Sample records for digital pattern recognition

  1. The Need for Careful Data Collection for Pattern Recognition in Digital Pathology.

    PubMed

    Marée, Raphaël

    2017-01-01

    Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.

  2. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  3. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    NASA Astrophysics Data System (ADS)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  4. Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.

    PubMed

    Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2017-06-01

    We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.

  5. Handwritten digits recognition based on immune network

    NASA Astrophysics Data System (ADS)

    Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe

    2011-11-01

    With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.

  6. Rapid detection of malignant bio-species using digital holographic pattern recognition and nano-photonics

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Kukhtareva, Tatiana; Kukhtarev, Nickolai V.; Curley, Michael J.; Edwards, Vernessa; Creer, Marylyn

    2013-03-01

    There is a great need for rapid detection of bio-hazardous species particularly in applications to food safety and biodefense. It has been recently demonstrated that the colonies of various bio-species could be rapidly detected using culture-specific and reproducible patterns generated by scattered non-coherent light. However, the method heavily relies on a digital pattern recognition algorithm, which is rather complex, requires substantial computational power and is prone to ambiguities due to shift, scale, or orientation mismatch between the analyzed pattern and the reference from the library. The improvement could be made, if, in addition to the intensity of the scattered optical wave, its phase would be also simultaneously recorded and used for the digital holographic pattern recognition. In this feasibility study the research team recorded digital Gabor-type (in-line) holograms of colonies of micro-organisms, such as Salmonella with a laser diode as a low-coherence light source and a lensless high-resolution (2.0x2.0 micron pixel pitch) digital image sensor. The colonies were grown in conventional Petri dishes using standard methods. The digitally recorded holograms were used for computational reconstruction of the amplitude and phase information of the optical wave diffracted on the colonies. Besides, the pattern recognition of the colony fragments using the cross-correlation between the digital hologram was also implemented. The colonies of mold fungi Altenaria sp, Rhizophus, sp, and Aspergillus sp have been also generating nano-colloidal silver during their growth in specially prepared matrices. The silver-specific plasmonic optical extinction peak at 410-nm was also used for rapid detection and growth monitoring of the fungi colonies.

  7. Implementation theory of distortion-invariant pattern recognition for optical and digital signal processing systems

    NASA Astrophysics Data System (ADS)

    Lhamon, Michael Earl

    A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.

  8. Optical and digital pattern recognition; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)

    1987-01-01

    The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.

  9. A Dynamic Bayesian Network Based Structural Learning towards Automated Handwritten Digit Recognition

    NASA Astrophysics Data System (ADS)

    Pauplin, Olivier; Jiang, Jianmin

    Pattern recognition using Dynamic Bayesian Networks (DBNs) is currently a growing area of study. In this paper, we present DBN models trained for classification of handwritten digit characters. The structure of these models is partly inferred from the training data of each class of digit before performing parameter learning. Classification results are presented for the four described models.

  10. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models

    PubMed Central

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162

  11. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.

    PubMed

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.

  12. Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition

    NASA Astrophysics Data System (ADS)

    Popko, E. A.; Weinstein, I. A.

    2016-08-01

    Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.

  13. Fuzzy Logic-Based Audio Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, M.

    2008-11-01

    Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.

  14. Background feature descriptor for offline handwritten numeral recognition

    NASA Astrophysics Data System (ADS)

    Ming, Delie; Wang, Hao; Tian, Tian; Jie, Feiran; Lei, Bo

    2011-11-01

    This paper puts forward an offline handwritten numeral recognition method based on background structural descriptor (sixteen-value numerical background expression). Through encoding the background pixels in the image according to a certain rule, 16 different eigenvalues were generated, which reflected the background condition of every digit, then reflected the structural features of the digits. Through pattern language description of images by these features, automatic segmentation of overlapping digits and numeral recognition can be realized. This method is characterized by great deformation resistant ability, high recognition speed and easy realization. Finally, the experimental results and conclusions are presented. The experimental results of recognizing datasets from various practical application fields reflect that with this method, a good recognition effect can be achieved.

  15. Automatic Target Recognition Based on Cross-Plot

    PubMed Central

    Wong, Kelvin Kian Loong; Abbott, Derek

    2011-01-01

    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508

  16. Incoherent optical generalized Hough transform: pattern recognition and feature extraction applications

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Ferrari, José A.

    2017-05-01

    Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.

  17. Degraded character recognition based on gradient pattern

    NASA Astrophysics Data System (ADS)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  18. Facial Recognition in a Group-Living Cichlid Fish.

    PubMed

    Kohda, Masanori; Jordan, Lyndon Alexander; Hotta, Takashi; Kosaka, Naoya; Karino, Kenji; Tanaka, Hirokazu; Taniyama, Masami; Takeyama, Tomohiro

    2015-01-01

    The theoretical underpinnings of the mechanisms of sociality, e.g. territoriality, hierarchy, and reciprocity, are based on assumptions of individual recognition. While behavioural evidence suggests individual recognition is widespread, the cues that animals use to recognise individuals are established in only a handful of systems. Here, we use digital models to demonstrate that facial features are the visual cue used for individual recognition in the social fish Neolamprologus pulcher. Focal fish were exposed to digital images showing four different combinations of familiar and unfamiliar face and body colorations. Focal fish attended to digital models with unfamiliar faces longer and from a further distance to the model than to models with familiar faces. These results strongly suggest that fish can distinguish individuals accurately using facial colour patterns. Our observations also suggest that fish are able to rapidly (≤ 0.5 sec) discriminate between familiar and unfamiliar individuals, a speed of recognition comparable to primates including humans.

  19. Optical character recognition based on nonredundant correlation measurements.

    PubMed

    Braunecker, B; Hauck, R; Lohmann, A W

    1979-08-15

    The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.

  20. Implementation of age and gender recognition system for intelligent digital signage

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Heon; Sohn, Myoung-Kyu; Kim, Hyunduk

    2015-12-01

    Intelligent digital signage systems transmit customized advertising and information by analyzing users and customers, unlike existing system that presented advertising in the form of broadcast without regard to type of customers. Currently, development of intelligent digital signage system has been pushed forward vigorously. In this study, we designed a system capable of analyzing gender and age of customers based on image obtained from camera, although there are many different methods for analyzing customers. We conducted age and gender recognition experiments using public database. The age/gender recognition experiments were performed through histogram matching method by extracting Local binary patterns (LBP) features after facial area on input image was normalized. The results of experiment showed that gender recognition rate was as high as approximately 97% on average. Age recognition was conducted based on categorization into 5 age classes. Age recognition rates for women and men were about 67% and 68%, respectively when that conducted separately for different gender.

  1. DESIGN OF A PATTERN RECOGNITION DIGITAL COMPUTER WITH APPLICATION TO THE AUTOMATIC SCANNING OF BUBBLE CHAMBER NEGATIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, B.H.; Narasimhan, R.

    1963-01-01

    The overall computer system contains three main parts: an input device, a pattern recognition unit (PRU), and a control computer. The bubble chamber picture is divided into a grid of st run. Concent 1-mm squares on the film. It is then processed in parallel in a two-dimensional array of 1024 identical processing modules (stalactites) of the PRU. The array can function as a two- dimensional shift register in which results of successive shifting operations can be accumulated. The pattern recognition process is generally controlled by a conventional arithmetic computer. (A.G.W.)

  2. Automated Categorization Scheme for Digital Libraries in Distance Learning: A Pattern Recognition Approach

    ERIC Educational Resources Information Center

    Gunal, Serkan

    2008-01-01

    Digital libraries play a crucial role in distance learning. Nowadays, they are one of the fundamental information sources for the students enrolled in this learning system. These libraries contain huge amount of instructional data (text, audio and video) offered by the distance learning program. Organization of the digital libraries is…

  3. Optical computing and neural networks; Proceedings of the Meeting, National Chiao Tung Univ., Hsinchu, Taiwan, Dec. 16, 17, 1992

    NASA Technical Reports Server (NTRS)

    Hsu, Ken-Yuh (Editor); Liu, Hua-Kuang (Editor)

    1992-01-01

    The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)

  4. Optical computing and neural networks; Proceedings of the Meeting, National Chiao Tung Univ., Hsinchu, Taiwan, Dec. 16, 17, 1992

    NASA Astrophysics Data System (ADS)

    Hsu, Ken-Yuh; Liu, Hua-Kuang

    The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)

  5. The Characteristics of Binary Spike-Time-Dependent Plasticity in HfO2-Based RRAM and Applications for Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Liu, Chen; Shen, Wensheng; Dong, Zhen; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2017-04-01

    A binary spike-time-dependent plasticity (STDP) protocol based on one resistive-switching random access memory (RRAM) device was proposed and experimentally demonstrated in the fabricated RRAM array. Based on the STDP protocol, a novel unsupervised online pattern recognition system including RRAM synapses and CMOS neurons is developed. Our simulations show that the system can efficiently compete the handwritten digits recognition task, which indicates the feasibility of using the RRAM-based binary STDP protocol in neuromorphic computing systems to obtain good performance.

  6. Jersey number detection in sports video for athlete identification

    NASA Astrophysics Data System (ADS)

    Ye, Qixiang; Huang, Qingming; Jiang, Shuqiang; Liu, Yang; Gao, Wen

    2005-07-01

    Athlete identification is important for sport video content analysis since users often care about the video clips with their preferred athletes. In this paper, we propose a method for athlete identification by combing the segmentation, tracking and recognition procedures into a coarse-to-fine scheme for jersey number (digital characters on sport shirt) detection. Firstly, image segmentation is employed to separate the jersey number regions with its background. And size/pipe-like attributes of digital characters are used to filter out candidates. Then, a K-NN (K nearest neighbor) classifier is employed to classify a candidate into a digit in "0-9" or negative. In the recognition procedure, we use the Zernike moment features, which are invariant to rotation and scale for digital shape recognition. Synthetic training samples with different fonts are used to represent the pattern of digital characters with non-rigid deformation. Once a character candidate is detected, a SSD (smallest square distance)-based tracking procedure is started. The recognition procedure is performed every several frames in the tracking process. After tracking tens of frames, the overall recognition results are combined to determine if a candidate is a true jersey number or not by a voting procedure. Experiments on several types of sports video shows encouraging result.

  7. The recognition of graphical patterns invariant to geometrical transformation of the models

    NASA Astrophysics Data System (ADS)

    Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian

    2010-11-01

    In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.

  8. Fundamental remote sensing science research program. Part 1: Status report of the mathematical pattern recognition and image analysis project

    NASA Technical Reports Server (NTRS)

    Heydorn, R. D.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.

  9. Pattern recognition and feature extraction with an optical Hough transform

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2016-09-01

    Pattern recognition and localization along with feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for the recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital- only methods. Starting from the integral representation of the GHT, it is possible to device an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a rotating pupil mask for orientation variation, implemented on a high-contrast spatial light modulator (SLM). Real-time (as limited by the frame rate of the device used to capture the GHT) can also be achieved, allowing for the processing of video sequences. Besides, by thresholding of the GHT (with the aid of another SLM) and inverse transforming (which is optically achieved in the incoherent system under appropriate focusing setting), the previously detected features of interest can be extracted.

  10. A dynamical pattern recognition model of gamma activity in auditory cortex

    PubMed Central

    Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.

    2012-01-01

    This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049

  11. Terrain type recognition using ERTS-1 MSS images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N.

    1973-01-01

    For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.

  12. Computer-implemented land use classification with pattern recognition software and ERTS digital data. [Mississippi coastal plains

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.

    1974-01-01

    Significant progress has been made in the classification of surface conditions (land uses) with computer-implemented techniques based on the use of ERTS digital data and pattern recognition software. The supervised technique presently used at the NASA Earth Resources Laboratory is based on maximum likelihood ratioing with a digital table look-up approach to classification. After classification, colors are assigned to the various surface conditions (land uses) classified, and the color-coded classification is film recorded on either positive or negative 9 1/2 in. film at the scale desired. Prints of the film strips are then mosaicked and photographed to produce a land use map in the format desired. Computer extraction of statistical information is performed to show the extent of each surface condition (land use) within any given land unit that can be identified in the image. Evaluations of the product indicate that classification accuracy is well within the limits for use by land resource managers and administrators. Classifications performed with digital data acquired during different seasons indicate that the combination of two or more classifications offer even better accuracy.

  13. FPGA design of correlation-based pattern recognition

    NASA Astrophysics Data System (ADS)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.

  14. Spatially Invariant Vector Quantization: A pattern matching algorithm for multiple classes of image subject matter including pathology.

    PubMed

    Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J

    2011-02-26

    HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.

  15. Method of synthesized phase objects for pattern recognition with rotation invariance

    NASA Astrophysics Data System (ADS)

    Ostroukh, Alexander P.; Butok, Alexander M.; Shvets, Rostislav A.; Yezhov, Pavel V.; Kim, Jin-Tae; Kuzmenko, Alexander V.

    2015-11-01

    We present a development of the method of synthesized phase objects (SPO-method) [1] for the rotation-invariant pattern recognition. For the standard method of recognition and the SPO-method, the comparison of the parameters of correlation signals for a number of amplitude objects is executed at the realization of a rotation in an optical-digital correlator with the joint Fourier transformation. It is shown that not only the invariance relative to a rotation at a realization of the joint correlation for synthesized phase objects (SP-objects) but also the main advantage of the method of SP-objects over the reference one such as the unified δ-like recognition signal with the largest possible signal-to-noise ratio independent of the type of an object are attained.

  16. Digital Holographic Logic

    NASA Technical Reports Server (NTRS)

    Preston, K., Jr.

    1972-01-01

    The characteristics of the holographic logic computer are discussed. The holographic operation is reviewed from the Fourier transform viewpoint, and the formation of holograms for use in performing digital logic are described. The operation of the computer with an experiment in which the binary identity function is calculated is discussed along with devices for achieving real-time performance. An application in pattern recognition using neighborhood logic is presented.

  17. Start-ups Bring AI to Pathology.

    PubMed

    2018-04-01

    New startups are developing pattern-recognition algorithms that could one day help pathologists more accurately spot tumors on digitized tissue images, thereby aiding in diagnosis, treatment, drug discovery, and more. ©2018 American Association for Cancer Research.

  18. The application of automatic recognition techniques in the Apollo 9 SO-65 experiment

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1970-01-01

    A synoptic feature analysis is reported on Apollo 9 remote earth surface photographs that uses the methods of statistical pattern recognition to classify density points and clusterings in digital conversion of optical data. A computer derived geological map of a geological test site indicates that geological features of the range are separable, but that specific rock types are not identifiable.

  19. Human-machine interactions

    DOEpatents

    Forsythe, J Chris [Sandia Park, NM; Xavier, Patrick G [Albuquerque, NM; Abbott, Robert G [Albuquerque, NM; Brannon, Nathan G [Albuquerque, NM; Bernard, Michael L [Tijeras, NM; Speed, Ann E [Albuquerque, NM

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  20. Digital Images and Human Vision

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    Processing of digital images destined for visual consumption raises many interesting questions regarding human visual sensitivity. This talk will survey some of these questions, including some that have been answered and some that have not. There will be an emphasis upon visual masking, and a distinction will be drawn between masking due to contrast gain control processes, and due to processes such as hypothesis testing, pattern recognition, and visual search.

  1. Accurate, fast, and secure biometric fingerprint recognition system utilizing sensor fusion of fingerprint patterns

    NASA Astrophysics Data System (ADS)

    El-Saba, Aed; Alsharif, Salim; Jagapathi, Rajendarreddy

    2011-04-01

    Fingerprint recognition is one of the first techniques used for automatically identifying people and today it is still one of the most popular and effective biometric techniques. With this increase in fingerprint biometric uses, issues related to accuracy, security and processing time are major challenges facing the fingerprint recognition systems. Previous work has shown that polarization enhancementencoding of fingerprint patterns increase the accuracy and security of fingerprint systems without burdening the processing time. This is mainly due to the fact that polarization enhancementencoding is inherently a hardware process and does not have detrimental time delay effect on the overall process. Unpolarized images, however, posses a high visual contrast and when fused (without digital enhancement) properly with polarized ones, is shown to increase the recognition accuracy and security of the biometric system without any significant processing time delay.

  2. Primary Stability Recognition of the Newly Designed Cementless Femoral Stem Using Digital Signal Processing

    PubMed Central

    Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  3. Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.

  4. Improving Face Verification in Photo Albums by Combining Facial Recognition and Metadata With Cross-Matching

    DTIC Science & Technology

    2017-12-01

    satisfactory performance. We do not use statistical models, and we do not create patterns that require supervised learning. Our methodology is intended...statistical models, and we do not create patterns that require supervised learning. Our methodology is intended for use in personal digital image...THESIS MOTIVATION .........................................................................19 III. METHODOLOGY

  5. Fundamental remote science research program. Part 2: Status report of the mathematical pattern recognition and image analysis project

    NASA Technical Reports Server (NTRS)

    Heydorn, R. P.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of he Earth from remotely sensed measurements of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inferences about the Earth. This report summarizes the progress that has been made toward this program goal by each of the principal investigators in the MPRIA Program.

  6. YADCLAN: yet another digitally-controlled linear artificial neuron.

    PubMed

    Frenger, Paul

    2003-01-01

    This paper updates the author's 1999 RMBS presentation on digitally controlled linear artificial neuron design. Each neuron is based on a standard operational amplifier having excitatory and inhibitory inputs, variable gain, an amplified linear analog output and an adjustable threshold comparator for digital output. This design employs a 1-wire serial network of digitally controlled potentiometers and resistors whose resistance values are set and read back under microprocessor supervision. This system embodies several unique and useful features, including: enhanced neuronal stability, dynamic reconfigurability and network extensibility. This artificial neuronal is being employed for feature extraction and pattern recognition in an advanced robotic application.

  7. Processing Electromyographic Signals to Recognize Words

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Lee, D. D.

    2009-01-01

    A recently invented speech-recognition method applies to words that are articulated by means of the tongue and throat muscles but are otherwise not voiced or, at most, are spoken sotto voce. This method could satisfy a need for speech recognition under circumstances in which normal audible speech is difficult, poses a hazard, is disturbing to listeners, or compromises privacy. The method could also be used to augment traditional speech recognition by providing an additional source of information about articulator activity. The method can be characterized as intermediate between (1) conventional speech recognition through processing of voice sounds and (2) a method, not yet developed, of processing electroencephalographic signals to extract unspoken words directly from thoughts. This method involves computational processing of digitized electromyographic (EMG) signals from muscle innervation acquired by surface electrodes under a subject's chin near the tongue and on the side of the subject s throat near the larynx. After preprocessing, digitization, and feature extraction, EMG signals are processed by a neural-network pattern classifier, implemented in software, that performs the bulk of the recognition task as described.

  8. Real-time object recognition in multidimensional images based on joined extended structural tensor and higher-order tensor decomposition methods

    NASA Astrophysics Data System (ADS)

    Cyganek, Boguslaw; Smolka, Bogdan

    2015-02-01

    In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.

  9. Development of a written music-recognition system using Java and open source technologies

    NASA Astrophysics Data System (ADS)

    Loibner, Gernot; Schwarzl, Andreas; Kovač, Matthias; Paulus, Dietmar; Pölzleitner, Wolfgang

    2005-10-01

    We report on the development of a software system to recognize and interpret printed music. The overall goal is to scan printed music sheets, analyze and recognize the notes, timing, and written text, and derive the all necessary information to use the computers MIDI sound system to play the music. This function is primarily useful for musicians who want to digitize printed music for editing purposes. There exist a number of commercial systems that offer such a functionality. However, on testing these systems, we were astonished on how weak they behave in their pattern recognition parts. Although we submitted very clear and rather flawless scanning input, none of these systems was able to e.g. recognize all notes, staff lines, and systems. They all require a high degree of interaction, post-processing, and editing to get a decent digital version of the hard copy material. In this paper we focus on the pattern recognition area. In a first approach we tested more or less standard methods of adaptive thresholding, blob detection, line detection, and corner detection to find the notes, staff lines, and candidate objects subject to OCR. Many of the objects on this type of material can be learned in a training phase. None of the commercial systems we saw offers the option to train special characters or unusual signatures. A second goal in this project is to use a modern software engineering platform. We were interested in how well Java and open source technologies are suitable for pattern recognition and machine vision. The scanning of music served as a case-study.

  10. Higher-order neural network software for distortion invariant object recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  11. Targeted and untargeted-metabolite profiling to track the compositional integrity of ginger during processing using digitally-enhanced HPTLC pattern recognition analysis.

    PubMed

    Ibrahim, Reham S; Fathy, Hoda

    2018-03-30

    Tracking the impact of commonly applied post-harvesting and industrial processing practices on the compositional integrity of ginger rhizome was implemented in this work. Untargeted metabolite profiling was performed using digitally-enhanced HPTLC method where the chromatographic fingerprints were extracted using ImageJ software then analysed with multivariate Principal Component Analysis (PCA) for pattern recognition. A targeted approach was applied using a new, validated, simple and fast HPTLC image analysis method for simultaneous quantification of the officially recognized markers 6-, 8-, 10-gingerol and 6-shogaol in conjunction with chemometric Hierarchical Clustering Analysis (HCA). The results of both targeted and untargeted metabolite profiling revealed that peeling, drying in addition to storage employed during processing have a great influence on ginger chemo-profile, the different forms of processed ginger shouldn't be used interchangeably. Moreover, it deemed necessary to consider the holistic metabolic profile for comprehensive evaluation of ginger during processing. Copyright © 2018. Published by Elsevier B.V.

  12. Acute behavioural comparisons of toluene and ethanol in human subjects.

    PubMed

    Echeverria, D; Fine, L; Langolf, G; Schork, T; Sampaio, C

    1991-11-01

    A comparison of toluene and ethanol (EtOH) induced changes in central nervous system (CNS) function and symptoms were evaluated in two studies, and when possible the effects of toluene were expressed in EtOH equivalent units. The toluene concentrations were 0, 75, and 150 ppm, bracketing the American Conference of Governmental Industrial Hygienists threshold limit value (ACGIH TLV) of 100 ppm. The socially relevant EtOH doses were 0.00, 0.33, and 0.66 g EtOH/kg body weight, equivalent to two and four 3.5% 12 ounce beers. Forty two paid college students were used in each study. In the first study, subjects were exposed to toluene and an odour masking agent menthol (0.078 ppm) for seven hours over three days. In the second study EtOH or a placebo was administered at 1530 across three days also in the presence of menthol. Verbal and visual short term memory (Sternberg, digit span, Benton, pattern memory), perception (pattern recognition), psychomotor skill (simple reaction time, continuous performance, symbol-digit, hand-eye coordination, finger tapping, and critical tracking), manual dexterity (one hole), mood (profile on mood scales (POMS), fatigue (fatigue checklist), and verbal ability were evaluated at 0800, 1200, and 1600. Voluntary symptoms and observations of sleep were collected daily. A 3 x 3 latin square design evaluated solvent effects simultaneously controlling for learning and dose sequence. An analysis of variance and test for trend were performed on am-pm differences reflecting an eight hour workday and on pm scores for each solvent, in which subjects were their own control Intersubject variation in absorbance was monitored in breath. A 5 to 10% decrement was considered meaningful if consistent with a linear trend at p less than 0.05. At 150 ppm toluene, losses in performance were 6.0% for digit span, 12.1% for pattern recognition (latency), 5% for pattern memory (number correct), 6.5% for one hole, and 3% for critical tracking. The number of headaches and eye irritation also increased in a dose-response manner. The greatest effect was found for an increasing number of observations of sleep. A range of 2 to 7% decrements suggest the ACGIH TLV of 100 ppm toluene may be a good estimate of the biological threshold supporting a re-evaluation of the TLV. At 0.66 g EtOH/kg body weight symptoms and performance decrements were 6.6% for digit span, 9.2% for pattern recognition, 4.0% for continuous performance, 7.9% for symbol-digit, 16.5% for finger tapping, 6.2% for critical tracking, and 5.2% for the one hole test. The EtOH equivalents at 150 ppm toluene for digit span (0.56g EtOH/kg/body weight), the latency for pattern recognition (0.66 g EtOH kg body weight), and the one hole element "move" (0.37 g EtOH kg body weight) show that the first two measures would be affected at or above the 50 mg% blood alcohol concentration. This concentration is recognised as the lowest alcohol concentration associated with increased numbers of automobile accidents. The results suggest that EtOH may be a useful acute standard to compare the effects of various industrial solvents and support investigating an association between exposure to solvents and increased risk to safety in industry.

  13. Pattern-Recognition Processor Using Holographic Photopolymer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Cammack, Kevin

    2006-01-01

    proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square-law detector for the purpose of holographic recording of interference fringes. A typical state-of-the-art CCD has a pixel-pitch limited resolution of about 100 lines/mm. In contrast, the holographic photopolymer to be used in the proposed JTOC offers a resolution > 2,000 lines/mm. In addition to being disadvantageous in itself, the low resolution of the CCD causes overlap of a DC term and the desired correlation term in the output image. This overlap severely limits the correlation signal-to-noise ratio. The two-stage nature of the process limits the achievable throughput rate. A further limit is imposed by the low frame rate (typical video rates) of low- and medium-cost commercial CCDs.

  14. Employing wavelet-based texture features in ammunition classification

    NASA Astrophysics Data System (ADS)

    Borzino, Ángelo M. C. R.; Maher, Robert C.; Apolinário, José A.; de Campos, Marcello L. R.

    2017-05-01

    Pattern recognition, a branch of machine learning, involves classification of information in images, sounds, and other digital representations. This paper uses pattern recognition to identify which kind of ammunition was used when a bullet was fired based on a carefully constructed set of gunshot sound recordings. To do this task, we show that texture features obtained from the wavelet transform of a component of the gunshot signal, treated as an image, and quantized in gray levels, are good ammunition discriminators. We test the technique with eight different calibers and achieve a classification rate better than 95%. We also compare the performance of the proposed method with results obtained by standard temporal and spectrographic techniques

  15. Non-Invasive Detection of CH-46 AFT Gearbox Faults Using Digital Pattern Recognition and Classification Techniques

    DTIC Science & Technology

    1999-05-05

    processing and artificial neural network (ANN) technology. The detector will classify incipient faults based on real-tine vibration data taken from the...provided the vibration data necessary to develop and test the feasibility of en artificial neural network for fault classification. This research

  16. DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riot, V; Coffee, K; Gard, E

    2006-04-21

    The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. Themore » last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using optimized data separation, pipelining, and parallel processing across the nine DSPs it is possible to achieve a processing speed of up to a thousand particles per seconds, while maintaining the recognition rate observed on a non-real time implementation. This embedded system has allowed the BAMS technology to improve its throughput and therefore its sensitivity while maintaining a large dynamic range (number of channels and two polarities) thus maintaining the systems specificity for bio-detection.« less

  17. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition.

    PubMed

    Zhang, Yong; Li, Peng; Jin, Yingyezhe; Choe, Yoonsuck

    2015-11-01

    This paper presents a bioinspired digital liquid-state machine (LSM) for low-power very-large-scale-integration (VLSI)-based machine learning applications. To the best of the authors' knowledge, this is the first work that employs a bioinspired spike-based learning algorithm for the LSM. With the proposed online learning, the LSM extracts information from input patterns on the fly without needing intermediate data storage as required in offline learning methods such as ridge regression. The proposed learning rule is local such that each synaptic weight update is based only upon the firing activities of the corresponding presynaptic and postsynaptic neurons without incurring global communications across the neural network. Compared with the backpropagation-based learning, the locality of computation in the proposed approach lends itself to efficient parallel VLSI implementation. We use subsets of the TI46 speech corpus to benchmark the bioinspired digital LSM. To reduce the complexity of the spiking neural network model without performance degradation for speech recognition, we study the impacts of synaptic models on the fading memory of the reservoir and hence the network performance. Moreover, we examine the tradeoffs between synaptic weight resolution, reservoir size, and recognition performance and present techniques to further reduce the overhead of hardware implementation. Our simulation results show that in terms of isolated word recognition evaluated using the TI46 speech corpus, the proposed digital LSM rivals the state-of-the-art hidden Markov-model-based recognizer Sphinx-4 and outperforms all other reported recognizers including the ones that are based upon the LSM or neural networks.

  18. Online Farsi digit recognition using their upper half structure

    NASA Astrophysics Data System (ADS)

    Ghods, Vahid; Sohrabi, Mohammad Karim

    2015-03-01

    In this paper, we investigated the efficiency of upper half Farsi numerical digit structure. In other words, half of data (upper half of the digit shapes) was exploited for the recognition of Farsi numerical digits. This method can be used for both offline and online recognition. Half of data is more effective in speed process, data transfer and in this application accuracy. Hidden Markov model (HMM) was used to classify online Farsi digits. Evaluation was performed by TMU dataset. This dataset contains more than 1200 samples of online handwritten Farsi digits. The proposed method yielded more accuracy in recognition rate.

  19. Digital mammography, cancer screening: Factors important for image compression

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria

    1993-01-01

    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.

  20. A fast and low-cost genotyping method for hepatitis B virus based on pattern recognition in point-of-care settings

    PubMed Central

    Qiu, Xianbo; Song, Liuwei; Yang, Shuo; Guo, Meng; Yuan, Quan; Ge, Shengxiang; Min, Xiaoping; Xia, Ningshao

    2016-01-01

    A fast and low-cost method for HBV genotyping especially for genotypes A, B, C and D was developed and tested. A classifier was used to detect and analyze a one-step immunoassay lateral flow strip functionalized with genotype-specific monoclonal antibodies (mAbs) on multiple capture lines in the form of pattern recognition for point-of-care (POC) diagnostics. The fluorescent signals from the capture lines and the background of the strip were collected via multiple optical channels in parallel. A digital HBV genotyping model, whose inputs are the fluorescent signals and outputs are a group of genotype-specific digital binary codes (0/1), was developed based on the HBV genotyping strategy. Meanwhile, a companion decoding table was established to cover all possible pairing cases between the states of a group of genotype-specific digital binary codes and the HBV genotyping results. A logical analyzing module was constructed to process the detected signals in parallel without program control, and its outputs were used to drive a set of LED indicators, which determine the HBV genotype. Comparing to the nucleic acid analysis to HBV viruses, much faster HBV genotyping with significantly lower cost can be obtained with the developed method. PMID:27306485

  1. Validation of a Novel Digital Tool in Automatic Scoring of an Online ECG Examination at an International Cardiology Meeting.

    PubMed

    Quinn, Kieran L; Crystal, Eugene; Lashevsky, Ilan; Arouny, Banafsheh; Baranchuk, Adrian

    2016-07-01

    We have previously developed a novel digital tool capable of automatically recognizing correct electrocardiography (ECG) diagnoses in an online exam and demonstrated a significant improvement in diagnostic accuracy when utilizing an inductive-deductive reasoning strategy over a pattern recognition strategy. In this study, we sought to validate these findings from participants at the International Winter Arrhythmia School meeting, one of the foremost electrophysiology events in Canada. Preregistration to the event was sent by e-mail. The exam was administered on day 1 of the conference. Results and analysis were presented the following morning to participants. Twenty-five attendees completed the exam, providing a total of 500 responses to be marked. The online tool accurately identified 195 of a total of 395 (49%) correct responses (49%). In total, 305 responses required secondary manual review, of which 200 were added to the correct responses pool. The overall accuracy of correct ECG diagnosis for all participants was 69% and 84% when using pattern recognition or inductive-deductive strategies, respectively. Utilization of a novel digital tool to evaluate ECG competency can be set up as a workshop at international meetings or educational events. Results can be presented during the sessions to ensure immediate feedback. © 2015 Wiley Periodicals, Inc.

  2. Scalable hybrid computation with spikes.

    PubMed

    Sarpeshkar, Rahul; O'Halloran, Micah

    2002-09-01

    We outline a hybrid analog-digital scheme for computing with three important features that enable it to scale to systems of large complexity: First, like digital computation, which uses several one-bit precise logical units to collectively compute a precise answer to a computation, the hybrid scheme uses several moderate-precision analog units to collectively compute a precise answer to a computation. Second, frequent discrete signal restoration of the analog information prevents analog noise and offset from degrading the computation. And, third, a state machine enables complex computations to be created using a sequence of elementary computations. A natural choice for implementing this hybrid scheme is one based on spikes because spike-count codes are digital, while spike-time codes are analog. We illustrate how spikes afford easy ways to implement all three components of scalable hybrid computation. First, as an important example of distributed analog computation, we show how spikes can create a distributed modular representation of an analog number by implementing digital carry interactions between spiking analog neurons. Second, we show how signal restoration may be performed by recursive spike-count quantization of spike-time codes. And, third, we use spikes from an analog dynamical system to trigger state transitions in a digital dynamical system, which reconfigures the analog dynamical system using a binary control vector; such feedback interactions between analog and digital dynamical systems create a hybrid state machine (HSM). The HSM extends and expands the concept of a digital finite-state-machine to the hybrid domain. We present experimental data from a two-neuron HSM on a chip that implements error-correcting analog-to-digital conversion with the concurrent use of spike-time and spike-count codes. We also present experimental data from silicon circuits that implement HSM-based pattern recognition using spike-time synchrony. We outline how HSMs may be used to perform learning, vector quantization, spike pattern recognition and generation, and how they may be reconfigured.

  3. Inverse scattering approach to improving pattern recognition

    NASA Astrophysics Data System (ADS)

    Chapline, George; Fu, Chi-Yung

    2005-05-01

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the "wake-sleep" algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.

  4. Inverse Scattering Approach to Improving Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G; Fu, C

    2005-02-15

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensorymore » feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.« less

  5. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  6. Techniques for generation of control and guidance signals derived from optical fields, part 2

    NASA Technical Reports Server (NTRS)

    Hemami, H.; Mcghee, R. B.; Gardner, S. R.

    1971-01-01

    The development is reported of a high resolution technique for the detection and identification of landmarks from spacecraft optical fields. By making use of nonlinear regression analysis, a method is presented whereby a sequence of synthetic images produced by a digital computer can be automatically adjusted to provide a least squares approximation to a real image. The convergence of the method is demonstrated by means of a computer simulation for both elliptical and rectangular patterns. Statistical simulation studies with elliptical and rectangular patterns show that the computational techniques developed are able to at least match human pattern recognition capabilities, even in the presence of large amounts of noise. Unlike most pattern recognition techniques, this ability is unaffected by arbitrary pattern rotation, translation, and scale change. Further development of the basic approach may eventually allow a spacecraft or robot vehicle to be provided with an ability to very accurately determine its spatial relationship to arbitrary known objects within its optical field of view.

