Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6
NASA Technical Reports Server (NTRS)
Lee, George
1993-01-01
A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.
Digital receiver study and implementation
NASA Technical Reports Server (NTRS)
Fogle, D. A.; Lee, G. M.; Massey, J. C.
1972-01-01
Computer software was developed which makes it possible to use any general purpose computer with A/D conversion capability as a PSK receiver for low data rate telemetry processing. Carrier tracking, bit synchronization, and matched filter detection are all performed digitally. To aid in the implementation of optimum computer processors, a study of general digital processing techniques was performed which emphasized various techniques for digitizing general analog systems. In particular, the phase-locked loop was extensively analyzed as a typical non-linear communication element. Bayesian estimation techniques for PSK demodulation were studied. A hardware implementation of the digital Costas loop was developed.
How Digital Image Processing Became Really Easy
NASA Astrophysics Data System (ADS)
Cannon, Michael
1988-02-01
In the early and mid-1970s, digital image processing was the subject of intense university and corporate research. The research lay along two lines: (1) developing mathematical techniques for improving the appearance of or analyzing the contents of images represented in digital form, and (2) creating cost-effective hardware to carry out these techniques. The research has been very effective, as evidenced by the continued decline of image processing as a research topic, and the rapid increase of commercial companies to market digital image processing software and hardware.
Programmable rate modem utilizing digital signal processing techniques
NASA Technical Reports Server (NTRS)
Naveh, Arad
1992-01-01
The need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) modulation is discussed. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. The design trade-offs in each portion of the modulator and demodulator subsystem are outlined.
NASA Astrophysics Data System (ADS)
Wang, Juan; Wang, Jian; Li, Lijuan; Zhou, Kun
2014-08-01
In order to solve the information fusion, process integration, collaborative design and manufacturing for ultra-precision optical elements within life-cycle management, this paper presents a digital management platform which is based on product data and business processes by adopting the modern manufacturing technique, information technique and modern management technique. The architecture and system integration of the digital management platform are discussed in this paper. The digital management platform can realize information sharing and interaction for information-flow, control-flow and value-stream from user's needs to offline in life-cycle, and it can also enhance process control, collaborative research and service ability of ultra-precision optical elements.
Digital Signal Processing Based Biotelemetry Receivers
NASA Technical Reports Server (NTRS)
Singh, Avtar; Hines, John; Somps, Chris
1997-01-01
This is an attempt to develop a biotelemetry receiver using digital signal processing technology and techniques. The receiver developed in this work is based on recovering signals that have been encoded using either Pulse Position Modulation (PPM) or Pulse Code Modulation (PCM) technique. A prototype has been developed using state-of-the-art digital signal processing technology. A Printed Circuit Board (PCB) is being developed based on the technique and technology described here. This board is intended to be used in the UCSF Fetal Monitoring system developed at NASA. The board is capable of handling a variety of PPM and PCM signals encoding signals such as ECG, temperature, and pressure. A signal processing program has also been developed to analyze the received ECG signal to determine heart rate. This system provides a base for using digital signal processing in biotelemetry receivers and other similar applications.
NASA Astrophysics Data System (ADS)
Konishi, Tsuyoshi; Tanida, Jun; Ichioka, Yoshiki
1995-06-01
A novel technique, the visual-area coding technique (VACT), for the optical implementation of fuzzy logic with the capability of visualization of the results is presented. This technique is based on the microfont method and is considered to be an instance of digitized analog optical computing. Huge amounts of data can be processed in fuzzy logic with the VACT. In addition, real-time visualization of the processed result can be accomplished.
Digital image processing for photo-reconnaissance applications
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1972-01-01
Digital image-processing techniques developed for processing pictures from NASA space vehicles are analyzed in terms of enhancement, quantitative restoration, and information extraction. Digital filtering, and the action of a high frequency filter in the real and Fourier domain are discussed along with color and brightness.
LANDSAT information for state planning
NASA Technical Reports Server (NTRS)
Faust, N. L.; Spann, G. W.
