A Digital Phase Lock Loop for an External Cavity Diode Laser
NASA Astrophysics Data System (ADS)
Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang
2011-08-01
A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.
Precision digital pulse phase generator
McEwan, T.E.
1996-10-08
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.
Precision digital pulse phase generator
McEwan, Thomas E.
1996-01-01
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.
NASA Technical Reports Server (NTRS)
Simon, M. K.
1980-01-01
A technique is presented for generating phase plane plots on a digital computer which circumvents the difficulties associated with more traditional methods of numerical solving nonlinear differential equations. In particular, the nonlinear differential equation of operation is formulated.
NASA Astrophysics Data System (ADS)
Pattini, F.; Porzio Giusto, P.
The design criteria and performance of the master clock (MCK) generator and the unique word (UW) detector are examined. A narrow band phase lock loop is used for the onboard MCK generator and it is implemented with an all-digital scheme that employs a D-type flip flop as the phase detector. The performance of the MCK generator is analyzed with a computer program which considers phase offset of the digital phase comparator. The characteristics and capabilities of the UW detector which provides strobe signals for the MCK generator and synchronization signals for the onboard switching matrix are described.
Compression of computer generated phase-shifting hologram sequence using AVC and HEVC
NASA Astrophysics Data System (ADS)
Xing, Yafei; Pesquet-Popescu, Béatrice; Dufaux, Frederic
2013-09-01
With the capability of achieving twice the compression ratio of Advanced Video Coding (AVC) with similar reconstruction quality, High Efficiency Video Coding (HEVC) is expected to become the newleading technique of video coding. In order to reduce the storage and transmission burden of digital holograms, in this paper we propose to use HEVC for compressing the phase-shifting digital hologram sequences (PSDHS). By simulating phase-shifting digital holography (PSDH) interferometry, interference patterns between illuminated three dimensional( 3D) virtual objects and the stepwise phase changed reference wave are generated as digital holograms. The hologram sequences are obtained by the movement of the virtual objects and compressed by AVC and HEVC. The experimental results show that AVC and HEVC are efficient to compress PSDHS, with HEVC giving better performance. Good compression rate and reconstruction quality can be obtained with bitrate above 15000kbps.
Calibration Test Set for a Phase-Comparison Digital Tracker
NASA Technical Reports Server (NTRS)
Boas, Amy; Li, Samuel; McMaster, Robert
2007-01-01
An apparatus that generates four signals at a frequency of 7.1 GHz having precisely controlled relative phases and equal amplitudes has been designed and built. This apparatus is intended mainly for use in computer-controlled automated calibration and testing of a phase-comparison digital tracker (PCDT) that measures the relative phases of replicas of the same X-band signal received by four antenna elements in an array. (The relative direction of incidence of the signal on the array is then computed from the relative phases.) The present apparatus can also be used to generate precisely phased signals for steering a beam transmitted from a phased antenna array. The apparatus (see figure) includes a 7.1-GHz signal generator, the output of which is fed to a four-way splitter. Each of the four splitter outputs is attenuated by 10 dB and fed as input to a vector modulator, wherein DC bias voltages are used to control the in-phase (I) and quadrature (Q) signal components. The bias voltages are generated by digital-to-analog- converter circuits on a control board that receives its digital control input from a computer running a LabVIEW program. The outputs of the vector modulators are further attenuated by 10 dB, then presented at high-grade radio-frequency connectors. The attenuation reduces the effects of changing mismatch and reflections. The apparatus was calibrated in a process in which the bias voltages were first stepped through all possible IQ settings. Then in a reverse interpolation performed by use of MATLAB software, a lookup table containing 3,600 IQ settings, representing equal amplitude and phase increments of 0.1 , was created for each vector modulator. During operation of the apparatus, these lookup tables are used in calibrating the PCDT.
Subpicosecond Optical Digital Computation Using Conjugate Parametric Generators
1989-03-31
Using Phase Conjugate Farametric Generators ..... 12. PERSONAL AUTHOR(S) Alfano, Robert- Eichmann . George; Dorsinville. Roger! Li. Yao 13a. TYPE OF...conjugation-based optical residue arithmetic processor," Y. Li, G. Eichmann , R. Dorsinville, and R. R. Alfano, Opt. Lett. 13, (1988). [2] "Parallel ultrafast...optical digital and symbolic computation via optical phase conjugation," Y. Li, G. Eichmann , R. Dorsinville, Appl. Opt. 27, 2025 (1988). [3
A SiGe Quadrature Pulse Modulator for Superconducting Qubit State Manipulation
NASA Astrophysics Data System (ADS)
Kwende, Randy; Bardin, Joseph
Manipulation of the quantum states of microwave superconducting qubits typically requires the generation of coherent modulated microwave pulses. While many off-the-shelf instruments are capable of generating such pulses, a more integrated approach is likely required if fault-tolerant quantum computing architectures are to be implemented. In this work, we present progress towards a pulse generator specifically designed to drive superconducing qubits. The device is implemented in a commercial silicon process and has been designed with energy-efficiency and scalability in mind. Pulse generation is carried out using a unique approach in which modulation is applied directly to the in-phase and quadrature components of a carrier signal in the 1-10 GHz frequency range through a unique digital-analog conversion process designed specifically for this application. The prototype pulse generator can be digitally programmed and supports sequencing of pulses with independent amplitude and phase waveforms. These amplitude and phase waveforms can be digitally programmed through a serial programming interface. Detailed performance of the pulse generator at room temperature and 4 K will be presented.
Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.
Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W
2014-01-27
We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.
In-line digital holography with phase-shifting Greek-ladder sieves
NASA Astrophysics Data System (ADS)
Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang
2018-04-01
Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.
High-speed single-pixel digital holography
NASA Astrophysics Data System (ADS)
González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús
2017-06-01
The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.
A high performance DAC /DDS daughter module for the RHIC LLRF platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, T.; Harvey, M.; Narayan, G.
The RHIC LLRF upgrade is a flexible, modular system. Output signals are generated by a custom designed XMC card with 4 high speed digital to analog (DAC) converters interfaced to a high performance field programmable gate array (FPGA). This paper discusses the hardware details of the XMC DAC board as well as the implementation of a low noise rf synthesizer with digital IQ modulation. This synthesizer also provides injection phase cogging and frequency hop rebucketing capabilities. A new modular RHIC LLRF system was recently designed and commissioned based on custom designed XMC cards. As part of that effort a highmore » speed, four channel DAC board was designed. The board uses Maxim MAX5891 16 bit DACs with a maximum update rate of 600 Msps. Since this module is intended to be used for many different systems throughout the Collider Accelerator complex, it was designed to be as generic as possible. One major application of this DAC card is to implement digital synthesizers to provide drive signals to the various cavities at RHIC. Since RHIC is a storage ring with stores that typically last many hours, extremely low RF noise is a critical requirement. Synchrotron frequencies at RHIC range from a few hertz to several hundred hertz depending on the species and point in the acceleration cycle so close in phase noise is a major concern. The RHIC LLRF system uses the Update Link, a deterministic, high speed data link that broadcasts the revolution frequency and the synchronous phase angle. The digital synthesizers use this data to generate a properly phased analog drive signal. The synthesizers must also provide smooth phase shifts for cogging and support frequency shift rebucketing. One additional feature implemented in the FPGA is a digital waveform generator (WFG) that generates I and Q data pairs based on a user selected amplitude and phase profile as a function of time.« less
Depth map generation using a single image sensor with phase masks.
Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki
2016-06-13
Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors.
NASA Technical Reports Server (NTRS)
Danielson, J. D. Sheldon (Inventor)
2006-01-01
An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.
All-digital GPS receiver mechanization
NASA Astrophysics Data System (ADS)
Ould, P. C.; van Wechel, R. J.
The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.
Deformation analysis of MEMS structures by modified digital moiré methods
NASA Astrophysics Data System (ADS)
Liu, Zhanwei; Lou, Xinhao; Gao, Jianxin
2010-11-01
Quantitative deformation analysis of micro-fabricated electromechanical systems is of importance for the design and functional control of microsystems. In this paper, two modified digital moiré processing methods, Gaussian blurring algorithm combined with digital phase shifting and geometrical phase analysis (GPA) technique based on digital moiré method, are developed to quantitatively analyse the deformation behaviour of micro-electro-mechanical system (MEMS) structures. Measuring principles and experimental procedures of the two methods are described in detail. A digital moiré fringe pattern is generated by superimposing a specimen grating etched directly on a microstructure surface with a digital reference grating (DRG). Most of the grating noise is removed from the digital moiré fringes, which enables the phase distribution of the moiré fringes to be obtained directly. Strain measurement result of a MEMS structure demonstrates the feasibility of the two methods.
Sensing device and method for measuring emission time delay during irradiation of targeted samples
NASA Technical Reports Server (NTRS)
Danielson, J. D. Sheldon (Inventor)
2000-01-01
An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.
Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.
Open-loop digital frequency multiplier
NASA Technical Reports Server (NTRS)
Moore, R. C.
1977-01-01
Monostable multivibrator is implemented by using digital integrated circuits where multiplier constant is too large for conventional phase-locked-loop integrated circuit. A 400 Hz clock is generated by divide-by-N counter from 1 Hz timing reference.
Response of an all digital phase-locked loop
NASA Technical Reports Server (NTRS)
Garodnick, J.; Greco, J.; Schilling, D. L.
1974-01-01
An all digital phase-locked loop (DPLL) is designed, analyzed, and tested. Three specific configurations are considered, generating first, second, and third order DPLL's; and it is found, using a computer simulation of a noise spike, and verified experimentally, that of these configurations the second-order system is optimum from the standpoint of threshold extension. This substantiates results obtained for analog PLL's.
Synchronous radio-frequency FM signal generator using direct digital synthesizers
NASA Astrophysics Data System (ADS)
Arablu, Masoud; Kafashi, Sajad; Smith, Stuart T.
2018-04-01
A novel Radio-Frequency Frequency-Modulated (RF-FM) signal generation method is introduced and a prototype circuit developed to evaluate its functionality and performance. The RF-FM signal generator uses a modulated, voltage-controlled time delay to correspondingly modulate the phase of a 10 MHz sinusoidal reference signal. This modulated reference signal is, in turn, used to clock a Direct Digital Synthesizer (DDS) circuit resulting in an FM signal at its output. The modulating signal that is input to the voltage-controlled time delay circuit is generated by another DDS that is synchronously clocked by the same 10 MHz sine wave signal before modulation. As a consequence, all of the digital components are timed from a single sine wave oscillator that forms the basis of all timing. The resultant output signal comprises a center, or carrier, frequency plus a series of phase-synchronized sidebands having exact integer harmonic frequency separation. In this study, carrier frequencies ranging from 10 MHz to 70 MHz are generated with modulation frequencies ranging from 10 kHz to 300 kHz. The captured spectra show that the FM signal characteristics, amplitude and phase, of the sidebands and the modulation depth are consistent with the Jacobi-Anger expansion for modulated harmonic signals.
Multi-speed multi-phase resolver converter
NASA Technical Reports Server (NTRS)
Alhorn, Dean (Inventor); Howard, David (Inventor)
1994-01-01
A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.
Multi-speed multi-phase resolver converter
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Howard, David E. (Inventor)
1995-01-01
A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.
Generating nonlinear FM chirp radar signals by multiple integrations
Doerry, Armin W [Albuquerque, NM
2011-02-01
A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.
NASA Astrophysics Data System (ADS)
Federico, Alejandro; Kaufmann, Guillermo H.
2004-08-01
We evaluate the application of the Wigner-Ville distribution (WVD) to measure phase gradient maps in digital speckle pattern interferometry (DSPI), when the generated correlation fringes present phase discontinuities. The performance of the WVD method is evaluated using computer-simulated fringes. The influence of the filtering process to smooth DSPI fringes and additional drawbacks that emerge when this method is applied are discussed. A comparison with the conventional method based on the continuous wavelet transform in the stationary phase approximation is also presented.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
Optical analog-to-digital converter
Vawter, G Allen [Corrales, NM; Raring, James [Goleta, CA; Skogen, Erik J [Albuquerque, NM
2009-07-21
An optical analog-to-digital converter (ADC) is disclosed which converts an input optical analog signal to an output optical digital signal at a sampling rate defined by a sampling optical signal. Each bit of the digital representation is separately determined using an optical waveguide interferometer and an optical thresholding element. The interferometer uses the optical analog signal and the sampling optical signal to generate a sinusoidally-varying output signal using cross-phase-modulation (XPM) or a photocurrent generated from the optical analog signal. The sinusoidally-varying output signal is then digitized by the thresholding element, which includes a saturable absorber or at least one semiconductor optical amplifier, to form the optical digital signal which can be output either in parallel or serially.
One way Doppler Extractor. Volume 2: Digital VCO technique
NASA Technical Reports Server (NTRS)
Nossen, E. J.; Starner, E. R.
1974-01-01
A feasibility analysis and trade-offs for a one-way Doppler extractor using digital VCO techniques is presented. The method of Doppler measurement involves the use of a digital phase lock loop; once this loop is locked to the incoming signal, the precise frequency and hence the Doppler component can be determined directly from the contents of the digital control register. The only serious error source is due to internally generated noise. Techniques are presented for minimizing this error source and achieving an accuracy of 0.01 Hz in a one second averaging period. A number of digitally controlled oscillators were analyzed from a performance and complexity point of view. The most promising technique uses an arithmetic synthesizer as a digital waveform generator.
Fully digital programmable optical frequency comb generation and application.
Yan, Xianglei; Zou, Xihua; Pan, Wei; Yan, Lianshan; Azaña, José
2018-01-15
We propose a fully digital programmable optical frequency comb (OFC) generation scheme based on binary phase-sampling modulation, wherein an optimized bit sequence is applied to phase modulate a narrow-linewidth light wave. Programming the bit sequence enables us to tune both the comb spacing and comb-line number (i.e., number of comb lines). The programmable OFCs are also characterized by ultra-flat spectral envelope, uniform temporal envelope, and stable bias-free setup. Target OFCs are digitally programmed to have 19, 39, 61, 81, 101, or 201 comb lines and to have a 100, 50, 20, 10, 5, or 1 MHz comb spacing. As a demonstration, a scanning-free temperature sensing system using a proposed OFC with 1001 comb lines was also implemented with a sensitivity of 0.89°C/MHz.
3D motion picture of transparent gas flow by parallel phase-shifting digital holography
NASA Astrophysics Data System (ADS)
Awatsuji, Yasuhiro; Fukuda, Takahito; Wang, Yexin; Xia, Peng; Kakue, Takashi; Nishio, Kenzo; Matoba, Osamu
2018-03-01
Parallel phase-shifting digital holography is a technique capable of recording three-dimensional (3D) motion picture of dynamic object, quantitatively. This technique can record single hologram of an object with an image sensor having a phase-shift array device and reconstructs the instantaneous 3D image of the object with a computer. In this technique, a single hologram in which the multiple holograms required for phase-shifting digital holography are multiplexed by using space-division multiplexing technique pixel by pixel. We demonstrate 3D motion picture of dynamic and transparent gas flow recorded and reconstructed by the technique. A compressed air duster was used to generate the gas flow. A motion picture of the hologram of the gas flow was recorded at 180,000 frames/s by parallel phase-shifting digital holography. The phase motion picture of the gas flow was reconstructed from the motion picture of the hologram. The Abel inversion was applied to the phase motion picture and then the 3D motion picture of the gas flow was obtained.
NASA Astrophysics Data System (ADS)
DePriest, Christopher M.; Abeles, Joseph H.; Braun, Alan; Delfyett, Peter J., Jr.
2000-07-01
External-cavity, actively-modelocked semiconductor diode lasers (SDLs) have proven to be attractive candidates for forming the backbone of next-generation analog-to-digital converters (ADCs), which are currently being developed to sample signals at repetition rates exceeding several GHz with up to 12 bits of digital resolution. Modelocked SDLs are capable of producing waveform-sampling pulse trains with very low temporal jitter (phase noise) and very small fluctuations in pulse height (amplitude noise)--two basic conditions that must be met in order for high-speed ADCs to achieve projected design goals. Single-wavelength modelocked operation (at nominal repetition frequencies of 400 MHz) has produced pulse trains with very low amplitude noise (approximately 0.08%), and the implementation of a phase- locked-loop has been effective in reducing the system's low- frequency phase noise (RMS timing jitter for offset frequencies between 10 Hz and 10 kHz has been reduced from 240 fs to 27 fs).
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Strum, R.; Stiles, D.
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
Liu, Y.; Strum, R.; Stiles, D.; ...
2017-11-20
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital PCM bit synchronizer and detector
NASA Astrophysics Data System (ADS)
Moghazy, A. E.; Maral, G.; Blanchard, A.
1980-08-01
A theoretical analysis of a digital self-bit synchronizer and detector is presented and supported by the implementation of an experimental model that utilizes standard TTL logic circuits. This synchronizer is based on the generation of spectral line components by nonlinear filtering of the received bit stream, and extracting the line by a digital phase-locked loop (DPLL). The extracted reference signal instructs a digital matched filter (DMF) data detector. This realization features a short acquisition time and an all-digital structure.
NASA Astrophysics Data System (ADS)
Lino, A. C. L.; Dal Fabbro, I. M.
2008-04-01
The conception of a tridimensional digital model of solid figures and plant organs started from topographic survey of virtual surfaces [1], followed by topographic survey of solid figures [2], fruit surface survey [3] and finally the generation of a 3D digital model [4] as presented by [1]. In this research work, i.e. step number [4] tested objects included cylinders, cubes, spheres and fruits. A Ronchi grid named G1 was generated in a PC, from which other grids referred as G2, G3, and G4 were set out of phase by 1/4, 1/2 and 3/4 of period from G1. Grid G1 was then projected onto the samples surface. Projected grid was named Gd. The difference between Gd and G1 followed by filtration generated de moiré fringes M1 and so on, obtaining the fringes M2, M3 and M4 from Gd. Fringes are out of phase one from each other by 1/4 of period, which were processed by the Rising Sun Moiré software to produce packed phase and further on, the unpacked fringes. Tested object was placed on a goniometer and rotate to generate four surfaces topography. These four surveyed surfaces were assembled by means of a SCILAB software, obtaining a three column matrix, corresponding to the object coordinates xi, also having elevation values and coordinates corrected as well. The work includes conclusions on the reliability of the proposed method as well as the setup simplicity and of low cost.
Digital EPR with an arbitrary waveform generator and direct detection at the carrier frequency
Tseitlin, Mark; Quine, Richard W.; Rinard, George A.; Eaton, Sandra S.; Eaton, Gareth R.
2011-01-01
A digital EPR spectrometer was constructed by replacing the traditional bridge with an arbitrary waveform generator (AWG) to produce excitation patterns and a high-speed digitizer for direct detection of the spin system response at the carrier frequency. Digital down-conversion produced baseband signals in quadrature with very precise orthogonality. Real-time resonator tuning was performed by monitoring the Fourier transforms of signals reflected from the resonator during frequency sweeps generated by the AWG. The capabilities of the system were demonstrated by rapid magnetic field scans at 256 MHz carrier frequency, and FID and spin echo experiments at 1 and 10 GHz carrier frequencies. For the rapid scan experiments the leakage through a cross-loop resonator was compensated by adjusting the amplitude and phase of a sinusoid at the carrier frequency that was generated with another AWG channel. PMID:21968420
Correction of I/Q channel errors without calibration
Doerry, Armin W.; Tise, Bertice L.
2002-01-01
A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.
Harmonic arbitrary waveform generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Brock Franklin
2017-11-28
High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrarymore » waveform.« less
Single-shot digital holography by use of the fractional Talbot effect.
Martínez-León, Lluís; Araiza-E, María; Javidi, Bahram; Andrés, Pedro; Climent, Vicent; Lancis, Jesús; Tajahuerce, Enrique
2009-07-20
We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally reconstructed from the digital hologram. Both computer simulations and experimental results are presented.
Brushless DC motor control system responsive to control signals generated by a computer or the like
NASA Technical Reports Server (NTRS)
Packard, D. T. (Inventor)
1985-01-01
A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.
Brushless DC motor control system responsive to control signals generated by a computer or the like
NASA Technical Reports Server (NTRS)
Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)
1987-01-01
A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.
NASA Astrophysics Data System (ADS)
Liu, Xiang; Beckwitt, Kale; Wise, Frank
2000-05-01
We demonstrate theoretically and experimentally that spatiotemporal solitons can be generated through noncollinear second-harmonic generation. The resulting Y geometry could be used to implement an optical AND gate with ultrafast, high-contrast operation but without sensitivity to the phases of the input pulses.
3D mapping of breast surface using digital fringe projection
NASA Astrophysics Data System (ADS)
Vairavan, Rajendaran; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Leng, Lai Siang; Wan Norhaimi, Wan Mokhzani; Marimuthu, Rajeswaran; Abdullah, Othman; Kirtsaeng, Supap
2017-02-01
Optical sensing technique has inherited non-contact nature for generating 3D surface mapping where its application ranges from MEMS component characterization, corrosion analysis, and vibration analysis. In particular, the digital fringe projection is utilized for 3D mapping of objects through the illumination of structured light for medical application extending from oral dental measurements, lower back deformation analysis, monitoring of scoliosis and 3D face reconstruction for biometric identification. However, the usage of digital fringe projection for 3D mapping of human breast is very minimal. Thus, this paper addresses the application of digital fringe projection for 3D mapping of breast surface based on total non-contact nature. In this work, phase shift method is utilized to perform the 3D mapping. The phase shifted fringe pattern are displayed through a digital projector onto the breast surface, and the distorted fringe patterns are captured by a CCD camera. A phase map is produced, and phase unwrapping was executed to obtain the 3D surface mapping of the breast. The surface height profile from 3D fringe projection was compared with the surface height measured by a direct method using electronic digital vernier caliper. Preliminary results showed the feasibility of digital fringe projection in providing a 3D mapping of breast and its application could be further extended for breast carcinoma detection.
BPSK Demodulation Using Digital Signal Processing
NASA Technical Reports Server (NTRS)
Garcia, Thomas R.
1996-01-01
A digital communications signal is a sinusoidal waveform that is modified by a binary (digital) information signal. The sinusoidal waveform is called the carrier. The carrier may be modified in amplitude, frequency, phase, or a combination of these. In this project a binary phase shift keyed (BPSK) signal is the communication signal. In a BPSK signal the phase of the carrier is set to one of two states, 180 degrees apart, by a binary (i.e., 1 or 0) information signal. A digital signal is a sampled version of a "real world" time continuous signal. The digital signal is generated by sampling the continuous signal at discrete points in time. The rate at which the signal is sampled is called the sampling rate (f(s)). The device that performs this operation is called an analog-to-digital (A/D) converter or a digitizer. The digital signal is composed of the sequence of individual values of the sampled BPSK signal. Digital signal processing (DSP) is the modification of the digital signal by mathematical operations. A device that performs this processing is called a digital signal processor. After processing, the digital signal may then be converted back to an analog signal using a digital-to-analog (D/A) converter. The goal of this project is to develop a system that will recover the digital information from a BPSK signal using DSP techniques. The project is broken down into the following steps: (1) Development of the algorithms required to demodulate the BPSK signal; (2) Simulation of the system; and (3) Implementation a BPSK receiver using digital signal processing hardware.
MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications
NASA Technical Reports Server (NTRS)
Mysoor, Narayan R.; Ali, Fazal
1991-01-01
The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.
Time-dependent phase error correction using digital waveform synthesis
Doerry, Armin W.; Buskirk, Stephen
2017-10-10
The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.
Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device.
Lerner, Vitaly; Shwa, David; Drori, Yehonathan; Katz, Nadav
2012-12-01
Laguerre-Gaussian (LG) beams are used in many research fields, including microscopy, laser cavity modes, and optical tweezing. We developed a holographic method to generate pure LG modes (amplitude and phase) with a binary amplitude-only digital micromirror device (DMD) as an alternative to the commonly used phase-only spatial light modulator. The advantages of such a DMD include very high frame rates, low cost, and high damage thresholds. We have shown that the propagating shaped beams are self-similar and their phase fronts are of helical shape as demanded. We estimate the purity of the resultant beams to be above 94%.
NASA Astrophysics Data System (ADS)
Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin
2018-06-01
We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.
Programmable rate modem utilizing digital signal processing techniques
NASA Technical Reports Server (NTRS)
Bunya, George K.; Wallace, Robert L.
1989-01-01
The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery.
NASA Astrophysics Data System (ADS)
Kemper, Björn; Kastl, Lena; Schnekenburger, Jürgen; Ketelhut, Steffi
2018-02-01
Main restrictions of using laser light in digital holographic microscopy (DHM) are coherence induced noise and parasitic reflections in the experimental setup which limit resolution and measurement accuracy. We explored, if coherence properties of partial coherent light sources can be generated synthetically utilizing spectrally tunable lasers. The concept of the method is demonstrated by label-free quantitative phase imaging of living pancreatic tumor cells and utilizing an experimental configuration including a commercial microscope and a laser source with a broad tunable spectral range of more than 200 nm.
Digital second-order phase-locked loop
NASA Technical Reports Server (NTRS)
Holes, J. K.; Carl, C.; Tegnelia, C. R. (Inventor)
1973-01-01
A digital second-order phase-locked loop is disclosed in which a counter driven by a stable clock pulse source is used to generate a reference waveform of the same frequency as an incoming waveform, and to sample the incoming waveform at zero-crossover points. The samples are converted to digital form and accumulated over M cycles, reversing the sign of every second sample. After every M cycles, the accumulated value of samples is hard limited to a value SGN = + or - 1 and multiplied by a value delta sub 1 equal to a number of n sub 1 of fractions of a cycle. An error signal is used to advance or retard the counter according to the sign of the sum by an amount equal to the sum.
Method and apparatus for spur-reduced digital sinusoid synthesis
NASA Technical Reports Server (NTRS)
Zimmerman, George A. (Inventor); Flanagan, Michael J. (Inventor)
1995-01-01
A technique for reducing the spurious signal content in digital sinusoid synthesis is presented. Spur reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spurs. Effects of periodic dither similar to that produced by a pseudo-noise (PN) generator are analyzed. This phase dithering method provides a spur reduction of 6(M + 1) dB per phase bit when the dither consists of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid look-up tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse-resolution, highly-linear digital-to-analog converters (DAC's) to obtain spur performance limited by the DAC linearity rather than its resolution.
NASA Astrophysics Data System (ADS)
Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.
2018-05-01
A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.
NASA Astrophysics Data System (ADS)
Wang, Zhi-peng; Zhang, Shuai; Liu, Hong-zhao; Qin, Yi
2014-12-01
Based on phase retrieval algorithm and QR code, a new optical encryption technology that only needs to record one intensity distribution is proposed. In this encryption process, firstly, the QR code is generated from the information to be encrypted; and then the generated QR code is placed in the input plane of 4-f system to have a double random phase encryption. For only one intensity distribution in the output plane is recorded as the ciphertext, the encryption process is greatly simplified. In the decryption process, the corresponding QR code is retrieved using phase retrieval algorithm. A priori information about QR code is used as support constraint in the input plane, which helps solve the stagnation problem. The original information can be recovered without distortion by scanning the QR code. The encryption process can be implemented either optically or digitally, and the decryption process uses digital method. In addition, the security of the proposed optical encryption technology is analyzed. Theoretical analysis and computer simulations show that this optical encryption system is invulnerable to various attacks, and suitable for harsh transmission conditions.
Physical Configuration of the Next Generation Home Network
NASA Astrophysics Data System (ADS)
Terada, Shohei; Kakishima, Yu; Hanawa, Dai; Oguchi, Kimio
The number of broadband users is rapidly increasing worldwide. Japan already has over 10 million FTTH users. Another trend is the rapid digitalization of home electrical equipment e. g. digital cameras and hard disc recorders. These trends will encourage the emergence of the next generation home network. In this paper, we introduce the next generation home network image and describe the five domains into which home devices can be classified. We then clarify the optimum medium with which to configure the network given the requirements imposed by the home environment. Wiring cable lengths for three network topologies are calculated. The results gained from the next generation home network implemented on the first phase testbed are shown. Finally, our conclusions are given.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Meng, Zhou; Hu, Zhengliang; Yang, Huayong; Song, Zhangqi; Hu, Yongming
2008-12-01
A polarization maintaining fiber (PMF) magnetic field sensor based on a digital phase generated carrier (PGC) technology is presented. A magnetic sensor constructed with two magnetostrictive strips attached on the sensing fiber is joined in the sensing arm of a fiber Michelson interferometer. The fiber optic interferometric system is made of all PMF, which inhibits the polarization-induced signal fading. The light source is a fiber laser which can be modulated directly. The PGC metnod is used to demodulate magnetic field signal avoiding phase induced interferometric signal fading, and ensure the sensing partto be all fiber structure. A fiber optic magnetic field sensor with appreciate size for the fiber optic hydrophone towed array is obtained, which can be used to sense the enviromental magnetic field along the sensing direction.This sensor is a good choice for the directional angle measurement through sensing the Earth magnetic field in the array shape measurement of a fiber optic hydrophone towed array.
Precision electronic speed controller for an alternating-current motor
Bolie, V.W.
A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.
Spectral estimation of received phase in the presence of amplitude scintillation
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Brown, D. H.; Hurd, W. J.
1988-01-01
A technique is demonstrated for obtaining the spectral parameters of the received carrier phase in the presence of carrier amplitude scintillation, by means of a digital phased locked loop. Since the random amplitude fluctuations generate time-varying loop characteristics, straightforward processing of the phase detector output does not provide accurate results. The method developed here performs a time-varying inverse filtering operation on the corrupted observables, thus recovering the original phase process and enabling accurate estimation of its underlying parameters.
NASA Astrophysics Data System (ADS)
Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.
2016-06-01
We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keersmaekers, Lissa; Keustermans, William, E-mail: william.keustermans@uantwerpen.be; De Greef, Daniël
We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. Wemore » show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.« less
Digital approach to stabilizing optical frequency combs and beat notes of CW lasers
NASA Astrophysics Data System (ADS)
Čížek, Martin; Číp, Ondřej; Å míd, Radek; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef
2013-10-01
In cases when it is necessary to lock optical frequencies generated by an optical frequency comb to a precise radio frequency (RF) standard (GPS-disciplined oscillator, H-maser, etc.) the usual practice is to implement phase and frequency-locked loops. Such system takes the signal generated by the RF standard (usually 10 MHz or 100 MHz) as a reference and stabilizes the repetition and offset frequencies of the comb contained in the RF output of the f-2f interferometer. These control loops are usually built around analog electronic circuits processing the output signals from photo detectors. This results in transferring the stability of the standard from RF to optical frequency domain. The presented work describes a different approach based on digital signal processing and software-defined radio algorithms used for processing the f-2f and beat-note signals. Several applications of digital phase and frequency locks to a RF standard are demonstrated: the repetition (frep) and offset frequency (fceo) of the comb, and the frequency of the beat note between a CW laser source and a single component of the optical frequency comb spectrum.
Digital implementation of a laser frequency stabilisation technique in the telecommunications band
NASA Astrophysics Data System (ADS)
Jivan, Pritesh; van Brakel, Adriaan; Manuel, Rodolfo Martínez; Grobler, Michael
2016-02-01
Laser frequency stabilisation in the telecommunications band was realised using the Pound-Drever-Hall (PDH) error signal. The transmission spectrum of the Fabry-Perot cavity was used as opposed to the traditionally used reflected spectrum. A comparison was done using an analogue as well as a digitally implemented system. This study forms part of an initial step towards developing a portable optical time and frequency standard. The frequency discriminator used in the experimental setup was a fibre-based Fabry-Perot etalon. The phase sensitive system made use of the optical heterodyne technique to detect changes in the phase of the system. A lock-in amplifier was used to filter and mix the input signals to generate the error signal. This error signal may then be used to generate a control signal via a PID controller. An error signal was realised at a wavelength of 1556 nm which correlates to an optical frequency of 1.926 THz. An implementation of the analogue PDH technique yielded an error signal with a bandwidth of 6.134 GHz, while a digital implementation yielded a bandwidth of 5.774 GHz.
Digital Beamforming Scatterometer
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul
2009-01-01
This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics
NASA Astrophysics Data System (ADS)
Jelinek, H. J.
1986-01-01
This is the Final Report of Electronic Design Associates on its Phase I SBIR project. The purpose of this project is to develop a method for correcting helium speech, as experienced in diver-surface communication. The goal of the Phase I study was to design, prototype, and evaluate a real time helium speech corrector system based upon digital signal processing techniques. The general approach was to develop hardware (an IBM PC board) to digitize helium speech and software (a LAMBDA computer based simulation) to translate the speech. As planned in the study proposal, this initial prototype may now be used to assess expected performance from a self contained real time system which uses an identical algorithm. The Final Report details the work carried out to produce the prototype system. Four major project tasks were: a signal processing scheme for converting helium speech to normal sounding speech was generated. The signal processing scheme was simulated on a general purpose (LAMDA) computer. Actual helium speech was supplied to the simulation and the converted speech was generated. An IBM-PC based 14 bit data Input/Output board was designed and built. A bibliography of references on speech processing was generated.
Nonlinearity response correction in phase-shifting deflectometry
NASA Astrophysics Data System (ADS)
Nguyen, Manh The; Kang, Pilseong; Ghim, Young-Sik; Rhee, Hyug-Gyo
2018-04-01
Owing to the nonlinearity response of digital devices such as screens and cameras in phase-shifting deflectometry, non-sinusoidal phase-shifted fringe patterns are generated and additional measurement errors are introduced. In this paper, a new deflectometry technique is described for overcoming these problems using a pre-distorted pattern combined with an advanced iterative algorithm. The experiment results show that this method can reconstruct the 3D surface map of a sample without fringe print-through caused by the nonlinearity response of digital devices. The proposed technique is verified by measuring the surface height variations in a deformable mirror and comparing them with the measurement result obtained using a coordinate measuring machine. The difference between the two measurement results is estimated to be less than 13 µm.
A frequency standard via spectrum analysis and direct digital synthesis
NASA Astrophysics Data System (ADS)
Li, Dawei; Shi, Daiting; Hu, Ermeng; Wang, Yigen; Tian, Lu; Zhao, Jianye; Wang, Zhong
2014-11-01
We demonstrated a frequency standard based on a detuned coherent population beating phenomenon. In this phenomenon, the beat frequency of the radio frequency for laser modulation and the hyperfine splitting can be obtained by digital signal processing technology. After analyzing the spectrum of the beat frequency, the fluctuation information is obtained and applied to compensate for the frequency shift to generate the standard frequency by the digital synthesis method. Frequency instability of 2.6 × 1012 at 1000 s is observed in our preliminary experiment. By eliminating the phase-locking loop, the method will enable us to achieve a full-digital frequency standard with remarkable stability.
Single-shot dual-wavelength in-line and off-axis hybrid digital holography
NASA Astrophysics Data System (ADS)
Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie
2018-02-01
We propose an in-line and off-axis hybrid holographic real-time imaging technique. The in-line and off-axis digital holograms are generated simultaneously by two lasers with different wavelengths, and they are recorded using a color camera with a single shot. The reconstruction is carried using an iterative algorithm in which the initial input is designed to include the intensity of the in-line hologram and the approximate phase distributions obtained from the off-axis hologram. In this way, the complex field in the object plane and the output by the iterative procedure can produce higher quality amplitude and phase images compared to traditional iterative phase retrieval. The performance of the technique has been demonstrated by acquiring the amplitude and phase images of a green lacewing's wing and a living moon jellyfish.
All-digital radar architecture
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo A.
2014-10-01
All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.
Tian, Yue; Huang, Yue-Kai; Zhang, Shaoliang; Prucnal, Paul R; Wang, Ting
2013-02-25
We demonstrate a hybrid optical/digital phase-sensitive boosting (PSB) technique for long-haul wavelength division multiplexing (WDM) transmission systems. The approach uses four-wave mixing (FWM) to generate a phase-conjugated idler alongside the original signal. At the receiver, the signal and idler are jointly detected, and the phases of the idler symbols are conjugated and summed with the signal symbols to suppress noise and nonlinear phase distortion. The proposed hybrid PSB scheme is independent of modulation format and does not require an optical phase-locked loop to achieve phase matching required by conventional phase-sensitive amplifiers. Our simulation and experimental results of 112-Gb/s dual-polarization quadrature phase-shift-keying (DP-QPSK) transmission confirmed the principle of the PSB scheme, attaining a Q-factor improvement of 2.4 dB over conventional single-channel transmission after 4,800 km of dispersion-managed fiber (DMF) link at the expense of 50% reduction in spectral efficiency and extending the system reach by 60% to 7,680 km.
Ishizawa, A.; Nishikawa, T.; Goto, T.; Hitachi, K.; Sogawa, T.; Gotoh, H.
2016-01-01
Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise “booster” for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz). PMID:27185040
Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro
NASA Astrophysics Data System (ADS)
Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang
2010-03-01
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
NASA Astrophysics Data System (ADS)
Sarkisov, Sergey S.; Kukhtareva, Tatiana; Kukhtarev, Nickolai V.; Curley, Michael J.; Edwards, Vernessa; Creer, Marylyn
2013-03-01
There is a great need for rapid detection of bio-hazardous species particularly in applications to food safety and biodefense. It has been recently demonstrated that the colonies of various bio-species could be rapidly detected using culture-specific and reproducible patterns generated by scattered non-coherent light. However, the method heavily relies on a digital pattern recognition algorithm, which is rather complex, requires substantial computational power and is prone to ambiguities due to shift, scale, or orientation mismatch between the analyzed pattern and the reference from the library. The improvement could be made, if, in addition to the intensity of the scattered optical wave, its phase would be also simultaneously recorded and used for the digital holographic pattern recognition. In this feasibility study the research team recorded digital Gabor-type (in-line) holograms of colonies of micro-organisms, such as Salmonella with a laser diode as a low-coherence light source and a lensless high-resolution (2.0x2.0 micron pixel pitch) digital image sensor. The colonies were grown in conventional Petri dishes using standard methods. The digitally recorded holograms were used for computational reconstruction of the amplitude and phase information of the optical wave diffracted on the colonies. Besides, the pattern recognition of the colony fragments using the cross-correlation between the digital hologram was also implemented. The colonies of mold fungi Altenaria sp, Rhizophus, sp, and Aspergillus sp have been also generating nano-colloidal silver during their growth in specially prepared matrices. The silver-specific plasmonic optical extinction peak at 410-nm was also used for rapid detection and growth monitoring of the fungi colonies.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The Midas System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in Phase I of the overall program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 2 x 100,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. The MIDAS construction and wiring diagrams are given.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The MIDAS System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughout. The hardware and software generated in Phase I of the over-all program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating 2 x 105 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. Diagnostic programs used to test MIDAS' operations are presented.