  7. Studies in automatic speech recognition and its application in aerospace

    NASA Astrophysics Data System (ADS)

    Taylor, Michael Robinson

    Human communication is characterized in terms of the spectral and temporal dimensions of speech waveforms. Electronic speech recognition strategies based on Dynamic Time Warping and Markov Model algorithms are described and typical digit recognition error rates are tabulated. The application of Direct Voice Input (DVI) as an interface between man and machine is explored within the context of civil and military aerospace programmes. Sources of physical and emotional stress affecting speech production within military high performance aircraft are identified. Experimental results are reported which quantify fundamental frequency and coarse temporal dimensions of male speech as a function of the vibration, linear acceleration and noise levels typical of aerospace environments; preliminary indications of acoustic phonetic variability reported by other researchers are summarized. Connected whole-word pattern recognition error rates are presented for digits spoken under controlled Gz sinusoidal whole-body vibration. Correlations are made between significant increases in recognition error rate and resonance of the abdomen-thorax and head subsystems of the body. The phenomenon of vibrato style speech produced under low frequency whole-body Gz vibration is also examined. Interactive DVI system architectures and avionic data bus integration concepts are outlined together with design procedures for the efficient development of pilot-vehicle command and control protocols.

  8. Reading recognition of pointer meter based on pattern recognition and dynamic three-points on a line

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Ding, Mingli; Fu, Wuyifang; Li, Yongqiang

    2017-03-01

    Pointer meters are frequently applied to industrial production for they are directly readable. They should be calibrated regularly to ensure the precision of the readings. Currently the method of manual calibration is most frequently adopted to accomplish the verification of the pointer meter, and professional skills and subjective judgment may lead to big measurement errors and poor reliability and low efficiency, etc. In the past decades, with the development of computer technology, the skills of machine vision and digital image processing have been applied to recognize the reading of the dial instrument. In terms of the existing recognition methods, all the parameters of dial instruments are supposed to be the same, which is not the case in practice. In this work, recognition of pointer meter reading is regarded as an issue of pattern recognition. We obtain the features of a small area around the detected point, make those features as a pattern, divide those certified images based on Gradient Pyramid Algorithm, train a classifier with the support vector machine (SVM) and complete the pattern matching of the divided mages. Then we get the reading of the pointer meter precisely under the theory of dynamic three points make a line (DTPML), which eliminates the error caused by tiny differences of the panels. Eventually, the result of the experiment proves that the proposed method in this work is superior to state-of-the-art works.

  9. Real-time polarization imaging algorithm for camera-based polarization navigation sensors.

    PubMed

    Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli

    2017-04-10

    Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.

  10. Vander Lugt correlation of DNA sequence data

    NASA Astrophysics Data System (ADS)

    Christens-Barry, William A.; Hawk, James F.; Martin, James C.

    1990-12-01

    DNA, the molecule containing the genetic code of an organism, is a linear chain of subunits. It is the sequence of subunits, of which there are four kinds, that constitutes the unique blueprint of an individual. This sequence is the focus of a large number of analyses performed by an army of geneticists, biologists, and computer scientists. Most of these analyses entail searches for specific subsequences within the larger set of sequence data. Thus, most analyses are essentially pattern recognition or correlation tasks. Yet, there are special features to such analysis that influence the strategy and methods of an optical pattern recognition approach. While the serial processing employed in digital electronic computers remains the main engine of sequence analyses, there is no fundamental reason that more efficient parallel methods cannot be used. We describe an approach using optical pattern recognition (OPR) techniques based on matched spatial filtering. This allows parallel comparison of large blocks of sequence data. In this study we have simulated a Vander Lugt1 architecture implementing our approach. Searches for specific target sequence strings within a block of DNA sequence from the Co/El plasmid2 are performed.

  11. Increasing signal-to-noise ratio of reconstructed digital holograms by using light spatial noise portrait of camera's photosensor

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2015-01-01

    Digital holography is technique which includes recording of interference pattern with digital photosensor, processing of obtained holographic data and reconstruction of object wavefront. Increase of signal-to-noise ratio (SNR) of reconstructed digital holograms is especially important in such fields as image encryption, pattern recognition, static and dynamic display of 3D scenes, and etc. In this paper compensation of photosensor light spatial noise portrait (LSNP) for increase of SNR of reconstructed digital holograms is proposed. To verify the proposed method, numerical experiments with computer generated Fresnel holograms with resolution equal to 512×512 elements were performed. Simulation of shots registration with digital camera Canon EOS 400D was performed. It is shown that solo use of the averaging over frames method allows to increase SNR only up to 4 times, and further increase of SNR is limited by spatial noise. Application of the LSNP compensation method in conjunction with the averaging over frames method allows for 10 times SNR increase. This value was obtained for LSNP measured with 20 % error. In case of using more accurate LSNP, SNR can be increased up to 20 times.

  12. Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image

    NASA Astrophysics Data System (ADS)

    Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti

    2016-06-01

    An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.

  13. Automatic voice recognition using traditional and artificial neural network approaches

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1989-01-01

    The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.

  14. Comparison of eye imaging pattern recognition using neural network

    NASA Astrophysics Data System (ADS)

    Bukhari, W. M.; Syed A., M.; Nasir, M. N. M.; Sulaima, M. F.; Yahaya, M. S.

    2015-05-01

    The beauty of eye recognition system that it is used in automatic identifying and verifies a human weather from digital images or video source. There are various behaviors of the eye such as the color of the iris, size of pupil and shape of the eye. This study represents the analysis, design and implementation of a system for recognition of eye imaging. All the eye images that had been captured from the webcam in RGB format must through several techniques before it can be input for the pattern and recognition processes. The result shows that the final value of weight and bias after complete training 6 eye images for one subject is memorized by the neural network system and be the reference value of the weight and bias for the testing part. The target classifies to 5 different types for 5 subjects. The eye images can recognize the subject based on the target that had been set earlier during the training process. When the values between new eye image and the eye image in the database are almost equal, it is considered the eye image is matched.

  15. Speech as a pilot input medium

    NASA Technical Reports Server (NTRS)

    Plummer, R. P.; Coler, C. R.

    1977-01-01

    The speech recognition system under development is a trainable pattern classifier based on a maximum-likelihood technique. An adjustable uncertainty threshold allows the rejection of borderline cases for which the probability of misclassification is high. The syntax of the command language spoken may be used as an aid to recognition, and the system adapts to changes in pronunciation if feedback from the user is available. Words must be separated by .25 second gaps. The system runs in real time on a mini-computer (PDP 11/10) and was tested on 120,000 speech samples from 10- and 100-word vocabularies. The results of these tests were 99.9% correct recognition for a vocabulary consisting of the ten digits, and 99.6% recognition for a 100-word vocabulary of flight commands, with a 5% rejection rate in each case. With no rejection, the recognition accuracies for the same vocabularies were 99.5% and 98.6% respectively.

  16. Improving the recognition of fingerprint biometric system using enhanced image fusion

    NASA Astrophysics Data System (ADS)

    Alsharif, Salim; El-Saba, Aed; Stripathi, Reshma

    2010-04-01

    Fingerprints recognition systems have been widely used by financial institutions, law enforcement, border control, visa issuing, just to mention few. Biometric identifiers can be counterfeited, but considered more reliable and secure compared to traditional ID cards or personal passwords methods. Fingerprint pattern fusion improves the performance of a fingerprint recognition system in terms of accuracy and security. This paper presents digital enhancement and fusion approaches that improve the biometric of the fingerprint recognition system. It is a two-step approach. In the first step raw fingerprint images are enhanced using high-frequency-emphasis filtering (HFEF). The second step is a simple linear fusion process between the raw images and the HFEF ones. It is shown that the proposed approach increases the verification and identification of the fingerprint biometric recognition system, where any improvement is justified using the correlation performance metrics of the matching algorithm.

  17. Comparison of eSports and Traditional Sports Consumption Motives

    ERIC Educational Resources Information Center

    Lee, Donghun; Schoenstedt, Linda J.

    2011-01-01

    With recognition of the need for studying eSports in this interactive digital communication era, this study explored 14 motivational factors affecting the time spent on eSports gaming. Using a sample of 515 college students and athletic event attendees, we further compared eSports game patterns to their non-eSport or traditional sport involvements…

  18. Introduction to computer image processing

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  19. Automated thematic mapping and change detection of ERTS-A images. [digital interpretation of Arizona imagery

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.

  20. Surface compositional mapping by spectral ratioing of ERTS-1 MSS data in the Wind River Basin and Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Vincent, R. K. (Principal Investigator); Salmon, B. C.; Pillars, W. W.; Harris, J. E.

    1975-01-01

    The author has identified the following significant results. ERTS data collected in August and October 1972 were processed on digital and special purpose analog recognition computers using ratio enhancement and pattern recognition. Ratios of band-averaged laboratory reflectances of some minerals and rock types known to be in the scene compared favorably with ratios derived from the data by ratio normalization procedures. A single ratio display and density slice of the visible channels of ERTS MSS data, Channel 5/Channel 4 (R5,4), separated the Triassic Chugwater formation (redbeds) from other formations present and may have enhanced iron oxide minerals present at the surface in abundance. Comparison of data sets collected over the same area at two different times of the year by digital processing indicated that spectral variation due to environmental factors was reduced by ratio processing.

  1. Holographic implementation of a binary associative memory for improved recognition

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Somnath; Ghosh, Ajay; Datta, Asit K.

    1998-03-01

    Neural network associate memory has found wide application sin pattern recognition techniques. We propose an associative memory model for binary character recognition. The interconnection strengths of the memory are binary valued. The concept of sparse coding is sued to enhance the storage efficiency of the model. The question of imposed preconditioning of pattern vectors, which is inherent in a sparsely coded conventional memory, is eliminated by using a multistep correlation technique an the ability of correct association is enhanced in a real-time application. A potential optoelectronic implementation of the proposed associative memory is also described. The learning and recall is possible by using digital optical matrix-vector multiplication, where full use of parallelism and connectivity of optics is made. A hologram is used in the experiment as a longer memory (LTM) for storing all input information. The short-term memory or the interconnection weight matrix required during the recall process is configured by retrieving the necessary information from the holographic LTM.

  2. Sign Language Recognition System using Neural Network for Digital Hardware Implementation

    NASA Astrophysics Data System (ADS)

    Vargas, Lorena P.; Barba, Leiner; Torres, C. O.; Mattos, L.

    2011-01-01

    This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.

  3. An adaptive deep Q-learning strategy for handwritten digit recognition.

    PubMed

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min

    2018-02-22

    Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Digital signal processing algorithms for automatic voice recognition

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1987-01-01

    The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms.

  5. Effects of scopolamine and dextroamphetamine on human performance

    NASA Technical Reports Server (NTRS)

    Schmedtje, John F., Jr.; Oman, Charles M.; Letz, Richard; Baker, Edward L.

    1988-01-01

    The effects of two drugs used to prevent symptoms of motion sickness in the operational environment were examined in this study of human performance as measured by computer-based tests of cognitive and psychomotor skills. Each subject was exposed repetitively to five tests: symbol-digit substitution, simple reaction time, pattern recognition, digit span memory, and pattern memory. Although there have been previous reports of decreases in human performance in similar testing with higher dosages of scopolamine or dextroamphetamine, no significant decrements were observed with the operational-level combined dose used in this study (0.4 mg oral scopolamine and 5.0 mg oral dextroamphetamine.) The controversy over the use of combination drug therapy in this environnment is discussed along with the indications for further research based on the findings.

  6. A 128-channel Time-to-Digital Converter (TDC) inside a Virtex-5 FPGA on the GANDALF module

    NASA Astrophysics Data System (ADS)

    Büchele, M.; Fischer, H.; Gorzellik, M.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.

    2012-03-01

    The GANDALF 6U-VME64x/VXS module has been developed for the digitization and real time analysis of detector signals. To perform different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition and trigger generation, this module comes with exchangeable analog and digital mezzanine cards. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In contrast to common TDC concepts, the input signal is sampled by 16 equidistant phase-shifted clocks. A particular challenge of the design is the minimum skew routing of the input signals to the sampling flip-flops. We present measurement results for the differential nonlinearity and the time resolution of the TDC readout system.

  7. Sensitivity and specificity of a digit symbol recognition trial in the identification of response bias.

    PubMed

    Kim, Nancy; Boone, Kyle B; Victor, Tara; Lu, Po; Keatinge, Carolyn; Mitchell, Cary

    2010-08-01

    Recently published practice standards recommend that multiple effort indicators be interspersed throughout neuropsychological evaluations to assess for response bias, which is most efficiently accomplished through use of effort indicators from standard cognitive tests already included in test batteries. The present study examined the utility of a timed recognition trial added to standard administration of the WAIS-III Digit Symbol subtest in a large sample of "real world" noncredible patients (n=82) as compared with credible neuropsychology clinic patients (n=89). Scores from the recognition trial were more sensitive in identifying poor effort than were standard Digit Symbol scores, and use of an equation incorporating Digit Symbol Age-Corrected Scaled Scores plus accuracy and time scores from the recognition trial was associated with nearly 80% sensitivity at 88.7% specificity. Thus, inclusion of a brief recognition trial to Digit Symbol administration has the potential to provide accurate assessment of response bias.

  8. Computer Vision for Artificially Intelligent Robotic Systems

    NASA Astrophysics Data System (ADS)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  9. Improved Performance Characteristics For Indium Antimonide Photovoltaic Detector Arrays Using A FET-Switched Multiplexing Technique

    NASA Astrophysics Data System (ADS)

    Ma, Yung-Lung; Ma, Chialo

    1987-03-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  10. Adaptive detection of missed text areas in OCR outputs: application to the automatic assessment of OCR quality in mass digitization projects

    NASA Astrophysics Data System (ADS)

    Ben Salah, Ahmed; Ragot, Nicolas; Paquet, Thierry

    2013-01-01

    The French National Library (BnF*) has launched many mass digitization projects in order to give access to its collection. The indexation of digital documents on Gallica (digital library of the BnF) is done through their textual content obtained thanks to service providers that use Optical Character Recognition softwares (OCR). OCR softwares have become increasingly complex systems composed of several subsystems dedicated to the analysis and the recognition of the elements in a page. However, the reliability of these systems is always an issue at stake. Indeed, in some cases, we can find errors in OCR outputs that occur because of an accumulation of several errors at different levels in the OCR process. One of the frequent errors in OCR outputs is the missed text components. The presence of such errors may lead to severe defects in digital libraries. In this paper, we investigate the detection of missed text components to control the OCR results from the collections of the French National Library. Our verification approach uses local information inside the pages based on Radon transform descriptors and Local Binary Patterns descriptors (LBP) coupled with OCR results to control their consistency. The experimental results show that our method detects 84.15% of the missed textual components, by comparing the OCR ALTO files outputs (produced by the service providers) to the images of the document.

  11. Physical Principles of the Method for Determination of Geometrical Characteristics and Particle Recognition in Digital Holography

    NASA Astrophysics Data System (ADS)

    Dyomin, V. V.; Polovtsev, I. G.; Davydova, A. Yu.

    2018-03-01

    The physical principles of a method for determination of geometrical characteristics of particles and particle recognition based on the concepts of digital holography, followed by processing of the particle images reconstructed from the digital hologram, using the morphological parameter are reported. An example of application of this method for fast plankton particle recognition is given.

  12. Multimodality imaging and state-of-art GPU technology in discriminating benign from malignant breast lesions on real time decision support system

    NASA Astrophysics Data System (ADS)

    Kostopoulos, S.; Sidiropoulos, K.; Glotsos, D.; Dimitropoulos, N.; Kalatzis, I.; Asvestas, P.; Cavouras, D.

    2014-03-01

    The aim of this study was to design a pattern recognition system for assisting the diagnosis of breast lesions, using image information from Ultrasound (US) and Digital Mammography (DM) imaging modalities. State-of-art computer technology was employed based on commercial Graphics Processing Unit (GPU) cards and parallel programming. An experienced radiologist outlined breast lesions on both US and DM images from 59 patients employing a custom designed computer software application. Textural features were extracted from each lesion and were used to design the pattern recognition system. Several classifiers were tested for highest performance in discriminating benign from malignant lesions. Classifiers were also combined into ensemble schemes for further improvement of the system's classification accuracy. Following the pattern recognition system optimization, the final system was designed employing the Probabilistic Neural Network classifier (PNN) on the GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language. The use of such state-of-art technology renders the system capable of redesigning itself on site once additional verified US and DM data are collected. Mixture of US and DM features optimized performance with over 90% accuracy in correctly classifying the lesions.

  13. Digital video steganalysis exploiting collusion sensitivity

    NASA Astrophysics Data System (ADS)

    Budhia, Udit; Kundur, Deepa

    2004-09-01

    In this paper we present an effective steganalyis technique for digital video sequences based on the collusion attack. Steganalysis is the process of detecting with a high probability and low complexity the presence of covert data in multimedia. Existing algorithms for steganalysis target detecting covert information in still images. When applied directly to video sequences these approaches are suboptimal. In this paper, we present a method that overcomes this limitation by using redundant information present in the temporal domain to detect covert messages in the form of Gaussian watermarks. Our gains are achieved by exploiting the collusion attack that has recently been studied in the field of digital video watermarking, and more sophisticated pattern recognition tools. Applications of our scheme include cybersecurity and cyberforensics.

  14. Automatic Mexican sign language and digits recognition using normalized central moments

    NASA Astrophysics Data System (ADS)

    Solís, Francisco; Martínez, David; Espinosa, Oscar; Toxqui, Carina

    2016-09-01

    This work presents a framework for automatic Mexican sign language and digits recognition based on computer vision system using normalized central moments and artificial neural networks. Images are captured by digital IP camera, four LED reflectors and a green background in order to reduce computational costs and prevent the use of special gloves. 42 normalized central moments are computed per frame and used in a Multi-Layer Perceptron to recognize each database. Four versions per sign and digit were used in training phase. 93% and 95% of recognition rates were achieved for Mexican sign language and digits respectively.

  15. Correction of Microplate Data from High-Throughput Screening.

    PubMed

    Wang, Yuhong; Huang, Ruili

    2016-01-01

    High-throughput screening (HTS) makes it possible to collect cellular response data from a large number of cell lines and small molecules in a timely and cost-effective manner. The errors and noises in the microplate-formatted data from HTS have unique characteristics, and they can be generally grouped into three categories: run-wise (temporal, multiple plates), plate-wise (background pattern, single plate), and well-wise (single well). In this chapter, we describe a systematic solution for identifying and correcting such errors and noises, mainly basing on pattern recognition and digital signal processing technologies.

  16. Computerized morphometry as an aid in distinguishing recurrent versus nonrecurrent meningiomas.

    PubMed

    Noy, Shawna; Vlodavsky, Euvgeni; Klorin, Geula; Drumea, Karen; Ben Izhak, Ofer; Shor, Eli; Sabo, Edmond

    2011-06-01

    To use novel digital and morphometric methods to identify variables able to better predict the recurrence of intracranial meningiomas. Histologic images from 30 previously diagnosed meningioma tumors that recurred over 10 years of follow-up were consecutively selected from the Rambam Pathology Archives. Images were captured and morphometrically analyzed. Novel algorithms of digital pattern recognition using Fourier transformation and fractal and nuclear texture analyses were applied to evaluate the overall growth pattern complexity of the tumors, as well as the chromatin texture of individual tumor nuclei. The extracted parameters were then correlated with patient prognosis. Kaplan-Meier analyses revealed statistically significant associations between tumor morphometric parameters and recurrence times. Tumors with less nuclear orientation, more nuclear density, higher fractal dimension, and less regular chromatin textures tended to recur faster than those with a higher degree of nuclear order, less pattern complexity, lower density, and more homogeneous chromatin nuclear textures (p < 0.01). To our knowledge, these digital morphometric methods were used for the first time to accurately predict tumor recurrence in patients with intracranial meningiomas. The use of these methods may bring additional valuable information to the clinician regarding the optimal management of these patients.

  17. New technique for real-time distortion-invariant multiobject recognition and classification

    NASA Astrophysics Data System (ADS)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  18. Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

    PubMed

    Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann

    2017-01-01

    The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.

  19. 64 x 64 thresholding photodetector array for optical pattern recognition

    NASA Astrophysics Data System (ADS)

    Langenbacher, Harry; Chao, Tien-Hsin; Shaw, Timothy; Yu, Jeffrey W.

    1993-10-01

    A high performance 32 X 32 peak detector array is introduced. This detector consists of a 32 X 32 array of thresholding photo-transistor cells, manufactured with a standard MOSIS digital 2-micron CMOS process. A built-in thresholding function that is able to perform 1024 thresholding operations in parallel strongly distinguishes this chip from available CCD detectors. This high speed detector offers responses from one to 10 milliseconds that is much higher than the commercially available CCD detectors operating at a TV frame rate. The parallel multiple peaks thresholding detection capability makes it particularly suitable for optical correlator and optoelectronically implemented neural networks. The principle of operation, circuit design and the performance characteristics are described. Experimental demonstration of correlation peak detection is also provided. Recently, we have also designed and built an advanced version of a 64 X 64 thresholding photodetector array chip. Experimental investigation of using this chip for pattern recognition is ongoing.

  20. A System for Automated Extraction of Metadata from Scanned Documents using Layout Recognition and String Pattern Search Models.

    PubMed

    Misra, Dharitri; Chen, Siyuan; Thoma, George R

    2009-01-01

    One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques.At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts.In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system.

  1. Unsupervised learning of digit recognition using spike-timing-dependent plasticity

    PubMed Central

    Diehl, Peter U.; Cook, Matthew

    2015-01-01

    In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN) can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns), since most such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e., conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks. PMID:26941637

  2. Oxycodone Ingestion Patterns in Acute Fracture Pain With Digital Pills.

    PubMed

    Chai, Peter R; Carreiro, Stephanie; Innes, Brendan J; Chapman, Brittany; Schreiber, Kristin L; Edwards, Robert R; Carrico, Adam W; Boyer, Edward W

    2017-12-01

    Opioid analgesics are commonly prescribed on an as-needed (PRN) basis for acute painful conditions. Uncertainty of how patients actually take PRN opioids, coupled with a desire to completely cover pain, leads to variable and overly generous opioid prescribing practices, resulting in a surplus of opioids. This opioid surplus becomes a source for diversion and nonmedical opioid use. Understanding patterns of actual opioid ingestion after acute painful conditions can help clinicians counsel patients on safe opioid use, and allow timely recognition and intervention when escalating opioid self-dosing occurs, to prevent tolerance and addiction. We used a novel oxycodone digital pill system (ingestible biosensor within a standard gelatin capsule combined with 5-mg oxycodone) that when ingested, is activated by the chloride ion gradient in the stomach thereby emitting a radiofrequency signal captured by a wearable reader. The reader relays ingestion data to a cloud-based server that displays ingestion events to the study team. We deployed the oxycodone digital pill among opioid-naive individuals discharged from the emergency department with acute fracture pain. Participants were trained on digital pill operation and discharged with twenty-one 5-mg oxycodone digital pills. They were instructed to take digital pills PRN for pain on discharge. We conducted a brief interview 7 days after study enrollment, at which point participants returned the digital pill system. We identified oxycodone ingestion events in real time by data from the digital pill system and performed pill counts at the return visit to validate digital pill reporting of medication ingestion. In this study, 26 individuals were approached; 16 enrolled with 15 completing the study. Participants ingested a median of 6 (3-9.5) oxycodone digital pills over the course of 7 days, with 82% of the oxycodone dose ingested in the first 3 days. In individuals who required operative repair, 86% (N = 6) continued to ingest opioids at 1 week. There was substantial variability in ingestion patterns between individuals. The utilization patterns of individuals with acute fracture pain could be captured using a digital pill system and revealed a median opioid ingestion of 45-mg morphine equivalents for acute pain over 7 days. Seven participants ceased using opioids within 4 days after discharge from the emergency department, although operative repair was associated with longer use. This digital pill system was able to measure changes in and patterns of opioid self-dosing, which varied between patients.

  3. Method and apparatus for optical encoding with compressible imaging

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2006-01-01

    The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.

  4. Segmenting Images for a Better Diagnosis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.

  5. Teachers' Perceptions of Digital Badges as Recognition of Professional Development

    ERIC Educational Resources Information Center

    Jones, W. Monty; Hope, Samantha; Adams, Brianne

    2018-01-01

    This mixed methods study examined teachers' perceptions and uses of digital badges received as recognition of participation in a professional development program. Quantitative and qualitative survey data was collected from 99 K-12 teachers who were awarded digital badges in Spring 2016. In addition, qualitative data was collected through…

  6. Numerical linear algebra in data mining

    NASA Astrophysics Data System (ADS)

    Eldén, Lars

    Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.

  7. Digital and biological computing in organizations.

    PubMed

    Kampfner, Roberto R

    2002-01-01

    Michael Conrad unveiled many of the fundamental characteristics of biological computing. Underlying the behavioral variability and the adaptability of biological systems are these characteristics, including the ability of biological information processing to exploit quantum features at the atomic level, the powerful 3-D pattern recognition capabilities of macromolecules, the computational efficiency, and the ability to support biological function. Among many other things, Conrad formalized and explicated the underlying principles of biological adaptability, characterized the differences between biological and digital computing in terms of a fundamental tradeoff between adaptability and programmability of information processing, and discussed the challenges of interfacing digital computers and human society. This paper is about the encounter of biological and digital computing. The focus is on the nature of the biological information processing infrastructure of organizations and how it can be extended effectively with digital computing. In order to achieve this goal effectively, however, we need to embed properly digital computing into the information processing aspects of human and social behavior and intelligence, which are fundamentally biological. Conrad's legacy provides a firm, strong, and inspiring foundation for this endeavor.

  8. Application of the ANNA neural network chip to high-speed character recognition.

    PubMed

    Sackinger, E; Boser, B E; Bromley, J; Lecun, Y; Jackel, L D

    1992-01-01

    A neural network with 136000 connections for recognition of handwritten digits has been implemented using a mixed analog/digital neural network chip. The neural network chip is capable of processing 1000 characters/s. The recognition system has essentially the same rate (5%) as a simulation of the network with 32-b floating-point precision.

  9. Profiles of verbal working memory growth predict speech and language development in children with cochlear implants.

    PubMed

    Kronenberger, William G; Pisoni, David B; Harris, Michael S; Hoen, Helena M; Xu, Huiping; Miyamoto, Richard T

    2013-06-01

    Verbal short-term memory (STM) and working memory (WM) skills predict speech and language outcomes in children with cochlear implants (CIs) even after conventional demographic, device, and medical factors are taken into account. However, prior research has focused on single end point outcomes as opposed to the longitudinal process of development of verbal STM/WM and speech-language skills. In this study, the authors investigated relations between profiles of verbal STM/WM development and speech-language development over time. Profiles of verbal STM/WM development were identified through the use of group-based trajectory analysis of repeated digit span measures over at least a 2-year time period in a sample of 66 children (ages 6-16 years) with CIs. Subjects also completed repeated assessments of speech and language skills during the same time period. Clusters representing different patterns of development of verbal STM (digit span forward scores) were related to the growth rate of vocabulary and language comprehension skills over time. Clusters representing different patterns of development of verbal WM (digit span backward scores) were related to the growth rate of vocabulary and spoken word recognition skills over time. Different patterns of development of verbal STM/WM capacity predict the dynamic process of development of speech and language skills in this clinical population.

  10. Visual-spatial abilities relate to mathematics achievement in children with heavy prenatal alcohol exposure

    PubMed Central

    Crocker, N.; Riley, E.P.; Mattson, S.N.

    2014-01-01

    Objective The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Method Fifty-six children (29 AE, 27 CON) were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory and visual memory data were entered together on step 1 followed by group on step 2, and the interaction terms on step 3. Results Model 1 accounted for a significant amount of variance in both mathematics achievement measures, however, model fit improved with the addition of group on step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. Conclusions These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PMID:25000323

  11. Visual-spatial abilities relate to mathematics achievement in children with heavy prenatal alcohol exposure.

    PubMed

    Crocker, Nicole; Riley, Edward P; Mattson, Sarah N

    2015-01-01

    The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Subjects were 56 children (29 AE, 27 CON) who were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory, and visual memory data were entered together on Step 1 followed by group on Step 2, and the interaction terms on Step 3. Model 1 accounted for a significant amount of variance in both mathematics achievement measures; however, model fit improved with the addition of group on Step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  12. Recognition of Telugu characters using neural networks.

    PubMed

    Sukhaswami, M B; Seetharamulu, P; Pujari, A K

    1995-09-01

    The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.

  13. A System for Automated Extraction of Metadata from Scanned Documents using Layout Recognition and String Pattern Search Models

    PubMed Central

    Misra, Dharitri; Chen, Siyuan; Thoma, George R.

    2010-01-01

    One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques. At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts. In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system. PMID:21179386

  14. Image Description with Local Patterns: An Application to Face Recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Ahrary, Alireza; Kamata, Sei-Ichiro

    In this paper, we propose a novel approach for presenting the local features of digital image using 1D Local Patterns by Multi-Scans (1DLPMS). We also consider the extentions and simplifications of the proposed approach into facial images analysis. The proposed approach consists of three steps. At the first step, the gray values of pixels in image are represented as a vector giving the local neighborhood intensity distrubutions of the pixels. Then, multi-scans are applied to capture different spatial information on the image with advantage of less computation than other traditional ways, such as Local Binary Patterns (LBP). The second step is encoding the local features based on different encoding rules using 1D local patterns. This transformation is expected to be less sensitive to illumination variations besides preserving the appearance of images embedded in the original gray scale. At the final step, Grouped 1D Local Patterns by Multi-Scans (G1DLPMS) is applied to make the proposed approach computationally simpler and easy to extend. Next, we further formulate boosted algorithm to extract the most discriminant local features. The evaluated results demonstrate that the proposed approach outperforms the conventional approaches in terms of accuracy in applications of face recognition, gender estimation and facial expression.

  15. Scene Analysis: Non-Linear Spatial Filtering for Automatic Target Detection.

    DTIC Science & Technology

    1982-12-01

    In this thesis, a method for two-dimensional pattern recognition was developed and tested. The method included a global search scheme for candidate...test global switch TYPEO Creating negative video file only.W 11=0 12=256 13=512 14=768 GO 70 2 1 TYPE" Creating negative and horizontally flipped video...purpose was to develop a base of image processing software for the AFIT Digital Signal Processing Laboratory NOVA- ECLIPSE minicomputer system, for

  16. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  17. Program Descriptions for Interactive Signal and Pattern Analysis and Recognition System (ISPARS).

    DTIC Science & Technology

    1984-03-01

    procedures for the ISPARS components developed at the David Taylor Naval Ship Reserach and Development Center (DTNSRDC), which are not documented in other...an alphabetic character. Some commands may consist of a letter and one or two two-digit numbers, separated by a space as specified in the table. 81 I-I... PAPERS INTENDED FOR IN- TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT

  18. Contribution of auditory working memory to speech understanding in mandarin-speaking cochlear implant users.

    PubMed

    Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing

    2014-01-01

    To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance of voice pitch cues (albeit poorly coded by the CI) did not influence the relationship between working memory and speech perception.

  19. Character recognition using a neural network model with fuzzy representation

    NASA Technical Reports Server (NTRS)

    Tavakoli, Nassrin; Seniw, David

    1992-01-01

    The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.

  20. Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, Ind., June 29-July 1, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers are presented on the applicability of Landsat data to water management and control needs, IBIS, a geographic information system based on digital image processing and image raster datatype, and the Image Data Access Method (IDAM) for the Earth Resources Interactive Processing System. Attention is also given to the Prototype Classification and Mensuration System (PROCAMS) applied to agricultural data, the use of Landsat for water quality monitoring in North Carolina, and the analysis of geophysical remote sensing data using multivariate pattern recognition. The Illinois crop-acreage estimation experiment, the Pacific Northwest Resources Inventory Demonstration, and the effects of spatial misregistration on multispectral recognition are also considered. Individual items are announced in this issue.

  1. Colorimetric Recognition of Aldehydes and Ketones.

    PubMed

    Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S

    2017-08-07

    A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Diverse spike-timing-dependent plasticity based on multilevel HfO x memristor for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Lu, Ke; Li, Yi; He, Wei-Fan; Chen, Jia; Zhou, Ya-Xiong; Duan, Nian; Jin, Miao-Miao; Gu, Wei; Xue, Kan-Hao; Sun, Hua-Jun; Miao, Xiang-Shui

    2018-06-01

    Memristors have emerged as promising candidates for artificial synaptic devices, serving as the building block of brain-inspired neuromorphic computing. In this letter, we developed a Pt/HfO x /Ti memristor with nonvolatile multilevel resistive switching behaviors due to the evolution of the conductive filaments and the variation in the Schottky barrier. Diverse state-dependent spike-timing-dependent-plasticity (STDP) functions were implemented with different initial resistance states. The measured STDP forms were adopted as the learning rule for a three-layer spiking neural network which achieves a 75.74% recognition accuracy for MNIST handwritten digit dataset. This work has shown the capability of memristive synapse in spiking neural networks for pattern recognition application.

  3. Post processing for offline Chinese handwritten character string recognition

    NASA Astrophysics Data System (ADS)

    Wang, YanWei; Ding, XiaoQing; Liu, ChangSong

    2012-01-01

    Offline Chinese handwritten character string recognition is one of the most important research fields in pattern recognition. Due to the free writing style, large variability in character shapes and different geometric characteristics, Chinese handwritten character string recognition is a challenging problem to deal with. However, among the current methods over-segmentation and merging method which integrates geometric information, character recognition information and contextual information, shows a promising result. It is found experimentally that a large part of errors are segmentation error and mainly occur around non-Chinese characters. In a Chinese character string, there are not only wide characters namely Chinese characters, but also narrow characters like digits and letters of the alphabet. The segmentation error is mainly caused by uniform geometric model imposed on all segmented candidate characters. To solve this problem, post processing is employed to improve recognition accuracy of narrow characters. On one hand, multi-geometric models are established for wide characters and narrow characters respectively. Under multi-geometric models narrow characters are not prone to be merged. On the other hand, top rank recognition results of candidate paths are integrated to boost final recognition of narrow characters. The post processing method is investigated on two datasets, in total 1405 handwritten address strings. The wide character recognition accuracy has been improved lightly and narrow character recognition accuracy has been increased up by 10.41% and 10.03% respectively. It indicates that the post processing method is effective to improve recognition accuracy of narrow characters.