1977-01-01
The transfer of remote sensing technology for the digital processing of LANDSAT data to state and local agencies in Georgia and other southeastern states is discussed. The project consists of a series of workshops, seminars, and demonstration efforts, and transfer of NASA-developed hardware concepts and computer software to state agencies. Throughout the multi-year effort, digital processing techniques have been emphasized classification algorithms. Software for LANDSAT data rectification and processing have been developed and/or transferred. A hardware system is available at EES (engineering experiment station) to allow user interactive processing of LANDSAT data. Seminars and workshops emphasize the digital approach to LANDSAT data utilization and the system improvements scheduled for LANDSATs C and D. Results of the project indicate a substantially increased awareness of the utility of digital LANDSAT processing techniques among the agencies contracted throughout the southeast. In Georgia, several agencies have jointly funded a program to map the entire state using digitally processed LANDSAT data.
Yuzbasioglu, Emir; Kurt, Hanefi; Turunc, Rana; Bilir, Halenur
2014-01-30
The purpose of this study was to compare two impression techniques from the perspective of patient preferences and treatment comfort. Twenty-four (12 male, 12 female) subjects who had no previous experience with either conventional or digital impression participated in this study. Conventional impressions of maxillary and mandibular dental arches were taken with a polyether impression material (Impregum, 3 M ESPE), and bite registrations were made with polysiloxane bite registration material (Futar D, Kettenbach). Two weeks later, digital impressions and bite scans were performed using an intra-oral scanner (CEREC Omnicam, Sirona). Immediately after the impressions were made, the subjects' attitudes, preferences and perceptions towards impression techniques were evaluated using a standardized questionnaire. The perceived source of stress was evaluated using the State-Trait Anxiety Scale. Processing steps of the impression techniques (tray selection, working time etc.) were recorded in seconds. Statistical analyses were performed with the Wilcoxon Rank test, and p < 0.05 was considered significant. There were significant differences among the groups (p < 0.05) in terms of total working time and processing steps. Patients stated that digital impressions were more comfortable than conventional techniques. Digital impressions resulted in a more time-efficient technique than conventional impressions. Patients preferred the digital impression technique rather than conventional techniques.
Hybrid acousto-optic and digital equalization for microwave digital radio channels
NASA Astrophysics Data System (ADS)
Anderson, C. S.; Vanderlugt, A.
1990-11-01
Digital radio transmission systems use complex modulation schemes that require powerful signal-processing techniques to correct channel distortions and to minimize BERs. This paper proposes combining the computation power of acoustooptic processing and the accuracy of digital processing to produce a hybrid channel equalizer that exceeds the performance of digital equalization alone. Analysis shows that a hybrid equalizer for 256-level quadrature amplitude modulation (QAM) performs better than a digital equalizer for 64-level QAM.
The AAPM/RSNA physics tutorial for residents: digital fluoroscopy.
Pooley, R A; McKinney, J M; Miller, D A
2001-01-01
A digital fluoroscopy system is most commonly configured as a conventional fluoroscopy system (tube, table, image intensifier, video system) in which the analog video signal is converted to and stored as digital data. Other methods of acquiring the digital data (eg, digital or charge-coupled device video and flat-panel detectors) will become more prevalent in the future. Fundamental concepts related to digital imaging in general include binary numbers, pixels, and gray levels. Digital image data allow the convenient use of several image processing techniques including last image hold, gray-scale processing, temporal frame averaging, and edge enhancement. Real-time subtraction of digital fluoroscopic images after injection of contrast material has led to widespread use of digital subtraction angiography (DSA). Additional image processing techniques used with DSA include road mapping, image fade, mask pixel shift, frame summation, and vessel size measurement. Peripheral angiography performed with an automatic moving table allows imaging of the peripheral vasculature with a single contrast material injection.
Unified Digital Image Display And Processing System
NASA Astrophysics Data System (ADS)
Horii, Steven C.; Maguire, Gerald Q.; Noz, Marilyn E.; Schimpf, James H.
1981-11-01
Our institution like many others, is faced with a proliferation of medical imaging techniques. Many of these methods give rise to digital images (e.g. digital radiography, computerized tomography (CT) , nuclear medicine and ultrasound). We feel that a unified, digital system approach to image management (storage, transmission and retrieval), image processing and image display will help in integrating these new modalities into the present diagnostic radiology operations. Future techniques are likely to employ digital images, so such a system could readily be expanded to include other image sources. We presently have the core of such a system. We can both view and process digital nuclear medicine (conventional gamma camera) images, positron emission tomography (PET) and CT images on a single system. Images from our recently installed digital radiographic unit can be added. Our paper describes our present system, explains the rationale for its configuration, and describes the directions in which it will expand.