Loui, Hung; Brock, Billy C.
2016-10-25
The various embodiments presented herein relate to beam steering an array antenna by modifying intermediate frequency (IF) waveforms prior to conversion to RF signals. For each channel, a direct digital synthesis (DDS) component can be utilized to generate a waveform or modify amplitude, timing and phase of a waveform relative to another waveform, whereby the generation/modification can be performed prior to the IF input port of a mixer on each channel. A local oscillator (LO) signal can be utilized to commonly drive each of the mixers. After conversion at the RF output port of each of the mixers, each RF signal can be transmitted by a respective antenna element in the antenna array. Initiation of transmission of each RF signal can be performed simultaneously at each antenna. The process can be reversed during receive whereby timing, amplitude, and phase of the received can be modified digitally post ADC conversion.
Jenson, Susan K.; Domingue, Julia O.
1988-01-01
The first phase of analysis is a conditioning phase that generates three data sets: the original OEM with depressions filled, a data set indicating the flow direction for each cell, and a flow accumulation data set in which each cell receives a value equal to the total number of cells that drain to it. The original OEM and these three derivative data sets can then be processed in a variety of ways to optionally delineate drainage networks, overland paths, watersheds for userspecified locations, sub-watersheds for the major tributaries of a drainage network, or pour point linkages between watersheds. The computer-generated drainage lines and watershed polygons and the pour point linkage information can be transferred to vector-based geographic information systems for futher analysis. Comparisons between these computergenerated features and their manually delineated counterparts generally show close agreement, indicating that these software tools will save analyst time spent in manual interpretation and digitizing.
Maximum a posteriori decoder for digital communications
NASA Technical Reports Server (NTRS)
Altes, Richard A. (Inventor)
1997-01-01
A system and method for decoding by identification of the most likely phase coded signal corresponding to received data. The present invention has particular application to communication with signals that experience spurious random phase perturbations. The generalized estimator-correlator uses a maximum a posteriori (MAP) estimator to generate phase estimates for correlation with incoming data samples and for correlation with mean phases indicative of unique hypothesized signals. The result is a MAP likelihood statistic for each hypothesized transmission, wherein the highest value statistic identifies the transmitted signal.
Agile high resolution arbitrary waveform generator with jitterless frequency stepping
Reilly, Peter T. A.; Koizumi, Hideya
2010-05-11
Jitterless transition of the programmable clock waveform is generated employing a set of two coupled direct digital synthesis (DDS) circuits. The first phase accumulator in the first DDS circuit runs at least one cycle of a common reference clock for the DDS circuits ahead of the second phase accumulator in the second DDS circuit. As a phase transition through the beginning of a phase cycle is detected from the first phase accumulator, a first phase offset word and a second phase offset word for the first and second phase accumulators are calculated and loaded into the first and second DDS circuits. The programmable clock waveform is employed as a clock input for the RAM address controller. A well defined jitterless transition in frequency of the arbitrary waveform is provided which coincides with the beginning of the phase cycle of the DDS output signal from the second DDS circuit.
Sound-burst Generator for Measuring Coal Properties
NASA Technical Reports Server (NTRS)
Hadden, W. J. J.; Mills, J. M.; Pierce, A. D.
1982-01-01
Acoustical properties of coal can be measured accurately and with relative ease with aid of digital two-channel sine-wave sound generator. Generator is expected to provide information for development of acoustic devices for measuring thickness of coal in longwall mining. In echo-cancellation measurements, sound bursts are sent to coal sample from opposite directions. Transmitted and reflected amplitudes and phases are measured by transducers to determine coal properties.
Generation of cylindrically polarized vector vortex beams with digital micromirror device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Lei; Liu, Weiwei; Wang, Meng
We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves themore » way for optical microscopy, trapping, and communication.« less
Advanced GPS Technologies (AGT)
2015-05-01
Distribution A GPS Ill Developmental Optical Clock Deployable Antenna Concept 3 \\.J Science and Technology for GPS •:• Spacecraft • AFRL has funded a...Digital Waveform Generators New antenna concepts Supporting electronics Algorithms and new signal combining methods Satellite bus technologies...GPS Military High Gain Antenna Developing Options for Ground Testing 1) Deployable phased array • Low profile element • High efficiency phase
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
NASA Astrophysics Data System (ADS)
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.
2015-11-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
NASA Astrophysics Data System (ADS)
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.
2015-03-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device
NASA Astrophysics Data System (ADS)
Zhang, Chonglei; Min, Changjun; Yuan, X.-C.
2016-12-01
We propose a technique to generate of perfect optical vortex (POV) via Fourier transformation of Bessel-Gauss (BG) beams through encoding of the amplitude of the optical field with binary amplitude digital micro-mirrors device (DMD). Furthermore, we confirm the correct phase patterns of the POV with the method of Mach-Zehnder interferometer. Our approach to generate the POV has the advantages that rapidly switch among the different modes, wide spectral regions and high energy tolerance. Since the POV possess propagation properties that not shape-invariant, we therefore suppose that our proposed approach will find potential applications in optical microscopy, optical fabrication, and optical communication.
Generation of atmospheric wavefronts using binary micromirror arrays.
Anzuola, Esdras; Belmonte, Aniceto
2016-04-10
To simulate in the laboratory the influence that a turbulent atmosphere has on light beams, we introduce a practical method for generating atmospheric wavefront distortions that considers digital holographic reconstruction using a programmable binary micromirror array. We analyze the efficiency of the approach for different configurations of the micromirror array and experimentally demonstrate the benchtop technique. Though the mirrors on the digital array can only be positioned in one of two states, we show that the holographic technique can be used to devise a wide variety of atmospheric wavefront aberrations in a controllable and predictable way for a fraction of the cost of phase-only spatial light modulators.
Desse, Jean-Michel; Olchewsky, François
2018-04-15
This Letter proposes a dual-reference digital holographic interferometer for analyzing the high refractive index encountered in transonic and supersonic flows. For that, a Wollaston prism is inserted in the reference arm in order to simultaneously generate two orthogonally polarized reference waves. As a consequence, recorded interferograms contain two crossed and perpendicular interference patterns that give two orders fully separated in the Fourier spectrum. It is then possible to analyze a transparent object regardless of the orientation of the refractive index gradient using the two phase maps reconstructed with each of the two first interference orders. Fusion of the phase maps yields a single phase map in which the phase singularities are removed. Experimental results demonstrate the suitability of the proposed approach for analyzing shock waves in the unsteady wake flow around a circular cylinder at Mach 0.75.
Adaptive Practice: Next Generation Evidence-Based Practice in Digital Environments.
Kennedy, Margaret Ann
2016-01-01
Evidence-based practice in nursing is considered foundational to safe, competent care. To date, rigid traditional perceptions of what constitutes 'evidence' have constrained the recognition and use of practice-based evidence and the exploitation of novel forms of evidence from data rich environments. Advancements such as the conceptualization of clinical intelligence, the prevalence of increasingly sophisticated digital health information systems, and the advancement of the Big Data phenomenon have converged to generate a new contemporary context. In today's dynamic data-rich environments, clinicians have new sources of valid evidence, and need a new paradigm supporting clinical practice that is adaptive to information generated by diverse electronic sources. This opinion paper presents adaptive practice as the next generation of evidence-based practice in contemporary evidence-rich environments and provides recommendations for the next phase of evolution.
Reference-free direct digital lock-in method and apparatus
NASA Technical Reports Server (NTRS)
Henry, James E. (Inventor); Leonard, John A. (Inventor)
2000-01-01
A reference-free direct digital lock-in system (RDDL 10) has a first input coupled to a periodic electrical signal and an output for outputting an indication of a magnitude of a desired periodic signal component. The RDDL also has a second input for receiving a signal (9) that specifies a reference period value, and operates to autonomously generate a lock-in reference signal having a specified period and a phase that is adjusted to maximize a magnitude of the outputted desired periodic signal component. In an embodiment of a measurement system that includes the RDDL 10 an optical source provides a chopped light beam having wavelengths within a predetermined range of wavelengths, and the periodic electrical signal is generated by at least one photodetector that is illuminated by the chopped light beam. In this embodiment the measurement system characterizes, for at least one wavelength of light that is generated by the optical source, a spectral response of the at least one photodetector. The RDDL can operate in nonreal-time upon previously generated and stored digital equivalent values of the periodic electrical signal or signals.
Chen, Yue; Fang, Zhao-Xiang; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De
2015-09-20
Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.
NASA Astrophysics Data System (ADS)
Ma, Lihong; Jin, Weimin
2018-01-01
A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.
NASA Astrophysics Data System (ADS)
Liu, Zhao-Miao; Liu, Li-Kun; Shen, Feng
2015-10-01
Droplets generation in Y-junctions and anti-Y-junctions microchannels are experimentally studied using a high speed digital microscopic system and numerical simulation. Geometric configuration of a microchannel, such as Y-angle (90°, 135°, -90° and -135°), channel depth and other factors have been taken into consideration. It is found that droplets generated in anti-Y-junctions have a smaller size and a shorter generation cycle compared with those in Y-junctions under the same experimental conditions. Through observing the internal velocity field, the vortex appearing in continuous phase in anti-Y-junctions is one of the key factors for the difference of droplet size and generation cycle. It is found that droplet size is bigger and generation cycle is longer when the absolute angle value of the intersection between the continuous and the dispersed phases (i.e., the angle between the main channel and the continuous phase or the dispersed phase channel) increases. The droplet's size is influenced by the Y-angle, which varies with the channel depth in Y-junctions. The Y-angle has a positive effect on the droplet generation cycle, but a smaller height-width ratio will enhance the impact of a continuous and dispersed phase's intersection angle on the droplet generation cycle in Y-junctions microchannels.
An ultra-low cost NMR device with arbitrary pulse programming
NASA Astrophysics Data System (ADS)
Chen, Hsueh-Ying; Kim, Yaewon; Nath, Pulak; Hilty, Christian
2015-06-01
Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53 T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.
NASA Astrophysics Data System (ADS)
Glotov, V. V.; Ostroumov, I. V.; Romashchenko, M. A.
2018-05-01
To study the effect of phase-shift signals parameters on EMC of REM, a generalized signal generation model in a radio transmitter was developed which allows obtaining digital representations of phase-shift signals, which are a continuous pulse in the time domain and on the frequency axis with different signal element envelope shapes.
Radiometric Block Adjusment and Digital Radiometric Model Generation
NASA Astrophysics Data System (ADS)
Pros, A.; Colomina, I.; Navarro, J. A.; Antequera, R.; Andrinal, P.
2013-05-01
In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM) as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF). In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART) models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.
A fast-locking all-digital delay-locked loop for phase/delay generation in an FPGA
NASA Astrophysics Data System (ADS)
Zhujia, Chen; Haigang, Yang; Fei, Liu; Yu, Wang
2011-10-01
A fast-locking all-digital delay-locked loop (ADDLL) is proposed for the DDR SDRAM controller interface in a field programmable gate array (FPGA). The ADDLL performs a 90° phase-shift so that the data strobe (DQS) can enlarge the data valid window in order to minimize skew. In order to further reduce the locking time and to prevent the harmonic locking problem, a time-to-digital converter (TDC) is proposed. A duty cycle corrector (DCC) is also designed in the ADDLL to adjust the output duty cycle to 50%. The ADDLL, implemented in a commercial 0.13 μm CMOS process, occupies a total of 0.017 mm2 of active area. Measurement results show that the ADDLL has an operating frequency range of 75 to 350 MHz and a total delay resolution of 15 ps. The time interval error (TIE) of the proposed circuit is 60.7 ps.
NASA Astrophysics Data System (ADS)
Tikan, Alexey; Bielawski, Serge; Szwaj, Christophe; Randoux, Stéphane; Suret, Pierre
2018-04-01
Temporal imaging systems are outstanding tools for single-shot observation of optical signals that have irregular and ultrafast dynamics. They allow long time windows to be recorded with femtosecond resolution, and do not rely on complex algorithms. However, simultaneous recording of amplitude and phase remains an open challenge for these systems. Here, we present a new heterodyne time-lens arrangement that efficiently records both the amplitude and phase of complex and random signals over large temporal windows (tens of picoseconds). Phase and time are encoded onto the two spatial dimensions of a camera. We implement this phase-sensitive time-lens system in two configurations: a time microscope and a digital temporal-holography device that enables single-shot measurement with a temporal resolution of 80 fs. We demonstrate direct application of our heterodyne time-lens to turbulent-like optical fields and optical rogue waves generated from nonlinear propagation of partially coherent waves inside optical fibres.
Digital Phase Meter for a Laser Heterodyne Interferometer
NASA Technical Reports Server (NTRS)
Loya, Frank
2008-01-01
The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).
Digitally controlled twelve-pulse firing generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berde, D.; Ferrara, A.A.
1981-01-01
Control System Studies for the Tokamak Fusion Test Reactor (TFTR) indicate that accurate thyristor firing in the AC-to-DC conversion system is required in order to achieve good regulation of the various field currents. Rapid update and exact firing angle control are required to avoid instabilities, large eddy currents, or parasitic oscillations. The Prototype Firing Generator was designed to satisfy these requirements. To achieve the required /plus or minus/0.77/degree/firing accuracy, a three-phase-locked loop reference was designed; otherwise, the Firing Generator employs digital circuitry. The unit, housed in a standard CAMAC crate, operates under microcomputer control. Functions are performed under program control,more » which resides in nonvolatile read-only memory. Communication with CICADA control system is provided via an 11-bit parallel interface.« less
Active illumination using a digital micromirror device for quantitative phase imaging.
Shin, Seungwoo; Kim, Kyoohyun; Yoon, Jonghee; Park, YongKeun
2015-11-15
We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase-imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution 2D synthetic aperture phase image and a 3D refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination-control capability of the proposed method by imaging colloidal spheres and biological cells. The capability of high-speed optical diffraction tomography is also demonstrated by measuring 3D Brownian motion of colloidal particles with the tomogram acquisition rate of 100 Hz.
DAC-board based X-band EPR spectrometer with arbitrary waveform control
NASA Astrophysics Data System (ADS)
Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi
2013-10-01
We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ⩽250 ps resolution. The implications and potential applications of these capabilities will be discussed.
Phase-locked loop design with fast-digital-calibration charge pump
NASA Astrophysics Data System (ADS)
Wang, San-Fu; Hwang, Tsuen-Shiau; Wang, Jhen-Ji
2016-02-01
A fast-digital-calibration technique is proposed for reducing current mismatch in the charge pump (CP) of a phase-locked loop (PLL). The current mismatch in the CP generates fluctuations, which is transferred to the input of voltage-controlled oscillator (VCO). Therefore, the current mismatch increases the reference spur in the PLL. Improving current match of CP will reduce the reference spur and decrease the static phase offset of PLLs. Moreover, the settling time, ripple and power consumption of the PLL are also improved by the proposed technique. This study evaluated a 2.27-2.88 GHz frequency synthesiser fabricated in TSMC 0.18 μm CMOS 1.8 V process. The tuning range of proposed VCO is about 26%. By using the fast-digital-calibration technique, current mismatch is reduced to lower than 0.97%, and the operation range of the proposed CP is between 0.2 and 1.6 V. The proposed PLL has a total power consumption of 22.57 mW and a settling time of 10 μs or less.
Thom, Joseph; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G
2013-08-12
We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.
Digital Controller For Emergency Beacon
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1990-01-01
Prototype digital controller intended for use in 406-MHz emergency beacon. Undergoing development according to international specifications, 406-MHz emergency beacon system includes satellites providing worldwide monitoring of beacons, with Doppler tracking to locate each beacon within 5 km. Controller turns beacon on and off and generates binary codes identifying source (e.g., ship, aircraft, person, or vehicle on land). Codes transmitted by phase modulation. Knowing code, monitor attempts to communicate with user, monitor uses code information to dispatch rescue team appropriate to type and locations of carrier.
NASA Astrophysics Data System (ADS)
Snow, Trevor M.
As analog-to-digital (ADC) and digital-to-analog conversion (DAC) technologies become cheaper and digital processing capabilities improve, phased array systems with digital transceivers at every element will become more commonplace. These architectures offer greater capability over traditional analog systems and enable advanced applications such as multiple-input, multiple-output (MIMO) communications, adaptive beamforming, space-time adaptive processing (STAP), and MIMO for radar. Capabilities for such systems are still limited by the need for isolating self-interference from transmitters at co-located receivers. The typical approach of time-sharing the antenna aperture between transmitters and receivers works but leaves the receivers blind for a period of time. For full-duplex operation, some systems use separate frequency bands for transmission and reception, but these require fixed filtering which reduces the system's ability to adapt to its environment and is also an inefficient use of spectral resources. To that end, tunable, high quality-factor filters are used for sub-band isolation and protect receivers while allowing open reception at other frequencies. For more flexibility, another emergent area of related research has focused on co-located spatial isolation using multiple antennas and direct injection of interference cancellation signals into receivers, which enables same-frequency full-duplex operation. With all these methods, self-interference must be reduced by an amount that prevents saturation of the ADC. Intermodulation products generated in the receiver in this process can potentially be problematic, as certain intermodulation products may appear to come from a particular angle and cohere in the beamformer. This work explores various digital phased array architectures and the how the flexibility afforded by an all-digital beamforming architecture, layered with other methods of isolation, can be used to reduce self-interference within the system. Specifically, digital control of coupled energy into receiving elements for planar and cylindrical array symmetries can be significantly reduced using near-field nulling, optimization of transmission frequencies for particular steering angles, and optimization of phase weights over restricted sets, without major impacts to the far-field performance of the system. Finally, a method for reducing in-band intermodulation that would ordinarily cohere in a system's receive beamformer is demonstrated using parallel cross-linearization of adjacent digital receivers in a phased array.
Digital lock-in amplifier based on soundcard interface for physics laboratory
NASA Astrophysics Data System (ADS)
Sinlapanuntakul, J.; Kijamnajsuk, P.; Jetjamnong, C.; Chotikaprakhan, S.
2017-09-01
The purpose of this paper is to develop a digital lock-in amplifier based on soundcard interface for undergraduate physics laboratory. Both series and parallel RLC circuit laboratory are tested because of its well-known, easy to understand and simple confirm. The sinusoidal signal at the frequency of 10 Hz - 15 kHz is generated to the circuits. The amplitude and phase of the voltage drop across the resistor, R are measured in 10 step decade. The signals from soundcard interface and lock-in amplifier are compared. The results give a good correlation. It indicates that the design digital lock-in amplifier is promising for undergraduate physic laboratory.
Binary phase digital reflection holograms - Fabrication and potential applications
NASA Technical Reports Server (NTRS)
Gallagher, N. C., Jr.; Angus, J. C.; Coffield, F. E.; Edwards, R. V.; Mann, J. A., Jr.
1977-01-01
A novel technique for the fabrication of binary-phase computer-generated reflection holograms is described. By use of integrated circuit technology, the holographic pattern is etched into a silicon wafer and then aluminum coated to make a reflection hologram. Because these holograms reflect virtually all the incident radiation, they may find application in machining with high-power lasers. A number of possible modifications of the hologram fabrication procedure are discussed.
A New Illuminator of Opportunity Bistatic Radar Research Project at DSTO
2009-05-01
digitally down convert each IF into 32-bit complex samples . That is, it generates 16-bit in-phase and quadrature -phase samples and saves them on a large non...cross- correlation process (see Equation 14), to produce each frame of the movies presented in Figures 30 - 36. The MATLAB code used to produce the...11 3.3.1 Terrestrial TV Configuration . . . . . . . . . . . . . . . . . . . . . 11 3.3.2 GPS Configuration
Low spatial frequency characterization of holographic recording materials applied to correlation
NASA Astrophysics Data System (ADS)
Márquez, A.; Neipp, C.; Beléndez, A.; Campos, J.; Pascual, I.; Yzuel, M. J.; Fimia, A.
2003-09-01
Accurate recording of computer-generated holograms (CGH) on a phase material is not a trivial task. The range of available phase materials is large, and their suitability depends on the fabrication technique chosen to produce the hologram. We are particularly interested in low-cost fabrication techniques, easily available for any lab. In this work we present the results obtained with a wide variety of phase holographic recording materials, characterized at low spatial frequencies (leq32 lp mm-1) which is the range associated with the technique we use to produce the CGHs. We have considered bleached emulsion, silver halide sensitized gelatin (SHSG) and dichromated gelatin. Some interesting differences arise between the behaviour of these materials in the usual holographic range (>1000 lp mm-1), and the low-frequency range intended for digital holography. The ultimate goal of this paper is to establish the suitability of different phase materials as the media to generate correlation filters for optical pattern recognition. In all the materials considered, the phase filters generated ensure the discrimination of the target in the recognition process. Taking into account all the experimental results, we can say that SHSG is the best material to generate phase CGHs with low spatial frequencies.
Phase compensation with fiber optic surface profile acquisition and reconstruction system
NASA Astrophysics Data System (ADS)
Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting
2015-02-01
A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.
Clock jitter generator with picoseconds resolution
NASA Astrophysics Data System (ADS)
Jovanović, Goran; Stojčev, Mile; Nikolić, Tatjana
2013-06-01
The clock is one of the most critical signals in any synchronous system. As CMOS technology has scaled, supply voltages have dropped chip power consumption has increased and the effects of jitter due to clock frequency increase have become critical and jitter budget has become tighter. This article describes design and development of low-cost mixed-signal programmable jitter generator with high resolution. The digital technique is used for coarse-grain and an analogue technique for fine-grain clock phase shifting. Its structure allows injection of various random and deterministic jitter components in a controllable and programmable fashion. Each jitter component can be switched on or off. The jitter generator can be used in jitter tolerance test and jitter transfer function measurement of high-speed synchronous digital circuits. At operating system clock frequency of 220 MHz, a jitter with 4 ps resolution can be injected.
Multichannel Phase and Power Detector
NASA Technical Reports Server (NTRS)
Li, Samuel; Lux, James; McMaster, Robert; Boas, Amy
2006-01-01
An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals. For another example, the system could be used to measure the phases and power levels of outputs of multiple power amplifiers to enable adjustment of the amplifiers for optimal power combining.
Phase-conjugate holographic lithography based on micromirror array recording.
Lim, Yongjun; Hahn, Joonku; Lee, Byoungho
2011-12-01
We present phase-conjugate holographic lithography with a hologram recorded by a digital micromirror device (DMD) and a telecentric lens. In our lithography system, a phase-conjugate hologram is applied instead of conventional masks or reticles to form patterns. This method has the advantage of increasing focus range, and it is applicable to the formation of patterns on fairly uneven surfaces. The hologram pattern is dynamically generated by the DMD, and its resolution is mainly determined by the demagnification of the telecentric lens. We experimentally demonstrate that our holographic lithographic system has a large focus range, and it is feasible to make a large-area hologram by stitching each pattern generated by the DMD without a falling off in resolution. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Górna, K.; Jaśkowski, B. M.; Okoń, P.; Czechlowski, M.; Koszela, K.; Zaborowicz, M.; Idziaszek, P.
2017-07-01
The aim of the paper is to shown the neural image analysis as a method useful for identifying the development stage of the domestic bovine corpus luteum on digital USG (UltraSonoGraphy) images. Corpus luteum (CL) is a transient endocrine gland that develops after ovulation from the follicle secretory cells. The aim of CL is the production of progesterone, which regulates many reproductive functions. In the presented studies, identification of the corpus luteum was carried out on the basis of information contained in ultrasound digital images. Development stage of the corpus luteum was considered in two aspects: just before and middle of domination phase and luteolysis and degradation phase. Prior to the classification, the ultrasound images have been processed using a GLCM (Gray Level Co-occurence Matrix). To generate a classification model, a Neural Networks module implemented in the STATISTICA was used. Five representative parameters describing the ultrasound image were used as learner variables. On the output of the artificial neural network was generated information about the development stage of the corpus luteum. Results of this study indicate that neural image analysis combined with GLCM texture analysis may be a useful tool for identifying the bovine corpus luteum in the context of its development phase. Best-generated artificial neural network model was the structure of MLP (Multi Layer Perceptron) 5:5-17-1:1.
Simple lock-in detection technique utilizing multiple harmonics for digital PGC demodulators.
Duan, Fajie; Huang, Tingting; Jiang, Jiajia; Fu, Xiao; Ma, Ling
2017-06-01
A simple lock-in detection technique especially suited for digital phase-generated carrier (PGC) demodulators is proposed in this paper. It mixes the interference signal with rectangular waves whose Fourier expansions contain multiple odd or multiple even harmonics of the carrier to recover the quadrature components needed for interference phase demodulation. In this way, the use of a multiplier is avoided and the efficiency of the algorithm is improved. Noise performance with regard to light intensity variation and circuit noise is analyzed theoretically for both the proposed technique and the traditional lock-in technique, and results show that the former provides a better signal-to-noise ratio than the latter with proper modulation depth and average interference phase. Detailed simulations were conducted and the theoretical analysis was verified. A fiber-optic Michelson interferometer was constructed and the feasibility of the proposed technique is demonstrated.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.
Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K
2015-01-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization.
Zhang, You; Ren, Lei; Vergalasova, Irina; Yin, Fang-Fang
2017-01-01
Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams' eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard deviation) error of 1.8 (0.7) mm for a 30° total scan angle. For the phantom study using aggregated kV-MV projections, the orthogonal-view phase-matched digital tomosynthesis localizes the tumor to an average error within 1 mm for varying magnitudes of scan angles. The pilot clinical study shows that the orthogonal-view phase-matched digital tomosynthesis technique enables fast and accurate localization of moving lung tumors.
NASA Astrophysics Data System (ADS)
Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris
2015-05-01
Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.
Luis Martínez Fuentes, Jose; Moreno, Ignacio
2018-03-05
A new technique for encoding the amplitude and phase of diffracted fields in digital holography is proposed. It is based on a random spatial multiplexing of two phase-only diffractive patterns. The first one is the phase information of the intended pattern, while the second one is a diverging optical element whose purpose is the control of the amplitude. A random number determines the choice between these two diffractive patterns at each pixel, and the amplitude information of the desired field governs its discrimination threshold. This proposed technique is computationally fast and does not require iterative methods, and the complex field reconstruction appears on axis. We experimentally demonstrate this new encoding technique with holograms implemented onto a flicker-free phase-only spatial light modulator (SLM), which allows the axial generation of such holograms. The experimental verification includes the phase measurement of generated patterns with a phase-shifting polarization interferometer implemented in the same experimental setup.
Microwave Imaging Radar Reflectometer System Utilizing Digital Beam Forming
NASA Astrophysics Data System (ADS)
Hu, Fengqi; Li, Meijiao; Domier, Calvin W.; Liu, Xiaoguang; Luhmann, Neville C., Jr.
2016-10-01
Microwave Imaging Reflectometry is a radar-like technique developed to measure the electron density fluctuations in fusion plasmas. Phased Antenna Arrays can serve as electronically controlled ``lenses'' that can generate the required wavefronts by phase shifting and amplitude scaling, which is being realized in the digital domain with higher flexibility and faster processing speed. In the transmitter, the resolution of the phase control is 1.4 degrees and the amplitude control is 0.5 dB/ step. A V-band double-sided, printed bow tie antenna which exhibits 49% bandwidth (46 - 76 GHz) is employed. The antenna is fed by a microstrip transmission line for easy impedance matching. The simple structure and the small antenna are suitable for low cost fabrication, easy circuit integration, and phased antenna array multi-frequency applications. In the receiver part, a sub-array of 32 channels with 200 mil spacing is used to collect the scattered reflected signal from one unit spot on the plasma cutoff surface. Pre-amplification is used to control the noise level of the system and wire bondable components are used to accommodate the small spacing between each channel. After down converting, base band signals are digitized and processed in an FPGA module. U.S. Department of Energy Grant No. DE-FG02-99ER54531.
A single-board NMR spectrometer based on a software defined radio architecture
NASA Astrophysics Data System (ADS)
Tang, Weinan; Wang, Weimin
2011-01-01
A single-board software defined radio (SDR) spectrometer for nuclear magnetic resonance (NMR) is presented. The SDR-based architecture, realized by combining a single field programmable gate array (FPGA) and a digital signal processor (DSP) with peripheral radio frequency (RF) front-end circuits, makes the spectrometer compact and reconfigurable. The DSP, working as a pulse programmer, communicates with a personal computer via a USB interface and controls the FPGA through a parallel port. The FPGA accomplishes digital processing tasks such as a numerically controlled oscillator (NCO), digital down converter (DDC) and gradient waveform generator. The NCO, with agile control of phase, frequency and amplitude, is part of a direct digital synthesizer that is used to generate an RF pulse. The DDC performs quadrature demodulation, multistage low-pass filtering and gain adjustment to produce a bandpass signal (receiver bandwidth from 3.9 kHz to 10 MHz). The gradient waveform generator is capable of outputting shaped gradient pulse waveforms and supports eddy-current compensation. The spectrometer directly acquires an NMR signal up to 30 MHz in the case of baseband sampling and is suitable for low-field (<0.7 T) application. Due to the featured SDR architecture, this prototype has flexible add-on ability and is expected to be suitable for portable NMR systems.
A 128-channel Time-to-Digital Converter (TDC) inside a Virtex-5 FPGA on the GANDALF module
NASA Astrophysics Data System (ADS)
Büchele, M.; Fischer, H.; Gorzellik, M.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.
2012-03-01
The GANDALF 6U-VME64x/VXS module has been developed for the digitization and real time analysis of detector signals. To perform different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition and trigger generation, this module comes with exchangeable analog and digital mezzanine cards. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In contrast to common TDC concepts, the input signal is sampled by 16 equidistant phase-shifted clocks. A particular challenge of the design is the minimum skew routing of the input signals to the sampling flip-flops. We present measurement results for the differential nonlinearity and the time resolution of the TDC readout system.
Optimal space communications techniques. [all digital phase locked loop for FM demodulation
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1973-01-01
The design, development, and analysis are reported of a digital phase-locked loop (DPLL) for FM demodulation and threshold extension. One of the features of the developed DPLL is its synchronous, real time operation. The sampling frequency is constant and all the required arithmetic and logic operations are performed within one sampling period, generating an output sequence which is converted to analog form and filtered. An equation relating the sampling frequency to the carrier frequency must be satisfied to guarantee proper DPLL operation. The synchronous operation enables a time-shared operation of one DPLL to demodulate several FM signals simultaneously. In order to obtain information about the DPLL performance at low input signal-to-noise ratios, a model of an input noise spike was introduced, and the DPLL equation was solved using a digital computer. The spike model was successful in finding a second order DPLL which yielded a five db threshold extension beyond that of a first order DPLL.
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Mo, C. D.
1978-01-01
An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error.
Preliminary study of first motion from nuclear explosions recorded on seismograms in the first zone
Healy, J.H.; Mangan, G.B.
1963-01-01
The U.S. Geological Survey has recorded more than 300 seismograms from more than 50 underground nuclear explosions. Most were recorded at distances of less than 1,000 km. These seismograms have been studied to obtain travel times and amplitudes which have been presented in reports on crustal structure and in a new series of nuclear shot reports. This report describes preliminary studies of first motion of seismic waves generated by underground nuclear explosions. Visual inspection of all seismograms was made in an attempt to identify the direction of first motion, and to estimate the probability of recording detectable first motion at various distances for various charge sizes and in different geologic environments. In this study, a characteristic pattern of the first phase became apparent on seismograms where first motion was clearly recorded. When an interpreter became familiar with this pattern, he was frequently able to identify the polarity of the first arrival even though the direction of first motion could not be seen clearly on the seismogram. In addition, it was sometimes possible to recognize this pattern for secondary arrivals of larger amplitude. These qualitative visual observations suggest that it might be possible to define a simple criterion that could be used in a digital computer to identify polarity, not only of the first phase, but of secondary phases as well. A short segment of recordings near the first motion on 56 seismograms was digitized on an optical digitizer. Spectral analyses of these digitized recordings were made to determine the range of frequencies present, and studies were made with various simple digital filters to explore the nature of polarity as a function of frequency. These studies have not yet led to conclusive results, partly because of inaccuracies resulting from optical digitization. The work is continuing, using an electronic digitizer that will allow study of a much larger sample of more accurately digitized data.
Digital phase shifter synchronizes local oscillators
NASA Technical Reports Server (NTRS)
Ali, S. M.
1978-01-01
Digital phase-shifting network is used as synchronous frequency multiplier for applications such as phase-locking two signals that may differ in frequency. Circuit has various phase-shift capability. Possible applications include data-communication systems and hybrid digital/analog phase-locked loops.
Vadnjal, Ana Laura; Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H
2013-03-20
We present a method to determine micro and nano in-plane displacements based on the phase singularities generated by application of directional wavelet transforms to speckle pattern images. The spatial distribution of the obtained phase singularities by the wavelet transform configures a network, which is characterized by two quasi-orthogonal directions. The displacement value is determined by identifying the intersection points of the network before and after the displacement produced by the tested object. The performance of this method is evaluated using simulated speckle patterns and experimental data. The proposed approach is compared with the optical vortex metrology and digital image correlation methods in terms of performance and noise robustness, and the advantages and limitations associated to each method are also discussed.
Inkjet Printing Based Droplet Generation for Integrated Online Digital Polymerase Chain Reaction.
Zhang, Weifei; Li, Nan; Koga, Daisuke; Zhang, Yong; Zeng, Hulie; Nakajima, Hizuru; Lin, Jin-Ming; Uchiyama, Katsumi
2018-04-17
We report on the development of a novel and flexible online digital polymerase chain reaction (dPCR) system. The system was composed of three parts: an inkjet for generating the droplets, a coiled fused-silica capillary for thermal cycling, and a laser-induced fluorescence detector (LIFD) for positive droplet counting. Upon inkjet printing, monodisperse droplets were continuously generated in the oil phase and then introduced into the capillary in the form of a stable dispersion. The droplets containing one or zero molecules of target DNA passed through the helical capillary that was attached to a cylindrical thermal cycler for PCR amplification, resulting in the generation of fluorescence for the DNA-positive droplet. After 36 PCR cycles, the fluorescence signal intensity was detected by laser-induced fluorescence located at the downstream of the capillary, followed by a positive/negative counting. The present system was successfully applied to the absolute quantification of the HPV sequence in Caski cells with dynamic ranges spanning 4 orders of magnitude.
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.
NASA Astrophysics Data System (ADS)
Meng, X. T.; Levin, D. S.; Chapman, J. W.; Zhou, B.
2016-09-01
The ATLAS Muon Spectrometer endcap thin-Resistive Plate Chamber trigger project compliments the New Small Wheel endcap Phase-1 upgrade for higher luminosity LHC operation. These new trigger chambers, located in a high rate region of ATLAS, will improve overall trigger acceptance and reduce the fake muon trigger incidence. These chambers must generate a low level muon trigger to be delivered to a remote high level processor within a stringent latency requirement of 43 bunch crossings (1075 ns). To help meet this requirement the High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by CERN Microelectronics group, has been proposed for the digitization of the fast front end detector signals. This paper investigates the HPTDC performance in the context of the overall muon trigger latency, employing detailed behavioral Verilog simulations in which the latency in triggerless mode is measured for a range of configurations and under realistic hit rate conditions. The simulation results show that various HPTDC operational configurations, including leading edge and pair measurement modes can provide high efficiency (>98%) to capture and digitize hits within a time interval satisfying the Phase-1 latency tolerance.
A microcontroller-based lock-in amplifier for sub-milliohm resistance measurements.
Bengtsson, Lars E
2012-07-01
This paper presents a novel approach to the design of a digital ohmmeter with a resolution of <60 μΩ based on a general-purpose microcontroller and a high-impedance instrumentation amplifier only. The design uses two digital I/O-pins to alternate the current through the sample resistor and combined with a proper firmware routine, the design is a lock-in detector that discriminates any signal that is out of phase/frequency with the reference signal. This makes it possible to selectively detect the μV drop across sample resistors down to 55.6 μΩ using only the current that can be supplied by the digital output pins of a microcontroller. This is achieved without the need for an external reference signal generator and does not rely on the computing processing power of a digital signal processor.
Design of Digital Phase-Locked Loops For Advanced Digital Transponders
NASA Technical Reports Server (NTRS)
Nguyen, Tien M.
1994-01-01
For advanced digital space transponders, the Digital Phased-Locked Loops (DPLLs) can be designed using the available analog loops. DPLLs considered in this paper are derived from the Analog Phase-Locked Loop (APLL) using S-domain mapping techniques.
A finite state machine read-out chip for integrated surface acoustic wave sensors
NASA Astrophysics Data System (ADS)
Rakshit, Sambarta; Iliadis, Agis A.
2015-01-01
A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.
NASA Astrophysics Data System (ADS)
Hyun, Jae-Sang; Li, Beiwen; Zhang, Song
2017-07-01
This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.
High-speed 3D imaging using digital binary defocusing method vs sinusoidal method
NASA Astrophysics Data System (ADS)
Zhang, Song; Hyun, Jae-Sang; Li, Beiwen
2017-02-01
This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.
On Digital Simulation of Multicorrelated Random Processes and Its Applications. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Sinha, A. K.
1973-01-01
Two methods are described to simulate, on a digital computer, a set of correlated, stationary, and Gaussian time series with zero mean from the given matrix of power spectral densities and cross spectral densities. The first method is based upon trigonometric series with random amplitudes and deterministic phase angles. The random amplitudes are generated by using a standard random number generator subroutine. An example is given which corresponds to three components of wind velocities at two different spatial locations for a total of six correlated time series. In the second method, the whole process is carried out using the Fast Fourier Transform approach. This method gives more accurate results and works about twenty times faster for a set of six correlated time series.
Optical digital chaos cryptography
NASA Astrophysics Data System (ADS)
Arenas-Pingarrón, Álvaro; González-Marcos, Ana P.; Rivas-Moscoso, José M.; Martín-Pereda, José A.
2007-10-01
In this work we present a new way to mask the data in a one-user communication system when direct sequence - code division multiple access (DS-CDMA) techniques are used. The code is generated by a digital chaotic generator, originally proposed by us and previously reported for a chaos cryptographic system. It is demonstrated that if the user's data signal is encoded with a bipolar phase-shift keying (BPSK) technique, usual in DS-CDMA, it can be easily recovered from a time-frequency domain representation. To avoid this situation, a new system is presented in which a previous dispersive stage is applied to the data signal. A time-frequency domain analysis is performed, and the devices required at the transmitter and receiver end, both user-independent, are presented for the optical domain.