  4. Automatic forensic face recognition from digital images.

    PubMed

    Peacock, C; Goode, A; Brett, A

    2004-01-01

    Digital image evidence is now widely available from criminal investigations and surveillance operations, often captured by security and surveillance CCTV. This has resulted in a growing demand from law enforcement agencies for automatic person-recognition based on image data. In forensic science, a fundamental requirement for such automatic face recognition is to evaluate the weight that can justifiably be attached to this recognition evidence in a scientific framework. This paper describes a pilot study carried out by the Forensic Science Service (UK) which explores the use of digital facial images in forensic investigation. For the purpose of the experiment a specific software package was chosen (Image Metrics Optasia). The paper does not describe the techniques used by the software to reach its decision of probabilistic matches to facial images, but accepts the output of the software as though it were a 'black box'. In this way, the paper lays a foundation for how face recognition systems can be compared in a forensic framework. The aim of the paper is to explore how reliably and under what conditions digital facial images can be presented in evidence.

  5. Musicians' working memory for tones, words, and pseudowords.

    PubMed

    Benassi-Werke, Mariana E; Queiroz, Marcelo; Araújo, Rúben S; Bueno, Orlando F A; Oliveira, Maria Gabriela M

    2012-01-01

    Studies investigating factors that influence tone recognition generally use recognition tests, whereas the majority of the studies on verbal material use self-generated responses in the form of serial recall tests. In the present study we intended to investigate whether tonal and verbal materials share the same cognitive mechanisms, by presenting an experimental instrument that evaluates short-term and working memories for tones, using self-generated sung responses that may be compared to verbal tests. This paradigm was designed according to the same structure of the forward and backward digit span tests, but using digits, pseudowords, and tones as stimuli. The profile of amateur singers and professional singers in these tests was compared in forward and backward digit, pseudoword, tone, and contour spans. In addition, an absolute pitch experimental group was included, in order to observe the possible use of verbal labels in tone memorization tasks. In general, we observed that musical schooling has a slight positive influence on the recall of tones, as opposed to verbal material, which is not influenced by musical schooling. Furthermore, the ability to reproduce melodic contours (up and down patterns) is generally higher than the ability to reproduce exact tone sequences. However, backward spans were lower than forward spans for all stimuli (digits, pseudowords, tones, contour). Curiously, backward spans were disproportionately lower for tones than for verbal material-that is, the requirement to recall sequences in backward rather than forward order seems to differentially affect tonal stimuli. This difference does not vary according to musical expertise.

  6. Handwritten digits recognition using HMM and PSO based on storks

    NASA Astrophysics Data System (ADS)

    Yan, Liao; Jia, Zhenhong; Yang, Jie; Pang, Shaoning

    2010-07-01

    A new method for handwritten digits recognition based on hidden markov model (HMM) and particle swarm optimization (PSO) is proposed. This method defined 24 strokes with the sense of directional, to make up for the shortage that is sensitive in choice of stating point in traditional methods, but also reduce the ambiguity caused by shakes. Make use of excellent global convergence of PSO; improving the probability of finding the optimum and avoiding local infinitesimal obviously. Experimental results demonstrate that compared with the traditional methods, the proposed method can make most of the recognition rate of handwritten digits improved.

  7. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  8. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    NASA Astrophysics Data System (ADS)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  9. Software for biomedical engineering signal processing laboratory experiments.

    PubMed

    Tompkins, Willis J; Wilson, J

    2009-01-01

    In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms.

  10. Identifying images of handwritten digits using deep learning in H2O

    NASA Astrophysics Data System (ADS)

    Sadhasivam, Jayakumar; Charanya, R.; Kumar, S. Harish; Srinivasan, A.

    2017-11-01

    Automatic digit recognition is of popular interest today. Deep learning techniques make it possible for object recognition in image data. Perceiving the digit has turned into a fundamental part as far as certifiable applications. Since, digits are composed in various styles in this way to distinguish the digit it is important to perceive and arrange it with the assistance of machine learning methods. This exploration depends on supervised learning vector quantization neural system arranged under counterfeit artificial neural network. The pictures of digits are perceived, prepared and tried. After the system is made digits are prepared utilizing preparing dataset vectors and testing is connected to the pictures of digits which are separated to each other by fragmenting the picture and resizing the digit picture as needs be for better precision.

  11. Geometric aspects in digital analysis of Multi-Spectral Scanner (MSS) data

    NASA Technical Reports Server (NTRS)

    Mikhail, E. M.; Baker, J. R.

    1973-01-01

    Present automated systems of interpretation which apply pattern recognition techniques on MSS data do not fully consider the geometry of the acquisition system. In an effort to improve the usefulness of the MSS data when digitally treated, geometric aspects are analyzed and discussed. Attempts to correct for scanner instabilities in position and orientation by affine and polynomial transformations, as well as by modified collinearity equations are described. Methods of accounting for panoramic and relief effects are also discussed. It is anticipated that reliable area as well as position determinations can be accomplished during the process of automatic interpretation. A concept for a unified approach to the treatment of remote sensing data, both metric and nonmetric is presented.

  12. Generating Control Commands From Gestures Sensed by EMG

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Jorgensen, Charles

    2006-01-01

    An effort is under way to develop noninvasive neuro-electric interfaces through which human operators could control systems as diverse as simple mechanical devices, computers, aircraft, and even spacecraft. The basic idea is to use electrodes on the surface of the skin to acquire electromyographic (EMG) signals associated with gestures, digitize and process the EMG signals to recognize the gestures, and generate digital commands to perform the actions signified by the gestures. In an experimental prototype of such an interface, the EMG signals associated with hand gestures are acquired by use of several pairs of electrodes mounted in sleeves on a subject s forearm (see figure). The EMG signals are sampled and digitized. The resulting time-series data are fed as input to pattern-recognition software that has been trained to distinguish gestures from a given gesture set. The software implements, among other things, hidden Markov models, which are used to recognize the gestures as they are being performed in real time. Thus far, two experiments have been performed on the prototype interface to demonstrate feasibility: an experiment in synthesizing the output of a joystick and an experiment in synthesizing the output of a computer or typewriter keyboard. In the joystick experiment, the EMG signals were processed into joystick commands for a realistic flight simulator for an airplane. The acting pilot reached out into the air, grabbed an imaginary joystick, and pretended to manipulate the joystick to achieve left and right banks and up and down pitches of the simulated airplane. In the keyboard experiment, the subject pretended to type on a numerical keypad, and the EMG signals were processed into keystrokes. The results of the experiments demonstrate the basic feasibility of this method while indicating the need for further research to reduce the incidence of errors (including confusion among gestures). Topics that must be addressed include the numbers and arrangements of electrodes needed to acquire sufficient data; refinements in the acquisition, filtering, and digitization of EMG signals; and methods of training the pattern- recognition software. The joystick and keyboard simulations were chosen for the initial experiments because they are familiar to many computer users. It is anticipated that, ultimately, interfaces would utilize EMG signals associated with movements more nearly natural than those associated with joysticks or keyboards. Future versions of the pattern-recognition software are planned to be capable of adapting to the preferences and day-today variations in EMG outputs of individual users; this capability for adaptation would also make it possible to select gestures that, to a given user, feel the most nearly natural for generating control signals for a given task (provided that there are enough properly positioned electrodes to acquire the EMG signals from the muscles involved in the gestures).

  13. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  14. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  15. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  16. Speech Recognition for A Digital Video Library.

    ERIC Educational Resources Information Center

    Witbrock, Michael J.; Hauptmann, Alexander G.

    1998-01-01

    Production of the meta-data supporting the Informedia Digital Video Library interface is automated using techniques derived from artificial intelligence research. Speech recognition and natural-language processing, information retrieval, and image analysis are applied to produce an interface that helps users locate information and navigate more…

  17. On the impact of approximate computation in an analog DeSTIN architecture.

    PubMed

    Young, Steven; Lu, Junjie; Holleman, Jeremy; Arel, Itamar

    2014-05-01

    Deep machine learning (DML) holds the potential to revolutionize machine learning by automating rich feature extraction, which has become the primary bottleneck of human engineering in pattern recognition systems. However, the heavy computational burden renders DML systems implemented on conventional digital processors impractical for large-scale problems. The highly parallel computations required to implement large-scale deep learning systems are well suited to custom hardware. Analog computation has demonstrated power efficiency advantages of multiple orders of magnitude relative to digital systems while performing nonideal computations. In this paper, we investigate typical error sources introduced by analog computational elements and their impact on system-level performance in DeSTIN--a compositional deep learning architecture. These inaccuracies are evaluated on a pattern classification benchmark, clearly demonstrating the robustness of the underlying algorithm to the errors introduced by analog computational elements. A clear understanding of the impacts of nonideal computations is necessary to fully exploit the efficiency of analog circuits.

  18. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparison of speech recognition with adaptive digital and FM remote microphone hearing assistance technology by listeners who use hearing aids.

    PubMed

    Thibodeau, Linda

    2014-06-01

    The purpose of this study was to compare the benefits of 3 types of remote microphone hearing assistance technology (HAT), adaptive digital broadband, adaptive frequency modulation (FM), and fixed FM, through objective and subjective measures of speech recognition in clinical and real-world settings. Participants included 11 adults, ages 16 to 78 years, with primarily moderate-to-severe bilateral hearing impairment (HI), who wore binaural behind-the-ear hearing aids; and 15 adults, ages 18 to 30 years, with normal hearing. Sentence recognition in quiet and in noise and subjective ratings were obtained in 3 conditions of wireless signal processing. Performance by the listeners with HI when using the adaptive digital technology was significantly better than that obtained with the FM technology, with the greatest benefits at the highest noise levels. The majority of listeners also preferred the digital technology when listening in a real-world noisy environment. The wireless technology allowed persons with HI to surpass persons with normal hearing in speech recognition in noise, with the greatest benefit occurring with adaptive digital technology. The use of adaptive digital technology combined with speechreading cues would allow persons with HI to engage in communication in environments that would have otherwise not been possible with traditional wireless technology.

  20. Phase in Optical Image Processing

    NASA Astrophysics Data System (ADS)

    Naughton, Thomas J.

    2010-04-01

    The use of phase has a long standing history in optical image processing, with early milestones being in the field of pattern recognition, such as VanderLugt's practical construction technique for matched filters, and (implicitly) Goodman's joint Fourier transform correlator. In recent years, the flexibility afforded by phase-only spatial light modulators and digital holography, for example, has enabled many processing techniques based on the explicit encoding and decoding of phase. One application area concerns efficient numerical computations. Pushing phase measurement to its physical limits, designs employing the physical properties of phase have ranged from the sensible to the wonderful, in some cases making computationally easy problems easier to solve and in other cases addressing mathematics' most challenging computationally hard problems. Another application area is optical image encryption, in which, typically, a phase mask modulates the fractional Fourier transformed coefficients of a perturbed input image, and the phase of the inverse transform is then sensed as the encrypted image. The inherent linearity that makes the system so elegant mitigates against its use as an effective encryption technique, but we show how a combination of optical and digital techniques can restore confidence in that security. We conclude with the concept of digital hologram image processing, and applications of same that are uniquely suited to optical implementation, where the processing, recognition, or encryption step operates on full field information, such as that emanating from a coherently illuminated real-world three-dimensional object.

  1. Harmful Gas Recognition Exploiting a CTL Sensor Array

    PubMed Central

    Wang, Qihui; Xie, Lijun; Zhu, Bo; Zheng, Yao; Cao, Shihua

    2013-01-01

    In this paper, a novel cataluminescence (CTL)-based sensor array consisting of nine types of catalytic materials is developed for the recognition of several harmful gases, namely carbon monoxide, acetone, chloroform and toluene. First, the experimental setup is constructed by using sensing nanomaterials, a heating plate, a pneumatic pump, a gas flow meter, a digital temperature device, a camera and a BPCL Ultra Weak Chemiluminescence Analyzer. Then, unique CTL patterns for the four types of harmful gas are obtained from the sensor array. The harmful gases are successful recognized by the PCA method. The optimal conditions are also investigated. Finally, experimental results show high sensitivity, long-term stability and good linearity of the sensor array, which combined with simplicity, make our system a promising application in this field. PMID:24113681

  2. Thermal-Polarimetric and Visible Data Collection for Face Recognition

    DTIC Science & Technology

    2016-09-01

    pixels • Spectral range: 7.5–13 μm • Analog image output: NTSC analog video • Digital image output: Firewire radiometric, 14-bit digital video to...PC The analog video was not used for this study. The radiometric, 14-bit digital data provided temperature measurement information for comparison...distribution unlimited. 18 9. References 1. Choi J, Hu S, Young SS, Davis LS. Thermal to visible face recognition. Proc. SPIE 8371, Sensing

  3. [Online addictive disease].

    PubMed

    Neuenschwander, Martin

    2014-10-01

    Digital media are indispensable in school, profession, family and leisure time. 1 to 6 % of all users show dsyfunctional ans addictive patterns, first of all in online and "social" media. In Switzerland over 80 % of young people own a smartphone and "pocket internet". Time of interaction with online-media (hours/day), as well as peer group pattern are markers for risk of addiction. Active music making and sports are protective factors. Family physicians are important in early recognition of "internet addictive disease". Care-givers with special experience in this field are often successful in reducing time of harmful interaction with the internet. Internet addictive disease is not yet classified in ICD and DSM-5 lists, even though it is an increasing reality.

  4. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  5. Reading handprinted addresses on IRS tax forms

    NASA Astrophysics Data System (ADS)

    Ramanaprasad, Vemulapati; Shin, Yong-Chul; Srihari, Sargur N.

    1996-03-01

    The hand-printed address recognition system described in this paper is a part of the Name and Address Block Reader (NABR) system developed by the Center of Excellence for Document Analysis and Recognition (CEDAR). NABR is currently being used by the IRS to read address blocks (hand-print as well as machine-print) on fifteen different tax forms. Although machine- print address reading was relatively straightforward, hand-print address recognition has posed some special challenges due to demands on processing speed (with an expected throughput of 8450 forms/hour) and recognition accuracy. We discuss various subsystems involved in hand- printed address recognition, including word segmentation, word recognition, digit segmentation, and digit recognition. We also describe control strategies used to make effective use of these subsystems to maximize recognition accuracy. We present system performance on 931 address blocks in recognizing various fields, such as city, state, ZIP Code, street number and name, and personal names.

  6. Automatic violence detection in digital movies

    NASA Astrophysics Data System (ADS)

    Fischer, Stephan

    1996-11-01

    Research on computer-based recognition of violence is scant. We are working on the automatic recognition of violence in digital movies, a first step towards the goal of a computer- assisted system capable of protecting children against TV programs containing a great deal of violence. In the video domain a collision detection and a model-mapping to locate human figures are run, while the creation and comparison of fingerprints to find certain events are run int he audio domain. This article centers on the recognition of fist- fights in the video domain and on the recognition of shots, explosions and cries in the audio domain.

  7. Target Recognition Using Neural Networks for Model Deformation Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hibler, David L.

    1999-01-01

    Optical measurements provide a non-invasive method for measuring deformation of wind tunnel models. Model deformation systems use targets mounted or painted on the surface of the model to identify known positions, and photogrammetric methods are used to calculate 3-D positions of the targets on the model from digital 2-D images. Under ideal conditions, the reflective targets are placed against a dark background and provide high-contrast images, aiding in target recognition. However, glints of light reflecting from the model surface, or reduced contrast caused by light source or model smoothness constraints, can compromise accurate target determination using current algorithmic methods. This paper describes a technique using a neural network and image processing technologies which increases the reliability of target recognition systems. Unlike algorithmic methods, the neural network can be trained to identify the characteristic patterns that distinguish targets from other objects of similar size and appearance and can adapt to changes in lighting and environmental conditions.

  8. SU-F-T-20: Novel Catheter Lumen Recognition Algorithm for Rapid Digitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dise, J; McDonald, D; Ashenafi, M

    Purpose: Manual catheter recognition remains a time-consuming aspect of high-dose-rate brachytherapy (HDR) treatment planning. In this work, a novel catheter lumen recognition algorithm was created for accurate and rapid digitization. Methods: MatLab v8.5 was used to create the catheter recognition algorithm. Initially, the algorithm searches the patient CT dataset using an intensity based k-means filter designed to locate catheters. Once the catheters have been located, seed points are manually selected to initialize digitization of each catheter. From each seed point, the algorithm searches locally in order to automatically digitize the remaining catheter. This digitization is accomplished by finding pixels withmore » similar image curvature and divergence parameters compared to the seed pixel. Newly digitized pixels are treated as new seed positions, and hessian image analysis is used to direct the algorithm toward neighboring catheter pixels, and to make the algorithm insensitive to adjacent catheters that are unresolvable on CT, air pockets, and high Z artifacts. The algorithm was tested using 11 HDR treatment plans, including the Syed template, tandem and ovoid applicator, and multi-catheter lung brachytherapy. Digitization error was calculated by comparing manually determined catheter positions to those determined by the algorithm. Results: he digitization error was 0.23 mm ± 0.14 mm axially and 0.62 mm ± 0.13 mm longitudinally at the tip. The time of digitization, following initial seed placement was less than 1 second per catheter. The maximum total time required to digitize all tested applicators was 4 minutes (Syed template with 15 needles). Conclusion: This algorithm successfully digitizes HDR catheters for a variety of applicators with or without CT markers. The minimal axial error demonstrates the accuracy of the algorithm, and its insensitivity to image artifacts and challenging catheter positioning. Future work to automatically place initial seed positions would improve the algorithm speed.« less

  9. New approach for segmentation and recognition of handwritten numeral strings

    NASA Astrophysics Data System (ADS)

    Sadri, Javad; Suen, Ching Y.; Bui, Tien D.

    2004-12-01

    In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.

  10. New approach for segmentation and recognition of handwritten numeral strings

    NASA Astrophysics Data System (ADS)

    Sadri, Javad; Suen, Ching Y.; Bui, Tien D.

    2005-01-01

    In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.

  11. Style consistent classification of isogenous patterns.

    PubMed

    Sarkar, Prateek; Nagy, George

    2005-01-01

    In many applications of pattern recognition, patterns appear together in groups (fields) that have a common origin. For example, a printed word is usually a field of character patterns printed in the same font. A common origin induces consistency of style in features measured on patterns. The features of patterns co-occurring in a field are statistically dependent because they share the same, albeit unknown, style. Style constrained classifiers achieve higher classification accuracy by modeling such dependence among patterns in a field. Effects of style consistency on the distributions of field-features (concatenation of pattern features) can be modeled by hierarchical mixtures. Each field derives from a mixture of styles, while, within a field, a pattern derives from a class-style conditional mixture of Gaussians. Based on this model, an optimal style constrained classifier processes entire fields of patterns rendered in a consistent but unknown style. In a laboratory experiment, style constrained classification reduced errors on fields of printed digits by nearly 25 percent over singlet classifiers. Longer fields favor our classification method because they furnish more information about the underlying style.

  12. Development and validation of a smartphone-based digits-in-noise hearing test in South African English.

    PubMed

    Potgieter, Jenni-Marí; Swanepoel, De Wet; Myburgh, Hermanus Carel; Hopper, Thomas Christopher; Smits, Cas

    2015-07-01

    The objective of this study was to develop and validate a smartphone-based digits-in-noise hearing test for South African English. Single digits (0-9) were recorded and spoken by a first language English female speaker. Level corrections were applied to create a set of homogeneous digits with steep speech recognition functions. A smartphone application was created to utilize 120 digit-triplets in noise as test material. An adaptive test procedure determined the speech reception threshold (SRT). Experiments were performed to determine headphones effects on the SRT and to establish normative data. Participants consisted of 40 normal-hearing subjects with thresholds ≤15 dB across the frequency spectrum (250-8000 Hz) and 186 subjects with normal-hearing in both ears, or normal-hearing in the better ear. The results show steep speech recognition functions with a slope of 20%/dB for digit-triplets presented in noise using the smartphone application. The results of five headphone types indicate that the smartphone-based hearing test is reliable and can be conducted using standard Android smartphone headphones or clinical headphones. A digits-in-noise hearing test was developed and validated for South Africa. The mean SRT and speech recognition functions correspond to previous developed telephone-based digits-in-noise tests.

  13. Novel Blind Recognition Algorithm of Frame Synchronization Words Based on Soft-Decision in Digital Communication Systems.

    PubMed

    Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing

    2015-01-01

    A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.

  14. Association of Chronic Subjective Tinnitus with Neuro- Cognitive Performance.

    PubMed

    Gudwani, Sunita; Munjal, Sanjay K; Panda, Naresh K; Kohli, Adarsh

    2017-12-01

    Chronic subjective tinnitus is associated with cognitive disruptions affecting perception, thinking, language, reasoning, problem solving, memory, visual tasks (reading) and attention. To evaluate existence of any association between tinnitus parameters and neuropsychological performance to explain cognitive processing. Study design was prospective, consisting 25 patients with idiopathic chronic subjective tinnitus and gave informed consent before planning their treatment. Neuropsychological profile included (i) performance on verbal information, comprehension, arithmetic and digit span; (ii) non-verbal performance for visual pattern completion analogies; (iii) memory performance for long-term, recent, delayed-recall, immediate-recall, verbal-retention, visualretention, visual recognition; (iv) reception, interpretation and execution for visual motor gestalt. Correlation between tinnitus onset duration/ loudness perception with neuropsychological profile was assessed by calculating Spearman's coefficient. Findings suggest that tinnitus may interfere with cognitive processing especially performance on digit span, verbal comprehension, mental balance, attention & concentration, immediate recall, visual recognition and visual-motor gestalt subtests. Negative correlation between neurocognitive tasks with tinnitus loudness and onset duration indicated their association. Positive correlation between tinnitus and visual-motor gestalt performance indicated the brain dysfunction. Tinnitus association with non-auditory processing of verbal, visual and visuo-spatial information suggested neuroplastic changes that need to be targeted in cognitive rehabilitation.

  15. Word recognition materials for native speakers of Taiwan Mandarin.

    PubMed

    Nissen, Shawn L; Harris, Richard W; Dukes, Alycia

    2008-06-01

    To select, digitally record, evaluate, and psychometrically equate word recognition materials that can be used to measure the speech perception abilities of native speakers of Taiwan Mandarin in quiet. Frequently used bisyllabic words produced by male and female talkers of Taiwan Mandarin were digitally recorded and subsequently evaluated using 20 native listeners with normal hearing at 10 intensity levels (-5 to 40 dB HL) in increments of 5 dB. Using logistic regression, 200 words with the steepest psychometric slopes were divided into 4 lists and 8 half-lists that were relatively equivalent in psychometric function slope. To increase auditory homogeneity of the lists, the intensity of words in each list was digitally adjusted so that the threshold of each list was equal to the midpoint between the mean thresholds of the male and female half-lists. Digital recordings of the word recognition lists and the associated clinical instructions are available on CD upon request.

  16. Use of Biometrics within Sub-Saharan Refugee Communities

    DTIC Science & Technology

    2013-12-01

    fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity. Biometrics creates and...Biometrics typically comprises fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity...authentication because it identifies an individual based on mathematical analysis of the random pattern visible within the iris. Facial recognition is

  17. Application of pattern recognition techniques to acousto-ultrasonic testing of Kevlar composite panels

    NASA Astrophysics Data System (ADS)

    Hinton, Yolanda L.

    An acousto-ultrasonic evaluation of panels fabricated from woven Kevlar and PVB/phenolic resin is being conducted. The panels were fabricated with various simulated defects. They were examined by pulsing with one acoustic emission sensor, and detecting the signal with another sensor, on the same side of the panel at a fixed distance. The acoustic emission signals were filtered through high (400-600 KHz), low (100-300 KHz) and wide (100-1200 KHz) bandpass filters. Acoustic emission signal parameters, including amplitude, counts, rise time, duration, 'energy', rms, and counts to peak, were recorded. These were statistically analyzed to determine which of the AE parameters best characterize the simulated defects. The wideband filtered acoustic emission signal was also digitized and recorded for further processing. Seventy-one features of the signals in both the time and frequency domains were calculated and compared to determine which subset of these features uniquely characterize the defects in the panels. The objective of the program is to develop a database of AE signal parameters and features to be used in pattern recognition as an inspection tool for material fabricated from these materials.

  18. Multiple Optical Filter Design Simulation Results

    NASA Astrophysics Data System (ADS)

    Mendelsohn, J.; Englund, D. C.

    1986-10-01

    In this paper we continue our investigation of the application of matched filters to robotic vision problems. Specifically, we are concerned with the tray-picking problem. Our principal interest in this paper is the examination of summation affects which arise from attempting to reduce the matched filter memory size by averaging of matched filters. While the implementation of matched filtering theory to applications in pattern recognition or machine vision is ideally through the use of optics and optical correlators, in this paper the results were obtained through a digital simulation of the optical process.

  19. Mexican sign language recognition using normalized moments and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Solís-V., J.-Francisco; Toxqui-Quitl, Carina; Martínez-Martínez, David; H.-G., Margarita

    2014-09-01

    This work presents a framework designed for the Mexican Sign Language (MSL) recognition. A data set was recorded with 24 static signs from the MSL using 5 different versions, this MSL dataset was captured using a digital camera in incoherent light conditions. Digital Image Processing was used to segment hand gestures, a uniform background was selected to avoid using gloved hands or some special markers. Feature extraction was performed by calculating normalized geometric moments of gray scaled signs, then an Artificial Neural Network performs the recognition using a 10-fold cross validation tested in weka, the best result achieved 95.83% of recognition rate.

  20. Rotation-invariant neural pattern recognition system with application to coin recognition.

    PubMed

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  1. Preschoolers Explore Interactive Storybook Apps: The Effect on Word Recognition and Story Comprehension

    ERIC Educational Resources Information Center

    Zipke, Marcy

    2017-01-01

    Two experiments explored the effects of reading digital storybooks on tablet computers with 25 preschoolers, aged 4-5. In the first experiment, the students' word recognition scores were found to increase significantly more when students explored a digital storybook and employed the read-aloud function than when they were read to from a comparable…

  2. Biometrics Foundation Documents

    DTIC Science & Technology

    2009-01-01

    a digital form. The quality of the sensor used has a significant impact on the recognition results. Example “sensors” could be digital cameras...Difficult to control sensor and channel variances that significantly impact capabilities Not sufficiently distinctive for identification over large...expressions, hairstyle, glasses, hats, makeup, etc. have on face recognition systems? Minor variances , such as those mentioned, will have a moderate

  3. Digitization of Full-Text Documents Before Publishing on the Internet: A Case Study Reviewing the Latest Optical Character Recognition Technologies.

    ERIC Educational Resources Information Center

    McClean, Clare M.

    1998-01-01

    Reviews strengths and weaknesses of five optical character recognition (OCR) software packages used to digitize paper documents before publishing on the Internet. Outlines options available and stages of the conversion process. Describes the learning experience of Eurotext, a United Kingdom-based electronic libraries project (eLib). (PEN)

  4. Recognition of degraded handwritten digits using dynamic Bayesian networks

    NASA Astrophysics Data System (ADS)

    Likforman-Sulem, Laurence; Sigelle, Marc

    2007-01-01

    We investigate in this paper the application of dynamic Bayesian networks (DBNs) to the recognition of handwritten digits. The main idea is to couple two separate HMMs into various architectures. First, a vertical HMM and a horizontal HMM are built observing the evolving streams of image columns and image rows respectively. Then, two coupled architectures are proposed to model interactions between these two streams and to capture the 2D nature of character images. Experiments performed on the MNIST handwritten digit database show that coupled architectures yield better recognition performances than non-coupled ones. Additional experiments conducted on artificially degraded (broken) characters demonstrate that coupled architectures better cope with such degradation than non coupled ones and than discriminative methods such as SVMs.

  5. Noise tolerant dendritic lattice associative memories

    NASA Astrophysics Data System (ADS)

    Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc

    2011-09-01

    Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.

  6. Towards an Analogue Neuromorphic VLSI Instrument for the Sensing of Complex Odours

    NASA Astrophysics Data System (ADS)

    Ab Aziz, Muhammad Fazli; Harun, Fauzan Khairi Che; Covington, James A.; Gardner, Julian W.

    2011-09-01

    Almost all electronic nose instruments reported today employ pattern recognition algorithms written in software and run on digital processors, e.g. micro-processors, microcontrollers or FPGAs. Conversely, in this paper we describe the analogue VLSI implementation of an electronic nose through the design of a neuromorphic olfactory chip. The modelling, design and fabrication of the chip have already been reported. Here a smart interface has been designed and characterised for thisneuromorphic chip. Thus we can demonstrate the functionality of the a VLSI neuromorphic chip, producing differing principal neuron firing patterns to real sensor response data. Further work is directed towards integrating 9 separate neuromorphic chips to create a large neuronal network to solve more complex olfactory problems.

  7. For Those of Us at the Borders: Recognition and Evaluation of Faculty Work in the Academic Field of Film and Digital Media

    ERIC Educational Resources Information Center

    Collins, E. Anthony

    2011-01-01

    Artistic, scholarly, and professional works by individual faculty members in the field of film and digital media are not being adequately recognized or rewarded as scholarship activity during performance evaluation in institutions of higher learning. Conventional systems for the recognition and evaluation of work prioritize scientism and compel…

  8. Use of Adaptive Digital Signal Processing to Improve Speech Communication for Normally Hearing aand Hearing-Impaired Subjects.

    ERIC Educational Resources Information Center

    Harris, Richard W.; And Others

    1988-01-01

    A two-microphone adaptive digital noise cancellation technique improved word-recognition ability for 20 normal and 12 hearing-impaired adults by reducing multitalker speech babble and speech spectrum noise 18-22 dB. Word recognition improvements averaged 37-50 percent for normal and 27-40 percent for hearing-impaired subjects. Improvement was best…

  9. Computer generated maps from digital satellite data - A case study in Florida

    NASA Technical Reports Server (NTRS)

    Arvanitis, L. G.; Reich, R. M.; Newburne, R.

    1981-01-01

    Ground cover maps are important tools to a wide array of users. Over the past three decades, much progress has been made in supplementing planimetric and topographic maps with ground cover details obtained from aerial photographs. The present investigation evaluates the feasibility of using computer maps of ground cover from satellite input tapes. Attention is given to the selection of test sites, a satellite data processing system, a multispectral image analyzer, general purpose computer-generated maps, the preliminary evaluation of computer maps, a test for areal correspondence, the preparation of overlays and acreage estimation of land cover types on the Landsat computer maps. There is every indication to suggest that digital multispectral image processing systems based on Landsat input data will play an increasingly important role in pattern recognition and mapping land cover in the years to come.

  10. Design and realization of an active SAR calibrator for TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Dummer, Georg; Lenz, Rainer; Lutz, Benjamin; Kühl, Markus; Müller-Glaser, Klaus D.; Wiesbeck, Werner

    2005-10-01

    TerraSAR-X is a new earth observing satellite which will be launched in spring 2006. It carries a high resolution X-band SAR sensor. For high image data quality, accurate ground calibration targets are necessary. This paper describes a novel system concept for an active and highly integrated, digitally controlled SAR system calibrator. A total of 16 active transponder and receiver systems and 17 receiver only systems will be fabricated for a calibration campaign. The calibration units serve for absolute radiometric calibration of the SAR image data. Additionally, they are equipped with an extra receiver path for two dimensional satellite antenna pattern recognition. The calibrator is controlled by a dedicated digital Electronic Control Unit (ECU). The different voltages needed by the calibrator and the ECU are provided by the third main unit called Power Management Unit (PMU).

  11. Extrinsic Cognitive Load Impairs Spoken Word Recognition in High- and Low-Predictability Sentences.

    PubMed

    Hunter, Cynthia R; Pisoni, David B

    Listening effort (LE) induced by speech degradation reduces performance on concurrent cognitive tasks. However, a converse effect of extrinsic cognitive load on recognition of spoken words in sentences has not been shown. The aims of the present study were to (a) examine the impact of extrinsic cognitive load on spoken word recognition in a sentence recognition task and (b) determine whether cognitive load and/or LE needed to understand spectrally degraded speech would differentially affect word recognition in high- and low-predictability sentences. Downstream effects of speech degradation and sentence predictability on the cognitive load task were also examined. One hundred twenty young adults identified sentence-final spoken words in high- and low-predictability Speech Perception in Noise sentences. Cognitive load consisted of a preload of short (low-load) or long (high-load) sequences of digits, presented visually before each spoken sentence and reported either before or after identification of the sentence-final word. LE was varied by spectrally degrading sentences with four-, six-, or eight-channel noise vocoding. Level of spectral degradation and order of report (digits first or words first) were between-participants variables. Effects of cognitive load, sentence predictability, and speech degradation on accuracy of sentence-final word identification as well as recall of preload digit sequences were examined. In addition to anticipated main effects of sentence predictability and spectral degradation on word recognition, we found an effect of cognitive load, such that words were identified more accurately under low load than high load. However, load differentially affected word identification in high- and low-predictability sentences depending on the level of sentence degradation. Under severe spectral degradation (four-channel vocoding), the effect of cognitive load on word identification was present for high-predictability sentences but not for low-predictability sentences. Under mild spectral degradation (eight-channel vocoding), the effect of load was present for low-predictability sentences but not for high-predictability sentences. There were also reliable downstream effects of speech degradation and sentence predictability on recall of the preload digit sequences. Long digit sequences were more easily recalled following spoken sentences that were less spectrally degraded. When digits were reported after identification of sentence-final words, short digit sequences were recalled more accurately when the spoken sentences were predictable. Extrinsic cognitive load can impair recognition of spectrally degraded spoken words in a sentence recognition task. Cognitive load affected word identification in both high- and low-predictability sentences, suggesting that load may impact both context use and lower-level perceptual processes. Consistent with prior work, LE also had downstream effects on memory for visual digit sequences. Results support the proposal that extrinsic cognitive load and LE induced by signal degradation both draw on a central, limited pool of cognitive resources that is used to recognize spoken words in sentences under adverse listening conditions.

  12. Fast image processing with a microcomputer applied to speckle photography

    NASA Astrophysics Data System (ADS)

    Erbeck, R.

