Sample records for digital phase meter

  1. Digital Phase Meter for a Laser Heterodyne Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank

    2008-01-01

    The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).

  2. Digital Receiver Phase Meter

    NASA Technical Reports Server (NTRS)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  3. Real Time Phase Noise Meter Based on a Digital Signal Processor

    NASA Technical Reports Server (NTRS)

    Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario

    2006-01-01

    A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.

  4. Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan

    2017-11-01

    Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.

  5. 1-Meter Digital Elevation Model specification

    USGS Publications Warehouse

    Arundel, Samantha T.; Archuleta, Christy-Ann M.; Phillips, Lori A.; Roche, Brittany L.; Constance, Eric W.

    2015-10-21

    In January 2015, the U.S. Geological Survey National Geospatial Technical Operations Center began producing the 1-Meter Digital Elevation Model data product. This new product was developed to provide high resolution bare-earth digital elevation models from light detection and ranging (lidar) elevation data and other elevation data collected over the conterminous United States (lower 48 States), Hawaii, and potentially Alaska and the U.S. territories. The 1-Meter Digital Elevation Model consists of hydroflattened, topographic bare-earth raster digital elevation models, with a 1-meter x 1-meter cell size, and is available in 10,000-meter x 10,000-meter square blocks with a 6-meter overlap. This report details the specifications required for the production of the 1-Meter Digital Elevation Model.

  6. Image based automatic water meter reader

    NASA Astrophysics Data System (ADS)

    Jawas, N.; Indrianto

    2018-01-01

    Water meter is used as a tool to calculate water consumption. This tool works by utilizing water flow and shows the calculation result with mechanical digit counter. Practically, in everyday use, an operator will manually check the digit counter periodically. The Operator makes logs of the number shows by water meter to know the water consumption. This manual operation is time consuming and prone to human error. Therefore, in this paper we propose an automatic water meter digit reader from digital image. The digits sequence is detected by utilizing contour information of the water meter front panel.. Then an OCR method is used to get the each digit character. The digit sequence detection is an important part of overall process. It determines the success of overall system. The result shows promising results especially in sequence detection.

  7. Study on the system-level test method of digital metering in smart substation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Yang, Min; Hu, Juan; Li, Fuchao; Luo, Ruixi; Li, Jinsong; Ai, Bing

    2017-03-01

    Nowadays, the test methods of digital metering system in smart substation are used to test and evaluate the performance of a single device, but these methods can only effectively guarantee the accuracy and reliability of the measurement results of a digital metering device in a single run, it does not completely reflect the performance when each device constitutes a complete system. This paper introduced the shortages of the existing test methods. A system-level test method of digital metering in smart substation was proposed, and the feasibility of the method was proved by the actual test.

  8. Advanced Transformer Demonstration And Validation Project Summary Report Based On Experiences At Nas, North Island, San Diego. California

    DTIC Science & Technology

    1992-08-01

    MAXIMIUI• 0 P 8. ALL LIGHTS ARE LED"’ TORMAD TEM"ERATUE TO RESET 9. DIGITAL METER IS LE[in EMORY IETER WILL AUTOMATICALLY MAD PHASE WiTH HIGHEST...in place. 4.4 Building 379 The Building 379 installation consisted of removing three existing 167 kVA PCB-filled, single phase , polemount transformers...that were connected in a three phase bank and replacing them with a single 300 kVA Square D Company VPI dry-type transformer. This task also involved

  9. Automatic ranging circuit for a digital panel meter

    DOEpatents

    Mueller, Theodore R.; Ross, Harley H.

    1976-01-01

    This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to insure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit.

  10. Holography of Wi-fi Radiation.

    PubMed

    Holl, Philipp M; Reinhard, Friedemann

    2017-05-05

    Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light-electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram-a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.

  11. Holography of Wi-fi Radiation

    NASA Astrophysics Data System (ADS)

    Holl, Philipp M.; Reinhard, Friedemann

    2017-05-01

    Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light—electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram—a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.

  12. Method and apparatus for reading meters from a video image

    DOEpatents

    Lewis, Trevor J.; Ferguson, Jeffrey J.

    1997-01-01

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.

  13. An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.

    ERIC Educational Resources Information Center

    Caceci, Marco S.

    1984-01-01

    Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…

  14. Method and apparatus for reading meters from a video image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, T.J.; Ferguson, J.J.

    1995-12-31

    A method and system enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusivemore » manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.« less

  15. Method and apparatus for reading meters from a video image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, T.J.; Ferguson, J.J.

    1997-09-30

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relativelymore » non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower. 1 fig.« less

  16. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  17. Analysis of the quality of image data acquired by the LANDSAT-4 Thematic Mapper and Multispectral Scanners

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1984-01-01

    The geometric quality of TM film and digital products is evaluated by making selective photomeasurements and by measuring the coordinates of known features on both the TM products and map products. These paired observations are related using a standard linear least squares regression approach. Using regression equations and coefficients developed from 225 (TM film product) and 20 (TM digital product) control points, map coordinates of test points are predicted. The residual error vectors and analysis of variance (ANOVA) were performed on the east and north residual using nine image segments (blocks) as treatments. Based on the root mean square error of the 223 (TM film product) and 22 (TM digital product) test points, users of TM data expect the planimetric accuracy of mapped points to be within 91 meters and within 117 meters for the film products, and to be within 12 meters and within 14 meters for the digital products.

  18. Fabrication and test of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.

  19. DIGITAL Q METER

    DOEpatents

    Briscoe, W.L.

    1962-02-13

    A digital Q meter is described for measuring the Q of mechanical or electrical devices. The meter comprises in combination a transducer coupled to an input amplifier, and an upper and lower level discriminator coupled to the amplifier and having their outputs coupled to an anticoincidence gate. The output of the gate is connected to a scaler. The lower level discriminator is adjusted to a threshold level of 36.8 percent of the operating threshold level of the upper level discriminator. (AEC)

  20. The Seven-Segment Data Logger

    NASA Astrophysics Data System (ADS)

    Bates, Alan

    2015-12-01

    Instruments or digital meters with data values visible on a seven-segment display can easily be found in the physics lab. Examples include multimeters, sound level meters, Geiger-Müller counters and electromagnetic field meters, where the display is used to show numerical data. Such instruments, without the ability to connect to computers or data loggers, can measure and display data at a particular instant in time. The user should be present to read the display and to record the data. Unlike these digital meters, the sensor-data logger system has the advantage of automatically measuring and recording data at selectable sample rates over a desired sample time. The process of adding data logging features to a digital meter with a seven-segment display can be achieved with Seven Segment Optical Character Recognition (SSOCR) software. One might ask, why not just purchase a field meter with data logging features? They are relatively inexpensive, reliable, available online, and can be delivered within a few days. But then there is the challenge of making your own instrument, the excitement of implementing a design, the pleasure of experiencing an entire process from concept to product, and the satisfaction of avoiding costs by taking advantage of available technology. This experiment makes use of an electromagnetic field meter with a seven-segment liquid crystal display to measure background electromagnetic field intensity. Images of the meter display are automatically captured with a camera and analyzed using SSOCR to produce a text file containing meter display values.

  1. Analog/digital pH meter system I.C.

    NASA Technical Reports Server (NTRS)

    Vincent, Paul; Park, Jea

    1992-01-01

    The project utilizes design automation software tools to design, simulate, and fabricate a pH meter integrated circuit (IC) system including a successive approximation type seven-bit analog to digital converter circuits using a 1.25 micron N-Well CMOS MOSIS process. The input voltage ranges from 0.5 to 1.0 V derived from a special type pH sensor, and the output is a three-digit decimal number display of pH with one decimal point.

  2. Low Cost Digital Vibration Meter.

    PubMed

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  3. Low Cost Digital Vibration Meter

    PubMed Central

    Payne, W. Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device. PMID:27110459

  4. Distributed Timing and Localization (DiGiTaL)

    NASA Technical Reports Server (NTRS)

    D'Amico, Simone; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    The Distributed Timing and Localization (DiGiTaL) system provides nano satellite formations with unprecedented,centimeter-level navigation accuracy in real time and nanosecond-level time synchronization. This is achieved through the integration of a multi-constellation Global Navigation Satellite System (GNSS) receiver, a Chip-Scale Atomic Clock (CSAC), and a dedicated Inter-Satellite Link (ISL). In comparison, traditional single spacecraft GNSS navigation solutions are accurate only to the meter-level due to the sole usage of coarse pseudo-range measurements. To meet the strict requirements of future miniaturized distributed space systems, DiGiTaL uses powerful error-cancelling combinations of raw carrier-phase measurements which are exchanged between the swarming nano satellites through a decentralized network. A reduced-dynamics estimation architecture on board each individual nano satellite processes the resulting millimeter-level noise measurements to reconstruct the fullformation state with high accuracy.

  5. A tunable, double-wavelength heterodyne detection interferometer with frequency-locked diode-pumped Nd:YAG sources for absolute measurements

    NASA Astrophysics Data System (ADS)

    Gelmini, E.; Minoni, U.; Docchio, F.

    1995-08-01

    A double heterodyne interferometric instrument using a tunable synthetic wavelength for the absolute measurements of distance and position is presented. The optical synthetic wavelength is generated by a pair of PZT-tunable diode-pumped Nd:YAG lasers operating at 1.064 μm. Based on a closed-loop scheme, a suitable electronic circuit has been developed to implement the frequency locking of the two lasers. A digital frequency comparator provides an error signal, used to control the slave laser, by comparing the laser beat frequency to a reference oscillator. Demodulation of the superheterodyne signals is obtained by a rf detector followed by low-pass filtering. Distance measurements are obtained by a digital phase meter gauging the phase difference between the demodulated signals from a measuring interferometer and from a reference interferometer. The paper presents the optical and the electronic layouts of the instrument as well as experimental results from a laboratory prototype.

  6. Unmanned Aircraft Systems Roadmap, 2005-2030

    DTIC Science & Technology

    2005-01-01

    directly addresses the dangerous mission of attacking or degrading integrated air defense systems. The attributes that make the use of unmanned...meter of reinforced concrete covered by one meter of soil . The Air Force hopes to deploy it by 2007 on the F-15E, followed by deployment on several... degradation from repeated analog-digital-analog conversions. For this reason, multispectral versions of digital focal arrays are critical. Additionally

  7. Preliminary analysis of amplitude and phase fluctuations in the JAPE multiple tone data to distances of 500 meters

    NASA Technical Reports Server (NTRS)

    Rogers, James; Sokolov, Radomir; Hicks, Daniel; Cartwright, Lloyd

    1993-01-01

    The JAPE short range data provide a good opportunity for studying phase and amplitude fluctuations of acoustic signals in the atmosphere over distances of several hundred meters. Several factors contribute to the usefulness of these data: extensive meteorological measurements were made, controlled sources were used, the data were recorded with a high dynamic range digital system that preserved phase information and a significant number of measurement points were obtained allowing both longitudinal and transverse studies. Further, Michigan Tech, in cooperation with the U.S. Army TARDEC, has developed phase tracking algorithms for studying vehicle acoustic signals. These techniques provide an excellent tool for analyzing the amplitude and phase fluctuations of the JAPE data. The results of studies such as those reported here have application at several levels: the mechanisms of signal amplitude and phase fluctuations in propagating acoustic signals are not well understood nor are the mathematical models highly developed, acoustic arrays depend strongly on signal coherence and signal amplitude stability in order to perform to their design specifications and active noise control implementation in regions considerably removed from the primary and secondary sources depends upon signal amplitude and phase stability. Work reported here is preliminary in nature but it does indicate the utility of the phase tracking and amplitude detection algorithms. The results obtained indicate that the phase fluctuations of the JAPE continuous multiple tone data (simultaneous transmission of 80, 200 and 500 Hz) are in general agreement with existing theories but the amplitude fluctuations are seen to be less well behaved and show less consistency.

  8. Z-Earth: 4D topography from space combining short-baseline stereo and lidar

    NASA Astrophysics Data System (ADS)

    Dewez, T. J.; Akkari, H.; Kaab, A. M.; Lamare, M. L.; Doyon, G.; Costeraste, J.

    2013-12-01

    The advent of free-of-charge global topographic data sets SRTM and Aster GDEM have enabled testing a host of geoscience hypotheses. Availability of such data is now considered standard, and though resolved at 30-m to 90-m pixel size, they are today regarded as obsolete and inappropriate given the regularly updated sub-meter imagery coming through web services like Google Earth. Two features will thus help meet the current topographic data needs of the Geoscience communities: field-scale-compatible elevation datasets (i.e. meter-scale digital models and sub-meter elevation precision) and provision for regularly updated topography to tackle earth surface changes in 4D, while retaining the key for success: data availability at no charge. A new space borne instrumental concept called Z-Earth has undergone phase 0 study at CNES, the French space agency to fulfill these aims. The scientific communities backing this proposal are that of natural hazards, glaciology and biomass. The system under study combines a short-baseline native stereo imager and a lidar profiler. This combination provides spatially resolved elevation swaths together with absolute along-track elevation control point profiles. Acquisition is designed for revisit time better than a year. Intended products not only target single pass digital surface models, color orthoimages and small footprint full-wave-form lidar profiles to update existing topographic coverage, but also time series of them. 3D change detection targets centimetre-scale horizontal precision and metric vertical precision, in complement of -now traditional- spectral change detection. To assess the actual concept value, two real-size experiments were carried out. We used sub-meter-scale Pleiades panchromatic stereo-images to generate digital surface models and check them against dense airborne lidar coverages, one heliborne set purposely flown in Corsica (50-100pts/sq.m) and a second one retrieved from OpenTopography.org (~10pts/sq.m.). In Corsica, over a challenging 45-degree-grade tree-covered mountain side, the Pleiades 2-m-grid-posting digital surface model described the topography with a median error of -4.75m +/-2.59m (NMAD). A planimetric bias between both datasets was found to be about 7m to the South. This planimetric misregistration, though well within Pleiades specifications, partly explains the dramatic effect on elevation difference. In the Redmond area (eastern Oregon), a very gentle desert landscape, elevation differences also contained a vertical median bias of -4.02m+/-1.22m (NMAD). Though here, sub-pixel planimetric registration between stereo DSM and lidar coverage was enforced. This real-size experiment hints that sub-meter accuracy for 2-m-grid-posting DSM is an achievable goal when combining stereoimaging and lidar.

  9. Artillery Engagement Simulation

    DTIC Science & Technology

    1980-05-01

    coordinate* of the burst point to 10 meter accuracy (4 digit number). 7. Press R/S. Calculator will run for approximately one second and display the...northing coordinate* of the burst point to 10 meter accuracy (4 digit number). 8. If it is not desired to send azimuth and distance instructions to the...Now Delhi 1 USA Agey for Aviation Safety, Ft Rucker. ATTN: Educ Advisor I Pars Rsch Ofc, Libary , AKA. Israel Defense Forces I USA Aviation Sch. Ft

  10. Integration of airborne Thematic Mapper Simulator (TMS) data and digitized aerial photography via an ISH transformation. [Intensity Saturation Hue

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Myers, Jeffrey S.; Ekstrand, Robert E.; Fitzgerald, Michael T.

    1991-01-01

    A simple method for enhancing the spatial and spectral resolution of disparate data sets is presented. Two data sets, digitized aerial photography at a nominal spatial resolution 3,7 meters and TMS digital data at 24.6 meters, were coregistered through a bilinear interpolation to solve the problem of blocky pixel groups resulting from rectification expansion. The two data sets were then subjected to intensity-saturation-hue (ISH) transformations in order to 'blend' the high-spatial-resolution (3.7 m) digitized RC-10 photography with the high spectral (12-bands) and lower spatial (24.6 m) resolution TMS digital data. The resultant merged products make it possible to perform large-scale mapping, ease photointerpretation, and can be derived for any of the 12 available TMS spectral bands.

  11. The Seven-Segment Data Logger

    ERIC Educational Resources Information Center

    Bates, Alan

    2015-01-01

    Instruments or digital meters with data values visible on a seven-segment display can easily be found in the physics lab. Examples include multimeters, sound level meters, Geiger-Müller counters and electromagnetic field meters, where the display is used to show numerical data. Such instruments, without the ability to connect to computers or data…

  12. Congestion-Responsive On-Ramp Metering : Before and After Studies - Phase 1

    DOT National Transportation Integrated Search

    2016-07-06

    The objective of this project was to develop recommendations toward a statewide policy of congestion responsive freeway ramp metering operation. The research is performed in two phases. In phase 1, alternative ramp metering activation strategies were...

  13. Topographic correction realization based on the CBERS-02B image

    NASA Astrophysics Data System (ADS)

    Qin, Hui-ping; Yi, Wei-ning; Fang, Yong-hua

    2011-08-01

    The special topography of mountain terrain will induce the retrieval distortion in same species and surface spectral lines. In order to improve the research accuracy of topographic surface characteristic, many researchers have focused on topographic correction. Topographic correction methods can be statistical-empirical model or physical model, in which the methods based on the digital elevation model data are most popular. Restricted by spatial resolution, previous model mostly corrected topographic effect based on Landsat TM image, whose spatial resolution is 30 meter that can be easily achieved from internet or calculated from digital map. Some researchers have also done topographic correction based on high spatial resolution images, such as Quickbird and Ikonos, but there is little correlative research on the topographic correction of CBERS-02B image. In this study, liao-ning mountain terrain was taken as the objective. The digital elevation model data was interpolated to 2.36 meter by 15 meter original digital elevation model one meter by one meter. The C correction, SCS+C correction, Minnaert correction and Ekstrand-r were executed to correct the topographic effect. Then the corrected results were achieved and compared. The images corrected with C correction, SCS+C correction, Minnaert correction and Ekstrand-r were compared, and the scatter diagrams between image digital number and cosine of solar incidence angel with respect to surface normal were shown. The mean value, standard variance, slope of scatter diagram, and separation factor were statistically calculated. The analysed result shows that the shadow is weakened in corrected images than the original images, and the three-dimensional affect is removed. The absolute slope of fitting lines in scatter diagram is minished. Minnaert correction method has the most effective result. These demonstrate that the former correction methods can be successfully adapted to CBERS-02B images. The DEM data can be interpolated step by step to get the corresponding spatial resolution approximately for the condition that high spatial resolution elevation data is hard to get.

  14. MICROROC: MICRO-mesh gaseous structure Read-Out Chip

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Chefdeville, M.; Dalmaz, A.; Drancourt, C.; Dulucq, F.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Jacquemier, J.; Karyotakis, Y.; Martin-Chassard, G.; Prast, J.; Seguin-Moreau, N.; de La Taille, Ch; Vouters, G.

    2012-01-01

    MICRO MEsh GAseous Structure (MICROMEGAS) and Gas Electron Multipliers (GEM) detectors are two candidates for the active medium of a Digital Hadronic CALorimeter (DHCAL) as part of a high energy physics experiment at a future linear collider (ILC/CLIC). Physics requirements lead to a highly granular hadronic calorimeter with up to thirty million channels with probably only hit information (digital readout calorimeter). To validate the concept of digital hadronic calorimetry with such small cell size, the construction and test of a cubic meter technological prototype, made of 40 planes of one square meter each, is necessary. This technological prototype would contain about 400 000 electronic channels, thus requiring the development of front-end ASIC. Based on the experience gained with previous ASIC that were mounted on detectors and tested in particle beams, a new ASIC called MICROROC has been developped. This paper summarizes the caracterisation campaign that was conducted on this new chip as well as its integration into a large area Micromegas chamber of one square meter.

  15. A New Era in Geodesy and Cartography: Implications for Landing Site Operations

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.

    2001-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global dataset has ushered in a new era for Mars local and global geodesy and cartography. These data include the global digital terrain model (Digital Terrain Model (DTM) radii), the global digital elevation model (Digital Elevation Model (DEM) elevation with respect to the geoid), and the higher spatial resolution individual MOLA ground tracks. Currently there are about 500,000,000 MOLA points and this number continues to grow as MOLA continues successful operations in orbit about Mars, the combined processing of radiometric X-band Doppler and ranging tracking of MGS together with millions of MOLA orbital crossover points has produced global geodetic and cartographic control having a spatial (latitude/longitude) accuracy of a few meters and a topographic accuracy of less than 1 meter. This means that the position of an individual MOLA point with respect to the center-of-mass of Mars is know to an absolute accuracy of a few meters. The positional accuracy of this point in inertial space over time is controlled by the spin rate uncertainty of Mars which is less than 1 km over 10 years that will be improved significantly with the next landed mission.

  16. Apparatus Reviews.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Provided are reviews of science equipment/apparatus. Items reviewed include: Harris Micro-ecology tubes; Harris chromosome investigation kit; Harris trycult slides; a pressure cooker with thermometer; digital pH meter; digital scaler timer; electrical compensation calorimeter; and Mains alternating current ammeter. (JN)

  17. 30 CFR 203.35 - What administrative steps must I take to use the RSV earned by a qualified phase 2 or phase 3...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is located entirely or partly in water less than 200 meters deep, or before May 3, 2013, on a lease that is located entirely in water more than 200 meters but less than 400 meters deep, the MMS Regional... entirely in water more than 200 meters but less than 400 meters deep. You must provide a credible activity...

  18. Data system for multiplexed water-current meters

    NASA Technical Reports Server (NTRS)

    Ramsey, C. R.

    1977-01-01

    Flow rates at 32 flood plain locations are measured simultaneously by single digital logic unit with high noise immunity. Water flowing through pygmy current meters rotates element that closes electrical contact once every resolution, so flow rate is measured by counting number of closures in time interval.

  19. Analysis and design of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1976-01-01

    A trade study was performed on twenty-one digital output interface schemes for gas turbine electronic controls to select the most promising scheme based on criteria of reliability, performance, cost, and sampling requirements. The most promising scheme, a digital effector with optical feedback of the fuel metering valve position, was designed.

  20. We got a new digital electric meter. Our usage went up 123%. Our Bill went up 65%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honebein, Peter C.

    2010-03-15

    There is no question that smart meters are a benefit to utilities, in terms of operational efficiency. But headlines like this one are frightening. They suggest a significant misunderstanding of the technology, marketing, and customer experience surrounding this worthwhile innovation. (author)

  1. RHODE ISLAND DIGITAL ORTHOPHOTO QUADRANGLE MOSAIC

    EPA Science Inventory

    Orthophotos combine the image characteristics of a photograph with the geometric qualities of a map. The primary digital orthophotoquad (DOQ) is a 1-meter ground resolution, quarter-quadrangle (3.75-minutes of latitude by 3.75-minutes of longitude) image cast on the Universal Tra...

  2. RECENT DEVELOPMENTS IN HYDROLOGIC INSTRUMENTATION.

    USGS Publications Warehouse

    Latkovich, Vito J.

    1985-01-01

    The availability of space-age materials and implementation of state-of-the-art electronics is making possible the recent developments of hydrologic instrumentation. Material developments include: Synthetic-fiber sounding and tag lines; fiberglass wading rod; polymer (plastic) sheaves, pulleys and sampler components; and polymer (plastic) bucket wheels for current meters. These materials are very cost effective and efficient. Electromechanical and electronic developments and applications include: adaptable data acquisition system; downhole sampler for hazardous substances; current-meter digitizer; hydraulic power/drive system for discharge measurements and water-quality sampling; non-contact water-level sensors; minimum data recorder; acoustic velocity meters, and automated current meter discharge-measurement system.

  3. Colorado Wind Resource at 50 Meters Above Ground Level

    Science.gov Websites

    Meters Above Ground Level Geospatial_Data_Presentation_Form: vector digital data Description: Abstract . Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from

  4. Propellant Feed Subsystem for a 26 kW flight arcjet propulsion system

    NASA Astrophysics Data System (ADS)

    Vaughan, C. E.; Morris, J. P.

    1993-06-01

    The USAF arcjet ATTD program demanded the development of a low-cost ammonia Propellant Feed Subsystem (PFS). A flow rate of 240 +/- 5 mg/sec during a total of ten 15-min ammonia outflows was required for the flight mission. The precision of the flow tolerance required a departure from the design of previous ammonia propellant feed systems. Since a propellant management device was not used, thermocapillary forces were explored as a means to limit outflow of liquid phase ammonia. A high energy density feedline heater with an internal wick was developed to guarantee that only gas phase propellant would reach the arcjet. A digital control algorithm was developed to implement bang-bang control of mass flow rate metered by a sonic venturi. Development tests of this system have been completed. The system is capable of continuous gas phase outflows regardless of orientation. Integrated tests with the arcjet and power conditioning unit have also been successfully completed.

  5. Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler

    NASA Technical Reports Server (NTRS)

    Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel

    2017-01-01

    This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called digital materials. We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.

  6. Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler

    NASA Technical Reports Server (NTRS)

    Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel

    2017-01-01

    This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called "digital materials." We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.

  7. The Microcomputer as an Educational Laboratory Workstation.

    ERIC Educational Resources Information Center

    Ciociolo, James M.

    1983-01-01

    Describes laboratory workstations which provide direct connection for monitoring and control of analytical instruments such as pH meters, spectrophotometers, temperature, and chromatographic instruments. This is accomplished through analog/digital and digital/analog converters for analog signals and input/output devices for on/off signals.…

  8. A seamless, high-resolution digital elevation model (DEM) of the north-central California coast

    USGS Publications Warehouse

    Foxgrover, Amy C.; Barnard, Patrick L.

    2012-01-01

    A seamless, 2-meter resolution digital elevation model (DEM) of the north-central California coast has been created from the most recent high-resolution bathymetric and topographic datasets available. The DEM extends approximately 150 kilometers along the California coastline, from Half Moon Bay north to Bodega Head. Coverage extends inland to an elevation of +20 meters and offshore to at least the 3 nautical mile limit of state waters. This report describes the procedures of DEM construction, details the input data sources, and provides the DEM for download in both ESRI Arc ASCII and GeoTIFF file formats with accompanying metadata.

  9. Lunar Pole Illumination and Communications Maps Computed from GSSR Elevation Data

    NASA Technical Reports Server (NTRS)

    Bryant, Scott

    2009-01-01

    A Digital Elevation Model of the lunar south pole was produced using Goldstone Solar System RADAR (GSSR) data obtained in 2006.12 This model has 40-meter horizontal resolution and about 5-meter relative vertical accuracy. This Digital Elevation Model was used to compute average solar illumination and Earth visibility with 100 kilometers of the lunar south pole. The elevation data were converted into local terrain horizon masks, then converted into lunar-centric latitude and longitude coordinates. The horizon masks were compared to latitude, longitude regions bounding the maximum Sun and Earth motions relative to the moon. Estimates of Earth visibility were computed by integrating the area of the region bounding the Earth's motion that was below the horizon mask. Solar illumination and other metrics were computed similarly. Proposed lunar south pole base sites were examined in detail, with the best site showing yearly solar power availability of 92 percent and Direct-To-Earth (DTE) communication availability of about 50 percent. Similar analysis of the lunar south pole used an older GSSR Digital Elevation Model with 600-meter horizontal resolution. The paper also explores using a heliostat to reduce the photovoltaic power system mass and complexity.

  10. Integrating disparate lidar datasets for a regional storm tide inundation analysis of Hurricane Katrina

    USGS Publications Warehouse

    Stoker, Jason M.; Tyler, Dean J.; Turnipseed, D. Phil; Van Wilson, K.; Oimoen, Michael J.

    2009-01-01

    Hurricane Katrina was one of the largest natural disasters in U.S. history. Due to the sheer size of the affected areas, an unprecedented regional analysis at very high resolution and accuracy was needed to properly quantify and understand the effects of the hurricane and the storm tide. Many disparate sources of lidar data were acquired and processed for varying environmental reasons by pre- and post-Katrina projects. The datasets were in several formats and projections and were processed to varying phases of completion, and as a result the task of producing a seamless digital elevation dataset required a high level of coordination, research, and revision. To create a seamless digital elevation dataset, many technical issues had to be resolved before producing the desired 1/9-arc-second (3meter) grid needed as the map base for projecting the Katrina peak storm tide throughout the affected coastal region. This report presents the methodology that was developed to construct seamless digital elevation datasets from multipurpose, multi-use, and disparate lidar datasets, and describes an easily accessible Web application for viewing the maximum storm tide caused by Hurricane Katrina in southeastern Louisiana, Mississippi, and Alabama.

  11. Riparian Land Use/Land Cover Data for Three Study Units in Group II of the Nutrient Enrichment Effects Topical Study of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Johnson, Michaela R.; Clark, Jimmy M.; Dickinson, Ross G.; Sanocki, Chris A.; Tranmer, Andrew W.

    2009-01-01

    This data set was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study. This report is concerned with three of the eight NEET study units distributed across the United States: Ozark Plateaus, Upper Mississippi River Basin, and Upper Snake River Basin, collectively known as Group II of the NEET study. Ninety stream reaches were investigated during 2006-08 in these three study units. Stream segments, with lengths equal to the base-10 logarithm of the basin area, were delineated upstream from the stream reaches through the use of digital orthophoto quarter-quadrangle (DOQQ) imagery. The analysis area for each stream segment was defined by a streamside buffer extending laterally to 250 meters from the stream segment. Delineation of landuse and land-cover (LULC) map units within stream-segment buffers was completed using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were classified using a strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal riparian transects (lines offset from the stream segments) were generated digitally, used to sample the LULC maps, and partitioned in accord with the intersected LULC map-unit types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear estimates of LULC extent filled in the spatial-scale gap between the 30-meter resolution of the 1990s National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The resulting data consisted of 12 geospatial data sets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation at the reach scale (arc); stream reaches (arc); longitudinal LULC transect sample at the reach scale (arc); frequency of gaps in woody vegetation at the segment scale (arc); stream segments (arc); and longitudinal LULC transect sample at the segment scale (arc).

  12. Measuring peak expiratory flow in general practice: comparison of mini Wright peak flow meter and turbine spirometer.

    PubMed Central

    Jones, K P; Mullee, M A

    1990-01-01

    OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611

  13. A compact perspiration meter system with capacitive humidity sensor for wearable health-care applications

    NASA Astrophysics Data System (ADS)

    Mitani, Yusuke; Miyaji, Kousuke; Kaneko, Satoshi; Uekura, Takaharu; Momose, Hideya; Johguchi, Koh

    2018-04-01

    This paper presents a compact wearable perspiration meter system using a 180-nm CMOS technology. With custom chip and board design, the proposed perspiration meter, which can measure a qualitative sweating rate, is integrated into 15 × 20 mm2. From the experimental results, the capacitances of the humidity sensors with analog-to-digital converter and band-gap reference circuits can operate accurately without hysteresis. In addition, a demonstration with simulated human skin is carried out to investigate the sensor’s performance under real environments. The proposed perspiration meter can output values equivalent to a conventional meter. As a result, it is verified that the proposed system can be used as a human sweat sensor for wearable application.

  14. Fundamental performance determining factors of the ultrahigh-precision space-borne optical metrology system for the LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    Hechenblaikner, Gerald; Flatscher, Reinhold

    2013-05-01

    The LISA Pathfinder mission to space employs an optical metrology system (OMS) at its core to measure the distance and attitude between two freely floating test-masses to picometer and nanorad accuracy, respectively, within the measurement band of [1 mHz, 30 mHz]. The OMS is based upon an ultra-stable optical bench with 4 heterodyne interferometers from which interference signals are read-out and processed by a digital phase-meter. Laser frequency noise, power fluctuations and optical path-length variations are suppressed to uncritical levels by dedicated control loops so that the measurement performance approaches the sensor limit imposed by the phasemeter. The system design is such that low frequency common mode noise which affects the read-out phase of all four interferometers is generally well suppressed by subtraction of a reference phase from the other interferometer signals. However, high frequency noise directly affects measurement performance and its common mode rejection depends strongly on the relative signal phases. We discuss how the data from recent test campaigns point towards high frequency phase noise as a likely performance limiting factor which explains some important performance features.

  15. The Australian SKA Pathfinder: project update and initial operations

    NASA Astrophysics Data System (ADS)

    Schinckel, Antony E. T.; Bock, Douglas C.-J.

    2016-08-01

    The Australian Square Kilometre Array Pathfinder (ASKAP) will be the fastest dedicated cm-wave survey telescope, and will consist of 36 12-meter 3-axis antennas, each with a large chequerboard phased array feed (PAF) receiver operating between 0.7 and 1.8 GHz, and digital beamforming prior to correlation. The large raw data rates involved ( 100 Tb/sec), and the need to do pipeline processing, has led to the antenna incorporating a third axis to fix the parallactic angle with respect to the entire optical system (blockages and phased array feed). It also results in innovative technical solutions to the data transport and processing issues. ASKAP is located at the Murchison Radio-astronomy Observatory (MRO), a new observatory developed for the Square Kilometre Array (SKA), 315 kilometres north-east of Geraldton, Western Australia. The MRO also hosts the SKA low frequency pathfinder instrument, the Murchison Widefield Array and will host the initial low frequency instrument of the SKA, SKA1-Low. Commissioning of ASKAP using six antennas equipped with first-generation PAFs is now complete and installation of second-generation PAFs and digital systems is underway. In this paper we review technical progress and commissioning to date, and refer the reader to relevant technical and scientific publications.

  16. Components for digitally controlled aircraft engines

    NASA Technical Reports Server (NTRS)

    Meador, J. D.

    1981-01-01

    Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.

  17. Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter

    ERIC Educational Resources Information Center

    Radhakrishnan, Rugmini; Karthika, S.

    2010-01-01

    A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…

  18. Anaysis of the quality of image data required by the LANDSAT-4 Thematic Mapper and Multispectral Scanner. [agricultural and forest cover types in California

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1984-01-01

    The spatial, geometric, and radiometric qualities of LANDSAT 4 thematic mapper (TM) and multispectral scanner (MSS) data were evaluated by interpreting, through visual and computer means, film and digital products for selected agricultural and forest cover types in California. Multispectral analyses employing Bayesian maximum likelihood, discrete relaxation, and unsupervised clustering algorithms were used to compare the usefulness of TM and MSS data for discriminating individual cover types. Some of the significant results are as follows: (1) for maximizing the interpretability of agricultural and forest resources, TM color composites should contain spectral bands in the visible, near-reflectance infrared, and middle-reflectance infrared regions, namely TM 4 and TM % and must contain TM 4 in all cases even at the expense of excluding TM 5; (2) using enlarged TM film products, planimetric accuracy of mapped poins was within 91 meters (RMSE east) and 117 meters (RMSE north); (3) using TM digital products, planimetric accuracy of mapped points was within 12.0 meters (RMSE east) and 13.7 meters (RMSE north); and (4) applying a contextual classification algorithm to TM data provided classification accuracies competitive with Bayesian maximum likelihood.

  19. Is Echinometra viridis facilitating a phase shift on an Acropora cervicornis patch reef in Belize?

    NASA Astrophysics Data System (ADS)

    Stefanic, C. M.; Greer, L.; Norvell, D.; Benson, W.; Curran, H.

    2012-12-01

    Coral reef health is in rapid decline across the Caribbean due to a number of anthropogenic and natural disturbances. A phase shift from coral- to macroalgae-dominant reefs is pervasive and has been well documented. Acropora cervicornis (Staghorn Coral) has been particularly affected by this shift due to mass mortality of this species since the 1980s. In recent years few Caribbean A. cervicornis refugia have been documented. This study characterizes the relationship between coral and grazing urchins on a rare patch reef system dominated by A. cervicornis off the coast of Belize. To assess relative abundance of live A. cervicornis and the urchin Echinometra viridis, photographs and urchin abundance data were collected from 132 meter square quadrats along five transects across the reef. Photographs were digitized and manually segmented using Adobe Illustrator, and percent live coral cover and branch tip densities were calculated using Matlab. Mean percent live coral cover across all transects was 24.4 % with a high of 65% live coral per meter square. Average urchin density was 18.5 per quadrat, with an average density per transect ranging from 22.1 to 0.5 per quadrat. Up to over 400 live A. cervicornis branch tips per quadrat were observed. Data show a positive correlation between E. viridis abundance and live A. cervicornis, suggesting that these urchins are facilitating recovery or persistence of this endangered coral species. These results suggest the relationship between E. viridis and A. cervicornis could be a key element in a future reversal of the coral to macroalgae phase shift on some Caribbean coral reefs.

  20. Topographic Map of Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topographic map of the landing site, to a distance of 60 meters from the lander in the LSC coordinate system. The lander is shown schematically in the center; 2.5 meter radius circle (black) centered on the camera was not mapped. Gentle relief [root mean square (rms) elevation variation 0.5 m; rms a directional slope 4O] and organization of topography into northwest and northeast-trending ridges about 20 meters apart are apparent. Roughly 30% of the illustrated area is hidden from the camera behind these ridges. Contours (0.2 m interval) and color coding of elevations were generated from a digital terrain model, which was interpolated by kriging from approximately 700 measured points. Angular and parallax point coordinates were measured manually on a large (5 m length) anaglyphic uncontrolled mosaic and used to calculate Cartesian (LSC) coordinates. Errors in azimuth on the order of 10 are therefore likely; elevation errors were minimized by referencing elevations to the local horizon. The uncertainty in range measurements increases quadratically with range. Given a measurement error of 1/2 pixel, the expected precision in range is 0.3 meter at 10 meter range, and 10 meters at 60 meter range. Repeated measurements were made, compared, and edited for consistency to improve the range precision. Systematic errors undoubtedly remain and will be corrected in future maps compiled digitally from geometrically controlled images. Cartographic processing by U.S. Geological Survey.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  1. State of Texas - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of Texas and a grayscale relief of the surrounding areas. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2002. Shaded relief over Mexico was obtained from the USGS National Atlas.

  2. Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.

    2007-01-01

    Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.

  3. Application of a scattered-light radiometric power meter.

    PubMed

    Caron, James N; DiComo, Gregory P; Ting, Antonio C; Fischer, Richard P

    2011-04-01

    The power measurement of high-power continuous-wave laser beams typically calls for the use of water-cooled thermopile power meters. Large thermopile meters have slow response times that can prove insufficient to conduct certain tests, such as determining the influence of atmospheric turbulence on transmitted beam power. To achieve faster response times, we calibrated a digital camera to measure the power level as the optical beam is projected onto a white surface. This scattered-light radiometric power meter saves the expense of purchasing a large area power meter and the required water cooling. In addition, the system can report the power distribution, changes in the position, and the spot size of the beam. This paper presents the theory of the scattered-light radiometric power meter and demonstrates its use during a field test at a 2.2 km optical range. © 2011 American Institute of Physics

  4. A new ultrasonic method for measuring minute motion activities of rats.

    PubMed

    Young, C W; Young, M S; Li, Y C; Lin, M T

    1996-12-01

    A new ultrasonic method is presented for measuring the minute motion activities of rats. A pair of low-cost 40 kHz ultrasonic transducers are used to transmit ultrasound toward a rat and receive the ultrasound reflected from the rat. The relative motion of the rat modulates the phase difference between the transmitted and received ultrasound signals. An 8-bit digital phase meter was designed to record the phase difference signal which was used to reconstruct the relative motion waveform of the rat in an 8751 single-chip microcomputer. The reconstructed data are then sent to a PC-AT microcomputer for further processing. This method employs a spectrum analysis for the reconstructed data and can measure three minute motion activities including locomotor activity (LMA), tremor and myoclonia. Finally, the method has been tested with real animal experiments. The main advantages of this new method are that it is non-invasive, non-contact, low cost and high precision. This new method could also be profitably employed for other behavioral studies and offer potential for research in basic medicine.

  5. Comparison of digital elevation models for aquatic data development.

    Treesearch

    Sharon Clarke; Kelly Burnett

    2003-01-01

    Thirty-meter digital elevation models (DEMs) produced by the U.S. Geological Survey (USGS) are widely available and commonly used in analyzing aquatic systems. However, these DEMs are of relatively coarse resolution, were inconsistently produced (i.e., Level 1 versus Level 2 DEMs), and lack drainage enforcement. Such issues may hamper efforts to accurately model...

  6. USING 30-METER RESOLUTION DIGITAL ELEVATION DATA FOR BASIN ANALYSIS-A PRACTICAL UTILIZATION OF USGS 24K DIGITAL ELEVATION DATA-COMPLICATIONS AND SOLUTIONS. (R826595)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Arduino based radiation survey meter

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  8. Comparison of Measures of Vibration Affecting Occupants of Military Vehicles

    DTIC Science & Technology

    1986-12-01

    8217 ,, l I WES equipment 27. The WES equipment consisted of a battery operated absorbed power ( ABS -PW) meter with signal conditioning...West Germany. These will be referred to as the ISO ride meter and the ABS -PWR ridemeter, respectively. The first implemented the vibration measure...the ABS -PWR algorithms were used with each acceleration signal source (analog and digital) to provide a comprehensive basis for comparing the vibration

  9. Integrating an embedded system in a microwave moisture meter

    USDA-ARS?s Scientific Manuscript database

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  10. Integrating an Embedded System within a Microwave Moisture Meter

    USDA-ARS?s Scientific Manuscript database

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  11. Gulf of Mexico region - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of the area surrounding the Gulf of Mexico. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s data) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of 10-meter contour-derived DEM data or higher-resolution LIDAR data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2005.

  12. NASA Tech Briefs, March 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: WRATS Integrated Data Acquisition System; Breadboard Signal Processor for Arraying DSN Antennas; Digital Receiver Phase Meter; Split-Block Waveguide Polarization Twist for 220 to 325 GHz; Nano-Multiplication-Region Avalanche Photodiodes and Arrays; Tailored Asymmetry for Enhanced Coupling to WGM Resonators; Disabling CNT Electronic Devices by Use of Electron Beams; Conical Bearingless Motor/Generators; Integrated Force Method for Indeterminate Structures; Carbon-Nanotube-Based Electrodes for Biomedical Applications; Compact Directional Microwave Antenna for Localized Heating; Using Hyperspectral Imagery to Identify Turfgrass Stresses; Shaping Diffraction-Grating Grooves to Optimize Efficiency; Low-Light-Shift Cesium Fountain without Mechanical Shutters; Magnetic Compensation for Second-Order Doppler Shift in LITS; Nanostructures Exploit Hybrid-Polariton Resonances; Microfluidics, Chromatography, and Atomic-Force Microscopy; Model of Image Artifacts from Dust Particles; Pattern-Recognition System for Approaching a Known Target; Orchestrator Telemetry Processing Pipeline; Scheme for Quantum Computing Immune to Decoherence; Spin-Stabilized Microsatellites with Solar Concentrators; Phase Calibration of Antenna Arrays Aimed at Spacecraft; Ring Bus Architecture for a Solid-State Recorder; and Image Compression Algorithm Altered to Improve Stereo Ranging.

  13. State of Florida 1:24,000- and 1:100,000-scale quadrangle index map - Highlighting low-lying areas derived from USGS Digital Elevation Models

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts 1:24,000- and 1:100,000-scale quadrangle footprints over a color shaded relief representation of the State of Florida. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Figure 1 shows a similar representation for the entire U.S. Gulf Coast, using coarsened 30-meter NED data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. Quadrangle names, dated April, 2006, were obtained from the Federal Geographic Names Information System. The NED data were downloaded in 2004.

  14. Dark Skies as a Universal Resource: Citizen Scientists Measuring Sky Brightness

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Isbell, D.; Pompea, S. M.

    2007-12-01

    The international star-hunting event known as GLOBE at Night returned March 8-21, 2007 in two flavors: the classic GLOBE at Night activity incorporating unaided-eye observations which debuted last year, and a new effort to obtain precise measurements of urban dark skies using digital sky-brightness meters. Both flavors of the program were designed to aid in heightening the awareness about the impact of artificial lighting on local environments, and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To make possible the digital GLOBE at Night program, NSF funded 135 low-cost, digital sky-quality meter (manufactured by Unihedron). With these, citizen-scientists took direct measurements of the integrated sky brightness across a wide swath of night sky. Along with related materials developed by the National Optical Astronomy Observatory (NOAO), the meters were distributed to citizen-scientists in 21 U.S. states plus Washington DC, and in 5 other countries, including Chile, where NOAO has a major observatory. The citizen- scientists were selected from teachers, their students, astronomers at mountain-top observatories, International Dark-Sky Association members and staff from 19 small science centers. Most sites had a coordinator, who instructed local educators in the proper use of the meters and develop a plan to share them as widely as possible during the 2-week window. The local teams pooled their data for regional analysis and in some cases shared the results with their schools and local policymakers. Building upon the worldwide participation sparked by the first GLOBE at Night campaign in March 2006, the observations this year approached 8500 (from 60 countries), 85% higher than the number from last year. The success of GLOBE at Night 2007 is a major step toward the International Year of Astronomy in 2009, when one goal is to make the digital data collection into a worldwide activity. In this presentation, we will outline the set-up for the digital part of the program, the outcome and the plans for the future. GLOBE at Night has been a collaboration between NOAO, the GLOBE program, the IDA, CADIAS and Windows to the Universe. NOAO is operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation. The digital GLOBE at Night program described was supported by a grant to NOAO by the NSF.