Image processing techniques for digital orthophotoquad production
Hood, Joy J.; Ladner, L. J.; Champion, Richard A.
1989-01-01
Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.
Unfolding and unfoldability of digital pulses in the z-domain
NASA Astrophysics Data System (ADS)
Regadío, Alberto; Sánchez-Prieto, Sebastián
2018-04-01
The unfolding (or deconvolution) technique is used in the development of digital pulse processing systems applied to particle detection. This technique is applied to digital signals obtained by digitization of analog signals that represent the combined response of the particle detectors and the associated signal conditioning electronics. This work describes a technique to determine if the signal is unfoldable. For unfoldable signals the characteristics of the unfolding system (unfolder) are presented. Finally, examples of the method applied to real experimental setup are discussed.
The effects of solar incidence angle over digital processing of LANDSAT data
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.
1983-01-01
A technique to extract the topography modulation component from digital data is described. The enhancement process is based on the fact that the pixel contains two types of information: (1) reflectance variation due to the target; (2) reflectance variation due to the topography. In order to enhance the signal variation due to topography, the technique recommends the extraction from original LANDSAT data of the component resulting from target reflectance. Considering that the role of topographic modulation over the pixel information will vary with solar incidence angle, the results of this technique of digital processing will differ from one season to another, mainly in highly dissected topography. In this context, the effects of solar incidence angle over the topographic modulation technique were evaluated. Two sets of MSS/LANDSAT data, with solar elevation angles varying from 22 to 41 deg were selected to implement the digital processing at the Image-100 System. A secondary watershed (Rio Bocaina) draining into Rio Paraiba do Sul (Sao Paulo State) was selected as a test site. The results showed that the technique used was more appropriate to MSS data acquired under higher Sun elevation angles. Topographic modulation components applied to low Sun elevation angles lessens rather than enhances topography.
2014-01-01
Background The purpose of this study was to compare two impression techniques from the perspective of patient preferences and treatment comfort. Methods Twenty-four (12 male, 12 female) subjects who had no previous experience with either conventional or digital impression participated in this study. Conventional impressions of maxillary and mandibular dental arches were taken with a polyether impression material (Impregum, 3 M ESPE), and bite registrations were made with polysiloxane bite registration material (Futar D, Kettenbach). Two weeks later, digital impressions and bite scans were performed using an intra-oral scanner (CEREC Omnicam, Sirona). Immediately after the impressions were made, the subjects’ attitudes, preferences and perceptions towards impression techniques were evaluated using a standardized questionnaire. The perceived source of stress was evaluated using the State-Trait Anxiety Scale. Processing steps of the impression techniques (tray selection, working time etc.) were recorded in seconds. Statistical analyses were performed with the Wilcoxon Rank test, and p < 0.05 was considered significant. Results There were significant differences among the groups (p < 0.05) in terms of total working time and processing steps. Patients stated that digital impressions were more comfortable than conventional techniques. Conclusions Digital impressions resulted in a more time-efficient technique than conventional impressions. Patients preferred the digital impression technique rather than conventional techniques. PMID:24479892
Digital signal conditioning for flight test instrumentation
NASA Technical Reports Server (NTRS)
Bever, Glenn A.
1991-01-01
An introduction to digital measurement processes on aircraft is provided. Flight test instrumentation systems are rapidly evolving from analog-intensive to digital intensive systems, including the use of onboard digital computers. The topics include measurements that are digital in origin, as well as sampling, encoding, transmitting, and storing data. Particular emphasis is placed on modern avionic data bus architectures and what to be aware of when extracting data from them. Examples of data extraction techniques are given. Tradeoffs between digital logic families, trends in digital development, and design testing techniques are discussed. An introduction to digital filtering is also covered.
Digital mammography: physical principles and future applications.
Gambaccini, Mauro; Baldelli, Paola
2003-01-01
Mammography is currently considered the best tool for the detection of breast cancer, pathology with a rate of incidence in constant increase. To produce the radiological picture a screen film combination is conventionally used. One of the inherent limitations of screen- film combination is the fact that the detection, display and storage processes are one and the same, making it impossible to separately optimize each stage. These limitations can be overcome with digital systems. In this work we evaluate the main characteristics of digital detectors available on the market and we compare the performance of digital and conventional systems. Digital mammography, due to the possibility to process images, offers many potential advantages, among these the possibility to introduce the dual-energy technique which employs the composition of two digital images obtained with two different energies to enhance the inherent contrast of pathologies by removing the uniform background. This technique was previously tested by using synchrotron monochromatic beam and a digital detector, and then the Senographe 2000D full-field digital system manufactured by GE Medical Systems. In this work we present preliminary results and the future applications of this technique.