    1985-11-01

    An automated image recognition system is described for speckle photography investigations in fluid dynamics. The system is employed for characterizing the pattern of interference fringes obtained using speckle interferometry. A rotating ground glass serves as a screen on which laser light passing through a specklegraph plate, the flow and a compensation plate (CP) is shone to produce a compensated Young's pattern. The image produced on the ground glass is photographed by a video camera whose signal is digitized and processed through a microcomputer using a 6502 CPU chip. The normalized correlation function of the intensity is calculated in two directions of the recorded pattern to obtain the wavelength and the light deflection angle. The system has a capability of one picture every two seconds. Sample data are provided for a free jet of CO2 issuing into air in both laminar and turbulent form.

  13. Hough transform for human action recognition

    NASA Astrophysics Data System (ADS)

    Siemon, Mia S. N.

    2016-09-01

    Nowadays, the demand of computer analysis, especially regarding team sports, continues drastically growing. More and more decisions are made by electronic devices for the live to become `easier' to a certain context. There already exist application areas in sports, during which critical situations are being handled by means of digital software. This paper aims at the evaluation and introduction to the necessary foundation which would make it possible to develop a concept similar to that of `hawk-eye', a decision-making program to evaluate the impact of a ball with respect to a target line and to apply it to the sport of volleyball. The pattern recognition process is in this case performed by means of the mathematical model of Hough transform which is able of identifying relevant lines and circles in the image in order to later on use them for the necessary evaluation of the image and the decision-making process.

  14. Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning.

    PubMed

    Sadeghi, Zahra; Testolin, Alberto

    2017-08-01

    In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.

  15. Target recognition and phase acquisition by using incoherent digital holographic imaging

    NASA Astrophysics Data System (ADS)

    Lee, Munseob; Lee, Byung-Tak

    2017-05-01

    In this study, we proposed the Incoherent Digital Holographic Imaging (IDHI) for recognition and phase information of dedicated target. Although recent development of a number of target recognition techniques such as LIDAR, there have limited success in target discrimination, in part due to low-resolution, low scanning speed, and computation power. In the paper, the proposed system consists of the incoherent light source, such as LED, Michelson interferometer, and digital CCD for acquisition of four phase shifting image. First of all, to compare with relative coherence, we used a source as laser and LED, respectively. Through numerical reconstruction by using the four phase shifting method and Fresnel diffraction method, we recovered the intensity and phase image of USAF resolution target apart from about 1.0m distance. In this experiment, we show 1.2 times improvement in resolution compared to conventional imaging. Finally, to confirm the recognition result of camouflaged targets with the same color from background, we carry out to test holographic imaging in incoherent light. In this result, we showed the possibility of a target detection and recognition that used three dimensional shape and size signatures, numerical distance from phase information of obtained holographic image.

  16. The contribution of discrete-trial naming and visual recognition to rapid automatized naming deficits of dyslexic children with and without a history of language delay

    PubMed Central

    Gasperini, Filippo; Brizzolara, Daniela; Cristofani, Paola; Casalini, Claudia; Chilosi, Anna Maria

    2014-01-01

    Children with Developmental Dyslexia (DD) are impaired in Rapid Automatized Naming (RAN) tasks, where subjects are asked to name arrays of high frequency items as quickly as possible. However the reasons why RAN speed discriminates DD from typical readers are not yet fully understood. Our study was aimed to identify some of the cognitive mechanisms underlying RAN-reading relationship by comparing one group of 32 children with DD with an age-matched control group of typical readers on a naming and a visual recognition task both using a discrete-trial methodology, in addition to a serial RAN task, all using the same stimuli (digits and colors). Results showed a significant slowness of DD children in both serial and discrete-trial naming (DN) tasks regardless of type of stimulus, but no difference between the two groups on the discrete-trial recognition task. Significant differences between DD and control participants in the RAN task disappeared when performance in the DN task was partialled out by covariance analysis for colors, but not for digits. The same pattern held in a subgroup of DD subjects with a history of early language delay (LD). By contrast, in a subsample of DD children without LD the RAN deficit was specific for digits and disappeared after slowness in DN was partialled out. Slowness in DN was more evident for LD than for noLD DD children. Overall, our results confirm previous evidence indicating a name-retrieval deficit as a cognitive impairment underlying RAN slowness in DD children. This deficit seems to be more marked in DD children with previous LD. Moreover, additional cognitive deficits specifically associated with serial RAN tasks have to be taken into account when explaining deficient RAN speed of these latter children. We suggest that partially different cognitive dysfunctions underpin superficially similar RAN impairments in different subgroups of DD subjects. PMID:25237301

  17. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.

    PubMed

    Schafer, Phillip B; Jin, Dezhe Z

    2014-03-01

    Speech recognition in noisy conditions is a major challenge for computer systems, but the human brain performs it routinely and accurately. Automatic speech recognition (ASR) systems that are inspired by neuroscience can potentially bridge the performance gap between humans and machines. We present a system for noise-robust isolated word recognition that works by decoding sequences of spikes from a population of simulated auditory feature-detecting neurons. Each neuron is trained to respond selectively to a brief spectrotemporal pattern, or feature, drawn from the simulated auditory nerve response to speech. The neural population conveys the time-dependent structure of a sound by its sequence of spikes. We compare two methods for decoding the spike sequences--one using a hidden Markov model-based recognizer, the other using a novel template-based recognition scheme. In the latter case, words are recognized by comparing their spike sequences to template sequences obtained from clean training data, using a similarity measure based on the length of the longest common sub-sequence. Using isolated spoken digits from the AURORA-2 database, we show that our combined system outperforms a state-of-the-art robust speech recognizer at low signal-to-noise ratios. Both the spike-based encoding scheme and the template-based decoding offer gains in noise robustness over traditional speech recognition methods. Our system highlights potential advantages of spike-based acoustic coding and provides a biologically motivated framework for robust ASR development.

  18. Minimal effects of visual memory training on the auditory performance of adult cochlear implant users

    PubMed Central

    Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie

    2014-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087

  19. Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.

    PubMed

    Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus

    2017-01-01

    Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.

  20. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time. This prototype facilitated the study of various issues of pattern recognition and identified an efficient classifier, along with a feature ensemble, in the implementation of EMG controlled prosthetic hands in a laboratory setting at low-cost. This platform may help to motivate and facilitate prosthetic hand research in developing countries.

  1. Automated feature detection and identification in digital point-ordered signals

    DOEpatents

    Oppenlander, Jane E.; Loomis, Kent C.; Brudnoy, David M.; Levy, Arthur J.

    1998-01-01

    A computer-based automated method to detect and identify features in digital point-ordered signals. The method is used for processing of non-destructive test signals, such as eddy current signals obtained from calibration standards. The signals are first automatically processed to remove noise and to determine a baseline. Next, features are detected in the signals using mathematical morphology filters. Finally, verification of the features is made using an expert system of pattern recognition methods and geometric criteria. The method has the advantage that standard features can be, located without prior knowledge of the number or sequence of the features. Further advantages are that standard features can be differentiated from irrelevant signal features such as noise, and detected features are automatically verified by parameters extracted from the signals. The method proceeds fully automatically without initial operator set-up and without subjective operator feature judgement.

  2. Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Huang, K. S.; Diep, J.

    1993-01-01

    Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.

  3. Tug-of-war lacunarity—A novel approach for estimating lacunarity

    NASA Astrophysics Data System (ADS)

    Reiss, Martin A.; Lemmerer, Birgit; Hanslmeier, Arnold; Ahammer, Helmut

    2016-11-01

    Modern instrumentation provides us with massive repositories of digital images that will likely only increase in the future. Therefore, it has become increasingly important to automatize the analysis of digital images, e.g., with methods from pattern recognition. These methods aim to quantify the visual appearance of captured textures with quantitative measures. As such, lacunarity is a useful multi-scale measure of texture's heterogeneity but demands high computational efforts. Here we investigate a novel approach based on the tug-of-war algorithm, which estimates lacunarity in a single pass over the image. We computed lacunarity for theoretical and real world sample images, and found that the investigated approach is able to estimate lacunarity with low uncertainties. We conclude that the proposed method combines low computational efforts with high accuracy, and that its application may have utility in the analysis of high-resolution images.

  4. A symbolic/subsymbolic interface protocol for cognitive modeling

    PubMed Central

    Simen, Patrick; Polk, Thad

    2009-01-01

    Researchers studying complex cognition have grown increasingly interested in mapping symbolic cognitive architectures onto subsymbolic brain models. Such a mapping seems essential for understanding cognition under all but the most extreme viewpoints (namely, that cognition consists exclusively of digitally implemented rules; or instead, involves no rules whatsoever). Making this mapping reduces to specifying an interface between symbolic and subsymbolic descriptions of brain activity. To that end, we propose parameterization techniques for building cognitive models as programmable, structured, recurrent neural networks. Feedback strength in these models determines whether their components implement classically subsymbolic neural network functions (e.g., pattern recognition), or instead, logical rules and digital memory. These techniques support the implementation of limited production systems. Though inherently sequential and symbolic, these neural production systems can exploit principles of parallel, analog processing from decision-making models in psychology and neuroscience to explain the effects of brain damage on problem solving behavior. PMID:20711520

  5. Real-time implementation of electromyogram pattern recognition as a control command of man-machine interface.

    PubMed

    Chang, G C; Kang, W J; Luh, J J; Cheng, C K; Lai, J S; Chen, J J; Kuo, T S

    1996-10-01

    The purpose of this study was to develop a real-time electromyogram (EMG) discrimination system to provide control commands for man-machine interface applications. A host computer with a plug-in data acquisition and processing board containing a TMS320 C31 floating-point digital signal processor was used to attain real-time EMG classification. Two-channel EMG signals were collected by two pairs of surface electrodes located bilaterally between the sternocleidomastoid and the upper trapezius. Five motions of the neck and shoulders were discriminated for each subject. The zero-crossing rate was employed to detect the onset of muscle contraction. The cepstral coefficients, derived from autoregressive coefficients and estimated by a recursive least square algorithm, were used as the recognition features. These features were then discriminated using a modified maximum likelihood distance classifier. The total response time of this EMG discrimination system was achieved about within 0.17 s. Four able bodied and two C5/6 quadriplegic subjects took part in the experiment, and achieved 95% mean recognition rate in discrimination between the five specific motions. The response time and the reliability of recognition indicate that this system has the potential to discriminate body motions for man-machine interface applications.

  6. Effects of hearing loss on speech recognition under distracting conditions and working memory in the elderly.

    PubMed

    Na, Wondo; Kim, Gibbeum; Kim, Gungu; Han, Woojae; Kim, Jinsook

    2017-01-01

    The current study aimed to evaluate hearing-related changes in terms of speech-in-noise processing, fast-rate speech processing, and working memory; and to identify which of these three factors is significantly affected by age-related hearing loss. One hundred subjects aged 65-84 years participated in the study. They were classified into four groups ranging from normal hearing to moderate-to-severe hearing loss. All the participants were tested for speech perception in quiet and noisy conditions and for speech perception with time alteration in quiet conditions. Forward- and backward-digit span tests were also conducted to measure the participants' working memory. 1) As the level of background noise increased, speech perception scores systematically decreased in all the groups. This pattern was more noticeable in the three hearing-impaired groups than in the normal hearing group. 2) As the speech rate increased faster, speech perception scores decreased. A significant interaction was found between speed of speech and hearing loss. In particular, 30% of compressed sentences revealed a clear differentiation between moderate hearing loss and moderate-to-severe hearing loss. 3) Although all the groups showed a longer span on the forward-digit span test than the backward-digit span test, there was no significant difference as a function of hearing loss. The degree of hearing loss strongly affects the speech recognition of babble-masked and time-compressed speech in the elderly but does not affect the working memory. We expect these results to be applied to appropriate rehabilitation strategies for hearing-impaired elderly who experience difficulty in communication.

  7. Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth.

    PubMed

    Polsen, Erik S; Stevens, Adam G; Hart, A John

    2013-05-01

    Commercialization of materials utilizing patterned carbon nanotube (CNT) forests, such as hierarchical composite structures, dry adhesives, and contact probe arrays, will require catalyst patterning techniques that do not rely on cleanroom photolithography. We demonstrate the large scale patterning of CNT growth catalyst via adaptation of a laser-based electrostatic printing process that uses magnetic ink character recognition (MICR) toner. The MICR toner contains iron oxide nanoparticles that serve as the catalyst for CNT growth, which are printed onto a flexible polymer (polyimide) and then transferred to a rigid substrate (silicon or alumina) under heat and mechanical pressure. Then, the substrate is processed for CNT growth under an atmospheric pressure chemical vapor deposition (CVD) recipe. This process enables digital control of patterned CNT growth via the laser intensity, which controls the CNT density; and via the grayscale level, which controls the pixelation of the image into arrays of micropillars. Moreover, virtually any pattern can be designed using standard software (e.g., MS Word, AutoCAD, etc.) and printed on demand. Using a standard office printer, we realize isolated CNT microstructures as small as 140 μm and isolated catalyst ″pixels″ as small as 70 μm (one grayscale dot) and determine that individual toner microparticles result in features of approximately 5-10 μm . We demonstrate that grayscale CNT patterns can function as dry adhesives and that large-area catalyst patterns can be printed directly onto metal foils or transferred to ceramic plates. Laser printing therefore shows promise to enable high-speed micropatterning of nanoparticle-containing thin films under ambient conditions, possibly for a wide variety of nanostructures by engineering of toners containing nanoparticles of desired composition, size, and shape.

  8. A Limited-Vocabulary, Multi-Speaker Automatic Isolated Word Recognition System.

    ERIC Educational Resources Information Center

    Paul, James E., Jr.

    Techniques for automatic recognition of isolated words are investigated, and a computer simulation of a word recognition system is effected. Considered in detail are data acquisition and digitizing, word detection, amplitude and time normalization, short-time spectral estimation including spectral windowing, spectral envelope approximation,…

  9. Large-area settlement pattern recognition from Landsat-8 data

    NASA Astrophysics Data System (ADS)

    Wieland, Marc; Pittore, Massimiliano

    2016-09-01

    The study presents an image processing and analysis pipeline that combines object-based image analysis with a Support Vector Machine to derive a multi-layered settlement product from Landsat-8 data over large areas. 43 image scenes are processed over large parts of Central Asia (Southern Kazakhstan, Kyrgyzstan, Tajikistan and Eastern Uzbekistan). The main tasks tackled by this work include built-up area identification, settlement type classification and urban structure types pattern recognition. Besides commonly used accuracy assessments of the resulting map products, thorough performance evaluations are carried out under varying conditions to tune algorithm parameters and assess their applicability for the given tasks. As part of this, several research questions are being addressed. In particular the influence of the improved spatial and spectral resolution of Landsat-8 on the SVM performance to identify built-up areas and urban structure types are evaluated. Also the influence of an extended feature space including digital elevation model features is tested for mountainous regions. Moreover, the spatial distribution of classification uncertainties is analyzed and compared to the heterogeneity of the building stock within the computational unit of the segments. The study concludes that the information content of Landsat-8 images is sufficient for the tested classification tasks and even detailed urban structures could be extracted with satisfying accuracy. Freely available ancillary settlement point location data could further improve the built-up area classification. Digital elevation features and pan-sharpening could, however, not significantly improve the classification results. The study highlights the importance of dynamically tuned classifier parameters, and underlines the use of Shannon entropy computed from the soft answers of the SVM as a valid measure of the spatial distribution of classification uncertainties.

  10. Face recognition system and method using face pattern words and face pattern bytes

    DOEpatents

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  11. Adaptive Learning and Pruning Using Periodic Packet for Fast Invariance Extraction and Recognition

    NASA Astrophysics Data System (ADS)

    Chang, Sheng-Jiang; Zhang, Bian-Li; Lin, Lie; Xiong, Tao; Shen, Jin-Yuan

    2005-02-01

    A new learning scheme using a periodic packet as the neuronal activation function is proposed for invariance extraction and recognition of handwritten digits. Simulation results show that the proposed network can extract the invariant feature effectively and improve both the convergence and the recognition rate.

  12. Towards pattern generation and chaotic series prediction with photonic reservoir computers

    NASA Astrophysics Data System (ADS)

    Antonik, Piotr; Hermans, Michiel; Duport, François; Haelterman, Marc; Massar, Serge

    2016-03-01

    Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals that is particularly well suited for analog implementations. Our team has demonstrated several photonic reservoir computers with performance comparable to digital algorithms on a series of benchmark tasks such as channel equalisation and speech recognition. Recently, we showed that our opto-electronic reservoir computer could be trained online with a simple gradient descent algorithm programmed on an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, and thus highly enrich the dynamics of the system. This will allow to tackle complex prediction tasks in hardware, such as pattern generation and chaotic and financial series prediction, which have so far only been studied in digital implementations. Here we report simulation results of our opto-electronic setup with an FPGA chip and output feedback applied to pattern generation and Mackey-Glass chaotic series prediction. The simulations take into account the major aspects of our experimental setup. We find that pattern generation can be easily implemented on the current setup with very good results. The Mackey-Glass series prediction task is more complex and requires a large reservoir and more elaborate training algorithm. With these adjustments promising result are obtained, and we now know what improvements are needed to match previously reported numerical results. These simulation results will serve as basis of comparison for experiments we will carry out in the coming months.

  13. Pattern Recognition Using Artificial Neural Network: A Review

    NASA Astrophysics Data System (ADS)

    Kim, Tai-Hoon

    Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.

  14. Pattern-Recognition System for Approaching a Known Target

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Cheng, Yang

    2008-01-01

    A closed-loop pattern-recognition system is designed to provide guidance for maneuvering a small exploratory robotic vehicle (rover) on Mars to return to a landed spacecraft to deliver soil and rock samples that the spacecraft would subsequently bring back to Earth. The system could be adapted to terrestrial use in guiding mobile robots to approach known structures that humans could not approach safely, for such purposes as reconnaissance in military or law-enforcement applications, terrestrial scientific exploration, and removal of explosive or other hazardous items. The system has been demonstrated in experiments in which the Field Integrated Design and Operations (FIDO) rover (a prototype Mars rover equipped with a video camera for guidance) is made to return to a mockup of Mars-lander spacecraft. The FIDO rover camera autonomously acquires an image of the lander from a distance of 125 m in an outdoor environment. Then under guidance by an algorithm that performs fusion of multiple line and texture features in digitized images acquired by the camera, the rover traverses the intervening terrain, using features derived from images of the lander truss structure. Then by use of precise pattern matching for determining the position and orientation of the rover relative to the lander, the rover aligns itself with the bottom of ramps extending from the lander, in preparation for climbing the ramps to deliver samples to the lander. The most innovative aspect of the system is a set of pattern-recognition algorithms that govern a three-phase visual-guidance sequence for approaching the lander. During the first phase, a multifeature fusion algorithm integrates the outputs of a horizontal-line-detection algorithm and a wavelet-transform-based visual-area-of-interest algorithm for detecting the lander from a significant distance. The horizontal-line-detection algorithm is used to determine candidate lander locations based on detection of a horizontal deck that is part of the lander.

  15. Advanced methods in NDE using machine learning approaches

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank

    2018-04-01

    Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability prediction based on big data becomes possible, even if components are used in different versions or configurations. This is the promise behind German Industry 4.0.

  16. Attention and recognition memory bias for alcohol-related stimuli among alcohol-dependent patients attending residential treatment.

    PubMed

    Klein, Audrey A; Nelson, Lindsay M; Anker, Justin J

    2013-03-01

    Though studies have examined attentional bias for alcohol-related information among alcohol-dependent individuals, few have examined memory bias. This study examined attention and recognition memory biases for alcohol-related information among patients recently admitted to residential alcohol treatment (n=100; 40% female). Participants completed a computerized attentional task wherein they classified a centrally-presented digit as odd or even. On some trials, an alcohol word, neutral word, or anagram was presented along with the digit. On these dual trials participants first classified the digit and then classified the other stimulus as a word or nonword. Participants took longer to classify digits that appeared with alcohol words compared to neutral words; suggesting the alcohol words distracted them from processing the digit. In a subsequent recognition memory test, participants showed significantly higher hit rates (i.e., correctly classifying an old item as old) and false alarm rates (i.e., incorrectly classifying a new item as old) to the alcohol words compared to the neutral words, and they also showed a more liberal response bias to alcohol words. The findings suggest that alcohol-dependent individuals exhibit both attention and memory bias for alcohol-related information. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders

    ERIC Educational Resources Information Center

    Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia

    2006-01-01

    Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…

  18. Image pattern recognition supporting interactive analysis and graphical visualization

    NASA Technical Reports Server (NTRS)

    Coggins, James M.

    1992-01-01

    Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.

  19. Understanding eye movements in face recognition using hidden Markov models.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2014-09-16

    We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.

  20. Military applications of automatic speech recognition and future requirements

    NASA Technical Reports Server (NTRS)

    Beek, Bruno; Cupples, Edward J.

    1977-01-01

    An updated summary of the state-of-the-art of automatic speech recognition and its relevance to military applications is provided. A number of potential systems for military applications are under development. These include: (1) digital narrowband communication systems; (2) automatic speech verification; (3) on-line cartographic processing unit; (4) word recognition for militarized tactical data system; and (5) voice recognition and synthesis for aircraft cockpit.

  1. The detection of organic solvent vapor by using polymer coated chemocapacitor sensor

    NASA Astrophysics Data System (ADS)

    Rusdiarna Indrapraja, Apik; Rivai, Muhammad; Arifin, Achmad; Purwanto, Djoko

    2017-05-01

    A chemocapacitor consists of planar interdigital electrodes (IDE) made by two comb electrodes on a substrate. A dielectric film was applied on the electrodes in which the absorbed vapor will modify its permittivity. This study has fabricated chemocapacitor with the IDE distance of 0.5 mm, while the dielectric film was a sensitive layer consisting of a polymeric material. The deposition of the polymeric film was accomplished by drop casting. A sensor array consisting of four chemocapacitors coated with different polymers namely PEG-1540, PEG-20M, PEG-6000, and PVP was used to obtain the pattern of shift in the capacitance. The integrated circuit AD7746 was used as the capacitance to-digital converter (CDC). The organic solvents of ethanol, benzene, and aceton were used as the vapor samples in this experiment. The results showed that the change in the capacitance value increases proportionally to the concentration of vapour where sensors coated with PEG-1540 and PVP have higher sensitivity, i.e. 0.0028pF/part per thousand and 0.0027pF/part per thousand, respectively. Based on the capacitance to digital conversion capabilities, the system provides there solution of 0.4084ppm. The sensor array could produce a different pattern for each of the vapor sample. The Neural Network pattern recognition system could identify the type of vapor automatically with the root mean square error of 10-5

  2. Automated location detection of injection site for preclinical stereotactic neurosurgery procedure

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Wu, Hemmings C. H.

    2017-03-01

    Currently, during stereotactic neurosurgery procedures, the manual task of locating the proper area for needle insertion or implantation of electrode/cannula/optic fiber can be time consuming. The requirement of the task is to quickly and accurately find the location for insertion. In this study we investigate an automated method to locate the entry point of region of interest. This method leverages a digital image capture system, pattern recognition, and motorized stages. Template matching of known anatomical identifiable regions is used to find regions of interest (e.g. Bregma) in rodents. For our initial study, we tackle the problem of automatically detecting the entry point.

  3. Automatic Estimation of Volcanic Ash Plume Height using WorldView-2 Imagery

    NASA Technical Reports Server (NTRS)

    McLaren, David; Thompson, David R.; Davies, Ashley G.; Gudmundsson, Magnus T.; Chien, Steve

    2012-01-01

    We explore the use of machine learning, computer vision, and pattern recognition techniques to automatically identify volcanic ash plumes and plume shadows, in WorldView-2 imagery. Using information of the relative position of the sun and spacecraft and terrain information in the form of a digital elevation map, classification, the height of the ash plume can also be inferred. We present the results from applying this approach to six scenes acquired on two separate days in April and May of 2010 of the Eyjafjallajokull eruption in Iceland. These results show rough agreement with ash plume height estimates from visual and radar based measurements.

  4. LANDSAT and radar mapping of intrusive rocks in SE-Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Moreira, J. C.; Barbosa, M. P.; Veneziani, P.

    1982-01-01

    The feasibility of intrusive rock mapping was investigated and criteria for regional geological mapping established at the scale of 1:500,00 in polycyclic and polymetamorphic areas using the logic method of photointerpretation of LANDSAT imagery and radar from the RADAMBRASIL project. The spectral behavior of intrusive rocks, was evaluated using the interactive multispectral image analysis system (Image-100). The region of Campos (city) in northern Rio de Janeiro State was selected as the study area and digital imagery processing and pattern recognition techniques were applied. Various maps at the 2:250,000 scale were obtained to evaluate the results of automatic data processing.

  5. Rapid Naming Speed and Chinese Character Recognition

    ERIC Educational Resources Information Center

    Liao, Chen-Huei; Georgiou, George K.; Parrila, Rauno

    2008-01-01

    We examined the relationship between rapid naming speed (RAN) and Chinese character recognition accuracy and fluency. Sixty-three grade 2 and 54 grade 4 Taiwanese children were administered four RAN tasks (colors, digits, Zhu-Yin-Fu-Hao, characters), and two character recognition tasks. RAN tasks accounted for more reading variance in grade 4 than…

  6. A Signal Detection Analysis of Digitized and Photographic Image Modes and Color Realism in a Pictorial Recognition Memory Task.

    ERIC Educational Resources Information Center

    El-Gazzar, Abdel-Latif I.

    The relative effectiveness of digital versus photographic images was examined with 96 college students as subjects. A 2x2 balanced factorial design was employed to test eight hypotheses. The four groups were (1) digitized black and white; (2) digitized pseudocolor; (3) photographic black and white; and (4) photographic realistic color. Findings…

  7. Implementation of cost-effective diffuse light source mechanism to reduce specular reflection and halo effects for resistor-image processing

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Sheng; Wang, Jeng-Yau

    2015-09-01

    Light source plays a significant role to acquire a qualified image from objects for facilitating the image processing and pattern recognition. For objects possessing specular surface, the phenomena of reflection and halo appearing in the acquired image will increase the difficulty of information processing. Such a situation may be improved by the assistance of valuable diffuse light source. Consider reading resistor via computer vision, due to the resistor's specular reflective surface it will face with a severe non-uniform luminous intensity on image yielding a higher error rate in recognition without a well-controlled light source. A measurement system including mainly a digital microscope embedded in a replaceable diffuse cover, a ring-type LED embedded onto a small pad carrying a resistor for evaluation, and Arduino microcontrollers connected with PC, is presented in this paper. Several replaceable cost-effective diffuse covers made by paper bowl, cup and box inside pasted with white paper are presented for reducing specular reflection and halo effects and compared with a commercial diffuse some. The ring-type LED can be flexibly configured to be a full or partial lighting based on the application. For each self-made diffuse cover, a set of resistors with 4 or 5 color bands are captured via digital microscope for experiments. The signal-to-noise ratio from the segmented resistor-image is used for performance evaluation. The detected principal axis of resistor body is used for the partial LED configuration to further improve the lighting condition. Experimental results confirm that the proposed mechanism can not only evaluate the cost-effective diffuse light source but also be extended as an automatic recognition system for resistor reading.

  8. Recognition of tennis serve performed by a digital player: comparison among polygon, shadow, and stick-figure models.

    PubMed

    Ida, Hirofumi; Fukuhara, Kazunobu; Ishii, Motonobu

    2012-01-01

    The objective of this study was to assess the cognitive effect of human character models on the observer's ability to extract relevant information from computer graphics animation of tennis serve motions. Three digital human models (polygon, shadow, and stick-figure) were used to display the computationally simulated serve motions, which were perturbed at the racket-arm by modulating the speed (slower or faster) of one of the joint rotations (wrist, elbow, or shoulder). Twenty-one experienced tennis players and 21 novices made discrimination responses about the modulated joint and also specified the perceived swing speeds on a visual analogue scale. The result showed that the discrimination accuracies of the experienced players were both above and below chance level depending on the modulated joint whereas those of the novices mostly remained at chance or guessing levels. As far as the experienced players were concerned, the polygon model decreased the discrimination accuracy as compared with the stick-figure model. This suggests that the complicated pictorial information may have a distracting effect on the recognition of the observed action. On the other hand, the perceived swing speed of the perturbed motion relative to the control was lower for the stick-figure model than for the polygon model regardless of the skill level. This result suggests that the simplified visual information can bias the perception of the motion speed toward slower. It was also shown that the increasing the joint rotation speed increased the perceived swing speed, although the resulting racket velocity had little correlation with this speed sensation. Collectively, observer's recognition of the motion pattern and perception of the motion speed can be affected by the pictorial information of the human model as well as by the perturbation processing applied to the observed motion.

  9. Pattern activation/recognition theory of mind

    PubMed Central

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228

  10. Pattern activation/recognition theory of mind.

    PubMed

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  11. Investigation of Error Patterns in Geographical Databases

    NASA Technical Reports Server (NTRS)

    Dryer, David; Jacobs, Derya A.; Karayaz, Gamze; Gronbech, Chris; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The objective of the research conducted in this project is to develop a methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a methodology can contribute to answering the following research questions: Over a representative sampling of ASMD databases, can statistical error analysis techniques be accurately learned and replicated by ANN modeling techniques? This representative ASMD sample should include numerous airports and a variety of terrain characterizations. Is it possible to identify and automate the recognition of patterns of error related to geographical features? Do such patterns of error relate to specific geographical features, such as elevation or terrain slope? Is it possible to combine the errors in small regions into an error prediction for a larger region? What are the data density reduction implications of this work? ASMD may be used as the source of terrain data for a synthetic visual system to be used in the cockpit of aircraft when visual reference to ground features is not possible during conditions of marginal weather or reduced visibility. In this research, United States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as the benchmark. Artificial Neural Networks (ANNS) have been used and tested as alternate methods in place of the statistical methods in similar problems. They often perform better in pattern recognition, prediction and classification and categorization problems. Many studies show that when the data is complex and noisy, the accuracy of ANN models is generally higher than those of comparable traditional methods.

  12. A Taxonomy of 3D Occluded Objects Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh

    2016-03-01

    The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.

  13. Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.

    1991-01-01

    Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.

  14. Analysis of digitized cervical images to detect cervical neoplasia

    NASA Astrophysics Data System (ADS)

    Ferris, Daron G.

    2004-05-01

    Cervical cancer is the second most common malignancy in women worldwide. If diagnosed in the premalignant stage, cure is invariably assured. Although the Papanicolaou (Pap) smear has significantly reduced the incidence of cervical cancer where implemented, the test is only moderately sensitive, highly subjective and skilled-labor intensive. Newer optical screening tests (cervicography, direct visual inspection and speculoscopy), including fluorescent and reflective spectroscopy, are fraught with certain weaknesses. Yet, the integration of optical probes for the detection and discrimination of cervical neoplasia with automated image analysis methods may provide an effective screening tool for early detection of cervical cancer, particularly in resource poor nations. Investigative studies are needed to validate the potential for automated classification and recognition algorithms. By applying image analysis techniques for registration, segmentation, pattern recognition, and classification, cervical neoplasia may be reliably discriminated from normal epithelium. The National Cancer Institute (NCI), in cooperation with the National Library of Medicine (NLM), has embarked on a program to begin this and other similar investigative studies.

  15. Objective categorization of interferential tear film lipid layer pattern: validation of the technique

    NASA Astrophysics Data System (ADS)

    García-Resúa, C.; Giráldez, M. J.; Barreira, N.; Penedo, M. G.; Yebra-Pimentel, E.

    2011-05-01

    Purpose: The lipid layer of the tear film limits evaporation during the inter-blink interval and also affects tear stability. This study was designed to validate a new software application designed to characterize the tear film lipid layer through texture and colour pattern recognition. Methods: Using the Tearscope-plus (slit lamp magnification 200X), the lipid layer was examined in 105 healthy young adults and interference photographs acquired with a Topcon DV-3 digital camera. The photographs were classified by the new software and by 2 further observers (observer 1 and observer 2) with experience in examining the eye surface. Results: Strong correlation was detected between the categories determined by the new application, observer 1 and observer 2 (Cramer's V, from 0.81 to 0.87, p<0.001). Best agreement (96.2%) was noted between the new method and observers 1 and 2 for recognizing meshwork patterns, whereas observers 1 and 2 showed greatest correspondence when classifying colour fringe patterns. Conclusions: The new application can objectively categorize LLPs using the Tearscope-plus.

  16. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    PubMed Central

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  17. Limited receptive area neural classifier for recognition of swallowing sounds using continuous wavelet transform.

    PubMed

    Makeyev, Oleksandr; Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Ed; Neuman, Michael

    2007-01-01

    In this paper we propose a sound recognition technique based on the limited receptive area (LIRA) neural classifier and continuous wavelet transform (CWT). LIRA neural classifier was developed as a multipurpose image recognition system. Previous tests of LIRA demonstrated good results in different image recognition tasks including: handwritten digit recognition, face recognition, metal surface texture recognition, and micro work piece shape recognition. We propose a sound recognition technique where scalograms of sound instances serve as inputs of the LIRA neural classifier. The methodology was tested in recognition of swallowing sounds. Swallowing sound recognition may be employed in systems for automated swallowing assessment and diagnosis of swallowing disorders. The experimental results suggest high efficiency and reliability of the proposed approach.

  18. New efficient algorithm for recognizing handwritten Hindi digits

    NASA Astrophysics Data System (ADS)

    El-Sonbaty, Yasser; Ismail, Mohammed A.; Karoui, Kamal

    2001-12-01

    In this paper a new algorithm for recognizing handwritten Hindi digits is proposed. The proposed algorithm is based on using the topological characteristics combined with statistical properties of the given digits in order to extract a set of features that can be used in the process of digit classification. 10,000 handwritten digits are used in the experimental results. 1100 digits are used for training and another 5500 unseen digits are used for testing. The recognition rate has reached 97.56%, a substitution rate of 1.822%, and a rejection rate of 0.618%.

  19. Context-dependent similarity effects in letter recognition.

    PubMed

    Kinoshita, Sachiko; Robidoux, Serje; Guilbert, Daniel; Norris, Dennis

    2015-10-01

    In visual word recognition tasks, digit primes that are visually similar to letter string targets (e.g., 4/A, 8/B) are known to facilitate letter identification relative to visually dissimilar digits (e.g., 6/A, 7/B); in contrast, with letter primes, visual similarity effects have been elusive. In the present study we show that the visual similarity effect with letter primes can be made to come and go, depending on whether it is necessary to discriminate between visually similar letters. The results support a Bayesian view which regards letter recognition not as a passive activation process driven by the fixed stimulus properties, but as a dynamic evidence accumulation process for a decision that is guided by the task context.