  15. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 400 meters deep. (b) The lease has not produced gas or oil from a deep well or an ultra-deep well, except as provided in § 203.31(b). (c) If the lease is located entirely in more than 200 meters and entirely less than 400 meters of water, it must either: (1) Have been issued before November 28, 1995, and...

  16. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water less than 400 meters deep (see § 203.30(a)), has no existing deep or ultra-deep wells and that the... depths partly or entirely less than 200 meters and has not previously produced from a deep well (§ 203.30... which is 16,000 feet TVD SS and your lease is located in water 100 meters deep. Then in 2008, you drill...

  17. Harmonically mode-locked erbium-doped waveguide laser

    NASA Astrophysics Data System (ADS)

    Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.

    2004-08-01

    The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.

  18. Evaluating ALOS AW3D30 data

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.

    2017-09-01

    A global digital surface model dataset named ALOS Global Digital Surface Model (AW3D30) with a horizontal resolution of approx. 30-meter mesh (1 arcsec) has been released by the Japan Aerospace Exploration Agency (JAXA). The dataset has been compiled with images acquired by the Advanced Land Observing Satellite "DAICHI" (ALOS) and it is published based on the DSM dataset (5-meter mesh version) of the "World 3D Topographic Data", which is the most precise global-scale elevation data at this time, and its elevation precision is also at a world-leading level as a 30-meter mesh version. In this study the accuracy of ALOS AW3D30 was examined. For an area with complex geomorphologic characteristics DSM from ALOS stereo pairs were created with classical photogrammetric techniques. Those DSMs were compared with the ALOS AW3D30. Points of certified elevation collected with DGPS have been used to estimate the accuracy of the DSM. The elevation difference between the two DSMs was calculated. 2D RMSE, correlation and the percentile value were also computed and the results are presented.

  19. Laboratory evaluation of an OTT acoustic digital current meter and a SonTek Laboratory acoustic Doppler velocimeter

    USGS Publications Warehouse

    Vermeyen, T.B.; Oberg, Kevin A.; Jackson, Patrick Ryan

    2009-01-01

    Recently, an acoustic current meter known as the OTT * acoustic digital current meter (ADC) was introduced as an alternative instrument for stream gaging measurements. The Bureau of Reclamation and the U.S. Geological Survey collaborated on a side- by-side evaluation of the ADC and a SonTek/YSI acoustic Doppler velocimeter (ADV). Measurements were carried out in a laboratory flume to evaluate the performance characteristics of the ADC under a range of flow and boundary conditions. The flume contained a physical model of a mountain river with a diversion dam and variety of bed materials ranging from smooth mortar to a cobble bed. The instruments were installed on a trolley system that allowed them to be easily moved within the flume while maintaining a consistent probe orientation. More than 50 comparison measurements were made in an effort to verify the manufacturer’s performance specifications and to evaluate potential boundary disturbance for near-bed and vertical boundary measurements. Data and results from this evaluation are presented and discussed. 

  20. Applied digital signal processing systems for vortex flowmeter with digital signal processing.

    PubMed

    Xu, Ke-Jun; Zhu, Zhi-Hai; Zhou, Yang; Wang, Xiao-Fen; Liu, San-Shan; Huang, Yun-Zhi; Chen, Zhi-Yuan

    2009-02-01

    The spectral analysis is combined with digital filter to process the vortex sensor signal for reducing the effect of disturbance at low frequency from pipe vibrations and increasing the turndown ratio. Using digital signal processing chip, two kinds of digital signal processing systems are developed to implement these algorithms. One is an integrative system, and the other is a separated system. A limiting amplifier is designed in the input analog condition circuit to adapt large amplitude variation of sensor signal. Some technique measures are taken to improve the accuracy of the output pulse, speed up the response time of the meter, and reduce the fluctuation of the output signal. The experimental results demonstrate the validity of the digital signal processing systems.

  1. Optical links in the angle-data assembly of the 70-meter antennas

    NASA Technical Reports Server (NTRS)

    Nelson, M. D.; Schroeder, J. R.; Tubbs, E. F.

    1988-01-01

    In the precision-pointing mode the 70 meter antennas utilize an optical link provided by an autocollimator. In an effort to improve reliability and performance, commercial instruments were evaluated as replacement candidates, and upgraded versions of the existing instruments were designed and tested. The latter were selected for the Neptune encounter, but commercial instruments with digital output show promise of significant performance improvement for the post-encounter period.

  2. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.

  3. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.

  4. Analysis of floods, including the tropical storm Irene inundation, of the Ottauquechee River in Woodstock, Bridgewater, and Killington and of Reservoir Brook in Bridgewater and Plymouth, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.

    2014-01-01

    In addition to the two digital flood inundation maps, flood profiles were created that depict the study reach flood elevation of tropical storm Irene of August 2011 and the 10-, 2-, 1-, and 0.2-percent AEP floods, also known as the 10-, 50-, 100-, and 500-year floods, respectively. The 10-, 2-, 1-, and 0.2-percent AEP flood discharges were determined using annual peak flow data from the USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). Flood profiles were computed for the Ottauquechee River and Reservoir Brook by means of a one-dimensional step-backwater model. The model was calibrated using documented high-water marks of the peak of the tropical storm Irene flood of August 2011 as well as stage discharge data as determined for USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). The simulated water-surface profiles were combined with a digital elevation model within a geographic information system to delineate the areas flooded during tropical storm Irene and for the 1-percent AEP water-surface profile. The digital elevation model data were derived from light detection and ranging (lidar) data obtained for a 3,281-foot (1,000-meter) corridor along the Ottauquechee River study reach and were augmented with 33-foot (10- meter) contour interval data in the modeled flood-inundation areas outside the lidar corridor. The 33-foot (10-meter) contour interval USGS 15-minute quadrangle topographic digital raster graphics map used to augment lidar data was produced at a scale of 1:24,000. The digital flood inundation maps and flood profiles along with information regarding current stage from USGS streamgages on the Internet provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  5. Physical Fitness And Digit Ratio (2D:4D) In Male Students From Wrocław, Poland.

    PubMed

    Koziel, Slawomir; Kociuba Mail, Marek; Chakraborty, Raja; Ignasiak, Zofia

    2017-03-01

    There is sex-difference in humans as regards aerobic efficiency, physical strength and endurance and the sex difference is greatly dependent upon differential concentration of testosterone during different phases of growth and development including the intrauterine phase or prenatal growth. Second-to-fourth digit lengths ratio (2D:4D) is an putative indicator of prenatal testosterone exposure. Lower 2D:4D indicates higher prenatal testosterone exposure and vice versa. Males generally have lower 2D:4D than females. This cross-sectional study investigated the relationship between the fitness measures and 2D:4D in young adult Polish males. The study included 118 Polish male students first course in General Kościuszko Military Academy of Land Forces in Wroclaw. Their mean (+SD) age was 20.4 (+1.60) years. Eurofit test set was employed to assess physical fitness. Apart from height, weight, second and fourth digit lengths, hand grip strength was also measured by a standard isometric dynamometer. The study showed a weak relationship between 2D:4D of right hand and results of physical fitness tests. The smaller was the 2D:4D, the better was the result of endurance and strength tests. This finding was in accord with reports by other studies, indicating that individuals with smaller 2D:4D tend to perform better in these aspects of physical ability. However, we also found an opposite relationship with the results to agility tests. Male students with higher 2D:4D scored better in 5x10 meters shuttle run. This finding did not match with results reported by other studies. This study indicated towards possibility that an association between low 2D:4D and sport and athletic achievement and also physical performances were due to, at least in part, the action of prenatal testosterone. Further studies are required to investigate the relationship of fitness parameters with digit ratio and ultimately with prenatal testosterone exposure.

  6. Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization.

    PubMed

    Zhang, You; Ren, Lei; Vergalasova, Irina; Yin, Fang-Fang

    2017-01-01

    Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams' eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard deviation) error of 1.8 (0.7) mm for a 30° total scan angle. For the phantom study using aggregated kV-MV projections, the orthogonal-view phase-matched digital tomosynthesis localizes the tumor to an average error within 1 mm for varying magnitudes of scan angles. The pilot clinical study shows that the orthogonal-view phase-matched digital tomosynthesis technique enables fast and accurate localization of moving lung tumors.

  7. Tapping to a Slow Tempo in the Presence of Simple and Complex Meters Reveals Experience-Specific Biases for Processing Music

    PubMed Central

    Ullal-Gupta, Sangeeta; Hannon, Erin E.; Snyder, Joel S.

    2014-01-01

    Musical meters vary considerably across cultures, yet relatively little is known about how culture-specific experience influences metrical processing. In Experiment 1, we compared American and Indian listeners' synchronous tapping to slow sequences. Inter-tone intervals contained silence or to-be-ignored rhythms that were designed to induce a simple meter (familiar to Americans and Indians) or a complex meter (familiar only to Indians). A subset of trials contained an abrupt switch from one rhythm to another to assess the disruptive effects of contradicting the initially implied meter. In the unfilled condition, both groups tapped earlier than the target and showed large tap-tone asynchronies (measured in relative phase). When inter-tone intervals were filled with simple-meter rhythms, American listeners tapped later than targets, but their asynchronies were smaller and declined more rapidly. Likewise, asynchronies rose sharply following a switch away from simple-meter but not from complex-meter rhythm. By contrast, Indian listeners performed similarly across all rhythm types, with asynchronies rapidly declining over the course of complex- and simple-meter trials. For these listeners, a switch from either simple or complex meter increased asynchronies. Experiment 2 tested American listeners but doubled the duration of the synchronization phase prior to (and after) the switch. Here, compared with simple meters, complex-meter rhythms elicited larger asynchronies that declined at a slower rate, however, asynchronies increased after the switch for all conditions. Our results provide evidence that ease of meter processing depends to a great extent on the amount of experience with specific meters. PMID:25075514

  8. Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States

    USGS Publications Warehouse

    Gesch, Dean B.; Oimoen, Michael J.; Zhang, Zheng; Meyer, David J.; Danielson, Jeffrey J.

    2012-01-01

    The ASTER Global Digital Elevation Model Version 2 (GDEM v2) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009. The absolute vertical accuracy of GDEM v2 was calculated by comparison with more than 18,000 independent reference geodetic ground control points from the National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v2 is 8.68 meters. This compares with the RMSE of 9.34 meters for GDEM v1. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v2 mean error of -0.20 meters is a significant improvement over the GDEM v1 mean error of -3.69 meters. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover to examine the effects of cover types on measured errors. The GDEM v2 mean errors by land cover class verify that the presence of aboveground features (tree canopies and built structures) cause a positive elevation bias, as would be expected for an imaging system like ASTER. In open ground classes (little or no vegetation with significant aboveground height), GDEM v2 exhibits a negative bias on the order of 1 meter. GDEM v2 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v2 has elevations that are higher in the canopy than SRTM.

  9. F-15 digital electronic engine control system description

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.

  10. Phase information contained in meter-scale SAR images

    NASA Astrophysics Data System (ADS)

    Datcu, Mihai; Schwarz, Gottfried; Soccorsi, Matteo; Chaabouni, Houda

    2007-10-01

    The properties of single look complex SAR satellite images have already been analyzed by many investigators. A common belief is that, apart from inverse SAR methods or polarimetric applications, no information can be gained from the phase of each pixel. This belief is based on the assumption that we obtain uniformly distributed random phases when a sufficient number of small-scale scatterers are mixed in each image pixel. However, the random phase assumption does no longer hold for typical high resolution urban remote sensing scenes, when a limited number of prominent human-made scatterers with near-regular shape and sub-meter size lead to correlated phase patterns. If the pixel size shrinks to a critical threshold of about 1 meter, the reflectance of built-up urban scenes becomes dominated by typical metal reflectors, corner-like structures, and multiple scattering. The resulting phases are hard to model, but one can try to classify a scene based on the phase characteristics of neighboring image pixels. We provide a "cooking recipe" of how to analyze existing phase patterns that extend over neighboring pixels.

  11. Photogrammetric Processing of IceBridge DMS Imagery into High-Resolution Digital Surface Models (DEM and Visible Overlay)

    NASA Astrophysics Data System (ADS)

    Arvesen, J. C.; Dotson, R. C.

    2014-12-01

    The DMS (Digital Mapping System) has been a sensor component of all DC-8 and P-3 IceBridge flights since 2009 and has acquired over 3 million JPEG images over Arctic and Antarctic land and sea ice. The DMS imagery is primarily used for identifying and locating open leads for LiDAR sea-ice freeboard measurements and documenting snow and ice surface conditions. The DMS is a COTS Canon SLR camera utilizing a 28mm focal length lens, resulting in a 10cm GSD and swath of ~400 meters from a nominal flight altitude of 500 meters. Exterior orientation is provided by an Applanix IMU/GPS which records a TTL pulse coincident with image acquisition. Notable for virtually all IceBridge flights is that parallel grids are not flown and thus there is no ability to photogrammetrically tie any imagery to adjacent flight lines. Approximately 800,000 Level-3 DMS Surface Model data products have been delivered to NSIDC, each consisting of a Digital Elevation Model (GeoTIFF DEM) and a co-registered Visible Overlay (GeoJPEG). Absolute elevation accuracy for each individual Elevation Model is adjusted to concurrent Airborne Topographic Mapper (ATM) Lidar data, resulting in higher elevation accuracy than can be achieved by photogrammetry alone. The adjustment methodology forces a zero mean difference to the corresponding ATM point cloud integrated over each DMS frame. Statistics are calculated for each DMS Elevation Model frame and show RMS differences are within +/- 10 cm with respect to the ATM point cloud. The DMS Surface Model possesses similar elevation accuracy to the ATM point cloud, but with the following advantages: · Higher and uniform spatial resolution: 40 cm GSD · 45% wider swath: 435 meters vs. 300 meters at 500 meter flight altitude · Visible RGB co-registered overlay at 10 cm GSD · Enhanced visualization through 3-dimensional virtual reality (i.e. video fly-through) Examples will be presented of the utility of these advantages and a novel use of a cell phone camera for aerial photogrammetry will also be presented.

  12. A Multi-Sensor Aerogeophysical Study of Afghanistan

    DTIC Science & Technology

    2007-01-01

    magnetometer coupled with an Applied Physics 539 3-axis fluxgate mag- netometer for compensation of the aircraft field; • an Applanix DSS 301 digital...survey. DATA COlleCTION AND PROCeSSINg Photogrammetry More than 65,000 high-resolution photogram- metric images were collected using an Applanix Digital...HSI L-Band Polarimetric Imaging Radar KGPS Dual Gravity Meters Common Sensor Bomb-bay Pallet Applanix DSS Camera Sensor Suite • Magnetometer • Gravity

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.

    mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants frameworkmore » is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.« less

  14. Design of a command, communications, and control van (surrogate)

    NASA Astrophysics Data System (ADS)

    Holder, J. Darryl; Fishback, Jerome

    1989-03-01

    This report describes the design, construction, and checkout of a radio and telephone multi-mode communications hub. This unit is to serve as a surrogate for a command, control, and communications van which is to be used in support of a special series of testing at a remote site. This unit is assembled in a military four-wheel van and has a crew of a commander and three operators. Radio communications monitoring can be performed in all popular modes of transmission from 50 KHz to 2 GHz and transmission can be performed on selected frequencies in the 40-meter, 6-meter, and 2-meter bands. Both voice and digital (teletype, packet, facsimile, etc.) communications are supported.

  15. Using the New Two-Phase-Titan to Evaluate Potential Lahar Hazard at Villa la Angostura, Argentina

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Cordoba, G. A.; Viramonte, J. G.; Folch, A.; Villarosa, G.; Delgado, H.

    2013-05-01

    The 2011 eruption of Puyehue Volcano, located in the Cordon del Caulle volcanic complex, Chile, produced an ash plume that mainly affected downwind areas in Argentina. This plume forced air transport in the region to be closed for several weeks. Tephra fall deposits from this eruption affected many locations and pumice deposits on lakes killed most of the fish. As the ash emission occurred during the southern hemisphere winter (June), ash horizons were inter layered with layers of snow. This situation posed a potential threat for human settlements located downslope of the mountains. This was the case at Villa la Angostura, Neuquen province, Argentina, which sits on a series of fluvial deposits that originate in three major basins: Piedritas, Colorado, and Florencia. The Institute of Geological Survey of Argentina (SEGEMAR) estimated that the total accumulated deposit in each basin contains a ratio of approximately 30% ash and 70% snow. The CyTED-Ceniza Iberoamerican network worked together with Argentinean, Colombian and USA institutions in this hazard assessment. We used the program Two-Phase-Titan to model two scenarios in each of the basins. This computer code was developed at SUNY University at Buffalo supported by NSF Grant EAR 711497. Two-Phase-Titan is a new depth-averaged model for two phase flows that uses balance equations for multiphase mixtures. We evaluate the stresses using a Coulomb law for the solid phase and the typical hydraulic shallow water approach for the fluid phase. The linkage for compositions in the range between the pure end-member phases is accommodated by the inclusion of a phenomenological-based drag coefficient. The model is capable of simulating the whole range of particle volumetric fractions, from pure fluid flows to pure solid avalanches. The initial conditions, volume and solid concentration, required by Two-Phase-Titan were imposed using the SEGEMAR estimation of total deposited volume, assuming that the maximum volume that can flow at once in each of the basins is one half of the total. A second scenario assumed that half of the maximum could also happen. The volumetric solid concentration was chosen to be 30%, in agreement with the estimates of the deposited volume of the ash layers. The Argentinean National Commission of Space (CONAE) initially provided us with a digital elevation model (DEM) of 15 meters resolution. In the six simulations that we performed with this DEM we found that in all cases, the flow coming down slope in the Florencia basin stopped at the same place. A detailed survey that included a field inspection allowed us to discover that the DEM does not adequately reproduce the topography; it shows a non-existent barrier. Subsequently CONAE produced a 10 meter DEM of the area. Using this new DEM the simulation reached places not predicted by the program using the 15 meter DEM.

  16. Digital phase shifter synchronizes local oscillators

    NASA Technical Reports Server (NTRS)

    Ali, S. M.

    1978-01-01

    Digital phase-shifting network is used as synchronous frequency multiplier for applications such as phase-locking two signals that may differ in frequency. Circuit has various phase-shift capability. Possible applications include data-communication systems and hybrid digital/analog phase-locked loops.

  17. Sedimentation Survey of Lago El Guineo, Puerto Rico, October 2001

    USGS Publications Warehouse

    Soler-López, Luis R.

    2003-01-01

    Lago El Guineo has lost about 17.5 percent of its original storage capacity in 70 years because of sediment accumulation. The water volume has been reduced from 2.29 million cubic meters in 1931, to 2.03 million cubic meters in 1986, and to 1.89 million cubic meters in 2001. The average annual storage-capacity loss (equal to the sedimentation rate) of Lago El Guineo was 4,727 cubic meters for the period of 1931 to July 1986 (or 0.21 percent per year), increasing to 5,714 cubic meters for the period of 1931 to October 2001 (or 0.25 percent per year). Discrepancies that could lead to substantial errors in volume calculations in a small reservoir like Lago El Guineo, were found when transferring the field-collected data into the geographic information system data base 1:20,000 U.S. Geological Survey Jayuya, Puerto Rico quadrangle. After verification and validation of field data, the Lago El Guineo shoreline was rectified using digital aerial photographs and differential global positioning data.

  18. Design of Digital Phase-Locked Loops For Advanced Digital Transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1994-01-01

    For advanced digital space transponders, the Digital Phased-Locked Loops (DPLLs) can be designed using the available analog loops. DPLLs considered in this paper are derived from the Analog Phase-Locked Loop (APLL) using S-domain mapping techniques.

  19. State of Louisiana - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation highlighting the State of Louisiana and depicts the surrounding areas using muted elevation colors. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data are a mixture of data and were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of mostly 10-meter contour-derived DEM data and some small areas of higher-resolution LIght Detection And Ranging (LIDAR) data along parts of the coastline. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and parish boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2007.

  20. Monitoring of multiphase flows for superconducting accelerators and others applications

    NASA Astrophysics Data System (ADS)

    Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.

    2017-07-01

    This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.

  1. Speedy Alchemy.

    ERIC Educational Resources Information Center

    Deininger, Rolf A.; Berger, Carl F., Jr.

    1983-01-01

    Provides instructions for interfacing a pH meter directly to an Apple II microcomputer without an analog-to-digital converter. Includes program listing (with enough remark statements to make it self-documenting) in Integer Basic to display the pH readings. (Author/JN)

  2. Parallel Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.

    1995-01-01

    Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.

  3. Digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Cliff, R. A. (Inventor)

    1975-01-01

    An digital phase-locked loop is provided for deriving a loop output signal from an accumulator output terminal. A phase detecting exclusive OR gate is fed by the loop digital input and output signals. The output of the phase detector is a bi-level digital signal having a duty cycle indicative of the relative phase of the input and output signals. The accumulator is incremented at a first rate in response to a first output level of the phase detector and at a second rate in response to a second output level of the phase detector.

  4. Advanced Video Guidance Sensor (AVGS) Development Testing

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2004-01-01

    NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.

  5. Magellan: Radar performance and data products

    USGS Publications Warehouse

    Pettengill, G.H.; Ford, P.G.; Johnson, W.T.K.; Raney, R.K.; Soderblom, L.A.

    1991-01-01

    The Magellan Venus orbiter carries only one scientific instrument: a 12.6-centimeter-wavelength radar system shared among three data-taking modes. The syntheticaperture mode images radar echoes from the Venus surface at a resolution of between 120 and 300 meters, depending on spacecraft altitude. In the altimetric mode, relative height measurement accuracies may approach 5 meters, depending on the terrain's roughness, although orbital uncertainties place a floor of about 50 meters on the absolute uncertainty. In areas of extremely rough topography, accuracy is limited by the inherent line-of-sight radar resolution of about 88 meters. The maximum elevation observed to date, corresponding to a planetary radius of 6062 kilometers, lies within Maxwell Mons. When used as a thermal emission radiometer, the system can determine surface emissivities to an absolute accuracy of about 0.02. Mosaicked and archival digital data products will be released in compact disk (CDROM) format.

  6. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, D.U.L.; Conway, P.H.

    1994-11-15

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.

  7. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, David U. L.; Conway, Patrick H.

    1994-01-01

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.

  8. Nondestructive Determination of Moisture Content in Dry Fruits by Impedance and Phase angle measurements

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with dry fruits between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance, C was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture con...

  9. Thermal and Evolved Gas Analysis of Hydromagnesite and Nesquehonite: Implications for Remote Thermal Analysis on Mars

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.

    2000-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.

  10. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 200 meters but entirely less than 400 meters deep that: (1) Occurs before December 18, 2008; and (2... § 203.31(b) applies. In both situations, your lease must be partly or entirely in less than 200 meters...

  11. A class of all digital phase locked loops - Modeling and analysis

    NASA Technical Reports Server (NTRS)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming signal once per carrier cycle is proposed. The different elements and their functions, and the phase lock operation are explained in detail. The general digital loop operation is governed by a nonlinear difference equation from which a suitable model is developed. The lock range for the general model is derived. The performance of the digital loop for phase step and frequency step inputs for different levels of quantization without loop filter are studied. The analytical results are checked by simulating the actual system on the digital computer.

  12. 30 CFR 203.40 - Which leases are eligible for royalty relief as a result of drilling a deep well or a phase 1...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from... than 200 meters and entirely less than 400 meters deep. (c) In the case of a lease located partly or... less than 400 meters of water, it must either: (1) Have been issued before November 28, 1995, and not...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The surveymore » meter measurement results are found to be linear for dose rates below 3500 µSv/hr.« less

  14. Energy Theft in the Advanced Metering Infrastructure

    NASA Astrophysics Data System (ADS)

    McLaughlin, Stephen; Podkuiko, Dmitry; McDaniel, Patrick

    Global energy generation and delivery systems are transitioning to a new computerized "smart grid". One of the principle components of the smart grid is an advanced metering infrastructure (AMI). AMI replaces the analog meters with computerized systems that report usage over digital communication interfaces, e.g., phone lines. However, with this infrastructure comes new risk. In this paper, we consider adversary means of defrauding the electrical grid by manipulating AMI systems. We document the methods adversaries will use to attempt to manipulate energy usage data, and validate the viability of these attacks by performing penetration testing on commodity devices. Through these activities, we demonstrate that not only is theft still possible in AMI systems, but that current AMI devices introduce a myriad of new vectors for achieving it.

  15. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Demonstrations, procedures, games, teaching suggestions and information on a variety of physics topics are presented, including hydraulic rams, units and formulae, static electric motors, a computer graphics program, diffraction, adaptation of a basic meter, photoelasticity, photo-diodes, radioactive decay, and analog-digital conversions. (DC)

  16. Bioassay of Plant Growth Regulator Activity on Aquatic Plants

    DTIC Science & Technology

    1990-07-01

    natural plant hormonal processes. Certain substi- tuted pyrimidine and triazole compounds have been found to inhibit the syn- thesis of gibberellin in...drove down the pH to levels that were injurious to the plants. For this reason, the bicarbonate buffer was added to both stock and experimental media...digital pH meter (Orion Model 701A/Digital, Orion Research, Inc., Cambridge, MA) equipped with a dis- solved oxygen (DO) electrode (Orion Model 97-08

  17. Using historical aerial photography and softcopy photogrammetry for waste unit mapping in L Lake.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christel, L.M.

    1997-10-01

    L Lake was developed as a cooling water reservoir for the L Reactor at the Savannah River Site. The construction of the lake, which began in the fall of 1984, altered the structure and function of Steel Creek. Completed in the fall of 1985, L Lake has a capacity of 31 million cubic meters and a normal pool of 58 meters. When L Reactor operations ceased in 1988, the water level in the lake still had to be maintained. Site managers are currently trying to determine the feasibility of draining or drawing down the lake in order to save taxmore » dollars. In order to understand the full repercussions of such an undertaking, it was necessary to compile a comprehensive inventory of what the lake bottom looked like prior to filling. Aerial photographs, acquired nine days before the filling of the lake began, were scanned and used for softcopy photogrammetry processing. A one-meter digital elevation model was generated and a digital orthophoto mosaic was created as the base map for the project. Seven categories of features, including the large waste units used to contain the contaminated soil removed from the dam site, were screen digitized and used to generate accurate maps. Other map features include vegetation waste piles, where contaminated vegetation from the flood plain was contained, and ash piles, which are sites where vegetation debris was burned and then covered with clean soil. For all seven categories, the area of disturbance totaled just over 63 hectares. When the screen digitizing was completed, the elevation at the centroid of each disturbance was determined. When the information is used in the Savannah River Site Geographical Information System, it can be used to visualize the various L Lake draw-down scenarios suggested by site managers and hopefully, to support evaluations of the cost effectiveness for each proposed activity.« less

  18. Visualized measurement of the acoustic levitation field based on digital holography with phase multiplication

    NASA Astrophysics Data System (ADS)

    Zheng, Puchao; Li, Enpu; Zhao, Jianlin; Di, Jianglei; Zhou, Wangmin; Wang, Hao; Zhang, Ruifeng

    2009-11-01

    By using digital holographic interferometory with phase multiplication, the visualized measurement of the acoustic levitation field (ALF) with single axis is carried out. The digital holograms of the ALF under different conditions are recorded by use of CCD. The corresponding digital holographic interferograms reflecting the sound pressure distribution and the interference phase distribution are obtained by numerical reconstruction and phase subtraction, which are consistent with the theoretical results. It indicates that the proposed digital holographic interferometory with phase multiplication can successfully double the fringe number of the interference phase patterns of the ALF and improve the measurement precision. Compared with the conventional optical holographic interferometory, digital holographic interferometory has the merits of quasi real-time, more exactitude and convenient operation, and it provides an effective way for studying the sound pressure distribution of the ALF.

  19. EPA Region 1 - Valley Depth in Meters

    EPA Pesticide Factsheets

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  20. A class of all digital phase locked loops - Modelling and analysis.

    NASA Technical Reports Server (NTRS)

    Reddy, C. P.; Gupta, S. C.

    1972-01-01

    An all digital phase locked loop which tracks the phase of the incoming signal once per carrier cycle is proposed. The different elements and their functions, and the phase lock operation are explained in detail. The general digital loop operation is governed by a non-linear difference equation from which a suitable model is developed. The lock range for the general model is derived. The performance of the digital loop for phase step, and frequency step inputs for different levels of quantization without loop filter, are studied. The analytical results are checked by simulating the actual system on the digital computer.

  1. LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 2

    NASA Technical Reports Server (NTRS)

    Sullivan, M. R.

    1982-01-01

    Cable technology is discussed. Manufacturing flow and philosophy are considered. Acceptance, gratification and flight tests are discussed. Fifteen-meter and fifty-meter models are considered. An economic assessment is included.

  2. LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 2

    NASA Astrophysics Data System (ADS)

    Sullivan, M. R.

    1982-06-01

    Cable technology is discussed. Manufacturing flow and philosophy are considered. Acceptance, gratification and flight tests are discussed. Fifteen-meter and fifty-meter models are considered. An economic assessment is included.

  3. Phase Velocity and Full-Waveform Analysis of Co-located Distributed Acoustic Sensing (DAS) Channels and Geophone Sensor

    NASA Astrophysics Data System (ADS)

    Parker, L.; Mellors, R. J.; Thurber, C. H.; Wang, H. F.; Zeng, X.

    2015-12-01

    A 762-meter Distributed Acoustic Sensing (DAS) array with a channel spacing of one meter was deployed at the Garner Valley Downhole Array in Southern California. The array was approximately rectangular with dimensions of 180 meters by 80 meters. The array also included two subdiagonals within the rectangle along which three-component geophones were co-located. Several active sources were deployed, including a 45-kN, swept-frequency, shear-mass shaker, which produced strong Rayleigh waves across the array. Both DAS and geophone traces were filtered in 2-Hz steps between 4 and 20 Hz to obtain phase velocities as a function of frequency from fitting the moveout of travel times over distances of 35 meters or longer. As an alternative to this traditional means of finding phase velocity, it is theoretically possible to find the Rayleigh-wave phase velocity at each point of co-location as the ratio of DAS and geophone responses, because DAS is sensitive to ground strain and geophones are sensitive to ground velocity, after suitable corrections for instrument response (Mikumo & Aki, 1964). The concept was tested in WPP, a seismic wave propagation program, by first validating and then using a 3D synthetic, full-waveform seismic model to simulate the effect of increased levels of noise and uncertainty as data go from ideal to more realistic. The results obtained from this study provide a better understanding of the DAS response and its potential for being combined with traditional seismometers for obtaining phase velocity at a single location. This analysis is part of the PoroTomo project (Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, http://geoscience.wisc.edu/feigl/porotomo).

  4. AIS-2 automated meter for spectra recorded on photographic plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramendik, G.I.; Khromov, A.Yu.; Volkov, V.L.

    1986-10-01

    The AIS-2 system contains a G-2 microdensitometer, an Elektronika D3-28 microcomputer, an Shch1312 digital voltmeter, and an S1-72 oscilloscope, which serves as a graphics display. The system operates in the interactive mode.

  5. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Discusses dice model of exponential radionuclide decay; glancing and collinear perfectly elastic collisions; digital capacitance meter; use of top pan balance in physics; microcomputer calculation of gradient of straight line (includes complete Commodore PET computer program); Fresnel lenses; low-voltage radiant heater; Wheatssone's bridge used as…

  6. Plant chlorophyll content meter

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor); Carter, Gregory A. (Inventor)

    2000-01-01

    A plant chlorophyll content meter is described which collects light reflected from a target plant and separates the collected light into two different wavelength bands. These wavelength bands, or channels, are described as having center wavelengths of 700 nm and 840 nm. The light collected in these two channels are processed using photo detectors and amplifiers. An analog to digital converter is described which provides a digital representation of the level of light collected by the lens and falling within the two channels. A controller provided in the meter device compares the level of light reflected from a target plant with a level of light detected from a light source, such as light reflected by a target having 100% reflectance, or transmitted through a diffusion receptor. The percent of reflection in the two separate wavelength bands from a target plant are compared to provide a ratio which indicates a relative level of plant physiological stress. A method of compensating for electronic drift is described where a sample is taken when a collection lens is covered to prevent light from entering the device. This compensation method allows for a more accurate reading by reducing error contributions due to electronic drift from environmental conditions at the location where a hand-held unit is used.

  7. Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Otvos, Ervin; Giardino, Marco

    2002-01-01

    A chain of barrier islands provides protection against hurricanes and severe storms along the south and southeastern shores of the United States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4-meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5-meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Gorges. Classification accuracy is being addressed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.

  8. Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Otvos, Ervin; Giardino, Marco

    2003-01-01

    A chain of barrier islands provides protection against hurricanes and severe storms along the southern and southeastern shores of the Unites States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4 meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5 meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Georges. Classification accuracy is being assessed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.

  9. A CMOS Self-Contained Quadrature Signal Generator for SoC Impedance Spectroscopy.

    PubMed

    Márquez, Alejandro; Pérez-Bailón, Jorge; Calvo, Belén; Medrano, Nicolás; Martínez, Pedro A

    2018-04-30

    This paper presents a low-power fully integrated quadrature signal generator for system-on-chip (SoC) impedance spectroscopy applications. It has been designed in a 0.18 μm-1.8 V CMOS technology as a self-contained oscillator, without the need for an external reference clock. The frequency can be digitally tuned from 10 to 345 kHz with 12-bit accuracy and a relative mean error below 1.7%, thus supporting a wide range of impedance sensing applications. The proposal is experimentally validated in two impedance spectrometry examples, achieving good magnitude and phase recovery results compared to the results obtained using a commercial LCR-meter. Besides the wide frequency tuning range, the proposed programmable oscillator features a total power consumption lower than 0.77 mW and an active area of 0.129 mm², thus constituting a highly suitable choice as stimulation module for instrument-on-a-chip devices.

  10. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  11. Wirelessly Networked Digital Phased Array: Analysis and Development of a Phase Synchronization Concept

    DTIC Science & Technology

    2007-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and

  12. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., on a lease that is located entirely or partly in water less than 200 meters deep; or (2) May 18, 2007, on a lease that is located entirely in water more than 200 meters deep. ... Leases Not Subject to Deep Water Royalty Relief § 203.34 To which production may an RSV earned by...

  13. Analysis of tests of subsurface injection, storage, and recovery of freshwater in the lower Floridan aquifer, Okeechobee County, Florida

    USGS Publications Warehouse

    Quinones-Aponte, Vicente; Kotun, Kevin; Whitley, J.F.

    1996-01-01

    A series of freshwater subsurface injection, storage, and recovery tests were conducted at an injection-well site near Lake Okeechobee in Okeechobee County, Florida, to assess the recoverability of injected canal water from the Lower Floridan aquifer. At the study site, the Lower Floridan aquifer is characterized as having four local, relatively independent, high-permeability flow zones (389 to 398 meters, 419 to 424 meters, 456 to 462 meters, and 472 to 476 meters below sea level). Four subsurface injection, storage, and recovery cycles were performed at the Lake Okeechobee injection-well site in which volumes of water injected ranged from about 387,275 to 1,343,675 cubic meters for all the cycles, and volumes of water recovered ranged from about 106,200 to 484,400 cubic meters for cycles 1, 2, and 3. The recovery efficiency for successive cycles 2 and 3 increased from 22 to 36 percent and is expected to continue increasing with additional cycles. A comparison of chloride concentration breakthrough curves at the deep monitor well (located about 171 meters from the injection well) for cycles 1, 4, and test no. 4 (from a previous study) revealed unexpected finings. One significant result was that the concentration asymptote, expected to be reached at concentration levels equivalent or close to the injected water concentration, was instead reached at higher concentration levels. The injection to recovery rate ratio might affect the chloride concentration breakthrough curve at the deep monitor well, which could explain this unexpected behavior. Because there are four high-permeability zones, if the rate of injection is smaller than the rate of recovery (natural artesian flow), the head differential might not be transmitted through the entire open wellbore, and injected water would probably flow only through the upper high- permeability zones. Therefore, observed chloride concentration values at the deep monitor well would be higher than the concentration of the injected water and would represent a mix of water from the different high-permeability zones. A generalized digital model was constructed to simulate the subsurface injection, storage, and recovery of freshwater in the Lower Floridan aquifer at the Lake Okeechobee injection-well site. The model was constructed using a modified version of the Saturated-Unsaturated TRAnsport code (SUTRA), which simulates variable-density advective-dispersive solute transport and variable-density ground-water flow. Satisfactory comparisons of simulated to observed dimensionless chloride concentrations for the deep monitor well were obtained when using the model during the injection and recovery phases of cycle 1, but not for the injection well during the recovery phase of cycle 1 even after several attempts. This precluded the determination of the recovery efficiency values by using the model. The unsatisfactory comparisons of simulated to observed dimensionless chloride concentrations for the injection well and failure of the model to represent the field data at this well could be due to the characteristics of the Lower Floridan aquifer (at the local scale), which is cavernous or conduit in nature. To test this possibility, Reynolds numbers were estimated at varying distances from the injection well, taking into consideration two aquifer types or conceptual systems, porous media and cavernous. For the porous media conceptual system, the Reynolds numbers were greater than 10 at distances less than 1.42 meters from the injection well. Thus, application of Darcy's law to ground-water flow might not be valid at this distance. However, at the deep monitor well (171 meters from the injection well), the Reynolds number was 0.08 which is indicative of laminar porous media flow. For the cavernous conceptual system, the Reynolds numbers were greater than 2,000 at distances less than 1,000 meters from the well. This number represents the upper limit of laminar flow, which is the fundamental assumption

  14. Automatic remote-integration metering center. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philippidis, P.A.; Weinreb, M.; de Gil, B.F.

    1988-11-01

    The report documents a multi-phase program for the development and demonstration of a unique automatic and remote metering system. The system consists of a solid-state meter module to provide electrical consumption data, tamper detection, and load control functions; a central master station to interrogate the meter modules for their data and also to transmit load control signals; and a data display module to be accessible to tenants wishing to obtain their meter readings. The system has the capability to measure and allocate demand and to process time of use rates. It also has a meter accuracy self-test feature. The systemmore » is suitable for both direct metering of multi-family buildings and the sub-metering of master-metered apartment buildings. In addition to describing the system, the report documents the results of a 371-point field trial at Scott Tower, a cooperative apartment building in the Bronx, New York.« less

  15. All-digital phase-lock loops for noise-free signals

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1973-01-01

    Bit-synchronizers utilize all-digital phase-lock loops that are referenced to a high frequency digital clock. Phase-lock loop of first design acquires frequency within nominal range and tracks phase; second design is modified for random binary data by addition of simple transition detector; and third design acquires frequency over wide dynamic range.

  16. Use of the Digital Surface Roughness Meter in Virginia.

    DOT National Transportation Integrated Search

    2006-01-01

    Pavement surface texture is measured in a variety of ways in Virginia. Two methods commonly used are ASTM E 965, Standard Test Method for Measuring Pavement Macrotexture Depth Using a Volumetric Technique, known as the "sand patch" test, and ASTM E 2...

  17. Equipment and New Products

    ERIC Educational Resources Information Center

    Poitras, Adrian W., Ed.

    1973-01-01

    The following items are discussed: Digital Counters and Readout Devices, Automatic Burette Outfits, Noise Exposure System, Helium-Cadmium Laser, New pH Buffers and Flip-Top Dispenser, Voltage Calibrator Transfer Standard, Photomicrographic Stereo Zoom Microscope, Portable pH Meter, Micromanipulators, The Snuffer, Electronic Top-Loading Balances,…

  18. Recent developments in hydrologic instrumentation

    USGS Publications Warehouse

    Latkovich, Vito J.; Futrell, James C.; Kane, Douglas L.

    1986-01-01

    The programs of the U.S. Geological Survey require instrumentation for collecting and monitoring hydrologic data in cold regions. The availability of space-age materials and implementation of modern electronics and mechanics is making possible the recent developments of hydrologic instrumentation, especially in the area of measuring streamflow under ice cover. Material developments include: synthetic-fiber sounding and tag lines; polymer (plastic) sheaves, pulleys, and sampler components; and polymer (plastic) current-meter bucket wheels. Electronic and mechanical developments include: a current-meter digitizer; a fiber-optic closure system for current-meters; non-contact water-level sensors; an adaptable hydrologic data acquisition system; a minimum data recorder; an ice rod; an ice foot; a handled sediment sampler; a light weight ice auger with improved cutter head and blades; and an ice chisel.

  19. Description of intraoral pressures on sub-palatal space in young adult patients with normal occlusion.

    PubMed

    Fuentes, Ramón; Engelke, Wilfried; Flores, Tania; Navarro, Pablo; Borie, Eduardo; Curiqueo, Aldo; Salamanca, Carlos

    2015-01-01

    Under normal conditions, the oral cavity presents a perfect system of equilibrium between teeth, soft tissues and tongue. The equilibrium of soft tissues forms a closed capsular matrix, generating differences with the atmospheric environment. This difference is known as intraoral pressure. Negative intraoral pressure is fundamental to the stabilization of the soft palate and tongue, reducing neuromuscular activity for the permeability of the respiratory tract. Thus, the aim of this study was to describe the variations of intraoral pressure of the sub-palatal space (SPS) under different physiological conditions and biofunctional phases. A case series was conducted with 20 individuals aged between 18 and 25. The intraoral pressures were measured through a system of cannulae connected to a digital pressure meter in the SPS during seven biofunctional phases. Descriptive statistics were used based on the mean and standard deviation. The data recorded pressure variations under physiological conditions, reaching 65 mbar as the intraoral peak in forced inspiration. In the swallowing phase, peaks reached -91.9 mbar. No pressure variations were recorded in terms of atmospheric changes with the mouth open and semi-open. The data obtained during the swallowing and forced inspiration phases indicated forced lingual activity. In the swallowing phase, the adequate position of the tongue creates negative intraoral pressure, which represents a fundamental mechanism for the physical stabilization of the soft palate. This information could contribute to subsequent research into the treatment of primary roncopathies.

  20. Slit-scanning differential phase-contrast mammography: first experimental results

    NASA Astrophysics Data System (ADS)

    Roessl, Ewald; Daerr, Heiner; Koehler, Thomas; Martens, Gerhard; van Stevendaal, Udo

    2014-03-01

    The demands for a large field-of-view (FOV) and the stringent requirements for a stable acquisition geometry rank among the major obstacles for the translation of grating-based, differential phase-contrast techniques from the laboratory to clinical applications. While for state-of-the-art Full-Field-Digital Mammography (FFDM) FOVs of 24 cm x 30 cm are common practice, the specifications for mechanical stability are naturally derived from the detector pixel size which ranges between 50 and 100 μm. However, in grating-based, phasecontrast imaging, the relative placement of the gratings in the interferometer must be guaranteed to within micro-meter precision. In this work we report on first experimental results on a phase-contrast x-ray imaging system based on the Philips MicroDose L30 mammography unit. With the proposed approach we achieve a FOV of about 65 mm x 175 mm by the use of the slit-scanning technique. The demand for mechanical stability on a micrometer scale was relaxed by the specific interferometer design, i.e., a rigid, actuator-free mount of the phase-grating G1 with respect to the analyzer-grating G2 onto a common steel frame. The image acquisition and formation processes are described and first phase-contrast images of a test object are presented. A brief discussion of the shortcomings of the current approach is given, including the level of remaining image artifacts and the relatively inefficient usage of the total available x-ray source output.

  1. Combining structure-from-motion derived point clouds from satellites and unmanned aircraft systems images with ground-truth data to create high-resolution digital elevation models

    NASA Astrophysics Data System (ADS)

    Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.

    2016-12-01

    Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.