Digital signal processing in microwave radiometers
NASA Technical Reports Server (NTRS)
Lawrence, R. W.; Stanley, W. D.; Harrington, R. F.
1980-01-01
A microprocessor based digital signal processing unit has been proposed to replace analog sections of a microwave radiometer. A brief introduction to the radiometer system involved and a description of problems encountered in the use of digital techniques in radiometer design are discussed. An analysis of the digital signal processor as part of the radiometer is then presented.
Digital television system design study
NASA Technical Reports Server (NTRS)
Huth, G. K.
1976-01-01
The use of digital techniques for transmission of pictorial data is discussed for multi-frame images (television). Video signals are processed in a manner which includes quantization and coding such that they are separable from the noise introduced into the channel. The performance of digital television systems is determined by the nature of the processing techniques (i.e., whether the video signal itself or, instead, something related to the video signal is quantized and coded) and to the quantization and coding schemes employed.
Choosing a DIVA: a comparison of emerging digital imagery vegetation analysis techniques
Jorgensen, Christopher F.; Stutzman, Ryan J.; Anderson, Lars C.; Decker, Suzanne E.; Powell, Larkin A.; Schacht, Walter H.; Fontaine, Joseph J.
2013-01-01
Question: What is the precision of five methods of measuring vegetation structure using ground-based digital imagery and processing techniques? Location: Lincoln, Nebraska, USA Methods: Vertical herbaceous cover was recorded using digital imagery techniques at two distinct locations in a mixed-grass prairie. The precision of five ground-based digital imagery vegetation analysis (DIVA) methods for measuring vegetation structure was tested using a split-split plot analysis of covariance. Variability within each DIVA technique was estimated using coefficient of variation of mean percentage cover. Results: Vertical herbaceous cover estimates differed among DIVA techniques. Additionally, environmental conditions affected the vertical vegetation obstruction estimates for certain digital imagery methods, while other techniques were more adept at handling various conditions. Overall, percentage vegetation cover values differed among techniques, but the precision of four of the five techniques was consistently high. Conclusions: DIVA procedures are sufficient for measuring various heights and densities of standing herbaceous cover. Moreover, digital imagery techniques can reduce measurement error associated with multiple observers' standing herbaceous cover estimates, allowing greater opportunity to detect patterns associated with vegetation structure.
NASA Astrophysics Data System (ADS)
Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan
2017-03-01
Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.
All-Digital Baseband 65nm PLL/FPLL Clock Multiplier using 10-cell Library
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr.; Wu, Qiong; Liu, Rui; Chen, Li
2014-01-01
PLLs for clock generation are essential for modern circuits, to generate specialized frequencies for many interfaces and high frequencies for chip internal operation. These circuits depend on analog circuits and careful tailoring for each new process, and making them fault tolerant is an incompletely solved problem. Until now, all digital PLLs have been restricted to sampled data DSP techniques and not available for the highest frequency baseband applications. This paper presents the design and preliminary evaluation of an all-digital baseband technique built entirely with an easily portable 10-cell digital library. The library is also described, as it aids in research and low volume design porting to new processes. The advantages of the digital approach are the wide variety of techniques available to give varying degrees of fault tolerance, and the simplicity of porting the design to new processes, even to exotic processes that may not have analog capability. The only tuning parameter is digital gate delay. An all-digital approach presents unique problems and standard analog loop stability design criteria cannot be directly used. Because of the quantization of frequency, there is effectively infinite gain for very small loop error feedback. The numerically controlled oscillator (NCO) based on a tapped delay line cannot be reliably updated while a pulse is active in the delay line, and ordinarily does not have enough frequency resolution for a low-jitter output.