Murate, Kosuke; Roshtkhari, Mehraveh Javan; Ropagnol, Xavier; Blanchard, François
2018-05-01
We report a new method to temporally and spatially manipulate the pulse front tilt (PFT) intensity profile of an ultrashort optical pulse using a commercial microelectromechanical system, also known as a digital micromirror device (DMD). For our demonstration, we show terahertz generation in a lithium niobate crystal using the PFT pumping scheme derived from a DMD chip. The adaptive functionality of the DMD could be a convenient alternative to the more conventional grating required to generate a laser beam with a PFT intensity profile that is typically used for efficient optical rectification in noncollinear phase-matching conditions. In contrast to a grating, PFT using DMD does not suffer from wavelength dispersion, and exhibits overlap properties between grating and a stair-step echelon mirror.
Three phase AC motor controller
Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.
1984-03-20
A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.
Parallel Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.
1995-01-01
Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.
NASA Technical Reports Server (NTRS)
Cliff, R. A. (Inventor)
1975-01-01
An digital phase-locked loop is provided for deriving a loop output signal from an accumulator output terminal. A phase detecting exclusive OR gate is fed by the loop digital input and output signals. The output of the phase detector is a bi-level digital signal having a duty cycle indicative of the relative phase of the input and output signals. The accumulator is incremented at a first rate in response to a first output level of the phase detector and at a second rate in response to a second output level of the phase detector.
Feed-forward digital phase and amplitude correction system
Yu, D.U.L.; Conway, P.H.
1994-11-15
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.
Feed-forward digital phase and amplitude correction system
Yu, David U. L.; Conway, Patrick H.
1994-01-01
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.
Development of a digital automatic control law for steep glideslope capture and flare
NASA Technical Reports Server (NTRS)
Halyo, N.
1977-01-01
A longitudinal digital guidance and control law for steep glideslopes using MLS (Microwave Landing System) data is developed for CTOL aircraft using modern estimation and control techniques. The control law covers the final approach phases of glideslope capture, glideslope tracking, and flare to touchdown for automatic landings under adverse weather conditions. The control law uses a constant gain Kalman filter to process MLS and body-mounted accelerometer data to form estimates of flight path errors and wind velocities including wind shear. The flight path error estimates and wind estimates are used for feedback in generating control surface commands. Results of a digital simulation of the aircraft dynamics and the guidance and control law are presented for various wind conditions.
Matsushima, Kyoji; Sonobe, Noriaki
2018-01-01
Digitized holography techniques are used to reconstruct three-dimensional (3D) images of physical objects using large-scale computer-generated holograms (CGHs). The object field is captured at three wavelengths over a wide area at high densities. Synthetic aperture techniques using single sensors are used for image capture in phase-shifting digital holography. The captured object field is incorporated into a virtual 3D scene that includes nonphysical objects, e.g., polygon-meshed CG models. The synthetic object field is optically reconstructed as a large-scale full-color CGH using red-green-blue color filters. The CGH has a wide full-parallax viewing zone and reconstructs a deep 3D scene with natural motion parallax.
Miniature X-band GaAs MMIC analog and bi-phase modulators for spaceborne communications applications
NASA Technical Reports Server (NTRS)
Mysoor, Narayan R.; Ali, Fazal
1992-01-01
The design concepts, analyses, and the development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of spaceborne communications systems are summarized. The design approach uses a very compact lumped-element, quadrature hybrid, and MESFET-varactors to provide low-loss and well-controlled phase performance for deep-space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters have been modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/-2.5 radians of peak phase deviation.
Vanin, Evgeny; Jacobsen, Gunnar
2010-03-01
The Bit-Error-Ratio (BER) floor caused by the laser phase noise in the optical fiber communication system with differential quadrature phase shift keying (DQPSK) and coherent detection followed by digital signal processing (DSP) is analytically evaluated. An in-phase and quadrature (I&Q) receiver with a carrier phase recovery using DSP is considered. The carrier phase recovery is based on a phase estimation of a finite sum (block) of the signal samples raised to the power of four and the phase unwrapping at transitions between blocks. It is demonstrated that errors generated at block transitions cause the dominating contribution to the system BER floor when the impact of the additive noise is negligibly small in comparison with the effect of the laser phase noise. Even the BER floor in the case when the phase unwrapping is omitted is analytically derived and applied to emphasize the crucial importance of this signal processing operation. The analytical results are verified by full Monte Carlo simulations. The BER for another type of DQPSK receiver operation, which is based on differential phase detection, is also obtained in the analytical form using the principle of conditional probability. The principle of conditional probability is justified in the case of differential phase detection due to statistical independency of the laser phase noise induced signal phase error and the additive noise contributions. Based on the achieved analytical results the laser linewidth tolerance is calculated for different system cases.
Implementing a Digital Phasemeter in an FPGA
NASA Technical Reports Server (NTRS)
Rao, Shanti R.
2008-01-01
Firmware for implementing a digital phasemeter within a field-programmable gate array (FPGA) has been devised. In the original application of this firmware, the phase that one seeks to measure is the difference between the phases of two nominally-equal-frequency heterodyne signals generated by two interferometers. In that application, zero-crossing detectors convert the heterodyne signals to trains of rectangular pulses, the two pulse trains are fed to a fringe counter (the major part of the phasemeter) controlled by a clock signal having a frequency greater than the heterodyne frequency, and the fringe counter computes a time-averaged estimate of the difference between the phases of the two pulse trains. The firmware also does the following: Causes the FPGA to compute the frequencies of the input signals; Causes the FPGA to implement an Ethernet (or equivalent) transmitter for readout of phase and frequency values; and Provides data for use in diagnosis of communication failures. The readout rate can be set, by programming, to a value between 250 Hz and 1 kHz. Network addresses can be programmed by the user.
Dong, Ze; Yu, Jianjun; Chien, Hung-Chang; Chi, Nan; Chen, Lin; Chang, Gee-Kung
2011-06-06
We introduce an "ultra-dense" concept into next-generation WDM-PON systems, which transmits a Nyquist-WDM uplink with centralized uplink optical carriers and digital coherent detection for the future access network requiring both high capacity and high spectral efficiency. 80-km standard single mode fiber (SSMF) transmission of Nyquist-WDM signal with 13 coherent 25-GHz spaced wavelength shaped optical carriers individually carrying 100-Gbit/s polarization-multiplexing quadrature phase-shift keying (PM-QPSK) upstream data has been experimentally demonstrated with negligible transmission penalty. The 13 frequency-locked wavelengths with a uniform optical power level of -10 dBm and OSNR of more than 50 dB are generated from a single lightwave via a multi-carrier generator consists of an optical phase modulator (PM), a Mach-Zehnder modulator (MZM), and a WSS. Following spacing the carriers at the baud rate, sub-carriers are individually spectral shaped to form Nyquist-WDM. The Nyquist-WDM channels have less than 1-dB crosstalk penalty of optical signal-to-noise ratio (OSNR) at 2 × 10(-3) bit-error rate (BER). Performance of a traditional coherent optical OFDM scheme and its restrictions on symbol synchronization and power difference are also experimentally compared and studied.
A class of all digital phase locked loops - Modeling and analysis
NASA Technical Reports Server (NTRS)
Reddy, C. P.; Gupta, S. C.
1973-01-01
An all digital phase locked loop which tracks the phase of the incoming signal once per carrier cycle is proposed. The different elements and their functions, and the phase lock operation are explained in detail. The general digital loop operation is governed by a nonlinear difference equation from which a suitable model is developed. The lock range for the general model is derived. The performance of the digital loop for phase step and frequency step inputs for different levels of quantization without loop filter are studied. The analytical results are checked by simulating the actual system on the digital computer.
Generation and coherent detection of QPSK signal using a novel method of digital signal processing
NASA Astrophysics Data System (ADS)
Zhao, Yuan; Hu, Bingliang; He, Zhen-An; Xie, Wenjia; Gao, Xiaohui
2018-02-01
We demonstrate an optical quadrature phase-shift keying (QPSK) signal transmitter and an optical receiver for demodulating optical QPSK signal with homodyne detection and digital signal processing (DSP). DSP on the homodyne detection scheme is employed without locking the phase of the local oscillator (LO). In this paper, we present an extracting one-dimensional array of down-sampling method for reducing unwanted samples of constellation diagram measurement. Such a novel scheme embodies the following major advantages over the other conventional optical QPSK signal detection methods. First, this homodyne detection scheme does not need strict requirement on LO in comparison with linear optical sampling, such as having a flat spectral density and phase over the spectral support of the source under test. Second, the LabVIEW software is directly used for recovering the QPSK signal constellation without employing complex DSP circuit. Third, this scheme is applicable to multilevel modulation formats such as M-ary PSK and quadrature amplitude modulation (QAM) or higher speed signals by making minor changes.
Design and Development of Amplitude and phase measurement of RF signal with Digital I-Q Demodulator
NASA Astrophysics Data System (ADS)
Soni, Dipal; Rajnish, Kumar; Verma, Sriprakash; Patel, Hriday; Trivedi, Rajesh; Mukherjee, Aparajita
2017-04-01
ITER-India, working as a nodal agency from India for ITER project [1], is responsible to deliver one of the packages, called Ion Cyclotron Heating & Current Drive (ICH&CD) - Radio Frequency Power Sources (RFPS). RFPS is having two cascaded amplifier chains (10 kW, 130 kW & 1.5 MW) combined to get 2.5 MW RF power output. Directional couplers are inserted at the output of each stage to extract forward power and reflected power as samples for measurement of amplitude and phase. Using passive mixer, forward power and reflected power are down converted to 1MHz Intermediate frequency (IF). This IF signal is used as an input to the Digital IQ Demodulator (DIQDM). DIQDM is realized using National Instruments make PXI hardware & LabVIEW software tool. In this paper, Amplitude and Phase measurement of RF signal with DIQDM technique is described. Also test results with dummy signals and signal generated from low power RF systems is discussed here.
Design of a delay-locked-loop-based time-to-digital converter
NASA Astrophysics Data System (ADS)
Zhaoxin, Ma; Xuefei, Bai; Lu, Huang
2013-09-01
A time-to-digital converter (TDC) based on a reset-free and anti-harmonic delay-locked loop (DLL) circuit for wireless positioning systems is discussed and described. The DLL that generates 32-phase clocks and a cycle period detector is employed to avoid “false locking". Driven by multiphase clocks, an encoder detects pulses and outputs the phase of the clock when the pulse arrives. The proposed TDC was implemented in SMIC 0.18 μm CMOS technology, and its core area occupies 0.7 × 0.55 mm2. The reference frequency ranges from 20 to 150 MHz. An LSB resolution of 521 ps can be achieved by using a reference clock of 60 MHz and the DNL is less than ±0.75 LSB. It dissipates 31.5 mW at 1.8 V supply voltage.
NASA Technical Reports Server (NTRS)
Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.
1981-01-01
The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.
Lin, Chao; Shen, Xueju; Li, Baochen
2014-08-25
We demonstrate that all parameters of optical lightwave can be simultaneously designed as keys in security system. This multi-dimensional property of key can significantly enlarge the key space and further enhance the security level of the system. The single-shot off-axis digital holography with orthogonal polarized reference waves is employed to perform polarization state recording on object wave. Two pieces of polarization holograms are calculated and fabricated to be arranged in reference arms to generate random amplitude and phase distribution respectively. When reconstruction, original information which is represented with QR code can be retrieved using Fresnel diffraction with decryption keys and read out noise-free. Numerical simulation results for this cryptosystem are presented. An analysis on the key sensitivity and fault tolerance properties are also provided.
NASA Astrophysics Data System (ADS)
Zheng, Puchao; Li, Enpu; Zhao, Jianlin; Di, Jianglei; Zhou, Wangmin; Wang, Hao; Zhang, Ruifeng
2009-11-01
By using digital holographic interferometory with phase multiplication, the visualized measurement of the acoustic levitation field (ALF) with single axis is carried out. The digital holograms of the ALF under different conditions are recorded by use of CCD. The corresponding digital holographic interferograms reflecting the sound pressure distribution and the interference phase distribution are obtained by numerical reconstruction and phase subtraction, which are consistent with the theoretical results. It indicates that the proposed digital holographic interferometory with phase multiplication can successfully double the fringe number of the interference phase patterns of the ALF and improve the measurement precision. Compared with the conventional optical holographic interferometory, digital holographic interferometory has the merits of quasi real-time, more exactitude and convenient operation, and it provides an effective way for studying the sound pressure distribution of the ALF.
Digital tanlock loop architecture with no delay
NASA Astrophysics Data System (ADS)
Al-Kharji AL-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud; Ponnapalli, Prasad
2012-02-01
This article proposes a new architecture for a digital tanlock loop which eliminates the time-delay block. The ? (rad) phase shift relationship between the two channels, which is generated by the delay block in the conventional time-delay digital tanlock loop (TDTL), is preserved using two quadrature sampling signals for the loop channels. The proposed system outperformed the original TDTL architecture, when both systems were tested with frequency shift keying input signal. The new system demonstrated better linearity and acquisition speed as well as improved noise performance compared with the original TDTL architecture. Furthermore, the removal of the time-delay block enables all processing to be digitally performed, which reduces the implementation complexity. Both the original TDTL and the new architecture without the delay block were modelled and simulated using MATLAB/Simulink. Implementation issues, including complexity and relation to simulation of both architectures, are also addressed.
Towards multifocal ultrasonic neural stimulation: pattern generation algorithms
NASA Astrophysics Data System (ADS)
Hertzberg, Yoni; Naor, Omer; Volovick, Alexander; Shoham, Shy
2010-10-01
Focused ultrasound (FUS) waves directed onto neural structures have been shown to dynamically modulate neural activity and excitability, opening up a range of possible systems and applications where the non-invasiveness, safety, mm-range resolution and other characteristics of FUS are advantageous. As in other neuro-stimulation and modulation modalities, the highly distributed and parallel nature of neural systems and neural information processing call for the development of appropriately patterned stimulation strategies which could simultaneously address multiple sites in flexible patterns. Here, we study the generation of sparse multi-focal ultrasonic distributions using phase-only modulation in ultrasonic phased arrays. We analyse the relative performance of an existing algorithm for generating multifocal ultrasonic distributions and new algorithms that we adapt from the field of optical digital holography, and find that generally the weighted Gerchberg-Saxton algorithm leads to overall superior efficiency and uniformity in the focal spots, without significantly increasing the computational burden. By combining phased-array FUS and magnetic-resonance thermometry we experimentally demonstrate the simultaneous generation of tightly focused multifocal distributions in a tissue phantom, a first step towards patterned FUS neuro-modulation systems and devices.
NASA Astrophysics Data System (ADS)
Prawata, Albertus Galih
2017-11-01
The architectural design stages in architectural practices or in architectural design studio consist of many aspects. One of them is during the early phases of the design process, where the architects or designers try to interpret the project brief into the design concept. This paper is a report of the procedure of digital tools in the early design process in an architectural practice in Jakarta. It targets principally the use of BIM and digital modeling to generate information and transform them into conceptual forms, which is not very common in Indonesian architectural practices. Traditionally, the project brief is transformed into conceptual forms by using sketches, drawings, and physical model. The new method using digital tools shows that it is possible to do the same thing during the initial stage of the design process to create early architectural design forms. Architect's traditional tools and methods begin to be replaced effectively by digital tools, which would drive bigger opportunities for innovation.
Fast Offset Laser Phase-Locking System
NASA Technical Reports Server (NTRS)
Shaddock, Daniel; Ware, Brent
2008-01-01
Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog-to-digital converter (ADC) as that of the previously reported phasemeter. The ADC output is passed to the FPGA, wherein the signal is demodulated using a digitally generated oscillator signal at the offset locking frequency specified by the user. The demodulated signal is low-pass filtered, decimated to a sample rate of 1 MHz, then filtered again. The decimated and filtered signal is converted to an analog output by a 1 MHz, 16-bit digital-to-analog converters. After a simple low-pass filter, these analog signals drive the thermal and piezoelectric transducers of the laser.
A class of all digital phase locked loops - Modelling and analysis.
NASA Technical Reports Server (NTRS)
Reddy, C. P.; Gupta, S. C.
1972-01-01
An all digital phase locked loop which tracks the phase of the incoming signal once per carrier cycle is proposed. The different elements and their functions, and the phase lock operation are explained in detail. The general digital loop operation is governed by a non-linear difference equation from which a suitable model is developed. The lock range for the general model is derived. The performance of the digital loop for phase step, and frequency step inputs for different levels of quantization without loop filter, are studied. The analytical results are checked by simulating the actual system on the digital computer.
Design and Calibration of an RF Actuator for Low-Level RF Systems
NASA Astrophysics Data System (ADS)
Geng, Zheqiao; Hong, Bo
2016-02-01
X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.
Coupled Optoelectronic Oscillators:. Application to Low-Jitter Pulse Generation
NASA Astrophysics Data System (ADS)
Yu, N.; Tu, M.; Maleki, L.
2002-04-01
Actively mode-locked Erbium-doped fiber lasers (EDFL) have been studied for generating stable ultra-fast pulses (< 2 ps) at high repetition rates (> 5 GHz) [1,2]. These devices can be compact and environmentally stable, quite suitable for fiber-based high-data-rate communications and optical ultra-fast analog-to-digital conversions (ADC) [3]. The pulse-to-pulse jitter of an EDFL-based pulse generator will be ultimately limited by the phase noise of the mode-locking microwave source (typically electronic frequency synthesizers). On the other hand, opto-electronic oscillators (OEO) using fibers have been demonstrated to generate ultra-low phase noise microwaves at 10 GHz and higher [4]. The overall phase noise of an OEO can be much lower than commercially available synthesizers at the offset-frequency range above 100 Hz. Clearly, ultra-low jitter pulses can be generated by taking advantage of the low phase noise of OEOs. In this paper, we report the progress in developing a new low-jitter pulse generator by combing the two technologies. In our approach, the optical oscillator (mode-locked EDFL) and the microwave oscillator (OEO) are coupled through a common Mach-Zehnder (MZ) modulator, thus named coupled opto-electronic oscillator (COEO) [5]. Based on the results of previous OEO study, we can expect a 10 GHz pulse train with jitters less than 10 fs.
Generation of picosecond optical pulse based on chirp compensation
NASA Astrophysics Data System (ADS)
Sun, Xiaofeng; Yang, Jiaqian; Li, Shangyuan; Xue, Xiaoxiao; Zheng, Xiaoping; Zhou, Bingkun
2017-10-01
Picosecond optical pulses are widely used in optical communication systems, such as the optical time division multiplexing (OTDM) and photonic analog-to-digital converter (ADC). We have proposed and demonstrated a simple method to generate picosecond optical pulse using the mach-zehnder modulator (MZM), phase modulator (PM) and single model fiber (SMF). The phase modulator is used to generate a frequency chirp which varies periodically with time. The MZM is used to suppress the pedestal of the pulse and improve the performance of the pulse. The SMF is used to compensate the frequency chirp. We have carried out theoretical analysis and numerical simulation for the generation process of the picosecond optical pulse. The influence of phase shift between the modulation signals loaded on the MZM and PM is analyzed by numerical simulation and the conditions for the generation of picosecond optical pulse are given. The formula for calculating the optimum length of SMF which is used to compensate the linear chirp is given. The optical pulses with a repetition frequency of 10 GHz and a pulse width of 8.5 ps were obtained. The time-bandwidth product was as small as 1.09 and the timing jitter is as low as 83 fs.
Bandwidth controller for phase-locked-loop
NASA Technical Reports Server (NTRS)
Brockman, Milton H. (Inventor)
1992-01-01
A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.
2007-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and
ECDSA B-233 with Precomputation 1.0 Beta Version
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draelos, Timothy; Schroeppel, Richard; Schoeneman, Barry
2009-12-11
This software, written in C, performs two functions: 1) the generation of digital signatures using ECDSA with the B-233 curve and a table of precomputed values, and 2) the generation and encryption of a table of precomputed values to support the generation of many digital signatures. The computationally expensive operations of ECDSA signature generation are precomputed, stored in a table, and protected with AES encryption. This allows digital signatures to be generated in low-power, computationally-constrained environments, such as are often found in non-proliferation monitoring applications. The encrypted, precomputed table and digital signature generation software are used to provide public keymore » data authentication for sensor data. When digital data is presented for signing, a set of values from the table is decrypted and used to generate an ECDSA digital signatureThis software, written in C, performs two functions: 1) the generation of digital signatures using ECDSA with the B-233 curve and a table of precomputed values, and 2) the generation and encryption of a table of precomputed values to support the generation of many digital signatures. The computationally expensive operations of ECDSA signature generation are precomputed, stored in a table, and protected with AES encryption. This allows digital signatures to be generated in low-power, computationally-constrained environments, such as are often found in non-proliferation monitoring applications. The encrypted, precomputed table and digital signature generation software are used to provide public key data authentication for sensor data. When digital data is presented for signing, a set of values from the table is decrypted and used to generate an ECDSA digital signature« less
NASA Astrophysics Data System (ADS)
Hurwitz, Martina; Williams, Christopher L.; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G.; Mak, Raymond H.; Lewis, John H.
2015-01-01
Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.
All-digital phase-lock loops for noise-free signals
NASA Technical Reports Server (NTRS)
Anderson, T. O.
1973-01-01
Bit-synchronizers utilize all-digital phase-lock loops that are referenced to a high frequency digital clock. Phase-lock loop of first design acquires frequency within nominal range and tracks phase; second design is modified for random binary data by addition of simple transition detector; and third design acquires frequency over wide dynamic range.
Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator
NASA Astrophysics Data System (ADS)
Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong
2011-04-01
In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.
Holographic line field en-face OCT with digital adaptive optics in the retina in vivo.
Ginner, Laurin; Schmoll, Tilman; Kumar, Abhishek; Salas, Matthias; Pricoupenko, Nastassia; Wurster, Lara M; Leitgeb, Rainer A
2018-02-01
We demonstrate a high-resolution line field en-face time domain optical coherence tomography (OCT) system using an off-axis holography configuration. Line field en-face OCT produces high speed en-face images at rates of up to 100 Hz. The high frame rate favors good phase stability across the lateral field-of-view which is indispensable for digital adaptive optics (DAO). Human retinal structures are acquired in-vivo with a broadband light source at 840 nm, and line rates of 10 kHz to 100 kHz. Structures of different retinal layers, such as photoreceptors, capillaries, and nerve fibers are visualized with high resolution of 2.8 µm and 5.5 µm in lateral directions. Subaperture based DAO is successfully applied to increase the visibility of cone-photoreceptors and nerve fibers. Furthermore, en-face Doppler OCT maps are generated based on calculating the differential phase shifts between recorded lines.
CEBAF Superconducting Cavity RF Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugitt, Jock; Moore, Thomas
1987-03-01
The CEBAR RF system consists of 418 individual RF amplifier chains. Each superconducting cavity is phase locked to the master drive reference line to within 1 degree, and the cavity field gradient is regulated to within 1 part in 10 by a state-of-the-art RF control module. Precision, continuously adjustable, modulo 360 phase shifters are used to generate the individual phase references, and a compensated RF detector is used for level feedback. The close coupled digital system enhances system accuracy, provides self-calibration, and continuously checks the system for malfunction. Calibration curves, the operating program, and system history are stored in anmore » on board EEPROM. The RF power is generated by a 5Kw, water cooled, permanent magnet focused klystorn. The klystons are clustered in groups of 8 and powered from a common supply. RF power is transmitted to the accelerator sections by semiflexible waveguide.« less
The New Generation Russian VLBI Network
NASA Technical Reports Server (NTRS)
Finkelstein, Andrey; Ipatov, Alexander; Smolentsev, Sergey; Mardyshkin, Vyacheslav; Fedotov, Leonid; Surkis, Igor; Ivanov, Dmitrij; Gayazov, Iskander
2010-01-01
This paper deals with a new project of the Russian VLBI Network dedicated for Universal Time determinations in quasi on-line mode. The basic principles of the network design and location of antennas are explained. Variants of constructing receiving devices, digital data acquisition system, and phase calibration system are specially considered. The frequency ranges and expected values of noise temperature are given.
Quantitative Phase Microscopy for Accurate Characterization of Microlens Arrays
NASA Astrophysics Data System (ADS)
Grilli, Simonetta; Miccio, Lisa; Merola, Francesco; Finizio, Andrea; Paturzo, Melania; Coppola, Sara; Vespini, Veronica; Ferraro, Pietro
Microlens arrays are of fundamental importance in a wide variety of applications in optics and photonics. This chapter deals with an accurate digital holography-based characterization of both liquid and polymeric microlenses fabricated by an innovative pyro-electrowetting process. The actuation of liquid and polymeric films is obtained through the use of pyroelectric charges generated into polar dielectric lithium niobate crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod
2009-09-15
Measurement of strain, curvature, and twist of a deformed object play an important role in deformation analysis. Strain depends on the first order displacement derivative, whereas curvature and twist are determined by second order displacement derivatives. This paper proposes a pseudo-Wigner-Ville distribution based method for measurement of strain, curvature, and twist in digital holographic interferometry where the object deformation or displacement is encoded as interference phase. In the proposed method, the phase derivative is estimated by peak detection of pseudo-Wigner-Ville distribution evaluated along each row/column of the reconstructed interference field. A complex exponential signal with unit amplitude and the phasemore » derivative estimate as the argument is then generated and the pseudo-Wigner-Ville distribution along each row/column of this signal is evaluated. The curvature is estimated by using peak tracking strategy for the new distribution. For estimation of twist, the pseudo-Wigner-Ville distribution is evaluated along each column/row (i.e., in alternate direction with respect to the previous one) for the generated complex exponential signal and the corresponding peak detection gives the twist estimate.« less
A Timer for Synchronous Digital Systems
NASA Technical Reports Server (NTRS)
McKenney, Elizabeth; Irwin, Philip
2003-01-01
The Real-Time Interferometer Control Systems Testbed (RICST) timing board is a VersaModule Eurocard (VME)-based board that can generate up to 16 simultaneous, phase-locked timing signals at a rate defined by the user. It can also generate all seven VME interrupt requests (IRQs). The RICST timing board is suitable mainly for robotic, aerospace, and real-time applications. Several circuit boards on the market are capable of generating periodic IRQs. Most are associated with Global Positioning System (GPS) receivers and Inter Range Instrumentation Group (IRIG) time-code generators, whereas this board uses either an internal VME clock or an externally generated clock signal to synchronize multiple components of the system. The primary advantage of this board is that there is no discernible jitter in the output clock waveforms because the signals are divided down from a high-frequency clock signal instead of being phase-locked from a lower frequency. The primary disadvantage to this board, relative to other periodic-IRQ-generating boards, is that it is more difficult to synchronize the system to wall clock time.
Parallel database search and prime factorization with magnonic holographic memory devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khitun, Alexander
In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploitmore » wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.« less
Parallel database search and prime factorization with magnonic holographic memory devices
NASA Astrophysics Data System (ADS)
Khitun, Alexander
2015-12-01
In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploit wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.
Digitally controlled distributed phase shifter
Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.
1993-08-17
A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.
Digitally controlled distributed phase shifter
Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.
1993-01-01
A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.
Yi, B; Rao, B; Ding, Y H; Li, M; Xu, H Y; Zhang, M; Zhuang, G; Pan, Y
2014-11-01
The dynamic resonant magnetic perturbation (DRMP) system has been developed for the J-TEXT tokamak to study the interaction between the rotating perturbation magnetic field and the plasma. When the DRMP coils are energized by two phase sinusoidal currents with the same frequency, a 2/1 rotating resonant magnetic perturbation component will be generated. But at the same time, a small perturbation component rotating in the opposite direction is also produced because of the control error of the currents. This small component has bad influence on the experiment investigations. Actually, the mode spectrum of the generated DRMP can be optimized with an accurate control of phase difference between the two currents. In this paper, a new phase control method based on a novel all-digital phase-locked loop (ADPLL) is proposed. The proposed method features accurate phase control and flexible phase adjustment. Modeling and analysis of the proposed ADPLL is presented to guide the design of the parameters of the phase controller in order to obtain a better performance. Testing results verify the effectiveness of the ADPLL and validity of the method applying to the DRMP system.
NASA Astrophysics Data System (ADS)
Yi, B.; Rao, B.; Ding, Y. H.; Li, M.; Xu, H. Y.; Zhang, M.; Zhuang, G.; Pan, Y.
2014-11-01
The dynamic resonant magnetic perturbation (DRMP) system has been developed for the J-TEXT tokamak to study the interaction between the rotating perturbation magnetic field and the plasma. When the DRMP coils are energized by two phase sinusoidal currents with the same frequency, a 2/1 rotating resonant magnetic perturbation component will be generated. But at the same time, a small perturbation component rotating in the opposite direction is also produced because of the control error of the currents. This small component has bad influence on the experiment investigations. Actually, the mode spectrum of the generated DRMP can be optimized with an accurate control of phase difference between the two currents. In this paper, a new phase control method based on a novel all-digital phase-locked loop (ADPLL) is proposed. The proposed method features accurate phase control and flexible phase adjustment. Modeling and analysis of the proposed ADPLL is presented to guide the design of the parameters of the phase controller in order to obtain a better performance. Testing results verify the effectiveness of the ADPLL and validity of the method applying to the DRMP system.
Beam position monitor for energy recovered linac beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Thomas; Evtushenko, Pavel
A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.
Three-dimensional imaging of cultural heritage artifacts with holographic printers
NASA Astrophysics Data System (ADS)
Kang, Hoonjong; Stoykova, Elena; Berberova, Nataliya; Park, Jiyong; Nazarova, Dimana; Park, Joo Sup; Kim, Youngmin; Hong, Sunghee; Ivanov, Branimir; Malinowski, Nikola
2016-01-01
Holography is defined as a two-steps process of capture and reconstruction of the light wavefront scattered from three-dimensional (3D) objects. Capture of the wavefront is possible due to encoding of both amplitude and phase in the hologram as a result of interference of the light beam coming from the object and mutually coherent reference beam. Three-dimensional imaging provided by holography motivates development of digital holographic imaging methods based on computer generation of holograms as a holographic display or a holographic printer. The holographic printing technique relies on combining digital 3D object representation and encoding of the holographic data with recording of analog white light viewable reflection holograms. The paper considers 3D contents generation for a holographic stereogram printer and a wavefront printer as a means of analogue recording of specific artifacts which are complicated objects with regards to conventional analog holography restrictions.
Phase conjugate digital inline holography (PCDIH)
Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley; ...
2018-01-12
We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.
Phase conjugate digital inline holography (PCDIH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley
We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.
Phase-locked loops. [in analog and digital circuits communication system
NASA Technical Reports Server (NTRS)
Gupta, S. C.
1975-01-01
An attempt to systematically outline the work done in the area of phase-locked loops which are now used in modern communication system design is presented. The analog phase-locked loops are well documented in several books but discrete, analog-digital, and digital phase-locked loop work is scattered. Apart from discussing the various analysis, design, and application aspects of phase-locked loops, a number of references are given in the bibliography.
Development of Coriolis mass flowmeter with digital drive and signal processing technology.
Hou, Qi-Li; Xu, Ke-Jun; Fang, Min; Liu, Cui; Xiong, Wen-Jun
2013-09-01
Coriolis mass flowmeter (CMF) often suffers from two-phase flowrate which may cause flowtube stalling. To solve this problem, a digital drive method and a digital signal processing method of CMF is studied and implemented in this paper. A positive-negative step signal is used to initiate the flowtube oscillation without knowing the natural frequency of the flowtube. A digital zero-crossing detection method based on Lagrange interpolation is adopted to calculate the frequency and phase difference of the sensor output signals in order to synthesize the digital drive signal. The digital drive approach is implemented by a multiplying digital to analog converter (MDAC) and a direct digital synthesizer (DDS). A digital Coriolis mass flow transmitter is developed with a digital signal processor (DSP) to control the digital drive, and realize the signal processing. Water flow calibrations and gas-liquid two-phase flowrate experiments are conducted to examine the performance of the transmitter. The experimental results show that the transmitter shortens the start-up time and can maintain the oscillation of flowtube in two-phase flowrate condition. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru
2002-12-01
We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.
Vortex Airy beams directly generated via liquid crystal q-Airy-plates
NASA Astrophysics Data System (ADS)
Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin
2018-03-01
Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.
Performance evaluation of digital phase-locked loops for advanced deep space transponders
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.
1994-01-01
The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.
Digital synchronization and communication techniques
NASA Technical Reports Server (NTRS)
Lindsey, William C.
1992-01-01
Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong
The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving,more » so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.« less
Wang, Yonggang; Hui, Cong; Liu, Chong; Xu, Chao
2016-04-01
The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.
Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B
2011-04-25
We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.
Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao
2014-11-17
A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.
Interferometric phase measurement techniques for coherent beam combining
NASA Astrophysics Data System (ADS)
Antier, Marie; Bourderionnet, Jérôme; Larat, Christian; Lallier, Eric; Primot, Jérôme; Brignon, Arnaud
2015-03-01
Coherent beam combining of fiber amplifiers provides an attractive mean of reaching high power laser. In an interferometric phase measurement the beams issued for each fiber combined are imaged onto a sensor and interfere with a reference plane wave. This registration of interference patterns on a camera allows the measurement of the exact phase error of each fiber beam in a single shot. Therefore, this method is a promising candidate toward very large number of combined fibers. Based on this technique, several architectures can be proposed to coherently combine a high number of fibers. The first one based on digital holography transfers directly the image of the camera to spatial light modulator (SLM). The generated hologram is used to compensate the phase errors induced by the amplifiers. This architecture has therefore a collective phase measurement and correction. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams. This architecture is compatible with the use of multi-stage isolated amplifying fibers. In that case, only 20 pixels per fiber on the SLM are needed to obtain a residual phase shift error below λ/10rms. The second proposed architecture calculates the correction applied to each fiber channel by tracking the relative position of the interference finges. In this case, a phase modulator is placed on each channel. In that configuration, only 8 pixels per fiber on the camera is required for a stable close loop operation with a residual phase error of λ/20rms, which demonstrates the scalability of this concept.
Thermal residual stress evaluation based on phase-shift lateral shearing interferometry
NASA Astrophysics Data System (ADS)
Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan
2018-06-01
An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.
Improving the phase measurement by the apodization filter in the digital holography
NASA Astrophysics Data System (ADS)
Chang, Shifeng; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu
2012-11-01
Due to the finite size of the hologram aperture in digital holography, high frequency intensity and phase fluctuations along the edges of the images, which reduce the precision of phase measurement. In this paper, the apodization filters are applied to improve the phase measurement in the digital holography. Firstly, the experimental setup of the lensless Fourier transform digital holography is built, where the sample is a standard phase grating with the grating constant of 300μm and the depth of 150nm. Then, apodization filters are applied to phase measurement of the sample with three kinds of the window functions: Tukey window, Hanning window and Blackman window, respectively. Finally, the results were compared to the detection data given by the commercial white-light interferometer. It is shown that aperture diffraction effects can be reduced by the digital apodization, and the phase measurement with the apodization is more accurate than in the unapodized case. Meanwhile, the Blackman window function produces better effect than the other two window functions in the measurement of the standard phase grating.
NASA Technical Reports Server (NTRS)
Fouts, Douglas J.
1992-01-01
The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.
Digital Detection and Processing of Multiple Quadrature Harmonics for EPR Spectroscopy
Ahmad, R.; Som, S.; Kesselring, E.; Kuppusamy, P.; Zweier, J.L.; Potter, L.C.
2010-01-01
A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. PMID:20971667
Digital detection and processing of multiple quadrature harmonics for EPR spectroscopy.
Ahmad, R; Som, S; Kesselring, E; Kuppusamy, P; Zweier, J L; Potter, L C
2010-12-01
A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. Copyright © 2010 Elsevier Inc. All rights reserved.
A low jitter all - digital phase - locked loop in 180 nm CMOS technology
NASA Astrophysics Data System (ADS)
Shumkin, O. V.; Butuzov, V. A.; Normanov, D. D.; Ivanov, P. Yu
2016-02-01
An all-digital phase locked loop (ADPLL) was implemented in 180 nm CMOS technology. The proposed ADPLL uses a digitally controlled oscillator to achieve 3 ps resolution. The pure digital phase locked loop is attractive because it is less sensitive to noise and operating conditions than its analog counterpart. The proposed ADPLL can be easily applied to different process as a soft IP block, making it very suitable for system-on-chip applications.
NASA Astrophysics Data System (ADS)
Tolle, F.; Friedt, J. M.; Bernard, É.; Prokop, A.; Griselin, M.
2014-12-01
Digital Elevation Model (DEM) is a key tool for analyzing spatially dependent processes including snow accumulation on slopes or glacier mass balance. Acquiring DEM within short time intervals provides new opportunities to evaluate such phenomena at the daily to seasonal rates.DEMs are usually generated from satellite imagery, aerial photography, airborne and ground-based LiDAR, and GPS surveys. In addition to these classical methods, we consider another alternative for periodic DEM acquisition with lower logistics requirements: digital processing of ground based, oblique view digital photography. Such a dataset, acquired using commercial off the shelf cameras, provides the source for generating elevation models using Structure from Motion (SfM) algorithms. Sets of pictures of a same structure but taken from various points of view are acquired. Selected features are identified on the images and allow for the reconstruction of the three-dimensional (3D) point cloud after computing the camera positions and optical properties. This cloud point, generated in an arbitrary coordinate system, is converted to an absolute coordinate system either by adding constraints of Ground Control Points (GCP), or including the (GPS) position of the cameras in the processing chain. We selected the opensource digital signal processing library provided by the French Geographic Institute (IGN) called Micmac for its fine processing granularity and the ability to assess the quality of each processing step.Although operating in snow covered environments appears challenging due to the lack of relevant features, we observed that enough reference points could be identified for 3D reconstruction. Despite poor climatic environment of the Arctic region considered (Ny Alesund area, 79oN) is not a problem for SfM, the low lying spring sun and the cast shadows appear as a limitation because of the lack of color dynamics in the digital cameras we used. A detailed understanding of the processing steps is mandatory during the image acquisition phase: compliance with acquisition rules reducing digital processing errors helps minimizing the uncertainty on the point cloud absolute position in its coordinate system. 3D models from SfM are compared with terrestrial LiDAR acquisitions for resolution assesment.