  2. Optimization of radioactive sources to achieve the highest precision in three-phase flow meters using Jaya algorithm.

    PubMed

    Roshani, G H; Karami, A; Khazaei, A; Olfateh, A; Nazemi, E; Omidi, M

    2018-05-17

    Gamma ray source has very important role in precision of multi-phase flow metering. In this study, different combination of gamma ray sources (( 133 Ba- 137 Cs), ( 133 Ba- 60 Co), ( 241 Am- 137 Cs), ( 241 Am- 60 Co), ( 133 Ba- 241 Am) and ( 60 Co- 137 Cs)) were investigated in order to optimize the three-phase flow meter. Three phases were water, oil and gas and the regime was considered annular. The required data was numerically generated using MCNP-X code which is a Monte-Carlo code. Indeed, the present study devotes to forecast the volume fractions in the annular three-phase flow, based on a multi energy metering system including various radiation sources and also one NaI detector, using a hybrid model of artificial neural network and Jaya Optimization algorithm. Since the summation of volume fractions is constant, a constraint modeling problem exists, meaning that the hybrid model must forecast only two volume fractions. Six hybrid models associated with the number of used radiation sources are designed. The models are employed to forecast the gas and water volume fractions. The next step is to train the hybrid models based on numerically obtained data. The results show that, the best forecast results are obtained for the gas and water volume fractions of the system including the ( 241 Am- 137 Cs) as the radiation source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Digital combined instrument transformer for automated electric power supply control systems of mining companies

    NASA Astrophysics Data System (ADS)

    Topolsky, D. V.; Gonenko, T. V.; Khatsevskiy, V. F.

    2017-10-01

    The present paper discusses ways to solve the problem of enhancing operating efficiency of automated electric power supply control systems of mining companies. According to the authors, one of the ways to solve this problem is intellectualization of the electric power supply control system equipment. To enhance efficiency of electric power supply control and electricity metering, it is proposed to use specially designed digital combined instrument current and voltage transformers. This equipment conforms to IEC 61850 international standard and is adapted for integration into the digital substation structure. Tests were performed to check conformity of an experimental prototype of the digital combined instrument current and voltage transformer with IEC 61850 standard. The test results have shown that the considered equipment meets the requirements of the standard.

  4. The Computer Bulletin Board.

    ERIC Educational Resources Information Center

    Batt, Russell H., Ed.

    1989-01-01

    Discussed are some uses of computers in chemistry classrooms. Described are: (1) interactive chromatographic analysis software; (2) computer interface for a digital frequency-period-counter-ratio meter and analog interface based on a voltage-to-frequency converter; and (3) use of spectrometer/microcomputer arrangement for teaching atomic theory.…

  5. Development of Porosity Measurement Method in Shale Gas Reservoir Rock

    NASA Astrophysics Data System (ADS)

    Siswandani, Alita; Nurhandoko, BagusEndar B.

    2016-08-01

    The pore scales have impacts on transport mechanisms in shale gas reservoirs. In this research, digital helium porosity meter is used for porosity measurement by considering real condition. Accordingly it is necessary to obtain a good approximation for gas filled porosity. Shale has the typical effective porosity that is changing as a function of time. Effective porosity values for three different shale rocks are analyzed by this proposed measurement. We develop the new measurement method for characterizing porosity phenomena in shale gas as a time function by measuring porosity in a range of minutes using digital helium porosity meter. The porosity of shale rock measured in this experiment are free gas and adsorbed gas porosoty. The pressure change in time shows that porosity of shale contains at least two type porosities: macro scale porosity (fracture porosity) and fine scale porosity (nano scale porosity). We present the estimation of effective porosity values by considering Boyle-Gay Lussaac approximation and Van der Waals approximation.

  6. Inflatable antennas for microwave pwoer transmission

    NASA Technical Reports Server (NTRS)

    Williams, Geoff

    1989-01-01

    Operational phase of the inflatable radiator; inflatable space structures; advantages; inflated thin-film satellites; antenna configuration; 3 meter diameter test paraboloid (HAIR program); and weight breakdown for the 100 meter diameter reflector are outlined. This presentation is represented by viewgraphs only.

  7. A classification-based assessment of the optimal spatial and spectral resolution of coastal wetland imagery

    NASA Astrophysics Data System (ADS)

    Becker, Brian L.

    Great Lakes wetlands are increasingly being recognized as vital ecosystem components that provide valuable functions such as sediment retention, wildlife habitat, and nutrient removal. Aerial photography has traditionally provided a cost effective means to inventory and monitor coastal wetlands, but is limited by its broad spectral sensitivity and non-digital format. Airborne sensor advancements have now made the acquisition of digital imagery with high spatial and spectral resolution a reality. In this investigation, we selected two Lake Huron coastal wetlands, each from a distinct eco-region, over which, digital, airborne imagery (AISA or CASI-II) was acquired. The 1-meter images contain approximately twenty, 10-nanometer-wide spectral bands strategically located throughout the visible and near-infrared. The 4-meter hyperspectral imagery contains 48 contiguous bands across the visible and short-wavelength near-infrared. Extensive, in-situ, reflectance spectra (SE-590) and sub-meter GPS locations were acquired for the dominant botanical and substrate classes field-delineated at each location. Normalized in-situ spectral signatures were subjected to Principal Components and 2nd Derivative analyses in order to identify the most botanically explanative image bands. Three image-based investigations were implemented in order to evaluate the ability of three classification algorithms (ISODATA, Spectral Angle Mapper and Maximum-Likelihood) to differentiate botanical regions-of-interest. Two additional investigations were completed in order to assess classification changes associated with the independent manipulation of both spatial and spectral resolution. Of the three algorithms tested, the Maximum-Likelihood classifier best differentiated (89%) the regions-of-interest in both study sites. Covariance-based PCA rotation consistently enhanced the performance of the Maximum-Likelihood classifier. Seven non-overlapping bands (425.4, 514.9, 560.1, 685.5, 731.5, 812.3 and 916.7 nanometers) were identified that represented the best performing bands with respect to classification performance. A spatial resolution of 2 meters or less was determined to be the as being most appropriate in Great Lakes coastal wetland environments. This research represents the first step in evaluating the effectiveness of applying high-resolution, narrow-band imagery to the detailed mapping of coastal wetlands in the Great Lakes region.

  8. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.; Hoffmann, William F.; Harper, Doyal A.

    1988-01-01

    The scientific objectives, engineering analysis and design, results of technology development, and focal-plane instrumentation for a two-meter balloon-borne telescope for far-infrared and submillimeter astronomy are presented. The unique capabilities of balloon-borne observations are discussed. A program summary emphasizes the development of the two-meter design. The relationship of the Large Deployable Reflector (LDR) is also discussed. Detailed treatment is given to scientific objectives, gondola design, the mirror development program, experiment accommodations, ground support equipment requirements, NSBF design drivers and payload support requirements, the implementation phase summary development plan, and a comparison of three-meter and two-meter gondola concepts.

  9. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  10. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  11. Validation of the ASTER instrument level 1A scene geometry

    USGS Publications Warehouse

    Kieffer, H.H.; Mullins, K.F.; MacKinnon, D.J.

    2008-01-01

    An independent assessment of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument geometry was undertaken by the U.S. ASTER Team, to confirm the geometric correction parameters developed and applied to Level 1A (radiometrically and geometrically raw with correction parameters appended) ASTER data. The goal was to evaluate the geometric quality of the ASTER system and the stability of the Terra spacecraft. ASTER is a 15-band system containing optical instruments with resolutions from 15- to 90-meters; all geometrically registered products are ultimately tied to the 15-meter Visible and Near Infrared (VNIR) sub-system. Our evaluation process first involved establishing a large database of Ground Control Points (GCP) in the mid-western United States; an area with features of an appropriate size for spacecraft instrument resolutions. We used standard U.S. Geological Survey (USGS) Digital Orthophoto Quads (DOQS) of areas in the mid-west to locate accurate GCPs by systematically identifying road intersections and recording their coordinates. Elevations for these points were derived from USGS Digital Elevation Models (DEMS). Road intersections in a swath of nine contiguous ASTER scenes were then matched to the GCPs, including terrain correction. We found no significant distortion in the images; after a simple image offset to absolute position, the RMS residual of about 200 points per scene was less than one-half a VNIR pixel. Absolute locations were within 80 meters, with a slow drift of about 10 meters over the entire 530-kilometer swath. Using strictly simultaneous observations of scenes 370 kilometers apart, we determined a stereo angle correction of 0.00134 degree with an accuracy of one microradian. The mid-west GCP field and the techniques used here should be widely applicable in assessing other spacecraft instruments having resolutions from 5 to 50-meters. ?? 2008 American Society for Photogrammetry and Remote Sensing.

  12. Direct Data Distribution From Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Fujikawa, Gene; Kunath, Richard R.; Nguyen, Nam T.; Romanofsky, Robert R.; Spence, Rodney L.

    1997-01-01

    NASA Lewis Research Center (LeRC) is developing the space and ground segment technologies necessary to demonstrate a direct data distribution (1)3) system for use in space-to-ground communication links from spacecraft in low-Earth orbit (LEO) to strategically located tracking ground terminals. The key space segment technologies include a K-band (19 GHz) MMIC-based transmit phased array antenna, and a multichannel bandwidth- and power-efficient digital encoder/modulate with an aggregate data rate of 622 Mb/s. Along with small (1.8 meter), low-cost tracking terminals on the ground, the D3 system enables affordable distribution of data to the end user or archive facility through interoperability with commercial terrestrial telecommunications networks. The D3 system is applicable to both government and commercial science and communications spacecraft in LEO. The features and benefits of the D3 system concept are described. Starting with typical orbital characteristics, a set of baseline requirements for representative applications is developed, including requirements for onboard storage and tracking terminals, and sample link budgets are presented. Characteristics of the transmit array antenna and digital encoder/modulator are described. The architecture and components of the tracking terminal are described, including technologies for the next generation terminal. Candidate flights of opportunity for risk mitigation and space demonstration of the D3 features are identified.

  13. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    NASA Astrophysics Data System (ADS)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi-institutional and interdisciplinary group of scientists and engineers, for its technical contributions.

  14. Phase conjugate digital inline holography (PCDIH)

    DOE PAGES

    Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley; ...

    2018-01-12

    We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

  15. Phase conjugate digital inline holography (PCDIH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley

    We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

  16. Hybrid TLC-pair meter for the Sphinx Project

    NASA Technical Reports Server (NTRS)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in THE SPHINX PROJECT are research of super lepton physics and new detector experiments. At the second phase of THE SPHINX PROJECT, a hybrid TLC-PAIR METER was designed for measuring high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV) and measuring muon group (E mu 1 TeV). The principle of PAIR METER has been already proposed. In this TLC-PAIR METER, electromagnetic shower induced by cosmic ray muons are detected using TL (Thermoluminescence) sheets with position counters.

  17. MSFC Test Results for Selected Mirrors: Brush-Wellman/Goodrich 0.5 meter Joined-Beryllium Mirror; IABG 0.5 meter C/SiC Mirror; Xinetics 0.5 meter SiC Mirror; and Kodak 0.23 meter SiO2 Mirror

    NASA Technical Reports Server (NTRS)

    Hadaway, James; Blackwell, Lisa; Matthews, Gary; Eng, Ron; Stahl, Phil; Hraba, John; Thornton, Gary

    2002-01-01

    The results of cryo tests performed at the XRCF on the above mirrors will be presented. Each mirror was tested from room-temperature to around 30 K. The first three were tested together on a 3-mirror stand in the large chamber using the PhaseCam interferometer, while the Kodak mirror was tested in the small chamber using the EPI interferometer.

  18. Mapping surface disturbance of energy-related infrastructure in southwest Wyoming--An assessment of methods

    USGS Publications Warehouse

    Germaine, Stephen S.; O'Donnell, Michael S.; Aldridge, Cameron L.; Baer, Lori; Fancher, Tammy; McBeth, Jamie; McDougal, Robert R.; Waltermire, Robert; Bowen, Zachary H.; Diffendorfer, James; Garman, Steven; Hanson, Leanne

    2012-01-01

    We evaluated how well three leading information-extraction software programs (eCognition, Feature Analyst, Feature Extraction) and manual hand digitization interpreted information from remotely sensed imagery of a visually complex gas field in Wyoming. Specifically, we compared how each mapped the area of and classified the disturbance features present on each of three remotely sensed images, including 30-meter-resolution Landsat, 10-meter-resolution SPOT (Satellite Pour l'Observation de la Terre), and 0.6-meter resolution pan-sharpened QuickBird scenes. Feature Extraction mapped the spatial area of disturbance features most accurately on the Landsat and QuickBird imagery, while hand digitization was most accurate on the SPOT imagery. Footprint non-overlap error was smallest on the Feature Analyst map of the Landsat imagery, the hand digitization map of the SPOT imagery, and the Feature Extraction map of the QuickBird imagery. When evaluating feature classification success against a set of ground-truthed control points, Feature Analyst, Feature Extraction, and hand digitization classified features with similar success on the QuickBird and SPOT imagery, while eCognition classified features poorly relative to the other methods. All maps derived from Landsat imagery classified disturbance features poorly. Using the hand digitized QuickBird data as a reference and making pixel-by-pixel comparisons, Feature Extraction classified features best overall on the QuickBird imagery, and Feature Analyst classified features best overall on the SPOT and Landsat imagery. Based on the entire suite of tasks we evaluated, Feature Extraction performed best overall on the Landsat and QuickBird imagery, while hand digitization performed best overall on the SPOT imagery, and eCognition performed worst overall on all three images. Error rates for both area measurements and feature classification were prohibitively high on Landsat imagery, while QuickBird was time and cost prohibitive for mapping large spatial extents. The SPOT imagery produced map products that were far more accurate than Landsat and did so at a far lower cost than QuickBird imagery. Consideration of degree of map accuracy required, costs associated with image acquisition, software, operator and computation time, and tradeoffs in the form of spatial extent versus resolution should all be considered when evaluating which combination of imagery and information-extraction method might best serve any given land use mapping project. When resources permit, attaining imagery that supports the highest classification and measurement accuracy possible is recommended.

  19. Errata Sheet for the Closure Report for Corrective Action Unit 538: Spill Sites, Nevada Test Site, Nevada with ROTC-1, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews

    This Erratum is being issued to DOE/NV--1185 ROTC-1 for the CAU 538 Closure Report to correct three items. The original ROTC which was issued on November 30, 2011 corrected the Use Restriction for CAS 12-29-06 to remove a coordinate point from the Use Restriction. However, the ROTC contained three errors as follows: 1. The number of digits after the decimal place on the UR form was one while the map displayed two digits after the decimal place. The UR form and map were aligned as part of this Erratum so that only a single digit was shown after the decimalmore » place. 2. On the figure (Figure 1) included with the UR form issued as part of ROTC-1, CAU 538 was incorrectly called out as CAU 583. This error was corrected as part of this Erratum. 3. The coordinates on the UR form were developed from NAD 27 while the coordinate system stated on the form was UTM, Zone 11, NAD 83 meters. The coordinates were corrected on the UR form, developed as part of this Erratum, to reflect the UTM, Zone 11, NAD 83 meters system.« less

  20. Phase-locked loops. [in analog and digital circuits communication system

    NASA Technical Reports Server (NTRS)

    Gupta, S. C.

    1975-01-01

    An attempt to systematically outline the work done in the area of phase-locked loops which are now used in modern communication system design is presented. The analog phase-locked loops are well documented in several books but discrete, analog-digital, and digital phase-locked loop work is scattered. Apart from discussing the various analysis, design, and application aspects of phase-locked loops, a number of references are given in the bibliography.

  1. Riparian Land Use/Land Cover Data for Five Study Units in the Nutrient Enrichment Effects Topical Study of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Johnson, Michaela R.; Buell, Gary R.; Kim, Moon H.; Nardi, Mark R.

    2007-01-01

    This dataset was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study for five study units distributed across the United States: Apalachicola-Chattahoochee-Flint River Basin, Central Columbia Plateau-Yakima River Basin, Central Nebraska Basins, Potomac River Basin and Delmarva Peninsula, and White, Great and Little Miami River Basins. One hundred forty-three stream reaches were examined as part of the NEET study conducted 2003-04. Stream segments, with lengths equal to the logarithm of the basin area, were delineated upstream from the downstream ends of the stream reaches with the use of digital orthophoto quarter quadrangles (DOQQ) or selected from the high-resolution National Hydrography Dataset (NHD). Use of the NHD was necessary when the stream was not distinguishable in the DOQQ because of dense tree canopy. The analysis area for each stream segment was defined by a buffer beginning at the segment extending to 250 meters lateral to the stream segment. Delineation of land use/land cover (LULC) map units within stream segment buffers was conducted using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were mapped using a classification strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal transect sampling lines offset from the stream segments were generated and partitioned into the underlying LULC types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear LULC data filled in the spatial-scale gap between the 30-meter resolution of the National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The final data consisted of 12 geospatial datasets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation LULC at the reach scale (arc); stream reaches (arc); longitudinal LULC at the reach scale (arc); frequency of gaps in woody vegetation LULC at the segment scale (arc); stream segments (arc); and longitudinal LULC at the segment scale (arc).

  2. ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Warner, Michael B.

    2007-01-01

    INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and southeastern-facing slopes. In these areas, holes, large pits, and spikes were generated by the software during the correlation process and the automatic interpolation method. To eliminate these problems, overlapping DEMs were generated and filtered using a progressive morphologic filter. The quadrangles used to delineate the DEMs in the publication were derived from the Afghan Geodesy and Cartography Head Office's (AGCHO) 1:100,000-scale maps series quadrangles. Each DEM was clipped and assigned a name according to the associated AGCHO quadrangle name. The geospatial data included in this publication are intended to be used with any GIS software packages including, but not limited to, ESRI's ArcGIS and ERDAS IMAGINE.

  3. Development of Coriolis mass flowmeter with digital drive and signal processing technology.

    PubMed

    Hou, Qi-Li; Xu, Ke-Jun; Fang, Min; Liu, Cui; Xiong, Wen-Jun

    2013-09-01

    Coriolis mass flowmeter (CMF) often suffers from two-phase flowrate which may cause flowtube stalling. To solve this problem, a digital drive method and a digital signal processing method of CMF is studied and implemented in this paper. A positive-negative step signal is used to initiate the flowtube oscillation without knowing the natural frequency of the flowtube. A digital zero-crossing detection method based on Lagrange interpolation is adopted to calculate the frequency and phase difference of the sensor output signals in order to synthesize the digital drive signal. The digital drive approach is implemented by a multiplying digital to analog converter (MDAC) and a direct digital synthesizer (DDS). A digital Coriolis mass flow transmitter is developed with a digital signal processor (DSP) to control the digital drive, and realize the signal processing. Water flow calibrations and gas-liquid two-phase flowrate experiments are conducted to examine the performance of the transmitter. The experimental results show that the transmitter shortens the start-up time and can maintain the oscillation of flowtube in two-phase flowrate condition. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Capacitance-digital and impedance converter as electrical tomography measurement system for biological tissue

    NASA Astrophysics Data System (ADS)

    Ikhsanti, Mila Izzatul; Bouzida, Rana; Wijaya, Sastra Kusuma; Rohmadi, Muttakin, Imamul; Taruno, Warsito P.

    2017-02-01

    This research aims to explore the feasibility of capacitance-digital converter and impedance converter for measurement module in electrical capacitance tomography (ECT) system. ECT sensor used was a cylindrical sensor having 8 electrodes. Absolute capacitance measurement system based on Sigma Delta Capacitance-to-Digital-Converter AD7746 has been shown to produce measurement with high resolution. Whereas, capacitance measurement with wide range of frequency is possible using Impedance Converter AD5933. Comparison of measurement accuracy by both AD7746 and AD5933 with reference of LCR meter was evaluated. Biological matters represented in water and oil were treated as object reconstructed into image using linear back projection (LBP) algorithm.

  5. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  6. Payment Services for Global Online Systems Including Internet.

    ERIC Educational Resources Information Center

    Seebeck, Bill; And Others

    1995-01-01

    A panel of four conference presenters address issues related to paying for services provided through online systems. Discussion includes the following topics: metering devices; electronic/digital cash; working within existing banking/credit card structures; provision of payment mechanisms in countries without extensive credit card usage; and…

  7. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  8. Digital synchronization and communication techniques

    NASA Technical Reports Server (NTRS)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  9. A Digital Phase Lock Loop for an External Cavity Diode Laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang

    2011-08-01

    A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  10. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in water between 200 and 400 meters deep, you begin drilling an original deep well with a perforated... 200 meters deep; (ii) May 18, 2007, for an RSV earned by a qualified deep well on a lease that is located entirely in water more than 200 meters deep; or (iii) The date that the first qualified well that...

  11. The Influence of Multi-Scale Stratal Architecture on Multi-Phase Flow

    NASA Astrophysics Data System (ADS)

    Soltanian, M.; Gershenzon, N. I.; Ritzi, R. W.; Dominic, D.; Ramanathan, R.

    2012-12-01

    Geological heterogeneity affects flow and transport in porous media, including the migration and entrapment patterns of oil, and efforts for enhanced oil recovery. Such effects are only understood through their relation to a hierarchy of reservoir heterogeneities over a range of scales. Recent work on modern rivers and ancient sediments has led to a conceptual model of the hierarchy of fluvial forms within channel-belts of gravelly braided rivers, and a quantitative model for the corresponding scales of heterogeneity within the stratal architecture (e.g. [Lunt et al (2004) Sedimentology, 51 (3), 377]). In related work, a three-dimensional digital model was developed which represents these scales of fluvial architecture, the associated spatial distribution of permeability, and the connectivity of high-permeability pathways across the different scales of the stratal hierarchy [Ramanathan et al, (2010) Water Resour. Res., 46, W04515; Guin et al, (2010) Water Resour. Res., 46, W04516]. In the present work we numerically examine three-phase fluid flow (water-oil-gas) incorporating the multi-scale model for reservoir heterogeneity spanning the scales from 10^-1 to 10^3 meters. Comparison with results of flow in a reservoir with homogeneous permeability is made showing essentially different flow dynamics.

  12. Three Specialized Innovations for FAST Wideband Receiver

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Yu, Xinying; Duan, Ran; Hao, Jie; Li, Di

    2015-08-01

    The National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) will soon finish the largest antenna in the world. Known as FAST, the Five-hundred-meter Aperture Spherical Radio Telescope will be the most sensitive single-dish radio telescope in the low frequency radio bands between 70 MHz and 3 GHz.To take advantage of its giant aperture, all relevant cutting-edge technology should be applied to FAST to ensure that it achieves the best possible overall performance. The wideband receiver that is currently under development can not only be directly applied to FAST, but also used for other Chinese radio telescopes, such as the Shanghai 65-meter telescope and the Xinjiang 110-meter telescope, to ensure that these telescopes are among the best in the world. Recently, rapid development related to this wideband receiver has been underway. In this paper, we will introduce three key aspects of the FAST wideband receiver project. First is the use of a high-performance analog-to-digital converter (ADC). With the cooperation of Hao Jie’s team from the Institute of Automation of the Chinese Academy of Sciences(CASIA), we have developed 3-Gsps,12-bit ADCs, which have not been used previously in astronomy, and we expect to realize the 3-GHz bandwidth in a single step by covering the entire bandwidth via interleaving or a complex fast Fourier transform (FFT).Second is the front-end analog signal integrated circuit board. We wish to achieve a series of amplification, attenuation, and mixing filtering operations on a single small board, thereby achieving digital control of the bandpass behavior both flexibly and highly-efficiently. This design will not only greatly reduce the required cost and power but will also make the best use of the digital-system’s flexibility. Third is optimization of the FFT: the existing FFT is not very efficient; therefore, we will optimize the FFT for large-scale operation. For this purpose, we intend to cascade two FFTs. Another possibility is to combine digital down conversion (DDC) with the FFT to achieve a flexible FFT.

  13. Improving the phase measurement by the apodization filter in the digital holography

    NASA Astrophysics Data System (ADS)

    Chang, Shifeng; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu

    2012-11-01

    Due to the finite size of the hologram aperture in digital holography, high frequency intensity and phase fluctuations along the edges of the images, which reduce the precision of phase measurement. In this paper, the apodization filters are applied to improve the phase measurement in the digital holography. Firstly, the experimental setup of the lensless Fourier transform digital holography is built, where the sample is a standard phase grating with the grating constant of 300μm and the depth of 150nm. Then, apodization filters are applied to phase measurement of the sample with three kinds of the window functions: Tukey window, Hanning window and Blackman window, respectively. Finally, the results were compared to the detection data given by the commercial white-light interferometer. It is shown that aperture diffraction effects can be reduced by the digital apodization, and the phase measurement with the apodization is more accurate than in the unapodized case. Meanwhile, the Blackman window function produces better effect than the other two window functions in the measurement of the standard phase grating.

  14. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  15. Riparian Zone Analysis for Forest Land Cover for the Conterminous US

    EPA Science Inventory

    One data layer describing the amount of forest land cover contained within a buffer area extending 30 meters to each side of all streams contained within the basin (Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit Code (HUC)) and from the edge of water bodies such as la...

  16. Digital Detection and Processing of Multiple Quadrature Harmonics for EPR Spectroscopy

    PubMed Central

    Ahmad, R.; Som, S.; Kesselring, E.; Kuppusamy, P.; Zweier, J.L.; Potter, L.C.

    2010-01-01

    A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. PMID:20971667

  17. Digital detection and processing of multiple quadrature harmonics for EPR spectroscopy.

    PubMed

    Ahmad, R; Som, S; Kesselring, E; Kuppusamy, P; Zweier, J L; Potter, L C

    2010-12-01

    A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. A low jitter all - digital phase - locked loop in 180 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Shumkin, O. V.; Butuzov, V. A.; Normanov, D. D.; Ivanov, P. Yu

    2016-02-01

    An all-digital phase locked loop (ADPLL) was implemented in 180 nm CMOS technology. The proposed ADPLL uses a digitally controlled oscillator to achieve 3 ps resolution. The pure digital phase locked loop is attractive because it is less sensitive to noise and operating conditions than its analog counterpart. The proposed ADPLL can be easily applied to different process as a soft IP block, making it very suitable for system-on-chip applications.

  19. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

  20. In-line digital holography with phase-shifting Greek-ladder sieves

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  1. An all-digital phase-locked loop demodulator based on FPGA

    NASA Astrophysics Data System (ADS)

    Gong, X. F.; Cui, Z. D.

    2017-09-01

    This paper studied the principle of analogue phase-locked loop demodulation and work process of digital phase-locked loop. It is found that the higher the reference signal frequency is, the smaller the duty ratio of the discriminator output signal is. Carrier detection is achieved by using this relationship. The experimental results indicate that the demodulator based on the principle could realize high-quality transmission of digital signals and could be an effective FM communication mode for studying wireless transmission of digital signals.

  2. Irrigated lands: Monitoring by remote sensing

    NASA Technical Reports Server (NTRS)

    Epiphanio, J. C. N.; Vitorelli, I.

    1983-01-01

    The use of remote sensing for irrigated areas, especially in the region of Guaira, Brazil (state of Sao Paulo), is examined. Major principles of utilizing LANDSAT data for the detection and mapping of irrigated lands are discussed. In addition, initial results obtained by computer processing of digital data, use of MSS (Multispectral Scanner System)/LANDSAT products, and the availability of new remote sensing products are highlighted. Future activities include the launching of the TM (Thematic Mapper)/LANDSAT 4 with 30 meters of resolution and SPOT (Systeme Probatorie d'Observation de la Terre) with 10 to 20 meters of resolution, to be operational in 1984 and 1986 respectively.

  3. Digital signal processor and processing method for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1989-01-01

    A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.

  4. Development of Portable Digital Radiography System with a Device for Monitoring X-ray Source-Detector Angle and Its Application in Chest Imaging

    PubMed Central

    Kim, Tae-Hoon; Heo, Dong-Woon; Jeong, Chang-Won; Ryu, Jong-Hyun; Jun, Hong Young; Han, Seung-Jun; Ha, Taeuk; Yoon, Kwon-Ha

    2017-01-01

    This study developed a device measuring the X-ray source-detector angle (SDA) and evaluated the imaging performance for diagnosing chest images. The SDA device consisted of Arduino, an accelerometer and gyro sensor, and a Bluetooth module. The SDA values were compared with the values of a digital angle meter. The performance of the portable digital radiography (PDR) was evaluated using the signal-to-noise (SNR), contrast-to-noise ratio (CNR), spatial resolution, distortion and entrance surface dose (ESD). According to different angle degrees, five anatomical landmarks were assessed using a five-point scale. The mean SNR and CNR were 182.47 and 141.43. The spatial resolution and ESD were 3.17 lp/mm (157 μm) and 0.266 mGy. The angle values of the SDA device were not significantly difference as compared to those of the digital angle meter. In chest imaging, the SNR and CNR values were not significantly different according to the different angle degrees. The visibility scores of the border of the heart, the fifth rib and the scapula showed significant differences according to different angles (p < 0.05), whereas the scores of the clavicle and first rib were not significant. It is noticeable that the increase in the SDA degree was consistent with the increases of the distortion and visibility score. The proposed PDR with a SDA device would be useful for application in the clinical radiography setting according to the standard radiography guidelines. PMID:28272336

  5. Development of Portable Digital Radiography System with a Device for Monitoring X-ray Source-Detector Angle and Its Application in Chest Imaging.

    PubMed

    Kim, Tae-Hoon; Heo, Dong-Woon; Jeong, Chang-Won; Ryu, Jong-Hyun; Jun, Hong Young; Han, Seung-Jun; Ha, Taeuk; Yoon, Kwon-Ha

    2017-03-07

    This study developed a device measuring the X-ray source-detector angle (SDA) and evaluated the imaging performance for diagnosing chest images. The SDA device consisted of Arduino, an accelerometer and gyro sensor, and a Bluetooth module. The SDA values were compared with the values of a digital angle meter. The performance of the portable digital radiography (PDR) was evaluated using the signal-to-noise (SNR), contrast-to-noise ratio (CNR), spatial resolution, distortion and entrance surface dose (ESD). According to different angle degrees, five anatomical landmarks were assessed using a five-point scale. The mean SNR and CNR were 182.47 and 141.43. The spatial resolution and ESD were 3.17 lp/mm (157 μm) and 0.266 mGy. The angle values of the SDA device were not significantly difference as compared to those of the digital angle meter. In chest imaging, the SNR and CNR values were not significantly different according to the different angle degrees. The visibility scores of the border of the heart, the fifth rib and the scapula showed significant differences according to different angles ( p < 0.05), whereas the scores of the clavicle and first rib were not significant. It is noticeable that the increase in the SDA degree was consistent with the increases of the distortion and visibility score. The proposed PDR with a SDA device would be useful for application in the clinical radiography setting according to the standard radiography guidelines.

  6. Real-time adaptive ramp metering : phase I, MILOS proof of concept (multi-objective, integrated, large-scale, optimized system).

    DOT National Transportation Integrated Search

    2006-12-01

    Over the last several years, researchers at the University of Arizonas ATLAS Center have developed an adaptive ramp : metering system referred to as MILOS (Multi-Objective, Integrated, Large-Scale, Optimized System). The goal of this project : is ...

  7. In-Vacuum Photogrammetry of a 10-Meter Solar Sail

    NASA Technical Reports Server (NTRS)

    Meyer, Chris G.; Jones, Thomas W.; Lunsford, Charles B.; Pappa, Richard S.

    2005-01-01

    In July 2004, a 10-meter solar sail structure developed by L Garde, Inc. was tested in vacuum at the NASA Glenn 30-meter Plum Brook Space Power Facility in Sandusky, Ohio. The three main objections of the test were to demonstrate unattended deployment from a stowed configuration, to measure the deployed shape of the sail at both ambient and cryogenic room temperatures, and to measure the deployed structural dynamic characteristics (vibration modes). This paper summarizes the work conducted to fulfill the second test objective. The deployed shape was measured photogrammetrically in vacuum conditions with four 2-megapixel digital video cameras contained in custom made pressurized canisters. The canisters included high-intensity LED ring lights to illuminate a grid of retroreflective targets distributed on the solar sail. The test results closely matched pre-test photogrammetry numerical simulations and compare well with ABAQUS finite-element model predictions.

  8. A Comparison of Patients Absorption Doses with Bone Deformity Due to the EOS Imaging and Digital Radiology

    PubMed Central

    Abrisham, Seyed Mohammad J.; Bouzarjomehri, Fathollah; Nafisi-Moghadam, Reza; Sobhan, Mohammad R.; Gadimi, Mahdie; Omidvar, Fereshte

    2017-01-01

    Background: This study has aimed to measure the patient dose in entire spine radiography by EOS system in comparison with the digital radiography. Methods: EOS stereo-radiography was used for frontal and lateral view spine imaging in 41 patients in a prospective analytical study. A calibrated dose area product (DAP) meter was used for calibration of the DAP in EOS system. The accuracy and precision of the system was confirmed according to the acceptance testing. The same procedure was used for 18 patients referred for lumbar spine digital radiology (overall 36 images). Results: Although radiation fields in the EOS were almost twice of that in digital radiology, and the average peak tube voltage (kVp), current supply to the tube (mA), and the average size and age of the patients referred for EOS imaging were greater than digital radiology, however, the average DAP in EOS was 1/5 of that in digital radiology system. Also, the average dose in the EOS was about 1/20 of that in digital radiology. Conclusion: The patient dose in EOS imaging system was lower in comparison with digital radiology (1/20). PMID:28656161

  9. A Comparison of Patients Absorption Doses with Bone Deformity Due to the EOS Imaging and Digital Radiology.

    PubMed

    Abrisham, Seyed Mohammad J; Bouzarjomehri, Fathollah; Nafisi-Moghadam, Reza; Sobhan, Mohammad R; Gadimi, Mahdie; Omidvar, Fereshte

    2017-05-01

    This study has aimed to measure the patient dose in entire spine radiography by EOS system in comparison with the digital radiography. EOS stereo-radiography was used for frontal and lateral view spine imaging in 41 patients in a prospective analytical study. A calibrated dose area product (DAP) meter was used for calibration of the DAP in EOS system. The accuracy and precision of the system was confirmed according to the acceptance testing. The same procedure was used for 18 patients referred for lumbar spine digital radiology (overall 36 images). Although radiation fields in the EOS were almost twice of that in digital radiology, and the average peak tube voltage (kV p ), current supply to the tube (mA), and the average size and age of the patients referred for EOS imaging were greater than digital radiology, however, the average DAP in EOS was 1/5 of that in digital radiology system. Also, the average dose in the EOS was about 1/20 of that in digital radiology. The patient dose in EOS imaging system was lower in comparison with digital radiology (1/20).

  10. Measuring Accurately Single-Phase Sinusoidal and Non-Sinusoidal Power.

    DTIC Science & Technology

    1983-01-01

    current component. Since the induction watthour meter is designed for measuring ac variations only, the creation of a dc component in an ac circuit due...available and the basic principle of measurement used in each. 3.1 Power Measuring Meters Instruments designed to measure the amount of average power...1.0 percent of full scale and + 0.5% of reading. 3.2 Encrgy Measuring Meters Instruments designed to measure the amount of power consumed in a circuit

  11. Precision digital pulse phase generator

    DOEpatents

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  12. Precision digital pulse phase generator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  13. Analysis of first and second order binary quantized digital phase-locked loops for ideal and white Gaussian noise inputs

    NASA Technical Reports Server (NTRS)

    Blasche, P. R.

    1980-01-01

    Specific configurations of first and second order all digital phase locked loops are analyzed for both ideal and additive white gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation is presented along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop are consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application.

  14. Optimum design of hybrid phase locked loops

    NASA Technical Reports Server (NTRS)

    Lee, P.; Yan, T.

    1981-01-01

    The design procedure of phase locked loops is described in which the analog loop filter is replaced by a digital computer. Specific design curves are given for the step and ramp input changes in phase. It is shown that the designed digital filter depends explicitly on the product of the sampling time and the noise bandwidth of the phase locked loop. This technique of optimization can be applied to the design of digital analog loops for other applications.

  15. Digital signal processing in the radio science stability analyzer

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1995-01-01

    The Telecommunications Division has built a stability analyzer for testing Deep Space Network installations during flight radio science experiments. The low-frequency part of the analyzer operates by digitizing wave signals with bandwidths between 80 Hz and 45 kHz. Processed outputs include spectra of signal, phase, amplitude, and differential phase; time series of the same quantities; and Allan deviation of phase and differential phase. This article documents the digital signal-processing methods programmed into the analyzer.

  16. Defense Automation Resources Management Manual

    DTIC Science & Technology

    1988-09-01

    Electronic Command Signals Programmer, Plugboard Programmers Punch, Card Punch, Paper Tape Reader, Character Reader-Generator, Time Cards Reader...Multiplexor-Shift Register Group Multiplier Panel Control, Plugboard Panel, Interconnection, Digital Computer Panel, Meter-Attenuator, Tape Recorder PC Cards...Perforator, Tape Plug-In Unit Potentiometer, Coefficient, Analog Computer Programmer, Plugboard Punch, Paper Tape Racks Reader, Time Code Reader

  17. Whole-field digital vibrometer system for buried landmine detection

    NASA Astrophysics Data System (ADS)

    Lal, Amit; Hess, Cecil; Scott, Eddie; Dang, Michael; Nichols, Robert

    2005-06-01

    Previous results have shown the potential of acoustic-to-seismic coupling with Laser Doppler Vibrometry for the detection of buried landmines. An important objective of the present technology is to improve the spatial resolution and the speed of the measurement. In this paper, MetroLaser reports on a whole-field digital vibrometer (WDV) that measures an entire one meter area with sub-centimeter spatial resolution in just a few seconds. The WDV is based on a dual-pulsed laser such that each pulse illuminates a one meter area on the ground, and the temporal separation between the two laser pulses can be adjusted to match the ground excitation frequency. By sweeping this excitation frequency, a displacement map of the ground at each frequency can be quickly generated. In addition, an innovative speckle repositioning strategy allows for movement of the measurement platform at reasonable speeds while still obtaining measurements with interferometric precision. This paper describes the WDV instrument and presents preliminary experimental results obtained with this system. This research is being supported by the U.S. Army RDECOM CERDEC NVESD under Contract W909MY04-C-0004.

  18. Computer Programs to Display and Modify Data in Geographic Coordinates and Methods to Transfer Positions to and from Maps, with Applications to Gravity Data Processing, Global Positioning Systems, and 30-Meter Digital Elevation Models

    USGS Publications Warehouse

    Plouff, Donald

    1998-01-01

    Computer programs were written in the Fortran language to process and display gravity data with locations expressed in geographic coordinates. The programs and associated processes have been tested for gravity data in an area of about 125,000 square kilometers in northwest Nevada, southeast Oregon, and northeast California. This report discusses the geographic aspects of data processing. Utilization of the programs begins with application of a template (printed in PostScript format) to transfer locations obtained with Global Positioning Systems to and from field maps and includes a 5-digit geographic-based map naming convention for field maps. Computer programs, with source codes that can be copied, are used to display data values (printed in PostScript format) and data coverage, insert data into files, extract data from files, shift locations, test for redundancy, and organize data by map quadrangles. It is suggested that 30-meter Digital Elevation Models needed for gravity terrain corrections and other applications should be accessed in a file search by using the USGS 7.5-minute map name as a file name, for example, file '40117_B8.DEM' contains elevation data for the map with a southeast corner at lat 40? 07' 30' N. and lon 117? 52' 30' W.

  19. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †

    PubMed Central

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird’s-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  20. Propulsion Control Technology Development in the United States A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.a; Garg, Sanjay

    2005-01-01

    This paper presents a historical perspective of the advancement of control technologies for aircraft gas turbine engines. The paper primarily covers technology advances in the United States in the last 60 years (1940 to approximately 2002). The paper emphasizes the pioneering technologies that have been tested or implemented during this period, assimilating knowledge and experience from industry experts, including personal interviews with both current and retired experts. Since the first United States-built aircraft gas turbine engine was flown in 1942, engine control technology has evolved from a simple hydro-mechanical fuel metering valve to a full-authority digital electronic control system (FADEC) that is common to all modern aircraft propulsion systems. At the same time, control systems have provided engine diagnostic functions. Engine diagnostic capabilities have also evolved from pilot observation of engine gauges to the automated on-board diagnostic system that uses mathematical models to assess engine health and assist in post-flight troubleshooting and maintenance. Using system complexity and capability as a measure, we can break the historical development of control systems down to four phases: (1) the start-up phase (1942 to 1949), (2) the growth phase (1950 to 1969), (3) the electronic phase (1970 to 1989), and (4) the integration phase (1990 to 2002). In each phase, the state-of-the-art control technology is described and the engines that have become historical landmarks, from the control and diagnostic standpoint, are identified. Finally, a historical perspective of engine controls in the last 60 years is presented in terms of control system complexity, number of sensors, number of lines of software (or embedded code), and other factors.

  1. An all digital phase locked loop for synchronization of a sinusoidal signal embedded in white Gaussian noise

    NASA Technical Reports Server (NTRS)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.

  2. Binary phase locked loops for Omega receivers

    NASA Technical Reports Server (NTRS)

    Chamberlin, K.

    1974-01-01

    An all-digital phase lock loop (PLL) is considered because of a number of problems inherent in an employment of analog PLL. The digital PLL design presented solves these problems. A single loop measures all eight Omega time slots. Memory-aiding leads to the name of this design, the memory-aided phase lock loop (MAPLL). Basic operating principles are discussed and the superiority of MAPLL over the conventional digital phase lock loop with regard to the operational efficiency for Omega applications is demonstrated.

  3. All optical coherent receiver for self-homodyne detection of digitally phase modulated optical signals

    NASA Astrophysics Data System (ADS)

    Kiasaleh, Kamran

    1994-02-01

    A novel optical phase-locked loop (OPLL) system for the self-homodyne detection of digitally phase modulated optical signals is introduced. A Mach-Zehnder type interferometer is used to self-homodyne binary phase-modulated optical signals with an external phase modulator inserted in the control arm of the interferometer.

  4. Digital forensics: an analytical crime scene procedure model (ACSPM).

    PubMed

    Bulbul, Halil Ibrahim; Yavuzcan, H Guclu; Ozel, Mesut

    2013-12-10

    In order to ensure that digital evidence is collected, preserved, examined, or transferred in a manner safeguarding the accuracy and reliability of the evidence, law enforcement and digital forensic units must establish and maintain an effective quality assurance system. The very first part of this system is standard operating procedures (SOP's) and/or models, conforming chain of custody requirements, those rely on digital forensics "process-phase-procedure-task-subtask" sequence. An acceptable and thorough Digital Forensics (DF) process depends on the sequential DF phases, and each phase depends on sequential DF procedures, respectively each procedure depends on tasks and subtasks. There are numerous amounts of DF Process Models that define DF phases in the literature, but no DF model that defines the phase-based sequential procedures for crime scene identified. An analytical crime scene procedure model (ACSPM) that we suggest in this paper is supposed to fill in this gap. The proposed analytical procedure model for digital investigations at a crime scene is developed and defined for crime scene practitioners; with main focus on crime scene digital forensic procedures, other than that of whole digital investigation process and phases that ends up in a court. When reviewing the relevant literature and interrogating with the law enforcement agencies, only device based charts specific to a particular device and/or more general perspective approaches to digital evidence management models from crime scene to courts are found. After analyzing the needs of law enforcement organizations and realizing the absence of crime scene digital investigation procedure model for crime scene activities we decided to inspect the relevant literature in an analytical way. The outcome of this inspection is our suggested model explained here, which is supposed to provide guidance for thorough and secure implementation of digital forensic procedures at a crime scene. In digital forensic investigations each case is unique and needs special examination, it is not possible to cover every aspect of crime scene digital forensics, but the proposed procedure model is supposed to be a general guideline for practitioners. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array

    DTIC Science & Technology

    2017-01-16

    Lincoln Laboratory Lexington, Massachusetts, USA Abstract—The Aperture- Level Simultaneous Transmit and Re- ceive (ALSTAR) architecture enables extremely...In [1], the Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture was proposed for achieving STAR using a fully digital phased array...Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture enables STAR functionality in a digital phased array without the use of specialized

  6. Payload specialist station study: Volume 2, part 3: Program analysis and planning for phase C/D

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The controls and displays (C&D) required at the Orbiter aft-flight deck (AFD) and the core C&D required at the Payload Specialist Station (PSS) are identified in this document. The AFD C&D Concept consists of a multifunction display system (MFDS) and elements of multiuse mission support equipment (MMSE). The MFDS consists of two CRTs, a display electronics unit (DEU), and a keyboard. The MMSE consists of a manual pointing controller (MPC), five digit numeric displays, 10 character alphanumeric legends, event timers, analog meters, rotary and toggle switches. The MMSE may be hardwired to the experiment, or interface with a data bus at the PSS for signal processing. The MFDS has video capability, with alphanumeric and graphic overlay features, on one CRT and alphanumeric and graphic (tricolor) capability on a second CRT. The DEU will have the capability to communicate, via redundant data buses, with both the spacelab experiment and subsystem computers.