  20. Benford's Law based detection of latent fingerprint forgeries on the example of artificial sweat printed fingerprints captured by confocal laser scanning microscopes

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Dittmann, Jana

    2015-03-01

    The possibility of forging latent fingerprints at crime scenes is known for a long time. Ever since it has been stated that an expert is capable of recognizing the presence of multiple identical latent prints as an indicator towards forgeries. With the possibility of printing fingerprint patterns to arbitrary surfaces using affordable ink- jet printers equipped with artificial sweat, it is rather simple to create a multitude of fingerprints with slight variations to avoid raising any suspicion. Such artificially printed fingerprints are often hard to detect during the analysis procedure. Moreover, the visibility of particular detection properties might be decreased depending on the utilized enhancement and acquisition technique. In previous work primarily such detection properties are used in combination with non-destructive high resolution sensory and pattern recognition techniques to detect fingerprint forgeries. In this paper we apply Benford's Law in the spatial domain to differentiate between real latent fingerprints and printed fingerprints. This technique has been successfully applied in media forensics to detect image manipulations. We use the differences between Benford's Law and the distribution of the most significant digit of the intensity and topography data from a confocal laser scanning microscope as features for a pattern recognition based detection of printed fingerprints. Our evaluation based on 3000 printed and 3000 latent print samples shows a very good detection performance of up to 98.85% using WEKA's Bagging classifier in a 10-fold stratified cross-validation.

  1. Robust autoassociative memory with coupled networks of Kuramoto-type oscillators

    NASA Astrophysics Data System (ADS)

    Heger, Daniel; Krischer, Katharina

    2016-08-01

    Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.

  2. Neural activation patterns and connectivity in visual attention during Number and Non-number processing: An ERP study using the Ishihara pseudoisochromatic plates.

    PubMed

    Al-Marri, Faraj; Reza, Faruque; Begum, Tahamina; Hitam, Wan Hazabbah Wan; Jin, Goh Khean; Xiang, Jing

    2017-10-25

    Visual cognitive function is important to build up executive function in daily life. Perception of visual Number form (e.g., Arabic digit) and numerosity (magnitude of the Number) is of interest to cognitive neuroscientists. Neural correlates and the functional measurement of Number representations are complex occurrences when their semantic categories are assimilated with other concepts of shape and colour. Colour perception can be processed further to modulate visual cognition. The Ishihara pseudoisochromatic plates are one of the best and most common screening tools for basic red-green colour vision testing. However, there is a lack of study of visual cognitive function assessment using these pseudoisochromatic plates. We recruited 25 healthy normal trichromat volunteers and extended these studies using a 128-sensor net to record event-related EEG. Subjects were asked to respond by pressing Numbered buttons when they saw the Number and Non-number plates of the Ishihara colour vision test. Amplitudes and latencies of N100 and P300 event related potential (ERP) components were analysed from 19 electrode sites in the international 10-20 system. A brain topographic map, cortical activation patterns and Granger causation (effective connectivity) were analysed from 128 electrode sites. No major significant differences between N100 ERP components in either stimulus indicate early selective attention processing was similar for Number and Non-number plate stimuli, but Non-number plate stimuli evoked significantly higher amplitudes, longer latencies of the P300 ERP component with a slower reaction time compared to Number plate stimuli imply the allocation of attentional load was more in Non-number plate processing. A different pattern of asymmetric scalp voltage map was noticed for P300 components with a higher intensity in the left hemisphere for Number plate tasks and higher intensity in the right hemisphere for Non-number plate tasks. Asymmetric cortical activation and connectivity patterns revealed that Number recognition occurred in the occipital and left frontal areas where as the consequence was limited to the occipital area during the Non-number plate processing. Finally, the results displayed that the visual recognition of Numbers dissociates from the recognition of Non-numbers at the level of defined neural networks. Number recognition was not only a process of visual perception and attention, but it was also related to a higher level of cognitive function, that of language.

  3. The GANDALF 128-Channel Time-to-Digital Converter

    NASA Astrophysics Data System (ADS)

    Büchele, M.; Fischer, H.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.

    The GANDALF 6U-VME64x/VXS module has been designed to cope with a variety of readout tasks in high energy and nuclear physics experiments, in particular the COMPASS experiment at CERN. The exchangeable mezzanine cards allow for an employment of the system in very different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition or fast trigger generation. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In this concept each input signal is continuously sampled by 16 flip-flops using equidistant phase-shifted clocks. Compared to previous FPGA designs, usually based on delay lines and comprising few TDC channels with resolutions in the order of 10 ps, our design permits the implementation of a large number of TDC channels with a resolution of 64 ps in a single FPGA. Predictable placement of logic components and uniform routing inside the FPGA fabric is a particular challenge of this design. We present measurement results for the time resolution and the nonlinearity of the TDC readout system.

  4. Visual texture for automated characterisation of geological features in borehole televiewer imagery

    NASA Astrophysics Data System (ADS)

    Al-Sit, Waleed; Al-Nuaimy, Waleed; Marelli, Matteo; Al-Ataby, Ali

    2015-08-01

    Detailed characterisation of the structure of subsurface fractures is greatly facilitated by digital borehole logging instruments, the interpretation of which is typically time-consuming and labour-intensive. Despite recent advances towards autonomy and automation, the final interpretation remains heavily dependent on the skill, experience, alertness and consistency of a human operator. Existing computational tools fail to detect layers between rocks that do not exhibit distinct fracture boundaries, and often struggle characterising cross-cutting layers and partial fractures. This paper presents a novel approach to the characterisation of planar rock discontinuities from digital images of borehole logs. Multi-resolution texture segmentation and pattern recognition techniques utilising Gabor filters are combined with an iterative adaptation of the Hough transform to enable non-distinct, partial, distorted and steep fractures and layers to be accurately identified and characterised in a fully automated fashion. This approach has successfully detected fractures and layers with high detection accuracy and at a relatively low computational cost.

  5. High-quality and small-capacity e-learning video featuring lecturer-superimposing PC screen images

    NASA Astrophysics Data System (ADS)

    Nomura, Yoshihiko; Murakami, Michinobu; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko

    2006-10-01

    Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene. While dynamic lecturing scene is shot by a digital video camera, screen images are electronically stored by a PC screen image capturing software in relatively long period at a practical class. Then, a lecturer and a lecture stick are extracted from the digital video images by pattern recognition techniques, and the extracted images are superimposed on the appropriate PC screen images by off-line processing. Thus, we have succeeded to create a high-quality and small-capacity (HQ/SC) video-on-demand educational content featuring the advantages: the high quality of image sharpness, the small electronic file capacity, and the realistic lecturer motion.

  6. A natural approach to convey numerical digits using hand activity recognition based on hand shape features

    NASA Astrophysics Data System (ADS)

    Chidananda, H.; Reddy, T. Hanumantha

    2017-06-01

    This paper presents a natural representation of numerical digit(s) using hand activity analysis based on number of fingers out stretched for each numerical digit in sequence extracted from a video. The analysis is based on determining a set of six features from a hand image. The most important features used from each frame in a video are the first fingertip from top, palm-line, palm-center, valley points between the fingers exists above the palm-line. Using this work user can convey any number of numerical digits using right or left or both the hands naturally in a video. Each numerical digit ranges from 0 to9. Hands (right/left/both) used to convey digits can be recognized accurately using the valley points and with this recognition whether the user is a right / left handed person in practice can be analyzed. In this work, first the hand(s) and face parts are detected by using YCbCr color space and face part is removed by using ellipse based method. Then, the hand(s) are analyzed to recognize the activity that represents a series of numerical digits in a video. This work uses pixel continuity algorithm using 2D coordinate geometry system and does not use regular use of calculus, contours, convex hull and datasets.

  7. Exhibits Recognition System for Combining Online Services and Offline Services

    NASA Astrophysics Data System (ADS)

    Ma, He; Liu, Jianbo; Zhang, Yuan; Wu, Xiaoyu

    2017-10-01

    In order to achieve a more convenient and accurate digital museum navigation, we have developed a real-time and online-to-offline museum exhibits recognition system using image recognition method based on deep learning. In this paper, the client and server of the system are separated and connected through the HTTP. Firstly, by using the client app in the Android mobile phone, the user can take pictures and upload them to the server. Secondly, the features of the picture are extracted using the deep learning network in the server. With the help of the features, the pictures user uploaded are classified with a well-trained SVM. Finally, the classification results are sent to the client and the detailed exhibition’s introduction corresponding to the classification results are shown in the client app. Experimental results demonstrate that the recognition accuracy is close to 100% and the computing time from the image uploading to the exhibit information show is less than 1S. By means of exhibition image recognition algorithm, our implemented exhibits recognition system can combine online detailed exhibition information to the user in the offline exhibition hall so as to achieve better digital navigation.

  8. Multi-font printed Mongolian document recognition system

    NASA Astrophysics Data System (ADS)

    Peng, Liangrui; Liu, Changsong; Ding, Xiaoqing; Wang, Hua; Jin, Jianming

    2009-01-01

    Mongolian is one of the major ethnic languages in China. Large amount of Mongolian printed documents need to be digitized in digital library and various applications. Traditional Mongolian script has unique writing style and multi-font-type variations, which bring challenges to Mongolian OCR research. As traditional Mongolian script has some characteristics, for example, one character may be part of another character, we define the character set for recognition according to the segmented components, and the components are combined into characters by rule-based post-processing module. For character recognition, a method based on visual directional feature and multi-level classifiers is presented. For character segmentation, a scheme is used to find the segmentation point by analyzing the properties of projection and connected components. As Mongolian has different font-types which are categorized into two major groups, the parameter of segmentation is adjusted for each group. A font-type classification method for the two font-type group is introduced. For recognition of Mongolian text mixed with Chinese and English, language identification and relevant character recognition kernels are integrated. Experiments show that the presented methods are effective. The text recognition rate is 96.9% on the test samples from practical documents with multi-font-types and mixed scripts.

  9. GEMAS: Spatial pattern analysis of Ni by using digital image processing techniques on European agricultural soil data

    NASA Astrophysics Data System (ADS)

    Jordan, Gyozo; Petrik, Attila; De Vivo, Benedetto; Albanese, Stefano; Demetriades, Alecos; Sadeghi, Martiya

    2017-04-01

    Several studies have investigated the spatial distribution of chemical elements in topsoil (0-20 cm) within the framework of the EuroGeoSurveys Geochemistry Expert Group's 'Geochemical Mapping of Agricultural and Grazing Land Soil' project . Most of these studies used geostatistical analyses and interpolated concentration maps, Exploratory and Compositional Data and Analysis to identify anomalous patterns. The objective of our investigation is to demonstrate the use of digital image processing techniques for reproducible spatial pattern recognition and quantitative spatial feature characterisation. A single element (Ni) concentration in agricultural topsoil is used to perform the detailed spatial analysis, and to relate these features to possible underlying processes. In this study, simple univariate statistical methods were implemented first, and Tukey's inner-fence criterion was used to delineate statistical outliers. The linear and triangular irregular network (TIN) interpolation was used on the outlier-free Ni data points, which was resampled to a 10*10 km grid. Successive moving average smoothing was applied to generalise the TIN model and to suppress small- and at the same time enhance significant large-scale features of Nickel concentration spatial distribution patterns in European topsoil. The TIN map smoothed with a moving average filter revealed the spatial trends and patterns without losing much detail, and it was used as the input into digital image processing, such as local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction calculation, second derivative profile curvature calculation, edge detection, local variability assessment, lineament density and directional variogram analyses. The detailed image processing analysis revealed several NE-SW, E-W and NW-SE oriented elongated features, which coincide with different spatial parameter classes and alignment with local maxima and minima. The NE-SW oriented linear pattern is the dominant feature to the south of the last glaciation limit. Some of these linear features are parallel to the suture zone of the Iapetus Ocean, while the others follow the Alpine and Carpathian Chains. The highest variability zones of Ni concentration in topsoil are located in the Alps and in the Balkans where mafic and ultramafic rocks outcrop. The predominant NE-SW oriented pattern is also captured by the strong anisotropy in the semi-variograms in this direction. A single major E-W oriented north-facing feature runs along the southern border of the last glaciation zone. This zone also coincides with a series of local maxima in Ni concentration along the glaciofluvial deposits. The NW-SE elongated spatial features are less dominant and are located in the Pyrenees and Scandinavia. This study demonstrates the efficiency of systematic image processing analysis in identifying and characterising spatial geochemical patterns that often remain uncovered by the usual visual map interpretation techniques.

  10. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  11. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  12. The effects of digital signal processing features on children's speech recognition and loudness perception.

    PubMed

    Crukley, Jeffery; Scollie, Susan D

    2014-03-01

    The purpose of this study was to determine the effects of hearing instruments set to Desired Sensation Level version 5 (DSL v5) hearing instrument prescription algorithm targets and equipped with directional microphones and digital noise reduction (DNR) on children's sentence recognition in noise performance and loudness perception in a classroom environment. Ten children (ages 8-17 years) with stable, congenital sensorineural hearing losses participated in the study. Participants were fitted bilaterally with behind-the-ear hearing instruments set to DSL v5 prescriptive targets. Sentence recognition in noise was evaluated using the Bamford-Kowal-Bench Speech in Noise Test (Niquette et al., 2003). Loudness perception was evaluated using a modified version of the Contour Test of Loudness Perception (Cox, Alexander, Taylor, & Gray, 1997). Children's sentence recognition in noise performance was significantly better when using directional microphones alone or in combination with DNR than when using omnidirectional microphones alone or in combination with DNR. Children's loudness ratings for sounds above 72 dB SPL were lowest when fitted with the DSL v5 Noise prescription combined with directional microphones. DNR use showed no effect on loudness ratings. Use of the DSL v5 Noise prescription with a directional microphone improved sentence recognition in noise performance and reduced loudness perception ratings for loud sounds relative to a typical clinical reference fitting with the DSL v5 Quiet prescription with no digital signal processing features enabled. Potential clinical strategies are discussed.

  13. Real Time Large Memory Optical Pattern Recognition.

    DTIC Science & Technology

    1984-06-01

    AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical

  14. Neutron and positron techniques for fluid transfer system analysis and remote temperature and stress measurement

    NASA Astrophysics Data System (ADS)

    Stewart, P. A. E.

    1987-05-01

    Present and projected applications of penetrating radiation techniques to gas turbine research and development are considered. Approaches discussed include the visualization and measurement of metal component movement using high energy X-rays, the measurement of metal temperatures using epithermal neutrons, the measurement of metal stresses using thermal neutron diffraction, and the visualization and measurement of oil and fuel systems using either cold neutron radiography or emitting isotope tomography. By selecting the radiation appropriate to the problem, the desired data can be probed for and obtained through imaging or signal acquisition, and the necessary information can then be extracted with digital image processing or knowledge based image manipulation and pattern recognition.

  15. Classification and machine recognition of severe weather patterns

    NASA Technical Reports Server (NTRS)

    Wang, P. P.; Burns, R. C.

    1976-01-01

    Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.

  16. New Optical Transforms For Statistical Image Recognition

    NASA Astrophysics Data System (ADS)

    Lee, Sing H.

    1983-12-01

    In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.

  17. Optimal pattern synthesis for speech recognition based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  18. Working and strategic memory deficits in schizophrenia

    NASA Technical Reports Server (NTRS)

    Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.

    1998-01-01

    Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.

  19. Pattern recognition: A basis for remote sensing data analysis

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1973-01-01

    The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.

  20. Optical Pattern Recognition With Self-Amplification

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  1. Electrophysiological indices of altered working memory processes in long-term ecstasy users.

    PubMed

    Nulsen, Claire; Fox, Allison; Hammond, Geoff

    2011-10-01

    The aim of this study was to determine the effect of light long-term ecstasy consumption on verbal short-term and working memory and to identify the cognitive processes contributing to task performance. Electroencephalogram was recorded while ecstasy users (N = 11), polydrug users (N = 13), and non-users (N = 13) completed forward and backward serial recognition tasks designed to engage verbal short-term memory and verbal working memory, respectively. All three groups displayed significantly lower digit-backward span than digit-forward span with ecstasy users displaying the greatest difference. The parietally distributed P3b was significantly smaller in the digits backward task than in the digits forward task in non-ecstasy-using controls. Ecstasy users did not show the reduced P3b component in the backward task that was seen in both non-ecstasy-using control groups. Ecstasy users' performance was suppressed more by the concurrent processing demands of the working memory task than that of the non-ecstasy-using controls. Non-ecstasy-using controls showed differential event-related potential wave forms in the short-term and working memory tasks, and this pattern was not seen in the ecstasy users. This is consistent with a reduction in the cognitive resources allocated to processing in working memory in ecstasy users. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Learning optimal features for visual pattern recognition

    NASA Astrophysics Data System (ADS)

    Labusch, Kai; Siewert, Udo; Martinetz, Thomas; Barth, Erhardt

    2007-02-01

    The optimal coding hypothesis proposes that the human visual system has adapted to the statistical properties of the environment by the use of relatively simple optimality criteria. We here (i) discuss how the properties of different models of image coding, i.e. sparseness, decorrelation, and statistical independence are related to each other (ii) propose to evaluate the different models by verifiable performance measures (iii) analyse the classification performance on images of handwritten digits (MNIST data base). We first employ the SPARSENET algorithm (Olshausen, 1998) to derive a local filter basis (on 13 × 13 pixels windows). We then filter the images in the database (28 × 28 pixels images of digits) and reduce the dimensionality of the resulting feature space by selecting the locally maximal filter responses. We then train a support vector machine on a training set to classify the digits and report results obtained on a separate test set. Currently, the best state-of-the-art result on the MNIST data base has an error rate of 0,4%. This result, however, has been obtained by using explicit knowledge that is specific to the data (elastic distortion model for digits). We here obtain an error rate of 0,55% which is second best but does not use explicit data specific knowledge. In particular it outperforms by far all methods that do not use data-specific knowledge.

  3. Compact hybrid optoelectrical unit for image processing and recognition

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Jin, Guofan; Wu, Minxian; Liu, Haisong; He, Qingsheng; Yuan, ShiFu

    1998-07-01

    In this paper a compact opto-electric unit (CHOEU) for digital image processing and recognition is proposed. The central part of CHOEU is an incoherent optical correlator, which is realized with a SHARP QA-1200 8.4 inch active matrix TFT liquid crystal display panel which is used as two real-time spatial light modulators for both the input image and reference template. CHOEU can do two main processing works. One is digital filtering; the other is object matching. Using CHOEU an edge-detection operator is realized to extract the edges from the input images. Then the reprocessed images are sent into the object recognition unit for identifying the important targets. A novel template- matching method is proposed for gray-tome image recognition. A positive and negative cycle-encoding method is introduced to realize the absolute difference measurement pixel- matching on a correlator structure simply. The system has god fault-tolerance ability for rotation distortion, Gaussian noise disturbance or information losing. The experiments are given at the end of this paper.

  4. Automated thematic mapping and change detection of ERTS-A images. [farmlands, cities, and mountain identification in Utah, Washington, Arizona, and California

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A diffraction pattern analysis of MSS images led to the development of spatial signatures for farm land, urban areas and mountains. Four spatial features are employed to describe the spatial characteristics of image cells in the digital data. Three spectral features are combined with the spatial features to form a seven dimensional vector describing each cell. Then, the classification of the feature vectors is accomplished by using the maximum likelihood criterion. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month, but vary substantially between seasons. Three ERTS-1 images from the Phoenix, Arizona area were processed, and recognition rates between 85% and 100% were obtained for the terrain classes of desert, farms, mountains, and urban areas. To eliminate the need for training data, a new clustering algorithm has been developed. Seven ERTS-1 images from four test sites have been processed through the clustering algorithm, and high recognition rates have been achieved for all terrain classes.

  5. Sonar Recognition Training: An Investigation of Whole VS. Part and Analytic VS. Synthetic Procedures.

    ERIC Educational Resources Information Center

    Annett, John

    An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…

  6. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  7. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2018-01-29

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  8. Mechanisms and neural basis of object and pattern recognition: a study with chess experts.

    PubMed

    Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-11-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.

  9. Finger Vein Recognition Based on Local Directional Code

    PubMed Central

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  10. Finger vein recognition based on local directional code.

    PubMed

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-11-05

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.

  11. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  12. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Li

    2010-01-01

    We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.

  13. Study on recognition algorithm for paper currency numbers based on neural network

    NASA Astrophysics Data System (ADS)

    Li, Xiuyan; Liu, Tiegen; Li, Yuanyao; Zhang, Zhongchuan; Deng, Shichao

    2008-12-01

    Based on the unique characteristic, the paper currency numbers can be put into record and the automatic identification equipment for paper currency numbers is supplied to currency circulation market in order to provide convenience for financial sectors to trace the fiduciary circulation socially and provide effective supervision on paper currency. Simultaneously it is favorable for identifying forged notes, blacklisting the forged notes numbers and solving the major social problems, such as armor cash carrier robbery, money laundering. For the purpose of recognizing the paper currency numbers, a recognition algorithm based on neural network is presented in the paper. Number lines in original paper currency images can be draw out through image processing, such as image de-noising, skew correction, segmentation, and image normalization. According to the different characteristics between digits and letters in serial number, two kinds of classifiers are designed. With the characteristics of associative memory, optimization-compute and rapid convergence, the Discrete Hopfield Neural Network (DHNN) is utilized to recognize the letters; with the characteristics of simple structure, quick learning and global optimum, the Radial-Basis Function Neural Network (RBFNN) is adopted to identify the digits. Then the final recognition results are obtained by combining the two kinds of recognition results in regular sequence. Through the simulation tests, it is confirmed by simulation results that the recognition algorithm of combination of two kinds of recognition methods has such advantages as high recognition rate and faster recognition simultaneously, which is worthy of broad application prospect.

  14. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  15. Using artificial intelligence to improve identification of nanofluid gas-liquid two-phase flow pattern in mini-channel

    NASA Astrophysics Data System (ADS)

    Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin

    2018-01-01

    This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  16. Measures of Working Memory Span and Verbal Rehearsal Speed in Deaf Children after Cochlear Implantation

    PubMed Central

    Pisoni, David B.; Cleary, Miranda

    2012-01-01

    Large individual differences in spoken word recognition performance have been found in deaf children after cochlear implantation. Recently, Pisoni and Geers (2000) reported that simple forward digit span measures of verbal working memory were significantly correlated with spoken word recognition scores even after potentially confounding variables were statistically controlled for. The present study replicates and extends these initial findings to the full set of 176 participants in the CID cochlear implant study. The pooled data indicate that despite statistical “partialling-out” of differences in chronological age, communication mode, duration of deafness, duration of device use, age at onset of deafness, number of active electrodes, and speech feature discrimination, significant correlations still remain between digit span and several measures of spoken word recognition. Strong correlations were also observed between speaking rate and both forward and backward digit span, a result that is similar to previously reported findings in normalhearing adults and children. The results suggest that perhaps as much as 20% of the currently unexplained variance in spoken word recognition scores may be independently accounted for by individual differences in cognitive factors related to the speed and efficiency with which phonological and lexical representations of spoken words are maintained in and retrieved from working memory. A smaller percentage, perhaps about 7% of the currently unexplained variance in spoken word recognition scores, may be accounted for in terms of working memory capacity. We discuss how these relationships may arise and their contribution to subsequent speech and language development in prelingually deaf children who use cochlear implants. PMID:12612485

  17. Speculative Method in Digital Education Research

    ERIC Educational Resources Information Center

    Ross, Jen

    2017-01-01

    The question of "what works" is currently dominating educational research, often to the exclusion of other kinds of inquiries and without enough recognition of its limitations. At the same time, digital education practice, policy and research over-emphasises control, efficiency and enhancement, neglecting the "not-yetness" of…

  18. Warped document image correction method based on heterogeneous registration strategies

    NASA Astrophysics Data System (ADS)

    Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan

    2013-03-01

    With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.

  19. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements

    PubMed Central

    2014-01-01

    Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948

  20. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  1. Absolute Position Encoders With Vertical Image Binning

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2005-01-01

    Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.

  2. On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information

    NASA Astrophysics Data System (ADS)

    Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.

    Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.

  3. Karen and George: Face Recognition by Visually Impaired Children.

    ERIC Educational Resources Information Center

    Ellis, Hadyn D.; And Others

    1988-01-01

    Two visually impaired children, aged 8 and 10, appeared to have severe difficulty in recognizing faces. After assessment, it became apparent that only one had unusually poor facial recognition skills. After training, which included matching face photographs, schematic faces, and digitized faces, there was no evidence of any improvement.…

  4. Basics of identification measurement technology

    NASA Astrophysics Data System (ADS)

    Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.

    2018-01-01

    All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.

  5. Efficiency and Flexibility of Fingerprint Scheme Using Partial Encryption and Discrete Wavelet Transform to Verify User in Cloud Computing.

    PubMed

    Yassin, Ali A

    2014-01-01

    Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification.

  6. Efficiency and Flexibility of Fingerprint Scheme Using Partial Encryption and Discrete Wavelet Transform to Verify User in Cloud Computing

    PubMed Central

    Yassin, Ali A.

    2014-01-01

    Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification. PMID:27355051

  7. Pattern recognition neural-net by spatial mapping of biology visual field

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  8. Micro-Controllable, Multi-Functional Interface Module for Digital MP: A Wearable Computer Security Application

    DTIC Science & Technology

    2004-05-01

    Army Soldier System Command: http://www.natick.armv.mil Role Name Facial Recognition Program Manager, Army Technical Lead Mark Chandler...security force with a facial recognition system. Mike Holloran, technology officer with the 6 Fleet, directed LCDR Hoa Ho and CAPT(s) Todd Morgan to...USN 6th Fleet was accomplished with the admiral expressing his support for continuing the evaluation of the a facial recognition system. This went

  9. Development of an Autonomous Face Recognition Machine.

    DTIC Science & Technology

    1986-12-08

    This approach, like Baron’s, would be a very time consuming task. The problem of locating a face in Bromley’s work was the least complex of the three...top level design and the development and design decisions that were made in developing the Autonomous Face Recognition Machine (AFRM). The chapter is...images within a digital image. The second sectio examines the algorithm used in performing face recognition. The decision to divide the development

  10. Evaluation of the effect scan pattern has on the trueness and precision of six intraoral digital impression systems.

    PubMed

    Mennito, Anthony S; Evans, Zachary P; Lauer, Abigail W; Patel, Ravi B; Ludlow, Mark E; Renne, Walter G

    2018-03-01

    Clinicians have been slow to adopt digital impression technologies due possibly to perceived technique sensitivities involved in data acquisition. This research has two aims: determine whether scan pattern and sequence affects the accuracy of the three-dimensional (3D) model created from this digital impression and to compare the 5 imaging systems with regards to their scanning accuracy for sextant impressions. Six digital intraoral impression systems were used to scan a typodont sextant with optical properties similar to natural teeth. The impressions were taken using five different scan patterns and the resulting digital models were overlayed on a master digital model to determine the accuracy of each scanner performing each scan pattern. Furthermore, regardless of scan pattern, each digital impression system was evaluated for accuracy to the other systems in this same manner. No differences of significance were noted in the accuracy of 3D models created using six distinct scan patterns with one exception involving the CEREC Omnicam. Planmeca Planscan was determined to be the truest scanner while 3Shape Trios was determined to be the most precise for sextant impression making. Scan pattern does not significantly affect the accuracy of the resulting digital model for sextant scanning. Companies who make digital impression systems often recommend a scan pattern specific for their system. However, every clinical scanning scenario is different and may require a different approach. Knowing how important scan pattern is with regards to accuracy would be helpful for guiding a growing number of practitioners who are utilizing this technology. © 2018 Wiley Periodicals, Inc.

  11. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  12. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  13. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  14. Incipient failure detection (IFD) of SSME ball bearings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Because of the immense noise background during the operation of a large engine such as the SSME, the relatively low level unique ball bearing signatures were often buried by the overall machine signal. As a result, the most commonly used bearing failure detection technique, pattern recognition using power spectral density (PSD) constructed from the extracted bearing signals, is rendered useless. Data enhancement techniques were carried out by using a HP5451C Fourier Analyzer. The signal was preprocessed by a Digital Audio Crop. DAC-1024I noise cancelling filter in order to estimate the desired signal corrupted by the backgound noise. Reference levels of good bearings were established. Any deviation of bearing signals from these reference levels indicate the incipient bearing failures.

  15. Kansei Biosensor and IT Society

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    A taste sensor with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into electric signal. The sensor output shows different patterns for chemical substances which have different taste qualities such as saltiness and sourness. Taste interactions such as suppression effect, which occurs between bitterness and sweetness, can be detected and quantified using the taste sensor. The taste and also smell of foodstuffs such as beer, coffee, mineral water, soup and milk can be discussed quantitatively. The taste sensor provides the objective scale for the human sensory expression. Multi-modal communication becomes possible using a taste/smell recognition microchip, which produces virtual taste. We are now standing at the beginning of a new age of communication using digitized taste.

  16. Patterns recognition of electric brain activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  17. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    NASA Astrophysics Data System (ADS)

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  18. ICPR-2016 - International Conference on Pattern Recognition

    Science.gov Websites

    Learning for Scene Understanding" Speakers ICPR2016 PAPER AWARDS Best Piero Zamperoni Student Paper -Paced Dictionary Learning for Cross-Domain Retrieval and Recognition Xu, Dan; Song, Jingkuan; Alameda discussions on recent advances in the fields of Pattern Recognition, Machine Learning and Computer Vision, and

  19. Multimedia Classifier

    NASA Astrophysics Data System (ADS)

    Costache, G. N.; Gavat, I.

    2004-09-01

    Along with the aggressive growing of the amount of digital data available (text, audio samples, digital photos and digital movies joined all in the multimedia domain) the need for classification, recognition and retrieval of this kind of data became very important. In this paper will be presented a system structure to handle multimedia data based on a recognition perspective. The main processing steps realized for the interesting multimedia objects are: first, the parameterization, by analysis, in order to obtain a description based on features, forming the parameter vector; second, a classification, generally with a hierarchical structure to make the necessary decisions. For audio signals, both speech and music, the derived perceptual features are the melcepstral (MFCC) and the perceptual linear predictive (PLP) coefficients. For images, the derived features are the geometric parameters of the speaker mouth. The hierarchical classifier consists generally in a clustering stage, based on the Kohonnen Self-Organizing Maps (SOM) and a final stage, based on a powerful classification algorithm called Support Vector Machines (SVM). The system, in specific variants, is applied with good results in two tasks: the first, is a bimodal speech recognition which uses features obtained from speech signal fused to features obtained from speaker's image and the second is a music retrieval from large music database.

  20. Web Surveys to Digital Movies: Technological Tools of the Trade.

    ERIC Educational Resources Information Center

    Fetterman, David M.

    2002-01-01

    Highlights some of the technological tools used by educational researchers today, focusing on data collection related tools such as Web surveys, digital photography, voice recognition and transcription, file sharing and virtual office, videoconferencing on the Internet, instantaneous chat and chat rooms, reporting and dissemination, and digital…

  1. Pattern Recognition and Size Prediction of Microcalcification Based on Physical Characteristics by Using Digital Mammogram Images.

    PubMed

    Jothilakshmi, G R; Raaza, Arun; Rajendran, V; Sreenivasa Varma, Y; Guru Nirmal Raj, R

    2018-06-05

    Breast cancer is one of the life-threatening cancers occurring in women. In recent years, from the surveys provided by various medical organizations, it has become clear that the mortality rate of females is increasing owing to the late detection of breast cancer. Therefore, an automated algorithm is needed to identify the early occurrence of microcalcification, which would assist radiologists and physicians in reducing the false predictions via image processing techniques. In this work, we propose a new algorithm to detect the pattern of a microcalcification by calculating its physical characteristics. The considered physical characteristics are the reflection coefficient and mass density of the binned digital mammogram image. The calculation of physical characteristics doubly confirms the presence of malignant microcalcification. Subsequently, by interpolating the physical characteristics via thresholding and mapping techniques, a three-dimensional (3D) projection of the region of interest (RoI) is obtained in terms of the distance in millimeter. The size of a microcalcification is determined using this 3D-projected view. This algorithm is verified with 100 abnormal mammogram images showing microcalcification and 10 normal mammogram images. In addition to the size calculation, the proposed algorithm acts as a good classifier that is used to classify the considered input image as normal or abnormal with the help of only two physical characteristics. This proposed algorithm exhibits a classification accuracy of 99%.

  2. The Spatial Vision Tree: A Generic Pattern Recognition Engine- Scientific Foundations, Design Principles, and Preliminary Tree Design

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2010-01-01

    New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.

  3. Hopfield's Model of Patterns Recognition and Laws of Artistic Perception

    NASA Astrophysics Data System (ADS)

    Yevin, Igor; Koblyakov, Alexander

    The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.

  4. Computer discrimination procedures applicable to aerial and ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Torline, R. J.; Allen, W. A.

    1970-01-01

    Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.

  5. Evaluation of Speech Recognition of Cochlear Implant Recipients Using Adaptive, Digital Remote Microphone Technology and a Speech Enhancement Sound Processing Algorithm.

    PubMed

    Wolfe, Jace; Morais, Mila; Schafer, Erin; Agrawal, Smita; Koch, Dawn

    2015-05-01

    Cochlear implant recipients often experience difficulty with understanding speech in the presence of noise. Cochlear implant manufacturers have developed sound processing algorithms designed to improve speech recognition in noise, and research has shown these technologies to be effective. Remote microphone technology utilizing adaptive, digital wireless radio transmission has also been shown to provide significant improvement in speech recognition in noise. There are no studies examining the potential improvement in speech recognition in noise when these two technologies are used simultaneously. The goal of this study was to evaluate the potential benefits and limitations associated with the simultaneous use of a sound processing algorithm designed to improve performance in noise (Advanced Bionics ClearVoice) and a remote microphone system that incorporates adaptive, digital wireless radio transmission (Phonak Roger). A two-by-two way repeated measures design was used to examine performance differences obtained without these technologies compared to the use of each technology separately as well as the simultaneous use of both technologies. Eleven Advanced Bionics (AB) cochlear implant recipients, ages 11 to 68 yr. AzBio sentence recognition was measured in quiet and in the presence of classroom noise ranging in level from 50 to 80 dBA in 5-dB steps. Performance was evaluated in four conditions: (1) No ClearVoice and no Roger, (2) ClearVoice enabled without the use of Roger, (3) ClearVoice disabled with Roger enabled, and (4) simultaneous use of ClearVoice and Roger. Speech recognition in quiet was better than speech recognition in noise for all conditions. Use of ClearVoice and Roger each provided significant improvement in speech recognition in noise. The best performance in noise was obtained with the simultaneous use of ClearVoice and Roger. ClearVoice and Roger technology each improves speech recognition in noise, particularly when used at the same time. Because ClearVoice does not degrade performance in quiet settings, clinicians should consider recommending ClearVoice for routine, full-time use for AB implant recipients. Roger should be used in all instances in which remote microphone technology may assist the user in understanding speech in the presence of noise. American Academy of Audiology.