Efficient droplet router for digital microfluidic biochip using particle swarm optimizer
NASA Astrophysics Data System (ADS)
Pan, Indrajit; Samanta, Tuhina
2013-01-01
Digital Microfluidic Biochip has emerged as a revolutionary finding in the field of micro-electromechanical research. Different complex bioassays and pathological analysis are being efficiently performed on this miniaturized chip with negligible amount of sample specimens. Initially biochip was invented on continuous-fluid-flow mechanism but later it has evolved with more efficient concept of digital-fluid-flow. These second generation biochips are capable of serving more complex bioassays. This operational change in biochip technology emerged with the requirement of high end computer aided design needs for physical design automation. The change also paved new avenues of research to assist the proficient design automation. Droplet routing is one of those major aspects where it necessarily requires minimization of both routing completion time and total electrode usage. This task involves optimization of multiple associated parameters. In this paper we have proposed a particle swarm optimization based approach for droplet outing. The process mainly operates in two phases where initially we perform clustering of state space and classification of nets into designated clusters. This helps us to reduce solution space by redefining local sub optimal target in the interleaved space between source and global target of a net. In the next phase we resolve the concurrent routing issues of every sub optimal situation to generate final routing schedule. The method was applied on some standard test benches and hard test sets. Comparative analysis of experimental results shows good improvement on the aspect of unit cell usage, routing completion time and execution time over some well existing methods.
Calibration techniques for a fast duo-spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, J.T.; Den Hartog, D.J.
1996-06-01
The authors have completed the upgrade and calibration of the Ion Dynamics Spectrometer (IDS), a high-speed Doppler duo-spectrometer which measures ion flow and temperature in the MST Reversed-field Pinch. This paper describes an in situ calibration of the diagnostic`s phase and frequency response. A single clock was employed to generate both a digital test signal and a digitizer trigger thus avoiding frequency drift and providing a highly resolved measurement over the system bandwidth. Additionally, they review the measurement of the spectrometer instrument function and absolute intensity response. This calibration and subsequent performance demonstrate the IDS to be one of themore » fastest, highest throughput diagnostics of its kind. Typical measurements are presented.« less
Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert
2009-03-10
In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.
Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2017-03-01
This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.
NASA Technical Reports Server (NTRS)
Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Cunningham, Thomas J. (Inventor); Newton, Kenneth W. (Inventor)
2014-01-01
An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.
An all-digital phase-locked loop demodulator based on FPGA
NASA Astrophysics Data System (ADS)
Gong, X. F.; Cui, Z. D.
2017-09-01
This paper studied the principle of analogue phase-locked loop demodulation and work process of digital phase-locked loop. It is found that the higher the reference signal frequency is, the smaller the duty ratio of the discriminator output signal is. Carrier detection is achieved by using this relationship. The experimental results indicate that the demodulator based on the principle could realize high-quality transmission of digital signals and could be an effective FM communication mode for studying wireless transmission of digital signals.
Quantum random number generation for loophole-free Bell tests
NASA Astrophysics Data System (ADS)
Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar
2015-05-01
We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.
Electro-optical imaging systems integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wight, R.
1987-01-01
Since the advent of high resolution, high data rate electronic sensors for military aircraft, the demands on their counterpart, the image generator hard copy output system, have increased dramatically. This has included support of direct overflight and standoff reconnaissance systems and often has required operation within a military shelter or van. The Tactical Laser Beam Recorder (TLBR) design has met the challenge each time. A third generation (TLBR) was designed and two units delivered to rapidly produce high quality wet process imagery on 5-inch film from a 5-sensor digital image signal input. A modular, in-line wet film processor is includedmore » in the total TLBR (W) system. The system features a rugged optical and transport package that requires virtually no alignment or maintenance. It has a ''Scan FIX'' capability which corrects for scanner fault errors and ''Scan LOC'' system which provides for complete phase synchronism isolation between scanner and digital image data input via strobed, 2-line digital buffers. Electronic gamma adjustment automatically compensates for variable film processing time as the film speed changes to track the sensor. This paper describes the fourth meeting of that challenge, the High Resolution Laser Beam Recorder (HRLBR) for Reconnaissance/Tactical applications.« less
Digital signal processor and processing method for GPS receivers
NASA Technical Reports Server (NTRS)
Thomas, Jr., Jess B. (Inventor)
1989-01-01
A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.
Handling Nonlinearities in ELF/VLF Generation Using Modulated Heating at HAARP
NASA Astrophysics Data System (ADS)
Jin, G.; Spasojevic, M.; Cohen, M.; Inan, U. S.
2011-12-01
George Jin Maria Spasojevic Morris Cohen Umran Inan Stanford University Modulated HF heating of the D-region ionosphere near the auroral electrojet can generate extremely low frequency (ELF) waves in the kilohertz range. This process is nonlinear and generates harmonics at integer multiples of the ELF modulation frequency. The nonlinear distortion has implications for any communications applications since the harmonics contain a substantial fraction of the signal power and use up bandwidth. We examine two techniques for handling the nonlinearity. First we modulate the HF heating with a non-sinusoidal envelope designed to create a sinusoidal change in the Hall conductivity at a particular altitude in the ionosphere to minimize any generated harmonics. The modulation waveform is generated by inverting a numerical HF heating model, starting from the desired conductivity time series, and obtaining the HF power envelope that will result in that conductivity. The second technique attempts to use the energy in the harmonics to improve bit error rates when digital modulation is applied to the ELF carrier. In conventional quadrature phase-shift keying (QPSK), where a ELF carrier is phase-shifted by 0°, 90°, 180°, and 270° in order to transmit a pair of bits, the even harmonics cannot distinguish between the four possible shifts. By using different phase values, all the energy in the harmonics can contribute to determining the phase of the carrier and thus improve the bit error rate.
Lunar mineral feedstocks from rocks and soils: X-ray digital imaging in resource evaluation
NASA Technical Reports Server (NTRS)
Chambers, John G.; Patchen, Allan; Taylor, Lawrence A.; Higgins, Stefan J.; Mckay, David S.
1994-01-01
The rocks and soils of the Moon provide raw materials essential to the successful establishment of a lunar base. Efficient exploitation of these resources requires accurate characterization of mineral abundances, sizes/shapes, and association of 'ore' and 'gangue' phases, as well as the technology to generate high-yield/high-grade feedstocks. Only recently have x-ray mapping and digital imaging techniques been applied to lunar resource evaluation. The topics covered include inherent differences between lunar basalts and soils and quantitative comparison of rock-derived and soil-derived ilmenite concentrates. It is concluded that x-ray digital-imaging characterization of lunar raw materials provides a quantitative comparison that is unattainable by traditional petrographic techniques. These data are necessary for accurately determining mineral distributions of soil and crushed rock material. Application of these techniques will provide an important link to choosing the best raw material for mineral beneficiation.
High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data
NASA Technical Reports Server (NTRS)
Lee, Seung-Kuk; Ryu, Joo-Hyung
2017-01-01
This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.
The Australian SKA Pathfinder: project update and initial operations
NASA Astrophysics Data System (ADS)
Schinckel, Antony E. T.; Bock, Douglas C.-J.
2016-08-01
The Australian Square Kilometre Array Pathfinder (ASKAP) will be the fastest dedicated cm-wave survey telescope, and will consist of 36 12-meter 3-axis antennas, each with a large chequerboard phased array feed (PAF) receiver operating between 0.7 and 1.8 GHz, and digital beamforming prior to correlation. The large raw data rates involved ( 100 Tb/sec), and the need to do pipeline processing, has led to the antenna incorporating a third axis to fix the parallactic angle with respect to the entire optical system (blockages and phased array feed). It also results in innovative technical solutions to the data transport and processing issues. ASKAP is located at the Murchison Radio-astronomy Observatory (MRO), a new observatory developed for the Square Kilometre Array (SKA), 315 kilometres north-east of Geraldton, Western Australia. The MRO also hosts the SKA low frequency pathfinder instrument, the Murchison Widefield Array and will host the initial low frequency instrument of the SKA, SKA1-Low. Commissioning of ASKAP using six antennas equipped with first-generation PAFs is now complete and installation of second-generation PAFs and digital systems is underway. In this paper we review technical progress and commissioning to date, and refer the reader to relevant technical and scientific publications.
Schuler, Friedrich; Schwemmer, Frank; Trotter, Martin; Wadle, Simon; Zengerle, Roland; von Stetten, Felix; Paust, Nils
2015-07-07
Aqueous microdroplets provide miniaturized reaction compartments for numerous chemical, biochemical or pharmaceutical applications. We introduce centrifugal step emulsification for the fast and easy production of monodisperse droplets. Homogenous droplets with pre-selectable diameters in a range from 120 μm to 170 μm were generated with coefficients of variation of 2-4% and zero run-in time or dead volume. The droplet diameter depends on the nozzle geometry (depth, width, and step size) and interfacial tensions only. Droplet size is demonstrated to be independent of the dispersed phase flow rate between 0.01 and 1 μl s(-1), proving the robustness of the centrifugal approach. Centrifugal step emulsification can easily be combined with existing centrifugal microfluidic unit operations, is compatible to scalable manufacturing technologies such as thermoforming or injection moulding and enables fast emulsification (>500 droplets per second and nozzle) with minimal handling effort (2-3 pipetting steps). The centrifugal microfluidic droplet generation was used to perform the first digital droplet recombinase polymerase amplification (ddRPA). It was used for absolute quantification of Listeria monocytogenes DNA concentration standards with a total analysis time below 30 min. Compared to digital droplet polymerase chain reaction (ddPCR), with processing times of about 2 hours, the overall processing time of digital analysis was reduced by more than a factor of 4.
NASA Technical Reports Server (NTRS)
Blasche, P. R.
1980-01-01
Specific configurations of first and second order all digital phase locked loops are analyzed for both ideal and additive white gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation is presented along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop are consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application.
Imaging with Second-Harmonic Generation Nanoparticles
NASA Astrophysics Data System (ADS)
Hsieh, Chia-Lung
Second-harmonic generation nanoparticles show promise as imaging probes due to their coherent and stable signal with a broad flexibility in the choice of excitation wavelength. In this thesis, we developed and demonstrated barium titanate nanoparticles as second-harmonic radiation imaging probes. We studied the absolute second-harmonic generation efficiency of the nanoparticles on single-particle level. The polarization dependent second-harmonic signal of single nanoparticles was studied in detail. From the measured polar response, we were able to find the orientation of the nanoparticle. We developed a biochemical interface for using the second-harmonic nanoprobes as biomarkers, including in vitro cellular imaging and in vivo live animal imaging. The nanoparticles were surface functionalized with primary amine groups for stable colloidal dispersion. We achieved specific labeling of the second-harmonic nanoprobes via immunostaining where the antibodies were covalently conjugated onto the nanoparticles. We observed no toxicity of the functionalized nanoparticles to biological cells. The coherent second-harmonic signal radiated from the nanoparticles offers opportunities for new imaging techniques. Using interferometric detection, namely harmonic holography, both amplitude and phase of the second-harmonic field can be captured. Through digital beam propagation, three-dimensional field distribution, reflecting three-dimensional distribution of the nanoparticles, can be reconstructed. We achieved a scan-free three-dimensional imaging of nanoparticles in biological cells with sub-micron spatial resolution by using the harmonic holographic microscope. We further exploited the coherent second-harmonic signal for imaging through scattering media by performing optical phase conjugation of the second-harmonic signal. We demonstrated an all-digital optical phase conjugation of the second-harmonic signal originated from a nanoparticle by combining harmonic holography and dynamic computer generated holography using a spatial light modulator. The phase-conjugated second-harmonic scattered field retraced the scattering trajectory and formed a clean focus on the nanoparticle placed inside a scattering medium. The nanoparticle acted as a beacon of light; it helped us find the tailored wavefront for concentrating light at the nanoparticle inside the scattering medium. We also demonstrated imaging through a thin scattering medium by raster-scanning the phase-conjugated focus in the vicinity of the beacon nanoparticle, in which a clear image of a target placed behind a ground glass diffuser was obtained.
Optimum design of hybrid phase locked loops
NASA Technical Reports Server (NTRS)
Lee, P.; Yan, T.
1981-01-01
The design procedure of phase locked loops is described in which the analog loop filter is replaced by a digital computer. Specific design curves are given for the step and ramp input changes in phase. It is shown that the designed digital filter depends explicitly on the product of the sampling time and the noise bandwidth of the phase locked loop. This technique of optimization can be applied to the design of digital analog loops for other applications.
Digital signal processing in the radio science stability analyzer
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
1995-01-01
The Telecommunications Division has built a stability analyzer for testing Deep Space Network installations during flight radio science experiments. The low-frequency part of the analyzer operates by digitizing wave signals with bandwidths between 80 Hz and 45 kHz. Processed outputs include spectra of signal, phase, amplitude, and differential phase; time series of the same quantities; and Allan deviation of phase and differential phase. This article documents the digital signal-processing methods programmed into the analyzer.
An agile frequency synthesizer/RF generator for the SCAMP terminal
NASA Astrophysics Data System (ADS)
Wolfson, Harry M.
1992-09-01
This report describes a combination agile synthesizer and reference frequency generator called the RF Generator, which was developed for use in the Advanced SCAMP (ASCAMP) program. The ASCAMP is a hand-carried, battery-powered, man-portable ground terminal that is being developed for EHF satellite communications. In order to successfully achieve a truly portable terminal, all of the subsystems and components in ASCAMP were designed with the following critical goals: low power, lightweight, and small size. The RF Generator is based on a hybrid design approach of direct digital and direct analog synthesis techniques that was optimized for small size, low power consumption, fast tuning, low spurious, and low phase noise. The RF Generator was conceived with the philosophy that simplicity of design would lead to a synthesizer that differentiates itself from those used in the past by its ease of fabrication and tuning. By avoiding more complex design approaches, namely, indirect analog (phase lock loops), a more easily produceable design could be achieved. An effort was made to minimize the amount of circuitry in the RF Generator, thereby making trade-offs in performance versus complexity and parts count when it was appropriate.
Transient response to three-phase faults on a wind turbine generator. Ph.D. Thesis - Toledo Univ.
NASA Technical Reports Server (NTRS)
Gilbert, L. J.
1978-01-01
In order to obtain a measure of its responses to short circuits a large horizontal axis wind turbine generator was modeled and its performance was simulated on a digital computer. Simulation of short circuit faults on the synchronous alternator of a wind turbine generator, without resort to the classical assumptions generally made for that analysis, indicates that maximum clearing times for the system tied to an infinite bus are longer than the typical clearing times for equivalent capacity conventional machines. Also, maximum clearing times are independent of tower shadow and wind shear. Variation of circuit conditions produce the modifications in the transient response predicted by analysis.
A simple system for 160GHz optical terahertz wave generation and data modulation
NASA Astrophysics Data System (ADS)
Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin
2018-01-01
A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.
Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator.
Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo
2009-06-22
Liquid crystal on Silicon (LCOS) spatial phase modulators offer enhanced possibilities for adaptive optics applications in terms of response velocity and fidelity. Unlike deformable mirrors, they present a capability for reproducing discontinuous phase profiles. This ability also allows an increase in the effective stroke of the device by means of phase wrapping. The latter is only limited by the diffraction related effects that become noticeable as the number of phase cycles increase. In this work we estimated the ranges of generation of the Zernike polynomials as a means for characterizing the performance of the device. Sets of images systematically degraded with the different Zernike polynomials generated using a LCOS phase modulator have been recorded and compared with their theoretical digital counterparts. For each Zernike mode, we have found that image degradation reaches a limit for a certain coefficient value; further increase in the aberration amount has no additional effect in image quality. This behavior is attributed to the intensification of the 0-order diffraction. These results have allowed determining the usable limits of the phase modulator virtually free from diffraction artifacts. The results are particularly important for visual simulation and ophthalmic testing applications, although they are equally interesting for any adaptive optics application with liquid crystal based devices.
NASA Astrophysics Data System (ADS)
Gelmini, E.; Minoni, U.; Docchio, F.
1995-08-01
A double heterodyne interferometric instrument using a tunable synthetic wavelength for the absolute measurements of distance and position is presented. The optical synthetic wavelength is generated by a pair of PZT-tunable diode-pumped Nd:YAG lasers operating at 1.064 μm. Based on a closed-loop scheme, a suitable electronic circuit has been developed to implement the frequency locking of the two lasers. A digital frequency comparator provides an error signal, used to control the slave laser, by comparing the laser beat frequency to a reference oscillator. Demodulation of the superheterodyne signals is obtained by a rf detector followed by low-pass filtering. Distance measurements are obtained by a digital phase meter gauging the phase difference between the demodulated signals from a measuring interferometer and from a reference interferometer. The paper presents the optical and the electronic layouts of the instrument as well as experimental results from a laboratory prototype.
FPGA based digital phase-coding quantum key distribution system
NASA Astrophysics Data System (ADS)
Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu
2015-12-01
Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.
NASA Technical Reports Server (NTRS)
Reddy, C. P.; Gupta, S. C.
1973-01-01
An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.
Binary phase locked loops for Omega receivers
NASA Technical Reports Server (NTRS)
Chamberlin, K.
1974-01-01
An all-digital phase lock loop (PLL) is considered because of a number of problems inherent in an employment of analog PLL. The digital PLL design presented solves these problems. A single loop measures all eight Omega time slots. Memory-aiding leads to the name of this design, the memory-aided phase lock loop (MAPLL). Basic operating principles are discussed and the superiority of MAPLL over the conventional digital phase lock loop with regard to the operational efficiency for Omega applications is demonstrated.
NASA Astrophysics Data System (ADS)
Kiasaleh, Kamran
1994-02-01
A novel optical phase-locked loop (OPLL) system for the self-homodyne detection of digitally phase modulated optical signals is introduced. A Mach-Zehnder type interferometer is used to self-homodyne binary phase-modulated optical signals with an external phase modulator inserted in the control arm of the interferometer.
Digital forensics: an analytical crime scene procedure model (ACSPM).
Bulbul, Halil Ibrahim; Yavuzcan, H Guclu; Ozel, Mesut
2013-12-10
In order to ensure that digital evidence is collected, preserved, examined, or transferred in a manner safeguarding the accuracy and reliability of the evidence, law enforcement and digital forensic units must establish and maintain an effective quality assurance system. The very first part of this system is standard operating procedures (SOP's) and/or models, conforming chain of custody requirements, those rely on digital forensics "process-phase-procedure-task-subtask" sequence. An acceptable and thorough Digital Forensics (DF) process depends on the sequential DF phases, and each phase depends on sequential DF procedures, respectively each procedure depends on tasks and subtasks. There are numerous amounts of DF Process Models that define DF phases in the literature, but no DF model that defines the phase-based sequential procedures for crime scene identified. An analytical crime scene procedure model (ACSPM) that we suggest in this paper is supposed to fill in this gap. The proposed analytical procedure model for digital investigations at a crime scene is developed and defined for crime scene practitioners; with main focus on crime scene digital forensic procedures, other than that of whole digital investigation process and phases that ends up in a court. When reviewing the relevant literature and interrogating with the law enforcement agencies, only device based charts specific to a particular device and/or more general perspective approaches to digital evidence management models from crime scene to courts are found. After analyzing the needs of law enforcement organizations and realizing the absence of crime scene digital investigation procedure model for crime scene activities we decided to inspect the relevant literature in an analytical way. The outcome of this inspection is our suggested model explained here, which is supposed to provide guidance for thorough and secure implementation of digital forensic procedures at a crime scene. In digital forensic investigations each case is unique and needs special examination, it is not possible to cover every aspect of crime scene digital forensics, but the proposed procedure model is supposed to be a general guideline for practitioners. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array
2017-01-16
Lincoln Laboratory Lexington, Massachusetts, USA Abstract—The Aperture- Level Simultaneous Transmit and Re- ceive (ALSTAR) architecture enables extremely...In [1], the Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture was proposed for achieving STAR using a fully digital phased array...Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture enables STAR functionality in a digital phased array without the use of specialized
Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis; ...
2017-11-06
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis; ...
2017-11-06
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments
Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano
2016-01-01
Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10−9 Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation. PMID:26999138
Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments.
Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano
2016-03-16
Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10(-9) Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.
Digital Phase-Locked Loop With Phase And Frequency Feedback
NASA Technical Reports Server (NTRS)
Thomas, J. Brooks
1991-01-01
Advanced design for digital phase-lock loop (DPLL) allows loop gains higher than those used in other designs. Divided into two major components: counterrotation processor and tracking processor. Notable features include use of both phase and rate-of-change-of-phase feedback instead of frequency feedback alone, normalized sine phase extractor, improved method for extracting measured phase, and improved method for "compressing" output rate.
Precision electronic speed controller for an alternating-current
Bolie, Victor W.
1988-01-01
A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.
NASA Technical Reports Server (NTRS)
Patterson, G.
1973-01-01
The data processing procedures and the computer programs were developed to predict structural responses using the Impulse Transfer Function (ITF) method. There are three major steps in the process: (1) analog-to-digital (A-D) conversion of the test data to produce Phase I digital tapes (2) processing of the Phase I digital tapes to extract ITF's and storing them in a permanent data bank, and (3) predicting structural responses to a set of applied loads. The analog to digital conversion is performed by a standard package which will be described later in terms of the contents of the resulting Phase I digital tape. Two separate computer programs have been developed to perform the digital processing.
NASA Astrophysics Data System (ADS)
Degaudenzi, Riccardo; Vanghi, Vieri
1994-02-01
In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.
SNR Degradation in Undersampled Phase Measurement Systems
Salido-Monzú, David; Meca-Meca, Francisco J.; Martín-Gorostiza, Ernesto; Lázaro-Galilea, José L.
2016-01-01
A wide range of measuring applications rely on phase estimation on sinusoidal signals. These systems, where the estimation is mainly implemented in the digital domain, can generally benefit from the use of undersampling to reduce the digitizer and subsequent digital processing requirements. This may be crucial when the application characteristics necessarily imply a simple and inexpensive sensor. However, practical limitations related to the phase stability of the band-pass filter prior digitization establish restrictions to the reduction of noise bandwidth. Due to this, the undersampling intensity is practically defined by noise aliasing, taking into account the amount of signal-to-noise ratio (SNR) reduction caused by it considering the application accuracy requirements. This work analyzes the relationship between undersampling frequency and SNR reduction, conditioned by the stability requirements of the filter that defines the noise bandwidth before digitization. The effect of undersampling is quantified in a practical situation where phase differences are measured by in-phase and quadrature (I/Q) demodulation for an infrared ranging application. PMID:27783033
Space shuttle main engine controller assembly, phase C-D. [with lagging system design and analysis
NASA Technical Reports Server (NTRS)
1973-01-01
System design and system analysis and simulation are slightly behind schedule, while design verification testing has improved. Input/output circuit design has improved, but digital computer unit (DCU) and mechanical design continue to lag. Part procurement was impacted by delays in printed circuit board, assembly drawing releases. These are the result of problems in generating suitable printed circuit artwork for the very complex and high density multilayer boards.
Hydrophone Investigations of Earthquakes and Explosion Generated High-Frequency Seismic Phases
1989-06-30
stacked along three axes, a temperature sensor , a 2- component tiltmeter , and floating point analog-to-digital electronics. It is clamped inside the... sensors within the ocean- sediment-basement column in order to maximize the signal-to-noise ratio and the signal fidelity of various seismic and acoustic...improved by siting the sensors below the ocean-sediment interface. These changes are especially pronounced on horizontal sensors . Although siting the
DEM generation in cloudy-rainy mountainous area with multi-baseline SAR interferometry
NASA Astrophysics Data System (ADS)
Wu, Hong'an; Zhang, Yonghong; Jiang, Decai; Kang, Yonghui
2018-03-01
Conventional singe baseline InSAR is easily affected by atmospheric artifacts, making it difficult to generate highprecision DEM. To solve this problem, in this paper, a multi-baseline interferometric phase accumulation method with weights fixed by coherence is proposed to generate higher accuracy DEM. The mountainous area in Kunming, Yunnan Province, China is selected as study area, which is characterized by cloudy weather, rugged terrain and dense vegetation. The multi-baseline InSAR experiments are carried out by use of four ALOS-2 PALSAR-2 images. The generated DEM is evaluated by Chinese Digital Products of Fundamental Geographic Information 1:50000 DEM. The results demonstrate that: 1) the proposed method can reduce atmospheric artifacts significantly; 2) the accuracy of InSAR DEM generated by six interferograms satisfies the standard of 1:50000 DEM Level Three and American DTED-1.
Design and status of the RF-digitizer integrated circuit
NASA Technical Reports Server (NTRS)
Rayhrer, B.; Lam, B.; Young, L. E.; Srinivasan, J. M.; Thomas, J. B.
1991-01-01
An integrated circuit currently under development samples a bandpass-limited signal at a radio frequency in quadrature and then performs a simple sum-and-dump operation in order to filter and lower the rate of the samples. Downconversion to baseband is carried out by the sampling step itself through the aliasing effect of an appropriately selected subharmonic sampling frequency. Two complete RF digitizer circuits with these functions will be implemented with analog and digital elements on one GaAs substrate. An input signal, with a carrier frequency as high as 8 GHz, can be sampled at a rate as high as 600 Msamples/sec for each quadrature component. The initial version of the chip will sign-sample (1-bit) the input RF signal. The chip will contain a synthesizer to generate a sample frequency that is a selectable integer multiple of an input reference frequency. In addition to the usual advantages of compactness and reliability associated with integrated circuits, the single chip will replace several steps required by standard analog downconversion. Furthermore, when a very high initial sample rate is selected, the presampling analog filters can be given very large bandwidths, thereby greatly reducing phase and delay instabilities typically introduced by such filters, as well as phase and delay variation due to Doppler changes.
Liu, Baiyang; Lin, Guoying; Cui, Yuehui; Li, RongLin
2017-08-29
For purpose of utilizing orbital angular momentum (OAM) mode diversity, multiple OAM beams should be generated preferably by a single antenna. In this paper, an OAM mode reconfigurable antenna is proposed. Different from the existed OAM antennas with multiple ports for multiple OAM modes transmitting, the proposed antenna with only a single port, but it can be used to transmit mode 1 or mode -1 OAM beams arbitrary by controlling the PIN diodes on the feeding network through a programmable microcontroller which control by a remote controller. Simulation and measurement results such as return loss, near-field and far-field radiation patterns of two operating states for mode 1 and mode -1, and OAM mode orthogonality are given. The proposed antenna can serve as a candidate for utilizing OAM diversity, namely phase diversity to increase channel capacity at 2.4 GHz. Moreover, an OAM-mode based encoding method is experimentally carried out by the proposed OAM mode reconfigurable antenna, the digital data are encoded and decoded by different OAM modes. At the transmitter, the proposed OAM mode reconfigurable antenna is used to encode the digital data, data symbol 0 and 1 are mapped to OAM mode 1 and mode -1, respectively. At the receiver, the data symbols are decoded by phase gradient method.
An all digital phase locked loop for FM demodulation.
NASA Technical Reports Server (NTRS)
Greco, J.; Garodnick, J.; Schilling, D. L.
1972-01-01
A phase-locked loop designed with all-digital circuitry which avoids certain problems, and a digital voltage controlled oscillator algorithm are described. The system operates synchronously and performs all required digital calculations within one sampling period, thereby performing as a real-time special-purpose computer. The SNR ratio is computed for frequency offsets and sinusoidal modulation, and experimental results verify the theoretical calculations.
ERIC Educational Resources Information Center
Conway, Paul; Weaver, Shari
1994-01-01
This report documents the second phase of Yale University's Project Open Book, which explored the uses of digital technology for preservation of and access to deteriorating documents. Highlights include preconditions for project implementation; quality digital conversion; characteristics of source materials; digital document indexing; workflow…
A simplification of the fractional Hartley transform applied to image security system in phase
NASA Astrophysics Data System (ADS)
Jimenez, Carlos J.; Vilardy, Juan M.; Perez, Ronal
2017-01-01
In this work we develop a new encryption system for encoded image in phase using the fractional Hartley transform (FrHT), truncation operations and random phase masks (RPMs). We introduce a simplification of the FrHT with the purpose of computing this transform in an efficient and fast way. The security of the encryption system is increased by using nonlinear operations, such as the phase encoding and the truncation operations. The image to encrypt (original image) is encoded in phase and the truncation operations applied in the encryption-decryption system are the amplitude and phase truncations. The encrypted image is protected by six keys, which are the two fractional orders of the FrHTs, the two RPMs and the two pseudorandom code images generated by the amplitude and phase truncation operations. All these keys have to be correct for a proper recovery of the original image in the decryption system. We present digital results that confirm our approach.
From Geocentrism to Allocentrism: Teaching the Phases of the Moon in a Digital Full-Dome Planetarium
NASA Astrophysics Data System (ADS)
Chastenay, Pierre
2016-02-01
An increasing number of planetariums worldwide are turning digital, using ultra-fast computers, powerful graphic cards, and high-resolution video projectors to create highly realistic astronomical imagery in real time. This modern technology makes it so that the audience can observe astronomical phenomena from a geocentric as well as an allocentric perspective (the view from space). While the dome creates a sense of immersion, the digital planetarium introduces a new way to teach astronomy, especially for topics that are inherently three-dimensional and where seeing the phenomenon from different points of view is essential. Like a virtual-reality environment, an immersive digital planetarium helps learners create a more scientifically accurate visualization of astronomical phenomena. In this study, a digital planetarium was used to teach the phases of the Moon to children aged 12 to 14. To fully grasp the lunar phases, one must imagine the spherical Moon (as perceived from space), revolving around the Earth while being illuminated by the Sun, and then reconcile this view with the geocentric perspective. Digital planetariums allow learners to have both an allocentric and a geocentric perspective on the lunar phases. Using a Design experiment approach, we tested an educational scenario in which the lunar phases were taught in an allocentric digital planetarium. Based on qualitative data collected before, during, and after the planetarium intervention, we were able to demonstrate that five out of six participants had a better understanding of the lunar phases after the planetarium session.
NASA Technical Reports Server (NTRS)
Densmore, A. C.
1988-01-01
A digital phase-locked loop (PLL) scheme is described which detects the phase and power of a high SNR calibration tone. The digital PLL is implemented in software directly from the given description. It was used to evaluate the stability of the Goldstone Deep Space Station open loop receivers for Radio Science. Included is a derivative of the Allan variance sensitivity of the PLL imposed by additive white Gaussian noise; a lower limit is placed on the carrier frequency.
Fast, optically controlled Kerr phase shifter for digital signal processing.
Li, R B; Deng, L; Hagley, E W; Payne, M G; Bienfang, J C; Levine, Z H
2013-05-01
We demonstrate an optically controlled Kerr phase shifter using a room-temperature 85Rb vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach-Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.
NASA Technical Reports Server (NTRS)
Marcin, Martin; Abramovici, Alexander
2008-01-01
The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.
Two schemes for rapid generation of digital video holograms using PC cluster
NASA Astrophysics Data System (ADS)
Park, Hanhoon; Song, Joongseok; Kim, Changseob; Park, Jong-Il
2017-12-01
Computer-generated holography (CGH), which is a process of generating digital holograms, is computationally expensive. Recently, several methods/systems of parallelizing the process using graphic processing units (GPUs) have been proposed. Indeed, use of multiple GPUs or a personal computer (PC) cluster (each PC with GPUs) enabled great improvements in the process speed. However, extant literature has less often explored systems involving rapid generation of multiple digital holograms and specialized systems for rapid generation of a digital video hologram. This study proposes a system that uses a PC cluster and is able to more efficiently generate a video hologram. The proposed system is designed to simultaneously generate multiple frames and accelerate the generation by parallelizing the CGH computations across a number of frames, as opposed to separately generating each individual frame while parallelizing the CGH computations within each frame. The proposed system also enables the subprocesses for generating each frame to execute in parallel through multithreading. With these two schemes, the proposed system significantly reduced the data communication time for generating a digital hologram when compared with that of the state-of-the-art system.
Programmable rate modem utilizing digital signal processing techniques
NASA Technical Reports Server (NTRS)
Naveh, Arad
1992-01-01
The need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) modulation is discussed. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. The design trade-offs in each portion of the modulator and demodulator subsystem are outlined.
The Learning Preferences of Digital Learners in K-12 Schools in China
ERIC Educational Resources Information Center
Yang, Junfeng; Huang, Ronghuai; Kinshuk
2016-01-01
Students grown up with digital technology and Internet are called digital natives or net generation. All others, who grew up without so much immersion with digital technologies are called digital immigrants. Researchers held different ideas on whether a new generation of learners existed. One of the foci of the debate is on the appropriateness of…
NASA Astrophysics Data System (ADS)
Tíjaro Rojas, Omar J.; Torres Moreno, Yezid; Rhodes, William T.
2017-06-01
Different theories including Kolmogorov have been valid to explain and model physic phenomenal like vertical atmospheric turbulence. In horizontal path, we still have many questions, due to weather problems and consequences that it generates. To emulate some conditions of environment, we built an Optical Turbulence Generator (OTG) having spatial, humidity and temperature, measurements that were captured in the same time from optical synchronization. This development was made using digital modules as ADC (Analog to Digital Converters) and communications protocol as SPI. We all made from microcontrollers. On the other hand, to measure optical signal, we used a photomultiplier tube (PMT) where captured the intensity of fringes that shifted with a known frequency. Outcomes show temporal shift and phase drive from dependent samples (in time domain) that correspond with frozen turbulence given by Taylor theory. Parameters studied were C2n, scintillation and inner scale in temporal patterns and analysis of their relationship with the physical associated variables. These patterns were taken from Young Interferometer in laboratory room scale. In the future, we hope with these studies, we will can implement an experiment to characterize atmospheric turbulence in a long distance, placed in the equatorial weather zone.
A single chip 2 Gbit/s clock recovery subsystem for digital communications
NASA Astrophysics Data System (ADS)
Hickling, Ronald M.
A self-contained clock recovery/data resynchronizer phase locked loop (PLL) for use in microwave and fiber optic digital communications has been fabricated using GaAs integrated circuit technology. The IC contains the analog and digital components for the PLL: an edge-triggered phase detector based on a 1.2 GHz phase/frequency comparator, an op amp for creating the loop filter, and a VCO based on a differential source-coupled pair amplifier.
Single-random-phase holographic encryption of images
NASA Astrophysics Data System (ADS)
Tsang, P. W. M.
2017-02-01
In this paper, a method is proposed for encrypting an optical image onto a phase-only hologram, utilizing a single random phase mask as the private encryption key. The encryption process can be divided into 3 stages. First the source image to be encrypted is scaled in size, and pasted onto an arbitrary position in a larger global image. The remaining areas of the global image that are not occupied by the source image could be filled with randomly generated contents. As such, the global image as a whole is very different from the source image, but at the same time the visual quality of the source image is preserved. Second, a digital Fresnel hologram is generated from the new image, and converted into a phase-only hologram based on bi-directional error diffusion. In the final stage, a fixed random phase mask is added to the phase-only hologram as the private encryption key. In the decryption process, the global image together with the source image it contained, can be reconstructed from the phase-only hologram if it is overlaid with the correct decryption key. The proposed method is highly resistant to different forms of Plain-Text-Attacks, which are commonly used to deduce the encryption key in existing holographic encryption process. In addition, both the encryption and the decryption processes are simple and easy to implement.
Hybrid Analog/Digital Receiver
NASA Technical Reports Server (NTRS)
Brown, D. H.; Hurd, W. J.
1989-01-01
Advanced hybrid analog/digital receiver processes intermediate-frequency (IF) signals carrying digital data in form of phase modulation. Uses IF sampling and digital phase-locked loops to track carrier and subcarrier signals and to synchronize data symbols. Consists of three modules: IF assembly, signal-processing assembly, and test-signal assembly. Intended for use in Deep Space Network, but presumably basic design modified for such terrestrial uses as communications or laboratory instrumentation where signals weak and/or noise strong.
Pupillary dilation as an index of task demands.
Cabestrero, Raúl; Crespo, Antonio; Quirós, Pilar
2009-12-01
To analyze how pupillary responses reflect mental effort and allocation of processing resources under several load conditions, the pupil diameter of 18 participants was recorded during an auditory digit-span recall task under three load conditions: Low (5 digits), Moderate (8 digits), and Overload (11 digits). In previous research, under all load conditions a significant linear enlargement in pupil diameter was observed as each digit was presented. Significant dilations from the end of the presentation phase to the beginning of the recall phase were also observed but only under low and moderate loads. Contrary to previous research, under the Overload condition, no reduction in pupil diameter was observed when resource limits were exceeded; however, a plateau was observed when the ninth digit was presented until the beginning of the recall phase. Overall, pupillometric data seem to indicate that participants may keep processing actively even though resources are exceeded.
Buchenauer, C.J.
1981-09-23
The quadrature phase angle phi (t) of a pair of quadrature signals S/sub 1/(t) and S/sub 2/(t) is digitally encoded on a real time basis by a quadrature digitizer for fractional phi (t) rotational excursions and by a quadrature up/down counter for full phi (t) rotations. The pair of quadrature signals are of the form S/sub 1/(t) = k(t) sin phi (t) and S/sub 2/(t) = k(t) cos phi (t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle phi (t).
Buchenauer, C. Jerald
1984-01-01
The quadrature phase angle .phi.(t) of a pair of quadrature signals S.sub.1 (t) and S.sub.2 (t) is digitally encoded on a real time basis by a quadrature digitizer for fractional .phi.(t) rotational excursions and by a quadrature up/down counter for full .phi.(t) rotations. The pair of quadrature signals are of the form S.sub.1 (t)=k(t) sin .phi.(t) and S.sub.2 (t)=k(t) cos .phi.(t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle .phi.(t).
Kan, Hirohito; Arai, Nobuyuki; Takizawa, Masahiro; Omori, Kazuyoshi; Kasai, Harumasa; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta
2018-06-11
We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments. Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization. In a numerical phantom study, relative local field and susceptibility map errors were determined using NR-VSHARP, VSHARP, and iSMV. Additionally, various background field elimination methods were used to image the human brain. In a numerical phantom study, the use of NR-VSHARP considerably reduced the relative local field and susceptibility map errors throughout a digital whole brain phantom, compared with VSHARP and iSMV. In the in vivo experiment, the NR-VSHARP-estimated local field could sufficiently achieve minimal boundary losses and phase error suppression throughout the brain. Moreover, the susceptibility map generated using NR-VSHARP minimized the occurrence of streaking artifacts caused by insufficient background field removal. Our proposed NR-VSHARP method yields minimal boundary losses and highly precise phase data. Our results suggest that this technique may facilitate high-quality QSM. Copyright © 2017. Published by Elsevier Inc.