  7. Simulation and ground testing with the Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2005-01-01

    The Advanced Video Guidance Sensor (AVGS), an active sensor system that provides near-range 6-degree-of-freedom sensor data, has been developed as part of an automatic rendezvous and docking system for the Demonstration of Autonomous Rendezvous Technology (DART). The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state imager to detect the light returned from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The development of the sensor, through initial prototypes, final prototypes, and three flight units, has required a great deal of testing at every phase, and the different types of testing, their effectiveness, and their results, are presented in this paper, focusing on the testing of the flight units. Testing has improved the sensor's performance.

  8. Digital Phase-Locked Loop With Phase And Frequency Feedback

    NASA Technical Reports Server (NTRS)

    Thomas, J. Brooks

    1991-01-01

    Advanced design for digital phase-lock loop (DPLL) allows loop gains higher than those used in other designs. Divided into two major components: counterrotation processor and tracking processor. Notable features include use of both phase and rate-of-change-of-phase feedback instead of frequency feedback alone, normalized sine phase extractor, improved method for extracting measured phase, and improved method for "compressing" output rate.

  9. Bathymetric survey and digital elevation model of Little Holland Tract, Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Snyder, Alexander G.; Lacy, Jessica R.; Stevens, Andrew W.; Carlson, Emily M.

    2016-06-10

    The U.S. Geological Survey conducted a bathymetric survey in Little Holland Tract, a flooded agricultural tract, in the northern Sacramento-San Joaquin Delta (the “Delta”) during the summer of 2015. The new bathymetric data were combined with existing data to generate a digital elevation model (DEM) at 1-meter resolution. Little Holland Tract (LHT) was historically diked off for agricultural uses and has been tidally inundated since an accidental levee breach in 1983. Shallow tidal regions such as LHT have the potential to improve habitat quality in the Delta. The DEM of LHT was developed to support ongoing studies of habitat quality in the area and to provide a baseline for evaluating future geomorphic change. The new data comprise 138,407 linear meters of real-time-kinematic (RTK) Global Positioning System (GPS) elevation data, including both bathymetric data collected from personal watercraft and topographic elevations collected on foot at low tide. A benchmark (LHT15_b1) was established for geodetic control of the survey. Data quality was evaluated both by comparing results among surveying platforms, which showed systematic offsets of 1.6 centimeters (cm) or less, and by error propagation, which yielded a mean vertical uncertainty of 6.7 cm. Based on the DEM and time-series measurements of water depth, the mean tidal prism of LHT was determined to be 2,826,000 cubic meters. The bathymetric data and DEM are available at http://dx.doi.org/10.5066/F7RX9954. 

  10. Automatic 3D relief acquisition and georeferencing of road sides by low-cost on-motion SfM

    NASA Astrophysics Data System (ADS)

    Voumard, Jérémie; Bornemann, Perrick; Malet, Jean-Philippe; Derron, Marc-Henri; Jaboyedoff, Michel

    2017-04-01

    3D terrain relief acquisition is important for a large part of geosciences. Several methods have been developed to digitize terrains, such as total station, LiDAR, GNSS or photogrammetry. To digitize road (or rail tracks) sides on long sections, mobile spatial imaging system or UAV are commonly used. In this project, we compare a still fairly new method -the SfM on-motion technics- with some traditional technics of terrain digitizing (terrestrial laser scanning, traditional SfM, UAS imaging solutions, GNSS surveying systems and total stations). The SfM on-motion technics generates 3D spatial data by photogrammetric processing of images taken from a moving vehicle. Our mobile system consists of six action cameras placed on a vehicle. Four fisheye cameras mounted on a mast on the vehicle roof are placed at 3.2 meters above the ground. Three of them have a GNNS chip providing geotagged images. Two pictures were acquired every second by each camera. 4K resolution fisheye videos were also used to extract 8.3M not geotagged pictures. All these pictures are then processed with the Agisoft PhotoScan Professional software. Results from the SfM on-motion technics are compared with results from classical SfM photogrammetry on a 500 meters long alpine track. They were also compared with mobile laser scanning data on the same road section. First results seem to indicate that slope structures are well observable up to decimetric accuracy. For the georeferencing, the planimetric (XY) accuracy of few meters is much better than the altimetric (Z) accuracy. There is indeed a Z coordinate shift of few tens of meters between GoPro cameras and Garmin camera. This makes necessary to give a greater freedom to altimetric coordinates in the processing software. Benefits of this low-cost SfM on-motion method are: 1) a simple setup to use in the field (easy to switch between vehicle types as car, train, bike, etc.), 2) a low cost and 3) an automatic georeferencing of 3D points clouds. Main disadvantages are: 1) results are less accurate than those from LiDAR system, 2) a heavy images processing and 3) a short distance of acquisition.

  11. ATD-2 Surface Scheduling and Metering Concept

    NASA Technical Reports Server (NTRS)

    Coppenbarger, Richard A.; Jung, Yoon Chul; Capps, Richard Alan; Engelland, Shawn A.

    2017-01-01

    This presentation describes the concept of ATD-2 tactical surface scheduling and metering. The concept is composed of several elements, including data exchange and integration; surface modeling; surface scheduling; and surface metering. The presentation explains each of the elements. Surface metering is implemented to balance demand and capacity• When surface metering is on, target times from surface scheduler areconverted to advisories for throttling demand• Through the scheduling process, flights with CTOTs will not get addedmetering delay (avoids potential for ‘double delay’)• Carriers can designate certain flights as exempt from metering holds• Demand throttle in Phase 1 at CLT is through advisories sent to rampcontrollers for pushback instructions to the flight deck– Push now– Hold for an advised period of time (in minutes)• Principles of surface metering can be more generally applied to otherairports in the NAS to throttle demand via spot-release times (TMATs Strong focus on optimal use of airport resources• Flexibility enables stakeholders to vary the amount of delay theywould like transferred to gate• Addresses practical aspects of executing surface metering in aturbulent real world environment• Algorithms designed for both short term demand/capacityimbalances (banks) or sustained metering situations• Leverage automation to enable surface metering capability withoutrequiring additional positions• Represents first step in Tactical/Strategic fusion• Provides longer look-ahead calculations to enable analysis ofstrategic surface metering potential usage

  12. Implementation and extension of the impulse transfer function method for future application to the space shuttle project. Volume 2: Program description and user's guide

    NASA Technical Reports Server (NTRS)

    Patterson, G.

    1973-01-01

    The data processing procedures and the computer programs were developed to predict structural responses using the Impulse Transfer Function (ITF) method. There are three major steps in the process: (1) analog-to-digital (A-D) conversion of the test data to produce Phase I digital tapes (2) processing of the Phase I digital tapes to extract ITF's and storing them in a permanent data bank, and (3) predicting structural responses to a set of applied loads. The analog to digital conversion is performed by a standard package which will be described later in terms of the contents of the resulting Phase I digital tape. Two separate computer programs have been developed to perform the digital processing.

  13. Analysis of an all-digital maximum likelihood carrier phase and clock timing synchronizer for eight phase-shift keying modulation

    NASA Astrophysics Data System (ADS)

    Degaudenzi, Riccardo; Vanghi, Vieri

    1994-02-01

    In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.

  14. All-digital GPS receiver mechanization

    NASA Astrophysics Data System (ADS)

    Ould, P. C.; van Wechel, R. J.

    The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.

  15. Deformation analysis of MEMS structures by modified digital moiré methods

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Lou, Xinhao; Gao, Jianxin

    2010-11-01

    Quantitative deformation analysis of micro-fabricated electromechanical systems is of importance for the design and functional control of microsystems. In this paper, two modified digital moiré processing methods, Gaussian blurring algorithm combined with digital phase shifting and geometrical phase analysis (GPA) technique based on digital moiré method, are developed to quantitatively analyse the deformation behaviour of micro-electro-mechanical system (MEMS) structures. Measuring principles and experimental procedures of the two methods are described in detail. A digital moiré fringe pattern is generated by superimposing a specimen grating etched directly on a microstructure surface with a digital reference grating (DRG). Most of the grating noise is removed from the digital moiré fringes, which enables the phase distribution of the moiré fringes to be obtained directly. Strain measurement result of a MEMS structure demonstrates the feasibility of the two methods.

  16. SNR Degradation in Undersampled Phase Measurement Systems

    PubMed Central

    Salido-Monzú, David; Meca-Meca, Francisco J.; Martín-Gorostiza, Ernesto; Lázaro-Galilea, José L.

    2016-01-01

    A wide range of measuring applications rely on phase estimation on sinusoidal signals. These systems, where the estimation is mainly implemented in the digital domain, can generally benefit from the use of undersampling to reduce the digitizer and subsequent digital processing requirements. This may be crucial when the application characteristics necessarily imply a simple and inexpensive sensor. However, practical limitations related to the phase stability of the band-pass filter prior digitization establish restrictions to the reduction of noise bandwidth. Due to this, the undersampling intensity is practically defined by noise aliasing, taking into account the amount of signal-to-noise ratio (SNR) reduction caused by it considering the application accuracy requirements. This work analyzes the relationship between undersampling frequency and SNR reduction, conditioned by the stability requirements of the filter that defines the noise bandwidth before digitization. The effect of undersampling is quantified in a practical situation where phase differences are measured by in-phase and quadrature (I/Q) demodulation for an infrared ranging application. PMID:27783033

  17. Validation of the Aster Global Digital Elevation Model Version 3 Over the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Gesch, D.; Oimoen, M.; Danielson, J.; Meyer, D.

    2016-06-01

    The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of -1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from -2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.

  18. Validation of the ASTER Global Digital Elevation Model version 3 over the conterminous United States

    USGS Publications Warehouse

    Gesch, Dean B.; Oimoen, Michael J.; Danielson, Jeffrey J.; Meyer, David; Halounova, L; Šafář, V.; Jiang, J.; Olešovská, H.; Dvořáček, P.; Holland, D.; Seredovich, V.A.; Muller, J.P.; Pattabhi Rama Rao, E.; Veenendaal, B.; Mu, L.; Zlatanova, S.; Oberst, J.; Yang, C.P.; Ban, Y.; Stylianidis, S.; Voženílek, V.; Vondráková, A.; Gartner, G.; Remondino, F.; Doytsher, Y.; Percivall, George; Schreier, G.; Dowman, I.; Streilein, A.; Ernst, J.

    2016-01-01

    The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of −1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from −2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.

  19. Solar observations with the prototype of the Brazilian Decimetric Array

    NASA Astrophysics Data System (ADS)

    Sawant, H. S.; Ramesh, R.; Faria, C.; Cecatto, J. R.; Fernandes, F. C. R.; Madsen, F. H. R.; Subramanian, K. R.; Sundararajan, M. S.

    The prototype of the Brazilian Decimetric Array BDA consists of 5 element alt-az mounted parabolic mesh type dishes of 4-meter diameter having base lines up to 220 meters in the E--W direction The array was put into regular operation at Cachoeira Paulista Brazil longitude 45 r 00 20 W and latitude 22 r 41 19 S This array operates in the frequency range of 1 2 -- 1 7 GHz Solar observations are carried at sim 1 4 GHz in transit and tracking modes Spatial fine structures superimposed on the one dimensional brightness map of the sun associated with active regions and or with solar activity and their time evolution will be presented In the second phase of the project the frequency range will be increased to 1 2 - 1 7 2 8 and 5 6 GHz Central part of the array will consist of 26 antennas with 4-meter diameter laid out randomically in the square of 256 by 256 meter with minimum and maximum base lines of 8 and 256 meters respectively Details of this array with imaging capabilities in snap shot mode for solar observations and procedure of the phase and amplitude calibrations will be presented The development of instrument will be completed by the beginning of 2008

  20. An all digital phase locked loop for FM demodulation.

    NASA Technical Reports Server (NTRS)

    Greco, J.; Garodnick, J.; Schilling, D. L.

    1972-01-01

    A phase-locked loop designed with all-digital circuitry which avoids certain problems, and a digital voltage controlled oscillator algorithm are described. The system operates synchronously and performs all required digital calculations within one sampling period, thereby performing as a real-time special-purpose computer. The SNR ratio is computed for frequency offsets and sinusoidal modulation, and experimental results verify the theoretical calculations.

  1. The Setup Phase of Project Open Book: A Report to the Commission on Preservation and Access on the Status of an Effort to Convert Microfilm to Digital Imagery.

    ERIC Educational Resources Information Center

    Conway, Paul; Weaver, Shari

    1994-01-01

    This report documents the second phase of Yale University's Project Open Book, which explored the uses of digital technology for preservation of and access to deteriorating documents. Highlights include preconditions for project implementation; quality digital conversion; characteristics of source materials; digital document indexing; workflow…

  2. From Geocentrism to Allocentrism: Teaching the Phases of the Moon in a Digital Full-Dome Planetarium

    NASA Astrophysics Data System (ADS)

    Chastenay, Pierre

    2016-02-01

    An increasing number of planetariums worldwide are turning digital, using ultra-fast computers, powerful graphic cards, and high-resolution video projectors to create highly realistic astronomical imagery in real time. This modern technology makes it so that the audience can observe astronomical phenomena from a geocentric as well as an allocentric perspective (the view from space). While the dome creates a sense of immersion, the digital planetarium introduces a new way to teach astronomy, especially for topics that are inherently three-dimensional and where seeing the phenomenon from different points of view is essential. Like a virtual-reality environment, an immersive digital planetarium helps learners create a more scientifically accurate visualization of astronomical phenomena. In this study, a digital planetarium was used to teach the phases of the Moon to children aged 12 to 14. To fully grasp the lunar phases, one must imagine the spherical Moon (as perceived from space), revolving around the Earth while being illuminated by the Sun, and then reconcile this view with the geocentric perspective. Digital planetariums allow learners to have both an allocentric and a geocentric perspective on the lunar phases. Using a Design experiment approach, we tested an educational scenario in which the lunar phases were taught in an allocentric digital planetarium. Based on qualitative data collected before, during, and after the planetarium intervention, we were able to demonstrate that five out of six participants had a better understanding of the lunar phases after the planetarium session.

  3. A digitally implemented phase-locked loop detection scheme for analysis of the phase and power stability of a calibration tone

    NASA Technical Reports Server (NTRS)

    Densmore, A. C.

    1988-01-01

    A digital phase-locked loop (PLL) scheme is described which detects the phase and power of a high SNR calibration tone. The digital PLL is implemented in software directly from the given description. It was used to evaluate the stability of the Goldstone Deep Space Station open loop receivers for Radio Science. Included is a derivative of the Allan variance sensitivity of the PLL imposed by additive white Gaussian noise; a lower limit is placed on the carrier frequency.

  4. Fast, optically controlled Kerr phase shifter for digital signal processing.

    PubMed

    Li, R B; Deng, L; Hagley, E W; Payne, M G; Bienfang, J C; Levine, Z H

    2013-05-01

    We demonstrate an optically controlled Kerr phase shifter using a room-temperature 85Rb vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach-Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.

  5. Effectiveness of predictive computer programs in the design of noise barriers : a before and after approach, part I, the data acquisition system.

    DOT National Transportation Integrated Search

    1978-01-01

    A digital data acquisition system has been designed to meet the need for a long duration noise analysis capability. By sampling the DC outputs from sound level meters, it has been possible to make twenty-four hour or longer recordings, in contrast to...

  6. Using Digital Terrain Modeling to Predict Ecological Types in the Balsam Mountains of Western North Carolina

    Treesearch

    Richard H. Odom; W. Henry McNab

    2000-01-01

    Relationships between overstory composition and topographic conditions were studied in high-elevation (>1300 meters) forests in the Balsam Mountains of western North Carolina to determine whether models could be developed to predict the occurrence of number vegetative communities in relation to topographic variables (elevation, landscape position, surface geometry,...

  7. Fission meter

    DOEpatents

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  8. Digital representation of oil and natural gas well pad scars in southwest Wyoming

    USGS Publications Warehouse

    Garman, Steven L.; McBeth, Jamie L.

    2014-01-01

    The recent proliferation of oil and natural gas energy development in southwest Wyoming has stimulated the need to understand wildlife responses to this development. Central to many wildlife assessments is the use of geospatial methods that rely on digital representation of energy infrastructure. Surface disturbance of the well pad scars associated with oil and natural gas extraction has been an important but unavailable infrastructure layer. To provide a digital baseline of this surface disturbance, we extracted visible oil and gas well pad scars from 1-meter National Agriculture Imagery Program imagery (NAIP) acquired in 2009 for a 7.7 million-hectare region of southwest Wyoming. Scars include the pad area where wellheads, pumps, and storage facilities reside, and the surrounding area that was scraped and denuded of vegetation during the establishment of the pad. Scars containing tanks, compressors, and the storage of oil and gas related equipment, and produced-water ponds were also collected on occasion. Our extraction method was a two-step process starting with automated extraction followed by manual inspection and clean up. We used available well-point information to guide manual clean up and to derive estimates of year of origin and duration of activity on a pad scar. We also derived estimates of the proportion of non-vegetated area on a scar using a Normalized Difference Vegetation Index derived using 1-meter NAIP imagery. We extracted 16,973 pad scars of which 15,318 were oil and gas well pads. Digital representation of pad scars along with time-stamps of activity and estimates of non-vegetated area provides important baseline (circa 2009) data for assessments of wildlife responses, land-use trends, and disturbance-mediated pattern assessments.

  9. Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.

    PubMed

    Gdeisat, Munther A; Burton, David R; Lalor, Michael J

    2002-09-10

    A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.

  10. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second. Each pulse is focused into an illumination area that has a radius of about 20 centimeters on the ground. The pulse-repetition frequency of the EAARL transmitter varies along each across-track scan to produce equal cross-track sample spacing and near uniform density (Nayegandhi and others, 2006). Targets can have varying physical and optical characteristics that cause extreme fluctuations in laser backscatter complexity and signal strength. To accommodate this dynamic range, EAARL has the real-time ability to detect, capture, and automatically adapt to each laser return backscatter. The backscattered energy is collected by an array of four high-speed waveform digitizers connected to an array of four sub-nanosecond photodetectors. Each of the four photodetectors receives a finite range of the returning laser backscatter photons. The most sensitive channel receives 90% of the photons, the least sensitive receives 0.9%, and the middle channel receives 9% (Wright and Brock, 2002). The fourth channel is available for detection but is not currently being utilized. All four channels are digitized simultaneously into 65,536 samples for every laser pulse. Receiver optics consists of a 15-centimeter-diameter dielectric-coated Newtonian telescope, a computer-driven raster scanning mirror oscillating at 12.5 hertz (25 rasters per second), and an array of sub-nanosecond photodetectors. The signal emitted by the pulsed laser transmitter is amplified as backscatter by the optical telescope receiver. The photomultiplier tube (PMT) then converts the optical energy into electrical impulses (Nayegandhi and others, 2006). In addition to the full-waveform resolving laser, the EAARL sensor suite includes a down-looking 70-centimeter-resolution Red-Green-Blue (RGB) digital network camera, a high-resolution color infrared (CIR) multispectral camera (14-centimeter-resolution), two precision dual-frequency kinematic carrier-phase global positioning system (GPS) receivers, and an

  11. Digital holographic otoscope for measurements of the human tympanic membrane in vivo

    NASA Astrophysics Data System (ADS)

    Dobrev, I.; Harrington, E. J.; Cheng, T.; Furlong, C.; Rosowski, J. J.

    We are developing an advanced computer-controlled digital optoelectronic holographic system (DOEHS) for diagnosing middle-ear conductive disorders and investigating the causes of failure of middle-ear surgical procedures. Our current DOEHS system can provide near real-time quantitative measurements of the sound-induced nano-meter scale motion of the eardrum. The DOEHS have been deployed and is currently being tested in clinical conditions, where it is being optimized for in-vivo measurements of patients. The stability of the measurement system during examination is crucial as the non-ideal clinical environment presents disturbances larger than the measured quantities from several domains - thermal, optical, electrical and mechanical. Examples include disturbances are due to heartbeat breathing, patients head's motion as well as environment induced mechanical disturbances (0.1-60Hz, 0.01-100 μm). In this paper we focus on our current progress in the analysis and implementation of various acquisition strategies and algorithms for minimization of the measurement error due to mechanical disturbances in a clinic. We have also developed and implemented a versatile and modular otoscope head (OH) design providing a variety of capabilities for acoustic and displacement measurements of both post-mortem samples of varying sizes (1-12mm) as well as in-vivo examination of patients. The OH offers hybrid on-axis and off axis digital Furrier holographic setup for high resolution (λ/35) 4 phase step measurements as well as fast (<0.1ms) single frame measurements for improved performance in the clinical environment. We also focus on the development of a mechatronic positioning system (MOP) for aiding in the localization of the TM in patients.

  12. Programmable rate modem utilizing digital signal processing techniques

    NASA Technical Reports Server (NTRS)

    Naveh, Arad

    1992-01-01

    The need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) modulation is discussed. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. The design trade-offs in each portion of the modulator and demodulator subsystem are outlined.

  13. Summary of the Validation of the Second Version of the Aster Gdem

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Tachikawa, T.; Abrams, M.; Crippen, R.; Krieger, T.; Gesch, D.; Carabajal, C.

    2012-07-01

    On October 17, 2011, NASA and the Ministry of Economy, Trade and Industry (METI) of Japan released the second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) to users worldwide at no charge as a contribution to the Global Earth Observing System of Systems (GEOSS). The first version of the ASTER GDEM, released on June 29, 2009, was compiled from over 1.2 million scene-based DEMs covering land surfaces between 83°N and 83°S latitudes. The second version (GDEM2) incorporates 260,000 additional scenes to improve coverage, a smaller correlation kernel to yield higher spatial resolution, and improved water masking. As with GDEM1, US and Japanese partners collaborated to validate GDEM2. Its absolute accuracy was within -0.20 meters on average when compared against 18,000 geodetic control points over the conterminous US (CONUS), with an accuracy of 17 meters at the 95% confidence level. The Japan study noted the GDEM2 differed from the 10-meter national elevation grid by -0.7 meters over bare areas, and by 7.4 meters over forested areas. The CONUS study noted a similar result, with the GDEM2 determined to be about 8 meters above the 1 arc-second US National Elevation Database (NED) over most forested areas, and more than a meter below NED over bare areas. A global ICESat study found the GDEM2 to be on average within 3 meters of altimeter-derived control. The Japan study noted a horizontal displacement of 0.23 pixels in GDEM2. A study from the US National Geospatial Intelligence Agency also determined horizontal displacement and vertical accuracy as compared to the 1 arc-second Shuttle Radar Topography Mission DEM. US and Japanese studies estimated the horizontal resolution of the GDEM2 to be between 71 and 82 meters. Finally, the number of voids and artifacts noted in GDEM1 were substantially reduced in GDEM2.

  14. Advanced Concept

    NASA Image and Video Library

    2000-06-22

    The photograph depicts the X-37 neutral buoyancy simulator mockup at Dryden Flight Research Center. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. Its experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliabiltiy, while reducing launch costs from $10,000 per pound to $1000 per pound. Managed by Marshall Space Flight Center and built by the boeing Company, the X-37 is scheduled to fly two orbital missions in 2002/2003 to test the reusable launch vehicle technologies.

  15. Long Valley Coring Project, Inyo County, California, 1998, preliminary stratigraphy and images of recovered core

    USGS Publications Warehouse

    Sackett, Penelope C.; McConnell, Vicki S.; Roach, Angela L.; Priest, Susan S.; Sass, John H.

    1999-01-01

    Phase III of the Long Valley Exploratory Well, the Long Valley Coring Project, obtained continuous core between the depths of 7,180 and 9,831 ft (2,188 to 2,996 meters) during the summer of 1998. This report contains a compendium of information designed to facilitate post-drilling research focussed on the study of the core. Included are a preliminary stratigraphic column compiled primarily from field observations and a general description of well lithology for the Phase III drilling interval. Also included are high-resolution digital photographs of every core box (10 feet per box) as well as scanned images of pieces of recovered core. The user can easily move from the stratigraphic column to corresponding core box photographs for any depth. From there, compressed, "unrolled" images of the individual core pieces (core scans) can be accessed. Those interested in higher-resolution core scans can go to archive CD-ROMs stored at a number of locations specified herein. All core is stored at the USGS Core Research Center in Denver, Colorado where it is available to researchers following the protocol described in this report. Preliminary examination of core provided by this report and the archive CD-ROMs should assist researchers in narrowing their choices when requesting core splits.

  16. Six-Phase Heating(trademark) Pilot-Scale Test. Technology Performance Report, Dense Non-Aqueous Phase Liquid, Eastern Parking Lot Groundwater Plume. Air Force Plant 4, Fort Worth, Texas

    DTIC Science & Technology

    2001-05-01

    The well vapor flows were calculated using the following formula taken from the Dwyer Series DS-300 Flow Sensor Instal/ation and Operating...IVllllble. TNRCC-D199 (Rev. 09-01 93) Send oriainal CODV by cerllfled mall 10: / TDLA ).(WWD/PIPl, P.O. BOll 12157 Austin TX 7871 1 Please use black Ink...gas, impinger exhaust, dry gas meter inlet, and dry gas meter outlet. A Fyrite™ kit was used to measure the oxygen and carbon dioxide concentration in

  17. Large deployable antenna program. Phase 1: Technology assessment and mission architecture

    NASA Technical Reports Server (NTRS)

    Rogers, Craig A.; Stutzman, Warren L.

    1991-01-01

    The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.

  18. Advanced optical network architecture for integrated digital avionics

    NASA Astrophysics Data System (ADS)

    Morgan, D. Reed

    1996-12-01

    For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2-3 gigabits per second. This switch-based unified network will interconnect sensors, displays, mass memory and controls and displays to computer modules within the processing complex. The characteristics of required building blocks needed for the future are described. These building blocks include the fiber, an optical switch, a laser-based transceiver, blind-mate connectors and an optical backplane.

  19. A LOW-COST IMPEDANCE METER FOR SENSING THE MOISTURE CONTENT OF IN-SHELL PEANUTS

    USDA-ARS?s Scientific Manuscript database

    A low cost impedance meter developed at the National Peanut Research Laboratory described here was used to generate RF signals at frequencies of 1, 5 and 9 MHz. The RF signals were applied to a parallel-plate capacitor holding a sample of peanuts and the capacitance (C), phase angle (') and impedanc...

  20. Moisture Determination of Nuts and Dry Fruits using a Capacitance Sensor

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with in-shell peanuts between the plates was measured earlier, using a CI meter (Chari’s Impedance meter), at 1 and 5 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of peanuts whos...

  1. Sensing the Moisture Content of Dry Cherries - A Rapid and Nondestructive Method

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a parallel-plate capacitor with a single cherry fruit between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture cont...

  2. NASA/Navy lift/cruise fan. Phase 1: Design summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The initial design of the LCF459 lift/cruise fan system is documented. The LCF459 is a 1.5 meter diameter turbotip lift/cruise fan whose design point pressure ratio is 1.32 at a tip speed of 353 meters per second. The gas source for the tip turbine is the YJ97-GE-100 engine.

  3. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can sort the frequencies and de-trend the phase variations due to spacecraft motion. For a single channel and a spacecraft-DTV transmitter path scan, TEC can be determined from the incremental phase variations for each channel. Determination of the absolute TEC requires knowledge of the absolute phase, i.e., including the number of 2π cycles. The absolute TEC can be determined in the case of multi-channel transmissions from a single tower (most towers house multiple television stations). A CubeSat constellation using DTV transmissions as signals of opportunity is a composite instrument for frontier ionospheric research. It is a novel application of CubeSats to understand the ionospheric response to solar, magnetospheric and upper atmospheric forcing. Combined tomographic measurements of ionospheric density can be used to study the global-scale ionospheric circulation and small-scale ionospheric structures that cause scintillation of trans-ionospheric signals. The data can support a wide range of studies, including Sub-auroral Polarization Streams (SAPS), low latitude plasma instabilities and the generation of equatorial spread F bubbles, and the role of atmospheric waves and layers and sudden stratospheric warming (SSW) events in traveling ionospheric disturbances (TID).

  4. A measurement system applicable for landslide experiments in the field.

    PubMed

    Guo, Wen-Zhao; Xu, Xiang-Zhou; Wang, Wen-Long; Yang, Ji-Shan; Liu, Ya-Kun; Xu, Fei-Long

    2016-04-01

    Observation of gravity erosion in the field with strong sunshine and wind poses a challenge. Here, a novel topography meter together with a movable tent addresses the challenge. With the topography meter, a 3D geometric shape of the target surface can be digitally reconstructed. Before the commencement of a test, the laser generator position and the camera sightline should be adjusted with a sight calibrator. Typically, the topography meter can measure the gravity erosion on the slope with a gradient of 30°-70°. Two methods can be used to obtain a relatively clear video, despite the extreme steepness of the slopes. One method is to rotate the laser source away from the slope to ensure that the camera sightline remains perpendicular to the laser plane. Another way is to move the camera farther away from the slope in which the measured volume of the slope needs to be corrected; this method will reduce distortion of the image. In addition, installation of tent poles with concrete columns helps to surmount the altitude difference on steep slopes. Results observed by the topography meter in real landslide experiments are rational and reliable.

  5. Finite element analysis of cylinder shell resonator and design of intelligent density meter

    NASA Astrophysics Data System (ADS)

    W, Sui X.; M, Fan Y.; X, Zhang G.; R, Qiu Z.

    2005-01-01

    On the basis of the mathematical model and finite element analysis of the cylinder shell resonator, a novel resonant liquid density meter is designed. The meter consists of a cylinder shell resonator fixed on both ends, a measurement circuit with automatic gain control and automatic phase control, and a signal processing system with microcomputer unit C8051F021. The density meter is insensitive to the liquid pressure, and it can intelligently compensate for the temperature. The experiment results show the meter characteristic coefficients of K0, K1, and K2 at 25 centigrade are -129.5668 kg m-3, -0.2535 × 106 kg m-3 s-1 and 0.6239 × 1010 kg m-3 s-2, respectively. The accuracy of the sensor is ±0.1% in range of 700-900 kg m-3

  6. A single chip 2 Gbit/s clock recovery subsystem for digital communications

    NASA Astrophysics Data System (ADS)

    Hickling, Ronald M.

    A self-contained clock recovery/data resynchronizer phase locked loop (PLL) for use in microwave and fiber optic digital communications has been fabricated using GaAs integrated circuit technology. The IC contains the analog and digital components for the PLL: an edge-triggered phase detector based on a 1.2 GHz phase/frequency comparator, an op amp for creating the loop filter, and a VCO based on a differential source-coupled pair amplifier.

  7. Hybrid Analog/Digital Receiver

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.

    1989-01-01

    Advanced hybrid analog/digital receiver processes intermediate-frequency (IF) signals carrying digital data in form of phase modulation. Uses IF sampling and digital phase-locked loops to track carrier and subcarrier signals and to synchronize data symbols. Consists of three modules: IF assembly, signal-processing assembly, and test-signal assembly. Intended for use in Deep Space Network, but presumably basic design modified for such terrestrial uses as communications or laboratory instrumentation where signals weak and/or noise strong.

  8. Pupillary dilation as an index of task demands.

    PubMed

    Cabestrero, Raúl; Crespo, Antonio; Quirós, Pilar

    2009-12-01

    To analyze how pupillary responses reflect mental effort and allocation of processing resources under several load conditions, the pupil diameter of 18 participants was recorded during an auditory digit-span recall task under three load conditions: Low (5 digits), Moderate (8 digits), and Overload (11 digits). In previous research, under all load conditions a significant linear enlargement in pupil diameter was observed as each digit was presented. Significant dilations from the end of the presentation phase to the beginning of the recall phase were also observed but only under low and moderate loads. Contrary to previous research, under the Overload condition, no reduction in pupil diameter was observed when resource limits were exceeded; however, a plateau was observed when the ninth digit was presented until the beginning of the recall phase. Overall, pupillometric data seem to indicate that participants may keep processing actively even though resources are exceeded.

  9. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOEpatents

    Buchenauer, C.J.

    1981-09-23

    The quadrature phase angle phi (t) of a pair of quadrature signals S/sub 1/(t) and S/sub 2/(t) is digitally encoded on a real time basis by a quadrature digitizer for fractional phi (t) rotational excursions and by a quadrature up/down counter for full phi (t) rotations. The pair of quadrature signals are of the form S/sub 1/(t) = k(t) sin phi (t) and S/sub 2/(t) = k(t) cos phi (t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle phi (t).

  10. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOEpatents

    Buchenauer, C. Jerald

    1984-01-01

    The quadrature phase angle .phi.(t) of a pair of quadrature signals S.sub.1 (t) and S.sub.2 (t) is digitally encoded on a real time basis by a quadrature digitizer for fractional .phi.(t) rotational excursions and by a quadrature up/down counter for full .phi.(t) rotations. The pair of quadrature signals are of the form S.sub.1 (t)=k(t) sin .phi.(t) and S.sub.2 (t)=k(t) cos .phi.(t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle .phi.(t).

  11. Phase-locked loops. [analog, hybrid, discrete and digital systems

    NASA Technical Reports Server (NTRS)

    Gupta, S. C.

    1974-01-01

    The basic analysis and design procedures are described for the realization of analog phase-locked loops (APLL), hybrid phase-locked loops (HPLL), discrete phase-locked loops, and digital phase-locked loops (DPLL). Basic configurations are diagrammed, and performance curves are given. A discrete communications model is derived and developed. The use of the APLL as an optimum angle demodulator and the Kalman-Bucy approach to APLL design are discussed. The literature in the area of phase-locked loops is reviewed, and an extensive bibliography is given. Although the design of APLLs is fairly well documented, work on discrete, hybrid, and digital PLLs is scattered, and more will have to be done in the future to pinpoint the formal design of DPLLs.

  12. Scanning the Heavens

    NASA Astrophysics Data System (ADS)

    Hayes, Brian

    1994-12-01

    Gleaning further clues to the structure of the universe will require larger data samples. To that end, a major new survey of the skies called the Sloan Digital Star Survey (SDSS), is in preparation. It will catalog some 50 million galaxies and about 70 million stars. A new 2.5 meter telescope to be erected at Apache Point Observatory in New Mexico will be dedicated to the survey. The telescope is not the key innovation that will make the survey possible. The crucial factor is the technology for digitally recording large numbers of images and spectra and for automating the analysis, recognition, and classification of those images and spectra. The methods to be used are discussed.

  13. Three common faults in current practice that influence the validity of data obtained from electronic air pollution instrumentation.

    PubMed

    Dowd, G; Thomas, R S; Monkman, J L

    1975-01-01

    Instrumental development is now entering a more logical era, where the former artistic character of electronics is being replaced by cold technology. Because of this, one should be expect more reliability; however, there still exist many weak links in practical application. Digital readout systems and computer processing induce a false sense of security. In reality, it is the sample-measurement relationship that determines an instrument's credibility and not the number of digits on its meter. In describing three faulty practices that greatly influence an instrument's performance, it is hoped that measurement may be more closely related to the sample!

  14. Low Voltage MEMS Digital Loudspeaker Array Based on Thin-film PZT Actuators

    NASA Astrophysics Data System (ADS)

    Fanget, S.; Casset, F.; Dejaeger, R.; Maire, F.; Desloges, B.; Deutzer, J.; Morisson, R.; Bohard, Y.; Laroche, B.; Escato, J.; Leclere, Q.

    This paper reports on the development of a Digital Loudspeaker Array (DLA) solution based on Pb(Zr0.52,Ti0.48)O3 (PZT) thin-film actuated membranes. These membranes called speaklets are arranged in a matrix and operate in a binary manner by emitting short pulses of sound pressure. Using the principle of additivity of pressures in the air, it is possible to reconstruct audible sounds. For the first time, electromechanical and acoustic characterizations are reported on a 256-MEMS-membranes DLA. Sounds audible as far as several meters from the loudspeaker have been generated using low voltage (8 V).

  15. Investigation of air transportation technology at Ohio University, 1980. [general aviation aircraft and navigation aids

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. H.

    1981-01-01

    Specific configurations of first and second order all digital phase locked loops were analyzed for both ideal and additive gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation was evaluated along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop were consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application. For all cases tested, the experimental data showed close agreement with the analytical results indicating that the Markov chain model for first and second order digital phase locked loops are valid.

  16. Operant learning of Drosophila at the torque meter.

    PubMed

    Brembs, Bjoern

    2008-06-16

    For experiments at the torque meter, flies are kept on standard fly medium at 25 degrees C and 60% humidity with a 12hr light/12hr dark regime. A standardized breeding regime assures proper larval density and age-matched cohorts. Cold-anesthetized flies are glued with head and thorax to a triangle-shaped hook the day before the experiment. Attached to the torque meter via a clamp, the fly's intended flight maneuvers are measured as the angular momentum around its vertical body axis. The fly is placed in the center of a cylindrical panorama to accomplish stationary flight. An analog to digital converter card feeds the yaw torque signal into a computer which stores the trace for later analysis. The computer also controls a variety of stimuli which can be brought under the fly's control by closing the feedback loop between these stimuli and the yaw torque trace. Punishment is achieved by applying heat from an adjustable infrared laser.

  17. Bluetooth technology for prevention of dental caries.

    PubMed

    Kolahi, Jafar; Fazilati, Mohamad

    2009-12-01

    Caries is caused when the pH at the tooth surface drops below 5.5. A miniaturized and autonomous pH monitoring nodes can be attached to the tooth surface, like a tooth jewel. This intelligent sensor includes three components: (a) digital micro pH meter, (b) power supply, (c) wireless communicating device. The micro pH meter facilitates long term tooth surface pH monitoring and providing real time feedback to the patients and dental experts. Power supply of this system will be microfabricated biocatalytic fuel cell (enzymatic micro-battery) using organic compounds (e.g. formate or glucose) as the fuel to generate electricity. When micro pH meter detects the pH lower than 5.5, wireless Bluetooth device sends a caution (e.g. "you are at risk of dental caries") to external monitoring equipment such as mobile phone or a hands-free heads. After reception of the caution, subjects should use routine brushing and flossing procedure or use a medicated chewing gum (e.g. chlorhexidine containing chewing gum) or rinse with a mouthwash.

  18. Flow Meter Based on Freely Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Green, Adam; Qi, Zhiyuan; Park, Cheol; Glaser, Matthew; Maclennan, Joseph; Clark, Noel

    We present the realization of a idealized 2D hydrodynamic system coupled to air-flow, and show that freely suspended films (FSF) of smectic liquid crystals can be used as a novel flow-meter. Freely-suspended films of liquid crystals are one of the closest physical realizations of an idealized 2D fluid. The velocity of air-flow above a film suspended above a channel can be inferred by studying the velocity profile of the smectic film. This velocity profile can be measured using digital video microscopy to track the inclusions present in the moving film. The velocity profile is then fitted to the coupled 2D solutions of an embedded fluid in air, and the velocity of the air can then be extracted. This flow meter serves as a demonstration of a robust test-bed for further exploration of 2D hydrodynamics. This work was supported by NASA Grant No. NNX-13AQ81G, NSF MRSEC Grant No. DMR-0820579, and DMR-1420736.

  19. User characteristics of a smartphone app to reduce alcohol consumption.

    PubMed

    Garnett, Claire; Crane, David; West, Robert; Michie, Susan; Brown, Jamie; Winstock, Adam

    2017-12-01

    Digital interventions are available to help people reduce their alcohol consumption, but it is not known who uses these interventions and how this treatment-seeking group compares with the general population of drinkers. The study objective was to compare the socio-demographic and drinking characteristics of users of the 'Drinks Meter' smartphone app with the general population of drinkers in England and website users of the same intervention. Data were used from the Drinks Meter app and website, and a nationally representative cross-sectional survey in England (Alcohol Toolkit Study). Participants were drinkers aged 16+ in England. Data were collected on participants' age, gender, region, sexual orientation, social grade and AUDIT score. Regression analyses were conducted to assess differences in socio-demographic and drinking characteristics between samples. Drinks Meter app users, compared with drinkers of the general population, were younger, more likely to be from the South, not heterosexual, less likely to be of a lower social grade and had a higher mean AUDIT score. Drinks Meter app users were younger than website users and reported greater alcohol consumption and related harms. Drinkers using the Drinks Meter app are more likely to be younger and report greater alcohol consumption and related harms compared with the general population of drinkers in England and website users of the same intervention. Apps that provide feedback on drinking appear to be reaching those who report greater alcohol consumption and related harms.

  20. Monitoring the metering performance of an electronic voltage transformer on-line based on cyber-physics correlation analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhu; Li, Hongbin; Tang, Dengping; Hu, Chen; Jiao, Yang

    2017-10-01

    Metering performance is the key parameter of an electronic voltage transformer (EVT), and it requires high accuracy. The conventional off-line calibration method using a standard voltage transformer is not suitable for the key equipment in a smart substation, which needs on-line monitoring. In this article, we propose a method for monitoring the metering performance of an EVT on-line based on cyber-physics correlation analysis. By the electrical and physical properties of a substation running in three-phase symmetry, the principal component analysis method is used to separate the metering deviation caused by the primary fluctuation and the EVT anomaly. The characteristic statistics of the measured data during operation are extracted, and the metering performance of the EVT is evaluated by analyzing the change in statistics. The experimental results show that the method successfully monitors the metering deviation of a Class 0.2 EVT accurately. The method demonstrates the accurate evaluation of on-line monitoring of the metering performance on an EVT without a standard voltage transformer.

  1. North Dakota aeromagnetic and gravity maps and data, a web site for distribution of data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Hill, Patricia L.

    2003-01-01

    The North Dakota aeromagnetic grid is constructed from grids that combine information collected in 13 separate aeromagnetic surveys conducted between 1978 and 2001. The data from these surveys are of varying quality. The design and specifications (terrain clearance, sampling rates, line spacing, and reduction procedures) varied from survey to survey depending on the purpose of the project and the technology of that time. Every attempt was made to acquire the data in digital form. Most of the available digital data were obtained from aeromagnetic surveys flown by the U.S. Geological Survey (USGS), flown on contract with the USGS, or were obtained from other federal agencies and state universities. Some of the 1980 data are available only on hand-contoured maps and had to be digitized. These maps were digitized along flight-line/contour-line intersections, which is considered to be the most accurate method of recovering the original data. Digitized data are available as USGS Open File Report 99-557. All surveys have been continued to 304.8 meters (1000 feet) above ground and then blended or merged together.

  2. 3D motion picture of transparent gas flow by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Fukuda, Takahito; Wang, Yexin; Xia, Peng; Kakue, Takashi; Nishio, Kenzo; Matoba, Osamu

    2018-03-01

    Parallel phase-shifting digital holography is a technique capable of recording three-dimensional (3D) motion picture of dynamic object, quantitatively. This technique can record single hologram of an object with an image sensor having a phase-shift array device and reconstructs the instantaneous 3D image of the object with a computer. In this technique, a single hologram in which the multiple holograms required for phase-shifting digital holography are multiplexed by using space-division multiplexing technique pixel by pixel. We demonstrate 3D motion picture of dynamic and transparent gas flow recorded and reconstructed by the technique. A compressed air duster was used to generate the gas flow. A motion picture of the hologram of the gas flow was recorded at 180,000 frames/s by parallel phase-shifting digital holography. The phase motion picture of the gas flow was reconstructed from the motion picture of the hologram. The Abel inversion was applied to the phase motion picture and then the 3D motion picture of the gas flow was obtained.

  3. Watershed boundaries and digital elevation model of Oklahoma derived from 1:100,000-scale digital topographic maps

    USGS Publications Warehouse

    Cederstrand, J.R.; Rea, A.H.

    1995-01-01

    This document provides a general description of the procedures used to develop the data sets included on this compact disc. This compact disc contains watershed boundaries for Oklahoma, a digital elevation model, and other data sets derived from the digital elevation model. The digital elevation model was produced using the ANUDEM software package, written by Michael Hutchinson and licensed from the Centre for Resource and Environmental Studies at The Australian National University. Elevation data (hypsography) and streams (hydrography) from digital versions of the U.S. Geological Survey 1:100,000-scale topographic maps were used by the ANUDEM package to produce a hydrologically conditioned digital elevation model with a 60-meter cell size. This digital elevation model is well suited for drainage-basin delineation using automated techniques. Additional data sets include flow-direction, flow-accumulation, and shaded-relief grids, all derived from the digital elevation model, and the hydrography data set used in producing the digital elevation model. The watershed boundaries derived from the digital elevation model have been edited to be consistent with contours and streams from the U.S. Geological Survey 1:100,000-scale topographic maps. The watershed data set includes boundaries for 11-digit Hydrologic Unit Codes (watersheds) within Oklahoma, and 8-digit Hydrologic Unit Codes (cataloging units) outside Oklahoma. Cataloging-unit boundaries based on 1:250,000-scale maps outside Oklahoma for the Arkansas, Red, and White River basins are included. The other data sets cover Oklahoma, and where available, portions of 1:100,000-scale quadrangles adjoining Oklahoma.