  6. Effectiveness of feature and classifier algorithms in character recognition systems

    NASA Astrophysics Data System (ADS)

    Wilson, Charles L.

    1993-04-01

    At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.

  7. Sub-pattern based multi-manifold discriminant analysis for face recognition

    NASA Astrophysics Data System (ADS)

    Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen

    2018-04-01

    In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.

  8. Prediction of Word Recognition in the First Half of Grade 1

    ERIC Educational Resources Information Center

    Snel, M. J.; Aarnoutse, C. A. J.; Terwel, J.; van Leeuwe, J. F. J.; van der Veld, W. M.

    2016-01-01

    Early detection of reading problems is important to prevent an enduring lag in reading skills. We studied the relationship between speed of word recognition (after six months of grade 1 education) and four kindergarten pre-literacy skills: letter knowledge, phonological awareness and naming speed for both digits and letters. Our sample consisted…

  9. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  10. Digital signal processing of the phonocardiogram: review of the most recent advancements.

    PubMed

    Durand, L G; Pibarot, P

    1995-01-01

    The objective of the present paper is to provide a detailed review of the most recent developments in instrumentation and signal processing of digital phonocardiography and heart auscultation. After a short introduction, the paper presents a brief history of heart auscultation and phonocardiography, which is followed by a summary of the basic theories and controversies regarding the genesis of the heart sounds. The application of spectral analysis and the potential of new time-frequency representations and cardiac acoustic mapping to resolve the controversies and better understand the genesis and transmission of heart sounds and murmurs within the heart-thorax acoustic system are reviewed. The most recent developments in the application of linear predictive coding, spectral analysis, time-frequency representation techniques, and pattern recognition for the detection and follow-up of native and prosthetic valve degeneration and dysfunction are also presented in detail. New areas of research and clinical applications and areas of potential future developments are then highlighted. The final section is a discussion about a multidegree of freedom theory on the origin of the heart sounds and murmurs, which is completed by the authors' conclusion.

  11. The role of pattern recognition in creative problem solving: a case study in search of new mathematics for biology.

    PubMed

    Hong, Felix T

    2013-09-01

    Rosen classified sciences into two categories: formalizable and unformalizable. Whereas formalizable sciences expressed in terms of mathematical theories were highly valued by Rutherford, Hutchins pointed out that unformalizable parts of soft sciences are of genuine interest and importance. Attempts to build mathematical theories for biology in the past century was met with modest and sporadic successes, and only in simple systems. In this article, a qualitative model of humans' high creativity is presented as a starting point to consider whether the gap between soft and hard sciences is bridgeable. Simonton's chance-configuration theory, which mimics the process of evolution, was modified and improved. By treating problem solving as a process of pattern recognition, the known dichotomy of visual thinking vs. verbal thinking can be recast in terms of analog pattern recognition (non-algorithmic process) and digital pattern recognition (algorithmic process), respectively. Additional concepts commonly encountered in computer science, operations research and artificial intelligence were also invoked: heuristic searching, parallel and sequential processing. The refurbished chance-configuration model is now capable of explaining several long-standing puzzles in human cognition: a) why novel discoveries often came without prior warning, b) why some creators had no ideas about the source of inspiration even after the fact, c) why some creators were consistently luckier than others, and, last but not least, d) why it was so difficult to explain what intuition, inspiration, insight, hunch, serendipity, etc. are all about. The predictive power of the present model was tested by means of resolving Zeno's paradox of Achilles and the Tortoise after one deliberately invoked visual thinking. Additional evidence of its predictive power must await future large-scale field studies. The analysis was further generalized to constructions of scientific theories in general. This approach is in line with Campbell's evolutionary epistemology. Instead of treating science as immutable Natural Laws, which already existed and which were just waiting to be discovered, scientific theories are regarded as humans' mental constructs, which must be invented to reconcile with observed natural phenomena. In this way, the pursuit of science is shifted from diligent and systematic (or random) searching for existing Natural Laws to firing up humans' imagination to comprehend Nature's behavioral pattern. The insights gained in understanding human creativity indicated that new mathematics that is capable of handling effectively parallel processing and human subjectivity is sorely needed. The past classification of formalizability vs. non-formalizability was made in reference to contemporary mathematics. Rosen's conclusion did not preclude future inventions of new biology-friendly mathematics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Chemical recognition of gases and gas mixtures with terahertz waves.

    PubMed

    Jacobsen, R H; Mittleman, D M; Nuss, M C

    1996-12-15

    A time-domain chemical-recognition system for classifying gases and analyzing gas mixtures is presented. We analyze the free induction decay exhibited by gases excited by far-infrared (terahertz) pulses in the time domain, using digital signal-processing techniques. A simple geometric picture is used for the classif ication of the waveforms measured for unknown gas species. We demonstrate how the recognition system can be used to determine the partial pressures of an ammonia-water gas mixture.

  13. Chemical recognition of gases and gas mixtures with terahertz waves

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. H.; Mittleman, D. M.; Nuss, M. C.

    1996-12-01

    A time-domain chemical-recognition system for classifying gases and analyzing gas mixtures is presented. We analyze the free induction decay exhibited by gases excited by far-infrared (terahertz) pulses in the time domain, using digital signal-processing techniques. A simple geometric picture is used for the classification of the waveforms measured for unknown gas species. We demonstrate how the recognition system can be used to determine the partial pressures of an ammonia-water gas mixture.

  14. First results from the spectral DCT trigger implemented in the Cyclone V Front-End Board used for a detection of very inclined showers in the Pierre Auger surface detector Engineering Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szadkowski, Zbigniew

    2015-07-01

    The paper presents the first results from the trigger based on the Discrete Cosine Transform (DCT) operating in the new Front-End Boards with Cyclone V FPGA deployed in 8 test surface detectors in the Pierre Auger Engineering Array. The patterns of the ADC traces generated by very inclined showers were obtained from the Auger database and from the CORSIKA simulation package supported next by Offline reconstruction Auger platform which gives a predicted digitized signal profiles. Simulations for many variants of the initial angle of shower, initialization depth in the atmosphere, type of particle and its initial energy gave a boundarymore » of the DCT coefficients used next for the on-line pattern recognition in the FPGA. Preliminary results have proven a right approach. We registered several showers triggered by the DCT for 120 MSps and 160 MSps. (authors)« less

  15. Skeletonization of gray-scale images by gray weighted distance transform

    NASA Astrophysics Data System (ADS)

    Qian, Kai; Cao, Siqi; Bhattacharya, Prabir

    1997-07-01

    In pattern recognition, thinning algorithms are often a useful tool to represent a digital pattern by means of a skeletonized image, consisting of a set of one-pixel-width lines that highlight the significant features interest in applying thinning directly to gray-scale images, motivated by the desire of processing images characterized by meaningful information distributed over different levels of gray intensity. In this paper, a new algorithm is presented which can skeletonize both black-white and gray pictures. This algorithm is based on the gray distance transformation and can be used to process any non-well uniformly distributed gray-scale picture and can preserve the topology of original picture. This process includes a preliminary phase of investigation in the 'hollows' in the gray-scale image; these hollows are considered not as topological constrains for the skeleton structure depending on their statistically significant depth. This algorithm can also be executed on a parallel machine as all the operations are executed in local. Some examples are discussed to illustrate the algorithm.

  16. DCT Trigger in a High-Resolution Test Platform for the Detection of Very Inclined Showers in Pierre Auger Surface Detectors

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Wiedeński, Michał

    2017-06-01

    We present first results from a trigger based on the discrete cosine transform (DCT) operating in new front-end boards with a Cyclone V E field-programmable gate array (FPGA) deployed in seven test surface detectors in the Pierre Auger Test Array. The patterns of the ADC traces generated by very inclined showers (arriving at 70° to 90° from the vertical) were obtained from the Auger database and from the CORSIKA simulation package supported by the Auger OffLine event reconstruction platform that gives predicted digitized signal profiles. Simulations for many values of the initial cosmic ray angle of arrival, the shower initialization depth in the atmosphere, the type of particle, and its initial energy gave a boundary on the DCT coefficients used for the online pattern recognition in the FPGA. Preliminary results validated the approach used. We recorded several showers triggered by the DCT for 120 Msamples/s and 160 Msamples/s.

  17. Pattern association--a key to recognition of shark attacks.

    PubMed

    Cirillo, G; James, H

    2004-12-01

    Investigation of a number of shark attacks in South Australian waters has lead to recognition of pattern similarities on equipment recovered from the scene of such attacks. Six cases are presented in which a common pattern of striations has been noted.

  18. Object recognition of ladar with support vector machine

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Feng; Li, Qi; Wang, Qi

    2005-01-01

    Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.

  19. Recognition vs Reverse Engineering in Boolean Concepts Learning

    ERIC Educational Resources Information Center

    Shafat, Gabriel; Levin, Ilya

    2012-01-01

    This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…

  20. Finger vein recognition based on personalized weight maps.

    PubMed

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-09-10

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.

  1. Finger Vein Recognition Based on Personalized Weight Maps

    PubMed Central

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-01-01

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556

  2. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  3. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  4. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  5. Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients.

    PubMed

    Raspopovic, J; Marcon, L; Russo, L; Sharpe, J

    2014-08-01

    During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation. Copyright © 2014, American Association for the Advancement of Science.

  6. Does modafinil enhance cognitive performance in young volunteers who are not sleep-deprived?

    PubMed

    Randall, Delia C; Viswanath, Aparna; Bharania, Punam; Elsabagh, Sarah M; Hartley, David E; Shneerson, John M; File, Sandra E

    2005-04-01

    In a double-blind, parallel groups study, 60 healthy student volunteers (29 men and 31 women, aged 19-22 years) were randomly allocated to receive placebo, 100 or 200 mg modafinil. Two hours later, in the early evening, they completed an extensive cognitive battery. The 3 groups did not differ in self-ratings of sleepiness or tiredness before the testing session, and there were no treatment-associated changes in these or in mood ratings during the tests. Modafinil was without effect in several tests of reaction time and attention, but the 200-mg group was faster at simple color naming of dots and performed better than placebo in the Rapid Visual Information Processing test of sustained attention. Modafinil was without effect on spatial working memory, but the 100-mg group performed better in the backward part of the digit span test. Modafinil was without effect on verbal short-term memory (story recall), but 100 mg improved digit span forward, and both doses improved pattern recognition, although this was accompanied by a slowing of response latency in the 200-mg group. There were no significant effects of modafinil compared with placebo in tests of long-term memory, executive function, visuospatial and constructional ability, or category fluency. These results suggest that the benefits of modafinil are not clearly dose-related, and those from 100 mg are limited to the span of immediate verbal recall and short-term visual recognition memory, which is insufficient for it to be considered as a cognitive enhancer in non-sleep-deprived individuals.

  7. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    USDA-ARS?s Scientific Manuscript database

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  8. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...

  9. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...

  10. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  11. Using Digital Badges for Developing High School Chemistry Laboratory Skills

    ERIC Educational Resources Information Center

    Hennah, Naomi; Seery, Michael K.

    2017-01-01

    Digital badges are emerging as an approach to offer microaccreditation for student achievements obtained in ongoing course work. They act to offer a formal recognition and framework for multiple small components which together make a significant contribution to student learning. Badges are promoted as a way of highlighting these particular…

  12. Maintenance rehearsal: the key to the role attention plays in storage and forgetting.

    PubMed

    McFarlane, Kimberley A; Humphreys, Michael S

    2012-07-01

    Research with the maintenance-rehearsal paradigm, in which word pairs are rehearsed as distractor material during a series of digit recall trials, has previously indicated that low frequency and new word pairs capture attention to a greater degree than high frequency and old word pairs. This impacts delayed recognition of the pairs and interferes with immediate digit recall. The effect on immediate digit recall may provide the missing converging evidence for the role of attention in memory. In the current study, 3 experiments were conducted to further investigate the role of attention capture and novelty in storage and forgetting. In addition to the previously established effects, the novelty of switching rehearsal between 2 pairs was found to impair both digit recall and memory for the first pair. The attentional effects we obtained were dependent upon participant expectation, and forgetting appears to be due to interference with consolidation rather than decay or traditional associative interference. Finally, the attentional effects we observed in associative recognition were primarily reflected in a lowering of the false alarm rate with increases in the strength of the parent pairs. Although dual-process models can accommodate this finding on the assumption that recollection is invoked at test alongside familiarity, we showed that the level of recall in this paradigm is so small that recollection can be ruled out. Accordingly, our results are challenging for the existing models of associative recognition to accommodate. 2012 APA, all rights reserved

  13. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    PubMed Central

    Park, Keunyeol; Song, Minkyu

    2018-01-01

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273

  14. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    PubMed

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  15. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  16. Defining event reconstruction of digital crime scenes.

    PubMed

    Carrier, Brian D; Spafford, Eugene H

    2004-11-01

    Event reconstruction plays a critical role in solving physical crimes by explaining why a piece of physical evidence has certain characteristics. With digital crimes, the current focus has been on the recognition and identification of digital evidence using an object's characteristics, but not on the identification of the events that caused the characteristics. This paper examines digital event reconstruction and proposes a process model and procedure that can be used for a digital crime scene. The model has been designed so that it can apply to physical crime scenes, can support the unique aspects of a digital crime scene, and can be implemented in software to automate part of the process. We also examine the differences between physical event reconstruction and digital event reconstruction.

  17. Optical Pattern Recognition for Missile Guidance.

    DTIC Science & Technology

    1982-11-15

    directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec

  18. Recognition as Support for Reasoning about Horizontal Motion: A Further Resource for School Science?

    ERIC Educational Resources Information Center

    Howe, Christine; Taylor Tavares, Joana; Devine, Amy

    2016-01-01

    Background: Even infants can recognize whether patterns of motion are or are not natural, yet an acknowledged challenge for science education is to promote adequate reasoning about such patterns. Since research indicates linkage between the conceptual bases of recognition and reasoning, it seems possible that recognition can be engaged to support…

  19. 33 CFR 105.210 - Facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...

  20. 33 CFR 105.210 - Facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...

  1. Study of optical design of three-dimensional digital ophthalmoscopes.

    PubMed

    Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien

    2015-10-01

    This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.

  2. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  3. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  4. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  5. Epistemic agency in an environmental sciences watershed investigation fostered by digital photography

    NASA Astrophysics Data System (ADS)

    Zimmerman, Heather Toomey; Weible, Jennifer L.

    2018-05-01

    This collective case study investigates the role of digital photography to support high school students' engagement in science inquiry practices during a three-week environmental sciences unit. The study's theoretical framework brings together research from digital photography, participation in environmental science practices, and epistemic agency. Data analysed include field notes and video transcripts from two groups of learners (n = 19) that focus on how high school students used digital photography during their participation in two distinct environmental monitoring practices: stream mapping and macroinvertebrate identification. Our study resulted in two findings related to the role of digital photography where students developed knowledge as they engaged in environmental monitoring inquiry practices. First, we found that digital photography was integral to the youths' epistemic agency (defined as their confidence that they could build knowledge related to science in their community) as they engaged in data collection, documenting environmental monitoring procedures, and sharing data in the classroom. Based this finding, an implication of our work is a refined view of the role of digital photography in environmental sciences education where the use of photography enhances epistemic agency in inquiry-based activities. Second, we found that the youths innovated a use of digital photography to foster a recognition that they were capable and competent in scientific procedures during a streamside study. Based on this finding, we offer a theoretical implication that expands the construct of epistemic agency; we posit that epistemic agency includes a subcomponent where the students purposefully formulate an external recognition as producers of scientific knowledge.

  6. Repetition and lag effects in movement recognition.

    PubMed

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  7. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    PubMed

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Food marketing towards children: brand logo recognition, food-related behavior and BMI among 3-13-year-olds in a south Indian town.

    PubMed

    Ueda, Peter; Tong, Leilei; Viedma, Cristobal; Chandy, Sujith J; Marrone, Gaetano; Simon, Anna; Stålsby Lundborg, Cecilia

    2012-01-01

    To assess exposure to marketing of unhealthy food products and its relation to food related behavior and BMI in children aged 3-13, from different socioeconomic backgrounds in a south Indian town. Child-parent pairs (n=306) were recruited at pediatric clinics. Exposure to food marketing was assessed by a digital logo recognition test. Children matched 18 logos of unhealthy food (high in fat/sugar/salt) featured in promotion material from the food industry to pictures of corresponding products. Children's nutritional knowledge, food preferences, purchase requests, eating behavior and socioeconomic characteristics were assessed by a digital game and parental questionnaires. Anthropometric measurements were recorded. Recognition rates for the brand logos ranged from 30% to 80%. Logo recognition ability increased with age (p<0.001) and socioeconomic level (p<0.001 comparing children in the highest and lowest of three socioeconomic groups). Adjusted for gender, age and socioeconomic group, logo recognition was associated with higher BMI (p=0.022) and nutritional knowledge (p<0.001) but not to unhealthy food preferences or purchase requests. Children from higher socioeconomic groups in the region had higher brand logo recognition ability and are possibly exposed to more food marketing. The study did not lend support to a link between exposure to marketing and poor eating behavior, distorted nutritional knowledge or increased purchase requests. The correlation between logo recognition and BMI warrants further investigation on food marketing towards children and its potential role in the increasing burden of non-communicable diseases in this part of India.

  9. Laboratory Instrumentation Design Research for Scalable Next Generation Epitaxy: Non-Equilibrium Wide Application Epitaxial Patterning by Intelligent Control (NEW-EPIC). Volume 1. 3D Composition/Doping Control via Micromiror Patterned Deep UV Photodesorption: Revolutionary in situ Characterization/Control

    DTIC Science & Technology

    2009-02-19

    magnesium dopant concentration. A digital micromirror device is introduced to pattern incident UV radiation during InGaN growth, demonstrating that the...magnesium dopant concentration. A digital micromirror device is introduced to pattern incident UV radiation during InGaN growth, demonstrating that the...successful compositional patterning of InGaN using in situ digital micromirror device (DMD) patterning of ultraviolet (UV

  10. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed Central

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-01-01

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. PMID:29172273

  11. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-11-26

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License

  12. Quickprop method to speed up learning process of Artificial Neural Network in money's nominal value recognition case

    NASA Astrophysics Data System (ADS)

    Swastika, Windra

    2017-03-01

    A money's nominal value recognition system has been developed using Artificial Neural Network (ANN). ANN with Back Propagation has one disadvantage. The learning process is very slow (or never reach the target) in the case of large number of iteration, weight and samples. One way to speed up the learning process is using Quickprop method. Quickprop method is based on Newton's method and able to speed up the learning process by assuming that the weight adjustment (E) is a parabolic function. The goal is to minimize the error gradient (E'). In our system, we use 5 types of money's nominal value, i.e. 1,000 IDR, 2,000 IDR, 5,000 IDR, 10,000 IDR and 50,000 IDR. One of the surface of each nominal were scanned and digitally processed. There are 40 patterns to be used as training set in ANN system. The effectiveness of Quickprop method in the ANN system was validated by 2 factors, (1) number of iterations required to reach error below 0.1; and (2) the accuracy to predict nominal values based on the input. Our results shows that the use of Quickprop method is successfully reduce the learning process compared to Back Propagation method. For 40 input patterns, Quickprop method successfully reached error below 0.1 for only 20 iterations, while Back Propagation method required 2000 iterations. The prediction accuracy for both method is higher than 90%.

  13. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    PubMed

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Area estimation of crops by digital analysis of Landsat data

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Hixson, M. M.; Davis, B. J.

    1978-01-01

    The study for which the results are presented had these objectives: (1) to use Landsat data and computer-implemented pattern recognition to classify the major crops from regions encompassing different climates, soils, and crops; (2) to estimate crop areas for counties and states by using crop identification data obtained from the Landsat identifications; and (3) to evaluate the accuracy, precision, and timeliness of crop area estimates obtained from Landsat data. The paper describes the method of developing the training statistics and evaluating the classification accuracy. Landsat MSS data were adequate to accurately identify wheat in Kansas; corn and soybean estimates for Indiana were less accurate. Systematic sampling of entire counties made possible by computer classification methods resulted in very precise area estimates at county, district, and state levels.

  15. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Seth; Chen Bin; Holbrook, Kristen

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less

  16. Forecasting of hourly load by pattern recognition in a small area power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehdashti-Shahrokh, A.

    1982-01-01

    An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less

  17. Digital Badging at The Open University: Recognition for Informal Learning

    ERIC Educational Resources Information Center

    Law, Patrina

    2015-01-01

    Awarding badges to recognise achievement is not a new development. Digital badging now offers new ways to recognise learning and motivate learners, providing evidence of skills and achievements in a variety of formal and informal settings. Badged open courses (BOCs) were piloted in various forms by the Open University (OU) in 2013 to provide a…

  18. The Heinz Electronic Library Interactive Online System (HELIOS): Building a Digital Archive Using Imaging, OCR, and Natural Language Processing Technologies.

    ERIC Educational Resources Information Center

    Galloway, Edward A.; Michalek, Gabrielle V.

    1995-01-01

    Discusses the conversion project of the congressional papers of Senator John Heinz into digital format and the provision of electronic access to these papers by Carnegie Mellon University. Topics include collection background, project team structure, document processing, scanning, use of optical character recognition software, verification…

  19. Goal Setting and Open Digital Badges in Higher Education

    ERIC Educational Resources Information Center

    Cheng, Zui; Watson, Sunnie Lee; Newby, Timothy James

    2018-01-01

    While Open Digital Badges (ODBs) has gained an increasing recognition as micro-credentials, many researchers foresee the role of ODBs as an innovative learning tool to enhance learning experiences beyond that of an alternative credential. However, little research has explored this topic. The purposes of this paper are to 1) argue that one way to…

  20. Facial recognition software success rates for the identification of 3D surface reconstructed facial images: implications for patient privacy and security.

    PubMed

    Mazura, Jan C; Juluru, Krishna; Chen, Joseph J; Morgan, Tara A; John, Majnu; Siegel, Eliot L

    2012-06-01

    Image de-identification has focused on the removal of textual protected health information (PHI). Surface reconstructions of the face have the potential to reveal a subject's identity even when textual PHI is absent. This study assessed the ability of a computer application to match research subjects' 3D facial reconstructions with conventional photographs of their face. In a prospective study, 29 subjects underwent CT scans of the head and had frontal digital photographs of their face taken. Facial reconstructions of each CT dataset were generated on a 3D workstation. In phase 1, photographs of the 29 subjects undergoing CT scans were added to a digital directory and tested for recognition using facial recognition software. In phases 2-4, additional photographs were added in groups of 50 to increase the pool of possible matches and the test for recognition was repeated. As an internal control, photographs of all subjects were tested for recognition against an identical photograph. Of 3D reconstructions, 27.5% were matched correctly to corresponding photographs (95% upper CL, 40.1%). All study subject photographs were matched correctly to identical photographs (95% lower CL, 88.6%). Of 3D reconstructions, 96.6% were recognized simply as a face by the software (95% lower CL, 83.5%). Facial recognition software has the potential to recognize features on 3D CT surface reconstructions and match these with photographs, with implications for PHI.

  1. Self-organizing neural network models for visual pattern recognition.

    PubMed

    Fukushima, K

    1987-01-01

    Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.

  2. Sexual dimorphism in digital dermatoglyphic traits among Sinhalese people in Sri Lanka

    PubMed Central

    2013-01-01

    Background The purpose of this study was to evaluate gender-wise diversity of digital dermatoglyphic traits in a sample of Sinhalese people in Sri Lanka. Findings Four thousand and thirty-four digital prints of 434 Sinhalese individuals (217 males and 217 females) were examined for their digital dermatoglyphic pattern distribution. The mean age for the entire group was 23.66 years (standard deviation = 4.93 years). The loop pattern is observed more frequently (n = 2,592, 59.72%) compared to whorl (n = 1,542, 35.53%) and arch (n = 206, 4.75%) in the Sinhalese population. Females (n = 1,274, 58.71%) have a more ulnar loop pattern than males (n = 1,231, 56.73%). The plain whorl pattern is observed more frequently in males (n = 560, 25.81%) compared to females (n = 514, 23.69%).The double loop pattern is observed more frequently on the right and left thumb (digit 1) of both males and females. Pattern intensity index, Dankmeijer index and Furuhata index are higher in males. Conclusions Ulnar loop is the most frequently occurring digital dermatoglyphic pattern among the Sinhalese. All pattern indices are higher in males. To some extent, dermatoglyphic patterns of Sinhalese are similar to North Indians and other Caucasoid populations. Further studies with larger sample sizes are recommended to confirm our findings. PMID:24377367

  3. Effect of physical workload and modality of information presentation on pattern recognition and navigation task performance by high-fit young males.

    PubMed

    Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David

    2017-11-01

    Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.

  4. A strip chart recorder pattern recognition tool kit for Shuttle operations

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.

    1993-01-01

    During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.

  5. Visual cluster analysis and pattern recognition methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    2001-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  6. Proceedings of the Second Annual Symposium on Mathematical Pattern Recognition and Image Analysis Program

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1984-01-01

    Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.

  7. Proceedings of the NASA/MPRIA Workshop: Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    Outlines of talks presented at the workshop conducted at Texas A & M University on February 3 and 4, 1983 are presented. Emphasis was given to the application of Mathematics to image processing and pattern recognition.

  8. Digital Paper Technologies for Topographical Applications

    DTIC Science & Technology

    2011-09-19

    measures examine were training time for each method, time for entry offeatures, procedural errors, handwriting recognition errors, and user preference...time for entry of features, procedural errors, handwriting recognition errors, and user preference. For these metrics, temporal association was...checkbox, text restricted to a specific list of values, etc.) that provides constraints to the handwriting recognizer. When the user fills out the form

  9. Developmental Changes in Face Recognition during Childhood: Evidence from Upright and Inverted Faces

    ERIC Educational Resources Information Center

    de Heering, Adelaide; Rossion, Bruno; Maurer, Daphne

    2012-01-01

    Adults are experts at recognizing faces but there is controversy about how this ability develops with age. We assessed 6- to 12-year-olds and adults using a digitized version of the Benton Face Recognition Test, a sensitive tool for assessing face perception abilities. Children's response times for correct responses did not decrease between ages 6…

  10. Using pattern recognition as a method for predicting extreme events in natural and socio-economic systems

    NASA Astrophysics Data System (ADS)

    Intriligator, M.

    2011-12-01

    Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.

  11. Running Improves Pattern Separation during Novel Object Recognition.

    PubMed

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  12. Design and application of pulse information acquisition and analysis system with dynamic recognition in traditional Chinese medicine.

    PubMed

    Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong

    2014-09-01

    To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.

  13. A Compact Prototype of an Optical Pattern Recognition System

    NASA Technical Reports Server (NTRS)

    Jin, Y.; Liu, H. K.; Marzwell, N. I.

    1996-01-01

    In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.

  14. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology

    PubMed Central

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767

  15. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.

    PubMed

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.

  16. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    1999-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  17. Photonic correlator pattern recognition: Application to autonomous docking

    NASA Technical Reports Server (NTRS)

    Sjolander, Gary W.

    1991-01-01

    Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.

  18. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  19. The force synergy of human digits in static and dynamic cylindrical grasps.

    PubMed

    Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin

    2013-01-01

    This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.

  20. The Force Synergy of Human Digits in Static and Dynamic Cylindrical Grasps

    PubMed Central

    Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin

    2013-01-01

    This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions. PMID:23544151

  1. Low spatial frequency characterization of holographic recording materials applied to correlation

    NASA Astrophysics Data System (ADS)

    Márquez, A.; Neipp, C.; Beléndez, A.; Campos, J.; Pascual, I.; Yzuel, M. J.; Fimia, A.

    2003-09-01

    Accurate recording of computer-generated holograms (CGH) on a phase material is not a trivial task. The range of available phase materials is large, and their suitability depends on the fabrication technique chosen to produce the hologram. We are particularly interested in low-cost fabrication techniques, easily available for any lab. In this work we present the results obtained with a wide variety of phase holographic recording materials, characterized at low spatial frequencies (leq32 lp mm-1) which is the range associated with the technique we use to produce the CGHs. We have considered bleached emulsion, silver halide sensitized gelatin (SHSG) and dichromated gelatin. Some interesting differences arise between the behaviour of these materials in the usual holographic range (>1000 lp mm-1), and the low-frequency range intended for digital holography. The ultimate goal of this paper is to establish the suitability of different phase materials as the media to generate correlation filters for optical pattern recognition. In all the materials considered, the phase filters generated ensure the discrimination of the target in the recognition process. Taking into account all the experimental results, we can say that SHSG is the best material to generate phase CGHs with low spatial frequencies.

  2. Finger Vein Recognition Based on a Personalized Best Bit Map

    PubMed Central

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  3. Finger vein recognition based on a personalized best bit map.

    PubMed

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.

  4. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  5. How much does language proficiency by non-native listeners influence speech audiometric tests in noise?

    PubMed

    Warzybok, Anna; Brand, Thomas; Wagener, Kirsten C; Kollmeier, Birger

    2015-01-01

    The current study investigates the extent to which the linguistic complexity of three commonly employed speech recognition tests and second language proficiency influence speech recognition thresholds (SRTs) in noise in non-native listeners. SRTs were measured for non-natives and natives using three German speech recognition tests: the digit triplet test (DTT), the Oldenburg sentence test (OLSA), and the Göttingen sentence test (GÖSA). Sixty-four non-native and eight native listeners participated. Non-natives can show native-like SRTs in noise only for the linguistically easy speech material (DTT). Furthermore, the limitation of phonemic-acoustical cues in digit triplets affects speech recognition to the same extent in non-natives and natives. For more complex and less familiar speech materials, non-natives, ranging from basic to advanced proficiency in German, require on average 3-dB better signal-to-noise ratio for the OLSA and 6-dB for the GÖSA to obtain 50% speech recognition compared to native listeners. In clinical audiology, SRT measurements with a closed-set speech test (i.e. DTT for screening or OLSA test for clinical purposes) should be used with non-native listeners rather than open-set speech tests (such as the GÖSA or HINT), especially if a closed-set version in the patient's own native language is available.

  6. Listening for Recollection: A Multi-Voxel Pattern Analysis of Recognition Memory Retrieval Strategies

    PubMed Central

    Quamme, Joel R.; Weiss, David J.; Norman, Kenneth A.

    2010-01-01

    Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally directed attentional state (“listening for recollection”) that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects’ recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. We looked for brain regions that met the following criteria: (1) Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and (2) fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are “listening for recollection” at that moment) should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus) where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before), suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection. PMID:20740073

  7. Optical character recognition of camera-captured images based on phase features

    NASA Astrophysics Data System (ADS)

    Diaz-Escobar, Julia; Kober, Vitaly

    2015-09-01

    Nowadays most of digital information is obtained using mobile devices specially smartphones. In particular, it brings the opportunity for optical character recognition in camera-captured images. For this reason many recognition applications have been recently developed such as recognition of license plates, business cards, receipts and street signal; document classification, augmented reality, language translator and so on. Camera-captured images are usually affected by geometric distortions, nonuniform illumination, shadow, noise, which make difficult the recognition task with existing systems. It is well known that the Fourier phase contains a lot of important information regardless of the Fourier magnitude. So, in this work we propose a phase-based recognition system exploiting phase-congruency features for illumination/scale invariance. The performance of the proposed system is tested in terms of miss classifications and false alarms with the help of computer simulation.

  8. Recognizing Chinese characters in digital ink from non-native language writers using hierarchical models

    NASA Astrophysics Data System (ADS)

    Bai, Hao; Zhang, Xi-wen

    2017-06-01

    While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.

  9. Auditory orientation in crickets: Pattern recognition controls reactive steering

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  10. Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity.

    PubMed

    Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu

    2013-10-01

    Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.

  11. Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.

  12. Students' Dichotomous Experiences of the Illuminating and Illusionary Nature of Pattern Recognition in Mathematics

    ERIC Educational Resources Information Center

    Mhlolo, Michael Kainose

    2016-01-01

    The concept of pattern recognition lies at the heart of numerous deliberations concerned with new mathematics curricula, because it is strongly linked to improved generalised thinking. However none of these discussions has made the deceptive nature of patterns an object of exploration and understanding. Yet there is evidence showing that pattern…

  13. Digitization and the Creation of Virtual Libraries: The Princeton University Image Card Catalog--Reaping the Benefits of Imaging.

    ERIC Educational Resources Information Center

    Henthorne, Eileen

    1995-01-01

    Describes a project at the Princeton University libraries that converted the pre-1981 public card catalog, using digital imaging and optical character recognition technology, to fully tagged and indexed records of text in MARC format that are available on an online database and will be added to the online catalog. (LRW)

  14. Design of a Digital Library for Human Movement.

    ERIC Educational Resources Information Center

    Ben-Arie, Jezekiel; Pandit, Purvin; Rajaram, ShyamSundar

    This paper is focused on a central aspect in the design of a planned digital library for human movement, i.e. on the aspect of representation and recognition of human activity from video data. The method of representation is important since it has a major impact on the design of all the other building blocks of the system such as the user…

  15. Multivariate interactive digital analysis system /MIDAS/ - A new fast multispectral recognition system

    NASA Technical Reports Server (NTRS)

    Kriegler, F.; Marshall, R.; Lampert, S.; Gordon, M.; Cornell, C.; Kistler, R.

    1973-01-01

    The MIDAS system is a prototype, multiple-pipeline digital processor mechanizing the multivariate-Gaussian, maximum-likelihood decision algorithm operating at 200,000 pixels/second. It incorporates displays and film printer equipment under control of a general purpose midi-computer and possesses sufficient flexibility that operational versions of the equipment may be subsequently specified as subsets of the system.