Phase-locked loops. [analog, hybrid, discrete and digital systems
NASA Technical Reports Server (NTRS)
Gupta, S. C.
1974-01-01
The basic analysis and design procedures are described for the realization of analog phase-locked loops (APLL), hybrid phase-locked loops (HPLL), discrete phase-locked loops, and digital phase-locked loops (DPLL). Basic configurations are diagrammed, and performance curves are given. A discrete communications model is derived and developed. The use of the APLL as an optimum angle demodulator and the Kalman-Bucy approach to APLL design are discussed. The literature in the area of phase-locked loops is reviewed, and an extensive bibliography is given. Although the design of APLLs is fairly well documented, work on discrete, hybrid, and digital PLLs is scattered, and more will have to be done in the future to pinpoint the formal design of DPLLs.
Phase-locked-loop interferometry applied to aspheric testing with a computer-stored compensator.
Servin, M; Malacara, D; Rodriguez-Vera, R
1994-05-01
A recently developed technique for continuous-phase determination of interferograms with a digital phase-locked loop (PLL) is applied to the null testing of aspheres. Although this PLL demodulating scheme is also a synchronous or direct interferometric technique, the separate unwrapping process is not explicitly required. The unwrapping and the phase-detection processes are achieved simultaneously within the PLL. The proposed method uses a computer-generated holographic compensator. The holographic compensator does not need to be printed out by any means; it is calculated and used from the computer. This computer-stored compensator is used as the reference signal to phase demodulate a sample interferogram obtained from the asphere being tested. Consequently the demodulated phase contains information about the wave-front departures from the ideal computer-stored aspheric interferogram. Wave-front differences of ~ 1 λ are handled easily by the proposed PLL scheme. The maximum recorded frequency in the template's interferogram as well as in the sampled interferogram are assumed to be below the Nyquist frequency.
Investigation of new techniques for aircraft navigation using the omega navigation
NASA Technical Reports Server (NTRS)
Baxa, E. G., Jr.
1978-01-01
An OMEGA navigation receiver with a microprocessor as the computational component was investigated. A version of the INTEL 4004 microprocessor macroassembler suitable for use on the CDC-6600 system and development of a FORTRAN IV simulator program for the microprocessor was developed. Supporting studies included development and evaluation of navigation algorithms to generate relative position information from OMEGA VLF phase measurements. Simulation studies were used to evaluate assumptions made in developing a navigation equation in OMEGA Line of Position (LOP) coordinates. Included in the navigation algorithms was a procedure for calculating a position in latitude/longitude given an OMEGA LOP fix. Implementation of a digital phase locked loop (DPLL) was evaluated on the basic of phase response characteristics over a range of input phase variations. Included also is an analytical evaluation on the basis of error probability of an algorithm for automatic time synchronization of the receiver to the OMEGA broadcast format. The use of actual OMEGA phase data and published propagation prediction corrections to determine phase velocity estimates was discussed.
Digital rotation measurement unit
Sanderson, S.N.
1983-09-30
A digital rotation indicator is disclosed for monitoring the position of a valve member having a movable actuator. The indicator utilizes mercury switches adapted to move in cooperation with the actuator. Each of the switches produces an output as it changes state when the actuator moves. A direction detection circuit is connected to the switches to produce a first digital signal indicative of the direction of rotation of the actuator. A count pulse generating circuit is also connected to the switches to produce a second digital pulse signal having count pulses corresponding to a change of state of any of the mercury switches. A reset pulse generating circuit is provided to generate a reset pulse each time a count pulse is generated. An up/down counter is connected to receive the first digital pulse signal and the second digital pulse signal and to count the pulses of the second digital pulse signal either up or down depending upon the instantaneous digital value of the first digital signal whereby a running count indicative of the movement of the actuator is maintained.
Fu, Yongqing; Li, Xingyuan; Li, Yanan; Yang, Wei; Song, Hailiang
2013-03-01
Chaotic communication has aroused general interests in recent years, but its communication effect is not ideal with the restriction of chaos synchronization. In this paper a new chaos M-ary digital modulation and demodulation method is proposed. By using region controllable characteristics of spatiotemporal chaos Hamilton map in phase plane and chaos unique characteristic, which is sensitive to initial value, zone mapping method is proposed. It establishes the map relationship between M-ary digital information and the region of Hamilton map phase plane, thus the M-ary information chaos modulation is realized. In addition, zone partition demodulation method is proposed based on the structure characteristic of Hamilton modulated information, which separates M-ary information from phase trajectory of chaotic Hamilton map, and the theory analysis of zone partition demodulator's boundary range is given. Finally, the communication system based on the two methods is constructed on the personal computer. The simulation shows that in high speed transmission communications and with no chaos synchronization circumstance, the proposed chaotic M-ary modulation and demodulation method has outperformed some conventional M-ary modulation methods, such as quadrature phase shift keying and M-ary pulse amplitude modulation in bit error rate. Besides, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-noise performance, and the system complexity is low and chaos signal is easy to generate.
NASA Technical Reports Server (NTRS)
Mcfarland, R. H.
1981-01-01
Specific configurations of first and second order all digital phase locked loops were analyzed for both ideal and additive gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation was evaluated along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop were consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application. For all cases tested, the experimental data showed close agreement with the analytical results indicating that the Markov chain model for first and second order digital phase locked loops are valid.
A 1024×768-12μm Digital ROIC for uncooled microbolometer FPAs
NASA Astrophysics Data System (ADS)
Eminoglu, Selim
2017-02-01
This paper reports the development of a new digital microbolometer Readout Integrated Circuit (D-ROIC), called MT10212BD. It has a format of 1024 × 768 (XGA) and a pixel pitch of 12μm. MT10212BD is Mikro Tasarim's second 12μm pitch microbolometer ROIC, which is developed specifically for surface micro machined microbolometer detector arrays with small pixel pitch using high-TCR pixel materials, such as VOx and a Si. MT10212BD has an alldigital system on-chip architecture, which generates programmable timing and biasing, and performs 14-bit analog to digital conversion (ADC). The signal processing chain in the ROIC is composed of pixel bias circuitry, integrator based programmable gain amplifier followed by column parallel ADC circuitry. MT10212BD has a serial programming interface that can be used to configure the programmable ROIC features and to load the Non-Uniformity-Correction (NUC) date to the ROIC. MT10212BD has a total of 8 high-speed serial digital video outputs, which can be programmed to operate in the 2, 4, and 8-output modes and can support frames rates above 60 fps. The high-speed serial digital outputs supports data rates as high as 400 Mega-bits/s, when operated at 50 MHz system clock frequency. There is an on-chip phase-locked-loop (PLL) based timing circuitry to generate the high speed clocks used in the ROIC. The ROIC is designed to support pixel resistance values ranging from 30KΩ to 90kΩ, with a nominal value of 60KΩ. The ROIC has a globally programmable gain in the column readout, which can be adjusted based on the detector resistance value.
Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao
2017-07-24
We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).
Loran digital phase-locked loop and RF front-end system error analysis
NASA Technical Reports Server (NTRS)
Mccall, D. L.
1979-01-01
An analysis of the system performance of the digital phase locked loops (DPLL) and RF front end that are implemented in the MINI-L4 Loran receiver is presented. Three of the four experiments deal with the performance of the digital phase locked loops. The other experiment deals with the RF front end and DPLL system error which arise in the front end due to poor signal to noise ratios. The ability of the DPLLs to track the offsets is studied.
Diffraction phase microscopy realized with an automatic digital pinhole
NASA Astrophysics Data System (ADS)
Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Zhang, Zhimin; Liu, Xu
2017-12-01
We report a novel approach to diffraction phase microscopy (DPM) with automatic pinhole alignment. The pinhole, which serves as a spatial low-pass filter to generate a uniform reference beam, is made out of a liquid crystal display (LCD) device that allows for electrical control. We have made DPM more accessible to users, while maintaining high phase measurement sensitivity and accuracy, through exploring low cost optical components and replacing the tedious pinhole alignment process with an automatic pinhole optical alignment procedure. Due to its flexibility in modifying the size and shape, this LCD device serves as a universal filter, requiring no future replacement. Moreover, a graphic user interface for real-time phase imaging has been also developed by using a USB CMOS camera. Experimental results of height maps of beads sample and live red blood cells (RBCs) dynamics are also presented, making this system ready for broad adaption to biological imaging and material metrology.
The digital phase-locked loop as a near-optimum FM demodulator.
NASA Technical Reports Server (NTRS)
Kelly, C. N.; Gupta, S. C.
1972-01-01
This paper presents an approach to the optimum digital demodulation of a continuous-time FM signal using stochastic estimation theory. The primary result is a digital phase-locked loop realization possessing performance characteristics that approach those of the analog counterpart. Some practical considerations are presented and simulation results for a first-order message model are presented.
Digital Resource Exchange About Music (DREAM): Phase 2 Usability Testing
ERIC Educational Resources Information Center
Upitis, Rena; Boese, Karen; Abrami, Philip C.; Anwar, Zaeem
2015-01-01
The Digital Resource Exchange About Music (DREAM) is a virtual space for exchanging information about digital learning tools. The purpose of the present study was to determine how users responded to DREAM in the first four months after its public release. This study is the second phase of usability research on DREAM, and was conducted to guide…
Development of high-efficiency power amplifiers for PIP2 (Project X), Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, Frederick
The Fermi Lab PIP II (formerly Project X) accelerator will require the generation of over a megawatt of radio-frequency (RF) power at 325 and 650 MHz. This Phase-II SBIR grant developed techniques to generate this RF power efficienly. The basis of this approach is a system comprising high-efficiency RF power amplifiers, high-efficiency class-S modulators to maintain efficiency at all power levels, and low-loss power combiners. A digital signal processor adjusts signal parameters to obtain the maximum efficiency while producing a signal of the desired amplitude and phase. Components of 4-kW prototypes were designed, assembled, and tested. The 500-W modules producemore » signals at 325 MHz with an overall efficiency of 83 percent and signals at 650 MHz with an overall efficiency of 79 percent. This efficiency is nearly double that available from conventional techniques, which makes it possible to cut the power consumption nearly in half. The system is designed to be scalable to the multi-kilowatt level and can be adapted to other DoE applications.« less
Digital second-order phase-locked loop
NASA Technical Reports Server (NTRS)
Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.
1975-01-01
Actual tests with second-order digital phase-locked loop at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. Loop thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.
Quantitative holographic interferometry applied to combustion and compressible flow research
NASA Astrophysics Data System (ADS)
Bryanston-Cross, Peter J.; Towers, D. P.
1993-03-01
The application of holographic interferometry to phase object analysis is described. Emphasis has been given to a method of extracting quantitative information automatically from the interferometric fringe data. To achieve this a carrier frequency has been added to the holographic data. This has made it possible, firstly to form a phase map using a fast Fourier transform (FFT) algorithm. Then to `solve,' or unwrap, this image to give a contiguous density map using a minimum weight spanning tree (MST) noise immune algorithm, known as fringe analysis (FRAN). Applications of this work to a burner flame and a compressible flow are presented. In both cases the spatial frequency of the fringes exceed the resolvable limit of conventional digital framestores. Therefore, a flatbed scanner with a resolution of 3200 X 2400 pixels has been used to produce very high resolution digital images from photographs. This approach has allowed the processing of data despite the presence of caustics, generated by strong thermal gradients at the edge of the combustion field. A similar example is presented from the analysis of a compressible transonic flow in the shock wave and trailing edge regions.
NASA Astrophysics Data System (ADS)
Morales Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe
2015-03-01
Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step-index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.
Rational design of stealthy hyperuniform two-phase media with tunable order
NASA Astrophysics Data System (ADS)
DiStasio, Robert A.; Zhang, Ge; Stillinger, Frank H.; Torquato, Salvatore
2018-02-01
Disordered stealthy hyperuniform materials are exotic amorphous states of matter that have attracted recent attention because of their novel structural characteristics (hidden order at large length scales) and physical properties, including desirable photonic and transport properties. It is therefore useful to devise algorithms that enable one to design a wide class of such amorphous configurations at will. In this paper, we present several algorithms enabling the systematic identification and generation of discrete (digitized) stealthy hyperuniform patterns with a tunable degree of order, paving the way towards the rational design of disordered materials endowed with novel thermodynamic and physical properties. To quantify the degree of order or disorder of the stealthy systems, we utilize the discrete version of the τ order metric, which accounts for the underlying spatial correlations that exist across all relevant length scales in a given digitized two-phase (or, equivalently, a two-spin state) system of interest. Our results impinge on a myriad of fields, ranging from physics, materials science and engineering, visual perception, and information theory to modern data science.
Advanced Receiver For Phase-Shift-Keyed Signals
NASA Technical Reports Server (NTRS)
Hinedi, Sami M.
1992-01-01
ARX II is second "breadboard" version of advanced receiver, a hybrid digital/analog receiving subsystem, extracting symbols and Doppler shifts from weak phase-shift-keyed signals. Useful in terrestrial digital communication systems.
NASA Astrophysics Data System (ADS)
Wei, Liu; Wei, Li; Peng, Ren; Qinglong, Lin; Shengdong, Zhang; Yangyuan, Wang
2009-09-01
A time-domain digitally controlled oscillator (DCO) is proposed. The DCO is composed of a free-running ring oscillator (FRO) and a two lap-selectors integrated flying-adder (FA). With a coiled cell array which allows uniform loading capacitances of the delay cells, the FRO produces 32 outputs with consistent tap spacing for the FA as reference clocks. The FA uses the outputs from the FRO to generate the output of the DCO according to the control number, resulting in a linear dependence of the output period, instead of the frequency on the digital controlling word input. Thus the proposed DCO ensures a good conversion linearity in a time-domain, and is suitable for time-domain all-digital phase locked loop applications. The DCO was implemented in a standard 0.13 μm digital logic CMOS process. The measurement results show that the DCO has a linear and monotonic tuning curve with gain variation of less than 10%, and a very low root mean square period jitter of 9.3 ps in the output clocks. The DCO works well at supply voltages ranging from 0.6 to 1.2 V, and consumes 4 mW of power with 500 MHz frequency output at 1.2 V supply voltage.
622-Mbps Orthogonal Frequency Division Multiplexing (OFDM) Digital Modem Implemented
NASA Technical Reports Server (NTRS)
Kifle, Muli; Bizon, Thomas P.; Nguyen, Nam T.; Tran, Quang K.; Mortensen, Dale J.
2002-01-01
Future generation space communications systems feature significantly higher data rates and relatively smaller frequency spectrum allocations than systems currently deployed. This requires the application of bandwidth- and power-efficient signal transmission techniques. There are a number of approaches to implementing such techniques, including analog, digital, mixed-signal, single-channel, or multichannel systems. In general, the digital implementations offer more advantages; however, a fully digital implementation is very difficult because of the very high clock speeds required. Multichannel techniques are used to reduce the sampling rate. One such technique, multicarrier modulation, divides the data into a number of low-rate channels that are stacked in frequency. Orthogonal frequency division multiplexing (OFDM), a form of multicarrier modulation, is being proposed for numerous systems, including mobile wireless and digital subscriber link communication systems. In response to this challenge, NASA Glenn Research Center's Communication Technology Division has developed an OFDM digital modem (modulator and demodulator) with an aggregate information throughput of 622 Mbps. The basic OFDM waveform is constructed by dividing an incoming data stream into four channels, each using either 16- ary quadrature amplitude modulation (16-QAM) or 8-phase shift keying (8-PSK). An efficient implementation for an OFDM architecture is being achieved using the combination of a discrete Fourier transform (DFT) at the transmitter to digitally stack the individual carriers, inverse DFT at the receiver to perform the frequency translations, and a polyphase filter to facilitate the pulse shaping.
Design and development progress of a LLRF control system for a 500 MHz superconducting cavity
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Kim, H. W.; Song, H. S.; Lee, J. H.; Park, K. H.; Yu, I. H.; Chai, J. S.
2012-07-01
The LLRF (low-level radio-frequency) control system which regulates the amplitude and the phase of the accelerating voltage inside a RF cavity is essential to ensure the stable operation of charged particle accelerators. Recent advances in digital signal processors and data acquisition systems have allowed the LLRF control system to be implemented in digitally and have made it possible to meet the higher demands associated with the performance of LLRF control systems, such as stability, accuracy, etc. For this reason, many accelerator laboratories have completed or are completing the developments of digital LLRF control systems. The digital LLRF control system has advantages related with flexibility and fast reconfiguration. This paper describes the design of the FPGA (field programmable gate array) based LLRF control system and the status of development for this system. The proposed LLRF control system includes an analog front-end, a digital board (ADC (analog to digital converter), DAC (digital to analog converter), FPGA, etc.) and a RF & clock generation system. The control algorithms will be implemented by using the VHDL (VHSIC (very high speed integrated circuits) hardware description language), and the EPICS (experiment physics and industrial control system) will be ported to the host computer for the communication. In addition, the purpose of this system is to control a 500 MHz RF cavity, so the system will be applied to the superconducting cavity to be installed in the PLS storage ring, and its performance will be tested.
Radiation-hardened-by-design clocking circuits in 0.13-μm CMOS technology
NASA Astrophysics Data System (ADS)
You, Y.; Huang, D.; Chen, J.; Gong, D.; Liu, T.; Ye, J.
2014-01-01
We present a single-event-hardened phase-locked loop for frequency generation applications and a digital delay-locked loop for DDR2 memory interface applications. The PLL covers a 12.5 MHz to 500 MHz frequency range with an RMS Jitter (RJ) of 4.70-pS. The DLL operates at 267 MHz and has a phase resolution of 60-pS. Designed in 0.13-μm CMOS technology, the PLL and the DLL are hardened against SEE for charge injection of 250 fC. The PLL and the DLL consume 17 mW and 22 mW of power under a 1.5 V power supply, respectively.
DBSAR's First Multimode Flight Campaign
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Vega, Manuel; Buenfil, Manuel; Geist, Alessandro; Hilliard, Lawrence; Racette, Paul
2010-01-01
The Digital Beamforming SAR (DBSAR) is an airborne imaging radar system that combines phased array technology, reconfigurable on-board processing and waveform generation, and advances in signal processing to enable techniques not possible with conventional SARs. The system exploits the versatility inherently in phased-array technology with a state-of-the-art data acquisition and real-time processor in order to implement multi-mode measurement techniques in a single radar system. Operational modes include scatterometry over multiple antenna beams, Synthetic Aperture Radar (SAR) over several antenna beams, or Altimetry. The radar was flight tested in October 2008 on board of the NASA P3 aircraft over the Delmarva Peninsula, MD. The results from the DBSAR system performance is presented.
Phase-lock-loop application for fiber optic receiver
NASA Astrophysics Data System (ADS)
Ruggles, Stephen L.; Wills, Robert W.
1991-02-01
Phase-locked loop circuits are frequently employed in communication systems. In recent years, digital phase-locked loop circuits were utilized in optical communications systems. In an optical transceiver system, the digital phase-locked loop circuit is connected to the output of the receiver to extract a clock signal from the received coded data (NRZ, Bi-Phase, or Manchester). The clock signal is then used to reconstruct or recover the original data from the coded data. A theoretical approach to the design of a digital phase-locked loop circuit operation at 1 and 50 MHz is described. Hardware implementation of a breadboard design to function at 1 MHz and a printed-circuit board designed to function at 50 MHz were assembled using emitter coupled logic (ECL) to verify experimentally the theoretical design.
Phase-lock-loop application for fiber optic receiver
NASA Technical Reports Server (NTRS)
Ruggles, Stephen L.; Wills, Robert W.
1991-01-01
Phase-locked loop circuits are frequently employed in communication systems. In recent years, digital phase-locked loop circuits were utilized in optical communications systems. In an optical transceiver system, the digital phase-locked loop circuit is connected to the output of the receiver to extract a clock signal from the received coded data (NRZ, Bi-Phase, or Manchester). The clock signal is then used to reconstruct or recover the original data from the coded data. A theoretical approach to the design of a digital phase-locked loop circuit operation at 1 and 50 MHz is described. Hardware implementation of a breadboard design to function at 1 MHz and a printed-circuit board designed to function at 50 MHz were assembled using emitter coupled logic (ECL) to verify experimentally the theoretical design.
A study of digital holographic filter generation
NASA Technical Reports Server (NTRS)
Calhoun, M.; Ingels, F.
1976-01-01
Problems associated with digital computer generation of holograms are discussed along with a criteria for producing optimum digital holograms. This criteria revolves around amplitude resolution and spatial frequency limitations induced by the computer and plotter process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Kroposki, B.; Kramer, W.
Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report alsomore » analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.« less
A software controllable modular RF signal generator with multichannel transmission capabilities.
Shaw, Z; Feilner, W; Esser, B; Dickens, J C; Neuber, A A
2017-09-01
A software controllable system which generates and transmits user defined RF signals is discussed. The system is implemented with multiple, modular transmitting channels that allow the user to easily replace parts such as amplifiers or antennas. Each channel is comprised of a data pattern generator (DPG), a digital to analog converter (DAC), a power amplifier, and a transmitting antenna. All channels are controlled through a host PC and synchronized through a master clock signal provided to each DAC by an external clock source. Signals to be transmitted are generated through the DPG control software on the PC or can be created by the user in a numerical computing environment. Three experiments are discussed using a two- and four-channel antenna array incorporating Chebyshev tapered TEM horn antennas. Transmitting distinct sets of nonperiodic bipolar impulses through each of the antennas in the array enabled synthesizing a sinusoidal signal of specific frequency in free space. Opposite to the standard phased array approach, each antenna radiates a distinctly different signal rather than the same signal simply phase shifted. The presented approach may be employed as a physical layer of encryption dependent on the position of the receiving antenna.
Arbitrary waveform modulated pulse EPR at 200 GHz
NASA Astrophysics Data System (ADS)
Kaminker, Ilia; Barnes, Ryan; Han, Songi
2017-06-01
We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 < 1 MHz phase-modulated pulses were sufficient to achieve significant improvements in broadband (>10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.
Modeling and system design for the LOFAR station digital processing
NASA Astrophysics Data System (ADS)
Alliot, Sylvain; van Veelen, Martijn
2004-09-01
In the context of the LOFAR preliminary design phase and in particular for the specification of the Station Digital Processing (SDP), a performance/cost model of the system was used. We present here the framework and the trajectory followed in this phase when going from requirements to specification. In the phased array antenna concepts for the next generation of radio telescopes (LOFAR, ATA, SKA) signal processing (multi-beaming and RFI mitigation) replaces the large antenna dishes. The embedded systems for these telescopes are major infrastructure cost items. Moreover, the flexibility and overall performance of the instrument depend greatly on them, therefore alternative solutions need to be investigated. In particular, the technology and the various data transport selections play a fundamental role in the optimization of the architecture. We proposed a formal method [1] of exploring these alternatives that has been followed during the SDP developments. Different scenarios were compared for the specification of the application (selection of the algorithms as well as detailed signal processing techniques) and in the specification of the system architecture (selection of high level topologies, platforms and components). It gave us inside knowledge on the possible trade-offs in the application and architecture domains. This was successful in providing firm basis for the design choices that are demanded by technical review committees.
Digital micromirror device-based common-path quantitative phase imaging.
Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Yaqoob, Zahid; So, Peter T C
2017-04-01
We propose a novel common-path quantitative phase imaging (QPI) method based on a digital micromirror device (DMD). The DMD is placed in a plane conjugate to the objective back-aperture plane for the purpose of generating two plane waves that illuminate the sample. A pinhole is used in the detection arm to filter one of the beams after sample to create a reference beam. Additionally, a transmission-type liquid crystal device, placed at the objective back-aperture plane, eliminates the specular reflection noise arising from all the "off" state DMD micromirrors, which is common in all DMD-based illuminations. We have demonstrated high sensitivity QPI, which has a measured spatial and temporal noise of 4.92 nm and 2.16 nm, respectively. Experiments with calibrated polystyrene beads illustrate the desired phase measurement accuracy. In addition, we have measured the dynamic height maps of red blood cell membrane fluctuations, showing the efficacy of the proposed system for live cell imaging. Most importantly, the DMD grants the system convenience in varying the interference fringe period on the camera to easily satisfy the pixel sampling conditions. This feature also alleviates the pinhole alignment complexity. We envision that the proposed DMD-based common-path QPI system will allow for system miniaturization and automation for a broader adaption.
Digital micromirror device-based common-path quantitative phase imaging
Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Yaqoob, Zahid; So, Peter T. C.
2017-01-01
We propose a novel common-path quantitative phase imaging (QPI) method based on a digital micromirror device (DMD). The DMD is placed in a plane conjugate to the objective back-aperture plane for the purpose of generating two plane waves that illuminate the sample. A pinhole is used in the detection arm to filter one of the beams after sample to create a reference beam. Additionally, a transmission-type liquid crystal device, placed at the objective back-aperture plane, eliminates the specular reflection noise arising from all the “off” state DMD micromirrors, which is common in all DMD-based illuminations. We have demonstrated high sensitivity QPI, which has a measured spatial and temporal noise of 4.92 nm and 2.16 nm, respectively. Experiments with calibrated polystyrene beads illustrate the desired phase measurement accuracy. In addition, we have measured the dynamic height maps of red blood cell membrane fluctuations, showing the efficacy of the proposed system for live cell imaging. Most importantly, the DMD grants the system convenience in varying the interference fringe period on the camera to easily satisfy the pixel sampling conditions. This feature also alleviates the pinhole alignment complexity. We envision that the proposed DMD-based common-path QPI system will allow for system miniaturization and automation for a broader adaption. PMID:28362789
ERPs and oscillations during encoding predict retrieval of digit memory in superior mnemonists.
Pan, Yafeng; Li, Xianchun; Chen, Xi; Ku, Yixuan; Dong, Yujie; Dou, Zheng; He, Lin; Hu, Yi; Li, Weidong; Zhou, Xiaolin
2017-10-01
Previous studies have consistently demonstrated that superior mnemonists (SMs) outperform normal individuals in domain-specific memory tasks. However, the neural correlates of memory-related processes remain unclear. In the current EEG study, SMs and control participants performed a digit memory task during which their brain activity was recorded. Chinese SMs used a digit-image mnemonic for encoding digits, in which they associated 2-digit groups with images immediately after the presentation of each even-position digit in sequences. Behaviorally, SMs' memory of digit sequences was better than the controls'. During encoding in the study phase, SMs showed an increased right central P2 (150-250ms post onset) and a larger right posterior high-alpha (10-14Hz, 500-1720ms) oscillation on digits at even-positions compared with digits at odd-positions. Both P2 and high-alpha oscillations in the study phase co-varied with performance in the recall phase, but only in SMs, indicating that neural dynamics during encoding could predict successful retrieval of digit memory in SMs. Our findings suggest that representation of a digit sequence in SMs using mnemonics may recruit both the early-stage attention allocation process and the sustained information preservation process. This study provides evidence for the role of dynamic and efficient neural encoding processes in mnemonists. Copyright © 2017. Published by Elsevier Inc.
Design and control of the phase current of a brushless dc motor to eliminate cogging torque
NASA Astrophysics Data System (ADS)
Jang, G. H.; Lee, C. J.
2006-04-01
This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.
Integrated controls for a new aircraft generation
NASA Technical Reports Server (NTRS)
Mace, W. D.; Howell, W. E.
1978-01-01
Many of the commercial aircraft now flying will have to be phased out in the early 1980s because of fuel inefficiency and unacceptable noise levels. This paper discusses the role of new digital technology in making aircraft more fuel efficient, more reliable, and quieter. Attention is given to the integration of sensing and control functions in an aircraft in order to provide a simple, lightweight, and high-redundancy system. Technology under development now is expected to come on-line in the 1990s.
Ghost imaging for three-dimensional optical security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wen, E-mail: elechenw@nus.edu.sg; Chen, Xudong
2013-11-25
Ghost imaging has become increasingly popular in quantum and optical application fields. Here, we report three-dimensional (3D) optical security using ghost imaging. The series of random phase-only masks are sparsified, which are further converted into particle-like distributions placed in 3D space. We show that either an optical or digital approach can be employed for the encoding. The results illustrate that a larger key space can be generated due to the application of 3D space compared with previous works.
Inversion of Ionospheric Backscatter Radar Data in Order to Map and Model the Ionosphere
2006-08-17
M., Wild, J . A., Lester, M., Yeoman, T . K., Milan, S. E., Ye, H., Devlin, J . C., Frey, H. U., and Kikuchi, T ., Interhemispheric asymmetries in the...Devlin, J . and Salim, T ., Evaluation of Digital Generation and Phasing Techniques for Transmitter Signals of the TIGER N.Z. Radar. WARS02 (Workshop on...17. Conde, M. and Dyson, P. L., Thermospheric Vertical Winds Above Mawson , Antarctica, J . Atmos. Terr. Phys., Vol. 57, 589-596, 1995. 18. Conde, M
Software development for airborne radar
NASA Astrophysics Data System (ADS)
Sundstrom, Ingvar G.
Some aspects for development of software in a modern multimode airborne nose radar are described. First, an overview of where software is used in the radar units is presented. The development phases-system design, functional design, detailed design, function verification, and system verification-are then used as the starting point for the discussion. Methods, tools, and the most important documents are described. The importance of video flight recording in the early stages and use of a digital signal generators for performance verification is emphasized. Some future trends are discussed.
Improving Estimates Of Phase Parameters When Amplitude Fluctuates
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Brown, D. H.; Hurd, W. J.
1989-01-01
Adaptive inverse filter applied to incoming signal and noise. Time-varying inverse-filtering technique developed to improve digital estimate of phase of received carrier signal. Intended for use where received signal fluctuates in amplitude as well as in phase and signal tracked by digital phase-locked loop that keeps its phase error much smaller than 1 radian. Useful in navigation systems, reception of time- and frequency-standard signals, and possibly spread-spectrum communication systems.
Geoillustrator - fast sketching of geological illustrations and animations
NASA Astrophysics Data System (ADS)
Patel, Daniel; Langeland, Tor; Solteszova, Veronika
2014-05-01
We present our research results in the Geoillustrator project. The project has been going for four years and is ending in March. It was aimed at developing a rapid sketching tool for generating geological illustrations and animations for understanding the processes that have led to a current subsurface configuration. The sketching tool facilitates effective dissemination of ideas, e.g. through generation of interactive geo-scientific illustrations for interdisciplinary communication and communication to decision makers, media and lay persons. This can improve work processes in early phases of oil and gas exploration where critical decisions have to be taken based on limited information. It is a challenge for involved specialists in early exploration phases to externalize their ideas, and effectively achieve consensus in multidisciplinary working groups. In these work processes, a tool for rapid sketching of geology would be very useful for expressing geological hypotheses and creating and comparing different evolution scenarios. Often, decisions are influenced by factors that are not relevant, e.g. the geologists who produce the most polished illustrations of their hypothesis have a higher probability for getting their theories through to decision makers as it is more clearly communicated. This results in a competitive advantage for geologists who are skilled in creating illustrations. Having a tool that would lift the ability of all geologists to express their ideas to an equal level would result in more alternatives and better foundation for decision making. Digital sketching will also allow capturing otherwise lost material which can constitute a large amount of mental work and ideas. The results of sketching are currently scrapped as paper or erased from the blackboard or exist only as rough personal sketches. By using a digital sketching tool, the sketches can be exported to a form usable in modelling tools used in later phases of exploration. Currently, no digital tool exists supporting the above mentioned requirements. However, in the Geoillustrator project, relevant visualization and sketching methods have been researched, and prototypes have been developed which demonstrate a set of the mentioned functionalities. Our published results in the project which we will present can be found on our website http://www.cmr.no/cmr_computing/index.cfm?id=313109
Controlled-Root Approach To Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Stephens, Scott A.; Thomas, J. Brooks
1995-01-01
Performance tailored more flexibly and directly to satisfy design requirements. Controlled-root approach improved method for analysis and design of digital phase-locked loops (DPLLs). Developed rigorously from first principles for fully digital loops, making DPLL theory and design simpler and more straightforward (particularly for third- or fourth-order DPLL) and controlling performance more accurately in case of high gain.
The Digital Natives as Learners: Technology Use Patterns and Approaches to Learning
ERIC Educational Resources Information Center
Thompson, Penny
2013-01-01
This study investigated the claims made in the popular press about the "digital native" generation as learners. Because students' lives today are saturated with digital media at a time when their brains are still developing, many popular press authors claim that this generation of students thinks and learns differently than any generation that has…
High-speed clock recovery unit based on a phase aligner
NASA Astrophysics Data System (ADS)
Tejera, Efrain; Esper-Chain, Roberto; Tobajas, Felix; De Armas, Valentin; Sarmiento, Roberto
2003-04-01
Nowadays clock recovery units are key elements in high speed digital communication systems. For an efficient operation, this units should generate a low jitter clock based on the NRZ received data, and be tolerant to long absence of transitions. Architectures based on Hogge phase detectors have been widely used, nevertheless, they are very sensitive to jitter of the received data and they have a limited tolerance to the absence of transitions. This paper shows a novel high speed clock recovery unit based on a phase aligner. The system allows a very fast clock recovery with a low jitter, moreover, it is very resistant to absence of transitions. The design is based on eight phases obtained from a reference clock running at the nominal frequency of the received signal. This high speed reference clock is generated using a crystal and a clock multiplier unit. The phase alignment system chooses, as starting point, the two phases closest to the data phase. This allows a maximum error of 45 degrees between the clock and data signal phases. Furthermore, the system includes a feed-back loop that interpolates the chosen phases to reduce the phase error to zero. Due to the high stability and reduced tolerance of the local reference clock, the jitter obtained is highly reduced and the system becomes able to operate under long absence of transitions. This performances make this design suitable for systems such as high speed serial link technologies. This system has been designed for CMOS 0.25μm at 1.25GHz and has been verified through HSpice simulations.
Designing Estimator/Predictor Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Statman, J. I.; Hurd, W. J.
1988-01-01
Signal delays in equipment compensated automatically. New approach to design of digital phase-locked loop (DPLL) incorporates concepts from estimation theory and involves decomposition of closed-loop transfer function into estimator and predictor. Estimator provides recursive estimates of phase, frequency, and higher order derivatives of phase with respect to time, while predictor compensates for delay, called "transport lag," caused by PLL equipment and by DPLL computations.
Coherent-Phase Monitoring Of Cavitation In Turbomachines
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1996-01-01
Digital electronic signal-processing system analyzes outputs of accelerometers mounted on turbomachine to detect vibrations characteristic of cavitation. Designed to overcome limitation imposed by interference from discrete components. System digitally implements technique called "coherent-phase wide-band demodulation" (CPWBD), using phase-only (PO) filtering along envelope detection to search for unique coherent-phase relationship associated with cavitation and to minimize influence of large-amplitude discrete components.
Digital accumulators in phase and frequency tracking loops
NASA Technical Reports Server (NTRS)
Hinedi, Sami; Statman, Joseph I.
1990-01-01
Results on the effects of digital accumulators in phase and frequency tracking loops are presented. Digital accumulators or summers are used extensively in digital signal processing to perform averaging or to reduce processing rates to acceptable levels. For tracking the Doppler of high-dynamic targets at low carrier-to-noise ratios, it is shown through simulation and experiment that digital accumulators can contribute an additional loss in operating threshold. This loss was not considered in any previous study and needs to be accounted for in performance prediction analysis. Simulation and measurement results are used to characterize the loss due to the digital summers for three different tracking loops: a digital phase-locked loop, a cross-product automatic frequency tracking loop, and an extended Kalman filter. The tracking algorithms are compared with respect to their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. It is shown that failure to account for the effect of accumulators can result in an inaccurate performance prediction, the extent of which depends highly on the algorithm used.
Radar wideband digital beamforming based on time delay and phase compensation
NASA Astrophysics Data System (ADS)
Fu, Wei; Jiang, Defu
2018-07-01
In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.
Field-programmable beam reconfiguring based on digitally-controlled coding metasurface
NASA Astrophysics Data System (ADS)
Wan, Xiang; Qi, Mei Qing; Chen, Tian Yi; Cui, Tie Jun
2016-02-01
Digital phase shifters have been applied in traditional phased array antennas to realize beam steering. However, the phase shifter deals with the phase of the induced current; hence, it has to be in the path of each element of the antenna array, making the phased array antennas very expensive. Metamaterials and/or metasurfaces enable the direct modulation of electromagnetic waves by designing subwavelength structures, which opens a new way to control the beam scanning. Here, we present a direct digital mechanism to control the scattered electromagnetic waves using coding metasurface, in which each unit cell loads a pin diode to produce binary coding states of “1” and “0”. Through data lines, the instant communications are established between the coding metasurface and the internal memory of field-programmable gate arrays (FPGA). Thus, we realize the digital modulation of electromagnetic waves, from which we present the field-programmable reflective antenna with good measurement performance. The proposed mechanism and functional device have great application potential in new-concept radar and communication systems.
Multi-DSP and FPGA based Multi-channel Direct IF/RF Digital receiver for atmospheric radar
NASA Astrophysics Data System (ADS)
Yasodha, Polisetti; Jayaraman, Achuthan; Kamaraj, Pandian; Durga rao, Meka; Thriveni, A.