  4. A coherent through-wall MIMO phased array imaging radar based on time-duplexed switching

    NASA Astrophysics Data System (ADS)

    Chen, Qingchao; Chetty, Kevin; Brennan, Paul; Lok, Lai Bun; Ritchie, Matthiew; Woodbridge, Karl

    2017-05-01

    Through-the-Wall (TW) radar sensors are gaining increasing interest for security, surveillance and search and rescue applications. Additionally, the integration of Multiple-Input, Multiple-Output (MIMO) techniques with phased array radar is allowing higher performance at lower cost. In this paper we present a 4-by-4 TW MIMO phased array imaging radar operating at 2.4 GHz with 200 MHz bandwidth. To achieve high imaging resolution in a cost-effective manner, the 4 Tx and 4 Rx elements are used to synthesize a uniform linear array (ULA) of 16 virtual elements. Furthermore, the transmitter is based on a single-channel 4-element time-multiplexed switched array. In transmission, the radar utilizes frequency modulated continuous wave (FMCW) waveforms that undergo de-ramping on receive to allow digitization at relatively low sampling rates, which then simplifies the imaging process. This architecture has been designed for the short-range TW scenarios envisaged, and permits sufficient time to switch between antenna elements. The paper first outlines the system characteristics before describing the key signal processing and imaging algorithms which are based on traditional Fast Fourier Transform (FFT) processing. These techniques are implemented in LabVIEW software. Finally, we report results from an experimental campaign that investigated the imaging capabilities of the system and demonstrated the detection of personnel targets. Moreover, we show that multiple targets within a room with greater than approximately 1 meter separation can be distinguished from one another.

  5. Loran digital phase-locked loop and RF front-end system error analysis

    NASA Technical Reports Server (NTRS)

    Mccall, D. L.

    1979-01-01

    An analysis of the system performance of the digital phase locked loops (DPLL) and RF front end that are implemented in the MINI-L4 Loran receiver is presented. Three of the four experiments deal with the performance of the digital phase locked loops. The other experiment deals with the RF front end and DPLL system error which arise in the front end due to poor signal to noise ratios. The ability of the DPLLs to track the offsets is studied.

  6. Dark Skies Ahead? Activities to Raise Awareness during the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Isbell, D.; Pompea, S.

    2007-12-01

    "Dark Skies as a Universal Resource” is one of 7 themes targeted for the International Year of Astronomy in 2009. The theme's goal is to raise public awareness of the impact of artificial lighting on local environments and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To reach this goal, activities are being developed which highlight dark skies preservation issues 1) through new technology (e.g., programs at planetaria, blogging, podcasting); 2) at events such as star parties and observatory open houses; 3) in arts, entertainment and storytelling (e.g., art competitions, documentaries, lectures, native American traditions); 4) through unaided-eye and digital-meter star count programs involving citizen-scientists; and 5) by relating them to public health, economic issues, ecological consequences, energy conservation, safety and security. A centerpiece of the Dark Skies theme is the unaided-eye and digital-meter versions of the GLOBE at Night program. The unaided-eye version directs citizen-scientists on how to observe and record the brightness of the night sky by matching its appearance toward the constellation of Orion with one of 7 stellar maps of different limiting magnitudes. For the "digital” version, low-cost meters are used by citizen-scientists to measure the integrated sky brightness. Data sets and maps of both versions are supplied on-line for further capstone activities. In the presentation, we will outline the activities being developed as well as plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".

  7. Personalized Digital Interventions Showed no Impact on Risky Drinking in Young Adults: A Pilot Randomized Controlled Trial.

    PubMed

    Davies, Emma L; Lonsdale, Adam J; Hennelly, Sarah E; Winstock, Adam R; Foxcroft, David R

    2017-11-01

    To assess the effectiveness of two personalized digital interventions (OneTooMany and Drinks Meter) compared to controls. Randomized controlled trial (AEARCTR-0,001,082). Volunteers for the study, aged 18-30, were randomly allocated to one of two interventions or one of two control groups and were followed up 4 weeks later. Primary outcomes were AUDIT-C, drinking harms and pre-loading. Drinks Meter provided participants with brief screening and advice for alcohol in addition to normative feedback, information on calories consumed and money spent. OneTooMany presented a series of socially embarrassing scenarios that may occur when drinking, and participants were scored according to if/how recently they had been experienced. The study failed to recruit and obtain sufficient follow-up data to reach a prior estimated power for detecting a difference between groups and there was no indication in the analysable sample of 402 subjects of a difference on the primary outcome measures (Drinks Meter; AUDIT-C IRR = 0.98 (0.89-1.09); Pre-loading IRR = 1.01 (0.95-1.07); Harms IRR = 0.97 (0.79-1.20); OneTooMany; AUDIT-C IRR = 0.96 (0.86-1.07); Pre-loading IRR = 0.99 (0.93-1.06); Harms IRR = 1.16 (0.94-1.43). Further research is needed on the efficacy of such instruments and their ingredients. However, recruitment and follow-up are a challenge. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  8. The Effect of Remote Sensor Spatial Resolution in Monitoring U.S. Army Training Maneuver Sites

    DTIC Science & Technology

    1990-12-01

    THE EFFECT OF REMOTE SENSOR SPATIAL RESOLUTION IN MONITORING U.S. ARMY...Multispectral Scanner with 6.5 meter spatial resolution provided the most effective digital data set for enhancing tank trails. However, this Airborne Scanner...primary objective of this research was to determine the capabilities and limitations of remote sensor systems having different spatial resolutions to

  9. REMOTE SENSING OF BIOMASS, LEAF-AREA-INDEX AND CHLOROPHYLL A AND B CONTENT IN THE ACE BASIN AND NATIONAL ESTUARINE RESEARCH RESERVE USING SUB-METER DIGITAL CAMERA IMAGERY. (R828677C003)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. On-line surveillance of a dynamic process by a moving system based on pulsed digital holographic interferometry.

    PubMed

    Pedrini, Giancarlo; Alexeenko, Igor; Osten, Wolfgang; Schnars, Ulf

    2006-02-10

    A method based on pulsed digital holographic interferometry for the measurement of dynamic deformations of a surface by using a moving system is presented. The measuring system may move with a speed of several meters per minute and can measure deformation of the surface with an accuracy of better than 50 nm. The deformation is obtained by comparison of the wavefronts recorded at different times with different laser pulses produced by a Nd:YAG laser. The effect due to the movement of the measuring system is compensated for by digital processing of the different holograms. The system is well suited for on-line surveillance of a dynamic process such as laser welding and friction stir welding. Experimental results are presented, and the advantages of the method are discussed.

  11. Spatial Resolution Effects of Digital Terrain Models on Landslide Susceptibility Analysis

    NASA Astrophysics Data System (ADS)

    Chang, K. T.; Dou, J.; Chang, Y.; Kuo, C. P.; Xu, K. M.; Liu, J. K.

    2016-06-01

    The purposes of this study are to identify the maximum number of correlated factors for landslide susceptibility mapping and to evaluate landslide susceptibility at Sihjhong river catchment in the southern Taiwan, integrating two techniques, namely certainty factor (CF) and artificial neural network (ANN). The landslide inventory data of the Central Geological Survey (CGS, MOEA) in 2004-2014 and two digital elevation model (DEM) datasets including a 5-meter LiDAR DEM and a 30-meter Aster DEM were prepared. We collected thirteen possible landslide-conditioning factors. Considering the multi-collinearity and factor redundancy, we applied the CF approach to optimize these thirteen conditioning factors. We hypothesize that if the CF values of the thematic factor layers are positive, it implies that these conditioning factors have a positive relationship with the landslide occurrence. Therefore, based on this assumption and positive CF values, seven conditioning factors including slope angle, slope aspect, elevation, terrain roughness index (TRI), terrain position index (TPI), total curvature, and lithology have been selected for further analysis. The results showed that the optimized-factors model provides a better accuracy for predicting landslide susceptibility in the study area. In conclusion, the optimized-factors model is suggested for selecting relative factors of landslide occurrence.

  12. Lunar Pole Illumination and Communications Statistics Computed from GSSR Elevation Data

    NASA Technical Reports Server (NTRS)

    Bryant, Scott

    2010-01-01

    The Goldstone Solar System RADAR (GSSR) group at JPL produced a Digital Elevation Model (DEM) of the lunar south pole using data obtained in 2006. This model has 40-meter horizontal resolution and about 5-meter relative vertical accuracy. This paper uses that Digital Elevation Model to compute average solar illumination and Earth visibility near the lunar south pole. This data quantifies solar power and Earth communications resources at proposed lunar base locations. The elevation data were converted into local terrain horizon masks, then converted into selenographic latitude and longitude coordinates. The horizon masks were compared to latitude, longitude regions bounding the maximum Sun and Earth motions relative to the moon. Proposed lunar south pole base sites were examined in detail, with the best site showing multi-year averages of solar power availability of 92% and Direct-To-Earth (DTE) communication availability of about 50%. Results are compared with a theoretical model, and with actual sun and Earth visibility averaged over the years 2009 to 2028. Results for the lunar North pole were computed using the GSSR DEM of the lunar North pole produced in 1997. The paper also explores using a heliostat to reduce the photovoltaic power system mass and complexity.

  13. Whole-Home Dehumidifiers: Field-Monitoring Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Tom; Willem, Henry; Ni, Chun Chun

    2014-09-23

    Lawrence Berkeley National Laboratory (LBNL) initiated a WHD field-metering study to expand current knowledge of and obtain data on WHD operation and energy consumption in real-world applications. The field study collected real-time data on WHD energy consumption, along with information regarding housing characteristics, consumer behavior, and various outdoor conditions expected to affect WHD performance and efficiency. Although the metering study collected similar data regarding air conditioner operation, this report discusses only WHDs. The primary objectives of the LBNL field-metering study are to (1) expand knowledge of the configurations, energy consumption profiles, consumer patterns of use (e.g., relative humidity [RH] settings),more » and environmental parameters of whole-home dehumidification systems; and (2) develop distributions of hours of dehumidifier operation in four operating modes: off, standby, fan-only, and compressor (also called dehumidification mode). Profiling energy consumption entails documenting the power consumption, duration of power consumption in different modes, condensate generation, and properties of output air of an installed system under field conditions of varying inlet air temperature and RH, as well as system configuration. This profiling provides a more detailed and deeper understanding of WHD operation and its complexities. This report describes LBNL’s whole-home dehumidification field-metering study conducted at four homes in Wisconsin and Florida. The initial phase of the WHD field-metering study was conducted on one home in Madison, Wisconsin, from June to December of 2013. During a second phase, three Florida homes were metered from June to October of 2014. This report presents and examines data from the Wisconsin site and from the three Florida sites.« less

  14. The digital phase-locked loop as a near-optimum FM demodulator.

    NASA Technical Reports Server (NTRS)

    Kelly, C. N.; Gupta, S. C.

    1972-01-01

    This paper presents an approach to the optimum digital demodulation of a continuous-time FM signal using stochastic estimation theory. The primary result is a digital phase-locked loop realization possessing performance characteristics that approach those of the analog counterpart. Some practical considerations are presented and simulation results for a first-order message model are presented.

  15. Digital Resource Exchange About Music (DREAM): Phase 2 Usability Testing

    ERIC Educational Resources Information Center

    Upitis, Rena; Boese, Karen; Abrami, Philip C.; Anwar, Zaeem

    2015-01-01

    The Digital Resource Exchange About Music (DREAM) is a virtual space for exchanging information about digital learning tools. The purpose of the present study was to determine how users responded to DREAM in the first four months after its public release. This study is the second phase of usability research on DREAM, and was conducted to guide…

  16. From the air to digital landscapes: generating reach-scale topographic models from aerial photography in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Vericat, Damià; Narciso, Efrén; Béjar, Maria; Tena, Álvaro; Brasington, James; Gibbins, Chris; Batalla, Ramon J.

    2014-05-01

    Digital Terrain Models are fundamental to characterise landscapes, to support numerical modelling and to monitor topographic changes. Recent advances in topography, remote sensing and geomatics are providing new opportunities to obtain high density/quality and rapid topographic data. In this paper we present an integrated methodology to rapidly obtain reach scale topographic models of fluvial systems. This methodology has been tested and is being applied to develop event-scale terrain models of a 11-km river reach in the highly dynamic Upper Cinca (NE Iberian Peninsula). This research is conducted in the background of the project MorphSed. The methodology integrates (a) the acquisition of dense point clouds of the exposed floodplain (aerial photography and digital photogrammetry); (b) the registration of all observations to the same coordinate system (using RTK-GPS surveyed GCPs); (c) the acquisition of bathymetric data (using aDcp measurements integrated with RTK-GPS); (d) the intelligent decimation of survey observations (using the open source TopCat toolkit) and, finally, (e) data fusion (elaborating Digital Elevation Models). In this paper special emphasis is given to the acquisition and registration of point clouds. 3D point clouds are obtained from aerial photography and by means of automated digital photogrammetry. Aerial photographs are taken at 275 meters above the ground by means of a SLR digital camera manually operated from an autogyro. Four flight paths are defined in order to cover the 11 km long and 500 meters wide river reach. A total of 45 minutes are required to fly along these paths. Camera has been previously calibrated with the objective to ensure image resolution at around 5 cm. A total of 220 GCPs are deployed and RTK-GPS surveyed before the flight is conducted. Two people and one full workday are necessary to deploy and survey the full set of GCPs. Field data acquisition may be finalised in less than 2 days. Structure-from-Motion is subsequently applied in the lab using Agisoft PhotoScan, photographs are aligned and a 3d point cloud is generated. GCPs are used to geo-register all point clouds. This task may be time consuming since GCPs need to be identified in at least two of the pictures. A first automatic identification of GCPs positions is performed in the rest of the photos, although user supervision is necessary. Preliminary results show as geo-registration errors between 0.08 and and 0.10 meters can be obtained. The number of GCPs is being degraded and the quality of the point cloud assessed based on check points (the extracted GCPs). A critical analysis of GCPs density and scene locations is being performed (results in preparation). The results show that automated digital photogrammetry may provide new opportunities in the acquisition of topographic data at multiple temporal and spatial scales, being competitive with other more expensive techniques that, in turn, may require much more time to acquire field observations. SfM offers new opportunities to develop event-scale terrain models of fluvial systems suitable for hydraulic modelling and to study topographic change in highly dynamic environments.

  17. Quantification of instantaneous flow rate and dynamically changing effective orifice area using a geometry independent three-dimensional digital color Doppler method: An in vitro study mimicking mitral regurgitation.

    PubMed

    Li, Xiaokui; Wanitkun, Suthep; Li, Xiang-Ning; Hashimoto, Ikuo; Mori, Yoshiki; Rusk, Rosemary A; Hicks, Shannon E; Sahn, David J

    2002-10-01

    Our study was intended to test the accuracy of a 3-dimensional (3D) digital color Doppler flow convergence (FC) method for assessing the effective orifice area (EOA) in a new dynamic orifice model mimicking a variety of mitral regurgitation. FC surface area methods for detecting EOA have been reported to be useful for quantifying the severity of valvular regurgitation. With our new 3D digital direct FC method, all raw velocity data are available and variable Nyquist limits can be selected for computation of direct FC surface area for computing instantaneous flow rate and temporal change of EOA. A 7.0-MHz multiplane transesophageal probe from an ultrasound system (ATL HDI 5000) was linked and controlled by a computer workstation to provide 3D images. Three differently shaped latex orifices (zigzag, arc, and straight slit, each with cutting-edge length of 1 cm) were used to mimic the dynamic orifice of mitral regurgitation. 3D FC surface computation was performed on parallel slices through the 3D data set at aliasing velocities (14-48 cm/s) selected to maximize the regularity and minimize lateral dropout of the visualized 3D FC at 5 points per cardiac cycle. Using continuous wave velocity for each, 3D-calculated EOA was compared with EOA determined by using continuous wave Doppler and the flow rate from a reference ultrasonic flow meter. Simultaneous digital video images were also recorded to define the actual orifice size for 9 stroke volumes (15-55 mL/beat with maximum flow rates 45-182 mL/s). Over the 9 pulsatile flow states and 3 orifices, 3D FC EOAs (0.05-0.63 cm(2)) from different phases of the cardiac cycle in each pump setting correlated well with reference EOA (r = 0.89-0.92, SEE = 0.027-0.055cm(2)) and they also correlated well with digital video images of the actual orifice peak (r = 0.97-0.98, SEE = 0.016-0.019 cm(2)), although they were consistently smaller, as expected by the contraction coefficient. The digital 3D FC method can accurately predict flow rate, and, thus, EOA (in conjunction with continuous wave Doppler), because it allows direct FC surface measurement despite temporal variability of FC shape.

  18. Sandwave Morphologies and Dynamics in a Continental Shelf Environment : Example of the Banc du Four (western Brittany, France)

    NASA Astrophysics Data System (ADS)

    Franzetti, M.; Garlan, T.; Le Roy, P.; Delacourt, C.; Cancouët, R.; Graindorge, D.; Deschamps, A.

    2011-12-01

    Marine sand dunes and sandbanks are mainly observed in continental tidal shelves (North Sea, South China Sea, North Atlantic America) and may be highly dynamic (for example up to 75 m/y in the Marsdiep inlet). So they may pose a potential risk to offshore installations and shipping. Multitemporal mapping of sandwaves, necessary to mitigate this hazard, is complicated by their dynamic character, which is still poorly understood especially in the offshore domain. In consequence, these structures are often defined as moribund at depths greater than 30 meters. The aim of this investigation is to study evolution of deeper (110 meters) complex set of sand bedforms : "Banc du Four" located in the Iroise Sea. The study area is exposed to strong tidal currents and storm waves at the junction of the Northeast Atlantic Ocean and the Western English Channel, conditions favorable to sediment dynamics. The bathymetric data, which form the basis of this study, are two Digital Terrain Modeling's (DTM's) derived from MultiBeam Echosounder (MBES) surveys : "Pourquoi-Pas?" oceanographic research vessel (R/V) in February 2009 (5 meters resolution DTM) and R/V "Albert Lucas" in August 2010 (2 meters resolution DTM). Sandwave parameters (water depth, shape, wavelength, height, symmetry index, ...) have been derived from the 2009 bathymetric data. The Banc du Four is characterized by a large sandbank (45 meters height and 2 km width) flanked by dune fields. The morphological characteristics of the dunes vary greatly (range 30 to 110 meters depth, 40 meters maximal height, 600 meters maximal width, symmetrical to asymmetrical, ...). However, this complexity can be explained by the involved sandwave dynamic (range 0 to 30 meters per year migration velocity). Spatial correlation method, applied on the two DTM's, are used to measure the migration rate. The high migration rates for deeper giant dunes bring to light the dynamic sandwave existence at depths exceeding 30-40 meters, contrary to previously accepted models. Dune asymmetry is proportional to migration rates and the lee side is always oriented towards the direction of movement. These relationships confirm the observations reported in the literature for shallower structures.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelnikov, N.; Vasserman, I.; Xu, J.

    As part of the R&D program of the LCLS-II project, a novel 3.4-meter-long undulator prototype with horizontal magnetic field and dynamic force compensation has recently been developed at the Advanced Photon Source (APS). Some previous steps in this development were the shorter 0.8-meter-long and 2.8-meter-long prototypes. Extensive mechanical and magnetic testing was carried out for each prototype, and each prototype was magnetically tuned using magnetic shims. Furthermore, the resulting performance of the 3.4-meter-long undulator prototype meets all requirements for the LCLS-II insertion device, including limits on the field integrals, phase errors, higher-order magnetic moments, and electron-beam trajectory for all operationalmore » gaps, as well as the reproducibility and accuracy of the gap settings.« less

  20. Digital second-order phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.

    1975-01-01

    Actual tests with second-order digital phase-locked loop at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. Loop thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.

  1. High-speed single-pixel digital holography

    NASA Astrophysics Data System (ADS)

    González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús

    2017-06-01

    The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.

  2. Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.; hide

    2014-01-01

    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).

  3. The microprocessor-based synthesizer controller

    NASA Technical Reports Server (NTRS)

    Wick, M. R.

    1980-01-01

    Implementation and performance of the microprocessor-based controllers and Dana Digiphase Synthesizer (DCO) installed in the Deep Space Network exciter in the 64-meter and 34-meter subnets to support uplink tuning required for the Voyager-Saturn Encounter is discussed. Test data in tests conducted during the production of the controllers verified the design objective for phase control accuracy of 10 to the - 12 power cycles in eight hours during ramping. Tests conducted require a phase error between a theoretical calculated value and the actual phase of no greater than + or - 1 cycle. Tests included (1) a ramp over a period of eight hours using a ramp rate which covers the synthesizer tuning range (40-51 MHz) and (2) a ramp sequence using the maximum rate (+ or kHz/s) over the tuning range.

  4. Advanced Receiver For Phase-Shift-Keyed Signals

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.

    1992-01-01

    ARX II is second "breadboard" version of advanced receiver, a hybrid digital/analog receiving subsystem, extracting symbols and Doppler shifts from weak phase-shift-keyed signals. Useful in terrestrial digital communication systems.

  5. BPSK Demodulation Using Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Garcia, Thomas R.

    1996-01-01

    A digital communications signal is a sinusoidal waveform that is modified by a binary (digital) information signal. The sinusoidal waveform is called the carrier. The carrier may be modified in amplitude, frequency, phase, or a combination of these. In this project a binary phase shift keyed (BPSK) signal is the communication signal. In a BPSK signal the phase of the carrier is set to one of two states, 180 degrees apart, by a binary (i.e., 1 or 0) information signal. A digital signal is a sampled version of a "real world" time continuous signal. The digital signal is generated by sampling the continuous signal at discrete points in time. The rate at which the signal is sampled is called the sampling rate (f(s)). The device that performs this operation is called an analog-to-digital (A/D) converter or a digitizer. The digital signal is composed of the sequence of individual values of the sampled BPSK signal. Digital signal processing (DSP) is the modification of the digital signal by mathematical operations. A device that performs this processing is called a digital signal processor. After processing, the digital signal may then be converted back to an analog signal using a digital-to-analog (D/A) converter. The goal of this project is to develop a system that will recover the digital information from a BPSK signal using DSP techniques. The project is broken down into the following steps: (1) Development of the algorithms required to demodulate the BPSK signal; (2) Simulation of the system; and (3) Implementation a BPSK receiver using digital signal processing hardware.

  6. Phase-lock-loop application for fiber optic receiver

    NASA Astrophysics Data System (ADS)

    Ruggles, Stephen L.; Wills, Robert W.

    1991-02-01

    Phase-locked loop circuits are frequently employed in communication systems. In recent years, digital phase-locked loop circuits were utilized in optical communications systems. In an optical transceiver system, the digital phase-locked loop circuit is connected to the output of the receiver to extract a clock signal from the received coded data (NRZ, Bi-Phase, or Manchester). The clock signal is then used to reconstruct or recover the original data from the coded data. A theoretical approach to the design of a digital phase-locked loop circuit operation at 1 and 50 MHz is described. Hardware implementation of a breadboard design to function at 1 MHz and a printed-circuit board designed to function at 50 MHz were assembled using emitter coupled logic (ECL) to verify experimentally the theoretical design.

  7. Phase-lock-loop application for fiber optic receiver

    NASA Technical Reports Server (NTRS)

    Ruggles, Stephen L.; Wills, Robert W.

    1991-01-01

    Phase-locked loop circuits are frequently employed in communication systems. In recent years, digital phase-locked loop circuits were utilized in optical communications systems. In an optical transceiver system, the digital phase-locked loop circuit is connected to the output of the receiver to extract a clock signal from the received coded data (NRZ, Bi-Phase, or Manchester). The clock signal is then used to reconstruct or recover the original data from the coded data. A theoretical approach to the design of a digital phase-locked loop circuit operation at 1 and 50 MHz is described. Hardware implementation of a breadboard design to function at 1 MHz and a printed-circuit board designed to function at 50 MHz were assembled using emitter coupled logic (ECL) to verify experimentally the theoretical design.

  8. PORTABLE METHANE FLUX METER - PHASE I

    EPA Science Inventory

    This Phase I project will investigate achieving a low power, portable system for measuring methane concentrations and fluxes. The system will combine diode laser-based trace gas concentration measurements with rapid wind speed measurements to determine fluxes using eddy cor...

  9. Sensing device and method for measuring emission time delay during irradiation of targeted samples utilizing variable phase tracking

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2006-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  10. Proposed U.S. Geological Survey standard for digital orthophotos

    USGS Publications Warehouse

    Hooper, David; Caruso, Vincent

    1991-01-01

    The U.S. Geological Survey has added the new category of digital orthophotos to the National Digital Cartographic Data Base. This differentially rectified digital image product enables users to take advantage of the properties of current photoimagery as a source of geographic information. The product and accompanying standard were implemented in spring 1991. The digital orthophotos will be quadrangle based and cast on the Universal Transverse Mercator projection and will extend beyond the 3.75-minute or 7.5-minute quadrangle area at least 300 meters to form a rectangle. The overedge may be used for mosaicking with adjacent digital orthophotos. To provide maximum information content and utility to the user, metadata (header) records exist at the beginning of the digital orthophoto file. Header information includes the photographic source type, date, instrumentation used to create the digital orthophoto, and information relating to the DEM that was used in the rectification process. Additional header information is included on transformation constants from the 1927 and 1983 North American Datums to the orthophoto internal file coordinates to enable the user to register overlays on either datum. The quadrangle corners in both datums are also imprinted on the image. Flexibility has been built into the digital orthophoto format for future enhancements, such as the provision to include the corresponding digital elevation model elevations used to rectify the orthophoto. The digital orthophoto conforms to National Map Accuracy Standards and provides valuable mapping data that can be used as a tool for timely revision of standard map products, for land use and land cover studies, and as a digital layer in a geographic information system.

  11. ERPs and oscillations during encoding predict retrieval of digit memory in superior mnemonists.

    PubMed

    Pan, Yafeng; Li, Xianchun; Chen, Xi; Ku, Yixuan; Dong, Yujie; Dou, Zheng; He, Lin; Hu, Yi; Li, Weidong; Zhou, Xiaolin

    2017-10-01

    Previous studies have consistently demonstrated that superior mnemonists (SMs) outperform normal individuals in domain-specific memory tasks. However, the neural correlates of memory-related processes remain unclear. In the current EEG study, SMs and control participants performed a digit memory task during which their brain activity was recorded. Chinese SMs used a digit-image mnemonic for encoding digits, in which they associated 2-digit groups with images immediately after the presentation of each even-position digit in sequences. Behaviorally, SMs' memory of digit sequences was better than the controls'. During encoding in the study phase, SMs showed an increased right central P2 (150-250ms post onset) and a larger right posterior high-alpha (10-14Hz, 500-1720ms) oscillation on digits at even-positions compared with digits at odd-positions. Both P2 and high-alpha oscillations in the study phase co-varied with performance in the recall phase, but only in SMs, indicating that neural dynamics during encoding could predict successful retrieval of digit memory in SMs. Our findings suggest that representation of a digit sequence in SMs using mnemonics may recruit both the early-stage attention allocation process and the sustained information preservation process. This study provides evidence for the role of dynamic and efficient neural encoding processes in mnemonists. Copyright © 2017. Published by Elsevier Inc.

  12. Distributed gas sensing with optical fibre photothermal interferometry.

    PubMed

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan

    2017-12-11

    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  13. Improving Estimates Of Phase Parameters When Amplitude Fluctuates

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Brown, D. H.; Hurd, W. J.

    1989-01-01

    Adaptive inverse filter applied to incoming signal and noise. Time-varying inverse-filtering technique developed to improve digital estimate of phase of received carrier signal. Intended for use where received signal fluctuates in amplitude as well as in phase and signal tracked by digital phase-locked loop that keeps its phase error much smaller than 1 radian. Useful in navigation systems, reception of time- and frequency-standard signals, and possibly spread-spectrum communication systems.

  14. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, phase 2. Volume 3: Design, fabrication, and site drawing

    NASA Astrophysics Data System (ADS)

    1983-03-01

    The design, fabrication, and site drawings associated with fabrication, installation, and check out of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs) were reported. The turbines are Darrieus type VAWTs with rotors 17 meters in diameter and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines are produced, three are installed and operable.

  15. Controlled-Root Approach To Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Stephens, Scott A.; Thomas, J. Brooks

    1995-01-01

    Performance tailored more flexibly and directly to satisfy design requirements. Controlled-root approach improved method for analysis and design of digital phase-locked loops (DPLLs). Developed rigorously from first principles for fully digital loops, making DPLL theory and design simpler and more straightforward (particularly for third- or fourth-order DPLL) and controlling performance more accurately in case of high gain.

  16. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  17. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  18. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  19. Designing Estimator/Predictor Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Hurd, W. J.

    1988-01-01

    Signal delays in equipment compensated automatically. New approach to design of digital phase-locked loop (DPLL) incorporates concepts from estimation theory and involves decomposition of closed-loop transfer function into estimator and predictor. Estimator provides recursive estimates of phase, frequency, and higher order derivatives of phase with respect to time, while predictor compensates for delay, called "transport lag," caused by PLL equipment and by DPLL computations.

  20. Coherent-Phase Monitoring Of Cavitation In Turbomachines

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1996-01-01

    Digital electronic signal-processing system analyzes outputs of accelerometers mounted on turbomachine to detect vibrations characteristic of cavitation. Designed to overcome limitation imposed by interference from discrete components. System digitally implements technique called "coherent-phase wide-band demodulation" (CPWBD), using phase-only (PO) filtering along envelope detection to search for unique coherent-phase relationship associated with cavitation and to minimize influence of large-amplitude discrete components.

  1. 30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.

    PubMed

    Ebrazeh, Ali; Mohseni, Pedram

    2015-06-01

    This paper reports an energy-efficient, impulse radio ultra wideband (IR-UWB) wireless link operating in 3-5 GHz for data telemetry over centimeter-to-meter range distances at rates extended to tens of Mbps. The link comprises an all-digital, integrated transmitter (TX) fabricated in 90 nm 1P/9M CMOS that incorporates a waveform-synthesis pulse generator and a timing generator for on-off-keying (OOK) pulse modulation and phase scrambling. The link also incorporates an energy-detection receiver (RX) realized with commercial off-the-shelf (COTS) components that performs radio-frequency (RF) filtering, amplification, logarithmic power detection for data demodulation and automatic level control for robust operation in the presence of distance variations. Employing a miniaturized, UWB, chip antenna for the TX and RX, wireless transmission of pseudo-random binary sequence (PRBS) data at rates up to 50 Mbps over 10 cm-1 m is shown. Further, employing a high-gain horn antenna for the RX, wireless transmission of PRBS data at rates up to 67 Mbps over 50 cm-4 m is shown with a TX energy consumption of 30 pJ/b (i.e., power consumption of 2 mW) from 1.2 V. The measured bit error rate (BER) in both cases is < 10(-7) . Results from wireless recording of the background current of a carbon-fiber microelectrode (CFM) in one fast-scan cyclic voltammetry (FSCV) scan using the IR-UWB link are also included, exhibiting excellent match with those obtained from a conventional frequency-shift-keyed (FSK) link at ~433 MHz.

  2. Digital accumulators in phase and frequency tracking loops

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami; Statman, Joseph I.

    1990-01-01

    Results on the effects of digital accumulators in phase and frequency tracking loops are presented. Digital accumulators or summers are used extensively in digital signal processing to perform averaging or to reduce processing rates to acceptable levels. For tracking the Doppler of high-dynamic targets at low carrier-to-noise ratios, it is shown through simulation and experiment that digital accumulators can contribute an additional loss in operating threshold. This loss was not considered in any previous study and needs to be accounted for in performance prediction analysis. Simulation and measurement results are used to characterize the loss due to the digital summers for three different tracking loops: a digital phase-locked loop, a cross-product automatic frequency tracking loop, and an extended Kalman filter. The tracking algorithms are compared with respect to their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. It is shown that failure to account for the effect of accumulators can result in an inaccurate performance prediction, the extent of which depends highly on the algorithm used.

  3. Radar wideband digital beamforming based on time delay and phase compensation

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Jiang, Defu

    2018-07-01

    In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.

  4. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Qi, Mei Qing; Chen, Tian Yi; Cui, Tie Jun

    2016-02-01

    Digital phase shifters have been applied in traditional phased array antennas to realize beam steering. However, the phase shifter deals with the phase of the induced current; hence, it has to be in the path of each element of the antenna array, making the phased array antennas very expensive. Metamaterials and/or metasurfaces enable the direct modulation of electromagnetic waves by designing subwavelength structures, which opens a new way to control the beam scanning. Here, we present a direct digital mechanism to control the scattered electromagnetic waves using coding metasurface, in which each unit cell loads a pin diode to produce binary coding states of “1” and “0”. Through data lines, the instant communications are established between the coding metasurface and the internal memory of field-programmable gate arrays (FPGA). Thus, we realize the digital modulation of electromagnetic waves, from which we present the field-programmable reflective antenna with good measurement performance. The proposed mechanism and functional device have great application potential in new-concept radar and communication systems.

  5. All-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors

    NASA Astrophysics Data System (ADS)

    Dunning, Jim; Garcia, Gerald; Lundberg, Jim; Nuckolls, Ed

    1995-04-01

    A frequency-synthesizing, all-digital phase-locked loop (ADPLL) is fully integrated with a 0.5 micron CMOS microprocessor. The ADPLL has a 50-cycle phase lock, has a gain mechanism independent of process, voltage, and temperature, and is immune to input jitter. A digitally-controlled oscillator (DCO) forms the core of the ADPLL and operates from 50 to 550 MHz, running at 4x the reference clock frequency. The DCO has 16 b of binarily weighted control and achieves LSB resolution under 500 fs.

  6. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  7. User Requirements Analysis For Digital Library Application Using Quality Function Deployment.

    NASA Astrophysics Data System (ADS)

    Wulandari, Lily; Sularto, Lana; Yusnitasari, Tristyanti; Ikasari, Diana

    2017-03-01

    This study attemp to build Smart Digital Library to be used by the wider community wherever they are. The system is built in the form of Smart Digital Library portal which uses semantic similarity method (Semantic Similarity) to search journals, articles or books by title or author name. This method is also used to determine the recommended books to be read by visitors of Smart Digital Library based on testimony from a previous reader automatically. Steps being taken in the development of Smart Digital Library system is the analysis phase, design phase, testing and implementation phase. At this stage of the analysis using WebQual for the preparation of the instruments to be distributed to the respondents and the data obtained from the respondents will be processed using Quality Function Deployment. In the analysis phase has the purpose of identifying consumer needs and technical requirements. The analysis was performed to a digital library on the web digital library Gunadarma University, Bogor Institute of Agriculture, University of Indonesia, etc. The questionnaire was distributed to 200 respondents. The research methodology begins with the collection of user requirements and analyse it using QFD. Application design is funded by the government through a program of Featured Universities Research by the Directorate General of Higher Education (DIKTI). Conclusions from this research are identified which include the Consumer Requirements of digital library application. The elements of the consumers requirements consists of 13 elements and 25 elements of Engineering Characteristics digital library requirements. Therefore the design of digital library applications that will be built, is designed according to the findings by eliminating features that are not needed by restaurant based on QFD House of Quality.

  8. Using digital inline holographic microscopy and quantitative phase contrast imaging to assess viability of cultured mammalian cells

    NASA Astrophysics Data System (ADS)

    Missan, Sergey; Hrytsenko, Olga

    2015-03-01

    Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.

  9. Sensing device and method for measuring emission time delay during irradiation of targeted samples

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2000-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  10. Development of a direct-sampling digital correlation radiometer for earth remote sensing applications

    NASA Astrophysics Data System (ADS)

    Fischman, Mark Andrew

    Synthetic thinned array radiometry, or STAR, has emerged as an attractive technique for high spatial resolution satellite imaging at L-band frequencies (1.4 GHz), especially for recovering soil moisture information. However, the implementation of aperture synthesis is limited by the complexity of controlling and synchronizing over 100 microwave heterodyne receivers in the array. In this dissertation, a 1.4 GHz direct-sampling digital radiometer (DSDR) is investigated as an alternative receiver architecture which simplifies the circuitry at each element and leads toward single-chip integration. A discrete-time statistical model of the direct-sampling radiometer is developed for the two constituent parts of aperture synthesis: the total power DSDR and the two-element correlation DSDR. General expressions for noise-equivalent sensitivity (NEDeltaT) and phase stability are derived in terms of quantization resolution, converter bias error, sampling rate, and rms timing jitter. Theoretical results show that a 3-bit L-band DSDR could attain a sensitivity within 4% of the figure for an ideal analog radiometer, and that sampling jitter has a negligible impact on the phase coherence between receivers. To accommodate large baseline STAR, which may suffer from fringe washing effects, a novel band division correlation (BDC) processor is proposed. Numerical simulations of a 27 meter L-band STAR sensor show that BDC improves spatial resolution by 40% at the swath edge. An L-band correlation DSDR prototype was designed and evaluated in a series of lab and field experiments. From noise floor tests, the observed sensitivity of the correlation DSDR fell within +/-0.4 dB of the theoretical NEDeltaT limit. Measurement of partially correlated noise sources demonstrated less than 0.1 dB loss in the cross-correlation output, implying a high level of phase stability in the samplers. However, an excess loss in fringe washing was discovered due to the non-linear nature of A/D conversion; as a remedy, coherence loss may be alleviated by applying the BDC technique. The DSDR hardware has served as a test bed for several important technologies, including wideband flash A/D conversion, field programmable logic, embedded systems, and thermoelectric temperature control.

  11. Automatic Alignment of Displacement-Measuring Interferometer

    NASA Technical Reports Server (NTRS)

    Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer

    2006-01-01

    A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.

  12. Digital micromirror device as amplitude diffuser for multiple-plane phase retrieval

    NASA Astrophysics Data System (ADS)

    Abregana, Timothy Joseph T.; Hermosa, Nathaniel P.; Almoro, Percival F.

    2017-06-01

    Previous implementations of the phase diffuser used in the multiple-plane phase retrieval method included a diffuser glass plate with fixed optical properties or a programmable yet expensive spatial light modulator. Here a model for phase retrieval based on a digital micromirror device as amplitude diffuser is presented. The technique offers programmable, convenient and low-cost amplitude diffuser for a non-stagnating iterative phase retrieval. The technique is demonstrated in the reconstructions of smooth object wavefronts.

  13. A simple bubble-flowmeter with quasicontinuous registration.

    PubMed

    Ludt, H; Herrmann, H D

    1976-07-22

    The construction of a simple bubble-flow-meter is described. The instrument has the following features: 1. automatic bubble injection, 2. precise measurement of the bubble passage time by a digital counter, 3. quasicontinuous registration of the flow rate, 4. alternative run with clear fluid (water) and coloured fluid (blood), 5. low volume, 6. closed measuring system for measurements in low and high pressure systems.

  14. Compression of computer generated phase-shifting hologram sequence using AVC and HEVC

    NASA Astrophysics Data System (ADS)

    Xing, Yafei; Pesquet-Popescu, Béatrice; Dufaux, Frederic

    2013-09-01

    With the capability of achieving twice the compression ratio of Advanced Video Coding (AVC) with similar reconstruction quality, High Efficiency Video Coding (HEVC) is expected to become the newleading technique of video coding. In order to reduce the storage and transmission burden of digital holograms, in this paper we propose to use HEVC for compressing the phase-shifting digital hologram sequences (PSDHS). By simulating phase-shifting digital holography (PSDH) interferometry, interference patterns between illuminated three dimensional( 3D) virtual objects and the stepwise phase changed reference wave are generated as digital holograms. The hologram sequences are obtained by the movement of the virtual objects and compressed by AVC and HEVC. The experimental results show that AVC and HEVC are efficient to compress PSDHS, with HEVC giving better performance. Good compression rate and reconstruction quality can be obtained with bitrate above 15000kbps.

  15. Vertically polarizing undulator with dynamic compensation of magnetic forces

    DOE PAGES

    Strelnikov, N.; Vasserman, I.; Xu, J.; ...

    2017-01-20

    As part of the R&D program of the LCLS-II project, a novel 3.4-meter-long undulator prototype with horizontal magnetic field and dynamic force compensation has recently been developed at the Advanced Photon Source (APS). Some previous steps in this development were the shorter 0.8-meter-long and 2.8-meter-long prototypes. Extensive mechanical and magnetic testing was carried out for each prototype, and each prototype was magnetically tuned using magnetic shims. Furthermore, the resulting performance of the 3.4-meter-long undulator prototype meets all requirements for the LCLS-II insertion device, including limits on the field integrals, phase errors, higher-order magnetic moments, and electron-beam trajectory for all operationalmore » gaps, as well as the reproducibility and accuracy of the gap settings.« less

  16. Accuracy concerns in digital speckle photography combined with Fresnel digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Zhao, Yuchen; Zemmamouche, Redouane; Vandenrijt, Jean-François; Georges, Marc P.

    2018-05-01

    A combination of digital holographic interferometry (DHI) and digital speckle photography (DSP) allows in-plane and out-of-plane displacement measurement between two states of an object. The former can be determined by correlating the two speckle patterns whereas the latter is given by the phase difference obtained from DHI. We show that the amplitude of numerically reconstructed object wavefront obtained from Fresnel in-line digital holography (DH), in combination with phase shifting techniques, can be used as speckle patterns in DSP. The accuracy of in-plane measurement is improved after correcting the phase errors induced by reference wave during reconstruction process. Furthermore, unlike conventional imaging system, Fresnel DH offers the possibility to resize the pixel size of speckle patterns situated on the reconstruction plane under the same optical configuration simply by zero-padding the hologram. The flexibility of speckle size adjustment in Fresnel DH ensures the accuracy of estimation result using DSP.

  17. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  18. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  19. Demonstration of holographic smart card system using the optical memory technology

    NASA Astrophysics Data System (ADS)

    Kim, JungHoi; Choi, JaeKwang; An, JunWon; Kim, Nam; Lee, KwonYeon; Jeon, SeckHee

    2003-05-01

    In this paper, we demonstrate the holographic smart card system using digital holographic memory technique that uses reference beam encrypted by the random phase mask to prevent unauthorized users from accessing the stored digital page. The input data that include document data, a picture of face, and a fingerprint for identification is encoded digitally and then coupled with the reference beam modulated by a random phase mask. Therefore, this proposed system can execute recording in the order of MB~GB and readout all personal information from just one card without any additional database system. Also, recorded digital holograms can't be reconstructed without a phase key and can't be copied by using computers, scanners, or photography.

  20. Distribution system model calibration with big data from AMI and PV inverters

    DOE PAGES

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; ...

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  1. Distribution system model calibration with big data from AMI and PV inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  2. 3D mapping of breast surface using digital fringe projection

    NASA Astrophysics Data System (ADS)

    Vairavan, Rajendaran; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Leng, Lai Siang; Wan Norhaimi, Wan Mokhzani; Marimuthu, Rajeswaran; Abdullah, Othman; Kirtsaeng, Supap

    2017-02-01

    Optical sensing technique has inherited non-contact nature for generating 3D surface mapping where its application ranges from MEMS component characterization, corrosion analysis, and vibration analysis. In particular, the digital fringe projection is utilized for 3D mapping of objects through the illumination of structured light for medical application extending from oral dental measurements, lower back deformation analysis, monitoring of scoliosis and 3D face reconstruction for biometric identification. However, the usage of digital fringe projection for 3D mapping of human breast is very minimal. Thus, this paper addresses the application of digital fringe projection for 3D mapping of breast surface based on total non-contact nature. In this work, phase shift method is utilized to perform the 3D mapping. The phase shifted fringe pattern are displayed through a digital projector onto the breast surface, and the distorted fringe patterns are captured by a CCD camera. A phase map is produced, and phase unwrapping was executed to obtain the 3D surface mapping of the breast. The surface height profile from 3D fringe projection was compared with the surface height measured by a direct method using electronic digital vernier caliper. Preliminary results showed the feasibility of digital fringe projection in providing a 3D mapping of breast and its application could be further extended for breast carcinoma detection.

  3. Multiphase flowmeter successfully measures three-phase flow at extremely high gas-volume fractions -- Gulf of Suez, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, R.B.; Borling, D.C.; Powers, B.S.