ALL-Digital Baseband 65nm PLL/FPLL Clock Multiplier Using 10-Cell Library
NASA Technical Reports Server (NTRS)
Schuler, Robert L., Jr.; Wu, Qiong; Liu, Rui; Chen, Li; Madala, Shridhar
2014-01-01
PLLs for clock generation are essential for modern circuits, to generate specialized frequencies for many interfaces and high frequencies for chip internal operation. These circuits depend on analog circuits and careful tailoring for each new process, and making them fault tolerant is an incompletely solved problem. Until now, all digital PLLs have been restricted to sampled data DSP techniques and not available for the highest frequency baseband applications. This paper presents the design and preliminary evaluation of an all-digital baseband technique built entirely with an easily portable 10-cell digital library. The library is also described, as it aids in research and low volume design porting to new processes. The advantages of the digital approach are the wide variety of techniques available to give varying degrees of fault tolerance, and the simplicity of porting the design to new processes, even to exotic processes that may not have analog capability. The only tuning parameter is digital gate delay. An all-digital approach presents unique problems and standard analog loop stability design criteria cannot be directly used. Because of the quantization of frequency, there is effectively infinite gain for very small loop error feedback. The numerically controlled oscillator (NCO) based on a tapped delay line cannot be reliably updated while a pulse is active in the delay line, and ordinarily does not have enough frequency resolution for a low-jitter output.
Imaging techniques in digital forensic investigation: a study using neural networks
NASA Astrophysics Data System (ADS)
Williams, Godfried
2006-09-01
Imaging techniques have been applied to a number of applications, such as translation and classification problems in medicine and defence. This paper examines the application of imaging techniques in digital forensics investigation using neural networks. A review of applications of digital image processing is presented, whiles a Pedagogical analysis of computer forensics is also highlighted. A data set describing selected images in different forms are used in the simulation and experimentation.
DESDynI Quad First Stage Processor - A Four Channel Digitizer and Digital Beam Forming Processor
NASA Technical Reports Server (NTRS)
Chuang, Chung-Lun; Shaffer, Scott; Smythe, Robert; Niamsuwan, Noppasin; Li, Samuel; Liao, Eric; Lim, Chester; Morfopolous, Arin; Veilleux, Louise
2013-01-01
The proposed Deformation, Eco-Systems, and Dynamics of Ice Radar (DESDynI-R) L-band SAR instrument employs multiple digital channels to optimize resolution while keeping a large swath on a single pass. High-speed digitization with very fine synchronization and digital beam forming are necessary in order to facilitate this new technique. The Quad First Stage Processor (qFSP) was developed to achieve both the processing performance as well as the digitizing fidelity in order to accomplish this sweeping SAR technique. The qFSP utilizes high precision and high-speed analog to digital converters (ADCs), each with a finely adjustable clock distribution network to digitize the channels at the fidelity necessary to allow for digital beam forming. The Xilinx produced FX130T Virtex 5 part handles the processing to digitally calibrate each channel as well as filter and beam form the receive signals. Demonstrating the digital processing required for digital beam forming and digital calibration is instrumental to the viability of the proposed DESDynI instrument. The qFSP development brings this implementation to Technology Readiness Level (TRL) 6. This paper will detail the design and development of the prototype qFSP as well as the preliminary results from hardware tests.
The Commercial Challenges Of Pacs
NASA Astrophysics Data System (ADS)
Vanden Brink, John A.
1984-08-01
The increasing use of digital imaging techniques create a need for improved methods of digital processing, communication and archiving. However, the commercial opportunity is dependent on the resolution of a number of issues. These issues include proof that digital processes are more cost effective than present techniques, implementation of information system support in the imaging activity, implementation of industry standards, conversion of analog images to digital formats, definition of clinical needs, the implications of the purchase decision and technology requirements. In spite of these obstacles, a market is emerging, served by new and existing companies, that may become a $500 million market (U.S.) by 1990 for equipment and supplies.
Applied digital signal processing systems for vortex flowmeter with digital signal processing.
Xu, Ke-Jun; Zhu, Zhi-Hai; Zhou, Yang; Wang, Xiao-Fen; Liu, San-Shan; Huang, Yun-Zhi; Chen, Zhi-Yuan
2009-02-01
The spectral analysis is combined with digital filter to process the vortex sensor signal for reducing the effect of disturbance at low frequency from pipe vibrations and increasing the turndown ratio. Using digital signal processing chip, two kinds of digital signal processing systems are developed to implement these algorithms. One is an integrative system, and the other is a separated system. A limiting amplifier is designed in the input analog condition circuit to adapt large amplitude variation of sensor signal. Some technique measures are taken to improve the accuracy of the output pulse, speed up the response time of the meter, and reduce the fluctuation of the output signal. The experimental results demonstrate the validity of the digital signal processing systems.