  16. Loose, Falling Characters and Sentences: The Persistence of the OCR Problem in Digital Repository E-Books

    ERIC Educational Resources Information Center

    Kichuk, Diana

    2015-01-01

    The electronic conversion of scanned image files to readable text using optical character recognition (OCR) software and the subsequent migration of raw OCR text to e-book text file formats are key remediation or media conversion technologies used in digital repository e-book production. Despite real progress, the OCR problem of reliability and…

  17. Food Marketing towards Children: Brand Logo Recognition, Food-Related Behavior and BMI among 3–13-Year-Olds in a South Indian Town

    PubMed Central

    Ueda, Peter; Tong, Leilei; Viedma, Cristobal; Chandy, Sujith J.; Marrone, Gaetano; Simon, Anna; Stålsby Lundborg, Cecilia

    2012-01-01

    Objectives To assess exposure to marketing of unhealthy food products and its relation to food related behavior and BMI in children aged 3–13, from different socioeconomic backgrounds in a south Indian town. Methods Child-parent pairs (n = 306) were recruited at pediatric clinics. Exposure to food marketing was assessed by a digital logo recognition test. Children matched 18 logos of unhealthy food (high in fat/sugar/salt) featured in promotion material from the food industry to pictures of corresponding products. Children's nutritional knowledge, food preferences, purchase requests, eating behavior and socioeconomic characteristics were assessed by a digital game and parental questionnaires. Anthropometric measurements were recorded. Results Recognition rates for the brand logos ranged from 30% to 80%. Logo recognition ability increased with age (p<0.001) and socioeconomic level (p<0.001 comparing children in the highest and lowest of three socioeconomic groups). Adjusted for gender, age and socioeconomic group, logo recognition was associated with higher BMI (p = 0.022) and nutritional knowledge (p<0.001) but not to unhealthy food preferences or purchase requests. Conclusions Children from higher socioeconomic groups in the region had higher brand logo recognition ability and are possibly exposed to more food marketing. The study did not lend support to a link between exposure to marketing and poor eating behavior, distorted nutritional knowledge or increased purchase requests. The correlation between logo recognition and BMI warrants further investigation on food marketing towards children and its potential role in the increasing burden of non-communicable diseases in this part of India. PMID:23082137

  18. Methods and means of diagnostics of oncological diseases on the basis of pattern recognition: intelligent morphological systems - problems and solutions

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.

    2017-01-01

    The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.

  19. Recognition of Time Stamps on Full-Disk Hα Images Using Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Huang, N.; Jing, J.; Liu, C.; Wang, H.; Fu, G.

    2016-12-01

    Observation and understanding of the physics of the 11-year solar activity cycle and 22-year magnetic cycle are among the most important research topics in solar physics. The solar cycle is responsible for magnetic field and particle fluctuation in the near-earth environment that have been found increasingly important in affecting the living of human beings in the modern era. A systematic study of large-scale solar activities, as made possible by our rich data archive, will further help us to understand the global-scale magnetic fields that are closely related to solar cycles. The long-time-span data archive includes both full-disk and high-resolution Hα images. Prior to the widely use of CCD cameras in 1990s, 35-mm films were the major media to store images. The research group at NJIT recently finished the digitization of film data obtained by the National Solar Observatory (NSO) and Big Bear Solar Observatory (BBSO) covering the period of 1953 to 2000. The total volume of data exceeds 60 TB. To make this huge database scientific valuable, some processing and calibration are required. One of the most important steps is to read the time stamps on all of the 14 million images, which is almost impossible to be done manually. We implemented three different methods to recognize the time stamps automatically, including Optical Character Recognition (OCR), Classification Tree and TensorFlow. The latter two are known as machine learning algorithms which are very popular now a day in pattern recognition area. We will present some sample images and the results of clock recognition from all three methods.

  20. Innate Pattern Recognition and Categorization in a Jumping Spider

    PubMed Central

    Dolev, Yinnon; Nelson, Ximena J.

    2014-01-01

    The East African jumping spider Evarcha culicivora feeds indirectly on vertebrate blood by preferentially preying upon blood-fed Anopheles mosquitoes, the vectors of human malaria1, using the distinct resting posture and engorged abdomen characteristic of these specific prey as key elements for their recognition. To understand perceptual categorization of objects by these spiders, we investigated their predatory behavior toward different digital stimuli - abstract ‘stick figure’ representations of Anopheles constructed solely by known key identification elements, disarranged versions of these, as well as non-prey items and detailed images of alternative prey. We hypothesized that the abstract images representing Anopheles would be perceived as potential prey, and would be preferred to those of non-preferred prey. Spiders perceived the abstract stick figures of Anopheles specifically as their preferred prey, attacking them significantly more often than non-preferred prey, even when the comprising elements of the Anopheles stick figures were disarranged and disconnected from each other. However, if the relative angles between the elements of the disconnected stick figures of Anopheles were altered, the otherwise identical set of elements was no longer perceived as prey. These data show that E. culicivora is capable of making discriminations based on abstract concepts, such as the hypothetical angle formed by discontinuous elements. It is this inter-element angle rather than resting posture that is important for correct identification of Anopheles. Our results provide a glimpse of the underlying processes of object recognition in animals with minute brains, and suggest that these spiders use a local processing approach for object recognition, rather than a holistic or global approach. This study provides an excellent basis for a comparative analysis on feature extraction and detection by animals as diverse as bees and mammals. PMID:24893306

  1. Postprocessing for character recognition using pattern features and linguistic information

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi

    1993-04-01

    We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).

  2. Facial emotion recognition in patients with focal and diffuse axonal injury.

    PubMed

    Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita

    2017-01-01

    Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.

  3. Evaluating a voice recognition system: finding the right product for your department.

    PubMed

    Freeh, M; Dewey, M; Brigham, L

    2001-06-01

    The Department of Radiology at the University of Utah Health Sciences Center has been in the process of transitioning from the traditional film-based department to a digital imaging department for the past 2 years. The department is now transitioning from the traditional method of dictating reports (dictation by radiologist to transcription to review and signing by radiologist) to a voice recognition system. The transition to digital operations will not be complete until we have the ability to directly interface the dictation process with the image review process. Voice recognition technology has advanced to the level where it can and should be an integral part of the new way of working in radiology and is an integral part of an efficient digital imaging department. The transition to voice recognition requires the task of identifying the product and the company that will best meet a department's needs. This report introduces the methods we used to evaluate the vendors and the products available as we made our purchasing decision. We discuss our evaluation method and provide a checklist that can be used by other departments to assist with their evaluation process. The criteria used in the evaluation process fall into the following major categories: user operations, technical infrastructure, medical dictionary, system interfaces, service support, cost, and company strength. Conclusions drawn from our evaluation process will be detailed, with the intention being to shorten the process for others as they embark on a similar venture. As more and more organizations investigate the many products and services that are now being offered to enhance the operations of a radiology department, it becomes increasingly important that solid methods are used to most effectively evaluate the new products. This report should help others complete the task of evaluating a voice recognition system and may be adaptable to other products as well.

  4. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...

  5. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...

  6. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, G.C.; Martinez, R.F.

    1999-05-04

    A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.

  7. Multiple degree of freedom optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1987-01-01

    Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.

  8. Ultrasonography of ovarian masses using a pattern recognition approach

    PubMed Central

    Jung, Sung Il

    2015-01-01

    As a primary imaging modality, ultrasonography (US) can provide diagnostic information for evaluating ovarian masses. Using a pattern recognition approach through gray-scale transvaginal US, ovarian masses can be diagnosed with high specificity and sensitivity. Doppler US may allow ovarian masses to be diagnosed as benign or malignant with even greater confidence. In order to differentiate benign and malignant ovarian masses, it is necessary to categorize ovarian masses into unilocular cyst, unilocular solid cyst, multilocular cyst, multilocular solid cyst, and solid tumor, and then to detect typical US features that demonstrate malignancy based on pattern recognition approach. PMID:25797108

  9. Application of pattern recognition techniques to crime analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.

    1976-08-15

    The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)

  10. Directing an appropriate immune response: the role of defense collagens and other soluble pattern recognition molecules.

    PubMed

    Fraser, D A; Tenner, A J

    2008-02-01

    Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.

  11. Visual scanning behavior is related to recognition performance for own- and other-age faces

    PubMed Central

    Proietti, Valentina; Macchi Cassia, Viola; dell’Amore, Francesca; Conte, Stefania; Bricolo, Emanuela

    2015-01-01

    It is well-established that our recognition ability is enhanced for faces belonging to familiar categories, such as own-race faces and own-age faces. Recent evidence suggests that, for race, the recognition bias is also accompanied by different visual scanning strategies for own- compared to other-race faces. Here, we tested the hypothesis that these differences in visual scanning patterns extend also to the comparison between own and other-age faces and contribute to the own-age recognition advantage. Participants (young adults with limited experience with infants) were tested in an old/new recognition memory task where they encoded and subsequently recognized a series of adult and infant faces while their eye movements were recorded. Consistent with findings on the other-race bias, we found evidence of an own-age bias in recognition which was accompanied by differential scanning patterns, and consequently differential encoding strategies, for own-compared to other-age faces. Gaze patterns for own-age faces involved a more dynamic sampling of the internal features and longer viewing time on the eye region compared to the other regions of the face. This latter strategy was extensively employed during learning (vs. recognition) and was positively correlated to discriminability. These results suggest that deeply encoding the eye region is functional for recognition and that the own-age bias is evident not only in differential recognition performance, but also in the employment of different sampling strategies found to be effective for accurate recognition. PMID:26579056

  12. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.

    PubMed Central

    Malach, R; Reppas, J B; Benson, R R; Kwong, K K; Jiang, H; Kennedy, W A; Ledden, P J; Brady, T J; Rosen, B R; Tootell, R B

    1995-01-01

    The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667258

  13. Detecting buried explosive hazards with handheld GPR and deep learning

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.

    2016-05-01

    Buried explosive hazards (BEHs), including traditional landmines and homemade improvised explosives, have proven difficult to detect and defeat during and after conflicts around the world. Despite their various sizes, shapes and construction material, ground penetrating radar (GPR) is an excellent phenomenology for detecting BEHs due to its ability to sense localized differences in electromagnetic properties. Handheld GPR detectors are common equipment for detecting BEHs because of their flexibility (in part due to the human operator) and effectiveness in cluttered environments. With modern digital electronics and positioning systems, handheld GPR sensors can sense and map variation in electromagnetic properties while searching for BEHs. Additionally, large-scale computers have demonstrated an insatiable appetite for ingesting massive datasets and extracting meaningful relationships. This is no more evident than the maturation of deep learning artificial neural networks (ANNs) for image and speech recognition now commonplace in industry and academia. This confluence of sensing, computing and pattern recognition technologies offers great potential to develop automatic target recognition techniques to assist GPR operators searching for BEHs. In this work deep learning ANNs are used to detect BEHs and discriminate them from harmless clutter. We apply these techniques to a multi-antennae, handheld GPR with centimeter-accurate positioning system that was used to collect data over prepared lanes containing a wide range of BEHs. This work demonstrates that deep learning ANNs can automatically extract meaningful information from complex GPR signatures, complementing existing GPR anomaly detection and classification techniques.

  14. Fuzzy set methods for object recognition in space applications

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed.

  15. [Glossary of terms used by radiologists in image processing].

    PubMed

    Rolland, Y; Collorec, R; Bruno, A; Ramée, A; Morcet, N; Haigron, P

    1995-01-01

    We give the definition of 166 words used in image processing. Adaptivity, aliazing, analog-digital converter, analysis, approximation, arc, artifact, artificial intelligence, attribute, autocorrelation, bandwidth, boundary, brightness, calibration, class, classification, classify, centre, cluster, coding, color, compression, contrast, connectivity, convolution, correlation, data base, decision, decomposition, deconvolution, deduction, descriptor, detection, digitization, dilation, discontinuity, discretization, discrimination, disparity, display, distance, distorsion, distribution dynamic, edge, energy, enhancement, entropy, erosion, estimation, event, extrapolation, feature, file, filter, filter floaters, fitting, Fourier transform, frequency, fusion, fuzzy, Gaussian, gradient, graph, gray level, group, growing, histogram, Hough transform, Houndsfield, image, impulse response, inertia, intensity, interpolation, interpretation, invariance, isotropy, iterative, JPEG, knowledge base, label, laplacian, learning, least squares, likelihood, matching, Markov field, mask, matching, mathematical morphology, merge (to), MIP, median, minimization, model, moiré, moment, MPEG, neural network, neuron, node, noise, norm, normal, operator, optical system, optimization, orthogonal, parametric, pattern recognition, periodicity, photometry, pixel, polygon, polynomial, prediction, pulsation, pyramidal, quantization, raster, reconstruction, recursive, region, rendering, representation space, resolution, restoration, robustness, ROC, thinning, transform, sampling, saturation, scene analysis, segmentation, separable function, sequential, smoothing, spline, split (to), shape, threshold, tree, signal, speckle, spectrum, spline, stationarity, statistical, stochastic, structuring element, support, syntaxic, synthesis, texture, truncation, variance, vision, voxel, windowing.

  16. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  17. HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Jian; Wang, Tong

    2017-09-01

    Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.

  18. Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns

    PubMed Central

    Noh, Soo Rim; Isaacowitz, Derek M.

    2014-01-01

    While age-related declines in facial expression recognition are well documented, previous research relied mostly on isolated faces devoid of context. We investigated the effects of context on age differences in recognition of facial emotions and in visual scanning patterns of emotional faces. While their eye movements were monitored, younger and older participants viewed facial expressions (i.e., anger, disgust) in contexts that were emotionally congruent, incongruent, or neutral to the facial expression to be identified. Both age groups had highest recognition rates of facial expressions in the congruent context, followed by the neutral context, and recognition rates in the incongruent context were worst. These context effects were more pronounced for older adults. Compared to younger adults, older adults exhibited a greater benefit from congruent contextual information, regardless of facial expression. Context also influenced the pattern of visual scanning characteristics of emotional faces in a similar manner across age groups. In addition, older adults initially attended more to context overall. Our data highlight the importance of considering the role of context in understanding emotion recognition in adulthood. PMID:23163713

  19. Comparing the visual spans for faces and letters

    PubMed Central

    He, Yingchen; Scholz, Jennifer M.; Gage, Rachel; Kallie, Christopher S.; Liu, Tingting; Legge, Gordon E.

    2015-01-01

    The visual span—the number of adjacent text letters that can be reliably recognized on one fixation—has been proposed as a sensory bottleneck that limits reading speed (Legge, Mansfield, & Chung, 2001). Like reading, searching for a face is an important daily task that involves pattern recognition. Is there a similar limitation on the number of faces that can be recognized in a single fixation? Here we report on a study in which we measured and compared the visual-span profiles for letter and face recognition. A serial two-stage model for pattern recognition was developed to interpret the data. The first stage is characterized by factors limiting recognition of isolated letters or faces, and the second stage represents the interfering effect of nearby stimuli on recognition. Our findings show that the visual span for faces is smaller than that for letters. Surprisingly, however, when differences in first-stage processing for letters and faces are accounted for, the two visual spans become nearly identical. These results suggest that the concept of visual span may describe a common sensory bottleneck that underlies different types of pattern recognition. PMID:26129858

  20. Training Strategies for Mitigating the Effect of Proportional Control on Classification in Pattern Recognition Based Myoelectric Control

    PubMed Central

    Scheme, Erik; Englehart, Kevin

    2013-01-01

    The performance of pattern recognition based myoelectric control has seen significant interest in the research community for many years. Due to a recent surge in the development of dexterous prosthetic devices, determining the clinical viability of multifunction myoelectric control has become paramount. Several factors contribute to differences between offline classification accuracy and clinical usability, but the overriding theme is that the variability of the elicited patterns increases greatly during functional use. Proportional control has been shown to greatly improve the usability of conventional myoelectric control systems. Typically, a measure of the amplitude of the electromyogram (a rectified and smoothed version) is used to dictate the velocity of control of a device. The discriminatory power of myoelectric pattern classifiers, however, is also largely based on amplitude features of the electromyogram. This work presents an introductory look at the effect of contraction strength and proportional control on pattern recognition based control. These effects are investigated using typical pattern recognition data collection methods as well as a real-time position tracking test. Training with dynamically force varying contractions and appropriate gain selection is shown to significantly improve (p<0.001) the classifier’s performance and tolerance to proportional control. PMID:23894224

  1. Working Memory Load Affects Processing Time in Spoken Word Recognition: Evidence from Eye-Movements

    PubMed Central

    Hadar, Britt; Skrzypek, Joshua E.; Wingfield, Arthur; Ben-David, Boaz M.

    2016-01-01

    In daily life, speech perception is usually accompanied by other tasks that tap into working memory capacity. However, the role of working memory on speech processing is not clear. The goal of this study was to examine how working memory load affects the timeline for spoken word recognition in ideal listening conditions. We used the “visual world” eye-tracking paradigm. The task consisted of spoken instructions referring to one of four objects depicted on a computer monitor (e.g., “point at the candle”). Half of the trials presented a phonological competitor to the target word that either overlapped in the initial syllable (onset) or at the last syllable (offset). Eye movements captured listeners' ability to differentiate the target noun from its depicted phonological competitor (e.g., candy or sandal). We manipulated working memory load by using a digit pre-load task, where participants had to retain either one (low-load) or four (high-load) spoken digits for the duration of a spoken word recognition trial. The data show that the high-load condition delayed real-time target discrimination. Specifically, a four-digit load was sufficient to delay the point of discrimination between the spoken target word and its phonological competitor. Our results emphasize the important role working memory plays in speech perception, even when performed by young adults in ideal listening conditions. PMID:27242424

  2. Addressing the issue of insufficient information in data-based bridge health monitoring : final report.

    DOT National Transportation Integrated Search

    2015-11-01

    One of the most efficient ways to solve the damage detection problem using the statistical pattern recognition : approach is that of exploiting the methods of outlier analysis. Cast within the pattern recognition framework, : damage detection assesse...

  3. Fast traffic sign recognition with a rotation invariant binary pattern based feature.

    PubMed

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-19

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  4. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    PubMed Central

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-01

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217

  5. Development of children's identity and position processing for letter, digit, and symbol strings: A cross-sectional study of the primary school years.

    PubMed

    Schubert, Teresa; Badcock, Nicholas; Kohnen, Saskia

    2017-10-01

    Letter recognition and digit recognition are critical skills for literate adults, yet few studies have considered the development of these skills in children. We conducted a nine-alternative forced-choice (9AFC) partial report task with strings of letters and digits, with typographical symbols (e.g., $, @) as a control, to investigate the development of identity and position processing in children. This task allows for the delineation of identity processing (as overall accuracy) and position coding (as the proportion of position errors). Our participants were students in Grade 1 to Grade 6, allowing us to track the development of these abilities across the primary school years. Our data suggest that although digit processing and letter processing end up with many similarities in adult readers, the developmental trajectories for identity and position processing for the two character types differ. Symbol processing showed little developmental change in terms of identity or position accuracy. We discuss the implications of our results for theories of identity and position coding: modified receptive field, multiple-route model, and lexical tuning. Despite moderate success for some theories, considerable theoretical work is required to explain the developmental trajectories of letter processing and digit processing, which might not be as closely tied in child readers as they are in adult readers. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Inhibition of Shh signalling in the chick wing gives insights into digit patterning and evolution.

    PubMed

    Pickering, Joseph; Towers, Matthew

    2016-10-01

    In an influential model of pattern formation, a gradient of Sonic hedgehog (Shh) signalling in the chick wing bud specifies cells with three antero-posterior positional values, which give rise to three morphologically different digits by a self-organizing mechanism with Turing-like properties. However, as four of the five digits of the mouse limb are morphologically similar in terms of phalangeal pattern, it has been suggested that self-organization alone could be sufficient. Here, we show that inhibition of Shh signalling at a specific stage of chick wing development results in a pattern of four digits, three of which can have the same number of phalanges. These patterning changes are dependent on a posterior extension of the apical ectodermal ridge, and this also allows the additional digit to arise from the Shh-producing cells of the polarizing region - an ability lost in ancestral theropod dinosaurs. Our analyses reveal that, if the specification of antero-posterior positional values is curtailed, self-organization can then produce several digits with the same number of phalanges. We present a model that may give important insights into how the number of digits and phalanges has diverged during the evolution of avian and mammalian limbs. © 2016. Published by The Company of Biologists Ltd.

  7. Hand Grasping Synergies As Biometrics.

    PubMed

    Patel, Vrajeshri; Thukral, Poojita; Burns, Martin K; Florescu, Ionut; Chandramouli, Rajarathnam; Vinjamuri, Ramana

    2017-01-01

    Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements). Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic). Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies) from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies-postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security.

  8. PathoSpotter-K: A computational tool for the automatic identification of glomerular lesions in histological images of kidneys

    NASA Astrophysics Data System (ADS)

    Barros, George O.; Navarro, Brenda; Duarte, Angelo; Dos-Santos, Washington L. C.

    2017-04-01

    PathoSpotter is a computational system designed to assist pathologists in teaching about and researching kidney diseases. PathoSpotter-K is the version that was developed to detect nephrological lesions in digital images of kidneys. Here, we present the results obtained using the first version of PathoSpotter-K, which uses classical image processing and pattern recognition methods to detect proliferative glomerular lesions with an accuracy of 88.3 ± 3.6%. Such performance is only achieved by similar systems if they use images of cell in contexts that are much less complex than the glomerular structure. The results indicate that the approach can be applied to the development of systems designed to train pathology students and to assist pathologists in determining large-scale clinicopathological correlations in morphological research.

  9. Use of computers in dysmorphology.

    PubMed Central

    Diliberti, J H

    1988-01-01

    As a consequence of the increasing power and decreasing cost of digital computers, dysmorphologists have begun to explore a wide variety of computerised applications in clinical genetics. Of considerable interest are developments in the areas of syndrome databases, expert systems, literature searches, image processing, and pattern recognition. Each of these areas is reviewed from the perspective of the underlying computer principles, existing applications, and the potential for future developments. Particular emphasis is placed on the analysis of the tasks performed by the dysmorphologist and the design of appropriate tools to facilitate these tasks. In this context the computer and associated software are considered paradigmatically as tools for the dysmorphologist and should be designed accordingly. Continuing improvements in the ability of computers to manipulate vast amounts of data rapidly makes the development of increasingly powerful tools for the dysmorphologist highly probable. PMID:3050092

  10. Discrimination of rock classes and alteration products in southwestern Saudi Arabia with computer-enhanced LANDSAT data

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Gunther, F. J.; Podwysocki, M. H.

    1978-01-01

    Digital LANDSAT MSS data for an area in the southwestern Arabian Shield were computer-enhanced to improve discrimination of rock classes, and recognition of gossans associated with massive sulphide deposits. The test area is underlain by metamorphic rocks that are locally intruded by granites; these are partly overlain by sandstones. The test area further includes the Wadi Wassat and Wadi Qatan massive sulphide deposits, which are commonly capped by gossans of ferric oxides, silica, and carbonates. Color patterns and boundaries on contrast-stretched ratio color composite imagery, and on complementary images constructed using principal component and canonical analyses transformations, correspond exceptionally well to 1:100,000 scale field maps. A qualitative visual comparison of information content showed that the ratio enhancement provided the best overall image for identification of rock type and alteration products.

  11. Automated speech understanding: the next generation

    NASA Astrophysics Data System (ADS)

    Picone, J.; Ebel, W. J.; Deshmukh, N.

    1995-04-01

    Modern speech understanding systems merge interdisciplinary technologies from Signal Processing, Pattern Recognition, Natural Language, and Linguistics into a unified statistical framework. These systems, which have applications in a wide range of signal processing problems, represent a revolution in Digital Signal Processing (DSP). Once a field dominated by vector-oriented processors and linear algebra-based mathematics, the current generation of DSP-based systems rely on sophisticated statistical models implemented using a complex software paradigm. Such systems are now capable of understanding continuous speech input for vocabularies of several thousand words in operational environments. The current generation of deployed systems, based on small vocabularies of isolated words, will soon be replaced by a new technology offering natural language access to vast information resources such as the Internet, and provide completely automated voice interfaces for mundane tasks such as travel planning and directory assistance.

  12. Iris recognition based on key image feature extraction.

    PubMed

    Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y

    2008-01-01

    In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.

  13. Quantum pattern recognition with multi-neuron interactions

    NASA Astrophysics Data System (ADS)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  14. Design and development of an ancient Chinese document recognition system

    NASA Astrophysics Data System (ADS)

    Peng, Liangrui; Xiu, Pingping; Ding, Xiaoqing

    2003-12-01

    The digitization of ancient Chinese documents presents new challenges to OCR (Optical Character Recognition) research field due to the large character set of ancient Chinese characters, variant font types, and versatile document layout styles, as these documents are historical reflections to the thousands of years of Chinese civilization. After analyzing the general characteristics of ancient Chinese documents, we present a solution for recognition of ancient Chinese documents with regular font-types and layout-styles. Based on the previous work on multilingual OCR in TH-OCR system, we focus on the design and development of two key technologies which include character recognition and page segmentation. Experimental results show that the developed character recognition kernel of 19,635 Chinese characters outperforms our original traditional Chinese recognition kernel; Benchmarked test on printed ancient Chinese books proves that the proposed system is effective for regular ancient Chinese documents.

  15. Distributed Pheromone-Based Swarming Control of Unmanned Air and Ground Vehicles for RSTA

    DTIC Science & Technology

    2008-03-20

    Forthcoming in Proceedings of SPIE Defense & Security Conference, March 2008, Orlando, FL Distributed Pheromone -Based Swarming Control of Unmanned...describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of...onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm

  16. A microcomputer interface for a digital audio processor-based data recording system.

    PubMed

    Croxton, T L; Stump, S J; Armstrong, W M

    1987-10-01

    An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer.

  17. Digital Archiving: Where the Past Lives Again

    NASA Astrophysics Data System (ADS)

    Paxson, K. B.

    2012-06-01

    The process of digital archiving for variable star data by manual entry with an Excel spreadsheet is described. Excel-based tools including a Step Magnitude Calculator and a Julian Date Calculator for variable star observations where magnitudes and Julian dates have not been reduced are presented. Variable star data in the literature and the AAVSO International Database prior to 1911 are presented and reviewed, with recent archiving work being highlighted. Digitization using optical character recognition software conversion is also demonstrated, with editing and formatting suggestions for the OCR-converted text.

  18. A microcomputer interface for a digital audio processor-based data recording system.

    PubMed Central

    Croxton, T L; Stump, S J; Armstrong, W M

    1987-01-01

    An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer. PMID:3676444

  19. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  20. 33 CFR 104.220 - Company or vessel personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...

  1. 33 CFR 104.220 - Company or vessel personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...

  2. Genetic dissection of the maize (Zea mays L.) MAMP response

    USDA-ARS?s Scientific Manuscript database

    Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors (PRRs). Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and ex...

  3. The Functional Architecture of Visual Object Recognition

    DTIC Science & Technology

    1991-07-01

    different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying

  4. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    DOT National Transportation Integrated Search

    2009-01-01

    This report describes a study conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information. The study gathered data from a large number of pilots who conduct all type...

  5. Spatial pattern recognition of seismic events in South West Colombia

    NASA Astrophysics Data System (ADS)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  6. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends.

    PubMed

    Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri

    2014-05-01

    Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.

  7. Rapid communication: Global-local processing affects recognition of distractor emotional faces.

    PubMed

    Srinivasan, Narayanan; Gupta, Rashmi

    2011-03-01

    Recent studies have shown links between happy faces and global, distributed attention as well as sad faces to local, focused attention. Emotions have been shown to affect global-local processing. Given that studies on emotion-cognition interactions have not explored the effect of perceptual processing at different spatial scales on processing stimuli with emotional content, the present study investigated the link between perceptual focus and emotional processing. The study investigated the effects of global-local processing on the recognition of distractor faces with emotional expressions. Participants performed a digit discrimination task with digits at either the global level or the local level presented against a distractor face (happy or sad) as background. The results showed that global processing associated with broad scope of attention facilitates recognition of happy faces, and local processing associated with narrow scope of attention facilitates recognition of sad faces. The novel results of the study provide conclusive evidence for emotion-cognition interactions by demonstrating the effect of perceptual processing on emotional faces. The results along with earlier complementary results on the effect of emotion on global-local processing support a reciprocal relationship between emotional processing and global-local processing. Distractor processing with emotional information also has implications for theories of selective attention.

  8. Study and response time for the visual recognition of 'similarity' and identity

    NASA Technical Reports Server (NTRS)

    Derks, P. L.; Bauer, T. M.

    1974-01-01

    Four subjects compared successively presented pairs of line patterns for a match between any lines in the pattern (similarity) and for a match between all lines (identity). The encoding or study times for pattern recognition from immediate memory and the latency in responses to comparison stimuli were examined. Qualitative differences within and between subjects were most evident in study times.

  9. Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Amador, Jose J (Inventor)

    2007-01-01

    A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.

  10. Capillaroscopic findings in systemic sclerosis -- are they associated with disease duration and presence of digital ulcers?

    PubMed

    Lambova, Sevdalina; Müller-Ladner, Ulf

    2011-11-01

    The aim of the study was to evaluate capillaroscopic pattern in systemic sclerosis (SSc) patients and its association with disease duration as well as with presence of digital ulcers. Thirty six patients with SSc were included in the study. The severity of Raynaud's phenomenon (RP) at the hands was assessed with VAS (100mm), and the presence of digital ulcers at the hands was documented. Nailfold capillaroscopy was performed by a videocapillaroscope. RP was found as a clinical symptom in 100% (36/36) of the examined SSc patients. In SSc patients with a duration of the disease of less than 3 years, an early phase "scleroderma type" capillaroscopic pattern was found in 50% (5/10) of the cases. In the group of SSc patients with a duration of the disease of more than 3 years, late phase scleroderma type capillaroscopic pattern was found in 26.9% (7/26) of the cases, which was characterized by the presence of extensive, "desert-like" avascular areas and neoangiogenic capillaries. Scleroderma type capillaroscopic pattern was found in 97.2% (35/36) of the cases. Digital ulcers at the hands were found in 36.1% (13/36) of the patients. In 100% of those patients with digital ulcers (13/13), an active type scleroderma like pattern was observed, which is characterized by the presence of frequent giant capillaries, hemorrhages, and avascular areas. An active type scleroderma like pattern was found in 47.2% (17/36) of the patients without digital ulcers. The data show that the presence of digital ulcers at the hands of SSc patients is strongly associated with an active type scleroderma like capillaroscopic pattern. Observation of an active type scleroderma like pattern in patients without digital ulcers may therefore be used as a predictor for the development of trophic changes in the future, an indication for vasoactive medication for the prevention of the development of digital ulcers, and as an additional objective method for the evaluation of disease activity score in SSc.

  11. Recent high-energy marine events in the sediments of Lagoa de Óbidos and Martinhal (Portugal): recognition, age and likely causes

    NASA Astrophysics Data System (ADS)

    Costa, P. J. M.; Leroy, S. A. G.; Dinis, J. L.; Dawson, A. G.; Kortekaas, S.

    2012-05-01

    A key issue in coastal hazards research is the need to distinguish sediments deposited by past extreme storms from those of past tsunamis. This study contributes to this aim by investigating patterns of sedimentation associated with extreme coastal flood events, in particular, within the Lagoa de Óbidos (Portugal). The recent stratigraphy of this coastal lagoon was studied using a wide range of techniques including visual description, grain-size analysis, digital and x-ray photography, magnetic susceptibility and geochemical analysis. The sequence was dated by 14C, 210Pb and Optically Stimulated Luminescence. Results disclose a distinctive coarser sedimentary unit, within the top of the sequence studied, and shown in quartz sand by the enrichment of elements with marine affinity (e.g., Ca and Na) and carbonates. The unit fines upwards and inland, thins inland and presents a sharp erosive basal contact. A noticeable post-event change in the sedimentary pattern was observed. The likely agent of sedimentation is discussed here and the conceivable association with the Great Lisbon tsunami of AD 1755 is debated, while a comparison is attempted with a possibly synchronous deposit from a tsunami in Martinhal (Algarve, Portugal). The possibility of a storm origin is also discussed in the context of the storminess of the western Portuguese coast and the North Atlantic Oscillation. This study highlights certain characteristics of the sedimentology of the deposits that may have a value in the recognition of extreme marine inundation signatures elsewhere in the world.

  12. The chemical structure of DNA sequence signals for RNA transcription

    NASA Technical Reports Server (NTRS)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  13. An Efficient and Robust Singular Value Method for Star Pattern Recognition and Attitude Determination

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.

    2003-01-01

    A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.

  14. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  15. Detection and recognition of analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor [Manassas, VA; Bailey, Charles L [Cross Junction, VA; Vsevolodov, Nikolai N [Kensington, MD; Elliott, Adam [Manassas, VA

    2008-05-06

    The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.

  16. Recognition of neural brain activity patterns correlated with complex motor activity

    NASA Astrophysics Data System (ADS)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  17. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline

    PubMed Central

    Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit

    2015-01-01

    Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927

  18. Peptidoglycan recognition proteins in Drosophila immunity.

    PubMed

    Kurata, Shoichiro

    2014-01-01

    Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition

    NASA Astrophysics Data System (ADS)

    Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.

    1993-03-01

    The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.

  20. Age-related increases in false recognition: the role of perceptual and conceptual similarity.

    PubMed

    Pidgeon, Laura M; Morcom, Alexa M

    2014-01-01

    Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499-510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.'s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous "old/new" responses at test, while in Experiment 2 participants were also asked to judge lures as "similar," to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.'s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation.

  1. Age-related increases in false recognition: the role of perceptual and conceptual similarity

    PubMed Central

    Pidgeon, Laura M.; Morcom, Alexa M.

    2014-01-01

    Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499–510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.’s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous “old/new” responses at test, while in Experiment 2 participants were also asked to judge lures as “similar,” to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.’s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation. PMID:25368576

  2. Image-based automatic recognition of larvae

    NASA Astrophysics Data System (ADS)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  3. Enemy at the gates: traffic at the plant cell pathogen interface.

    PubMed

    Hoefle, Caroline; Hückelhoven, Ralph

    2008-12-01

    The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.