    1998-02-01

    A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less

  4. FIR digital filter-based ZCDPLL for carrier recovery

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2016-04-01

    The objective of this work is to analyse the performance of the newly proposed two-tap FIR digital filter-based first-order zero-crossing digital phase-locked loop (ZCDPLL) in the absence or presence of additive white Gaussian noise (AWGN). The introduction of the two-tap FIR digital filter widens the lock range of a ZCDPLL and improves the loop's operation in the presence of AWGN. The FIR digital filter tap coefficients affect the loop convergence behaviour and appropriate selection of those gains should be taken into consideration. The new proposed loop has wider locking range and faster acquisition time and reduces the phase error variations in the presence of noise.

  5. A Randomized Study Comparing Digital Imaging to Traditional Glass Slide Microscopy for Breast Biopsy and Cancer Diagnosis.

    PubMed

    Elmore, Joann G; Longton, Gary M; Pepe, Margaret S; Carney, Patricia A; Nelson, Heidi D; Allison, Kimberly H; Geller, Berta M; Onega, Tracy; Tosteson, Anna N A; Mercan, Ezgi; Shapiro, Linda G; Brunyé, Tad T; Morgan, Thomas R; Weaver, Donald L

    2017-01-01

    Digital whole slide imaging may be useful for obtaining second opinions and is used in many countries. However, the U.S. Food and Drug Administration requires verification studies. Pathologists were randomized to interpret one of four sets of breast biopsy cases during two phases, separated by ≥9 months, using glass slides or digital format (sixty cases per set, one slide per case, n = 240 cases). Accuracy was assessed by comparing interpretations to a consensus reference standard. Intraobserver reproducibility was assessed by comparing the agreement of interpretations on the same cases between two phases. Estimated probabilities of confirmation by a reference panel (i.e., predictive values) were obtained by incorporating data on the population prevalence of diagnoses. Sixty-five percent of responding pathologists were eligible, and 252 consented to randomization; 208 completed Phase I (115 glass, 93 digital); and 172 completed Phase II (86 glass, 86 digital). Accuracy was slightly higher using glass compared to digital format and varied by category: invasive carcinoma, 96% versus 93% ( P = 0.04); ductal carcinoma in situ (DCIS), 84% versus 79% ( P < 0.01); atypia, 48% versus 43% ( P = 0.08); and benign without atypia, 87% versus 82% ( P < 0.01). There was a small decrease in intraobserver agreement when the format changed compared to when glass slides were used in both phases ( P = 0.08). Predictive values for confirmation by a reference panel using glass versus digital were: invasive carcinoma, 98% and 97% (not significant [NS]); DCIS, 70% and 57% ( P = 0.007); atypia, 38% and 28% ( P = 0.002); and benign without atypia, 97% and 96% (NS). In this large randomized study, digital format interpretations were similar to glass slide interpretations of benign and invasive cancer cases. However, cases in the middle of the spectrum, where more inherent variability exists, may be more problematic in digital format. Future studies evaluating the effect these findings exert on clinical practice and patient outcomes are required.

  6. Reading recognition of pointer meter based on pattern recognition and dynamic three-points on a line

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Ding, Mingli; Fu, Wuyifang; Li, Yongqiang

    2017-03-01

    Pointer meters are frequently applied to industrial production for they are directly readable. They should be calibrated regularly to ensure the precision of the readings. Currently the method of manual calibration is most frequently adopted to accomplish the verification of the pointer meter, and professional skills and subjective judgment may lead to big measurement errors and poor reliability and low efficiency, etc. In the past decades, with the development of computer technology, the skills of machine vision and digital image processing have been applied to recognize the reading of the dial instrument. In terms of the existing recognition methods, all the parameters of dial instruments are supposed to be the same, which is not the case in practice. In this work, recognition of pointer meter reading is regarded as an issue of pattern recognition. We obtain the features of a small area around the detected point, make those features as a pattern, divide those certified images based on Gradient Pyramid Algorithm, train a classifier with the support vector machine (SVM) and complete the pattern matching of the divided mages. Then we get the reading of the pointer meter precisely under the theory of dynamic three points make a line (DTPML), which eliminates the error caused by tiny differences of the panels. Eventually, the result of the experiment proves that the proposed method in this work is superior to state-of-the-art works.

  7. Digital shaded-relief map of Venezuela

    USGS Publications Warehouse

    Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco

    2004-01-01

    The Digital Shaded-Relief Map of Venezuela is a composite of more than 20 tiles of 90 meter (3 arc second) pixel resolution elevation data, captured during the Shuttle Radar Topography Mission (SRTM) in February 2000. The SRTM, a joint project between the National Geospatial-Intelligence Agency (NGA) and the National Aeronautics and Space Administration (NASA), provides the most accurate and comprehensive international digital elevation dataset ever assembled. The 10-day flight mission aboard the U.S. Space Shuttle Endeavour obtained elevation data for about 80% of the world's landmass at 3-5 meter pixel resolution through the use of synthetic aperture radar (SAR) technology. SAR is desirable because it acquires data along continuous swaths, maintaining data consistency across large areas, independent of cloud cover. Swaths were captured at an altitude of 230 km, and are approximately 225 km wide with varying lengths. Rendering of the shaded-relief image required editing of the raw elevation data to remove numerous holes and anomalously high and low values inherent in the dataset. Customized ArcInfo Arc Macro Language (AML) scripts were written to interpolate areas of null values and generalize irregular elevation spikes and wells. Coastlines and major water bodies used as a clipping mask were extracted from 1:500,000-scale geologic maps of Venezuela (Bellizzia and others, 1976). The shaded-relief image was rendered with an illumination azimuth of 315? and an altitude of 65?. A vertical exaggeration of 2X was applied to the image to enhance land-surface features. Image post-processing techniques were accomplished using conventional desktop imaging software.

  8. Concordance and discriminatory power of cough measurement devices for individuals with Parkinson disease.

    PubMed

    Silverman, Erin P; Carnaby-Mann, Giselle; Pitts, Teresa; Davenport, Paul; Okun, Michael S; Sapienza, Christine

    2014-05-01

    Dysphagia and aspiration pneumonia are two causes of morbidity in Parkinson disease (PD). In PD, impaired airway clearance can lead to penetration of foreign material, resulting in a high prevalence of aspiration pneumonia and death. This study examines three different devices for measurement of peak airflow during voluntary cough in healthy control subjects and those with PD. Two simple and low-cost devices for measuring peak cough airflow were compared with the "gold standard" pneumotachograph. Thirty-five healthy control subjects and 35 individuals with PD produced voluntary cough at three perceived strengths (weak, moderate, and strong cough) for each of the three devices. A significant difference in mean peak cough airflow was demonstrated for disease (F[1,56] = 4.0, P < .05) and sex (F[1,56] = 9.59, P < .003) across devices. The digital and analog meters were comparable to the gold standard demonstrating no significant difference (statistical) by device (digital vs analog) in receiver operating characteristic curve analysis. Both devices were discriminative of the presence of PD. The analog and digital peak airflow meters are suitable alternatives to the gold standard pneumotachograph due to their low cost, portability, ease of use, and high sensitivity relative to normative peak cough airflows. Voluntary cough airflow measures may serve as a noninvasive means of screening for aspiration risk in target populations. Additionally, quantification of cough strength through use of predetermined limens for weak, moderate, and strong cough may assist clinicians in better describing and tracking cough strength as a contributing factor to aspiration risk.

  9. Concordance and Discriminatory Power of Cough Measurement Devices for Individuals With Parkinson Disease

    PubMed Central

    Carnaby-Mann, Giselle; Pitts, Teresa; Davenport, Paul; Okun, Michael S.; Sapienza, Christine

    2014-01-01

    Background: Dysphagia and aspiration pneumonia are two causes of morbidity in Parkinson disease (PD). In PD, impaired airway clearance can lead to penetration of foreign material, resulting in a high prevalence of aspiration pneumonia and death. This study examines three different devices for measurement of peak airflow during voluntary cough in healthy control subjects and those with PD. Two simple and low-cost devices for measuring peak cough airflow were compared with the “gold standard” pneumotachograph. Methods: Thirty-five healthy control subjects and 35 individuals with PD produced voluntary cough at three perceived strengths (weak, moderate, and strong cough) for each of the three devices. Results: A significant difference in mean peak cough airflow was demonstrated for disease (F[1,56] = 4.0, P < .05) and sex (F[1,56] = 9.59, P < .003) across devices. The digital and analog meters were comparable to the gold standard demonstrating no significant difference (statistical) by device (digital vs analog) in receiver operating characteristic curve analysis. Both devices were discriminative of the presence of PD. Conclusions: The analog and digital peak airflow meters are suitable alternatives to the gold standard pneumotachograph due to their low cost, portability, ease of use, and high sensitivity relative to normative peak cough airflows. Voluntary cough airflow measures may serve as a noninvasive means of screening for aspiration risk in target populations. Additionally, quantification of cough strength through use of predetermined limens for weak, moderate, and strong cough may assist clinicians in better describing and tracking cough strength as a contributing factor to aspiration risk. PMID:24264124

  10. Design and implementation of a hybrid digital phase-locked loop with a TMS320C25: An application to a transponder receiver breadboard

    NASA Technical Reports Server (NTRS)

    Yeh, H.-G.; Nguyen, T. M.

    1994-01-01

    Design, modeling, analysis, and simulation of a phase-locked loop (PLL) with a digital loop filter are presented in this article. A TMS320C25 digital signal processor (DSP) is used to implement this digital loop filter. In order to keep the compatibility, the main design goal was to replace the analog PLL (APLL) of the Deep-Space Transponder (DST) receiver breadboard's loop filter with a digital loop filter without changing anything else. This replacement results in a hybrid digital PLL (HDPLL). Both the original APLL and the designed HDPLL are Type I second-order systems. The real-time performance of the HDPLL and the receiver is provided and evaluated.

  11. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).

  12. Sedimentation Survey of Lago Toa Vaca, Puerto Rico, June-July 2002

    USGS Publications Warehouse

    Soler-López, Luis R.

    2004-01-01

    The Lago Toa Vaca dam is located in the municipality of Villalba in southern Puerto Rico, and is owned and operated by the Puerto Rico Aqueduct and Sewer Authority. Construction was completed in 1972 as the first phase of a multi-purpose project that contemplated four possible diversions from other basins to mitigate the rapid storage capacity loss of Lago Guayabal, located immediately downstream of the Toa Vaca dam. The latter phases of the intra-basin diversions were cancelled, and currently, the reservoir receives runoff from only 56.8 square kilometers of its drainage area. Lago Toa Vaca reservoir when constructed was to be used for irrigation of croplands in the southern coastal plain. The reservoir had an original storage capacity of 68.94 million cubic meters. Sedimentation has reduced the storage capacity by only 7 percent between 1972 and 2002 to 64.08 million cubic meters. This represents a long-term sedimentation rate of about 162,000 cubic meters per year. Based on the 2002 sedimentation survey, Lago Toa Vaca has a sediment trapping efficiency of about 98 percent and a drainage area-normalized sedimentation rate of about 3,086 cubic meters per square kilometer per year between 1972 and 2002. At the current long-term sedimentation rate the reservoir would lose its storage capacity by the year 2400.

  13. Fast, externally triggered, digital phase controller for an optical lattice

    NASA Astrophysics Data System (ADS)

    Sadgrove, Mark; Nakagawa, Ken'ichi

    2011-11-01

    We present a method to control the phase of an optical lattice according to an external trigger signal. The method has a latency of less than 30 μs. Two phase locked digital synthesizers provide the driving signal for two acousto-optic modulators which control the frequency and phase of the counter-propagating beams which form a standing wave (optical lattice). A micro-controller with an external interrupt function is connected to the desired external signal, and updates the phase register of one of the synthesizers when the external signal changes. The standing wave (period λ/2 = 390 nm) can be moved by units of 49 nm with a mean jitter of 28 nm. The phase change is well known due to the digital nature of the synthesizer, and does not need calibration. The uses of the scheme include coherent control of atomic matter-wave dynamics.

  14. Phase reconstruction using compressive two-step parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Ramachandran, Prakash; Alex, Zachariah C.; Nelleri, Anith

    2018-04-01

    The linear relationship between the sample complex object wave and its approximated complex Fresnel field obtained using single shot parallel phase-shifting digital holograms (PPSDH) is used in compressive sensing framework and an accurate phase reconstruction is demonstrated. It is shown that the accuracy of phase reconstruction of this method is better than that of compressive sensing adapted single exposure inline holography (SEOL) method. It is derived that the measurement model of PPSDH method retains both the real and imaginary parts of the Fresnel field but with an approximation noise and the measurement model of SEOL retains only the real part exactly equal to the real part of the complex Fresnel field and its imaginary part is completely not available. Numerical simulation is performed for CS adapted PPSDH and CS adapted SEOL and it is demonstrated that the phase reconstruction is accurate for CS adapted PPSDH and can be used for single shot digital holographic reconstruction.

  15. Spectrally resolved digital holography using a white light LED

    NASA Astrophysics Data System (ADS)

    Claus, D.; Pedrini, G.; Buchta, D.; Osten, W.

    2017-06-01

    This paper introduces the concept of spectrally resolved digital holography. The measurement principle and the analysis of the data will be discussed in detail. The usefulness of spectrally resolved digital holography is demonstrated for colour imaging and optical metrology with regards to the recovery of modulus information and phase information, respectively. The phase information will be used to measure the shape of an object via the application of the dual wavelength method. Based on the large degree of data available, multiple speckle de-correlated dual wavelength phase maps can be obtained, which when averaged result in a signal to noise ratio improvement.

  16. Multiple-access phased array antenna simulator for a digital beam-forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  17. Multiple-access phased array antenna simulator for a digital beam forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design, and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  18. Overview and Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2) Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD Phase 1 completed all of its goals and accomplished all of its milestones. AMTD Phase 2 started in 2014. Key accomplishments include deriving primary mirror engineering specifications from science requirements; developing integrated modeling tools and using those tools to perform parametric design trades; and demonstrating new mirror technologies via sub-scale fabrication and test. AMTD-1 demonstrated the stacked core technique by making a 43-cm diameter 400 mm thick 'biscuit-cut' of a 4-m class mirror. AMTD-2 is demonstrating lateral scalability of the stacked core method by making a 1.5 meter 1/3rd scale model of a 4-m class mirror.

  19. Development of Michelson interferometer based spatial phase-shift digital shearography

    NASA Astrophysics Data System (ADS)

    Xie, Xin

    Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.

  20. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baggu, Murali; Giraldez, Julieta; Harris, Tom

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems),more » high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.« less

  1. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  2. Providing Japanese health care information for international visitors: digital animation intervention.

    PubMed

    Nishikawa, Mariko; Yamanaka, Masaaki; Kiriya, Junko; Jimba, Masamine

    2018-05-21

    Over 24 million international visitors came to Japan in 2016 and the number is expected to increase. Visitors could be at a risk of illness or injury that may result in hospitalization in Japan. We assessed the effects of a four-minute digital animation titled Mari Info Japan on the level of anxiety experienced by international visitors to Japan. We conducted a non-randomized, controlled study at Narita International Airport outside Tokyo in December 2014. On the first day, we recruited international visitors for the intervention group at predetermined departure gates and, the following day, we sampled visitors for the control group at the same gates. We repeated this procedure twice over 4 days. The intervention group watched the digital animation and the control group read a standard travel guidebook in English. After receiving either intervention, they completed a questionnaire on their level of anxiety. The outcome was assessed using the Mari Meter-X, The State-Trait Anxiety Inventory Form Y (STAI-Y), and a face scale, before and immediately after the intervention. We analyzed data with Wilcoxon rank sum tests. We recruited 265 international visitors (134 in the intervention group, 131 in the control group), 241 (91%) of whom completed the questionnaire. Most of them had no previous Japanese health information before arrival in Japan. The level of anxiety about health services in Japan was significantly reduced in the intervention group (Mari Meter-X median: - 5 and 0, p < 0.001 and STAI-Y median: - 3 and 0, p < 0.001). The face scale analysis showed no significant difference. Watching a digital animation is more effective in reducing anxiety among international visitors to Japan compared with reading a standard brochure or guidebook. Such effective animations of health information should be more widely distributed to international visitors. UMIN-CTR (University Hospital Medical Information Network Center Clinical Trials Registry), UMIN000015023 , September 3, 2014.

  3. Development and assessment of a digital X-ray software tool to determine vertebral rotation in adolescent idiopathic scoliosis.

    PubMed

    Eijgenraam, Susanne M; Boselie, Toon F M; Sieben, Judith M; Bastiaenen, Caroline H G; Willems, Paul C; Arts, Jacobus J; Lataster, Arno

    2017-02-01

    The amount of vertebral rotation in the axial plane is of key importance in the prognosis and treatment of adolescent idiopathic scoliosis (AIS). Current methods to determine vertebral rotation are either designed for use in analogue plain radiographs and not useful in digital images, or lack measurement precision and are therefore less suitable for the follow-up of rotation in AIS patients. This study aimed to develop a digital X-ray software tool with high measurement precision to determine vertebral rotation in AIS, and to assess its (concurrent) validity and reliability. In this study a combination of basic science and reliability methodology applied in both laboratory and clinical settings was used. Software was developed using the algorithm of the Perdriolle torsion meter for analogue AP plain radiographs of the spine. Software was then assessed for (1) concurrent validity and (2) intra- and interobserver reliability. Plain radiographs of both human cadaver vertebrae and outpatient AIS patients were used. Concurrent validity was measured by two independent observers, both experienced in the assessment of plain radiographs. Reliability-measurements were performed by three independent spine surgeons. Pearson correlation of the software compared with the analogue Perdriolle torsion meter for mid-thoracic vertebrae was 0.98, for low-thoracic vertebrae 0.97 and for lumbar vertebrae 0.97. Measurement exactness of the software was within 5° in 62% of cases and within 10° in 97% of cases. Intraclass correlation coefficient (ICC) for inter-observer reliability was 0.92 (0.91-0.95), ICC for intra-observer reliability was 0.96 (0.94-0.97). We developed a digital X-ray software tool to determine vertebral rotation in AIS with a substantial concurrent validity and reliability, which may be useful for the follow-up of vertebral rotation in AIS patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Computer Aided Design Parameters for Forward Basing

    DTIC Science & Technology

    1988-12-01

    21 meters. Systematic errors within limits stated for absolute accuracy are tolerated at this level. DEM data acquired photogrammetrically using manual ...This is a professional drawing package, 19 capable of the manipulation required for this project. With the AutoLISP programming language (a variation on...Table 2). 0 25 Data Conversion Package II GWN System’s Digital Terrain Modeling (DTM) package was used. This AutoLISP -based third party software is

  5. Topographic Map of the Northeast Ascraeus Mons Region of Mars - MTM 500k 15/257E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  6. Topographic Map of the Northwest Ascraeus Mons Region of Mars - MTM 500k 15/252E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  7. Topographic Map of the Southeast Ascraeus Mons Region of Mars - MTM 500k 10/257E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  8. Topographic Map of the Southwest Ascraeus Mons Region of Mars - MTM 500k 10/252E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  9. Sensing Challenges for Controls and PHM in the Hostile Operating Conditions of Modern Turbine Engine (Postprint)

    DTIC Science & Technology

    2008-07-01

    SUBJECT TERMS Gas turbine, sensors, Hostile Operating Conditions, FADEC , High Temperature Regimes for Sensors, Sensor Needs, Turbine Engine...Authority Digital Engine Control ( FADEC ). The frequency and bandwidth capability of sensors for engine control are drastically different for each sensor...metering valve assembly is responsive to electrical signals generated by the FADEC in response to sensors that measure turbine speed, pressure

  10. EnviroAtlas - Percentage of stream and water body shoreline lengths within 30 meters of >= 5% or >= 15% impervious cover by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the percentages of stream and water body shoreline lengths within 30 meters of impervious cover by 12-digit Hydrologic Unit (HUC) subwatershed in the contiguous U.S. Impervious cover alters the hydrologic behavior of streams and water bodies, promoting increased storm water runoff and lower stream flow during periods in between rainfall events. Impervious cover also promotes increased pollutant loads in receiving waters and degraded streamside habitat. This dataset shows were impervious cover occurs close to streams and water bodies, where it is likely to have a greater adverse impact on receiving waters. This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. Advanced Concept

    NASA Image and Video Library

    1999-08-13

    This photograph is an artist's cutaway view of the X-37 flight demonstrator showing its components. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. Its experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1000 per pound. The X-37 can be carried into orbit by the Space Shuttle or be launched by an expendable rocket. Managed by Marshall Space Flight Center and built by the Boeing Company, the X-37 is scheduled to fly two orbital missions in 2002/2003 to test the reusable launch vehicle technologies.

  12. Flexible digital modulation and coding synthesis for satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John

    1991-01-01

    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.

  13. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Zhao, Jianlin; Sun, Weiwei; Jiang, Hongzhen; Yan, Xiaobo

    2009-10-01

    Digital holographic microscopy allows the numerical reconstruction of the complex wavefront of samples, especially biological samples such as living cells. In digital holographic microscopy, a microscope objective is introduced to improve the transverse resolution of the sample; however a phase aberration in the object wavefront is also brought along, which will affect the phase distribution of the reconstructed image. We propose here a numerical method to compensate for the phase aberration of thin transparent objects with a single hologram. The least squares surface fitting with points number less than the matrix of the original hologram is performed on the unwrapped phase distribution to remove the unwanted wavefront curvature. The proposed method is demonstrated with the samples of the cicada wings and epidermal cells of garlic, and the experimental results are consistent with that of the double exposure method.

  14. IMMEDIATE EFFECTS OF DEEP TRUNK MUSCLE TRAINING ON SWIMMING START PERFORMANCE.

    PubMed

    Iizuka, Satoshi; Imai, Atsushi; Koizumi, Keisuke; Okuno, Keisuke; Kaneoka, Koji

    2016-12-01

    In recent years, deep trunk muscle training has been adopted in various sports, including swimming. This is performed both in everyday training and as part of the warm-up routine before competitive races. It is suggested that trunk stabilization exercises are effective in preventing injury, and aid in improving performance. However, conclusive evidence of the same is yet to be obtained. The time of start phase of swimming is a factor that can significantly influence competition performance in a swimming race. If trunk stabilization exercises can provide instantaneous trunk stability, it is expected that they will lead to performance improvements in the start phase of swimming. The purpose of this study was to investigate the immediate effect of trunk stabilization exercises on the start phase in swimming. Intervention study. Nine elite male swimmers (mean age 20.2 ± 1.0 years; height 174.4 ± 3.5 cm; weight 68.9 ± 4.1 kg) performed the swimming start movement. The measurement variables studied included flying distance, and the time and velocity of subjects at hands' entry and on reaching five meters. Measurements were taken in trials immediately before and after the trunk stabilization exercises. A comparison between pre- and post-exercise measurements was assessed. The time to reach five meters (T 5m ) decreased significantly after trunk stabilization exercises, by 0.019 s (p = 0.02). Velocity at entry (V entry ) did not demonstrate significant change, while velocity at five meters (V 5m ) increased significantly after the exercises (p = 0.023). In addition, the speed reduction rate calculated from V entry and V 5m significantly decreased by 5.17% after the intervention (p = 0.036). Trunk stabilization exercises may help reduce the time from start to five meters in the start phase in swimming. The results support the hypothesis that these exercises may improve swimming performance. Level 3b.

  15. A Digital Motion Control System for Large Telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.

    2001-05-01

    We have designed and programmed a digital motion control system for large telescopes, in particular, the 6-meter antennas of the Submillimeter Array on Mauna Kea. The system consists of a single robust, high-reliability microcontroller board which implements a two-axis velocity servo while monitoring and responding to critical safety parameters. Excellent tracking performance has been achieved with this system (0.3 arcsecond RMS at sidereal rate). The 24x24 centimeter four-layer printed circuit board contains a multitude of hardware devices: 40 digital inputs (for limit switches and fault indicators), 32 digital outputs (to enable/disable motor amplifiers and brakes), a quad 22-bit ADC (to read the motor tachometers), four 16-bit DACs (that provide torque signals to the motor amplifiers), a 32-LED status panel, a serial port to the LynxOS PowerPC antenna computer (RS422/460kbps), a serial port to the Palm Vx handpaddle (RS232/115kbps), and serial links to the low-resolution absolute encoders on the azimuth and elevation axes. Each section of the board employs independent ground planes and power supplies, with optical isolation on all I/O channels. The processor is an Intel 80C196KC 16-bit microcontroller running at 20MHz on an 8-bit bus. This processor executes an interrupt-driven, scheduler-based software system written in C and assembled into an EPROM with user-accessible variables stored in NVSRAM. Under normal operation, velocity update requests arrive at 100Hz from the position-loop servo process running independently on the antenna computer. A variety of telescope safety checks are performed at 279Hz including routine servicing of a 6 millisecond watchdog timer. Additional ADCs onboard the microcontroller monitor the winding temperature and current in the brushless three-phase drive motors. The PID servo gains can be dynamically changed in software. Calibration factors and software filters can be applied to the tachometer readings prior to the application of the servo gains in the torque computations. The Palm pilot handpaddle displays the complete status of the telescope and allows full local control of the drives in an intuitive, touchscreen user interface which is especially useful during reconfigurations of the antenna array.

  16. Digital holographic microscopy combined with optical tweezers

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.

    2011-02-01

    While optical tweezers have been widely used for the manipulation and organization of microscopic objects in three dimensions, observing the manipulated objects along axial direction has been quite challenging. In order to visualize organization and orientation of objects along axial direction, we report development of a Digital holographic microscopy combined with optical tweezers. Digital holography is achieved by use of a modified Mach-Zehnder interferometer with digital recording of interference pattern of the reference and sample laser beams by use of a single CCD camera. In this method, quantitative phase information is retrieved dynamically with high temporal resolution, only limited by frame rate of the CCD. Digital focusing, phase-unwrapping as well as online analysis and display of the quantitative phase images was performed on a software developed on LabView platform. Since phase changes observed in DHOT is very sensitive to optical thickness of trapped volume, estimation of number of particles trapped in the axial direction as well as orientation of non-spherical objects could be achieved with high precision. Since in diseases such as malaria and diabetics, change in refractive index of red blood cells occurs, this system can be employed to map such disease-specific changes in biological samples upon immobilization with optical tweezers.

  17. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    NASA Astrophysics Data System (ADS)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  18. Digital Filters for Digital Phase-locked Loops

    NASA Technical Reports Server (NTRS)

    Simon, M.; Mileant, A.

    1985-01-01

    An s/z hybrid model for a general phase locked loop is proposed. The impact of the loop filter on the stability, gain margin, noise equivalent bandwidth, steady state error and time response is investigated. A specific digital filter is selected which maximizes the overall gain margin of the loop. This filter can have any desired number of integrators. Three integrators are sufficient in order to track a phase jerk with zero steady state error at loop update instants. This filter has one zero near z = 1.0 for each integrator. The total number of poles of the filter is equal to the number of integrators plus two.

  19. A simple second-order digital phase-locked loop.

    NASA Technical Reports Server (NTRS)

    Tegnelia, C. R.

    1972-01-01

    A simple second-order digital phase-locked loop has been designed for the Viking Orbiter 1975 command system. Excluding analog-to-digital conversion, implementation of the loop requires only an adder/subtractor, two registers, and a correctable counter with control logic. The loop considers only the polarity of phase error and corrects system clocks according to a filtered sequence of this polarity. The loop is insensitive to input gain variation, and therefore offers the advantage of stable performance over long life. Predictable performance is guaranteed by extreme reliability of acquisition, yet in the steady state the loop produces only a slight degradation with respect to analog loop performance.

  20. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  1. Digital spiral-slit for bi-photon imaging

    NASA Astrophysics Data System (ADS)

    McLaren, Melanie; Forbes, Andrew

    2017-04-01

    Quantum ghost imaging using entangled photon pairs has become a popular field of investigation, highlighting the quantum correlation between the photon pairs. We introduce a technique using spatial light modulators encoded with digital holograms to recover both the amplitude and the phase of the digital object. Down-converted photon pairs are entangled in the orbital angular momentum basis, and are commonly measured using spiral phase holograms. Consequently, by encoding a spiral ring-slit hologram into the idler arm, and varying it radially we can simultaneously recover the phase and amplitude of the object in question. We demonstrate that a good correlation between the encoded field function and the reconstructed images exists.

  2. Dual-channel in-line digital holographic double random phase encryption

    PubMed Central

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N

    2012-01-01

    We present a robust encryption method for the encoding of 2D/3D objects using digital holography and virtual optics. Using our recently developed dual-plane in-line digital holography technique, two in-line digital holograms are recorded at two different planes and are encrypted using two different double random phase encryption configurations, independently. The process of using two mutually exclusive encryption channels makes the system more robust against attacks since both the channels should be decrypted accurately in order to get a recognizable reconstruction. Results show that the reconstructed object is unrecognizable even when the portion of the correct phase keys used during decryption is close to 75%. The system is verified against blind decryptions by evaluating the SNR and MSE. Validation of the proposed method and sensitivities of the associated parameters are quantitatively analyzed and illustrated. PMID:23471012

  3. Suppressing Transients In Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1993-01-01

    Loop of arbitrary order starts in steady-state lock. Method for initializing variables of digital phase-locked loop reduces or eliminates transients in phase and frequency typically occurring during acquisition of lock on signal or when changes made in values of loop-filter parameters called "loop constants". Enables direct acquisition by third-order loop without prior acquisition by second-order loop of greater bandwidth, and eliminates those perturbations in phase and frequency lock occurring when loop constants changed by arbitrarily large amounts.

  4. On higher order discrete phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Gupta, S. C.

    1972-01-01

    An exact mathematical model is developed for a discrete loop of a general order particularly suitable for digital computation. The deterministic response of the loop to the phase step and the frequency step is investigated. The design of the digital filter for the second-order loop is considered. Use is made of the incremental phase plane to study the phase error behavior of the loop. The model of the noisy loop is derived and the optimization of the loop filter for minimum mean-square error is considered.

  5. Detection of digital FSK using a phase-locked loop

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Simon, M. K.

    1975-01-01

    A theory is presented for the design of a digital FSK receiver which employs a phase-locked loop to set up the desired matched filter as the arriving signal frequency switches. The developed mathematical model makes it possible to establish the error probability performance of systems which employ a class of digital FM modulations. The noise mechanism which accounts for decision errors is modeled on the basis of the Meyr distribution and renewal Markov process theory.

  6. Restoration of singularities in reconstructed phase of crystal image in electron holography.

    PubMed

    Li, Wei; Tanji, Takayoshi

    2014-12-01

    Off-axis electron holography can be used to measure the inner potential of a specimen from its reconstructed phase image and is thus a powerful technique for materials scientists. However, abrupt reversals of contrast from white to black may sometimes occur in a digitally reconstructed phase image, which results in inaccurate information. Such phase distortion is mainly due to the digital reconstruction process and weak electron wave amplitude in some areas of the specimen. Therefore, digital image processing can be applied to the reconstruction and restoration of phase images. In this paper, fringe reconnection processing is applied to phase image restoration of a crystal structure image. The disconnection and wrong connection of interference fringes in the hologram that directly cause a 2π phase jump imperfection are correctly reconnected. Experimental results show that the phase distortion is significantly reduced after the processing. The quality of the reconstructed phase image was improved by the removal of imperfections in the final phase. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Phase unwrapping in digital holography based on non-subsampled contourlet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-01-01

    In the digital holographic measurement of complex surfaces, phase unwrapping is a critical step for accurate reconstruction. The phases of the complex amplitudes calculated from interferometric holograms are disturbed by speckle noise, thus reliable unwrapping results are difficult to be obtained. Most of existing unwrapping algorithms implement denoising operations first to obtain noise-free phases and then conduct phase unwrapping pixel by pixel. This approach is sensitive to spikes and prone to unreliable results in practice. In this paper, a robust unwrapping algorithm based on the non-subsampled contourlet transform (NSCT) is developed. The multiscale and directional decomposition of NSCT enhances the boundary between adjacent phase levels and henceforth the influence of local noise can be eliminated in the transform domain. The wrapped phase map is segmented into several regions corresponding to different phase levels. Finally, an unwrapped phase map is obtained by elevating the phases of a whole segment instead of individual pixels to avoid unwrapping errors caused by local spikes. This algorithm is suitable for dealing with complex and noisy wavefronts. Its universality and superiority in the digital holographic interferometry have been demonstrated by both numerical analysis and practical experiments.

  8. A bunch to bucket phase detector for the RHIC LLRF upgrade platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.S.; Harvey, M.; Hayes, T.

    2011-03-28

    As part of the overall development effort for the RHIC LLRF Upgrade Platform [1,2,3], a generic four channel 16 bit Analog-to-Digital Converter (ADC) daughter module was developed to provide high speed, wide dynamic range digitizing and processing of signals from DC to several hundred megahertz. The first operational use of this card was to implement the bunch to bucket phase detector for the RHIC LLRF beam control feedback loops. This paper will describe the design and performance features of this daughter module as a bunch to bucket phase detector, and also provide an overview of its place within the overallmore » LLRF platform architecture as a high performance digitizer and signal processing module suitable to a variety of applications. In modern digital control and signal processing systems, ADCs provide the interface between the analog and digital signal domains. Once digitized, signals are then typically processed using algorithms implemented in field programmable gate array (FPGA) logic, general purpose processors (GPPs), digital signal processors (DSPs) or a combination of these. For the recently developed and commissioned RHIC LLRF Upgrade Platform, we've developed a four channel ADC daughter module based on the Linear Technology LTC2209 16 bit, 160 MSPS ADC and the Xilinx V5FX70T FPGA. The module is designed to be relatively generic in application, and with minimal analog filtering on board, is capable of processing signals from DC to 500 MHz or more. The module's first application was to implement the bunch to bucket phase detector (BTB-PD) for the RHIC LLRF system. The same module also provides DC digitizing of analog processed BPM signals used by the LLRF system for radial feedback.« less

  9. A Randomized Study Comparing Digital Imaging to Traditional Glass Slide Microscopy for Breast Biopsy and Cancer Diagnosis

    PubMed Central

    Elmore, Joann G.; Longton, Gary M.; Pepe, Margaret S.; Carney, Patricia A.; Nelson, Heidi D.; Allison, Kimberly H.; Geller, Berta M.; Onega, Tracy; Tosteson, Anna N. A.; Mercan, Ezgi; Shapiro, Linda G.; Brunyé, Tad T.; Morgan, Thomas R.; Weaver, Donald L.

    2017-01-01

    Background: Digital whole slide imaging may be useful for obtaining second opinions and is used in many countries. However, the U.S. Food and Drug Administration requires verification studies. Methods: Pathologists were randomized to interpret one of four sets of breast biopsy cases during two phases, separated by ≥9 months, using glass slides or digital format (sixty cases per set, one slide per case, n = 240 cases). Accuracy was assessed by comparing interpretations to a consensus reference standard. Intraobserver reproducibility was assessed by comparing the agreement of interpretations on the same cases between two phases. Estimated probabilities of confirmation by a reference panel (i.e., predictive values) were obtained by incorporating data on the population prevalence of diagnoses. Results: Sixty-five percent of responding pathologists were eligible, and 252 consented to randomization; 208 completed Phase I (115 glass, 93 digital); and 172 completed Phase II (86 glass, 86 digital). Accuracy was slightly higher using glass compared to digital format and varied by category: invasive carcinoma, 96% versus 93% (P = 0.04); ductal carcinoma in situ (DCIS), 84% versus 79% (P < 0.01); atypia, 48% versus 43% (P = 0.08); and benign without atypia, 87% versus 82% (P < 0.01). There was a small decrease in intraobserver agreement when the format changed compared to when glass slides were used in both phases (P = 0.08). Predictive values for confirmation by a reference panel using glass versus digital were: invasive carcinoma, 98% and 97% (not significant [NS]); DCIS, 70% and 57% (P = 0.007); atypia, 38% and 28% (P = 0.002); and benign without atypia, 97% and 96% (NS). Conclusions: In this large randomized study, digital format interpretations were similar to glass slide interpretations of benign and invasive cancer cases. However, cases in the middle of the spectrum, where more inherent variability exists, may be more problematic in digital format. Future studies evaluating the effect these findings exert on clinical practice and patient outcomes are required. PMID:28382226

  10. Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing

    2010-10-01

    In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.

  11. Assessing Multiple Methods for Determining Active Source Travel Times in a Dense Array

    NASA Astrophysics Data System (ADS)

    Parker, L.; Zeng, X.; Thurber, C. H.; Team, P.

    2016-12-01

    238 three-component nodal seismometers were deployed at the Brady Hot Springs geothermal field in Nevada to characterize changes in the subsurface as a result of changes in pumping conditions. The array consisted of a 500 meter by 1600 meter irregular grid with 50 meter spacing centered in an approximately rectangular 1200 meter by 1600 meter grid with 200 meter spacing. A large vibroseis truck (T-Rex) was deployed as an active seismic source at 216 locations. Over the course of 15 days, the truck occupied each location up to four times. At each location a swept-frequency source between 5 and 80 Hz over 20 seconds was produced using three vibration modes: longitudinal S-wave, transverse S-wave, and P-wave. Seismic wave arrivals were identified using three methods: cross-correlation, deconvolution, and Wigner-Ville distribution (WVD) plus the Hough Transform (HT). Surface wave arrivals were clear for all three modes of vibration using all three methods. Preliminary tomographic models will be presented, using the arrivals of the identified phases. This analysis is part of the PoroTomo project: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology; http://geoscience.wisc.edu/feigl/porotomo.

  12. Steady-state probability density function of the phase error for a DPLL with an integrate-and-dump device

    NASA Technical Reports Server (NTRS)

    Simon, M.; Mileant, A.

    1986-01-01

    The steady-state behavior of a particular type of digital phase-locked loop (DPLL) with an integrate-and-dump circuit following the phase detector is characterized in terms of the probability density function (pdf) of the phase error in the loop. Although the loop is entirely digital from an implementation standpoint, it operates at two extremely different sampling rates. In particular, the combination of a phase detector and an integrate-and-dump circuit operates at a very high rate whereas the loop update rate is very slow by comparison. Because of this dichotomy, the loop can be analyzed by hybrid analog/digital (s/z domain) techniques. The loop is modeled in such a general fashion that previous analyses of the Real-Time Combiner (RTC), Subcarrier Demodulator Assembly (SDA), and Symbol Synchronization Assembly (SSA) fall out as special cases.

  13. Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device.

    PubMed

    Hoffmann, Maximilian; Papadopoulos, Ioannis N; Judkewitz, Benjamin

    2018-01-01

    The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation, or patterned photostimulation. For most of these applications, it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.

  14. Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Hoffmann, Maximilian; Papadopoulos, Ioannis N.; Judkewitz, Benjamin

    2018-01-01

    The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation or patterned photostimulation. For most of these applications it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator, but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.

  15. GLACIER MONITORING SYSTEM IN COLOMBIA - complementing glaciological measurements with laser-scanning and ground-penetrating radar surveys

    NASA Astrophysics Data System (ADS)

    Ceballos, Jorge; Micheletti, Natan; Rabatel, Antoine; Mölg, Nico; Zemp, Michael

    2015-04-01

    Colombia (South America) has six small glaciers (total glacierized area of 45 Km2); their geographical location, close to zero latitude, makes them very sensitive to climate changes. An extensive monitoring program is being performed since 2006 on two glaciers, with international cooperation supports. This presentation summarizes the results of glacier changes in Colombia and includes the latest results obtained within the CATCOS Project - Phase 1 (Capacity Building and Twinning for Climate Observing Systems) signed between Colombia and Switzerland, and within the Joint Mixte Laboratory GREAT-ICE (IRD - France), with the application of LiDAR technology and GPR-based ice thickness measurements at Conejeras Glacier. Conejeras Glacier (Lat. N. 4° 48' 56"; Long. W. 75° 22' 22"; Alt. Max. 4915m.; Alt. Min. 4730m. Area 0.2 Km2) is located on the north-western side of Santa Isabel Volcano. This glacier belongs to global glacier monitoring network of the World Glacier Monitoring Service (WGMS-ID: 2721). The surface mass balance is calculated monthly using the direct glaciological method. Between April 2006 and May 2014, Conejeras Glacier showed a cumulative loss of -21 m w.e. The CATCOS Project allowed to improve the glacier monitoring system in Colombia with two main actions: (1) a terrestrial laser scanner survey (RIEGL VZ-6000 terrestrial laser scanner, property of Universities of Lausanne and Fribourg); and (2) ice thickness measurements (Blue System Integration Ltd. Ice Penetrating Radar of property of IRD). The terrestrial laser-scanning survey allowed to realize an accurate digital terrain model of the glacier surface with 13 million points and a decimetric resolution. Ice thickness measurements showed an average glacier thickness of 22 meters and a maximum of 52 meters.

  16. Commissioning Results on the JWST Testbed Telescope

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.; Acton, D. Scott

    2006-01-01

    The one-meter 18 segment JWST Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate commissioning operations for the JWST Observatory. Eight different commissioning activities were tested on the TBT: telescope focus sweep, segment ID and Search, image array, global alignment, image stacking, coarse phasing, fine phasing, and multi-field phasing. This paper describes recent commissioning results from experiments performed on the TBT.

  17. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent uplink array consisting of up to three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R-4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  18. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  19. Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images

    NASA Astrophysics Data System (ADS)

    Belart, Joaquín M. C.; Berthier, Etienne; Magnússon, Eyjólfur; Anderson, Leif S.; Pálsson, Finnur; Thorsteinsson, Thorsteinn; Howat, Ian M.; Aðalgeirsdóttir, Guðfinna; Jóhannesson, Tómas; Jarosch, Alexander H.

    2017-06-01

    Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs) over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland) from Pléiades and WorldView2 (WV2) are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Statistics in snow- and ice-free areas reveal similar vertical relative accuracy (< 0.5 m) with and without ground control points (GCPs), demonstrating the capability for measuring seasonal snow accumulation. The calculated winter (14 October 2014 to 22 May 2015) mass balance of Drangajökull was 3.33 ± 0.23 m w.e. (meter water equivalent), with ∼ 60 % of the accumulation occurring by February, which is in good agreement with nearby ground observations. On average, the repeated DEMs yield 22 % less elevation change than the length of eight winter snow cores due to (1) the time difference between in situ and satellite observations, (2) firn densification and (3) elevation changes due to ice dynamics. The contributions of these three factors were of similar magnitude. This study demonstrates that seasonal geodetic mass balance can, in many areas, be estimated from sub-meter resolution satellite stereo images.

  20. Aswan High Dam in 6-meter Resolution from the International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut photography of the Earth from the International Space Station has achieved resolutions close to those available from commercial remote sensing satellites-with many photographs having spatial resolutions of less than six meters. Astronauts take the photographs by hand and physically compensate for the motion of the spacecraft relative to the Earth while the images are being acquired. The achievement was highlighted in an article entitled 'Space Station Allows Remote Sensing of Earth to within Six Meters' published in this week's edition of Eos, Transactions of the American Geophysical Union. Lines painted on airport runways at the Aswan Airport served to independently validate the spatial resolution of the camera sensor. For press information, read: International Space Station Astronauts Set New Standard for Earth Photography For details, see Robinson, J. A. and Evans, C. A. 2002. Space Station Allows Remote Sensing of Earth to within Six Meters. Eos, Transactions, American Geophysical Union 83(17):185, 188. See some of the other detailed photographs posted to Earth Observatory: Pyramids at Giza Bermuda Downtown Houston The image above represents a detailed portion of a digitized NASA photograph STS102-303-17, and was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  1. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2003-07-01

    NASA's X-37 Approach and Landing Test Vehicle is installed is a structural facility at Boeing's Huntington Beach, California plant. Tests, completed in July, were conducted to verify the structural integrity of the vehicle in preparation for atmospheric flight tests. Atmospheric flight tests of the Approach and Landing Test Vehicle are scheduled for 2004 and flight tests of the Orbital Vehicle are scheduled for 2006. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. It's experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000.00 per pound. The X-37 program is managed by the Marshall Space Flight Center and built by the Boeing Company.

  2. Design of PH sensor signal acquisition and display system

    NASA Astrophysics Data System (ADS)

    Qian, Huifa; Zhang, Quanzhu; Deng, Yonghong

    2017-06-01

    With the continuous development of sensor manufacturing technology, how to better deal with the signal is particularly important. PH value of the sensor voltage generated by the signal as a signal, through the MCU acquisition A / D conversion, and ultimately through the digital display of its PH value. The system uses hardware and software to achieve the results obtained with the high-precision PH meter to strive to improve the accuracy and reduce error.

