
An analysis of packaging formats for complex digtal objects: review of principles
NASA Astrophysics Data System (ADS)
Bekaert, Jeroen L.; Hochstenbach, Patrick; De Kooning, Emiel; Van de Walle, Rik
2003-11-01
During recent years, the number of organizations making digital information available has massively increased. This evolution encouraged the development of standards for packaging and encoding digital representations of complex objects (such as a digital music albums or digitized books and photograph albums). The primary goal of this article is to offer a method to compare these packaging standards and best practices tailored to the needs of the digital library community and the rising digital preservation programs. The contribution of this paper is the definition of an integrated reference model, based on both the OAIS framework and some additional significant properties that affect the quality, usability, encoding and behavior of the digital objects.
Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan
2017-06-01
Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3-100%) in the test set (n = 217) of manually labeled helminth eggs. In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images.
Digital processing of RF signals from optical frequency combs
NASA Astrophysics Data System (ADS)
Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej
2013-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.
Digital processing of signals from femtosecond combs
NASA Astrophysics Data System (ADS)
Čížek, Martin; Šmíd, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Číp, Ondrej
2012-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique and with fully digital servo-loop stabilization of the fs comb. Secondly, we are using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset and repetition frequencies of the fs comb.