  4. Permutation coding technique for image recognition systems.

    PubMed

    Kussul, Ernst M; Baidyk, Tatiana N; Wunsch, Donald C; Makeyev, Oleksandr; Martín, Anabel

    2006-11-01

    A feature extractor and neural classifier for image recognition systems are proposed. The proposed feature extractor is based on the concept of random local descriptors (RLDs). It is followed by the encoder that is based on the permutation coding technique that allows to take into account not only detected features but also the position of each feature on the image and to make the recognition process invariant to small displacements. The combination of RLDs and permutation coding permits us to obtain a sufficiently general description of the image to be recognized. The code generated by the encoder is used as an input data for the neural classifier. Different types of images were used to test the proposed image recognition system. It was tested in the handwritten digit recognition problem, the face recognition problem, and the microobject shape recognition problem. The results of testing are very promising. The error rate for the Modified National Institute of Standards and Technology (MNIST) database is 0.44% and for the Olivetti Research Laboratory (ORL) database it is 0.1%.

  5. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    DOT National Transportation Integrated Search

    2009-04-28

    A study was conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information, such as electronic charts and moving map displays. The goal of this research is to support t...

  6. Analysis of chemical signals in red fire ants by gas chromatography and pattern recognition techniques

    USDA-ARS?s Scientific Manuscript database

    The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...

  7. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    PubMed

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.

  8. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns

    PubMed Central

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941

  9. Identification of superficial defects in reconstructed 3D objects using phase-shifting fringe projection

    NASA Astrophysics Data System (ADS)

    Madrigal, Carlos A.; Restrepo, Alejandro; Branch, John W.

    2016-09-01

    3D reconstruction of small objects is used in applications of surface analysis, forensic analysis and tissue reconstruction in medicine. In this paper, we propose a strategy for the 3D reconstruction of small objects and the identification of some superficial defects. We applied a technique of projection of structured light patterns, specifically sinusoidal fringes and an algorithm of phase unwrapping. A CMOS camera was used to capture images and a DLP digital light projector for synchronous projection of the sinusoidal pattern onto the objects. We implemented a technique based on a 2D flat pattern as calibration process, so the intrinsic and extrinsic parameters of the camera and the DLP were defined. Experimental tests were performed in samples of artificial teeth, coal particles, welding defects and surfaces tested with Vickers indentation. Areas less than 5cm were studied. The objects were reconstructed in 3D with densities of about one million points per sample. In addition, the steps of 3D description, identification of primitive, training and classification were implemented to recognize defects, such as: holes, cracks, roughness textures and bumps. We found that pattern recognition strategies are useful, when quality supervision of surfaces has enough quantities of points to evaluate the defective region, because the identification of defects in small objects is a demanding activity of the visual inspection.

  10. Association between digital dermatoglyphics and handedness among Sinhalese in Sri Lanka

    PubMed Central

    Wijerathne, Buddhika TB; Rathnayake, Geetha K

    2013-01-01

    Background The relationship between handedness and digital dermatoglyphic patterns has never been investigated in the Sinhalese population. The goal of this study is to establish the above mentioned relationship, which would positively aid personal identification.  Findings One hundred forty Sinhalese students (70 right-handed and 70 left-handed) were studied for their digital dermatoglyphic pattern distribution. The results show that a statistically significant correlation exists for; digit 5 (Ulnar loop; P= 0.0449 and radial loop; P= 0.0248 by Fisher’s exact test) of the right hand in female, digit 1 (radial loop; P=0.0248 by Fisher’s exact test) and digit 2 (Ulnar loop; P=0.0306) of the left hand in females, digit 3 (Ulnar loop; P= 0.0486 and whorl; P= 0.0356 by Fisher’s exact test) and digit 4 (Ulnar loop; P= 0.0449 and whorl; P= 0.0301 by Fisher’s exact test) of the right hand in males, digit 4 (whorl; P=0.0160 by Fisher’s exact test) of the left hand in males. Conclusions  Statistically significant differences in handedness and digital dermatoglyphic patterns were evident among Sinhalese people. Further study with a larger sample size is recommended. PMID:24627780

  11. Correlation between National Influenza Surveillance Data and Search Queries from Mobile Devices and Desktops in South Korea

    PubMed Central

    Seo, Dong-Woo; Sohn, Chang Hwan; Kim, Sung-Hoon; Ryoo, Seung Mok; Lee, Yoon-Seon; Lee, Jae Ho; Kim, Won Young; Lim, Kyoung Soo

    2016-01-01

    Background Digital surveillance using internet search queries can improve both the sensitivity and timeliness of the detection of a health event, such as an influenza outbreak. While it has recently been estimated that the mobile search volume surpasses the desktop search volume and mobile search patterns differ from desktop search patterns, the previous digital surveillance systems did not distinguish mobile and desktop search queries. The purpose of this study was to compare the performance of mobile and desktop search queries in terms of digital influenza surveillance. Methods and Results The study period was from September 6, 2010 through August 30, 2014, which consisted of four epidemiological years. Influenza-like illness (ILI) and virologic surveillance data from the Korea Centers for Disease Control and Prevention were used. A total of 210 combined queries from our previous survey work were used for this study. Mobile and desktop weekly search data were extracted from Naver, which is the largest search engine in Korea. Spearman’s correlation analysis was used to examine the correlation of the mobile and desktop data with ILI and virologic data in Korea. We also performed lag correlation analysis. We observed that the influenza surveillance performance of mobile search queries matched or exceeded that of desktop search queries over time. The mean correlation coefficients of mobile search queries and the number of queries with an r-value of ≥ 0.7 equaled or became greater than those of desktop searches over the four epidemiological years. A lag correlation analysis of up to two weeks showed similar trends. Conclusion Our study shows that mobile search queries for influenza surveillance have equaled or even become greater than desktop search queries over time. In the future development of influenza surveillance using search queries, the recognition of changing trend of mobile search data could be necessary. PMID:27391028

  12. Correlation between National Influenza Surveillance Data and Search Queries from Mobile Devices and Desktops in South Korea.

    PubMed

    Shin, Soo-Yong; Kim, Taerim; Seo, Dong-Woo; Sohn, Chang Hwan; Kim, Sung-Hoon; Ryoo, Seung Mok; Lee, Yoon-Seon; Lee, Jae Ho; Kim, Won Young; Lim, Kyoung Soo

    2016-01-01

    Digital surveillance using internet search queries can improve both the sensitivity and timeliness of the detection of a health event, such as an influenza outbreak. While it has recently been estimated that the mobile search volume surpasses the desktop search volume and mobile search patterns differ from desktop search patterns, the previous digital surveillance systems did not distinguish mobile and desktop search queries. The purpose of this study was to compare the performance of mobile and desktop search queries in terms of digital influenza surveillance. The study period was from September 6, 2010 through August 30, 2014, which consisted of four epidemiological years. Influenza-like illness (ILI) and virologic surveillance data from the Korea Centers for Disease Control and Prevention were used. A total of 210 combined queries from our previous survey work were used for this study. Mobile and desktop weekly search data were extracted from Naver, which is the largest search engine in Korea. Spearman's correlation analysis was used to examine the correlation of the mobile and desktop data with ILI and virologic data in Korea. We also performed lag correlation analysis. We observed that the influenza surveillance performance of mobile search queries matched or exceeded that of desktop search queries over time. The mean correlation coefficients of mobile search queries and the number of queries with an r-value of ≥ 0.7 equaled or became greater than those of desktop searches over the four epidemiological years. A lag correlation analysis of up to two weeks showed similar trends. Our study shows that mobile search queries for influenza surveillance have equaled or even become greater than desktop search queries over time. In the future development of influenza surveillance using search queries, the recognition of changing trend of mobile search data could be necessary.

  13. License Plate Recognition System for Indian Vehicles

    NASA Astrophysics Data System (ADS)

    Sanap, P. R.; Narote, S. P.

    2010-11-01

    We consider the task of recognition of Indian vehicle number plates (also called license plates or registration plates in other countries). A system for Indian number plate recognition must cope with wide variations in the appearance of the plates. Each state uses its own range of designs with font variations between the designs. Also, vehicle owners may place the plates inside glass covered frames or use plates made of nonstandard materials. These issues compound the complexity of automatic number plate recognition, making existing approaches inadequate. We have developed a system that incorporates a novel combination of image processing and artificial neural network technologies to successfully locate and read Indian vehicle number plates in digital images. Commercial application of the system is envisaged.

  14. The Psychophysics of Algebra Expertise: Mathematics Perceptual Learning Interventions Produce Durable Encoding Changes

    ERIC Educational Resources Information Center

    Bufford, Carolyn A.; Mettler, Everett; Geller, Emma H.; Kellman, Philip J.

    2014-01-01

    Mathematics requires thinking but also pattern recognition. Recent research indicates that perceptual learning (PL) interventions facilitate discovery of structure and recognition of patterns in mathematical domains, as assessed by tests of mathematical competence. Here we sought direct evidence that a brief perceptual learning module (PLM)…

  15. Summary of 1971 pattern recognition program development

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1972-01-01

    Eight areas related to pattern recognition analysis at the Earth Resources Laboratory are discussed: (1) background; (2) Earth Resources Laboratory goals; (3) software problems/limitations; (4) operational problems/limitations; (5) immediate future capabilities; (6) Earth Resources Laboratory data analysis system; (7) general program needs and recommendations; and (8) schedule and milestones.

  16. Pattern Recognition by Retina-Like Devices.

    ERIC Educational Resources Information Center

    Weiman, Carl F. R.; Rothstein, Jerome

    This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…

  17. Cognitive Development and Reading Processes. Developmental Program Report Number 76.

    ERIC Educational Resources Information Center

    West, Richard F.

    In discussing the relationship between cognitive development (perception, pattern recognition, and memory) and reading processes, this paper especially emphasizes developmental factors. After an overview of some issues that bear on how written language is processed, the paper presents a discussion of pattern recognition, including general pattern…

  18. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence.

    PubMed

    Robertson, Stephanie; Azizpour, Hossein; Smith, Kevin; Hartman, Johan

    2018-04-01

    Breast cancer is the most common malignant disease in women worldwide. In recent decades, earlier diagnosis and better adjuvant therapy have substantially improved patient outcome. Diagnosis by histopathology has proven to be instrumental to guide breast cancer treatment, but new challenges have emerged as our increasing understanding of cancer over the years has revealed its complex nature. As patient demand for personalized breast cancer therapy grows, we face an urgent need for more precise biomarker assessment and more accurate histopathologic breast cancer diagnosis to make better therapy decisions. The digitization of pathology data has opened the door to faster, more reproducible, and more precise diagnoses through computerized image analysis. Software to assist diagnostic breast pathology through image processing techniques have been around for years. But recent breakthroughs in artificial intelligence (AI) promise to fundamentally change the way we detect and treat breast cancer in the near future. Machine learning, a subfield of AI that applies statistical methods to learn from data, has seen an explosion of interest in recent years because of its ability to recognize patterns in data with less need for human instruction. One technique in particular, known as deep learning, has produced groundbreaking results in many important problems including image classification and speech recognition. In this review, we will cover the use of AI and deep learning in diagnostic breast pathology, and other recent developments in digital image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Processing Of Binary Images

    NASA Astrophysics Data System (ADS)

    Hou, H. S.

    1985-07-01

    An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.

  20. Recognition and classification of oscillatory patterns of electric brain activity using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, B.; Brown, D.

    Biological endpoints can complement chemical analyses in monitoring environmental remediation. In some cases the levels of chemical detection are so low that the costs of clean-up to no detection would be prohibitive. And chemical tests do not indicate the availability of the contaminants to the biota. On the other hand many if not most biological tests lack specificity. The authors have investigated a protein expression assay to establish an endpoint for clean-up of sulfur mustard and breakdown products. Earthworms (Lumbricus terrestris) were exposed to sulfur mustard (SM), a breakdown product thiodiethanol (TDE), and ethylene glycol, the solvent for the twomore » chemicals. Tissue from the lining of the coelomic cavity was taken from each of 6 worms in each treatment class. Soluble proteins were extracted and separated on one and two-dimensional (1D and 2D) gels. The 1 D gels showed no difference by eye but the patterns from control and solvent control worms on 2D gels differed from those of worms exposed to TDE and SM. The 1D gel data were digitized and analyzed by pattern recognition using artificial neural networks. The protein patterns under the two treatments and the two controls were learned in one set of data and successfully recognized in a second. This indicated that what was learned was useful in recognizing patterns induced by SM and TDE. Thus a possible endpoint for remediation would be the protein pattern at no effect levels of chemicals of interest.« less

  2. Performance Study of the First 2D Prototype of Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deptuch, Gregory; Hoff, James; Jindariani, Sergo

    Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less

  3. Font group identification using reconstructed fonts

    NASA Astrophysics Data System (ADS)

    Cutter, Michael P.; van Beusekom, Joost; Shafait, Faisal; Breuel, Thomas M.

    2011-01-01

    Ideally, digital versions of scanned documents should be represented in a format that is searchable, compressed, highly readable, and faithful to the original. These goals can theoretically be achieved through OCR and font recognition, re-typesetting the document text with original fonts. However, OCR and font recognition remain hard problems, and many historical documents use fonts that are not available in digital forms. It is desirable to be able to reconstruct fonts with vector glyphs that approximate the shapes of the letters that form a font. In this work, we address the grouping of tokens in a token-compressed document into candidate fonts. This permits us to incorporate font information into token-compressed images even when the original fonts are unknown or unavailable in digital format. This paper extends previous work in font reconstruction by proposing and evaluating an algorithm to assign a font to every character within a document. This is a necessary step to represent a scanned document image with a reconstructed font. Through our evaluation method, we have measured a 98.4% accuracy for the assignment of letters to candidate fonts in multi-font documents.

  4. Automatic target recognition apparatus and method

    DOEpatents

    Baumgart, Chris W.; Ciarcia, Christopher A.

    2000-01-01

    An automatic target recognition apparatus (10) is provided, having a video camera/digitizer (12) for producing a digitized image signal (20) representing an image containing therein objects which objects are to be recognized if they meet predefined criteria. The digitized image signal (20) is processed within a video analysis subroutine (22) residing in a computer (14) in a plurality of parallel analysis chains such that the objects are presumed to be lighter in shading than the background in the image in three of the chains and further such that the objects are presumed to be darker than the background in the other three chains. In two of the chains the objects are defined by surface texture analysis using texture filter operations. In another two of the chains the objects are defined by background subtraction operations. In yet another two of the chains the objects are defined by edge enhancement processes. In each of the analysis chains a calculation operation independently determines an error factor relating to the probability that the objects are of the type which should be recognized, and a probability calculation operation combines the results of the analysis chains.

  5. Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency.

    PubMed

    Chen, Zhenning; Shao, Xinxing; Xu, Xiangyang; He, Xiaoyuan

    2018-02-01

    The technique of digital image correlation (DIC), which has been widely used for noncontact deformation measurements in both the scientific and engineering fields, is greatly affected by the quality of speckle patterns in terms of its performance. This study was concerned with the optimization of the digital speckle pattern (DSP) for DIC in consideration of both the accuracy and efficiency. The root-mean-square error of the inverse compositional Gauss-Newton algorithm and the average number of iterations were used as quality metrics. Moreover, the influence of subset sizes and the noise level of images, which are the basic parameters in the quality assessment formulations, were also considered. The simulated binary speckle patterns were first compared with the Gaussian speckle patterns and captured DSPs. Both the single-radius and multi-radius DSPs were optimized. Experimental tests and analyses were conducted to obtain the optimized and recommended DSP. The vector diagram of the optimized speckle pattern was also uploaded as reference.

  6. The ACR-NEMA Digital Imaging And Communications Standard: Evolution, Overview And Implementation Considerations

    NASA Astrophysics Data System (ADS)

    Alzner, Edgar; Murphy, Laura

    1986-06-01

    The growing digital nature of radiology images led to a recognition that compatibility of communication between imaging, display and data storage devices of different modalities and different manufacturers is necessary. The ACR-NEMA Digital Imaging and Communications Standard Committee was formed to develop a communications standard for radiological images. This standard includes the overall structure of a communication message and the protocols for bi-directional communication using end-to-end connections. The evolution and rationale of the ACR-NEMA Digital Imaging and Communication Standard are described. An overview is provided and sane practical implementation considerations are discussed. PACS will became reality only if the medical community accepts and implements the ACR-NEMA Standard.

  7. Recognition and inference of crevice processing on digitized paintings

    NASA Astrophysics Data System (ADS)

    Karuppiah, S. P.; Srivatsa, S. K.

    2013-03-01

    This paper is designed to detect and removal of cracks on digitized paintings. The cracks are detected by threshold. Afterwards, the thin dark brush strokes which have been misidentified as cracks are removed using Median radial basis function neural network on hue and saturation data, Semi-automatic procedure based on region growing. Finally, crack is filled using wiener filter. The paper is well designed in such a way that most of the cracks on digitized paintings have identified and removed. The paper % of betterment is 90%. This paper helps us to perform not only on digitized paintings but also the medical images and bmp images. This paper is implemented by Mat Lab.

  8. Intellectual factors in false memories of patients with schizophrenia.

    PubMed

    Zhu, Bi; Chen, Chuansheng; Loftus, Elizabeth F; Dong, Qi; Lin, Chongde; Li, Jun

    2018-07-01

    The current study explored the intellectual factors in false memories of 139 patients with schizophrenia, using a recognition task and an IQ test. The full-scale IQ score of the participants ranged from 57 to 144 (M = 100, SD = 14). The full IQ score had a negative correlation with false recognition in patients with schizophrenia, and positive correlations with high-confidence true recognition and discrimination rates. Further analyses with the subtests' scores revealed that false recognition was negatively correlated with scores of performance IQ (and one of its subtests: picture arrangement), whereas true recognition was positively correlated with scores of verbal IQ (and two of its subtests: information and digit span). High-IQ patients had less false recognition (overall or high-confidence false recognition), more high-confidence true recognition, and higher discrimination abilities than those with low IQ. These findings contribute to a better understanding of the cognitive mechanism in false memory of patients with schizophrenia, and are of practical relevance to the evaluation of memory reliability in patients with different intellectual levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Do pattern recognition skills transfer across sports? A preliminary analysis.

    PubMed

    Smeeton, Nicholas J; Ward, Paul; Williams, A Mark

    2004-02-01

    The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.

  10. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System

    PubMed Central

    Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin

    2016-01-01

    With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053

  11. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  12. Face Recognition Using Local Quantized Patterns and Gabor Filters

    NASA Astrophysics Data System (ADS)

    Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.

    2015-05-01

    The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.

  13. Comparative Evaluation of Pavement Crack Detection Using Kernel-Based Techniques in Asphalt Road Surfaces

    NASA Astrophysics Data System (ADS)

    Miraliakbari, A.; Sok, S.; Ouma, Y. O.; Hahn, M.

    2016-06-01

    With the increasing demand for the digital survey and acquisition of road pavement conditions, there is also the parallel growing need for the development of automated techniques for the analysis and evaluation of the actual road conditions. This is due in part to the resulting large volumes of road pavement data captured through digital surveys, and also to the requirements for rapid data processing and evaluations. In this study, the Canon 5D Mark II RGB camera with a resolution of 21 megapixels is used for the road pavement condition mapping. Even though many imaging and mapping sensors are available, the development of automated pavement distress detection, recognition and extraction systems for pavement condition is still a challenge. In order to detect and extract pavement cracks, a comparative evaluation of kernel-based segmentation methods comprising line filtering (LF), local binary pattern (LBP) and high-pass filtering (HPF) is carried out. While the LF and LBP methods are based on the principle of rotation-invariance for pattern matching, the HPF applies the same principle for filtering, but with a rotational invariant matrix. With respect to the processing speeds, HPF is fastest due to the fact that it is based on a single kernel, as compared to LF and LBP which are based on several kernels. Experiments with 20 sample images which contain linear, block and alligator cracks are carried out. On an average a completeness of distress extraction with values of 81.2%, 76.2% and 81.1% have been found for LF, HPF and LBP respectively.

  14. Speaker normalization for chinese vowel recognition in cochlear implants.

    PubMed

    Luo, Xin; Fu, Qian-Jie

    2005-07-01

    Because of the limited spectra-temporal resolution associated with cochlear implants, implant patients often have greater difficulty with multitalker speech recognition. The present study investigated whether multitalker speech recognition can be improved by applying speaker normalization techniques to cochlear implant speech processing. Multitalker Chinese vowel recognition was tested with normal-hearing Chinese-speaking subjects listening to a 4-channel cochlear implant simulation, with and without speaker normalization. For each subject, speaker normalization was referenced to the speaker that produced the best recognition performance under conditions without speaker normalization. To match the remaining speakers to this "optimal" output pattern, the overall frequency range of the analysis filter bank was adjusted for each speaker according to the ratio of the mean third formant frequency values between the specific speaker and the reference speaker. Results showed that speaker normalization provided a small but significant improvement in subjects' overall recognition performance. After speaker normalization, subjects' patterns of recognition performance across speakers changed, demonstrating the potential for speaker-dependent effects with the proposed normalization technique.

  15. Visual Scanning Patterns and Executive Function in Relation to Facial Emotion Recognition in Aging

    PubMed Central

    Circelli, Karishma S.; Clark, Uraina S.; Cronin-Golomb, Alice

    2012-01-01

    Objective The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. Methods We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. Results OA were less accurate than YA at identifying fear (p<.05, r=.44) and more accurate at identifying disgust (p<.05, r=.39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p’s<.05, r’s≥.38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. Conclusion We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition. PMID:22616800

  16. Review of integrated digital systems: evolution and adoption

    NASA Astrophysics Data System (ADS)

    Fritz, Lawrence W.

    The factors that are influencing the evolution of photogrammetric and remote sensing technology to transition into fully integrated digital systems are reviewed. These factors include societal pressures for new, more timely digital products from the Spatial Information Sciencesand the adoption of rapid technological advancements in digital processing hardware and software. Current major developments in leading government mapping agencies of the USA, such as the Digital Production System (DPS) modernization programme at the Defense Mapping Agency, and the Automated Nautical Charting System II (ANCS-II) programme and Integrated Digital Photogrammetric Facility (IDPF) at NOAA/National Ocean Service, illustrate the significant benefits to be realized. These programmes are examples of different levels of integrated systems that have been designed to produce digital products. They provide insights to the management complexities to be considered for very large integrated digital systems. In recognition of computer industry trends, a knowledge-based architecture for managing the complexity of the very large spatial information systems of the future is proposed.

  17. Recognition of surface lithologic and topographic patterns in southwest Colorado with ADP techniques

    NASA Technical Reports Server (NTRS)

    Melhorn, W. N.; Sinnock, S.

    1973-01-01

    Analysis of ERTS-1 multispectral data by automatic pattern recognition procedures is applicable toward grappling with current and future resource stresses by providing a means for refining existing geologic maps. The procedures used in the current analysis already yield encouraging results toward the eventual machine recognition of extensive surface lithologic and topographic patterns. Automatic mapping of a series of hogbacks, strike valleys, and alluvial surfaces along the northwest flank of the San Juan Basin in Colorado can be obtained by minimal man-machine interaction. The determination of causes for separable spectral signatures is dependent upon extensive correlation of micro- and macro field based ground truth observations and aircraft underflight data with the satellite data.

  18. Infrared Ship Classification Using A New Moment Pattern Recognition Concept

    NASA Astrophysics Data System (ADS)

    Casasent, David; Pauly, John; Fetterly, Donald

    1982-03-01

    An analysis of the statistics of the moments and the conventional invariant moments shows that the variance of the latter become quite large as the order of the moments and the degree of invariance increases. Moreso, the need to whiten the error volume increases with the order and degree, but so does the computational load associated with computing the whitening operator. We thus advance a new estimation approach to the use of moments in pattern recog-nition that overcomes these problems. This work is supported by experimental verification and demonstration on an infrared ship pattern recognition problem. The computational load associated with our new algorithm is also shown to be very low.

  19. Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements

    NASA Astrophysics Data System (ADS)

    Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo

    1999-05-01

    Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  20. Digital holographic-based cancellable biometric for personal authentication

    NASA Astrophysics Data System (ADS)

    Verma, Gaurav; Sinha, Aloka

    2016-05-01

    In this paper, we propose a new digital holographic-based cancellable biometric scheme for personal authentication and verification. The realization of cancellable biometric is presented by using an optoelectronic experimental approach, in which an optically recorded hologram of the fingerprint of a person is numerically reconstructed. Each reconstructed feature has its own perspective, which is utilized to generate user-specific fingerprint features by using a feature-extraction process. New representations of the user-specific fingerprint features can be obtained from the same hologram, by changing the reconstruction distance (d) by an amount Δd between the recording plane and the reconstruction plane. This parameter is the key to make the cancellable user-specific fingerprint features using a digital holographic technique, which allows us to choose different reconstruction distances when reissuing the user-specific fingerprint features in the event of compromise. We have shown theoretically that each user-specific fingerprint feature has a unique identity with a high discrimination ability, and the chances of a match between them are minimal. In this aspect, a recognition system has also been demonstrated using the fingerprint biometric of the enrolled person at a particular reconstruction distance. For the performance evaluation of a fingerprint recognition system—the false acceptance ratio, the false rejection ratio and the equal error rate are calculated using correlation. The obtained results show good discrimination ability between the genuine and the impostor populations with the highest recognition rate of 98.23%.

  1. The Influence of Emotion on Keyboard Typing: An Experimental Study Using Auditory Stimuli.

    PubMed

    Lee, Po-Ming; Tsui, Wei-Hsuan; Hsiao, Tzu-Chien

    2015-01-01

    In recent years, a novel approach for emotion recognition has been reported, which is by keystroke dynamics. The advantages of using this approach are that the data used is rather non-intrusive and easy to obtain. However, there were only limited investigations about the phenomenon itself in previous studies. Hence, this study aimed to examine the source of variance in keyboard typing patterns caused by emotions. A controlled experiment to collect subjects' keystroke data in different emotional states induced by International Affective Digitized Sounds (IADS) was conducted. Two-way Valence (3) x Arousal (3) ANOVAs was used to examine the collected dataset. The results of the experiment indicate that the effect of arousal is significant in keystroke duration (p < .05), keystroke latency (p < .01), but not in the accuracy rate of keyboard typing. The size of the emotional effect is small, compared to the individual variability. Our findings support the conclusion that the keystroke duration and latency are influenced by arousal. The finding about the size of the effect suggests that the accuracy rate of emotion recognition technology could be further improved if personalized models are utilized. Notably, the experiment was conducted using standard instruments and hence is expected to be highly reproducible.

  2. A comparative evaluation of supervised and unsupervised representation learning approaches for anaplastic medulloblastoma differentiation

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio

    2015-01-01

    Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.

  3. Foundations for a syntatic pattern recognition system for genomic DNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  4. The time course of individual face recognition: A pattern analysis of ERP signals.

    PubMed

    Nemrodov, Dan; Niemeier, Matthias; Mok, Jenkin Ngo Yin; Nestor, Adrian

    2016-05-15

    An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts

    ERIC Educational Resources Information Center

    Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-01-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…

  6. Designing Clinical Examples To Promote Pattern Recognition: Nursing Education-Based Research and Practical Applications.

    ERIC Educational Resources Information Center

    Welk, Dorette Sugg

    2002-01-01

    Sophomore nursing students (n=162) examined scenarios depicting typical and atypical signs of heart attack. Examples were structured to include essential and nonessential symptoms, enabling pattern recognition and improved performance. The method provides a way to prepare students to anticipate and recognize life-threatening situations. (Contains…

  7. PATTERN RECOGNITION APPROACH TO MEDICAL DIAGNOSIS,

    DTIC Science & Technology

    A sequential method of pattern recognition was used to recognize hyperthyroidism in a sample of 2219 patients being treated at the Straub Clinic in...the most prominent class features are selected. Thus, the symptoms which best distinguish hyperthyroidism are extracted at every step and the number of tests required to reach a diagnosis is reduced. (Author)

  8. Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.

    PubMed

    Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M

    2018-05-31

    Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.

  9. Classifier dependent feature preprocessing methods

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M., II; Peterson, Gilbert L.

    2008-04-01

    In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.

  10. Complex auditory behaviour emerges from simple reactive steering

    NASA Astrophysics Data System (ADS)

    Hedwig, Berthold; Poulet, James F. A.

    2004-08-01

    The recognition and localization of sound signals is fundamental to acoustic communication. Complex neural mechanisms are thought to underlie the processing of species-specific sound patterns even in animals with simple auditory pathways. In female crickets, which orient towards the male's calling song, current models propose pattern recognition mechanisms based on the temporal structure of the song. Furthermore, it is thought that localization is achieved by comparing the output of the left and right recognition networks, which then directs the female to the pattern that most closely resembles the species-specific song. Here we show, using a highly sensitive method for measuring the movements of female crickets, that when walking and flying each sound pulse of the communication signal releases a rapid steering response. Thus auditory orientation emerges from reactive motor responses to individual sound pulses. Although the reactive motor responses are not based on the song structure, a pattern recognition process may modulate the gain of the responses on a longer timescale. These findings are relevant to concepts of insect auditory behaviour and to the development of biologically inspired robots performing cricket-like auditory orientation.

  11. Digital Technology and Creative Arts Career Patterns in the UK Creative Economy

    ERIC Educational Resources Information Center

    Comunian, Roberta; Faggian, Alessandra; Jewell, Sarah

    2015-01-01

    In this article, we ask what role both digital and artistic human capital play in the creative economy by examining employment patterns of digital technology (DT) and creative arts and design (CAD) graduates. Using student micro-data collected by the Higher Education Statistical Agency (HESA) in the United Kingdom, we investigate the…

  12. Patterns of Physics Reasoning in Face-to-Face and Online Forum Collaboration around a Digital Game

    ERIC Educational Resources Information Center

    Van Eaton, Grant; Clark, Douglas B.; Smith, Blaine E.

    2015-01-01

    Students playing digital learning games in the classroom rarely play alone, even in digital games that are ostensibly "single-player" games. This study explores the patterns of physics reasoning that emerge in face-to-face and online forum collaboration while students play a physics-focused educational game in their classroom. We…

  13. Memory Distortion and Its Avoidance: An Event-Related Potentials Study on False Recognition and Correct Rejection

    PubMed Central

    Beato, Maria Soledad

    2016-01-01

    Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm. PMID:27711125

  14. Memory Distortion and Its Avoidance: An Event-Related Potentials Study on False Recognition and Correct Rejection.

    PubMed

    Cadavid, Sara; Beato, Maria Soledad

    2016-01-01

    Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm.

  15. Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.

    PubMed

    Gdeisat, Munther A; Burton, David R; Lalor, Michael J

    2002-09-10

    A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.

  16. Evaluation of Local Media Surveillance for Improved Disease Recognition and Monitoring in Global Hotspot Regions

    PubMed Central

    Schwind, Jessica S.; Wolking, David J.; Brownstein, John S.; Mazet, Jonna A. K.; Smith, Woutrina A.

    2014-01-01

    Digital disease detection tools are technologically sophisticated, but dependent on digital information, which for many areas suffering from high disease burdens is simply not an option. In areas where news is often reported in local media with no digital counterpart, integration of local news information with digital surveillance systems, such as HealthMap (Boston Children’s Hospital), is critical. Little research has been published in regards to the specific contribution of local health-related articles to digital surveillance systems. In response, the USAID PREDICT project implemented a local media surveillance (LMS) pilot study in partner countries to monitor disease events reported in print media. This research assessed the potential of LMS to enhance digital surveillance reach in five low- and middle-income countries. Over 16 weeks, select surveillance system attributes of LMS, such as simplicity, flexibility, acceptability, timeliness, and stability were evaluated to identify strengths and weaknesses in the surveillance method. Findings revealed that LMS filled gaps in digital surveillance network coverage by contributing valuable localized information on disease events to the global HealthMap database. A total of 87 health events were reported through the LMS pilot in the 16-week monitoring period, including 71 unique reports not found by the HealthMap digital detection tool. Furthermore, HealthMap identified an additional 236 health events outside of LMS. It was also observed that belief in the importance of the project and proper source selection from the participants was crucial to the success of this method. The timely identification of disease outbreaks near points of emergence and the recognition of risk factors associated with disease occurrence continue to be important components of any comprehensive surveillance system for monitoring disease activity across populations. The LMS method, with its minimal resource commitment, could be one tool used to address the information gaps seen in global ‘hot spot’ regions. PMID:25333618

  17. High confidence in falsely recognizing prototypical faces.

    PubMed

    Sampaio, Cristina; Reinke, Victoria; Mathews, Jeffrey; Swart, Alexandra; Wallinger, Stephen

    2018-06-01

    We applied a metacognitive approach to investigate confidence in recognition of prototypical faces. Participants were presented with sets of faces constructed digitally as deviations from prototype/base faces. Participants were then tested with a simple recognition task (Experiment 1) or a multiple-choice task (Experiment 2) for old and new items plus new prototypes, and they showed a high rate of confident false alarms to the prototypes. Confidence and accuracy relationship in this face recognition paradigm was found to be positive for standard items but negative for the prototypes; thus, it was contingent on the nature of the items used. The data have implications for lineups that employ match-to-suspect strategies.

  18. Talker variability in audio-visual speech perception

    PubMed Central

    Heald, Shannon L. M.; Nusbaum, Howard C.

    2014-01-01

    A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker’s face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker’s face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker’s face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred. PMID:25076919

  19. Talker variability in audio-visual speech perception.

    PubMed

    Heald, Shannon L M; Nusbaum, Howard C

    2014-01-01

    A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker's face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker's face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker's face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred.

  20. WNN 92; Proceedings of the 3rd Workshop on Neural Networks: Academic/Industrial/NASA/Defense, Auburn Univ., AL, Feb. 10-12, 1992 and South Shore Harbour, TX, Nov. 4-6, 1992

    NASA Technical Reports Server (NTRS)

    Padgett, Mary L. (Editor)

    1993-01-01

    The present conference discusses such neural networks (NN) related topics as their current development status, NN architectures, NN learning rules, NN optimization methods, NN temporal models, NN control methods, NN pattern recognition systems and applications, biological and biomedical applications of NNs, VLSI design techniques for NNs, NN systems simulation, fuzzy logic, and genetic algorithms. Attention is given to missileborne integrated NNs, adaptive-mixture NNs, implementable learning rules, an NN simulator for travelling salesman problem solutions, similarity-based forecasting, NN control of hypersonic aircraft takeoff, NN control of the Space Shuttle Arm, an adaptive NN robot manipulator controller, a synthetic approach to digital filtering, NNs for speech analysis, adaptive spline networks, an anticipatory fuzzy logic controller, and encoding operations for fuzzy associative memories.

Top