  3. Frequency control circuit for all-digital phase-lock loops

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1973-01-01

    Phase-lock loop references all its operations to fixed high-frequency service clock operating at highest speed which digital circuits permit. Wide-range control circuit provides linear control of frequency of reference signal. It requires only two counters in combination with control circuit consisting only of flip-flop and gate.

  4. A note on the generation of phase plane plots on a digital computer. [for solution of nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1980-01-01

    A technique is presented for generating phase plane plots on a digital computer which circumvents the difficulties associated with more traditional methods of numerical solving nonlinear differential equations. In particular, the nonlinear differential equation of operation is formulated.

  5. The TiltMeter app is a novel and accurate measurement tool for the weight bearing lunge test.

    PubMed

    Williams, Cylie M; Caserta, Antoni J; Haines, Terry P

    2013-09-01

    The weight bearing lunge test is increasing being used by health care clinicians who treat lower limb and foot pathology. This measure is commonly established accurately and reliably with the use of expensive equipment. This study aims to compare the digital inclinometer with a free app, TiltMeter on an Apple iPhone. This was an intra-rater and inter-rater reliability study. Two raters (novice and experienced) conducted the measurements in both a bent knee and straight leg position to determine the intra-rater and inter-rater reliability. Concurrent validity was also established. Allied health practitioners were recruited as participants from the workplace. A preconditioning stretch was conducted and the ankle range of motion was established with the weight bearing lunge test position with firstly the leg straight and secondly with the knee bent. The measurement device and each participant were randomised during measurement. The intra-rater reliability and inter-rater reliability for the devices and in both positions were all over ICC 0.8 except for one intra-rater measure (Digital inclinometer, novice, ICC 0.65). The inter-rater reliability between the digital inclinometer and the tilmeter was near perfect, ICC 0.96 (CI: 0.898-0.983); Concurrent validity ICC between the two devices was 0.83 (CI: -0.740 to 0.445). The use of the Tiltmeter app on the iPhone is a reliable and inexpensive tool to measure the available ankle range of motion. Health practitioners should use caution in applying these findings to other smart phone equipment if surface areas are not comparable. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Blueschist preservation in a retrograded, high-pressure, low-temperature metamorphic terrane, Tinos, Greece: Implications for fluid flow paths in subduction zones

    NASA Astrophysics Data System (ADS)

    Breeding, Christopher M.; Ague, Jay J.; BröCker, Michael; Bolton, Edward W.

    2003-01-01

    The preservation of high-pressure, low-temperature (HP-LT) mineral assemblages adjacent to marble unit contacts on the Cycladic island of Tinos in Greece was investigated using a new type of digital outcrop mapping and numerical modeling of metamorphic fluid infiltration. Mineral assemblage distributions in a large blueschist outcrop, adjacent to the basal contact of a 150-meter thick marble horizon, were mapped at centimeter-scale resolution onto digital photographs using a belt-worn computer and graphics editing software. Digital mapping reveals that while most HP-LT rocks in the outcrop were pervasively retrograded to greenschist facies, the marble-blueschist contact zone underwent an even more intense retrogression. Preservation of HP-LT mineral assemblages was mainly restricted to a 10-15 meter zone (or enclave) adjacent to the intensely retrograded lithologic contact. The degree and distribution of the retrograde overprint suggests that pervasively infiltrating fluids were channelized into the marble-blueschist contact and associated veins and flowed around the preserved HP-LT enclave. Numerical modeling of Darcian flow, based on the field observations, suggests that near the marble horizon, deflections in fluid flow paths caused by flow channelization along the high-permeability marble-blueschist contact zone likely resulted in very large fluid fluxes along the lithologic contact and significantly smaller fluxes (as much as 8 times smaller than the input flux) within the narrow, low-flux regions where HP-LT minerals were preserved adjacent to the contact. Our results indicate that lithologic contacts are important conduits for metamorphic fluid flow in subduction zones. Channelization of retrograde fluids into these discrete flow conduits played a critical role in the preservation of HP-LT assemblages.

  7. Near-field Testing of the 15-meter Model of the Hoop Column Antenna

    NASA Technical Reports Server (NTRS)

    Hoover, J.; Kefauver, N.; Cencich, T.; Osborn, J.; Osmanski, J.

    1986-01-01

    The technical results from near-field testing of the 15-meter model of the hoop column antenna at the Martin Marietta Denver Aerospace facility are documented. The antenna consists of a deployable central column and a 15 meter hoop, stiffened by cables into a structure with a high tolerance repeatable surface and offset feed location. The surface has been configured to have four offset parabolic apertures, each about 6 meters in diameter, and is made of gold plated molybdenum wire mesh. Pattern measurements were made with feed systems radiating at frequencies of 7.73, 11.60, 2.27, 2.225, and 4.26 (all in GHz). This report (Volume 1) covers the testing from an overall viewpoint and contains information of generalized interest for testing large antennas. This volume discusses the deployment of the antenna in the Martin Facility and the measurements to determine mechanical stability and trueness of the reflector surface, gives the test program outline, and gives a synopsis of antenna electromagnetic performance. Three techniques for measuring surface mechanical tolerances were used (theodolites, metric cameras, and near-field phase), but only the near-field phase approach is included. The report also includes an error analysis. A detailed listing of the antenna patterns are provided for the 2.225 Ghz feed in Volume 3 of this report, and for all other feeds in Volume 2.

  8. Digital phase-locked-loop speed sensor for accuracy improvement in analog speed controls. [feedback control and integrated circuits

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1975-01-01

    A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.

  9. a New High-Resolution Elevation Model of Greenland Derived from Tandem-X

    NASA Astrophysics Data System (ADS)

    Wessel, B.; Bertram, A.; Gruber, A.; Bemm, S.; Dech, S.

    2016-06-01

    In this paper we present for the first time the new digital elevation model (DEM) for Greenland produced by the TanDEM-X (TerraSAR add-on for digital elevation measurement) mission. The new, full coverage DEM of Greenland has a resolution of 0.4 arc seconds corresponding to 12 m. It is composed of more than 7.000 interferometric synthetic aperture radar (InSAR) DEM scenes. X-Band SAR penetrates the snow and ice pack by several meters depending on the structures within the snow, the acquisition parameters, and the dielectricity constant of the medium. Hence, the resulting SAR measurements do not represent the surface but the elevation of the mean phase center of the backscattered signal. Special adaptations on the nominal TanDEM-X DEM generation are conducted to maintain these characteristics and not to raise or even deform the DEM to surface reference data. For the block adjustment, only on the outer coastal regions ICESat (Ice, Cloud, and land Elevation Satellite) elevations as ground control points (GCPs) are used where mostly rock and surface scattering predominates. Comparisons with ICESat data and snow facies are performed. In the inner ice and snow pack, the final X-Band InSAR DEM of Greenland lies up to 10 m below the ICESat measurements. At the outer coastal regions it corresponds well with the GCPs. The resulting DEM is outstanding due to its resolution, accuracy and full coverage. It provides a high resolution dataset as basis for research on climate change in the arctic.

  10. Phase retrieval without unwrapping by single-shot dual-wavelength digital holography

    NASA Astrophysics Data System (ADS)

    Min, Junwei; Yao, Baoli; Zhou, Meiling; Guo, Rongli; Lei, Ming; Yang, Yanlong; Dan, Dan; Yan, Shaohui; Peng, Tong

    2014-12-01

    A phase retrieval method by using single-shot dual-wavelength digital holography is proposed. Each single wavelength hologram is extracted from the color CCD recorded hologram at one exposure, and the unwrapped phase image of object can be reconstructed directly. Different from the traditional multiple wavelength phase unwrapping techniques, any single complex wave-fronts at different wavelengths have no need to be calculated any more. Thus, the phase retrieval is computationally fast and straightforward, and the limitations on the total optical path difference are significantly relaxed. The practicability of the proposed method is demonstrated by both simulated and experimental results.

  11. Coordination and propulsion and non-propulsion phases in 100 meter breaststroke swimming.

    PubMed

    Strzała, Marek; Krężałek, Piotr; Kucia-Czyszczoń, Katarzyna; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K; Sagalara, Andrzej

    2014-01-01

    The main purpose of this study was to analyze the coordination, propulsion and non-propulsion phases in the 100 meter breaststroke race. Twenty-seven male swimmers (15.7 ± 1.98 years old) with the total body length (TBL) of 247.0 ± 10.60 [cm] performed an all-out 100 m breaststroke bout. The bouts were recorded with an underwater camera installed on a portable trolley. The swimming kinematic parameters, stroke rate (SR) and stroke length (SL), as well as the coordination indices based on propulsive or non-propulsive movement phases of the arms and legs were distinguished. Swimming speed (V100surface breast) was associated with SL (R = 0.41, p < 0.05) and with TBL tending towards statistical significance (R = 0.36, p < 0.07), all relationships between the selected variables in the study were measured using partial correlations with controlled age. SL interplayed negatively with the limbs propulsive phase Overlap indicator (R = -0.46, p < 0.05), but had no significant relationship to the non-propulsion Glide indicator. The propulsion in-sweep (AP3) phase of arms and their non-propulsion partial air recovery (ARair) phase interplayed with V100surface breast (R = 0.51, p < 0.05 and 0.48 p < 0.05) respectively, displaying the importance of proper execution of this phase (AP3) and in reducing the resistance recovery phases in consecutive ones.

  12. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  13. A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device

    NASA Astrophysics Data System (ADS)

    Szplet, R.; Kalisz, J.; Jachna, Z.

    2009-02-01

    We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second.

  14. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry

    NASA Astrophysics Data System (ADS)

    Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.

    2017-09-01

    The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.

  15. A class of optimum digital phase locked loops

    NASA Technical Reports Server (NTRS)

    Kumar, R.; Hurd, W. J.

    1986-01-01

    This paper presents a class of optimum digital filters for digital phase locked loops, for the important case in which the maximum update rate of the loop filter and numerically controlled oscillator (NCO) is limited. This case is typical when the loop filter is implemented in a microprocessor. In these situations, pure delay is encountered in the loop transfer function and thus the stability and gain margin of the loop are of crucial interest. The optimum filters designed for such situations are evaluated in terms of their gain margin for stability, dynamic error, and steady-state error performance. For situations involving considerably high phase dynamics an adaptive and programmable implementation is also proposed to obtain an overall optimum strategy.

  16. Sub-pm{{\\sqrt{Hz}^{-1}}} non-reciprocal noise in the LISA backlink fiber

    NASA Astrophysics Data System (ADS)

    Fleddermann, Roland; Diekmann, Christian; Steier, Frank; Tröbs, Michael; Heinzel, Gerhard; Danzmann, Karsten

    2018-04-01

    The future space-based gravitational wave detector laser interferometer space antenna (LISA) requires bidirectional exchange of light between its two optical benches on board of each of its three satellites. The current baseline foresees a polarization-maintaining single-mode fiber for this backlink connection. Phase changes which are common in both directions do not enter the science measurement, but differential (‘non-reciprocal’) phase fluctuations directly do and must thus be guaranteed to be small enough. We have built a setup consisting of a Zerodur baseplate with fused silica components attached to it using hydroxide-catalysis bonding and demonstrated the reciprocity of a polarization-maintaining single-mode fiber at the 1 pm \\sqrt{Hz}-1 level as is required for LISA. We used balanced detection to reduce the influence of parasitic optical beams on the reciprocity measurement and a fiber length stabilization to avoid nonlinear effects in our phase measurement system (phase meter). For LISA, a different phase meter is planned to be used that does not show this nonlinearity. We corrected the influence of beam angle changes and temperature changes on the reciprocity measurement in post-processing.

  17. A high resolution InSAR topographic reconstruction research in urban area based on TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Qu, Feifei; Qin, Zhang; Zhao, Chaoying; Zhu, Wu

    2011-10-01

    Aiming at the problems of difficult unwrapping and phase noise in InSAR DEM reconstruction, especially for the high-resolution TerraSAR-X data, this paper improved the height reconstruction algorithm in view of "remove-restore" based on external coarse DEM and multi-interferogram processing, proposed a height calibration method based on CR+GPS data. Several measures have been taken for urban high resolution DEM reconstruction with TerraSAR data. The SAR interferometric pairs with long spatial and short temporal baselines are served for the DEM. The external low resolution and low accuracy DEM is applied for the "remove-restore" concept to ease the phase unwrapping. The stochastic errors including atmospheric effects and phase noise are suppressed by weighted averaging of DEM phases. Six TerraSAR-X data are applied to create the twelve-meter's resolution DEM over Xian, China with the newly-proposed method. The heights in discrete GPS benchmarks are used to calibrate the result, and the RMS of 3.29 meter is achieved by comparing with 1:50000 DEM.

  18. A second-order all-digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Tegnelia, C. R.

    1974-01-01

    A simple second-order digital phase-locked loop has been designed to synchronize itself to a square-wave subcarrier. Analysis and experimental performance are given for both acquisition behavior and steady-state phase error performance. In addition, the damping factor and the noise bandwidth are derived analytically. Although all the data are given for the square-wave subcarrier case, the results are applicable to arbitrary subcarriers that are odd symmetric about their transition region.

  19. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  20. Suitable RF spectrum in ISM band for 2-way advanced metering network in India

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Khan, M. A.; Gaur, M. S.

    2013-01-01

    The ISM (Industrial Scientific and Medical) bands in the radio frequency space in India offer two alternative spectra to implement wireless network for advanced metering infrastructure (AMI). These bands lie in the range of 2.4GHz and sub-GHz frequencies 865 to 867 MHz This paper aims to examine the suitability of both options by designing and executing experiments in laboratory as well as carrying out field trials on electricity meters to validate the selected option. A parameter, communication effectiveness index (CEI2) is defined to measure the effectiveness of 2 way data communication (packet exchange) between two points under different scenarios of buildings and free space. Both 2.4 GHz and Sub-GHz designs were implemented to compare the results. The experiments were conducted across 3 floors of a building. Validation of the selected option was carried out by conducting a field trial by integrating the selected radio frequency (RF) modem into the single phase electricity meters and installing these meters across three floors of the building. The methodology, implementation details, observations and resulting analytical conclusion are described in the paper.

  1. Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance.

    PubMed

    Anomasiri, Wilai; Sanguanrungsirikul, Sompol; Saichandee, Pisut

    2004-09-01

    This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.

  2. Construction of a 3-arcsecond digital elevation model for the Gulf of Maine

    USGS Publications Warehouse

    Twomey, Erin R.; Signell, Richard P.

    2013-01-01

    A system-wide description of the seafloor topography is a basic requirement for most coastal oceanographic studies. The necessary detail of the topography obviously varies with application, but for many uses, a nominal resolution of roughly 100 m is sufficient. Creating a digital bathymetric grid with this level of resolution can be a complex procedure due to a multiplicity of data sources, data coverages, datums and interpolation procedures. This report documents the procedures used to construct a 3-arcsecond (approximately 90-meter grid cell size) digital elevation model for the Gulf of Maine (71°30' to 63° W, 39°30' to 46° N). We obtained elevation and bathymetric data from a variety of American and Canadian sources, converted all data to the North American Datum of 1983 for horizontal coordinates and the North American Vertical Datum of 1988 for vertical coordinates, used a combination of automatic and manual techniques for quality control, and interpolated gaps using a surface-fitting routine.

  3. A direct reading exposure monitor for radiation processing

    NASA Astrophysics Data System (ADS)

    Kantz, A. D.; Humpherys, K. C.

    Various plastic films have been utilized to measure radiation fields. In general such films are rugged, easily handled, small enough to cause neligible perturbation on the radiation fields, and relatively inexpensive. The radiachromic materials have been shown to have advantages over other plastic fabrications in stability, reproducibility, equivalent response to electron and gamma ray processing fields, dose rate independence, and ready availability of calibration standards. Using a nylon matrix radiachromic detector, a system of direct read-out of absorbed dose has been developed to facilitate monitoring in the megarad region. When an exposed detector is inserted into the reader, the optical transmission signal is processed through an analog to digital converter. The digitized signal addresses a memory bank where the standard response curve is stored. The corresponding absorbed dose is displayed on a digital panel meter. The variation of relative sensitivity of detectors, the background of unirradiated detectors, environmental parameters, and the capacity of the memory bank are contributing factors to the total precision of the read-out system.

  4. Optical design of cipher block chaining (CBC) encryption mode by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam

    2016-03-01

    We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.

  5. Assessment of local seismic response of the Stracciacappa maar (Central Italy)

    NASA Astrophysics Data System (ADS)

    Moscatelli, Massimiliano; Simionato, Maurizio; Gaudiosi, Iolanda; Sottili, Gianluca; Pagliaroli, Alessandro; Sirianni, Pietro; Pileggi, Domenico; Avalle, Alessandra; Giallini, Silvia; Razzano, Roberto; Mancini, Marco; Vignaroli, Gianluca; Piscitelli, Sabatino; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Lanzo, Giuseppe

    2016-04-01

    In this work, we face the definition of a subsoil model aimed at the local seismic response assessment of the Stracciacappa maar (Sabatini Volcanic District, central Italy) (e.g., De Rita and Zanetti, 1986; Marra et al., 2014). The pyroclastic succession of Stracciacappa records two main hydromagmatic eruptive phases ended about 0.09 Ma ago (e.g., Sottili et al., 2010). The preserved crater, with a diameter of about 1500 meters and a crater floor of about 30-40 m, hosted a lake until it was drained in AD 1834. In the framework of the cooperation between CNR IGAG and Italian Department of Civil Protection (DPC) of the Presidency of Council of Ministers (DPC funds 2014), a multidisciplinary approach including detailed stratigraphic and geophysical study has been carried out in the Stracciacappa maar and surrounding areas. New geological map and cross sections illustrate the complex geometric relationships between the thick pyroclastic surge succession, showing diffuse sandwave structures, and even meter-sized lava ballistic. A composite interdigitation between lacustrine and epiclastic debris sediments fills the crater floor. A continuous coring borehole was drilled inside the crater, 45 meters deep from the wellhead, with sampling of undisturbed samples. In addition, four MASW and one SCPTU test were carried out, in order to define the velocity profile of the s-waves within the lacustrine deposits. This Vs profile was then extended at higher depths by using the results of four 2D seismic passive arrays. Moreover, in order to define the resonance frequency of sedimentary covers via the HVSR technique, twenty-eight measurements were carried out with digital sensor Tromino® and seven measurements were performed with a Lennartz® Le-3D/5s sensor with Lennartz Marslite® digitizer. Finally, three electrical resistivity tomography tests, with a total length of about 3500 meters, were carried out with the purpose of constraining the subsoil model. Regarding the non linear properties of soils, the cyclic soil behavior was investigated in laboratory through the Double Specimen Direct Simple Shear device. Particular care was given to organic clays within the lacustrine deposits, which show a stronger linearity and lower damping ratio with respect to inorganic clays of similar plasticity. The collected geological-geophysical dataset suggests the coalescence of several eruptive centres localized at different depths and laterally distributed within the present-day Stracciacappa maar. Data are currently processed for subsequent 2D and 3D numerical simulations of site effects. REFERENCES De Rita D. and Zanetti G., 1986. I centri esplosivi di Baccano e di Stracciacappe (Sabatini orientali, Roma): analogie e differenze della modellistica esplosiva in funzione del grado di interazione acqua/magma. Memorie della Società Geologica Italiana, 35, 689-697. Marra F., Sottili G., Gaeta M., Giaccio B., Jicha B., Masotta M., Palladino D.M., Deocampo D.M., 2014. Major explosive activity in the Monti Sabatini Volcanic District (central Italy) over the 800-390 ka interval: geochronological-geochemical overview and tephrostratigraphic implications Sottili G., Palladino D.M., Marra F., Jicha B., Karner D.B., Renne P., 2010. Geochronology of the most recent activity in the Sabatini Volcanic District, Roman Province, central Italy. Journal of Volcanology and Geothermal Research, 196, 20-30.

  6. Quantification of Plume-Soil Interaction and Excavation Due to the Sky Crane Descent Stage

    NASA Technical Reports Server (NTRS)

    Vizcaino, Jeffrey; Mehta, Manish

    2015-01-01

    The quantification of the particulate erosion that occurs as a result of a rocket exhaust plume impinging on soil during extraterrestrial landings is critical for future robotic and human lander mission design. The aerodynamic environment that results from the reflected plumes results in dust lifting, site alteration and saltation, all of which create a potentially erosive and contaminant heavy environment for the lander vehicle and any surrounding structures. The Mars Science Lab (MSL), weighing nearly one metric ton, required higher levels of thrust from its retro propulsive systems and an entirely new descent system to minimize these effects. In this work we seek to quantify plume soil interaction and its resultant soil erosion caused by the MSL's Sky Crane descent stage engines by performing three dimensional digital terrain and elevation mapping of the Curiosity rover's landing site. Analysis of plume soil interaction altitude and time was performed by detailed examination of the Mars Descent Imager (MARDI) still frames and reconstructed inertial measurement unit (IMU) sensor data. Results show initial plume soil interaction from the Sky Crane's eight engines began at ground elevations greater than 60 meters and more than 25 seconds before the rovers' touchdown event. During this time, viscous shear erosion (VSE) was dominant typically resulting in dusting of the surface with flow propagating nearly parallel to the surface. As the vehicle descended and decreased to four powered engines plume-plume and plume soil interaction increased the overall erosion rate at the surface. Visibility was greatly reduced at a height of roughly 20 meters above the surface and fell to zero ground visibility shortly after. The deployment phase of the Sky Crane descent stage hovering at nearly six meters above the surface showed the greatest amount of erosion with several large particles of soil being kicked up, recirculated, and impacting the bottom of the rover chassis. Image data obtained from MSL's navigation camera (NAVCAM) pairs on Sols 002, 003, and 016 were used to virtually recreate local surface topography and features around the rover by means of stereoscopic depth mapping. Images taken simultaneously by the left and right navigation cameras located on the rover's mast assembly spaced 42 centimeters were used to generate a three dimensional depth map from flat, two dimensional images of the same feature at slightly different angles. Image calibration with physical hardware on the rover and known terrain features were used to provide scaling information that accurately sizes features and regions of interest within the images. Digital terrain mapping analysis performed in this work describe the crater geometry (shape, radius, and depth), eroded volume, volumetric erosion rate, and estimated mass erosion rate of the Hepburn, Sleepy Dragon, Burnside, and Goulburn craters. Crater depths ranged from five to ten centimeters deep influencing an area as wide as two meters in some cases. The craters formed were highly asymmetrical and generally oblong primarily due to the underlying bedrock formations underneath the surface. Comparison with ground tests performed at the NASA AMES Planetary Aeolian Laboratory (PAL) by Mehta showed good agreement with volumetric erosion rates and crater sizes of large particle soil simulants, providing validation to Earth based ground tests of Martian regolith.

  7. A class of optimum digital phase locked loops for the DSN advanced receiver

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Kumar, R.

    1985-01-01

    A class of optimum digital filters for digital phase locked loop of the deep space network advanced receiver is discussed. The filter minimizes a weighted combination of the variance of the random component of the phase error and the sum square of the deterministic dynamic component of phase error at the output of the numerically controlled oscillator (NCO). By varying the weighting coefficient over a suitable range of values, a wide set of filters are obtained such that, for any specified value of the equivalent loop-noise bandwidth, there corresponds a unique filter in this class. This filter thus has the property of having the best transient response over all possible filters of the same bandwidth and type. The optimum filters are also evaluated in terms of their gain margin for stability and their steady-state error performance.

  8. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    PubMed

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject.

  9. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    PubMed Central

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject. PMID:26943121

  10. Vocal Fold Phase Asymmetries in Patients with Voice Disorders: A Study across Visualization Techniques

    ERIC Educational Resources Information Center

    Bonilha, Heather Shaw; Deliyski, Dimitar D.; Whiteside, Joanna Piasecki; Gerlach, Terri Treman

    2012-01-01

    Purpose: To examine differences in vocal fold vibratory phase asymmetry judged from stroboscopy, high-speed videoendoscopy (HSV), and the HSV-derived playbacks of mucosal wave kymography, digital kymography, and a static medial digital kymography image of persons with hypofunctional and hyperfunctional voice disorders. Differences between the…

  11. Comparative analysis of autofocus functions in digital in-line phase-shifting holography.

    PubMed

    Fonseca, Elsa S R; Fiadeiro, Paulo T; Pereira, Manuela; Pinheiro, António

    2016-09-20

    Numerical reconstruction of digital holograms relies on a precise knowledge of the original object position. However, there are a number of relevant applications where this parameter is not known in advance and an efficient autofocusing method is required. This paper addresses the problem of finding optimal focusing methods for use in reconstruction of digital holograms of macroscopic amplitude and phase objects, using digital in-line phase-shifting holography in transmission mode. Fifteen autofocus measures, including spatial-, spectral-, and sparsity-based methods, were evaluated for both synthetic and experimental holograms. The Fresnel transform and the angular spectrum reconstruction methods were compared. Evaluation criteria included unimodality, accuracy, resolution, and computational cost. Autofocusing under angular spectrum propagation tends to perform better with respect to accuracy and unimodality criteria. Phase objects are, generally, more difficult to focus than amplitude objects. The normalized variance, the standard correlation, and the Tenenbaum gradient are the most reliable spatial-based metrics, combining computational efficiency with good accuracy and resolution. A good trade-off between focus performance and computational cost was found for the Fresnelet sparsity method.

  12. Direct-phase and amplitude digitalization based on free-space interferometry

    NASA Astrophysics Data System (ADS)

    Kleiner, Vladimir; Rudnitsky, Arkady; Zalevsky, Zeev

    2017-12-01

    A novel ADC configuration that can be characterized as a photonic-domain flash analog-to-digital convertor operating based upon free-space interferometry is proposed and analysed. The structure can be used as the front-end of a coherent receiver as well as for other applications. Two configurations are considered: the first, ‘direct free-space interference’, allows simultaneous measuring of the optical phase and amplitude; the second, ‘extraction of the ac component of interference by means of pixel-by-pixel balanced photodetection’, allows only phase digitization but with significantly higher sensitivity. For both proposed configurations, we present Monte Carlo estimations of the performance limitations, due to optical noise and photo-current noise, at sampling rates of 60 giga-samples per second. In terms of bit resolution, we simulated multiple cases with growing complexity of up to 4 bits for the amplitude and up to 6 bits for the phase. The simulations show that the digitization errors in the optical domain can be reduced to levels close to the quantization noise limits. Preliminary experimental results validate the fundamentals of the proposed idea.

  13. Neural Networks For Demodulation Of Phase-Modulated Signals

    NASA Technical Reports Server (NTRS)

    Altes, Richard A.

    1995-01-01

    Hopfield neural networks proposed for demodulating quadrature phase-shift-keyed (QPSK) signals carrying digital information. Networks solve nonlinear integral equations prior demodulation circuits cannot solve. Consists of set of N operational amplifiers connected in parallel, with weighted feedback from output terminal of each amplifier to input terminals of other amplifiers. Used to solve signal processing problems. Implemented as analog very-large-scale integrated circuit that achieves rapid convergence. Alternatively, implemented as digital simulation of such circuit. Also used to improve phase estimation performance over that of phase-locked loop.

  14. Retrieval of phase-derivative discontinuities in digital speckle pattern interferometry fringes using the Wigner-Ville distribution

    NASA Astrophysics Data System (ADS)

    Federico, Alejandro; Kaufmann, Guillermo H.

    2004-08-01

    We evaluate the application of the Wigner-Ville distribution (WVD) to measure phase gradient maps in digital speckle pattern interferometry (DSPI), when the generated correlation fringes present phase discontinuities. The performance of the WVD method is evaluated using computer-simulated fringes. The influence of the filtering process to smooth DSPI fringes and additional drawbacks that emerge when this method is applied are discussed. A comparison with the conventional method based on the continuous wavelet transform in the stationary phase approximation is also presented.

  15. Pulsed spatial phase-shifting digital shearography based on a micropolarizer camera

    NASA Astrophysics Data System (ADS)

    Aranchuk, Vyacheslav; Lal, Amit K.; Hess, Cecil F.; Trolinger, James Davis; Scott, Eddie

    2018-02-01

    We developed a pulsed digital shearography system that utilizes the spatial phase-shifting technique. The system employs a commercial micropolarizer camera and a double pulse laser, which allows for instantaneous phase measurements. The system can measure dynamic deformation of objects as large as 1 m at a 2-m distance during the time between two laser pulses that range from 30 μs to 30 ms. The ability of the system to measure dynamic deformation was demonstrated by obtaining phase wrapped and unwrapped shearograms of a vibrating object.

  16. Optical encryption interface

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J. (Inventor)

    1998-01-01

    An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.

  17. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.

    2018-03-01

    We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.

  18. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    PubMed

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  19. The Exploration, Discovery, Recovery, and Preservation of Endangered Electronic Scientific Records, the Lunar Orbiter Image Recovery Project

    NASA Astrophysics Data System (ADS)

    Wingo, D. R.; Harper, M.

    2017-12-01

    In 1966 and 1967 NASA sent five photo reconnaissance satellites to the Moon to scout out sites for the first Apollo landings. This was the first mission in human history to extensively map the Moon to one meter resolution. The Lunar Orbiter spacecraft obtained photographs via 70 millimeter film in high resolution (one meter), and medium resolution (7-8) meter. Each mission took approximately 200 medium and high resolution photographs. These were processed in an on board film laboratory and then scanned via a 6.5 micron light beam.. These images were then transmitted to the Earth as analog waveforms double modulated as a vestigial sideband (VSB) and Frequency Modulation With Feedback (FMFB). The spacecraft transmissions were received at NASA's Deep Space Network at Goldstone (DSS-12), Madrid (DSS-61) and Woomera (DSS-41). The signals received were shifted to a 10 MHz intermediate frequency spectrum which was then written to 2"analog instrumentation tape drives (Ampex-FR-900's). In parallel the signals were demodulated and displayed on a kinescope, which then was photographed using a 35mm camera, and the 35mm film was then rephotographed, processed, and printed for initial analysis by the landing site selection team. The magnetic tape based analog sigals preserved the higher dynamic range of the spacecraft 70mm film, and this was then digitized utilizing digitizer and fed to a Univac 1170 computer for analysis of rock height, slope angles, and geologic context. After the Apollo missions these tapes were largely forgotten. In 2007, retired NASA archivist Nancy Evans, who had saved the last surviving Ampex FR-900's donated the drives to the Lunar Orbiter Image Recovery Project. The project obtained the 1474 hours of original tapes from NASA JPL, and at NASA Ames refurbished the drives. Additionally, the demodulator system was recreated from archived documentation using modern techniques. The project digitized the 1474 tapes, processed the 20 terabyes of raw data. The process of reviving the tape drives after 45 years, redesigning the demodulator from limited information largely from engineering papers delivered in the 1960's, and the process for capturing and archiving the data will be described. The peer review is complete and the Lunar Orbiter images will be released to the planetary science community in Q3 2017.

  20. A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy.

    PubMed

    Mehta, M M; Chandrasekhar, V

    2014-01-01

    Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.

  1. A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Mehta, M. M.; Chandrasekhar, V.

    2014-01-01

    Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.

  2. Double closed-loop resonant micro optic gyro using hybrid digital phase modulation.

    PubMed

    Ma, Huilian; Zhang, Jianjie; Wang, Linglan; Jin, Zhonghe

    2015-06-15

    It is well-known that the closed-loop operation in optical gyros offers wider dynamic range and better linearity. By adding a stair-like digital serrodyne wave to a phase modulator can be used as a frequency shifter. The width of one stair in this stair-like digital serrodyne wave should be set equal to the optical transmission time in the resonator, which is relaxed in the hybrid digital phase modulation (HDPM) scheme. The physical mechanism for this relaxation is firstly indicated in this paper. Detailed theoretical and experimental investigations are presented for the HDPM. Simulation and experimental results show that the width of one stair is not restricted by the optical transmission time, however, it should be optimized according to the rise time of the output of the digital-to-analogue converter. Based on the optimum parameters of the HDPM, a bias stability of 0.05°/s for the integration time of 400 seconds in 1 h has been carried out in an RMOG with a waveguide ring resonator with a length of 7.9 cm and a diameter of 2.5 cm.

  3. Digital quadrature phase detection

    DOEpatents

    Smith, James A.; Johnson, John A.

    1992-01-01

    A system for detecting the phase of a frequency of phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2.pi. when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2.pi. when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention.

  4. Digital quadrature phase detection

    DOEpatents

    Smith, J.A.; Johnson, J.A.

    1992-05-26

    A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.

  5. Could digital imaging be an alternative for digital colorimeters?

    PubMed

    Caglar, Alper; Yamanel, Kivanc; Gulsahi, Kamran; Bagis, Bora; Ozcan, Mutlu

    2010-12-01

    This study evaluated the colour parameters of composite and ceramic shade guides determined using a colorimeter and digital imaging method with illuminants at different colour temperatures. Two different resin composite shade guides, namely Charisma (Heraeus Kulzer) and Premise (Kerr Corporation), and two different ceramic shade guides, Vita Lumin Vacuum (VITA Zahnfabrik) and Noritake (Noritake Co.), were evaluated at three different colour temperatures (2,700 K, 2,700-6,500 K, and 6500 K) of illuminants. Ten shade tabs were selected (A1, A2, A3, A3,5, A4, B1, B2, B3, C2 and C3) from each shade guide. CIE Lab values were obtained using digital imaging and a colorimeter (ShadeEye NCC Dental Chroma Meter, Shofu Inc.). The data were analysed using two-way ANOVA, and Pearson's correlation. While mean L* values of both composite and ceramic shade guides were not affected from the colour temperature, L* values obtained with the colorimeter showed significantly lower values than those of the digital imaging (p < 0.01). At combined 2,700-6500 K colour temperature, the means of a* values obtained from colorimeter and digital imaging did not show significant differences (p > 0.05). For both composite and ceramic shade guides, L* and b* values obtained from colorimeter and digital imaging method presented a high level of correlation. High-level correlations were also acquired for a* values in all shade guides except for the Charisma composite shade guide. Digital imaging method could be an alternative for the colorimeters unless the proper object-camera distance, digital camera settings and suitable illumination conditions could be supplied. However, variations in shade guides, especially for composites, may affect the correlation.

  6. Orbital Tori Construction Using Trajectory Following Spectral Methods

    DTIC Science & Technology

    2010-09-01

    a Walker delta pattern scheme of 18/6/2. Explicitly, this means the 18 satellites were equally spaced in six planes , each inclined at 55 degrees, with...a relative phasing angle parameter of 2 [65]. The planes ’ inclinations were reduced from the original specification of 63 degrees to 55 degrees due...navigation performance specification for the SPS was ≤ 100 meters 8 in the horizontal plane , 95 percent of the time and ≤ 156 meters in the vertical plane

  7. VR-Planets : a 3D immersive application for real-time flythrough images of planetary surfaces

    NASA Astrophysics Data System (ADS)

    Civet, François; Le Mouélic, Stéphane

    2015-04-01

    During the last two decades, a fleet of planetary probes has acquired several hundred gigabytes of images of planetary surfaces. Mars has been particularly well covered thanks to the Mars Global Surveyor, Mars Express and Mars Reconnaissance Orbiter spacecrafts. HRSC, CTX, HiRISE instruments allowed the computation of Digital Elevation Models with a resolution from hundreds of meters up to 1 meter per pixel, and corresponding orthoimages with a resolution from few hundred of meters up to 25 centimeters per pixel. The integration of such huge data sets into a system allowing user-friendly manipulation either for scientific investigation or for public outreach can represent a real challenge. We are investigating how innovative tools can be used to freely fly over reconstructed landscapes in real time, using technologies derived from the game industry and virtual reality. We have developed an application based on a game engine, using planetary data, to immerse users in real martian landscapes. The user can freely navigate in each scene at full spatial resolution using a game controller. The actual rendering is compatible with several visualization devices such as 3D active screen, virtual reality headsets (Oculus Rift), and android devices.

  8. Direct-to-Earth Communications with Mars Science Laboratory During Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Finley, Susan; Fort, David; Schratz, Brian; Ilott, Peter; Mukai, Ryan; Estabrook, Polly; Oudrhiri, Kamal; Kahan, Daniel; Satorius, Edgar

    2013-01-01

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  9. Tidal and residual currents measured by an acoustic doppler current profiler at the west end of Carquinez Strait, San Francisco Bay, California, March to November 1988

    USGS Publications Warehouse

    Burau, J.R.; Simpson, M.R.; Cheng, R.T.

    1993-01-01

    Water-velocity profiles were collected at the west end of Carquinez Strait, San Francisco Bay, California, from March to November 1988, using an acoustic Doppler current profiler (ADCP). These data are a series of 10-minute-averaged water velocities collected at 1-meter vertical intervals (bins) in the 16.8-meter water column, beginning 2.1 meters above the estuary bed. To examine the vertical structure of the horizontal water velocities, the data are separated into individual time-series by bin and then used for time-series plots, harmonic analysis, and for input to digital filters. Three-dimensional graphic renditions of the filtered data are also used in the analysis. Harmonic analysis of the time-series data from each bin indicates that the dominant (12.42 hour or M2) partial tidal currents reverse direction near the bottom, on average, 20 minutes sooner than M2 partial tidal currents near the surface. Residual (nontidal) currents derived from the filtered data indicate that currents near the bottom are pre- dominantly up-estuary during the neap tides and down-estuary during the more energetic spring tides.

  10. A Pseudorange Measurement Scheme Based on Snapshot for Base Station Positioning Receivers.

    PubMed

    Mo, Jun; Deng, Zhongliang; Jia, Buyun; Bian, Xinmei

    2017-12-01

    Digital multimedia broadcasting signal is promised to be a wireless positioning signal. This paper mainly studies a multimedia broadcasting technology, named China mobile multimedia broadcasting (CMMB), in the context of positioning. Theoretical and practical analysis on the CMMB signal suggests that the existing CMMB signal does not have the meter positioning capability. So, the CMMB system has been modified to achieve meter positioning capability by multiplexing the CMMB signal and pseudo codes in the same frequency band. The time difference of arrival (TDOA) estimation method is used in base station positioning receivers. Due to the influence of a complex fading channel and the limited bandwidth of receivers, the regular tracking method based on pseudo code ranging is difficult to provide continuous and accurate TDOA estimations. A pseudorange measurement scheme based on snapshot is proposed to solve the problem. This algorithm extracts the TDOA estimation from the stored signal fragments, and utilizes the Taylor expansion of the autocorrelation function to improve the TDOA estimation accuracy. Monte Carlo simulations and real data tests show that the proposed algorithm can significantly reduce the TDOA estimation error for base station positioning receivers, and then the modified CMMB system achieves meter positioning accuracy.

  11. Analysis of Changes in Ground-Water Levels in a Sewered and an Unsewered Area of Nassau County, Long Island, New York.

    PubMed

    Sulam, Dennis J

    1979-09-01

    From the 195O's to the early 1970's expansion of sanitary sewerage in southwest Nassau County contributed to progressive declines in ground-water levels. Since the early 197O's, however, 10 years after the area was fully sewered, water levels have not declined significantly, which suggests that the water table may have reached a new equilibrium position. Double-mass-curve analyses show that during 1953-76 the average weighted ground-water levels in a 32-square-mile (83-square-kilometer) part of the sewered area declined 12.2 feet (3.73 meters) more than those in the unsewered area to the east. However, by 1973 this decline was 13.5 feet (4.1 meters). Finite-difference digital-model results indicate that 3.6 feet (1.1 meters) of the relative 1953-76 decline was due to pumping in adjacent Queens County and that most of the remaining decline was a result of sewerage. Streamflow within the sewered area decreased in response to the lowered ground-water levels, and ground-water levels in the adjacent unsewered area were also lowered because of the sewerage.

  12. Impact of Topography on Seismic Amplification During the 2005 Kashmir Earthquake

    NASA Astrophysics Data System (ADS)

    Khan, S.; van der Meijde, M.; van der Werff, H.; Shafique, M.

    2016-12-01

    This study assesses topographic amplification of seismic response during the 2005 Kashmir Earthquake in northern Pakistan. Topography scatters seismic waves, which causes variation in seismic response on the surface of the earth. During the Kashmir earthquake, topography induced amplification was suspected to have had major influence on the damage of infrastructure. We did a 3-dimensional simulation of the event using SPECFEM3D software. We first analyzed the impact of data resolution (mesh and Digital Elevation Model) on the derived seismic response. ASTER GDEM elevation data was used to build a 3D finite element mesh, and the parameters (latitude, longitude, depth, moment tensor) of the Kashmir earthquake were used in simulating the event. Our results show amplification of seismic response on ridges and de-amplification in valleys. It was also found that slopes facing away from the source receive an amplified seismic response when compared to slopes facing towards the source. The PGD would regularly fall within the range 0.23-5.8 meters. The topographic amplification causes local changes in the range of -2.50 to +3.50 meters; causing the PGD to fall in the range of 0.36-7.85 meters.

  13. High-Resolution Digital Terrain Models of the Sacramento/San Joaquin Delta Region, California

    USGS Publications Warehouse

    Coons, Tom; Soulard, Christopher E.; Knowles, Noah

    2008-01-01

    The U.S. Geological Survey (USGS) Western Region Geographic Science Center, in conjunction with the USGS Water Resources Western Branch of Regional Research, has developed a high-resolution elevation dataset covering the Sacramento/San Joaquin Delta region of California. The elevation data were compiled photogrammically from aerial photography (May 2002) with a scale of 1:15,000. The resulting dataset has a 10-meter horizontal resolution grid of elevation values. The vertical accuracy was determined to be 1 meter. Two versions of the elevation data are available: the first dataset has all water coded as zero, whereas the second dataset has bathymetry data merged with the elevation data. The projection of both datasets is set to UTM Zone 10, NAD 1983. The elevation data are clipped into files that spatially approximate 7.5-minute USGS quadrangles, with about 100 meters of overlap to facilitate combining the files into larger regions without data gaps. The files are named after the 7.5-minute USGS quadrangles that cover the same general spatial extent. File names that include a suffix (_b) indicate that the bathymetry data are included (for example, sac_east versus sac_east_b). These files are provided in ESRI Grid format.

  14. Characterization of ASTER GDEM Elevation Data over Vegetated Area Compared with Lidar Data

    NASA Technical Reports Server (NTRS)

    Ni, Wenjian; Sun, Guoqing; Ranson, Kenneth J.

    2013-01-01

    Current researches based on areal or spaceborne stereo images with very high resolutions (less than 1 meter) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is a state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 meters) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that accurate co-registration between ASTER GDEM and the National Elevation Dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-seconds and further improved to 0.6 if only homogenous vegetated areas were considered.

  15. Geometric correction and digital elevation extraction using multiple MTI datasets

    USGS Publications Warehouse

    Mercier, Jeffrey A.; Schowengerdt, Robert A.; Storey, James C.; Smith, Jody L.

    2007-01-01

    Digital Elevation Models (DEMs) are traditionally acquired from a stereo pair of aerial photographs sequentially captured by an airborne metric camera. Standard DEM extraction techniques can be naturally extended to satellite imagery, but the particular characteristics of satellite imaging can cause difficulties. The spacecraft ephemeris with respect to the ground site during image collects is the most important factor in the elevation extraction process. When the angle of separation between the stereo images is small, the extraction process typically produces measurements with low accuracy, while a large angle of separation can cause an excessive number of erroneous points in the DEM from occlusion of ground areas. The use of three or more images registered to the same ground area can potentially reduce these problems and improve the accuracy of the extracted DEM. The pointing capability of some sensors, such as the Multispectral Thermal Imager (MTI), allows for multiple collects of the same area from different perspectives. This functionality of MTI makes it a good candidate for the implementation of a DEM extraction algorithm using multiple images for improved accuracy. Evaluation of this capability and development of algorithms to geometrically model the MTI sensor and extract DEMs from multi-look MTI imagery are described in this paper. An RMS elevation error of 6.3-meters is achieved using 11 ground test points, while the MTI band has a 5-meter ground sample distance.

  16. Topogrid Derived 10 Meter Resolution Digital Elevation Model of Charleston, and Parts of Berkeley, Colleton, Dorchester and Georgetown Counties, South Carolina

    USGS Publications Warehouse

    Chirico, Peter G.