Rounding Technique for High-Speed Digital Signal Processing
NASA Technical Reports Server (NTRS)
Wechsler, E. R.
1983-01-01
Arithmetic technique facilitates high-speed rounding of 2's complement binary data. Conventional rounding of 2's complement numbers presents problems in high-speed digital circuits. Proposed technique consists of truncating K + 1 bits then attaching bit in least significant position. Mean output error is zero, eliminating introducing voltage offset at input.
Watermarking and copyright labeling of printed images
NASA Astrophysics Data System (ADS)
Hel-Or, Hagit Z.
2001-07-01
Digital watermarking is a labeling technique for digital images which embeds a code into the digital data so the data are marked. Watermarking techniques previously developed deal with on-line digital data. These techniques have been developed to withstand digital attacks such as image processing, image compression and geometric transformations. However, one must also consider the readily available attack of printing and scanning. The available watermarking techniques are not reliable under printing and scanning. In fact, one must consider the availability of watermarks for printed images as well as for digital images. An important issue is to intercept and prevent forgery in printed material such as currency notes, back checks, etc. and to track and validate sensitive and secrete printed material. Watermarking in such printed material can be used not only for verification of ownership but as an indicator of date and type of transaction or date and source of the printed data. In this work we propose a method of embedding watermarks in printed images by inherently taking advantage of the printing process. The method is visually unobtrusive to the printed image, the watermark is easily extracted and is robust under reconstruction errors. The decoding algorithm is automatic given the watermarked image.
High-Quality 3d Models and Their Use in a Cultural Heritage Conservation Project
NASA Astrophysics Data System (ADS)
Tucci, G.; Bonora, V.; Conti, A.; Fiorini, L.
2017-08-01
Cultural heritage digitization and 3D modelling processes are mainly based on laser scanning and digital photogrammetry techniques to produce complete, detailed and photorealistic three-dimensional surveys: geometric as well as chromatic aspects, in turn testimony of materials, work techniques, state of preservation, etc., are documented using digitization processes. The paper explores the topic of 3D documentation for conservation purposes; it analyses how geomatics contributes in different steps of a restoration process and it presents an overview of different uses of 3D models for the conservation and enhancement of the cultural heritage. The paper reports on the project to digitize the earthenware frieze of the Ospedale del Ceppo in Pistoia (Italy) for 3D documentation, restoration work support, and digital and physical reconstruction and integration purposes. The intent to design an exhibition area suggests new ways to take advantage of 3D data originally acquired for documentation and scientific purposes.
Digital processing of radiographic images for print publication.
Cockerill, James W
2002-01-01
Digital imaging of X-rays yields high quality, evenly exposed negatives and prints. This article outlines the method used, materials and methods of this technique and discusses the advantages of digital radiographic images.
Comparing digital data processing techniques for surface mine and reclamation monitoring
NASA Technical Reports Server (NTRS)
Witt, R. G.; Bly, B. G.; Campbell, W. J.; Bloemer, H. H. L.; Brumfield, J. O.
1982-01-01
The results of three techniques used for processing Landsat digital data are compared for their utility in delineating areas of surface mining and subsequent reclamation. An unsupervised clustering algorithm (ISOCLS), a maximum-likelihood classifier (CLASFY), and a hybrid approach utilizing canonical analysis (ISOCLS/KLTRANS/ISOCLS) were compared by means of a detailed accuracy assessment with aerial photography at NASA's Goddard Space Flight Center. Results show that the hybrid approach was superior to the traditional techniques in distinguishing strip mined and reclaimed areas.
Digital pulse processing in Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Veiga, A.; Grunfeld, C. M.
2014-04-01
In this work we present some advances towards full digitization of the detection subsystem of a Mössbauer transmission spectrometer. We show how, using adequate instrumentation, preamplifier output of a proportional counter can be digitized with no deterioration in spectrum quality, avoiding the need of a shaping amplifier. A pipelined architecture is proposed for a digital processor, which constitutes a versatile platform for the development of pulse processing techniques. Requirements for minimization of the analog processing are considered and experimental results are presented.
The application of digital signal processing techniques to a teleoperator radar system
NASA Technical Reports Server (NTRS)
Pujol, A.
1982-01-01
A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.