2016-07-01
Modern phased array radars depend highly on digital signal processing (DSP) to extract the echo signal information and to accomplish reliability along with programmability and flexibility. The advent of ASIC technology has made various digital signal processing steps to be realized in one DSP chip, which can be programmed as per the application and can handle high data rates, to be used in the radar receiver to process the received signal. Further, recent days field programmable gate array (FPGA) chips, which can be re-programmed, also present an opportunity to utilize them to process the radar signal. A multi-channel direct IF/RF digital receiver (MCDRx) is developed at NARL, taking the advantage of high speed ADCs and high performance DSP chips/FPGAs, to be used for atmospheric radars working in HF/VHF bands. Multiple channels facilitate the radar t be operated in multi-receiver modes and also to obtain the wind vector with improved time resolution, without switching the antenna beam. MCDRx has six channels, implemented on a custom built digital board, which is realized using six numbers of ADCs for simultaneous processing of the six input signals, Xilinx vertex5 FPGA and Spartan6 FPGA, and two ADSPTS201 DSP chips, each of which performs one phase of processing. MCDRx unit interfaces with the data storage/display computer via two gigabit ethernet (GbE) links. One of the six channels is used for Doppler beam swinging (DBS) mode and the other five channels are used for multi-receiver mode operations, dedicatedly. Each channel has (i) ADC block, to digitize RF/IF signal, (ii) DDC block for digital down conversion of the digitized signal, (iii) decoding block to decode the phase coded signal, and (iv) coherent integration block for integrating the data preserving phase intact. ADC block consists of Analog devices make AD9467 16-bit ADCs, to digitize the input signal at 80 MSPS. The output of ADC is centered around (80 MHz - input frequency). The digitized data is fed to DDC block, which down converts the data to base-band. The DDC block has NCO, mixer and two chains of Bessel filters (fifth order cascaded integration comb filter, two FIR filters, two half band filters and programmable FIR filters) for in-phase (I) and Quadrature phase (Q) channels. The NCO has 32 bits and is set to match the output frequency of ADC. Further, DDC down samples (decimation) the data and reduces the data rate to 16 MSPS. This data is further decimated and the data rate is reduced down to 4/2/1/0.5/0.25/0.125/0.0625 MSPS for baud lengths 0.25/0.5/1/2/4/8/16 μs respectively. The down sampled data is then fed to decoding block, which performs cross correlation to achieve pulse compression of the binary-phase coded data to obtain better range resolution with maximum possible height coverage. This step improves the signal power by a factor equal to the length of the code. Coherent integration block integrates the decoded data coherently for successive pulses, which improves the signal to noise ratio and reduces the data volume. DDC, decoding and coherent integration blocks are implemented in Xilinx vertex5 FPGA. Till this point, function of all six channels is same for DBS mode and multi-receiver modes. Data from vertex5 FPGA is transferred to PC via GbE-1 interface for multi-modes or to two Analog devices make ADSP-TS201 DSP chips (A and B), via link port for DBS mode. ADSP-TS201 chips perform the normalization, DC removal, windowing, FFT computation and spectral averaging on the data, which is transferred to storage/display PC via GbE-2 interface for real-time data display and data storing. Physical layer of GbE interface is implemented in an external chip (Marvel 88E1111) and MAC layer is implemented internal to vertex5 FPGA. The MCDRx has total 4 GB of DDR2 memory for data storage. Spartan6 FPGA is used for generating timing signals, required for basic operation of the radar and testing of the MCDRx.
All-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors
NASA Astrophysics Data System (ADS)
Dunning, Jim; Garcia, Gerald; Lundberg, Jim; Nuckolls, Ed
1995-04-01
A frequency-synthesizing, all-digital phase-locked loop (ADPLL) is fully integrated with a 0.5 micron CMOS microprocessor. The ADPLL has a 50-cycle phase lock, has a gain mechanism independent of process, voltage, and temperature, and is immune to input jitter. A digitally-controlled oscillator (DCO) forms the core of the ADPLL and operates from 50 to 550 MHz, running at 4x the reference clock frequency. The DCO has 16 b of binarily weighted control and achieves LSB resolution under 500 fs.
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
User Requirements Analysis For Digital Library Application Using Quality Function Deployment.
NASA Astrophysics Data System (ADS)
Wulandari, Lily; Sularto, Lana; Yusnitasari, Tristyanti; Ikasari, Diana
2017-03-01
This study attemp to build Smart Digital Library to be used by the wider community wherever they are. The system is built in the form of Smart Digital Library portal which uses semantic similarity method (Semantic Similarity) to search journals, articles or books by title or author name. This method is also used to determine the recommended books to be read by visitors of Smart Digital Library based on testimony from a previous reader automatically. Steps being taken in the development of Smart Digital Library system is the analysis phase, design phase, testing and implementation phase. At this stage of the analysis using WebQual for the preparation of the instruments to be distributed to the respondents and the data obtained from the respondents will be processed using Quality Function Deployment. In the analysis phase has the purpose of identifying consumer needs and technical requirements. The analysis was performed to a digital library on the web digital library Gunadarma University, Bogor Institute of Agriculture, University of Indonesia, etc. The questionnaire was distributed to 200 respondents. The research methodology begins with the collection of user requirements and analyse it using QFD. Application design is funded by the government through a program of Featured Universities Research by the Directorate General of Higher Education (DIKTI). Conclusions from this research are identified which include the Consumer Requirements of digital library application. The elements of the consumers requirements consists of 13 elements and 25 elements of Engineering Characteristics digital library requirements. Therefore the design of digital library applications that will be built, is designed according to the findings by eliminating features that are not needed by restaurant based on QFD House of Quality.
NASA Astrophysics Data System (ADS)
Missan, Sergey; Hrytsenko, Olga
2015-03-01
Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.
Abdelsalam, D G; Yasui, Takeshi
2017-05-01
We achieve practically a bright-field digital holographic microscopy (DHM) configuration free from coherent noise for three-dimensional (3D) visualization of an in-vitro sandwiched sarcomere sample. Visualization of such sandwiched samples by conventional atomic force microscope (AFM) is impossible, while visualization using DHM with long coherent lengths is challenging. The proposed configuration is comprised of an ultrashort pulse laser source and a Mach-Zehnder interferometer in transmission. Periodically poled lithium niobate (PPLN) crystal was used to convert the fundamental beam by second harmonic generation (SHG) to the generated beam fit to the CCD camera used. The experimental results show that the contrast of the reconstructed phase image is improved to a higher degree compared to a He-Ne laser based result. We attribute this improvement to two things: the feature of the femtosecond pulse light, which acts as a chopper for coherent noise suppression, and the fact that the variance of a coherent mode can be reduced by a factor of 9 due to low loss through a nonlinear medium.
Multi-channel spatialization systems for audio signals
NASA Technical Reports Server (NTRS)
Begault, Durand R. (Inventor)
1993-01-01
Synthetic head related transfer functions (HRTF's) for imposing reprogrammable spatial cues to a plurality of audio input signals included, for example, in multiple narrow-band audio communications signals received simultaneously are generated and stored in interchangeable programmable read only memories (PROM's) which store both head related transfer function impulse response data and source positional information for a plurality of desired virtual source locations. The analog inputs of the audio signals are filtered and converted to digital signals from which synthetic head related transfer functions are generated in the form of linear phase finite impulse response filters. The outputs of the impulse response filters are subsequently reconverted to analog signals, filtered, mixed, and fed to a pair of headphones.
Multi-channel spatialization system for audio signals
NASA Technical Reports Server (NTRS)
Begault, Durand R. (Inventor)
1995-01-01
Synthetic head related transfer functions (HRTF's) for imposing reprogramable spatial cues to a plurality of audio input signals included, for example, in multiple narrow-band audio communications signals received simultaneously are generated and stored in interchangeable programmable read only memories (PROM's) which store both head related transfer function impulse response data and source positional information for a plurality of desired virtual source locations. The analog inputs of the audio signals are filtered and converted to digital signals from which synthetic head related transfer functions are generated in the form of linear phase finite impulse response filters. The outputs of the impulse response filters are subsequently reconverted to analog signals, filtered, mixed and fed to a pair of headphones.
Digital micromirror device as amplitude diffuser for multiple-plane phase retrieval
NASA Astrophysics Data System (ADS)
Abregana, Timothy Joseph T.; Hermosa, Nathaniel P.; Almoro, Percival F.
2017-06-01
Previous implementations of the phase diffuser used in the multiple-plane phase retrieval method included a diffuser glass plate with fixed optical properties or a programmable yet expensive spatial light modulator. Here a model for phase retrieval based on a digital micromirror device as amplitude diffuser is presented. The technique offers programmable, convenient and low-cost amplitude diffuser for a non-stagnating iterative phase retrieval. The technique is demonstrated in the reconstructions of smooth object wavefronts.
NASA Astrophysics Data System (ADS)
Nguyen, Duy
2012-07-01
Digital Elevation Models (DEMs) are used in many applications in the context of earth sciences such as in topographic mapping, environmental modeling, rainfall-runoff studies, landslide hazard zonation, seismic source modeling, etc. During the last years multitude of scientific applications of Synthetic Aperture Radar Interferometry (InSAR) techniques have evolved. It has been shown that InSAR is an established technique of generating high quality DEMs from space borne and airborne data, and that it has advantages over other methods for the generation of large area DEM. However, the processing of InSAR data is still a challenging task. This paper describes InSAR operational steps and processing chain for DEM generation from Single Look Complex (SLC) SAR data and compare a satellite SAR estimate of surface elevation with a digital elevation model (DEM) from Topography map. The operational steps are performed in three major stages: Data Search, Data Processing, and product Validation. The Data processing stage is further divided into five steps of Data Pre-Processing, Co-registration, Interferogram generation, Phase unwrapping, and Geocoding. The Data processing steps have been tested with ERS 1/2 data using Delft Object-oriented Interferometric (DORIS) InSAR processing software. Results of the outcome of the application of the described processing steps to real data set are presented.
NASA Astrophysics Data System (ADS)
Zhao, Yuchen; Zemmamouche, Redouane; Vandenrijt, Jean-François; Georges, Marc P.
2018-05-01
A combination of digital holographic interferometry (DHI) and digital speckle photography (DSP) allows in-plane and out-of-plane displacement measurement between two states of an object. The former can be determined by correlating the two speckle patterns whereas the latter is given by the phase difference obtained from DHI. We show that the amplitude of numerically reconstructed object wavefront obtained from Fresnel in-line digital holography (DH), in combination with phase shifting techniques, can be used as speckle patterns in DSP. The accuracy of in-plane measurement is improved after correcting the phase errors induced by reference wave during reconstruction process. Furthermore, unlike conventional imaging system, Fresnel DH offers the possibility to resize the pixel size of speckle patterns situated on the reconstruction plane under the same optical configuration simply by zero-padding the hologram. The flexibility of speckle size adjustment in Fresnel DH ensures the accuracy of estimation result using DSP.
Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System
NASA Technical Reports Server (NTRS)
1975-01-01
A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.
Analog circuit for controlling acoustic transducer arrays
Drumheller, Douglas S.
1991-01-01
A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.
Demonstration of holographic smart card system using the optical memory technology
NASA Astrophysics Data System (ADS)
Kim, JungHoi; Choi, JaeKwang; An, JunWon; Kim, Nam; Lee, KwonYeon; Jeon, SeckHee
2003-05-01
In this paper, we demonstrate the holographic smart card system using digital holographic memory technique that uses reference beam encrypted by the random phase mask to prevent unauthorized users from accessing the stored digital page. The input data that include document data, a picture of face, and a fingerprint for identification is encoded digitally and then coupled with the reference beam modulated by a random phase mask. Therefore, this proposed system can execute recording in the order of MB~GB and readout all personal information from just one card without any additional database system. Also, recorded digital holograms can't be reconstructed without a phase key and can't be copied by using computers, scanners, or photography.
High-performance single cell genetic analysis using microfluidic emulsion generator arrays.
Zeng, Yong; Novak, Richard; Shuga, Joe; Smith, Martyn T; Mathies, Richard A
2010-04-15
High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 x 10(6) nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/10(5). This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations.
High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays
Zeng, Yong; Novak, Richard; Shuga, Joe; Smith, Martyn T.; Mathies, Richard A.
2010-01-01
High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex PCR. Microfabricated emulsion generator array (MEGA) devices containing 4, 32 and 96 channels are developed to confer a flexible capability of generating up to 3.4 × 106 nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed, the beads are pooled and rapidly analyzed by multi-color flow cytometry. Using E. coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1:105. This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations. PMID:20192178
FIR digital filter-based ZCDPLL for carrier recovery
NASA Astrophysics Data System (ADS)
Nasir, Qassim
2016-04-01
The objective of this work is to analyse the performance of the newly proposed two-tap FIR digital filter-based first-order zero-crossing digital phase-locked loop (ZCDPLL) in the absence or presence of additive white Gaussian noise (AWGN). The introduction of the two-tap FIR digital filter widens the lock range of a ZCDPLL and improves the loop's operation in the presence of AWGN. The FIR digital filter tap coefficients affect the loop convergence behaviour and appropriate selection of those gains should be taken into consideration. The new proposed loop has wider locking range and faster acquisition time and reduces the phase error variations in the presence of noise.
Elmore, Joann G; Longton, Gary M; Pepe, Margaret S; Carney, Patricia A; Nelson, Heidi D; Allison, Kimberly H; Geller, Berta M; Onega, Tracy; Tosteson, Anna N A; Mercan, Ezgi; Shapiro, Linda G; Brunyé, Tad T; Morgan, Thomas R; Weaver, Donald L
2017-01-01
Digital whole slide imaging may be useful for obtaining second opinions and is used in many countries. However, the U.S. Food and Drug Administration requires verification studies. Pathologists were randomized to interpret one of four sets of breast biopsy cases during two phases, separated by ≥9 months, using glass slides or digital format (sixty cases per set, one slide per case, n = 240 cases). Accuracy was assessed by comparing interpretations to a consensus reference standard. Intraobserver reproducibility was assessed by comparing the agreement of interpretations on the same cases between two phases. Estimated probabilities of confirmation by a reference panel (i.e., predictive values) were obtained by incorporating data on the population prevalence of diagnoses. Sixty-five percent of responding pathologists were eligible, and 252 consented to randomization; 208 completed Phase I (115 glass, 93 digital); and 172 completed Phase II (86 glass, 86 digital). Accuracy was slightly higher using glass compared to digital format and varied by category: invasive carcinoma, 96% versus 93% ( P = 0.04); ductal carcinoma in situ (DCIS), 84% versus 79% ( P < 0.01); atypia, 48% versus 43% ( P = 0.08); and benign without atypia, 87% versus 82% ( P < 0.01). There was a small decrease in intraobserver agreement when the format changed compared to when glass slides were used in both phases ( P = 0.08). Predictive values for confirmation by a reference panel using glass versus digital were: invasive carcinoma, 98% and 97% (not significant [NS]); DCIS, 70% and 57% ( P = 0.007); atypia, 38% and 28% ( P = 0.002); and benign without atypia, 97% and 96% (NS). In this large randomized study, digital format interpretations were similar to glass slide interpretations of benign and invasive cancer cases. However, cases in the middle of the spectrum, where more inherent variability exists, may be more problematic in digital format. Future studies evaluating the effect these findings exert on clinical practice and patient outcomes are required.
Launching the Next Generation IODP Site Survey Data Bank
NASA Astrophysics Data System (ADS)
Miller, S. P.; Helly, J.; Clark, D.; Eakins, B.; Sutton, D.; Weatherford, J.; Thatch, G.; Miville, B.; Zelt, B.
2005-12-01
The next generation all-digital Site Survey Data Bank (SSDB) became operational on August 15, 2005 as an online resource for Integrated Ocean Drilling Program (IODP) proponents, reviewers, panels and operations, worldwide. There are currently 123 active proposals for drilling at sites distributed across the globe, involving nearly 1000 proponents from more than 40 countries. The goal is to provide an authoritative, persistent, secure, password-controlled and easily-used home for contributed data objects, as proposals evolve through their life cycle from preliminary phases to planned drilling expeditions. Proposal status can be monitored graphically by proposal number, data type or date. A Java SSDBviewer allows discovery of all proposal data objects, displayed over a basemap of global topography, crustal age or other custom maps. Data can be viewed or downloaded under password control. Webform interfaces assist with the uploading of data and metadata. Thirty four different standard data types are currently supported. The system was designed as a fully functioning digital library, not just a database or a web archive, drawing upon the resources of the SIOExplorer Digital Library project. Blocks of metadata are organized to support discovery and use, as appropriate for each data type. The SSDB has been developed by a UCSD team of researchers and computer scientists at the Scripps Institution of Oceanography and the San Diego Supercomputer Center, under contract with IODP Management International Inc., supported by NSF OCE 0432224.
NASA Technical Reports Server (NTRS)
Yeh, H.-G.; Nguyen, T. M.
1994-01-01
Design, modeling, analysis, and simulation of a phase-locked loop (PLL) with a digital loop filter are presented in this article. A TMS320C25 digital signal processor (DSP) is used to implement this digital loop filter. In order to keep the compatibility, the main design goal was to replace the analog PLL (APLL) of the Deep-Space Transponder (DST) receiver breadboard's loop filter with a digital loop filter without changing anything else. This replacement results in a hybrid digital PLL (HDPLL). Both the original APLL and the designed HDPLL are Type I second-order systems. The real-time performance of the HDPLL and the receiver is provided and evaluated.
Deconstructing Digital Natives: Young People, Technology, and the New Literacies
ERIC Educational Resources Information Center
Thomas, Michael, Ed.
2011-01-01
There have been many attempts to define the generation of students who emerged with the Web and new digital technologies in the early 1990s. The term "digital native" refers to the generation born after 1980, which has grown up in a world where digital technologies and the internet are a normal part of everyday life. Young people…
Miniature L-Band Radar Transceiver
NASA Technical Reports Server (NTRS)
McWatters, Dalia; Price, Douglas; Edelstein, Wendy
2007-01-01
A miniature L-band transceiver that operates at a carrier frequency of 1.25 GHz has been developed as part of a generic radar electronics module (REM) that would constitute one unit in an array of many identical units in a very-large-aperture phased-array antenna. NASA and the Department of Defense are considering the deployment of such antennas in outer space; the underlying principles of operation, and some of those of design, also are applicable on Earth. The large dimensions of the antennas make it advantageous to distribute radio-frequency electronic circuitry into elements of the arrays. The design of the REM is intended to implement the distribution. The design also reflects a requirement to minimize the size and weight of the circuitry in order to minimize the weight of any such antenna. Other requirements include making the transceiver robust and radiation-hard and minimizing power demand. Figure 1 depicts the functional blocks of the REM, including the L-band transceiver. The key functions of the REM include signal generation, frequency translation, amplification, detection, handling of data, and radar control and timing. An arbitrary-waveform generator that includes logic circuitry and a digital-to-analog converter (DAC) generates a linear-frequency-modulation chirp waveform. A frequency synthesizer produces local-oscillator signals used for frequency conversion and clock signals for the arbitrary-waveform generator, for a digitizer [that is, an analog-to-digital converter (ADC)], and for a control and timing unit. Digital functions include command, timing, telemetry, filtering, and high-rate framing and serialization of data for a high-speed scientific-data interface. The aforementioned digital implementation of filtering is a key feature of the REM architecture. Digital filters, in contradistinction to analog ones, provide consistent and temperature-independent performance, which is particularly important when REMs are distributed throughout a large array. Digital filtering also enables selection among multiple filter parameters as required for different radar operating modes. After digital filtering, data are decimated appropriately in order to minimize the data rate out of an antenna panel. The L-band transceiver (see Figure 2) includes a radio-frequency (RF)-to-baseband down-converter chain and an intermediate- frequency (IF)-to-RF up-converter chain. Transmit/receive (T/R) switches enable the use of a single feed to the antenna for both transmission and reception. The T/R switches also afford a built-in test capability by enabling injection of a calibration signal into the receiver chain. In order of decreasing priority, components of the transceiver were selected according to requirements of radiation hardness, then compactness, then low power. All of the RF components are radiation-hard. The noise figure (NF) was optimized to the extent that (1) a low-noise amplifier (LNA) (characterized by NF < 2 dB) was selected but (2) the receiver front-end T/R switches were selected for a high degree of isolation and acceptably low loss, regardless of the requirement to minimize noise.
Skelton, J M; Elliott, S R
2013-05-22
Phase-change materials are the alloys at the heart of an emerging class of next-generation, non-volatile digital memory technologies. However, the widely studied Ge-Sb-Te system possesses several undesirable properties, and enhancing its properties, e.g. by doping, is an area of active research. Various first-row transition-metal dopants have been shown to impart useful property enhancements, but a systematic study of the entire period has yet to be undertaken, and little has been done to investigate their interaction with the host material at the atomic level. We have carried out first-principles computer simulations of the complete phase-change cycle in Ge2Sb2Te5 doped with each of the ten first-row transition metals. In this article, we present a comprehensive survey of the electronic, magnetic and optical properties of these doped materials. We discuss in detail their atomic-level structure, and relate the microscopic behaviours of the dopant atoms to their influence on the Ge2Sb2Te5 host. By considering an entire family of similar materials, we identify trends and patterns which might be used to predict suitable dopants for optimizing materials for specific phase-change applications. The computational method employed here is general, and this materials-discovery approach could be applied in the future to study other families of potential dopants for such materials.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.
1974-01-01
The MIDAS System is described as a third-generation fast multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turnaround time and significant gains in throughput. The hardware and software are described. The system contains a mini-computer to control the various high-speed processing elements in the data path, and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 200,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation.
The Physical-Digital Divide: Exploring the Social Gap Between Digital Natives and Physical Natives.
Ball, Christopher; Francis, Jessica; Huang, Kuo-Ting; Kadylak, Travis; Cotten, Shelia R; Rikard, R V
2017-09-01
Older adults are the most digitally divided demographic group. The present study explores how older adults perceive the physical use of information and communication technologies (ICTs), particularly across generations and contexts. Data for the present study come from nine focus groups. Seniors acknowledge that ICTs help them connect with geographically distant social ties, but that they lead to feelings of disconnection with geographically close social ties. We label this phenomenon the "physical-digital divide," which exists when a group feels ostracized or offended when those around them engage with ICTs while they themselves are not or cannot engage with ICTs. Younger generations are often referred to as "digital natives" and older generations as "digital immigrants." A more apt label for older adults may be "physical natives," as their preferred method of communication involves physical face-to-face interactions and traditional codes of etiquette. Suggestions are made for reducing the physical-digital divide.
Multi-GHz Synchronous Waveform Acquisition With Real-Time Pattern-Matching Trigger Generation
NASA Astrophysics Data System (ADS)
Kleinfelder, Stuart A.; Chiang, Shiuh-hua Wood; Huang, Wei
2013-10-01
A transient waveform capture and digitization circuit with continuous synchronous 2-GHz sampling capability and real-time programmable windowed trigger generation has been fabricated and tested. Designed in 0.25 μm CMOS, the digitizer contains a circular array of 128 sample and hold circuits for continuous sample acquisition, and attains 2-GHz sample speeds with over 800-MHz analog bandwidth. Sample clock generation is synchronous, combining a phase-locked loop for high-speed clock generation and a high-speed fully-differential shift register for distributing clocks to all 128 sample circuits. Using two comparators per sample, the sampled voltage levels are compared against two reference levels, a high threshold and a low threshold, that are set via per-comparator digital to analog converters (DACs). The 256 per-comparator 5-bit DACs compensate for comparator offsets and allow for fine reference level adjustment. The comparator results are matched in 8-sample-wide windows against up to 72 programmable patterns in real time using an on-chip programmable logic array. Each 8-sample trigger window is equivalent to 4 ns of acquisition, overlapped sample by sample in a circular fashion through the entire 128-sample array. The 72 pattern-matching trigger criteria can be programmed to be any combination of High-above the high threshold, Low-below the low threshold, Middle-between the two thresholds, or “Don't Care”-any state is accepted. A trigger pattern of “HLHLHLHL,” for example, watches for a waveform that is oscillating at about 1 GHz given the 2-GHz sample rate. A trigger is flagged in under 20 ns if there is a match, after which sampling is stopped, and on-chip digitization can proceed via 128 parallel 10-bit converters, or off-chip conversion can proceed via an analog readout. The chip exceeds 11 bits of dynamic range, nets over 800-MHz -3-dB bandwidth in a realistic system, and jitter in the PLL-based sampling clock has been measured to be about 1 part per million, RMS.
Fast, externally triggered, digital phase controller for an optical lattice
NASA Astrophysics Data System (ADS)
Sadgrove, Mark; Nakagawa, Ken'ichi
2011-11-01
We present a method to control the phase of an optical lattice according to an external trigger signal. The method has a latency of less than 30 μs. Two phase locked digital synthesizers provide the driving signal for two acousto-optic modulators which control the frequency and phase of the counter-propagating beams which form a standing wave (optical lattice). A micro-controller with an external interrupt function is connected to the desired external signal, and updates the phase register of one of the synthesizers when the external signal changes. The standing wave (period λ/2 = 390 nm) can be moved by units of 49 nm with a mean jitter of 28 nm. The phase change is well known due to the digital nature of the synthesizer, and does not need calibration. The uses of the scheme include coherent control of atomic matter-wave dynamics.
Phase reconstruction using compressive two-step parallel phase-shifting digital holography
NASA Astrophysics Data System (ADS)
Ramachandran, Prakash; Alex, Zachariah C.; Nelleri, Anith
2018-04-01
The linear relationship between the sample complex object wave and its approximated complex Fresnel field obtained using single shot parallel phase-shifting digital holograms (PPSDH) is used in compressive sensing framework and an accurate phase reconstruction is demonstrated. It is shown that the accuracy of phase reconstruction of this method is better than that of compressive sensing adapted single exposure inline holography (SEOL) method. It is derived that the measurement model of PPSDH method retains both the real and imaginary parts of the Fresnel field but with an approximation noise and the measurement model of SEOL retains only the real part exactly equal to the real part of the complex Fresnel field and its imaginary part is completely not available. Numerical simulation is performed for CS adapted PPSDH and CS adapted SEOL and it is demonstrated that the phase reconstruction is accurate for CS adapted PPSDH and can be used for single shot digital holographic reconstruction.
Spectrally resolved digital holography using a white light LED
NASA Astrophysics Data System (ADS)
Claus, D.; Pedrini, G.; Buchta, D.; Osten, W.
2017-06-01
This paper introduces the concept of spectrally resolved digital holography. The measurement principle and the analysis of the data will be discussed in detail. The usefulness of spectrally resolved digital holography is demonstrated for colour imaging and optical metrology with regards to the recovery of modulus information and phase information, respectively. The phase information will be used to measure the shape of an object via the application of the dual wavelength method. Based on the large degree of data available, multiple speckle de-correlated dual wavelength phase maps can be obtained, which when averaged result in a signal to noise ratio improvement.
Multiple-access phased array antenna simulator for a digital beam-forming system investigation
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.
1992-01-01
Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.
Multiple-access phased array antenna simulator for a digital beam forming system investigation
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.
1992-01-01
Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design, and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.
Development of Michelson interferometer based spatial phase-shift digital shearography
NASA Astrophysics Data System (ADS)
Xie, Xin
Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.
On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Man Fung, King; Gaier, Todd; Huang, Daquan; Larocca, Tim; Chang, M. F.; Campbell, Richard; Andrews, Michael
2008-01-01
The world s first silicon-based complementary metal oxide/semiconductor (CMOS) integrated-circuit voltage-controlled oscillator (VCO) operating in a frequency range around 324 GHz has been built and tested. Concomitantly, equipment for measuring the performance of this oscillator has been built and tested. These accomplishments are intermediate steps in a continuing effort to develop low-power-consumption, low-phase-noise, electronically tunable signal generators as local oscillators for heterodyne receivers in submillimeter-wavelength (frequency > 300 GHz) scientific instruments and imaging systems. Submillimeter-wavelength imaging systems are of special interest for military and law-enforcement use because they could, potentially, be used to detect weapons hidden behind clothing and other opaque dielectric materials. In comparison with prior submillimeter- wavelength signal generators, CMOS VCOs offer significant potential advantages, including great reductions in power consumption, mass, size, and complexity. In addition, there is potential for on-chip integration of CMOS VCOs with other CMOS integrated circuitry, including phase-lock loops, analog- to-digital converters, and advanced microprocessors.
Digital gate pulse generator for cycloconverter control
Klein, Frederick F.; Mutone, Gioacchino A.
1989-01-01
The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.
Digital-Analog Hybrid Scheme and Its Application to Chaotic Random Number Generators
NASA Astrophysics Data System (ADS)
Yuan, Zeshi; Li, Hongtao; Miao, Yunchi; Hu, Wen; Zhu, Xiaohua
2017-12-01
Practical random number generation (RNG) circuits are typically achieved with analog devices or digital approaches. Digital-based techniques, which use field programmable gate array (FPGA) and graphics processing units (GPU) etc. usually have better performances than analog methods as they are programmable, efficient and robust. However, digital realizations suffer from the effect of finite precision. Accordingly, the generated random numbers (RNs) are actually periodic instead of being real random. To tackle this limitation, in this paper we propose a novel digital-analog hybrid scheme that employs the digital unit as the main body, and minimum analog devices to generate physical RNs. Moreover, the possibility of realizing the proposed scheme with only one memory element is discussed. Without loss of generality, we use the capacitor and the memristor along with FPGA to construct the proposed hybrid system, and a chaotic true random number generator (TRNG) circuit is realized, producing physical RNs at a throughput of Gbit/s scale. These RNs successfully pass all the tests in the NIST SP800-22 package, confirming the significance of the scheme in practical applications. In addition, the use of this new scheme is not restricted to RNGs, and it also provides a strategy to solve the effect of finite precision in other digital systems.
NASA Technical Reports Server (NTRS)
Thomas, Jr., Jess B. (Inventor)
1991-01-01
An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.
NASA Astrophysics Data System (ADS)
Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui
2017-11-01
We have designed and constructed a new vertical water tunnel, V-ONSET, to investigate interfacial mass, momentum and energy transfer between two phases in a Lagrangian frame. This system features an independent control of mean flow and turbulence level. The mean flow opposes the rising/falling velocity of the second phase, ``suspending'' the particles and increasing tracking time in the view area. Strong turbulence is generated by shooting 88 digitally-controlled water jets into the test section. The second phase, either bubbles or oil droplets, can be introduced into the test section through a capillary island. In addition to this flow control system, V-ONSET comes with a 3D two-phase visualization system, consisting of high-speed cameras, two-colored LED system, and in-house Lagrangian particle tracking algorithm. This enables us to acquire the Lagrangian evolution of both phases and the interfacial transfer dynamics in between, paving the way for new closure models for two-phase simulations. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.
A comprehensive study on urban true orthorectification
Zhou, G.; Chen, W.; Kelmelis, J.A.; Zhang, Dongxiao
2005-01-01
To provide some advanced technical bases (algorithms and procedures) and experience needed for national large-scale digital orthophoto generation and revision of the Standards for National Large-Scale City Digital Orthophoto in the National Digital Orthophoto Program (NDOP), this paper presents a comprehensive study on theories, algorithms, and methods of large-scale urban orthoimage generation. The procedures of orthorectification for digital terrain model (DTM)-based and digital building model (DBM)-based orthoimage generation and their mergence for true orthoimage generation are discussed in detail. A method of compensating for building occlusions using photogrammetric geometry is developed. The data structure needed to model urban buildings for accurately generating urban orthoimages is presented. Shadow detection and removal, the optimization of seamline for automatic mosaic, and the radiometric balance of neighbor images are discussed. Street visibility analysis, including the relationship between flight height, building height, street width, and relative location of the street to the imaging center, is analyzed for complete true orthoimage generation. The experimental results demonstrated that our method can effectively and correctly orthorectify the displacements caused by terrain and buildings in urban large-scale aerial images. ?? 2005 IEEE.
NASA Astrophysics Data System (ADS)
Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan
2017-03-01
Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.
Flexible digital modulation and coding synthesis for satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John
1991-01-01
An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.
NASA Astrophysics Data System (ADS)
Di, Jianglei; Zhao, Jianlin; Sun, Weiwei; Jiang, Hongzhen; Yan, Xiaobo
2009-10-01
Digital holographic microscopy allows the numerical reconstruction of the complex wavefront of samples, especially biological samples such as living cells. In digital holographic microscopy, a microscope objective is introduced to improve the transverse resolution of the sample; however a phase aberration in the object wavefront is also brought along, which will affect the phase distribution of the reconstructed image. We propose here a numerical method to compensate for the phase aberration of thin transparent objects with a single hologram. The least squares surface fitting with points number less than the matrix of the original hologram is performed on the unwrapped phase distribution to remove the unwanted wavefront curvature. The proposed method is demonstrated with the samples of the cicada wings and epidermal cells of garlic, and the experimental results are consistent with that of the double exposure method.
NASA Astrophysics Data System (ADS)
Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.
1988-01-01
This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.
Time-Dependent Traveling Wave Tube Model for Intersymbol Interference Investigations
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)
2001-01-01
For the first time, a computational model has been used to provide a direct description of the effects of the traveling wave tube (TWT) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion, gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black-box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)
2001-01-01
For the first time, a physics based computational model has been used to provide a direct description of the effects of the TWT (Traveling Wave Tube) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept amplitude and/or swept frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW (Signal Processing Worksystem).
DNA-based random number generation in security circuitry.
Gearheart, Christy M; Arazi, Benjamin; Rouchka, Eric C
2010-06-01
DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. This research focuses on further developing DNA-based methodologies to mimic digital data manipulation. While exhibiting fundamental principles, this work was done in conjunction with the vision that DNA-based circuitry, when the technology matures, will form the basis for a tamper-proof security module, revolutionizing the meaning and concept of tamper-proofing and possibly preventing it altogether based on accurate scientific observations. A paramount part of such a solution would be self-generation of random numbers. A novel prototype schema employs solid phase synthesis of oligonucleotides for random construction of DNA sequences; temporary storage and retrieval is achieved through plasmid vectors. A discussion of how to evaluate sequence randomness is included, as well as how these techniques are applied to a simulation of the random number generation circuitry. Simulation results show generated sequences successfully pass three selected NIST random number generation tests specified for security applications.
Design Principles of Next-Generation Digital Gaming for Education.
ERIC Educational Resources Information Center
Squire, Kurt; Jenkins, Henry; Holland, Walter; Miller, Heather; O'Driscoll, Alice; Tan, Katie Philip; Todd, Katie.
2003-01-01
Discusses the rapid growth of digital games, describes research at MIT that is exploring the potential of digital games for supporting learning, and offers hypotheses about the design of next-generation educational video and computer games. Highlights include simulations and games; and design principles, including context and using information to…
How Digital Native Learners Describe Themselves
ERIC Educational Resources Information Center
Thompson, Penny
2015-01-01
Eight university students from the "digital native" generation were interviewed about the connections they saw between technology use and learning, and also their reactions to the popular press claims about their generation. Themes that emerged from the interviews were coded to show patterns in how digital natives describe themselves.…
Photonic beamforming network for multibeam satellite-on-board phased-array antennas
NASA Astrophysics Data System (ADS)
Piqueras, M. A.; Cuesta-Soto, F.; Villalba, P.; Martí, A.; Hakansson, A.; Perdigués, J.; Caille, G.
2017-11-01
The implementation of a beamforming unit based on integrated photonic technologies is addressed in this work. This integrated photonic solution for multibeam coverage will be compared with the digital and the RF solution. Photonic devices show unique characteristics that match the critical requirements of space oriented devices such as low mass/size, low power consumption and easily scalable to big systems. An experimental proof-of-concept of the photonic beamforming structure based on 4x4 and 8x8 Butler matrices is presented. The proof-of-concept is based in the heterodyne generation of multiple phase engineered RF signals for the conformation of 8-4 different beams in an antenna array. Results show the feasibility of this technology for the implementation of optical beamforming with phase distribution errors below σ=10o with big savings in the required mass and size of the beamforming unit.
Digital holographic microscopy combined with optical tweezers
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.
2011-02-01
While optical tweezers have been widely used for the manipulation and organization of microscopic objects in three dimensions, observing the manipulated objects along axial direction has been quite challenging. In order to visualize organization and orientation of objects along axial direction, we report development of a Digital holographic microscopy combined with optical tweezers. Digital holography is achieved by use of a modified Mach-Zehnder interferometer with digital recording of interference pattern of the reference and sample laser beams by use of a single CCD camera. In this method, quantitative phase information is retrieved dynamically with high temporal resolution, only limited by frame rate of the CCD. Digital focusing, phase-unwrapping as well as online analysis and display of the quantitative phase images was performed on a software developed on LabView platform. Since phase changes observed in DHOT is very sensitive to optical thickness of trapped volume, estimation of number of particles trapped in the axial direction as well as orientation of non-spherical objects could be achieved with high precision. Since in diseases such as malaria and diabetics, change in refractive index of red blood cells occurs, this system can be employed to map such disease-specific changes in biological samples upon immobilization with optical tweezers.
High-Speed Rapid-Single-Flux-Quantum Multiplexer and Demultiplexer Design and Testing
2007-08-22
Herr, N. Vukovic , C. A. Mancini, M. F. Bocko, and M. J . Feldman, "High speed testing of a four-bit RSFQ decimation digital filter," IEEE Trans. Appl...61] A. M. Herr, C. A. Mancini, N. Vukovic , M. F. Bocko, and M. J . Feldman, "High-speed operation of a 64-bit circular shift register," IEEE Trans...10-19 J . A rich library of basic cells such as flip-flops, buffers, adders, multipliers, clock generator circuits, and phase-locking circuits have been
NASA Astrophysics Data System (ADS)
Chuang, Ernest; Sissom, Brad; Harris, Rod; Malang, Keith; Bergman, Chris; Hill, Adrian; Bell, Bernard; Curtis, Kevin
2008-07-01
Development prototype systems for holographic read-only-memory (ROM) are demonstrated, capable of high density recording at 406.7 nm wavelength with 0.71 numerical aperture optics. A phase-conjugate Fourier transform lens is developed for improved capacity and tolerances and incorporated into a fully functional compact reader about 1 cm in height. The capacity target for the first generation is 4 Gbytes in a 42×35 mm2 media card. Two-step mastering, replication, and playback are demonstrated for digital audio stored in 125 holograms.
NASA Astrophysics Data System (ADS)
Buske, Ivo; Riede, Wolfgang
2006-09-01
We compare active optical elements based on different technologies to accomplish the requirements of a 2-dim. fine tracking control system. A cascaded optically and electrically addressable spatial light modulator (OASLM) based on liquid crystals (LC) is used for refractive beam steering. Spatial light modulators provide a controllable phase wedge to generate a beam deflection. Additionally, a tip/tilt mirror approach operating with piezo-electric actuators is investigated. A digital PID controller is implemented for closed-loop control. Beam tracking with a root-mean-squared accuracy of Δα=30 nrad has been laboratory-confirmed.
Self-referenced interferometer for cylindrical surfaces.
Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef
2015-11-20
We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.