    2005-01-01

    EXPLANATION The purpose of developing a new 10m resolution digital elevation model (DEM) of the Charleston Region was to more accurately depict geologic structure, surfical geology, and landforms of the Charleston County Region. Previously, many areas northeast and southwest of Charleston were originally mapped with a 20 foot contour interval. As a result, large areas within the National Elevation Dataset (NED) depict flat terraced topography where there was a lack of higher resolution elevation data. To overcome these data voids, the new DEM is supplemented with additional elevation data and break-lines derived from aerial photography and topographic maps. The resultant DEM is stored as a raster grid at uniform 10m horizontal resolution. The elevation model contained in this publication was prodcued utilizing the ANUDEM algorthim. ANUDEM allows for the inclusion of contours, streams, rivers, lake and water body polygons as well as spot height data to control the development of the elevation model. A preliminary statistical analysis using over 788 vertical elevation check points, primarily located in the northeastern part of the study area, derived from USGS 7.5 Minute Topographic maps reveals that the final DEM, has a vertical accuracy of ?3.27 meters. A table listing the elevation comparison between the elevation check points and the final DEM is provided.

  17. Application of multirate digital filter banks to wideband all-digital phase-locked loops design

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Shah, Biren; Hinedi, Sami

    1993-01-01

    A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.

  18. Application of multirate digital filter banks to wideband all-digital phase-locked loops design

    NASA Astrophysics Data System (ADS)

    Sadr, Ramin; Shah, Biren; Hinedi, Sami

    1993-06-01

    A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.

  19. Application of multirate digital filter banks to wideband all-digital phase-locked loops design

    NASA Astrophysics Data System (ADS)

    Sadr, R.; Shah, B.; Hinedi, S.

    1992-11-01

    A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.

  20. Application of multirate digital filter banks to wideband all-digital phase-locked loops design

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Shah, B.; Hinedi, S.

    1992-01-01

    A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.

  1. Two-phase flow measurements with advanced instrumented spool pieces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnage, K.C.

    1980-09-01

    A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.

  2. Direct Measurement of Large, Diffuse, Optical Structures

    NASA Technical Reports Server (NTRS)

    Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.

    2004-01-01

    Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.

  3. Multi-speed multi-phase resolver converter

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean (Inventor); Howard, David (Inventor)

    1994-01-01

    A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.

  4. Multi-speed multi-phase resolver converter

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor)

    1995-01-01

    A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.

  5. Amplitude and Wavelength Measurement of Sound Waves in Free Space using a Sound Wave Phase Meter

    NASA Astrophysics Data System (ADS)

    Ham, Sounggil; Lee, Kiwon

    2018-05-01

    We developed a sound wave phase meter (SWPM) and measured the amplitude and wavelength of sound waves in free space. The SWPM consists of two parallel metal plates, where the front plate was operated as a diaphragm. An aluminum perforated plate was additionally installed in front of the diaphragm, and the same signal as that applied to the sound source was applied to the perforated plate. The SWPM measures both the sound wave signal due to the diaphragm vibration and the induction signal due to the electric field of the aluminum perforated plate. Therefore, the two measurement signals interfere with each other due to the phase difference according to the distance between the sound source and the SWPM, and the amplitude of the composite signal that is output as a result is periodically changed. We obtained the wavelength of the sound wave from this periodic amplitude change measured in the free space and compared it with the theoretically calculated values.

  6. Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue.

    PubMed

    Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi

    2018-04-01

    For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.

  7. UAV-based photogrammetry combination of the elevational outcrop and digital surface models: an example of Sanyi active fault in western Taiwan

    NASA Astrophysics Data System (ADS)

    Hsieh, Cheng-En; Huang, Wen-Jeng; Chang, Ping-Yu; Lo, Wei

    2016-04-01

    An unmanned aerial vehicle (UAV) with a digital camera is an efficient tool for geologists to investigate structure patterns in the field. By setting ground control points (GCPs), UAV-based photogrammetry provides high-quality and quantitative results such as a digital surface model (DSM) and orthomosaic and elevational images. We combine the elevational outcrop 3D model and a digital surface model together to analyze the structural characteristics of Sanyi active fault in Houli-Fengyuan area, western Taiwan. Furthermore, we collect resistivity survey profiles and drilling core data in the Fengyuan District in order to build the subsurface fault geometry. The ground sample distance (GSD) of an elevational outcrop 3D model is 3.64 cm/pixel in this study. Our preliminary result shows that 5 fault branches are distributed 500 meters wide on the elevational outcrop and the width of Sanyi fault zone is likely much great than this value. Together with our field observations, we propose a structural evolution model to demonstrate how the 5 fault branches developed. The resistivity survey profiles show that Holocene gravel was disturbed by the Sanyi fault in Fengyuan area.

  8. [Digital acoustic burglar alarm system using infrared radio remote control].

    PubMed

    Wang, Song-De; Zhao, Yan; Yao, Li-Ping; Zhang, Shuan-Ji

    2009-03-01

    Using butt emission infrared sensors, radio receiving and sending modules, double function integrated circuit with code and code translation, LED etc, a digital acoustic burglar alarm system using infrared radio to realize remote control was designed. It uses infrared ray invisible to eyes, composing area of radio distance. Once people and objects shelter the infrared ray, a testing signal will be output by the tester, and the sender will be triggered to work. The radio coding signal that sender sent is received by the receiver, then processed by a serial circuit. The control signal is output to trigger the sounder to give out an alarm signal, and the operator will be cued to notice this variation. At the same time, the digital display will be lighted and the alarm place will be watched. Digital coding technology is used, and a number of sub alarm circuits can joint the main receiver, so a lot of places can be monitored. The whole system features a module structure, with the property of easy alignment, stable operation, debug free and so on. The system offers an alarm range reaching 1 000 meters in all directions, and can be widely used in family, shop, storehouse, orchard and so on.

  9. The National Map - Orthoimagery

    USGS Publications Warehouse

    Mauck, James; Brown, Kim; Carswell, William J.

    2009-01-01

    Orthorectified digital aerial photographs and satellite images of 1-meter (m) pixel resolution or finer make up the orthoimagery component of The National Map. The process of orthorectification removes feature displacements and scale variations caused by terrain relief and sensor geometry. The result is a combination of the image characteristics of an aerial photograph or satellite image and the geometric qualities of a map. These attributes allow users to: *Measure distance *Calculate areas *Determine shapes of features *Calculate directions *Determine accurate coordinates *Determine land cover and use *Perform change detection *Update maps The standard digital orthoimage is a 1-m or finer resolution, natural color or color infra-red product. Most are now produced as GeoTIFFs and accompanied by a Federal Geographic Data Committee (FGDC)-compliant metadata file. The primary source for 1-m data is the National Agriculture Imagery Program (NAIP) leaf-on imagery. The U.S. Geological Survey (USGS) utilizes NAIP imagery as the image layer on its 'Digital- Map' - a new generation of USGS topographic maps (http://nationalmap.gov/digital_map). However, many Federal, State, and local governments and organizations require finer resolutions to meet a myriad of needs. Most of these images are leaf-off, natural-color products at resolutions of 1-foot (ft) or finer.

  10. Performance improvement of a binary quantized all-digital phase-locked loop with a new aided-acquisition technique

    NASA Astrophysics Data System (ADS)

    Sandoz, J.-P.; Steenaart, W.

    1984-12-01

    The nonuniform sampling digital phase-locked loop (DPLL) with sequential loop filter, in which the correction sizes are controlled by the accumulated differences of two additional phase comparators, is graphically analyzed. In the absence of noise and frequency drift, the analysis gives some physical insight into the acquisition and tracking behavior. Taking noise into account, a mathematical model is derived and a random walk technique is applied to evaluate the rms phase error and the mean acquisition time. Experimental results confirm the appropriate simplifying hypotheses used in the numerical analysis. Two related performance measures defined in terms of the rms phase error and the acquisition time for a given SNR are used. These measures provide a common basis for comparing different digital loops and, to a limited extent, also with a first-order linear loop. Finally, the behavior of a modified DPLL under frequency deviation in the presence of Gaussian noise is tested experimentally and by computer simulation.

  11. On the use of volumetric strain meters to infer additional characteristics of short-period seismic radiation

    USGS Publications Warehouse

    Borcherdt, R.D.; Johnston, M.J.S.; Glassmoyer, G.

    1989-01-01

    Volumetric strain meters (Sacks-Evertson design) are installed at 15 sites along the San Andreas fault system, to monitor long-term strain changes for earthquake prediction. Deployment of portable broadband, high-resolution digital recorders (GEOS) at several of the sites extends the detection band for volumetric strain to periods shorter than 5 ?? 10-2 sec and permits the simultaneous observation of seismic radiation fields using conventional short-period pendulum seismometers. Recordings of local and regional earthquakes indicate that dilatometers respond to P energy but not direct shear energy and that straingrams can be used to resolve superimposed reflect P and S waves for inference of wave characteristics not permitted by either sensor alone. Simultaneous measurements of incident P- and S-wave amplitudes are used to introduce a technique for single-station estimates of wave field inhomogeneity, free-surface reflection coefficients and local material P velocity. -from Authors

  12. MOLA-Based Landing Site Characterization

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.; Ivanov, A. B.

    2001-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) data provide the basis for site characterization and selection never before possible. The basic MOLA information includes absolute radii, elevation and 1 micrometer albedo with derived datasets including digital image models (DIM's illuminated elevation data), slopes maps and slope statistics and small scale surface roughness maps and statistics. These quantities are useful in downsizing potential sites from descent engineering constraints and landing/roving hazard and mobility assessments. Slope baselines at the few hundred meter level and surface roughness at the 10 meter level are possible. Additionally, the MOLA-derived Mars surface offers the possibility to precisely register and map project other instrument datasets (images, ultraviolet, infrared, radar, etc.) taken at different resolution, viewing and lighting geometry, building multiple layers of an information cube for site characterization and selection. Examples of direct MOLA data, data derived from MOLA and other instruments data registered to MOLA arc given for the Hematite area.

  13. Optical image and laser slope meter intercomparisons of high-frequency waves

    NASA Technical Reports Server (NTRS)

    Lubard, S. C.; Krimmel, J. E.; Thebaud, L. R.; Evans, D. D.; Shemdin, O. H.

    1980-01-01

    Spectral analyses of optical images of the ocean surface, obtained by a digital video system, are presented and compared with wave data measured simultaneously by the JPL Waverider-mounted laser slope meter. The image analyses, which incorporate several new ideas, provide two-dimensional wave number spectra of slope, covering wavelengths from 10 cm to 10 m. These slope spectra are converted to wave height spectra by a new technique which includes the effects of sky radiance gradients. Space-time spectra are also presented for waves whose frequencies are less than 2 Hz. The JPL slope frequency spectra are compared with image wave number spectra which have been converted to frequency spectra by use of the gravity wave dispersion relation. Results of comparisons between the frequency spectra obtained from the two different measurements show reasonable agreement for frequencies less than 3 Hz.

  14. Combined High-Resolution LIDAR Topography and Multibeam Bathymetry for Northern Resurrection Bay, Seward, Alaska

    USGS Publications Warehouse

    Labay, Keith A.; Haeussler, Peter J.

    2008-01-01

    A new Digital Elevation Model was created using the best available high-resolution topography and multibeam bathymetry surrounding the area of Seward, Alaska. Datasets of (1) LIDAR topography collected for the Kenai Watershed Forum, (2) Seward harbor soundings from the U.S. Army Corp of Engineers, and (3) multibeam bathymetry from the National Oceanic and Atmospheric Administration contributed to the final combined product. These datasets were placed into a common coordinate system, horizontal datum, vertical datum, and data format prior to being combined. The projected coordinate system of Universal Transverse Mercator Zone 6 North American Datum of 1927 was used for the horizontal coordinates. Z-values in meters were referenced to the tidal datum of Mean High Water. Gaps between the datasets were interpolated to create the final seamless 5-meter grid covering the area of interest around Seward, Alaska.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewster, S.B.

    The U.S. Department of Energy's Remote Sensing Laboratory developed the geometric correction system (GCS) as a state-of-the-art solution for removing distortions from multispectral line scanner data caused by aircraft motion. The system operates on Daedalus AADS-1268 scanner data acquired from fixed-wing and helicopter platforms. The aircraft attitude, altitude, acceleration, and location are recorded and applied to the data, thereby determining the location of the earth with respect to a given datum and projection. The GCS has yielded a positional accuracy of 0.5 meters when used with a 1-meter digital elevation model. Data at this level of accuracy are invaluable inmore » making precise areal estimates and as input into a geographic information system. The combination of high-spatial resolution and accurate geo-rectification makes the GCS a unique tool in identifying and locating environmental conditions, finding targets of interest, and detecting changes as they occur over time.« less

  16. A new device for monitoring early motor development: prenatal nicotine-induced changes.

    PubMed

    Schlumpf, M; Gähwiler, M; Ribary, U; Lichtensteiger, W

    1988-05-01

    A new type of activity meter has been designed especially for young rats. It consists of a warmed platform for the animal, a TV camera with monitor and a microprocessor. The TV camera detects the animal as a black figure on a light background. This picture is digitalized and stored in a Z80 microprocessor. Every 200 msec a new image is compared to the foregoing one. The total number of black points that are changing from black to white and vice versa provides a measure for motor activity of the animal. Prenatally nicotine-treated rat pups were tested on the activity meter. The developmental pattern of motor activity was different for male and female pups. Motor activity of nicotine-treated male pups differed significantly from controls at postnatal days 7 and 15 while this drug effect was not seen in females.

  17. The Dynamic Radio Sky: Future Directions at cm/m-Wavelengths

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Cordes, J.; Croft, S.; Lazio, J.; Lorimer, D.; McLaughlin, M.

    2009-01-01

    The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, recent discoveries from limited surveys and serendipitous discoveries indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenonmena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The current generation of new meter- and centimeter-wave radio telescopes such as the MWA, LWA, PAPER, and ATA will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the SKA. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars.

  18. A second-order frequency-aided digital phase-locked loop for Doppler rate tracking

    NASA Astrophysics Data System (ADS)

    Chie, C. M.

    1980-08-01

    A second-order digital phase-locked loop (DPLL) has a finite lock range which is a function of the frequency of the incoming signal to be tracked. For this reason, it is not capable of tracking an input with Doppler rate for an indefinite period of time. In this correspondence, an analytical expression for the hold-in time is derived. In addition, an all-digital scheme to alleviate this problem is proposed based on the information obtained from estimating the input signal frequency.

  19. Interference mitigation for simultaneous transmit and receive applications on digital phased array systems

    NASA Astrophysics Data System (ADS)

    Snow, Trevor M.

    As analog-to-digital (ADC) and digital-to-analog conversion (DAC) technologies become cheaper and digital processing capabilities improve, phased array systems with digital transceivers at every element will become more commonplace. These architectures offer greater capability over traditional analog systems and enable advanced applications such as multiple-input, multiple-output (MIMO) communications, adaptive beamforming, space-time adaptive processing (STAP), and MIMO for radar. Capabilities for such systems are still limited by the need for isolating self-interference from transmitters at co-located receivers. The typical approach of time-sharing the antenna aperture between transmitters and receivers works but leaves the receivers blind for a period of time. For full-duplex operation, some systems use separate frequency bands for transmission and reception, but these require fixed filtering which reduces the system's ability to adapt to its environment and is also an inefficient use of spectral resources. To that end, tunable, high quality-factor filters are used for sub-band isolation and protect receivers while allowing open reception at other frequencies. For more flexibility, another emergent area of related research has focused on co-located spatial isolation using multiple antennas and direct injection of interference cancellation signals into receivers, which enables same-frequency full-duplex operation. With all these methods, self-interference must be reduced by an amount that prevents saturation of the ADC. Intermodulation products generated in the receiver in this process can potentially be problematic, as certain intermodulation products may appear to come from a particular angle and cohere in the beamformer. This work explores various digital phased array architectures and the how the flexibility afforded by an all-digital beamforming architecture, layered with other methods of isolation, can be used to reduce self-interference within the system. Specifically, digital control of coupled energy into receiving elements for planar and cylindrical array symmetries can be significantly reduced using near-field nulling, optimization of transmission frequencies for particular steering angles, and optimization of phase weights over restricted sets, without major impacts to the far-field performance of the system. Finally, a method for reducing in-band intermodulation that would ordinarily cohere in a system's receive beamformer is demonstrated using parallel cross-linearization of adjacent digital receivers in a phased array.

  20. Reducing patient identification errors related to glucose point-of-care testing.

    PubMed

    Alreja, Gaurav; Setia, Namrata; Nichols, James; Pantanowitz, Liron

    2011-01-01

    Patient identification (ID) errors in point-of-care testing (POCT) can cause test results to be transferred to the wrong patient's chart or prevent results from being transmitted and reported. Despite the implementation of patient barcoding and ongoing operator training at our institution, patient ID errors still occur with glucose POCT. The aim of this study was to develop a solution to reduce identification errors with POCT. Glucose POCT was performed by approximately 2,400 clinical operators throughout our health system. Patients are identified by scanning in wristband barcodes or by manual data entry using portable glucose meters. Meters are docked to upload data to a database server which then transmits data to any medical record matching the financial number of the test result. With a new model, meters connect to an interface manager where the patient ID (a nine-digit account number) is checked against patient registration data from admission, discharge, and transfer (ADT) feeds and only matched results are transferred to the patient's electronic medical record. With the new process, the patient ID is checked prior to testing, and testing is prevented until ID errors are resolved. When averaged over a period of a month, ID errors were reduced to 3 errors/month (0.015%) in comparison with 61.5 errors/month (0.319%) before implementing the new meters. Patient ID errors may occur with glucose POCT despite patient barcoding. The verification of patient identification should ideally take place at the bedside before testing occurs so that the errors can be addressed in real time. The introduction of an ADT feed directly to glucose meters reduced patient ID errors in POCT.

  1. Reducing patient identification errors related to glucose point-of-care testing

    PubMed Central

    Alreja, Gaurav; Setia, Namrata; Nichols, James; Pantanowitz, Liron

    2011-01-01

    Background: Patient identification (ID) errors in point-of-care testing (POCT) can cause test results to be transferred to the wrong patient's chart or prevent results from being transmitted and reported. Despite the implementation of patient barcoding and ongoing operator training at our institution, patient ID errors still occur with glucose POCT. The aim of this study was to develop a solution to reduce identification errors with POCT. Materials and Methods: Glucose POCT was performed by approximately 2,400 clinical operators throughout our health system. Patients are identified by scanning in wristband barcodes or by manual data entry using portable glucose meters. Meters are docked to upload data to a database server which then transmits data to any medical record matching the financial number of the test result. With a new model, meters connect to an interface manager where the patient ID (a nine-digit account number) is checked against patient registration data from admission, discharge, and transfer (ADT) feeds and only matched results are transferred to the patient's electronic medical record. With the new process, the patient ID is checked prior to testing, and testing is prevented until ID errors are resolved. Results: When averaged over a period of a month, ID errors were reduced to 3 errors/month (0.015%) in comparison with 61.5 errors/month (0.319%) before implementing the new meters. Conclusion: Patient ID errors may occur with glucose POCT despite patient barcoding. The verification of patient identification should ideally take place at the bedside before testing occurs so that the errors can be addressed in real time. The introduction of an ADT feed directly to glucose meters reduced patient ID errors in POCT. PMID:21633490

  2. Image fidelity improvement in digital holographic microscopy using optical phase conjugation

    NASA Astrophysics Data System (ADS)

    Chan, Huang-Tian; Chew, Yang-Kun; Shiu, Min-Tzung; Chang, Chi-Ching

    2018-01-01

    With respect to digital holography, techniques in suppressing noises derived from reference arm are maturely developed. However, techniques for the object counterpart are not being well developed. Optical phase conjugation technique was believed to be a promising method for this interest. A 0°-cut BaTiO3 photorefractive crystal was involved in self-pumped phase conjugation scheme, and was employed to in-line digital holographic microscopy, in both transmission-type and reflection-type configuration. On pure physical compensation basis, results revealed that the image fidelity was improved substantially with 2.9096 times decrease in noise level and 3.5486 times increase in the ability to discriminate noise on average, by suppressing the scattering noise prior to recording stage.

  3. Total internal reflection holographic microscopy (TIRHM) for quantitative phase characterization of cell-substrate adhesion

    NASA Astrophysics Data System (ADS)

    Ash, William Mason, III

    Total Internal Reflection Holographic Microscopy (TIRHM) combines near-field microscopy with digital holography to produce a new form of near-field phase microscopy. Using a prism in TIR as a near-field imager, the presence of microscopic organisms, cell-substrate interfaces, and adhesions, causes relative refractive index (RRI) and frustrated TIR (f-TIR) to modulate the object beam's evanescent wave phase front. Quantitative phase images of test specimens such as Amoeba proteus, Dictyostelium Discoideum and cells such as SKOV-3 ovarian cancer and 3T3 fibroblasts are produced without the need to introduce stains or fluorophores. The angular spectrum method of digital holography to compensate for tilt anamorphism due to the inclined TIR plane is also discussed. The results of this work conclusively demonstrate, for the first time, the integration of near-field microscopy with digital holography. The cellular images presented show a correlation between the physical extent of the Amoeba proteus plasma membrane and the adhesions that are quantitatively profiled by phase cross-sectioning of the holographic images obtained by digital holography. With its ability to quantitatively characterise cellular adhesion and motility, it is anticipated that TIRHM can be a tool for characterizing and combating cancer metastasis, as well as improving our understanding of morphogenesis and embryogenesis itself.

  4. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    PubMed Central

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J.

    2014-01-01

    Abstract. Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed. PMID:26157976

  5. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders.

    PubMed

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J

    2014-10-01

    Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.

  6. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn

    2017-02-01

    The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.

  7. Design and implementation of a Synthetic Aperture Radar for Open Skies (SAROS) aboard a C-135 aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, D.W.; Murphy, M.; Rimmel, G.

    1994-08-01

    NATO and former Warsaw Pact nations have agreed to allow overflights of their countries in the interest of easing world tension. The United States has decided to implement two C-135 aircraft with a Synthetic Aperture Radar (SAR) that has a 3-meter resolution. This work is being sponsored by the Defense Nuclear Agency (DNA) and will be operational in Fall 1995. Since the SAR equipment must be exportable to foreign nations, a 20-year-old UPD-8 analog SAR system was selected as the front-end and refurbished for this application by Loral Defense Systems. Data processing is being upgraded to a currently exportable digitalmore » design by Sandia National Laboratories. Amplitude and phase histories will be collected during these overflights and digitized on VHS cassettes. Ground stations will use reduction algorithms to process the data and convert it to magnitude-detected images for member nations. System Planning Corporation is presently developing a portable ground station for use on the demonstration flights. Aircraft integration into the C-135 aircraft is being done by the Air Force at Wright-Patterson AFB, Ohio.« less

  8. Calibration Test Set for a Phase-Comparison Digital Tracker

    NASA Technical Reports Server (NTRS)

    Boas, Amy; Li, Samuel; McMaster, Robert

    2007-01-01

    An apparatus that generates four signals at a frequency of 7.1 GHz having precisely controlled relative phases and equal amplitudes has been designed and built. This apparatus is intended mainly for use in computer-controlled automated calibration and testing of a phase-comparison digital tracker (PCDT) that measures the relative phases of replicas of the same X-band signal received by four antenna elements in an array. (The relative direction of incidence of the signal on the array is then computed from the relative phases.) The present apparatus can also be used to generate precisely phased signals for steering a beam transmitted from a phased antenna array. The apparatus (see figure) includes a 7.1-GHz signal generator, the output of which is fed to a four-way splitter. Each of the four splitter outputs is attenuated by 10 dB and fed as input to a vector modulator, wherein DC bias voltages are used to control the in-phase (I) and quadrature (Q) signal components. The bias voltages are generated by digital-to-analog- converter circuits on a control board that receives its digital control input from a computer running a LabVIEW program. The outputs of the vector modulators are further attenuated by 10 dB, then presented at high-grade radio-frequency connectors. The attenuation reduces the effects of changing mismatch and reflections. The apparatus was calibrated in a process in which the bias voltages were first stepped through all possible IQ settings. Then in a reverse interpolation performed by use of MATLAB software, a lookup table containing 3,600 IQ settings, representing equal amplitude and phase increments of 0.1 , was created for each vector modulator. During operation of the apparatus, these lookup tables are used in calibrating the PCDT.

  9. A digital optical phase-locked loop for diode lasers based on field programmable gate array.

    PubMed

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  10. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  11. Fiber-optic extrinsic Fabry-Perot interferometer strain sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation.

    PubMed

    Schmidt, M; Werther, B; Fuerstenau, N; Matthias, M; Melz, T

    2001-04-09

    A fiber-optic extrinsic Fabry-Perot interferometer strain sensor (EFPI-S) of ls = 2.5 cm sensor length using three-wavelength digital phase demodulation is demonstrated to exhibit <50 pm displacement resolution (<2nm/m strain resolution) when measuring the cross expansion of a PZT-ceramic plate. The sensing (single-mode downlead-) and reflecting fibers are fused into a 150/360 microm capillary fiber where the fusion points define the sensor length. Readout is performed using an improved version of the previously described three-wavelength digital phase demodulation method employing an arctan-phase stepping algorithm. In the resent experiments the strain sensitivity was varied via the mapping of the arctan - lookup table to the 16-Bit DA-converter range from 188.25 k /V (6 Volt range 1130 k ) to 11.7 k /Volt (range 70 k ).

  12. Operational Concept for Flight Crews to Participate in Merging and Spacing of Aircraft

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.

    2006-01-01

    The predicted tripling of air traffic within the next 15 years is expected to cause significant aircraft delays and create a major financial burden for the airline industry unless the capacity of the National Airspace System can be increased. One approach to improve throughput and reduce delay is to develop new ground tools, airborne tools, and procedures to reduce the variance of aircraft delivery to the airport, thereby providing an increase in runway throughput capacity and a reduction in arrival aircraft delay. The first phase of the Merging and Spacing Concept employs a ground based tool used by Air Traffic Control that creates an arrival time to the runway threshold based on the aircraft s current position and speed, then makes minor adjustments to that schedule to accommodate runway throughput constraints such as weather and wake vortex separation criteria. The Merging and Spacing Concept also employs arrival routing that begins at an en route metering fix at altitude and continues to the runway threshold with defined lateral, vertical, and velocity criteria. This allows the desired spacing interval between aircraft at the runway to be translated back in time and space to the metering fix. The tool then calculates a specific speed for each aircraft to fly while enroute to the metering fix based on the adjusted land timing for that aircraft. This speed is data-linked to the crew who fly this speed, causing the aircraft to arrive at the metering fix with the assigned spacing interval behind the previous aircraft in the landing sequence. The second phase of the Merging and Spacing Concept increases the timing precision of the aircraft delivery to the runway threshold by having flight crews using an airborne system make minor speed changes during enroute, descent, and arrival phases of flight. These speed changes are based on broadcast aircraft state data to determine the difference between the actual and assigned time interval between the aircraft pair. The airborne software then calculates a speed adjustment to null that difference over the remaining flight trajectory. Follow-on phases still under development will expand the concept to all types of aircraft, arriving from any direction, merging at different fixes and altitudes, and to any airport. This paper describes the implementation phases of the Merging and Spacing Concept, and provides high-level results of research conducted to date.

  13. Digital phase-locked loop speed control for a brushless dc motor

    NASA Astrophysics Data System (ADS)

    Wise, M. G.

    1985-06-01

    Speed control of d.c. motors by phase-locked loops (PLL) is becoming increasingly popular. Primary interest has been in employing PLL for constant speed control. This thesis investigates the theory and techniques of digital PLL to speed control of a brushless d.c. motor with a variable speed of operation. Addition of logic controlled count enable/disable to a synchronous up/down counter, used as a phase-frequency detector, is shown to improve the performance of previously proposed PLL control schemes.

  14. A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy.

    PubMed

    Goemans, Nathalie; Mercuri, Eugenio; Belousova, Elena; Komaki, Hirofumi; Dubrovsky, Alberto; McDonald, Craig M; Kraus, John E; Lourbakos, Afrodite; Lin, Zhengning; Campion, Giles; Wang, Susanne X; Campbell, Craig

    2018-01-01

    This 48-week, randomized, placebo-controlled phase 3 study (DMD114044; NCT01254019) evaluated efficacy and safety of subcutaneous drisapersen 6 mg/kg/week in 186 ambulant boys aged ≥5 years, with Duchenne muscular dystrophy (DMD) resulting from an exon 51 skipping amenable mutation. Drisapersen was generally well tolerated, with injection-site reactions and renal events as most commonly reported adverse events. A nonsignificant treatment difference (P = 0.415) in the change from baseline in six-minute walk distance (6MWD; primary efficacy endpoint) of 10.3 meters in favor of drisapersen was observed at week 48. Key secondary efficacy endpoints (North Star Ambulatory Assessment, 4-stair climb ascent velocity, and 10-meter walk/run velocity) gave consistent findings. Lack of statistical significance was thought to be largely due to greater data variability and subgroup heterogeneity. The increased standard deviation alone, due to less stringent inclusion/exclusion criteria, reduced the statistical power from pre-specified 90% to actual 53%. Therefore, a post-hoc analysis was performed in 80 subjects with a baseline 6MWD 300-400 meters and ability to rise from floor. A statistically significant improvement in 6MWD of 35.4 meters (P = 0.039) in favor of drisapersen was observed in this subpopulation. Results suggest that drisapersen could have benefit in a less impaired population of DMD subjects. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Wu, Fan; Kim, Myung K.; Wang, Dayong

    2016-11-01

    We present a new self-interference digital holographic approach that allows single-shot capturing three-dimensional intensity distribution of the spatially incoherent objects. The Fresnel incoherent correlation holographic microscopy is combined with parallel phase-shifting technique to instantaneously obtain spatially multiplexed phase-shifting holograms. The compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed holograms. The scheme is verified with simulations. The validity of the proposed method is experimentally demonstrated in an indirectly way by simulating the use of specific parallel phase-shifting recording device.

  16. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Strum, R.; Stiles, D.

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  17. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE PAGES

    Liu, Y.; Strum, R.; Stiles, D.; ...

    2017-11-20

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  18. Alaska Broad Scale Orthoimagery and Elevation Mapping - Current Statewide Project Progress and Historic Work in Alaska

    NASA Astrophysics Data System (ADS)

    Heinrichs, T. A.; Broderson, D.; Johnson, A.; Slife, M.

    2014-12-01

    This presentation describes the overall program goals and current status of broad scale, statewide orthoimagery and digital elevation model (DEM) projects currently underway in Alaska. As context, it will also describe the history and successes of previous statewide Alaska mapping efforts over the preceding 75 years. A new statewide orthomosaic imagery baselayer at 1:24,000 NMAS accuracy (12.2-meters CE90) is nearing completion. The entire state (1.56 million square kilometers) has been imaged with the SPOT 5 satellite, and a 2.5-meter spatial resolution, multi-spectral, nearly cloud-free, pan-sharpened orthoimage will be produced by mid-2015. A second major project is collection of an improved accuracy DEM statewide. Airborne interferometric synthetic aperture radar (IfSAR) data has been collected for about half of the state of Alaska and completion of the rest of the state is anticipated within a few years. A 5-meter post spacing, 20-foot contour interval accuracy equivalent (3-meter vertical LE90) DEM and radar backscatter intensity image is being delivered. Historic projects to be described include the 1950's USGS Alaska topographic mapping program, one of the largest and most pioneering, challenging, and successful ever undertaken in North America. These historic and current mapping programs have served as both a baselayer framework and as feedstock for science for virtually every geologic, geophysical, and terrestrial natural science project in the state.

  19. Preliminary design and implementation of the baseline digital baseband architecture for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Yeh, H.-G.

    1993-01-01

    The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.

  20. Research on phase locked loop in optical memory servo system

    NASA Astrophysics Data System (ADS)

    Qin, Liqin; Ma, Jianshe; Zhang, Jianyong; Pan, Longfa; Deng, Ming

    2005-09-01

    Phase locked loop (PLL) is a closed loop automatic control system, which can track the phase of input signal. It widely applies in each area of electronic technology. This paper research the phase locked loop in optical memory servo area. This paper introduces the configuration of digital phase locked loop (PLL) and phase locked servo system, the control theory, and analyses system's stability. It constructs the phase locked loop experiment system of optical disk spindle servo, which based on special chip. DC motor is main object, this system adopted phase locked servo technique and digital signal processor (DSP) to achieve constant linear velocity (CLV) in controlling optical spindle motor. This paper analyses the factors that affect the stability of phase locked loop in spindle servo system, and discusses the affection to the optical disk readout signal and jitter due to the stability of phase locked loop.

  1. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2003-07-01

    NASA's X-37 Approach and Landing Test Vehicle is installed is a structural facility at Boeing's Huntington Beach, California plant, where technicians make adjustments to composite panels. Tests, completed in July, were conducted to verify the structural integrity of the vehicle in preparation for atmospheric flight tests. Atmospheric flight tests of the Approach and Landing Test Vehicle are scheduled for 2004 and flight tests of the Orbital Vehicle are scheduled for 2006. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. It's experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000.00 per pound. The X-37 program is managed by the Marshall Space Flight Center and built by the Boeing Company.

  2. Programmable rate modem utilizing digital signal processing techniques

    NASA Technical Reports Server (NTRS)

    Bunya, George K.; Wallace, Robert L.

    1989-01-01

    The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery.

  3. The development of a hydrologic-hydraulic representation of an urbanscape: the case study of Nashville, Tennessee

    NASA Astrophysics Data System (ADS)

    Sedlar, F.; Ivanov, V. Y.; Shao, J.; Narayan, U.; Nardi, F.; Adams, T. E.; Merwade, V.; Wright, D. B.; Kim, J.; Fatichi, S.; Rakhmatulina, E.

    2013-12-01

    Incorporating elevation data into coupled hydraulic and hydrologic models with the use of triangulated irregular networks (TINs) provides a detailed and highly customizable representation of the original domain. Until recently the resolution of such digital elevation models was 1 or 1/3 arc second (10-30 meters). Aided by the use of LiDAR, digital elevation models are now available at the 1/9 arc second resolution (1-3 meters). With elevation data at this level of resolution watershed details that are overlooked at a 10-30 meter resolution can now be resolved and incorporated into the TIN. For urban flood modeling this implies that street level features can be resolved. However to provide a useful picture of the flooding as a whole, this data would need to be integrated across a citywide scale. To prove the feasibility, process, and capabilities of generating such a detailed and large scale TIN, we present a case study of Nashville, TN, USA, during the May 1-2, 2010 flooding, a 1,000 year storm event. With the use of ArcGIS, HEC-RAS, Triangle, and additionally developed processing methodologies, an approach is developed to generate a hydrologically relevant and detailed TIN of the entire urbanscape of Nashville. This TIN incorporates three separate aspects; the watershed, the floodplain, and the city. The watershed component contains the elevation data for the delineated watershed, roughly 1,000 km2 at 1-3 meter resolution. The floodplain encompasses over 300 channel cross sections of the Cumberland River and a delineated floodplain. The city element comprises over 500,000 buildings and all major roadways within the watershed. Once generated, the resulting triangulation of the TIN is optimized with the Triangle software for input to the coupled hydraulic and hydrological model, tRIBS-OFM. Hydrologically relevant areas such as the floodplain are densified and constraints are set on the minimum triangle area for the entire TIN. Upon running the coupled hydraulic and hydrological model with the appropriate forcings, the spatial dynamics of the flooding will then be resolved at a street level across the entire city. The analysis capabilities afforded at this resolution and across such a large area will facilitate urban flood predictions coupled with hydrologic forecasts as well as a better understanding of the spatial dynamics of urban flooding.

  4. Fringe pattern demodulation with a two-dimensional digital phase-locked loop algorithm.

    PubMed

    Gdeisat, Munther A; Burton, David R; Lalor, Michael J

    2002-09-10

    A novel technique called a two-dimensional digital phase-locked loop (DPLL) for fringe pattern demodulation is presented. This algorithm is more suitable for demodulation of fringe patterns with varying phase in two directions than the existing DPLL techniques that assume that the phase of the fringe patterns varies only in one direction. The two-dimensional DPLL technique assumes that the phase of a fringe pattern is continuous in both directions and takes advantage of the phase continuity; consequently, the algorithm has better noise performance than the existing DPLL schemes. The two-dimensional DPLL algorithm is also suitable for demodulation of fringe patterns with low sampling rates, and it outperforms the Fourier fringe analysis technique in this aspect.

  5. Wavefront sensing with all-digital Stokes measurements

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Milione, Giovanni; Alfano, Robert R.; Forbes, Andrew

    2014-09-01

    A long-standing question in optics has been to efficiently measure the phase (or wavefront) of an optical field. This has led to numerous publications and commercial devices such as phase shift interferometry, wavefront reconstruction via modal decomposition and Shack-Hartmann wavefront sensors. In this work we develop a new technique to extract the phase which in contrast to previously mentioned methods is based on polarization (or Stokes) measurements. We outline a simple, all-digital approach using only a spatial light modulator and a polarization grating to exploit the amplitude and phase relationship between the orthogonal states of polarization to determine the phase of an optical field. We implement this technique to reconstruct the phase of static and propagating optical vortices.

  6. Single-shot digital holography by use of the fractional Talbot effect.

    PubMed

    Martínez-León, Lluís; Araiza-E, María; Javidi, Bahram; Andrés, Pedro; Climent, Vicent; Lancis, Jesús; Tajahuerce, Enrique

    2009-07-20

    We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally reconstructed from the digital hologram. Both computer simulations and experimental results are presented.

  7. Design of a digital multiradian phase detector and its application in fusion plasma interferometry.

    PubMed

    Mlynek, A; Schramm, G; Eixenberger, H; Sips, G; McCormick, K; Zilker, M; Behler, K; Eheberg, J

    2010-03-01

    We discuss the circuit design of a digital multiradian phase detector that measures the phase difference between two 10 kHz square wave TTL signals and provides the result as a binary number. The phase resolution of the circuit is 1/64 period and its dynamic range is 256 periods. This circuit has been developed for fusion plasma interferometry with submillimeter waves on the ASDEX Upgrade tokamak. The results from interferometric density measurement are discussed and compared to those obtained with the previously used phase detectors, especially with respect to the occurrence of phase jumps. It is illustrated that the new phase measurement provides a powerful tool for automatic real-time validation of the measured density, which is important for feedback algorithms that are sensitive to spurious density signals.

  8. Quantitative photothermal phase imaging of red blood cells using digital holographic photothermal microscope.

    PubMed

    Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon

    2015-05-10

    Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.

  9. Response of an all digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Garodnick, J.; Greco, J.; Schilling, D. L.

    1974-01-01

    An all digital phase-locked loop (DPLL) is designed, analyzed, and tested. Three specific configurations are considered, generating first, second, and third order DPLL's; and it is found, using a computer simulation of a noise spike, and verified experimentally, that of these configurations the second-order system is optimum from the standpoint of threshold extension. This substantiates results obtained for analog PLL's.

  10. An Investigation of the Reliability of Using Comparative Judgment to Score Creative Products

    ERIC Educational Resources Information Center

    Tarricone, Pina; Newhouse, C. Paul

    2017-01-01

    In this article we describe a three-year study that was conducted in three phases to evaluate the feasibility of assessing digitized portfolios of student creative work for high-stakes purposes. The first two phases suggested that creative work could be digitized with adequate fidelity, and that students could submit their own work from schools to…

  11. Understanding University Students' Thoughts and Practices about Digital Citizenship: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Kara, Nuri

    2018-01-01

    The purpose of this study was to investigate university students' thoughts and practices concerning digital citizenship. An explanatory mixed methods design was used, and it involved collecting qualitative data after a quantitative phase in order to follow up on the quantitative data in more depth. In the first quantitative phase of the study, a…

  12. The Effect of a Digital Learning Environment on Children's Conceptions about the Protection of Endemic Plants

    ERIC Educational Resources Information Center

    Petrou, Stella; Korfiatis, Konstantinos

    2013-01-01

    This study presents the results of a pilot learning intervention for improving children's ideas about plant protection. The research was executed in two phases. The first phase aimed at exploring children's ideas about plant protection. These ideas were taken into account for the design and development of a digital learning environment. The second…

  13. Method and apparatus for spur-reduced digital sinusoid synthesis

    NASA Technical Reports Server (NTRS)

    Zimmerman, George A. (Inventor); Flanagan, Michael J. (Inventor)

    1995-01-01

    A technique for reducing the spurious signal content in digital sinusoid synthesis is presented. Spur reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spurs. Effects of periodic dither similar to that produced by a pseudo-noise (PN) generator are analyzed. This phase dithering method provides a spur reduction of 6(M + 1) dB per phase bit when the dither consists of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid look-up tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse-resolution, highly-linear digital-to-analog converters (DAC's) to obtain spur performance limited by the DAC linearity rather than its resolution.

  14. Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System

    NASA Astrophysics Data System (ADS)

    Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.

    2016-10-01

    The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).

  15. Research and Development on Inhalation Toxicologic Evaluation of Red Phosphorus/Butyl Rubber Combustion Products

    DTIC Science & Technology

    1983-08-01

    matter . Vernier adjustments are available so that the signal (the digital meter reports signal level In millivolts) can be made to correspond...was varied, to obtain different oxygen levels , was In the range of 50 to 300 mi/min and was measured with an accuracy of at least 1 percent. The... In the chambers during each test "was consistently 21 percent. Chemical analysis ol the chamber atmosphere Indicated the absence of hexane, levels of

  16. A Low-Visibility Force Multiplier: Assessing China’s Cruise Missile Ambitions

    DTIC Science & Technology

    2014-04-01

    terminal sensor to achieve 10–15 meter (m) accuracy. • The second-generation DH-10 has a GPS/inertial guidance system but may also use terrain...contour mapping for redundant midcourse guidance and a digital scene-matching sensor to permit an accuracy of 10 m. • Development of the Chinese Beidou...pictures of the target as seen from different perspectives. DSMAC permits LACMs to achieve accuracies of about 1 m. Other (for example, thermal) sensors

  17. Cosmic Sparklers

    NASA Image and Video Library

    2015-07-02

    This new composite image of stellar cluster NGC 1333 combines X-rays from NASA's Chandra X-ray Observatory (pink); infrared data from NASA's Spitzer Space Telescope (red); and optical data from the Digitized Sky Survey and the National Optical Astronomical Observatories' Mayall 4-meter telescope on Kitt Peak near Tucson, Arizona. The Chandra data reveal 95 young stars glowing in X-ray light, 41 of which had not been seen previously using Spitzer because they lacked infrared emission from a surrounding disk. http://photojournal.jpl.nasa.gov/catalog/PIA19347

  18. All-digital radar architecture

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.

    2014-10-01

    All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.

  19. Are forward and backward recall the same? A dual-task study of digit recall.

    PubMed

    St Clair-Thompson, Helen L; Allen, Richard J

    2013-05-01

    There is some debate surrounding the cognitive resources underlying backward digit recall. Some researchers consider it to differ from forward digit recall due to the involvement of executive control, while others suggest that backward recall involves visuospatial resources. Five experiments therefore investigated the role of executive-attentional and visuospatial resources in both forward and backward digit recall. In the first, participants completed visuospatial 0-back and 2-back tasks during the encoding of information to be remembered. The concurrent tasks did not differentially disrupt performance on backward digit recall, relative to forward digit recall. Experiment 2 shifted concurrent load to the recall phase instead and, in this case, revealed a larger effect of both tasks on backward recall, relative to forwards recall, suggesting that backward recall may draw on additional resources during the recall phase and that these resources are visuospatial in nature. Experiments 3 and 4 then further investigated the role of visual processes in forward and backward recall using dynamic visual noise (DVN). In Experiment 3, DVN was presented during encoding of information to be remembered and had no effect upon performance. However, in Experiment 4, it was presented during the recall phase, and the results provided evidence of a role for visual imagery in backward digit recall. These results were replicated in Experiment 5, in which the same list length was used for forward and backward recall tasks. The findings are discussed in terms of both theoretical and practical implications.

  20. Blind phase error suppression for color-encoded digital fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Ma, S.; Zhu, R.; Quan, C.; Li, B.; Tay, C. J.; Chen, L.

    2012-04-01

    Color-encoded digital fringe projection profilometry (CDFPP) has the advantage of fast speed, non-contact and full-field testing. It is one of the most important dynamic three-dimensional (3D) profile measurement techniques. However, due to factors such as color cross-talk and gamma distortion of electro-optical devices, phase errors arise when conventional phase-shifting algorithms with fixed phase shift values are utilized to retrieve phases. In this paper, a simple and effective blind phase error suppression approach based on isotropic n-dimensional fringe pattern normalization (INFPN) and carrier squeezing interferometry (CSI) is proposed. It does not require pre-calibration for the gamma and color-coupling coefficients or the phase shift values. Simulation and experimental works show that our proposed approach is able to effectively suppress phase errors and achieve accurate measurement results in CDFPP.

Top