NASA Astrophysics Data System (ADS)
Sulentic, Jack W.; Lorre, Jean J.
1984-05-01
Digital technology has been used to improve enhancement techniques in astronomical image processing. Continuous tone variations in photographs are assigned density number (DN) values which are arranged in an array. DN locations are processed by computer and turned into pixels which form a reconstruction of the original scene on a television monitor. Digitized data can be manipulated to enhance contrast and filter out gross patterns of light and dark which obscure small scale features. Separate black and white frames exposed at different wavelengths can be digitized and processed individually, then recombined to produce a final image in color. Several examples of the use of the technique are provided, including photographs of spiral galaxy M33; four galaxies in Coma Berenices (NGC 4169, 4173, 4174, and 4175); and Stephens Quintet.
Visually enhanced CCTV digital surveillance utilizing Intranet and Internet.
Ozaki, Nobuyuki
2002-07-01
This paper describes a solution for integrated plant supervision utilizing closed circuit television (CCTV) digital surveillance. Three basic requirements are first addressed as the platform of the system, with discussion on the suitable video compression. The system configuration is described in blocks. The system provides surveillance functionality: real-time monitoring, and process analysis functionality: a troubleshooting tool. This paper describes the formulation of practical performance design for determining various encoder parameters. It also introduces image processing techniques for enhancing the original CCTV digital image to lessen the burden on operators. Some screenshots are listed for the surveillance functionality. For the process analysis, an image searching filter supported by image processing techniques is explained with screenshots. Multimedia surveillance, which is the merger with process data surveillance, or the SCADA system, is also explained.
Design of a low cost earth resources system
NASA Technical Reports Server (NTRS)
Faust, N. L.; Furman, M. D.; Spann, G. W. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Survey results indicated that users of remote sensing data in the Southeastern U.S. were increasingly turning to digital processing techniques. All the states surveyed have had some involvement in projects using digitally processed data. Even those states which do not yet have in-house capabilities for digital processing were extremely interested in and were planning to develop such capabilities.
Digital image analysis techniques for fiber and soil mixtures.
DOT National Transportation Integrated Search
1999-05-01
The objective of image processing is to visually enhance, quantify, and/or statistically evaluate some aspect of an image not readily apparent in its original form. Processed digital image data can be analyzed in numerous ways. In order to summarize ...
Digital images in the map revision process
NASA Astrophysics Data System (ADS)
Newby, P. R. T.
Progress towards the adoption of digital (or softcopy) photogrammetric techniques for database and map revision is reviewed. Particular attention is given to the Ordnance Survey of Great Britain, the author's former employer, where digital processes are under investigation but have not yet been introduced for routine production. Developments which may lead to increasing automation of database update processes appear promising, but because of the cost and practical problems associated with managing as well as updating large digital databases, caution is advised when considering the transition to softcopy photogrammetry for revision tasks.
Digital processing of RF signals from optical frequency combs
NASA Astrophysics Data System (ADS)
Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej
2013-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.
Digital processing of signals from femtosecond combs
NASA Astrophysics Data System (ADS)
Čížek, Martin; Šmíd, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Číp, Ondrej
2012-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique and with fully digital servo-loop stabilization of the fs comb. Secondly, we are using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset and repetition frequencies of the fs comb.
Information Processing Techniques Program. Volume II. Communications- Adaptive Internetting
1977-09-30
LABORATORY INFORMATION PROCESSING TECHNIQUES PROGRAM VOLUME II: COMMUNICATIONS-ADAPTIVE INTERNETTING I SEMIANNUAL TECHNICAL SUMMARY REPORT TO THE...MASSACHUSETTS ABSTRACT This repori describes work performed on the Communications-Adaptive Internetting program sponsored by the Information ... information processing techniques network speech terminal communicatlons-adaptive internetting 04 links digital voice communications time-varying
Discrete-time modelling of musical instruments
NASA Astrophysics Data System (ADS)
Välimäki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti
2006-01-01
This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed.