Gimenez, Sonia; Roger, Sandra; Baracca, Paolo; Martín-Sacristán, David; Monserrat, Jose F; Braun, Volker; Halbauer, Hardy
2016-09-22
The use of massive multiple-input multiple-output (MIMO) techniques for communication at millimeter-Wave (mmW) frequency bands has become a key enabler to meet the data rate demands of the upcoming fifth generation (5G) cellular systems. In particular, analog and hybrid beamforming solutions are receiving increasing attention as less expensive and more power efficient alternatives to fully digital precoding schemes. Despite their proven good performance in simple setups, their suitability for realistic cellular systems with many interfering base stations and users is still unclear. Furthermore, the performance of massive MIMO beamforming and precoding methods are in practice also affected by practical limitations and hardware constraints. In this sense, this paper assesses the performance of digital precoding and analog beamforming in an urban cellular system with an accurate mmW channel model under both ideal and realistic assumptions. The results show that analog beamforming can reach the performance of fully digital maximum ratio transmission under line of sight conditions and with a sufficient number of parallel radio-frequency (RF) chains, especially when the practical limitations of outdated channel information and per antenna power constraints are considered. This work also shows the impact of the phase shifter errors and combiner losses introduced by real phase shifter and combiner implementations over analog beamforming, where the former ones have minor impact on the performance, while the latter ones determine the optimum number of RF chains to be used in practice.
Digital fringe projection for hand surface coordinate variation analysis caused by osteoarthritis
NASA Astrophysics Data System (ADS)
Nor Haimi, Wan Mokhdzani Wan; Hau Tan, Cheek; Retnasamy, Vithyacharan; Vairavan, Rajendaran; Sauli, Zaliman; Roshidah Yusof, Nor; Hambali, Nor Azura Malini Ahmad; Aziz, Muhammad Hafiz Ab; Bakhit, Ahmad Syahir Ahmad
2017-11-01
Hand osteoarthritis is one of the most common forms of arthritis which impact millions of people worldwide. The disabling problem occurs when the protective cartilage on the boundaries of bones wear off over time. Currently, in order to identify hand osteoarthritis, special instruments namely X-ray scanning and MRI are used for the detection but it also has its limitations such as radiation exposure and can be quite costly. In this work, an optical metrology system based on digital fringe projection which comprises of an LCD projector, CCD camera and a personal computer has been developed to anticipate abnormal growth or deformation on the joints of the hand which are common symptoms of osteoarthritis. The main concept of this optical metrology system is to apply structured light as imaging source for surface change detection. The imaging source utilizes fringe patterns generated by C++ programming and is shifted by 3 phase shifts based on the 3 steps 2 shifts method. Phase wrapping technique and analysis were applied in order to detect the deformation of live subjects. The result has demonstrated a successful method of hand deformation detection based on the pixel tracking differences of a normal and deformed state.
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Dusl, John (Inventor)
2003-01-01
Transceiver and methods are included that are especially suitable for detecting metallic materials, such as metallic mines, within an environment. The transceiver includes a digital waveform generator used to transmit a signal into the environment and a receiver that produces a digital received signal. A tracking module preferably compares an in-phase and quadrature transmitted signal with an in-phase and quadrature received signal to produce a spectral transfer function of the magnetic transceiver over a selected range of frequencies. The transceiver initially preferably creates a reference transfer function which is then stored in a memory. Subsequently measured transfer functions will vary depending on the presence of metal in the environment which was not in the environment when the reference transfer function was determined. The system may be utilized in the presence of other antennas, metal, and electronics which may comprise a plastic mine detector for detecting plastic mines. Despite the additional antennas and other metallic materials that may be in the environment due to the plastic mine detector, the magnetic transceiver remains highly sensitive to metallic material which may be located in various portions of the environment and which may be detected by sweeping the detector over ground that may contain metals or mines.
NASA Astrophysics Data System (ADS)
Outerbridge, Gregory John, II
Pose estimation techniques have been developed on both optical and digital correlator platforms to aid in the autonomous rendezvous and docking of spacecraft. This research has focused on the optical architecture, which utilizes high-speed bipolar-phase grayscale-amplitude spatial light modulators as the image and correlation filter devices. The optical approach has the primary advantage of optical parallel processing: an extremely fast and efficient way of performing complex correlation calculations. However, the constraints imposed on optically implementable filters makes optical correlator based posed estimation technically incompatible with the popular weighted composite filter designs successfully used on the digital platform. This research employs a much simpler "bank of filters" approach to optical pose estimation that exploits the inherent efficiency of optical correlation devices. A novel logarithmically mapped optically implementable matched filter combined with a pose search algorithm resulted in sub-degree standard deviations in angular pose estimation error. These filters were extremely simple to generate, requiring no complicated training sets and resulted in excellent performance even in the presence of significant background noise. Common edge detection and scaling of the input image was the only image pre-processing necessary for accurate pose detection at all alignment distances of interest.
NASA Astrophysics Data System (ADS)
Eyler, E. E.
2013-10-01
Several high-performance lab instruments suitable for manual assembly have been developed using low-pin-count 32-bit microcontrollers that communicate with an Android tablet via a USB interface. A single Android tablet app accommodates multiple interface needs by uploading parameter lists and graphical data from the microcontrollers, which are themselves programmed with easily modified C code. The hardware design of the instruments emphasizes low chip counts and is highly modular, relying on small "daughter boards" for special functions such as USB power management, waveform generation, and phase-sensitive signal detection. In one example, a daughter board provides a complete waveform generator and direct digital synthesizer that fits on a 1.5 in. × 0.8 in. circuit card.
Generation and transmission of DPSK signals using a directly modulated passive feedback laser.
Karar, Abdullah S; Gao, Ying; Zhong, Kang Ping; Ke, Jian Hong; Cartledge, John C
2012-12-10
The generation of differential-phase-shift keying (DPSK) signals is demonstrated using a directly modulated passive feedback laser at 10.709-Gb/s, 14-Gb/s and 16-Gb/s. The quality of the DPSK signals is assessed using both noncoherent detection for a bit rate of 10.709-Gb/s and coherent detection with digital signal processing involving a look-up table pattern-dependent distortion compensator. Transmission over a passive link consisting of 100 km of single mode fiber at a bit rate of 10.709-Gb/s is achieved with a received optical power of -45 dBm at a bit-error-ratio of 3.8 × 10(-3) and a 49 dB loss margin.
Digital Filters for Digital Phase-locked Loops
NASA Technical Reports Server (NTRS)
Simon, M.; Mileant, A.
1985-01-01
An s/z hybrid model for a general phase locked loop is proposed. The impact of the loop filter on the stability, gain margin, noise equivalent bandwidth, steady state error and time response is investigated. A specific digital filter is selected which maximizes the overall gain margin of the loop. This filter can have any desired number of integrators. Three integrators are sufficient in order to track a phase jerk with zero steady state error at loop update instants. This filter has one zero near z = 1.0 for each integrator. The total number of poles of the filter is equal to the number of integrators plus two.
A simple second-order digital phase-locked loop.
NASA Technical Reports Server (NTRS)
Tegnelia, C. R.
1972-01-01
A simple second-order digital phase-locked loop has been designed for the Viking Orbiter 1975 command system. Excluding analog-to-digital conversion, implementation of the loop requires only an adder/subtractor, two registers, and a correctable counter with control logic. The loop considers only the polarity of phase error and corrects system clocks according to a filtered sequence of this polarity. The loop is insensitive to input gain variation, and therefore offers the advantage of stable performance over long life. Predictable performance is guaranteed by extreme reliability of acquisition, yet in the steady state the loop produces only a slight degradation with respect to analog loop performance.
[INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology
NASA Astrophysics Data System (ADS)
Delaporte, Philippe; Alloncle, Anne-Patricia
2016-04-01
Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.
Digital spiral-slit for bi-photon imaging
NASA Astrophysics Data System (ADS)
McLaren, Melanie; Forbes, Andrew
2017-04-01
Quantum ghost imaging using entangled photon pairs has become a popular field of investigation, highlighting the quantum correlation between the photon pairs. We introduce a technique using spatial light modulators encoded with digital holograms to recover both the amplitude and the phase of the digital object. Down-converted photon pairs are entangled in the orbital angular momentum basis, and are commonly measured using spiral phase holograms. Consequently, by encoding a spiral ring-slit hologram into the idler arm, and varying it radially we can simultaneously recover the phase and amplitude of the object in question. We demonstrate that a good correlation between the encoded field function and the reconstructed images exists.
Ultralow-Power Digital Correlator for Microwave Polarimetry
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Hass, K. Joseph
2004-01-01
A recently developed high-speed digital correlator is especially well suited for processing readings of a passive microwave polarimeter. This circuit computes the autocorrelations of, and the cross-correlations among, data in four digital input streams representing samples of in-phase (I) and quadrature (Q) components of two intermediate-frequency (IF) signals, denoted A and B, that are generated in heterodyne reception of two microwave signals. The IF signals arriving at the correlator input terminals have been digitized to three levels (-1,0,1) at a sampling rate up to 500 MHz. Two bits (representing sign and magnitude) are needed to represent the instantaneous datum in each input channel; hence, eight bits are needed to represent the four input signals during any given cycle of the sampling clock. The accumulation (integration) time for the correlation is programmable in increments of 2(exp 8) cycles of the sampling clock, up to a maximum of 2(exp 24) cycles. The basic functionality of the correlator is embodied in 16 correlation slices, each of which contains identical logic circuits and counters (see figure). The first stage of each correlation slice is a logic gate that computes one of the desired correlations (for example, the autocorrelation of the I component of A or the negative of the cross-correlation of the I component of A and the Q component of B). The sampling of the output of the logic gate output is controlled by the sampling-clock signal, and an 8-bit counter increments in every clock cycle when the logic gate generates output. The most significant bit of the 8-bit counter is sampled by a 16-bit counter with a clock signal at 2(exp 8) the frequency of the sampling clock. The 16-bit counter is incremented every time the 8-bit counter rolls over.
Dual-channel in-line digital holographic double random phase encryption
Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N
2012-01-01
We present a robust encryption method for the encoding of 2D/3D objects using digital holography and virtual optics. Using our recently developed dual-plane in-line digital holography technique, two in-line digital holograms are recorded at two different planes and are encrypted using two different double random phase encryption configurations, independently. The process of using two mutually exclusive encryption channels makes the system more robust against attacks since both the channels should be decrypted accurately in order to get a recognizable reconstruction. Results show that the reconstructed object is unrecognizable even when the portion of the correct phase keys used during decryption is close to 75%. The system is verified against blind decryptions by evaluating the SNR and MSE. Validation of the proposed method and sensitivities of the associated parameters are quantitatively analyzed and illustrated. PMID:23471012
Suppressing Transients In Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1993-01-01
Loop of arbitrary order starts in steady-state lock. Method for initializing variables of digital phase-locked loop reduces or eliminates transients in phase and frequency typically occurring during acquisition of lock on signal or when changes made in values of loop-filter parameters called "loop constants". Enables direct acquisition by third-order loop without prior acquisition by second-order loop of greater bandwidth, and eliminates those perturbations in phase and frequency lock occurring when loop constants changed by arbitrarily large amounts.
On higher order discrete phase-locked loops.
NASA Technical Reports Server (NTRS)
Gill, G. S.; Gupta, S. C.
1972-01-01
An exact mathematical model is developed for a discrete loop of a general order particularly suitable for digital computation. The deterministic response of the loop to the phase step and the frequency step is investigated. The design of the digital filter for the second-order loop is considered. Use is made of the incremental phase plane to study the phase error behavior of the loop. The model of the noisy loop is derived and the optimization of the loop filter for minimum mean-square error is considered.
Detection of digital FSK using a phase-locked loop
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Simon, M. K.
1975-01-01
A theory is presented for the design of a digital FSK receiver which employs a phase-locked loop to set up the desired matched filter as the arriving signal frequency switches. The developed mathematical model makes it possible to establish the error probability performance of systems which employ a class of digital FM modulations. The noise mechanism which accounts for decision errors is modeled on the basis of the Meyr distribution and renewal Markov process theory.
Restoration of singularities in reconstructed phase of crystal image in electron holography.
Li, Wei; Tanji, Takayoshi
2014-12-01
Off-axis electron holography can be used to measure the inner potential of a specimen from its reconstructed phase image and is thus a powerful technique for materials scientists. However, abrupt reversals of contrast from white to black may sometimes occur in a digitally reconstructed phase image, which results in inaccurate information. Such phase distortion is mainly due to the digital reconstruction process and weak electron wave amplitude in some areas of the specimen. Therefore, digital image processing can be applied to the reconstruction and restoration of phase images. In this paper, fringe reconnection processing is applied to phase image restoration of a crystal structure image. The disconnection and wrong connection of interference fringes in the hologram that directly cause a 2π phase jump imperfection are correctly reconnected. Experimental results show that the phase distortion is significantly reduced after the processing. The quality of the reconstructed phase image was improved by the removal of imperfections in the final phase. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Phase unwrapping in digital holography based on non-subsampled contourlet transform
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-01-01
In the digital holographic measurement of complex surfaces, phase unwrapping is a critical step for accurate reconstruction. The phases of the complex amplitudes calculated from interferometric holograms are disturbed by speckle noise, thus reliable unwrapping results are difficult to be obtained. Most of existing unwrapping algorithms implement denoising operations first to obtain noise-free phases and then conduct phase unwrapping pixel by pixel. This approach is sensitive to spikes and prone to unreliable results in practice. In this paper, a robust unwrapping algorithm based on the non-subsampled contourlet transform (NSCT) is developed. The multiscale and directional decomposition of NSCT enhances the boundary between adjacent phase levels and henceforth the influence of local noise can be eliminated in the transform domain. The wrapped phase map is segmented into several regions corresponding to different phase levels. Finally, an unwrapped phase map is obtained by elevating the phases of a whole segment instead of individual pixels to avoid unwrapping errors caused by local spikes. This algorithm is suitable for dealing with complex and noisy wavefronts. Its universality and superiority in the digital holographic interferometry have been demonstrated by both numerical analysis and practical experiments.
A bunch to bucket phase detector for the RHIC LLRF upgrade platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, K.S.; Harvey, M.; Hayes, T.
2011-03-28
As part of the overall development effort for the RHIC LLRF Upgrade Platform [1,2,3], a generic four channel 16 bit Analog-to-Digital Converter (ADC) daughter module was developed to provide high speed, wide dynamic range digitizing and processing of signals from DC to several hundred megahertz. The first operational use of this card was to implement the bunch to bucket phase detector for the RHIC LLRF beam control feedback loops. This paper will describe the design and performance features of this daughter module as a bunch to bucket phase detector, and also provide an overview of its place within the overallmore » LLRF platform architecture as a high performance digitizer and signal processing module suitable to a variety of applications. In modern digital control and signal processing systems, ADCs provide the interface between the analog and digital signal domains. Once digitized, signals are then typically processed using algorithms implemented in field programmable gate array (FPGA) logic, general purpose processors (GPPs), digital signal processors (DSPs) or a combination of these. For the recently developed and commissioned RHIC LLRF Upgrade Platform, we've developed a four channel ADC daughter module based on the Linear Technology LTC2209 16 bit, 160 MSPS ADC and the Xilinx V5FX70T FPGA. The module is designed to be relatively generic in application, and with minimal analog filtering on board, is capable of processing signals from DC to 500 MHz or more. The module's first application was to implement the bunch to bucket phase detector (BTB-PD) for the RHIC LLRF system. The same module also provides DC digitizing of analog processed BPM signals used by the LLRF system for radial feedback.« less
Elmore, Joann G.; Longton, Gary M.; Pepe, Margaret S.; Carney, Patricia A.; Nelson, Heidi D.; Allison, Kimberly H.; Geller, Berta M.; Onega, Tracy; Tosteson, Anna N. A.; Mercan, Ezgi; Shapiro, Linda G.; Brunyé, Tad T.; Morgan, Thomas R.; Weaver, Donald L.
2017-01-01
Background: Digital whole slide imaging may be useful for obtaining second opinions and is used in many countries. However, the U.S. Food and Drug Administration requires verification studies. Methods: Pathologists were randomized to interpret one of four sets of breast biopsy cases during two phases, separated by ≥9 months, using glass slides or digital format (sixty cases per set, one slide per case, n = 240 cases). Accuracy was assessed by comparing interpretations to a consensus reference standard. Intraobserver reproducibility was assessed by comparing the agreement of interpretations on the same cases between two phases. Estimated probabilities of confirmation by a reference panel (i.e., predictive values) were obtained by incorporating data on the population prevalence of diagnoses. Results: Sixty-five percent of responding pathologists were eligible, and 252 consented to randomization; 208 completed Phase I (115 glass, 93 digital); and 172 completed Phase II (86 glass, 86 digital). Accuracy was slightly higher using glass compared to digital format and varied by category: invasive carcinoma, 96% versus 93% (P = 0.04); ductal carcinoma in situ (DCIS), 84% versus 79% (P < 0.01); atypia, 48% versus 43% (P = 0.08); and benign without atypia, 87% versus 82% (P < 0.01). There was a small decrease in intraobserver agreement when the format changed compared to when glass slides were used in both phases (P = 0.08). Predictive values for confirmation by a reference panel using glass versus digital were: invasive carcinoma, 98% and 97% (not significant [NS]); DCIS, 70% and 57% (P = 0.007); atypia, 38% and 28% (P = 0.002); and benign without atypia, 97% and 96% (NS). Conclusions: In this large randomized study, digital format interpretations were similar to glass slide interpretations of benign and invasive cancer cases. However, cases in the middle of the spectrum, where more inherent variability exists, may be more problematic in digital format. Future studies evaluating the effect these findings exert on clinical practice and patient outcomes are required. PMID:28382226
Next-generation digital information storage in DNA.
Church, George M; Gao, Yuan; Kosuri, Sriram
2012-09-28
Digital information is accumulating at an astounding rate, straining our ability to store and archive it. DNA is among the most dense and stable information media known. The development of new technologies in both DNA synthesis and sequencing make DNA an increasingly feasible digital storage medium. We developed a strategy to encode arbitrary digital information in DNA, wrote a 5.27-megabit book using DNA microchips, and read the book by using next-generation DNA sequencing.
The Net Generation, the Internet, and Political Communication and Participation
ERIC Educational Resources Information Center
Velicki, Damir; Dumancic, Mario; Topolovcan, Tomislav
2017-01-01
The Net Generation, a generation which grew up with digital media, differs from older generations which entered the world of digital media and the Internet afterwards. The Internet itself opened new possibilities of communication and participation in the sphere of politics as well. Research was conducted among students at the Faculty of Teacher…
De-Dopplerization of Acoustic Measurements
2017-08-10
band energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An...energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An equation...fractional octave representation and smearing that occurs within the spectrum11, digital filtering techniques were not considered by these earlier
iPads and Paintbrushes: Integrating Digital Media into an Intergenerational Art Class
ERIC Educational Resources Information Center
Heydon, Rachel; McKee, Lori; Daly, Bridget
2017-01-01
This exploratory case study integrated digital media into an intergenerational art class. Its goals were to generate knowledge of how to bring young children and elders together to expand their opportunities for meaning-making and seeing themselves in affirming ways so as to generate transferable understanding of digitally enhanced multimodal…
NASA Technical Reports Server (NTRS)
Simon, M.; Mileant, A.
1986-01-01
The steady-state behavior of a particular type of digital phase-locked loop (DPLL) with an integrate-and-dump circuit following the phase detector is characterized in terms of the probability density function (pdf) of the phase error in the loop. Although the loop is entirely digital from an implementation standpoint, it operates at two extremely different sampling rates. In particular, the combination of a phase detector and an integrate-and-dump circuit operates at a very high rate whereas the loop update rate is very slow by comparison. Because of this dichotomy, the loop can be analyzed by hybrid analog/digital (s/z domain) techniques. The loop is modeled in such a general fashion that previous analyses of the Real-Time Combiner (RTC), Subcarrier Demodulator Assembly (SDA), and Symbol Synchronization Assembly (SSA) fall out as special cases.
Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device.
Hoffmann, Maximilian; Papadopoulos, Ioannis N; Judkewitz, Benjamin
2018-01-01
The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation, or patterned photostimulation. For most of these applications, it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.
Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device
NASA Astrophysics Data System (ADS)
Hoffmann, Maximilian; Papadopoulos, Ioannis N.; Judkewitz, Benjamin
2018-01-01
The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation or patterned photostimulation. For most of these applications it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator, but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.
A compact, multichannel, and low noise arbitrary waveform generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govorkov, S.; Ivanov, B. I.; Novosibirsk State Technical University, K.Marx-Ave. 20, Novosibirsk 630092
2014-05-15
A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analogmore » compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.« less
Calibration Software for Use with Jurassicprok
NASA Technical Reports Server (NTRS)
Chapin, Elaine; Hensley, Scott; Siqueira, Paul
2004-01-01
The Jurassicprok Interferometric Calibration Software (also called "Calibration Processor" or simply "CP") estimates the calibration parameters of an airborne synthetic-aperture-radar (SAR) system, the raw measurement data of which are processed by the Jurassicprok software described in the preceding article. Calibration parameters estimated by CP include time delays, baseline offsets, phase screens, and radiometric offsets. CP examines raw radar-pulse data, single-look complex image data, and digital elevation map data. For each type of data, CP compares the actual values with values expected on the basis of ground-truth data. CP then converts the differences between the actual and expected values into updates for the calibration parameters in an interferometric calibration file (ICF) and a radiometric calibration file (RCF) for the particular SAR system. The updated ICF and RCF are used as inputs to both Jurassicprok and to the companion Motion Measurement Processor software (described in the following article) for use in generating calibrated digital elevation maps.
Constellation labeling optimization for bit-interleaved coded APSK
NASA Astrophysics Data System (ADS)
Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe
2016-05-01
This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.
Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.
1991-01-01
Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.
LANDSAT data for state planning. [of transportation for Georgia
NASA Technical Reports Server (NTRS)
Faust, N. L.; Spann, G. W.
1975-01-01
The results of an effort to generate and apply automated classification of LANDSAT digital data to state of Georgia problems are presented. This phase centers on an analysis of the usefulness of LANDSAT digital data to provide land-use data for transportation planning. Hall County, Georgia was chosen as a test site because it is part of a seventeen county area for which the Georgia Department of Transportation is currently designing a Transportation Planning Land-Use Simulation Model. The land-cover information derived from this study was compared to several other existing sources of land-use data for Hall County and input into this simulation. The results indicate that there is difficulty comparing LANDSAT derived land-cover information with previous land-use information since the LANDSAT data are acquired on an acre by acre grid basis while all previous land-use surveys for Hall County used land-use data on a parcel basis.
Frequency control circuit for all-digital phase-lock loops
NASA Technical Reports Server (NTRS)
Anderson, T. O.
1973-01-01
Phase-lock loop references all its operations to fixed high-frequency service clock operating at highest speed which digital circuits permit. Wide-range control circuit provides linear control of frequency of reference signal. It requires only two counters in combination with control circuit consisting only of flip-flop and gate.
Ultrasonic imaging system for in-process fabric defect detection
Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.
1997-01-01
An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1975-01-01
A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.
An analysis of printing conditions for wavefront overlapping printing
NASA Astrophysics Data System (ADS)
Ichihashi, Y.; Yamamoto, K.; Wakunami, K.; Oi, R.; Okui, M.; Senoh, T.
2017-03-01
Wavefront printing for a digitally-designed hologram has got attentions recently. In this printing, a spatial light modulator (SLM) is used for displaying a hologram data and the wavefront is reproduced by irradiating the hologram with a reference light the same way as electronic holography. However, a pixel count of current SLM devices is not enough to display an entire hologram data. To generate a practical digitally-designed hologram, the entire hologram data is divided into a set of sub-hologram data and wavefront reproduced by each sub-hologram is sequentially recorded in tiling manner by using X-Y motorized stage. Due to a lack of positioning an accuracy of X-Y motorized stage and the temporal incoherent recording, phase continuity of recorded/reproduced wavefront is lost between neighboring subholograms. In this paper, we generate the holograms that have different size of sub-holograms with an overlap or nonoverlap, and verify the size of sub-holograms effect on the reconstructed images. In the result, the reconstructed images degrade with decreasing the size of sub-holograms and there is little or no degradation of quality by the wavefront printing with the overlap.
Generation of topographic terrain models utilizing synthetic aperture radar and surface level data
NASA Technical Reports Server (NTRS)
Imhoff, Marc L. (Inventor)
1991-01-01
Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.
Phase retrieval without unwrapping by single-shot dual-wavelength digital holography
NASA Astrophysics Data System (ADS)
Min, Junwei; Yao, Baoli; Zhou, Meiling; Guo, Rongli; Lei, Ming; Yang, Yanlong; Dan, Dan; Yan, Shaohui; Peng, Tong
2014-12-01
A phase retrieval method by using single-shot dual-wavelength digital holography is proposed. Each single wavelength hologram is extracted from the color CCD recorded hologram at one exposure, and the unwrapped phase image of object can be reconstructed directly. Different from the traditional multiple wavelength phase unwrapping techniques, any single complex wave-fronts at different wavelengths have no need to be calculated any more. Thus, the phase retrieval is computationally fast and straightforward, and the limitations on the total optical path difference are significantly relaxed. The practicability of the proposed method is demonstrated by both simulated and experimental results.
Agbakoba, Ruth; McGee-Lennon, Marilyn; Bouamrane, Matt-Mouley; Watson, Nicholas; Mair, Frances S
2016-12-01
Little is known about the factors which facilitate or impede the large-scale deployment of health and well-being consumer technologies. The Living-It-Up project is a large-scale digital intervention led by NHS 24, aiming to transform health and well-being services delivery throughout Scotland. We conducted a qualitative study of the factors affecting the implementation and deployment of the Living-It-Up services. We collected a range of data during the initial phase of deployment, including semi-structured interviews (N = 6); participant observation sessions (N = 5) and meetings with key stakeholders (N = 3). We used the Normalisation Process Theory as an explanatory framework to interpret the social processes at play during the initial phases of deployment.Initial findings illustrate that it is clear - and perhaps not surprising - that the size and diversity of the Living-It-Up consortium made implementation processes more complex within a 'multi-stakeholder' environment. To overcome these barriers, there is a need to clearly define roles, tasks and responsibilities among the consortium partners. Furthermore, varying levels of expectations and requirements, as well as diverse cultures and ways of working, must be effectively managed. Factors which facilitated implementation included extensive stakeholder engagement, such as co-design activities, which can contribute to an increased 'buy-in' from users in the long term. An important lesson from the Living-It-Up initiative is that attempting to co-design innovative digital services, but at the same time, recruiting large numbers of users is likely to generate conflicting implementation priorities which hinder - or at least substantially slow down - the effective rollout of services at scale.The deployment of Living-It-Up services is ongoing, but our results to date suggest that - in order to be successful - the roll-out of digital health and well-being technologies at scale requires a delicate and pragmatic trade-off between co-design activities, the development of innovative services and the efforts allocated to widespread marketing and recruitment initiatives. © The Author(s) 2015.
Digital slip frequency generator and method for determining the desired slip frequency
Klein, Frederick F.
1989-01-01
The output frequency of an electric power generator is kept constant with variable rotor speed by automatic adjustment of the excitation slip frequency. The invention features a digital slip frequency generator which provides sine and cosine waveforms from a look-up table, which are combined with real and reactive power output of the power generator.
The Popular Profile of the Digital Learner: Technology Use Patterns and Approaches to Learning
ERIC Educational Resources Information Center
Thompson, Penny Marie
2012-01-01
The purpose of this study was to investigate the claims made in the popular press about the "digital native" generation as learners. Because students' lives today are saturated with digital media at a time when their brains are still developing, many popular press authors claim that this generation of students thinks and learns…
Greening the Net Generation: Outdoor Adult Learning in the Digital Age
ERIC Educational Resources Information Center
Walter, Pierre
2013-01-01
Adult learning today takes place primarily within walled classrooms or in other indoor settings, and often in front of various types of digital screens. As adults have adopted the digital technologies and indoor lifestyle attributed to the so-called "Net Generation," we have become detached from contact with the natural world outdoors.…
Are Young Generations in Secondary School Digitally Competent? A Study on Italian Teenagers
ERIC Educational Resources Information Center
Calvani, Aomina; Fini, Antonio; Ranieri, Maria; Picci, Patrizia
2012-01-01
Digital competences amongst the younger generations and the role of schools faced with the spread of new youth practices are topics of increasing interest. Some commentators state that, thanks to the intensive use of digital media, young people are developing significant competences that also correspond to important cognitive processes and new…
Response Rates in Random-Digit-Dialed Telephone Surveys: Estimation vs. Measurement.
ERIC Educational Resources Information Center
Franz, Jennifer D.
The efficacy of the random digit dialing method in telephone surveys was examined. Random digit dialing (RDD) generates a pure random sample and provides the advantage of including unlisted phone numbers, as well as numbers which are too new to be listed. Its disadvantage is that it generates a major proportion of nonworking and business…
Noise-Induced Synchronization among Sub-RF CMOS Analog Oscillators for Skew-Free Clock Distribution
NASA Astrophysics Data System (ADS)
Utagawa, Akira; Asai, Tetsuya; Hirose, Tetsuya; Amemiya, Yoshihito
We present on-chip oscillator arrays synchronized by random noises, aiming at skew-free clock distribution on synchronous digital systems. Nakao et al. recently reported that independent neural oscillators can be synchronized by applying temporal random impulses to the oscillators [1], [2]. We regard neural oscillators as independent clock sources on LSIs; i. e., clock sources are distributed on LSIs, and they are forced to synchronize through the use of random noises. We designed neuron-based clock generators operating at sub-RF region (<1GHz) by modifying the original neuron model to a new model that is suitable for CMOS implementation with 0.25-μm CMOS parameters. Through circuit simulations, we demonstrate that i) the clock generators are certainly synchronized by pseudo-random noises and ii) clock generators exhibited phase-locked oscillations even if they had small device mismatches.
NASA Astrophysics Data System (ADS)
Szplet, R.; Kalisz, J.; Jachna, Z.
2009-02-01
We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second.
NASA Astrophysics Data System (ADS)
Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.
2017-09-01
The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.
A class of optimum digital phase locked loops
NASA Technical Reports Server (NTRS)
Kumar, R.; Hurd, W. J.
1986-01-01
This paper presents a class of optimum digital filters for digital phase locked loops, for the important case in which the maximum update rate of the loop filter and numerically controlled oscillator (NCO) is limited. This case is typical when the loop filter is implemented in a microprocessor. In these situations, pure delay is encountered in the loop transfer function and thus the stability and gain margin of the loop are of crucial interest. The optimum filters designed for such situations are evaluated in terms of their gain margin for stability, dynamic error, and steady-state error performance. For situations involving considerably high phase dynamics an adaptive and programmable implementation is also proposed to obtain an overall optimum strategy.
US National Large-scale City Orthoimage Standard Initiative
Zhou, G.; Song, C.; Benjamin, S.; Schickler, W.
2003-01-01
The early procedures and algorithms for National digital orthophoto generation in National Digital Orthophoto Program (NDOP) were based on earlier USGS mapping operations, such as field control, aerotriangulation (derived in the early 1920's), the quarter-quadrangle-centered (3.75 minutes of longitude and latitude in geographic extent), 1:40,000 aerial photographs, and 2.5 D digital elevation models. However, large-scale city orthophotos using early procedures have disclosed many shortcomings, e.g., ghost image, occlusion, shadow. Thus, to provide the technical base (algorithms, procedure) and experience needed for city large-scale digital orthophoto creation is essential for the near future national large-scale digital orthophoto deployment and the revision of the Standards for National Large-scale City Digital Orthophoto in National Digital Orthophoto Program (NDOP). This paper will report our initial research results as follows: (1) High-precision 3D city DSM generation through LIDAR data processing, (2) Spatial objects/features extraction through surface material information and high-accuracy 3D DSM data, (3) 3D city model development, (4) Algorithm development for generation of DTM-based orthophoto, and DBM-based orthophoto, (5) True orthophoto generation by merging DBM-based orthophoto and DTM-based orthophoto, and (6) Automatic mosaic by optimizing and combining imagery from many perspectives.
A second-order all-digital phase-locked loop
NASA Technical Reports Server (NTRS)
Holmes, J. K.; Tegnelia, C. R.
1974-01-01
A simple second-order digital phase-locked loop has been designed to synchronize itself to a square-wave subcarrier. Analysis and experimental performance are given for both acquisition behavior and steady-state phase error performance. In addition, the damping factor and the noise bandwidth are derived analytically. Although all the data are given for the square-wave subcarrier case, the results are applicable to arbitrary subcarriers that are odd symmetric about their transition region.
An image encryption algorithm based on 3D cellular automata and chaotic maps
NASA Astrophysics Data System (ADS)
Del Rey, A. Martín; Sánchez, G. Rodríguez
2015-05-01
A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.
Optical design of cipher block chaining (CBC) encryption mode by using digital holography
NASA Astrophysics Data System (ADS)
Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam
2016-03-01
We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C; Yin, F; Harris, W
Purpose: To develop a technique generating ultrafast on-board VC-MRI using prior 4D-MRI and on-board phase-skipped encoding k-space acquisition for real-time 3D target tracking of liver and lung radiotherapy. Methods: The end-of-expiration (EOE) volume in 4D-MRI acquired during the simulation was selected as the prior volume. 3 major respiratory deformation patterns were extracted through the principal component analysis of the deformation field maps (DFMs) generated between EOE and all other phases. The on-board VC-MRI at each instant was considered as a deformation of the prior volume, and the deformation was modeled as a linear combination of the extracted 3 major deformationmore » patterns. To solve the weighting coefficients of the 3 major patterns, a 2D slice was extracted from VC-MRI volume to match with the 2D on-board sampling data, which was generated by 8-fold phase skipped-encoding k-space acquisition (i.e., sample 1 phase-encoding line out of every 8 lines) to achieve an ultrafast 16–24 volumes/s frame rate. The method was evaluated using XCAT digital phantom to simulate lung cancer patients. The 3D volume of end-ofinhalation (EOI) phase at the treatment day was used as ground-truth onboard VC-MRI with simulated changes in 1) breathing amplitude and 2) breathing amplitude/phase change from the simulation day. A liver cancer patient case was evaluated for in-vivo feasibility demonstration. Results: The comparison between ground truth and estimated on-board VC-MRI shows good agreements. In XCAT study with changed breathing amplitude, the volume-percent-difference(VPD) between ground-truth and estimated tumor volumes at EOI was 6.28% and the Center-of-Mass-Shift(COMS) was 0.82mm; with changed breathing amplitude and phase, the VPD was 8.50% and the COMS was 0.54mm. The study of liver patient case also demonstrated a promising in vivo feasibility of the proposed method Conclusion: Preliminary results suggest the feasibility to estimate ultrafast VC-MRI for on-board target localization with phase skipped-encoding k-space acquisition. Research grant from NIH R01-184173.« less
A class of optimum digital phase locked loops for the DSN advanced receiver
NASA Technical Reports Server (NTRS)
Hurd, W. J.; Kumar, R.
1985-01-01
A class of optimum digital filters for digital phase locked loop of the deep space network advanced receiver is discussed. The filter minimizes a weighted combination of the variance of the random component of the phase error and the sum square of the deterministic dynamic component of phase error at the output of the numerically controlled oscillator (NCO). By varying the weighting coefficient over a suitable range of values, a wide set of filters are obtained such that, for any specified value of the equivalent loop-noise bandwidth, there corresponds a unique filter in this class. This filter thus has the property of having the best transient response over all possible filters of the same bandwidth and type. The optimum filters are also evaluated in terms of their gain margin for stability and their steady-state error performance.
Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina
2016-01-01
The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject.
Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina
2016-01-01
The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject. PMID:26943121
ERIC Educational Resources Information Center
Bonilha, Heather Shaw; Deliyski, Dimitar D.; Whiteside, Joanna Piasecki; Gerlach, Terri Treman
2012-01-01
Purpose: To examine differences in vocal fold vibratory phase asymmetry judged from stroboscopy, high-speed videoendoscopy (HSV), and the HSV-derived playbacks of mucosal wave kymography, digital kymography, and a static medial digital kymography image of persons with hypofunctional and hyperfunctional voice disorders. Differences between the…
Comparative analysis of autofocus functions in digital in-line phase-shifting holography.
Fonseca, Elsa S R; Fiadeiro, Paulo T; Pereira, Manuela; Pinheiro, António
2016-09-20
Numerical reconstruction of digital holograms relies on a precise knowledge of the original object position. However, there are a number of relevant applications where this parameter is not known in advance and an efficient autofocusing method is required. This paper addresses the problem of finding optimal focusing methods for use in reconstruction of digital holograms of macroscopic amplitude and phase objects, using digital in-line phase-shifting holography in transmission mode. Fifteen autofocus measures, including spatial-, spectral-, and sparsity-based methods, were evaluated for both synthetic and experimental holograms. The Fresnel transform and the angular spectrum reconstruction methods were compared. Evaluation criteria included unimodality, accuracy, resolution, and computational cost. Autofocusing under angular spectrum propagation tends to perform better with respect to accuracy and unimodality criteria. Phase objects are, generally, more difficult to focus than amplitude objects. The normalized variance, the standard correlation, and the Tenenbaum gradient are the most reliable spatial-based metrics, combining computational efficiency with good accuracy and resolution. A good trade-off between focus performance and computational cost was found for the Fresnelet sparsity method.
Direct-phase and amplitude digitalization based on free-space interferometry
NASA Astrophysics Data System (ADS)
Kleiner, Vladimir; Rudnitsky, Arkady; Zalevsky, Zeev
2017-12-01
A novel ADC configuration that can be characterized as a photonic-domain flash analog-to-digital convertor operating based upon free-space interferometry is proposed and analysed. The structure can be used as the front-end of a coherent receiver as well as for other applications. Two configurations are considered: the first, ‘direct free-space interference’, allows simultaneous measuring of the optical phase and amplitude; the second, ‘extraction of the ac component of interference by means of pixel-by-pixel balanced photodetection’, allows only phase digitization but with significantly higher sensitivity. For both proposed configurations, we present Monte Carlo estimations of the performance limitations, due to optical noise and photo-current noise, at sampling rates of 60 giga-samples per second. In terms of bit resolution, we simulated multiple cases with growing complexity of up to 4 bits for the amplitude and up to 6 bits for the phase. The simulations show that the digitization errors in the optical domain can be reduced to levels close to the quantization noise limits. Preliminary experimental results validate the fundamentals of the proposed idea.
Neural Networks For Demodulation Of Phase-Modulated Signals
NASA Technical Reports Server (NTRS)
Altes, Richard A.
1995-01-01
Hopfield neural networks proposed for demodulating quadrature phase-shift-keyed (QPSK) signals carrying digital information. Networks solve nonlinear integral equations prior demodulation circuits cannot solve. Consists of set of N operational amplifiers connected in parallel, with weighted feedback from output terminal of each amplifier to input terminals of other amplifiers. Used to solve signal processing problems. Implemented as analog very-large-scale integrated circuit that achieves rapid convergence. Alternatively, implemented as digital simulation of such circuit. Also used to improve phase estimation performance over that of phase-locked loop.
Pulsed spatial phase-shifting digital shearography based on a micropolarizer camera
NASA Astrophysics Data System (ADS)
Aranchuk, Vyacheslav; Lal, Amit K.; Hess, Cecil F.; Trolinger, James Davis; Scott, Eddie
2018-02-01
We developed a pulsed digital shearography system that utilizes the spatial phase-shifting technique. The system employs a commercial micropolarizer camera and a double pulse laser, which allows for instantaneous phase measurements. The system can measure dynamic deformation of objects as large as 1 m at a 2-m distance during the time between two laser pulses that range from 30 μs to 30 ms. The ability of the system to measure dynamic deformation was demonstrated by obtaining phase wrapped and unwrapped shearograms of a vibrating object.
NASA Technical Reports Server (NTRS)
Jackson, Deborah J. (Inventor)
1998-01-01
An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.
Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro
2015-06-15
Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.
A Learning Design for Student-Generated Digital Storytelling
ERIC Educational Resources Information Center
Kearney, Matthew
2011-01-01
The literature on digital video in education emphasises the use of pre-fabricated, instructional-style video assets. Learning designs for supporting the use of these expert-generated video products have been developed. However, there has been a paucity of pedagogical frameworks for facilitating specific genres of learner-generated video projects.…
A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy.
Mehta, M M; Chandrasekhar, V
2014-01-01
Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.
A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy
NASA Astrophysics Data System (ADS)
Mehta, M. M.; Chandrasekhar, V.
2014-01-01
Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.
Double closed-loop resonant micro optic gyro using hybrid digital phase modulation.
Ma, Huilian; Zhang, Jianjie; Wang, Linglan; Jin, Zhonghe
2015-06-15
It is well-known that the closed-loop operation in optical gyros offers wider dynamic range and better linearity. By adding a stair-like digital serrodyne wave to a phase modulator can be used as a frequency shifter. The width of one stair in this stair-like digital serrodyne wave should be set equal to the optical transmission time in the resonator, which is relaxed in the hybrid digital phase modulation (HDPM) scheme. The physical mechanism for this relaxation is firstly indicated in this paper. Detailed theoretical and experimental investigations are presented for the HDPM. Simulation and experimental results show that the width of one stair is not restricted by the optical transmission time, however, it should be optimized according to the rise time of the output of the digital-to-analogue converter. Based on the optimum parameters of the HDPM, a bias stability of 0.05°/s for the integration time of 400 seconds in 1 h has been carried out in an RMOG with a waveguide ring resonator with a length of 7.9 cm and a diameter of 2.5 cm.
Digital quadrature phase detection
Smith, James A.; Johnson, John A.
1992-01-01
A system for detecting the phase of a frequency of phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2.pi. when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2.pi. when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention.
Digital quadrature phase detection
Smith, J.A.; Johnson, J.A.
1992-05-26
A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.
ERIC Educational Resources Information Center
Watkins, Ryan; Engel, Laura C.; Hastedt, Dirk
2015-01-01
The rise of digital information and communication technologies (ICT) has made the acquisition of computer and information literacy (CIL) a leading factor in creating an engaged, informed, and employable citizenry. However, are young people, often described as "digital natives" or the "net generation," developing the necessary…
NASA Astrophysics Data System (ADS)
Koppers, A. A.; Staudigel, H.; Mills, H.; Keller, M.; Wallace, A.; Bachman, N.; Helly, J.; Helly, M.; Miller, S. P.; Massell Symons, C.
2004-12-01
To bridge the gap between Earth science teachers, librarians, scientists and data archive managers, we have started the ERESE project that will create, archive and make available "Enduring Resources in Earth Science Education" through information technology (IT) portals. In the first phase of this National Science Digital Library (NSDL) project, we are focusing on the development of these ERESE resources for middle and high school teachers to be used in lesson plans with "plate tectonics" and "magnetics" as their main theme. In this presentation, we will show how these new ERESE resources are being generated, how they can be uploaded via online web wizards, how they are archived, how we make them available via the EarthRef.org Digital Archive (ERDA) and Reference Database (ERR), and how they relate to the SIOExplorer database containing data objects for all seagoing cruises carried out by the Scripps Institution of Oceanography. The EarthRef.org web resource uses the vision of a "general description" of the Earth as a geological system to provide an IT infrastructure for the Earth sciences. This emphasizes the marriage of the "scientific process" (and its results) with an educational cyber-infrastructure for teaching Earth sciences, on any level, from middle school to college and graduate levels. Eight different databases reside under EarthRef.org from which ERDA holds any digital object that has been uploaded by other scientists, teachers and students for free, while the ERR holds more than 80,000 publications. For more than 1,500 of these publications, this latter database makes available for downloading JPG/PDF images of the abstracts, data tables, methods and appendices, together with their digitized contents in Microsoft Word and Excel format. Both holdings are being used to store the ERESE objects that are being generated by a group of undergraduate students majoring in Environmental Systems (ESYS) program at the UCSD with an emphasis on the Earth Sciences. These students perform library and internet research in order to design and generate these "Enduring Resources in Earth Science Education" that they test by closely interacting with the research faculty at the Scripps Institution of Oceanography. Typical ERESE resources can be diagrams, model cartoons, maps, data sets for analyses, and glossary items and essays to explain certain Earth Science concepts and are ready to be used in the classroom.
Dual function seal: visualized digital signature for electronic medical record systems.
Yu, Yao-Chang; Hou, Ting-Wei; Chiang, Tzu-Chiang
2012-10-01
Digital signature is an important cryptography technology to be used to provide integrity and non-repudiation in electronic medical record systems (EMRS) and it is required by law. However, digital signatures normally appear in forms unrecognizable to medical staff, this may reduce the trust from medical staff that is used to the handwritten signatures or seals. Therefore, in this paper we propose a dual function seal to extend user trust from a traditional seal to a digital signature. The proposed dual function seal is a prototype that combines the traditional seal and digital seal. With this prototype, medical personnel are not just can put a seal on paper but also generate a visualized digital signature for electronic medical records. Medical Personnel can then look at the visualized digital signature and directly know which medical personnel generated it, just like with a traditional seal. Discrete wavelet transform (DWT) is used as an image processing method to generate a visualized digital signature, and the peak signal to noise ratio (PSNR) is calculated to verify that distortions of all converted images are beyond human recognition, and the results of our converted images are from 70 dB to 80 dB. The signature recoverability is also tested in this proposed paper to ensure that the visualized digital signature is verifiable. A simulated EMRS is implemented to show how the visualized digital signature can be integrity into EMRS.
Arbitrary digital pulse sequence generator with delay-loop timing
NASA Astrophysics Data System (ADS)
Hošák, Radim; Ježek, Miroslav
2018-04-01
We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.
Crisis DSM Generation To Support Refugee Camp Management
NASA Astrophysics Data System (ADS)
Gstaiger, Veronika; d'Angelo, Pablo; Schneiderhan, Tobais; Krauss, Thomas
2013-12-01
The extraction of high resolution surface information from satellite data has become an important area of research. One of the numerous fields of application is disaster management. Detailed information about the affected terrain is not only needed for analyses during the emergency relief phase, but also for reconstruction and prevention activities. In this paper the authors present the generation of a Digital Surface Model (DSM) based on three very high resolution optical satellite images. The DSM was produced to supplement a flood mapping activity in Jordan and serves as example for the implementation of scientific results during an emergency request. The flood affected the Zaatari refugee camp in Jordan and was mapped by the Center for Satellite Based Crisis Information (ZKI) at the German Aerospace Center (DLR) in January 2013 under emergency mapping conditions.
Application of multirate digital filter banks to wideband all-digital phase-locked loops design
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Shah, Biren; Hinedi, Sami
1993-01-01
A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.
Application of multirate digital filter banks to wideband all-digital phase-locked loops design
NASA Astrophysics Data System (ADS)
Sadr, Ramin; Shah, Biren; Hinedi, Sami
1993-06-01
A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.
Application of multirate digital filter banks to wideband all-digital phase-locked loops design
NASA Astrophysics Data System (ADS)
Sadr, R.; Shah, B.; Hinedi, S.
1992-11-01
A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.
Application of multirate digital filter banks to wideband all-digital phase-locked loops design
NASA Technical Reports Server (NTRS)
Sadr, R.; Shah, B.; Hinedi, S.
1992-01-01
A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.
Direct Measurement of Large, Diffuse, Optical Structures
NASA Technical Reports Server (NTRS)
Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.
2004-01-01
Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.
Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue.
Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi
2018-04-01
For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.
NASA Astrophysics Data System (ADS)
Sandoz, J.-P.; Steenaart, W.
1984-12-01
The nonuniform sampling digital phase-locked loop (DPLL) with sequential loop filter, in which the correction sizes are controlled by the accumulated differences of two additional phase comparators, is graphically analyzed. In the absence of noise and frequency drift, the analysis gives some physical insight into the acquisition and tracking behavior. Taking noise into account, a mathematical model is derived and a random walk technique is applied to evaluate the rms phase error and the mean acquisition time. Experimental results confirm the appropriate simplifying hypotheses used in the numerical analysis. Two related performance measures defined in terms of the rms phase error and the acquisition time for a given SNR are used. These measures provide a common basis for comparing different digital loops and, to a limited extent, also with a first-order linear loop. Finally, the behavior of a modified DPLL under frequency deviation in the presence of Gaussian noise is tested experimentally and by computer simulation.
The Coevolution of Digital Ecosystems
ERIC Educational Resources Information Center
SungYong, Um
2016-01-01
Digital ecosystems are one of the most important strategic issues in the current digital economy. Digital ecosystems are dynamic and generative. They evolve as new firms join and as heterogeneous systems are integrated into other systems. These features digital ecosystems determine economic and technological success in the competition among…
A second-order frequency-aided digital phase-locked loop for Doppler rate tracking
NASA Astrophysics Data System (ADS)
Chie, C. M.
1980-08-01
A second-order digital phase-locked loop (DPLL) has a finite lock range which is a function of the frequency of the incoming signal to be tracked. For this reason, it is not capable of tracking an input with Doppler rate for an indefinite period of time. In this correspondence, an analytical expression for the hold-in time is derived. In addition, an all-digital scheme to alleviate this problem is proposed based on the information obtained from estimating the input signal frequency.
Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points - A Review.
Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli
2009-01-01
Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.
Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review
Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli
2009-01-01
Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram. PMID:22399966
Controller for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument
NASA Technical Reports Server (NTRS)
Zomberg, Brian G.; Chren, William A., Jr.
1994-01-01
A prototype controller for the ESTAR (electronically scanned thinned array radiometer) instrument has been designed and tested. It manages the operation of the digital data subsystem (DDS) and its communication with the Small Explorer data system (SEDS). Among the data processing tasks that it coordinates are FEM data acquisition, noise removal, phase alignment and correlation. Its control functions include instrument calibration and testing of two critical subsystems, the output data formatter and Walsh function generator. It is implemented in a Xilinx XC3064PC84-100 field programmable gate array (FPGA) and has a maximum clocking frequency of 10 MHz.
Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications
NASA Astrophysics Data System (ADS)
Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira
2017-03-01
This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.
Image fidelity improvement in digital holographic microscopy using optical phase conjugation
NASA Astrophysics Data System (ADS)
Chan, Huang-Tian; Chew, Yang-Kun; Shiu, Min-Tzung; Chang, Chi-Ching
2018-01-01
With respect to digital holography, techniques in suppressing noises derived from reference arm are maturely developed. However, techniques for the object counterpart are not being well developed. Optical phase conjugation technique was believed to be a promising method for this interest. A 0°-cut BaTiO3 photorefractive crystal was involved in self-pumped phase conjugation scheme, and was employed to in-line digital holographic microscopy, in both transmission-type and reflection-type configuration. On pure physical compensation basis, results revealed that the image fidelity was improved substantially with 2.9096 times decrease in noise level and 3.5486 times increase in the ability to discriminate noise on average, by suppressing the scattering noise prior to recording stage.
SWARM: A Compact High Resolution Correlator and Wideband VLBI Phased Array Upgrade for SMA
NASA Astrophysics Data System (ADS)
Weintroub, Jonathan
2014-06-01
A new digital back end (DBE) is being commissioned on Mauna Kea. The “SMA Wideband Astronomical ROACH2 Machine”, or SWARM, processes a 4 GHz usable band in single polarization mode and is flexibly reconfigurable for 2 GHz full Stokes dual polarization. The hardware is based on the open source Reconfigurable Open Architecture Computing Hardware 2 (ROACH2) platform from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). A 5 GSps quad-core analog-to-digital converter board uses a commercial chip from e2v installed on a CASPER-standard printed circuit board designed by Homin Jiang’s group at ASIAA. Two ADC channels are provided per ROACH2, each sampling a 2.3 GHz Nyquist band generated by a custom wideband block downconverter (BDC). The ROACH2 logic includes 16k-channel Polyphase Filterbank (F-engine) per input followed by a 10 GbE switch based corner-turn which feeds into correlator-accumulator logic (X-engines) co-located with the F-engines. This arrangement makes very effective use of a small amount of digital hardware (just 8 ROACH2s in 1U rack mount enclosures). The primary challenge now is to meet timing at full speed for a large and very complex FPGA bit code. Design of the VLBI phased sum and recorder interface logic is also in process. Our poster will describe the instrument design, with the focus on the particular challenges of ultra wideband signal processing. Early connected commissioning and science verification data will be presented.
Optomechanical System Development of the AWARE Gigapixel Scale Camera
NASA Astrophysics Data System (ADS)
Son, Hui S.
Electronic focal plane arrays (FPA) such as CMOS and CCD sensors have dramatically improved to the point that digital cameras have essentially phased out film (except in very niche applications such as hobby photography and cinema). However, the traditional method of mating a single lens assembly to a single detector plane, as required for film cameras, is still the dominant design used in cameras today. The use of electronic sensors and their ability to capture digital signals that can be processed and manipulated post acquisition offers much more freedom of design at system levels and opens up many interesting possibilities for the next generation of computational imaging systems. The AWARE gigapixel scale camera is one such computational imaging system. By utilizing a multiscale optical design, in which a large aperture objective lens is mated with an array of smaller, well corrected relay lenses, we are able to build an optically simple system that is capable of capturing gigapixel scale images via post acquisition stitching of the individual pictures from the array. Properly shaping the array of digital cameras allows us to form an effectively continuous focal surface using off the shelf (OTS) flat sensor technology. This dissertation details developments and physical implementations of the AWARE system architecture. It illustrates the optomechanical design principles and system integration strategies we have developed through the course of the project by summarizing the results of the two design phases for AWARE: AWARE-2 and AWARE-10. These systems represent significant advancements in the pursuit of scalable, commercially viable snapshot gigapixel imaging systems and should serve as a foundation for future development of such systems.
NASA Astrophysics Data System (ADS)
Ash, William Mason, III
Total Internal Reflection Holographic Microscopy (TIRHM) combines near-field microscopy with digital holography to produce a new form of near-field phase microscopy. Using a prism in TIR as a near-field imager, the presence of microscopic organisms, cell-substrate interfaces, and adhesions, causes relative refractive index (RRI) and frustrated TIR (f-TIR) to modulate the object beam's evanescent wave phase front. Quantitative phase images of test specimens such as Amoeba proteus, Dictyostelium Discoideum and cells such as SKOV-3 ovarian cancer and 3T3 fibroblasts are produced without the need to introduce stains or fluorophores. The angular spectrum method of digital holography to compensate for tilt anamorphism due to the inclined TIR plane is also discussed. The results of this work conclusively demonstrate, for the first time, the integration of near-field microscopy with digital holography. The cellular images presented show a correlation between the physical extent of the Amoeba proteus plasma membrane and the adhesions that are quantitatively profiled by phase cross-sectioning of the holographic images obtained by digital holography. With its ability to quantitatively characterise cellular adhesion and motility, it is anticipated that TIRHM can be a tool for characterizing and combating cancer metastasis, as well as improving our understanding of morphogenesis and embryogenesis itself.
Does the New Digital Generation of Learners Exist? A Qualitative Study
ERIC Educational Resources Information Center
Sanchez, Jaime; Salinas, Alvaro; Contreras, David; Meyer, Eduardo
2011-01-01
This paper seeks to contribute to the discussion on the current generation of students and their relationship to technology, providing qualitative, empirical information obtained in the Chilean context. The study analyses and discusses the ideas regarding the emergence of a new generation of learners, or digital natives, as characterised by…
Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J.
2014-01-01
Abstract. Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed. PMID:26157976
Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J
2014-10-01
Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.
Digital polarization holography advancing geometrical phase optics.
De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R
2016-08-08
Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.
NASA Astrophysics Data System (ADS)
Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn
2017-02-01
The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.
ERIC Educational Resources Information Center
Wang, Shiang-Kwei; Hsu, Hui-Yin; Campbell, Todd; Coster, Daniel C.; Longhurst, Max
2014-01-01
The purpose of the study is to investigate the popular assumption that the "digital natives" generation surpasses the previous "digital immigrants" generation in terms of their technology experiences, because they grow up with information and communication technology. The assumption presumes that teachers, the digital…
A digital optical phase-locked loop for diode lasers based on field programmable gate array.
Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui
2012-09-01
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.
A digital optical phase-locked loop for diode lasers based on field programmable gate array
NASA Astrophysics Data System (ADS)
Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui
2012-09-01
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.
Schmidt, M; Werther, B; Fuerstenau, N; Matthias, M; Melz, T
2001-04-09
A fiber-optic extrinsic Fabry-Perot interferometer strain sensor (EFPI-S) of ls = 2.5 cm sensor length using three-wavelength digital phase demodulation is demonstrated to exhibit <50 pm displacement resolution (<2nm/m strain resolution) when measuring the cross expansion of a PZT-ceramic plate. The sensing (single-mode downlead-) and reflecting fibers are fused into a 150/360 microm capillary fiber where the fusion points define the sensor length. Readout is performed using an improved version of the previously described three-wavelength digital phase demodulation method employing an arctan-phase stepping algorithm. In the resent experiments the strain sensitivity was varied via the mapping of the arctan - lookup table to the 16-Bit DA-converter range from 188.25 k /V (6 Volt range 1130 k ) to 11.7 k /Volt (range 70 k ).
ERIC Educational Resources Information Center
Chuang, Tsung-Yen; Huang, Yun-Hsuan
2015-01-01
Mobile technology has rapidly made digital games a popular entertainment to this digital generation, and thus digital game design received considerable attention in both the game industry and design education. Digital game design involves diverse dimensions in which digital game story design (DGSD) particularly attracts our interest, as the…
E-Learning Environments for Digitally-Minded Students
ERIC Educational Resources Information Center
Andone, Diana; Dron, Jon; Pemberton, Lyn; Boyne, Chris
2007-01-01
While most existing online learning environments cater for needs identified during the 1990s, a new generation of digital students has emerged in the developed world. Digital students are young adults who have grown up with digital technologies integrated as an everyday feature of their lives. Digital students use technology differently, fluidly…
Evaluation and Analysis of a Multi-Band Transceiver for Next Generation Telemetry Applications
2014-06-01
DDC ) BAND SELECTION Kintex FPGA DIGITAL RADIO RECEIVER DIGITAL RADIO TRANSMITTER ADC Fs < 225 MSPS Fs = 400 MHz RF BW = 36 MHz FREQ TRANSLATION VIA...MANAGER (MMCM) DIGITAL DOWN CONVERSION ( DDC ) BAND SELECTIVE FILTER Kintex FPGA DIGITAL RADIO RECEIVER DIGITAL RADIO TRANSMITTER FIR FINE TRANSLATION
Higher Order Modulation Intersymbol Interference Caused by Traveling-wave Tube Amplifiers
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Williams, W. D. (Technical Monitor)
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves, Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations, To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing, Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
The GANDALF 128-Channel Time-to-Digital Converter
NASA Astrophysics Data System (ADS)
Büchele, M.; Fischer, H.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.
The GANDALF 6U-VME64x/VXS module has been designed to cope with a variety of readout tasks in high energy and nuclear physics experiments, in particular the COMPASS experiment at CERN. The exchangeable mezzanine cards allow for an employment of the system in very different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition or fast trigger generation. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In this concept each input signal is continuously sampled by 16 flip-flops using equidistant phase-shifted clocks. Compared to previous FPGA designs, usually based on delay lines and comprising few TDC channels with resolutions in the order of 10 ps, our design permits the implementation of a large number of TDC channels with a resolution of 64 ps in a single FPGA. Predictable placement of logic components and uniform routing inside the FPGA fabric is a particular challenge of this design. We present measurement results for the time resolution and the nonlinearity of the TDC readout system.
A new OTDR based on probe frequency multiplexing
NASA Astrophysics Data System (ADS)
Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Xuping
2013-12-01
Two signal multiplexing methods are proposed and experimentally demonstrated in optical time domain reflectometry (OTDR) for fault location of optical fiber transmission line to obtain high measurement efficiency. Probe signal multiplexing is individually obtained by phase modulation for generation of multi-frequency and time sequential frequency probe pulses. The backscattered Rayleigh light of the multiplexing probe signals is transferred to corresponding heterodyne intermediate frequency (IF) through heterodyning with the single frequency local oscillator (LO). Then the IFs are simultaneously acquired by use of a data acquisition card (DAQ) with sampling rate of 100Msps, and the obtained data are processed by digital band pass filtering (BPF), digital down conversion (DDC) and digital low pass filtering (BPF) procedure. For each probe frequency of the detected signals, the extraction of the time domain reflecting signal power is performed by parallel computing method. For a comprehensive performance comparison with conventional coherent OTDR on the probe frequency multiplexing methods, the potential for enhancement of dynamic range, spatial resolution and measurement time are analyzed and discussed. Experimental results show that by use of the probe frequency multiplexing method, the measurement efficiency of coherent OTDR can be enhanced by nearly 40 times.
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
NASA Astrophysics Data System (ADS)
Servin, Manuel; Padilla, Moises; Garnica, Guillermo; Gonzalez, Adonai
2016-12-01
In this work we review and combine two techniques that have been recently published for three-dimensional (3D) fringe projection profilometry and phase unwrapping, namely: co-phased profilometry and 2-steps temporal phase-unwrapping. By combining these two methods we get a more accurate, higher signal-to-noise 3D profilometer for discontinuous industrial objects. In single-camera single-projector (standard) profilometry, the camera and the projector must form an angle between them. The phase-sensitivity of the profilometer depends on this angle, so it cannot be avoided. This angle produces regions with self-occluding shadows and glare from the solid as viewed from the camera's perspective, making impossible the demodulation of the fringe-pattern there. In other words, the phase data is undefined at those shadow regions. As published recently, this limitation can be solved by using several co-phased fringe-projectors and a single camera. These co-phased projectors are positioned at different directions towards the object, and as a consequence most shadows are compensated. In addition to this, most industrial objects are highly discontinuous, which precludes the use of spatial phase-unwrappers. One way to avoid spatial unwrapping is to decrease the phase-sensitivity to a point where the demodulated phase is bounded to one lambda, so the need for phase-unwrapping disappears. By doing this, however, the recovered non-wrapped phase contains too much harmonic distortion and noise. Using our recently proposed two-step temporal phase-unwrapping technique, the high-sensitivity phase is unwrapped using the low-frequency one as initial gross estimation. This two-step unwrapping technique solves the 3D object discontinuities while keeping the accuracy of the high-frequency profilometry data. In scientific research, new art are derived as logical and consistent result of previous efforts in the same direction. Here we present a new 3D-profilometer combining these two recently published methods: co-phased profilometry and two-steps temporal phase-unwrapping. By doing this, we obtain a new and more powerful 3D profilometry technique which overcomes the two main limitations of previous fringe-projection profilometers namely: high phase-sensitivity digitalization of discontinuous objects and solid's self-generated shadow minimization. This new 3D profilometer is demonstrated by an experiment digitizing a discontinuous 3D industrial-solid where the advantages of this new profilometer with respect to previous art are clearly shown.
Recursive Algorithms for Real-Time Digital CR-RCn Pulse Shaping
NASA Astrophysics Data System (ADS)
Nakhostin, M.
2011-10-01
This paper reports on recursive algorithms for real-time implementation of CR-(RC)n filters in digital nuclear spectroscopy systems. The algorithms are derived by calculating the Z-transfer function of the filters for filter orders up to n=4 . The performances of the filters are compared with the performance of the conventional digital trapezoidal filter using a noise generator which separately generates pure series, 1/f and parallel noise. The results of our study enable one to select the optimum digital filter for different noise and rate conditions.
Smooth affine shear tight frames: digitization and applications
NASA Astrophysics Data System (ADS)
Zhuang, Xiaosheng
2015-08-01
In this paper, we mainly discuss one of the recent developed directional multiscale representation systems: smooth affine shear tight frames. A directional wavelet tight frame is generated by isotropic dilations and translations of directional wavelet generators, while an affine shear tight frame is generated by anisotropic dilations, shears, and translations of shearlet generators. These two tight frames are actually connected in the sense that the affine shear tight frame can be obtained from a directional wavelet tight frame through subsampling. Consequently, an affine shear tight frame indeed has an underlying filter bank from the MRA structure of its associated directional wavelet tight frame. We call such filter banks affine shear filter banks, which can be designed completely in the frequency domain. We discuss the digitization of affine shear filter banks and their implementations: the forward and backward digital affine shear transforms. Redundancy rate and computational complexity of digital affine shear transforms are also investigated in this paper. Numerical experiments and comparisons in image/video processing show the advantages of digital affine shear transforms over many other state-of-art directional multiscale representation systems.
Digital phase-locked loop speed control for a brushless dc motor
NASA Astrophysics Data System (ADS)
Wise, M. G.
1985-06-01
Speed control of d.c. motors by phase-locked loops (PLL) is becoming increasingly popular. Primary interest has been in employing PLL for constant speed control. This thesis investigates the theory and techniques of digital PLL to speed control of a brushless d.c. motor with a variable speed of operation. Addition of logic controlled count enable/disable to a synchronous up/down counter, used as a phase-frequency detector, is shown to improve the performance of previously proposed PLL control schemes.
NASA Astrophysics Data System (ADS)
Wan, Yuhong; Man, Tianlong; Wu, Fan; Kim, Myung K.; Wang, Dayong
2016-11-01
We present a new self-interference digital holographic approach that allows single-shot capturing three-dimensional intensity distribution of the spatially incoherent objects. The Fresnel incoherent correlation holographic microscopy is combined with parallel phase-shifting technique to instantaneously obtain spatially multiplexed phase-shifting holograms. The compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed holograms. The scheme is verified with simulations. The validity of the proposed method is experimentally demonstrated in an indirectly way by simulating the use of specific parallel phase-shifting recording device.
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Yeh, H.-G.
1993-01-01
The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.
Performance results of a digital test signal generator
NASA Technical Reports Server (NTRS)
Gutierrez-Luaces, B. O.; Marina, M.; Parham, B.
1993-01-01
Performance results of a digital test signal-generator hardware-demonstration unit are reported. Capabilities available include baseband and intermediate frequency (IF) spectrum generation, for which test results are provided. Repeatability in the setting of a given signal-to-noise ratio (SNR) when a baseband or an IF spectrum is being generated ranges from 0.01 dB at high SNR's or high data rates to 0.3 dB at low data rates or low SNR's. Baseband symbol SNR and carrier SNR (Pc/No) accuracies of 0.1 dB were verified with the built-in statistics circuitry. At low SNR's that accuracy remains to be fully verified. These results were confirmed with measurements from a demodulator synchronizer assembly for the baseband spectrum generation, and with a digital receiver (Pioneer 10 receiver) for the IF spectrum generation.
Nodal network generator for CAVE3
NASA Technical Reports Server (NTRS)
Palmieri, J. V.; Rathjen, K. A.
1982-01-01
A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.
Tools for Material Design and Selection
NASA Astrophysics Data System (ADS)
Wehage, Kristopher
The present thesis focuses on applications of numerical methods to create tools for material characterization, design and selection. The tools generated in this work incorporate a variety of programming concepts, from digital image analysis, geometry, optimization, and parallel programming to data-mining, databases and web design. The first portion of the thesis focuses on methods for characterizing clustering in bimodal 5083 Aluminum alloys created by cryomilling and powder metallurgy. The bimodal samples analyzed in the present work contain a mixture of a coarse grain phase, with a grain size on the order of several microns, and an ultra-fine grain phase, with a grain size on the order of 200 nm. The mixing of the two phases is not homogeneous and clustering is observed. To investigate clustering in these bimodal materials, various microstructures were created experimentally by conventional cryomilling, Hot Isostatic Pressing (HIP), Extrusion, Dual-Mode Dynamic Forging (DMDF) and a new 'Gradient' cryomilling process. Two techniques for quantitative clustering analysis are presented, formulated and implemented. The first technique, the Area Disorder function, provides a metric of the quality of coarse grain dispersion in an ultra-fine grain matrix and the second technique, the Two-Point Correlation function, provides a metric of long and short range spatial arrangements of the two phases, as well as an indication of the mean feature size in any direction. The two techniques are implemented on digital images created by Scanning Electron Microscopy (SEM) and Electron Backscatter Detection (EBSD) of the microstructures. To investigate structure--property relationships through modeling and simulation, strategies for generating synthetic microstructures are discussed and a computer program that generates randomized microstructures with desired configurations of clustering described by the Area Disorder Function is formulated and presented. In the computer program, two-dimensional microstructures are generated by Random Sequential Adsorption (RSA) of voxelized ellipses representing the coarse grain phase. A simulated annealing algorithm is used to geometrically optimize the placement of the ellipses in the model to achieve varying user-defined configurations of spatial arrangement of the coarse grains. During the simulated annealing process, the ellipses are allowed to overlap up to a specified threshold, allowing triple junctions to form in the model. Once the simulated annealing process is complete, the remaining space is populated by smaller ellipses representing the ultra-fine grain phase. Uniform random orientations are assigned to the grains. The program generates text files that can be imported in to Crystal Plasticity Finite Element Analysis Software for stress analysis. Finally, numerical methods and programming are applied to current issues in green engineering and hazard assessment. To understand hazards associated with materials and select safer alternatives, engineers and designers need access to up-to-date hazard information. However, hazard information comes from many disparate sources and aggregating, interpreting and taking action on the wealth of data is not trivial. In light of these challenges, a Framework for Automated Hazard Assessment based on the GreenScreen list translator is presented. The framework consists of a computer program that automatically extracts data from the GHS-Japan hazard database, loads the data into a machine-readable JSON format, transforms the JSON document in to a GreenScreen JSON document using the GreenScreen List Translator v1.2 and performs GreenScreen Benchmark scoring on the material. The GreenScreen JSON documents are then uploaded to a document storage system to allow human operators to search for, modify or add additional hazard information via a web interface.
Research on phase locked loop in optical memory servo system
NASA Astrophysics Data System (ADS)
Qin, Liqin; Ma, Jianshe; Zhang, Jianyong; Pan, Longfa; Deng, Ming
2005-09-01
Phase locked loop (PLL) is a closed loop automatic control system, which can track the phase of input signal. It widely applies in each area of electronic technology. This paper research the phase locked loop in optical memory servo area. This paper introduces the configuration of digital phase locked loop (PLL) and phase locked servo system, the control theory, and analyses system's stability. It constructs the phase locked loop experiment system of optical disk spindle servo, which based on special chip. DC motor is main object, this system adopted phase locked servo technique and digital signal processor (DSP) to achieve constant linear velocity (CLV) in controlling optical spindle motor. This paper analyses the factors that affect the stability of phase locked loop in spindle servo system, and discusses the affection to the optical disk readout signal and jitter due to the stability of phase locked loop.
Loran-C digital word generator for use with a KIM-1 microprocessor system
NASA Technical Reports Server (NTRS)
Nickum, J. D.
1977-01-01
The problem of translating the time of occurrence of received Loran-C pulses into a time, referenced to a particular period of occurrence is addressed and applied to the design of a digital word generator for a Loran-C sensor processor package. The digital information from this word generator is processed in a KIM-1 microprocessor system which is based on the MOS 6502 CPU. This final system will consist of a complete time difference sensor processor for determining position information using Loran-C charts. The system consists of the KIM-1 microprocessor module, a 4K RAM memory board, a user interface, and the Loran-C word generator.
Fringe pattern demodulation with a two-dimensional digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-dimensional digital phase-locked loop (DPLL) for fringe pattern demodulation is presented. This algorithm is more suitable for demodulation of fringe patterns with varying phase in two directions than the existing DPLL techniques that assume that the phase of the fringe patterns varies only in one direction. The two-dimensional DPLL technique assumes that the phase of a fringe pattern is continuous in both directions and takes advantage of the phase continuity; consequently, the algorithm has better noise performance than the existing DPLL schemes. The two-dimensional DPLL algorithm is also suitable for demodulation of fringe patterns with low sampling rates, and it outperforms the Fourier fringe analysis technique in this aspect.
Wavefront sensing with all-digital Stokes measurements
NASA Astrophysics Data System (ADS)
Dudley, Angela; Milione, Giovanni; Alfano, Robert R.; Forbes, Andrew
2014-09-01
A long-standing question in optics has been to efficiently measure the phase (or wavefront) of an optical field. This has led to numerous publications and commercial devices such as phase shift interferometry, wavefront reconstruction via modal decomposition and Shack-Hartmann wavefront sensors. In this work we develop a new technique to extract the phase which in contrast to previously mentioned methods is based on polarization (or Stokes) measurements. We outline a simple, all-digital approach using only a spatial light modulator and a polarization grating to exploit the amplitude and phase relationship between the orthogonal states of polarization to determine the phase of an optical field. We implement this technique to reconstruct the phase of static and propagating optical vortices.
Metamaterial bricks and quantization of meta-surfaces
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram
2017-01-01
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units—which we call metamaterial bricks—each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators. PMID:28240283
Metamaterial bricks and quantization of meta-surfaces
NASA Astrophysics Data System (ADS)
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram
2017-02-01
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units--which we call metamaterial bricks--each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
Metamaterial bricks and quantization of meta-surfaces.
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R; Drinkwater, Bruce W; Subramanian, Sriram
2017-02-27
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units-which we call metamaterial bricks-each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
Design of a digital multiradian phase detector and its application in fusion plasma interferometry.
Mlynek, A; Schramm, G; Eixenberger, H; Sips, G; McCormick, K; Zilker, M; Behler, K; Eheberg, J
2010-03-01
We discuss the circuit design of a digital multiradian phase detector that measures the phase difference between two 10 kHz square wave TTL signals and provides the result as a binary number. The phase resolution of the circuit is 1/64 period and its dynamic range is 256 periods. This circuit has been developed for fusion plasma interferometry with submillimeter waves on the ASDEX Upgrade tokamak. The results from interferometric density measurement are discussed and compared to those obtained with the previously used phase detectors, especially with respect to the occurrence of phase jumps. It is illustrated that the new phase measurement provides a powerful tool for automatic real-time validation of the measured density, which is important for feedback algorithms that are sensitive to spurious density signals.
Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon
2015-05-10
Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.
An Investigation of the Reliability of Using Comparative Judgment to Score Creative Products
ERIC Educational Resources Information Center
Tarricone, Pina; Newhouse, C. Paul
2017-01-01
In this article we describe a three-year study that was conducted in three phases to evaluate the feasibility of assessing digitized portfolios of student creative work for high-stakes purposes. The first two phases suggested that creative work could be digitized with adequate fidelity, and that students could submit their own work from schools to…
ERIC Educational Resources Information Center
Kara, Nuri
2018-01-01
The purpose of this study was to investigate university students' thoughts and practices concerning digital citizenship. An explanatory mixed methods design was used, and it involved collecting qualitative data after a quantitative phase in order to follow up on the quantitative data in more depth. In the first quantitative phase of the study, a…
ERIC Educational Resources Information Center
Petrou, Stella; Korfiatis, Konstantinos
2013-01-01
This study presents the results of a pilot learning intervention for improving children's ideas about plant protection. The research was executed in two phases. The first phase aimed at exploring children's ideas about plant protection. These ideas were taken into account for the design and development of a digital learning environment. The second…
Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System
NASA Astrophysics Data System (ADS)
Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.
2016-10-01
The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).
Are forward and backward recall the same? A dual-task study of digit recall.
St Clair-Thompson, Helen L; Allen, Richard J
2013-05-01
There is some debate surrounding the cognitive resources underlying backward digit recall. Some researchers consider it to differ from forward digit recall due to the involvement of executive control, while others suggest that backward recall involves visuospatial resources. Five experiments therefore investigated the role of executive-attentional and visuospatial resources in both forward and backward digit recall. In the first, participants completed visuospatial 0-back and 2-back tasks during the encoding of information to be remembered. The concurrent tasks did not differentially disrupt performance on backward digit recall, relative to forward digit recall. Experiment 2 shifted concurrent load to the recall phase instead and, in this case, revealed a larger effect of both tasks on backward recall, relative to forwards recall, suggesting that backward recall may draw on additional resources during the recall phase and that these resources are visuospatial in nature. Experiments 3 and 4 then further investigated the role of visual processes in forward and backward recall using dynamic visual noise (DVN). In Experiment 3, DVN was presented during encoding of information to be remembered and had no effect upon performance. However, in Experiment 4, it was presented during the recall phase, and the results provided evidence of a role for visual imagery in backward digit recall. These results were replicated in Experiment 5, in which the same list length was used for forward and backward recall tasks. The findings are discussed in terms of both theoretical and practical implications.
Blind phase error suppression for color-encoded digital fringe projection profilometry
NASA Astrophysics Data System (ADS)
Ma, S.; Zhu, R.; Quan, C.; Li, B.; Tay, C. J.; Chen, L.
2012-04-01
Color-encoded digital fringe projection profilometry (CDFPP) has the advantage of fast speed, non-contact and full-field testing. It is one of the most important dynamic three-dimensional (3D) profile measurement techniques. However, due to factors such as color cross-talk and gamma distortion of electro-optical devices, phase errors arise when conventional phase-shifting algorithms with fixed phase shift values are utilized to retrieve phases. In this paper, a simple and effective blind phase error suppression approach based on isotropic n-dimensional fringe pattern normalization (INFPN) and carrier squeezing interferometry (CSI) is proposed. It does not require pre-calibration for the gamma and color-coupling coefficients or the phase shift values. Simulation and experimental works show that our proposed approach is able to effectively suppress phase errors and achieve accurate measurement results in CDFPP.