NASA Astrophysics Data System (ADS)
Papers are presented on ISDN, mobile radio systems and techniques for digital connectivity, centralized and distributed algorithms in computer networks, communications networks, quality assurance and impact on cost, adaptive filters in communications, the spread spectrum, signal processing, video communication techniques, and digital satellite services. Topics discussed include performance evaluation issues for integrated protocols, packet network operations, the computer network theory and multiple-access, microwave single sideband systems, switching architectures, fiber optic systems, wireless local communications, modulation, coding, and synchronization, remote switching, software quality, transmission, and expert systems in network operations. Consideration is given to wide area networks, image and speech processing, office communications application protocols, multimedia systems, customer-controlled network operations, digital radio systems, channel modeling and signal processing in digital communications, earth station/on-board modems, computer communications system performance evaluation, source encoding, compression, and quantization, and adaptive communications systems.
Computer image processing - The Viking experience. [digital enhancement techniques
NASA Technical Reports Server (NTRS)
Green, W. B.
1977-01-01
Computer processing of digital imagery from the Viking mission to Mars is discussed, with attention given to subjective enhancement and quantitative processing. Contrast stretching and high-pass filtering techniques of subjective enhancement are described; algorithms developed to determine optimal stretch and filtering parameters are also mentioned. In addition, geometric transformations to rectify the distortion of shapes in the field of view and to alter the apparent viewpoint of the image are considered. Perhaps the most difficult problem in quantitative processing of Viking imagery was the production of accurate color representations of Orbiter and Lander camera images.
Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Whyte, Wayne A., Jr.
1989-01-01
Advances in very large-scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible and potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for a DPCM-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the CODEC are described, and performance results are provided.
Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Whyte, Wayne A.
1991-01-01
Advances in very large scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible an potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for DPCM (differential pulse code midulation)-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the codec are described, and performance results are provided.
Hybrid photonic signal processing
NASA Astrophysics Data System (ADS)
Ghauri, Farzan Naseer
This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space---fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.
Fingerprint pattern restoration by digital image processing techniques.
Wen, Che-Yen; Yu, Chiu-Chung
2003-09-01
Fingerprint evidence plays an important role in solving criminal problems. However, defective (lacking information needed for completeness) or contaminated (undesirable information included) fingerprint patterns make identifying and recognizing processes difficult. Unfortunately. this is the usual case. In the recognizing process (enhancement of patterns, or elimination of "false alarms" so that a fingerprint pattern can be searched in the Automated Fingerprint Identification System (AFIS)), chemical and physical techniques have been proposed to improve pattern legibility. In the identifying process, a fingerprint examiner can enhance contaminated (but not defective) fingerprint patterns under guidelines provided by the Scientific Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST), the Scientific Working Group on Imaging Technology (SWGIT), and an AFIS working group within the National Institute of Justice. Recently, the image processing techniques have been successfully applied in forensic science. For example, we have applied image enhancement methods to improve the legibility of digital images such as fingerprints and vehicle plate numbers. In this paper, we propose a novel digital image restoration technique based on the AM (amplitude modulation)-FM (frequency modulation) reaction-diffusion method to restore defective or contaminated fingerprint patterns. This method shows its potential application to fingerprint pattern enhancement in the recognizing process (but not for the identifying process). Synthetic and real images are used to show the capability of the proposed method. The results of enhancing fingerprint patterns by the manual process and our method are evaluated and compared.
Digital Signal Processing in Acoustics--Part 2.
ERIC Educational Resources Information Center
Davies, H.; McNeill, D. J.
1986-01-01
Reviews the potential of a data acquisition system for illustrating the nature and significance of ideas in digital signal processing. Focuses on the fast Fourier transform and the utility of its two-channel format, emphasizing cross-correlation and its two-microphone technique of acoustic intensity measurement. Includes programing format. (ML)
A Virtual Laboratory for Digital Signal Processing
ERIC Educational Resources Information Center
Dow, Chyi-Ren; Li, Yi-Hsung; Bai, Jin-Yu
2006-01-01
This work designs and implements a virtual digital signal processing laboratory, VDSPL. VDSPL consists of four parts: mobile agent execution environments, mobile agents, DSP development software, and DSP experimental platforms. The network capability of VDSPL is created by using mobile agent and wrapper techniques without modifying the source code…
Application of LANDSAT data to monitor land reclamation progress in Belmont County, Ohio
NASA Technical Reports Server (NTRS)
Bloemer, H. H. L.; Brumfield, J. O.; Campbell, W. J.; Witt, R. G.; Bly, B. G.
1981-01-01
Strip and contour mining techniques are reviewed as well as some studies conducted to determine the applicability of LANDSAT and associated digital image processing techniques to the surficial problems associated with mining operations. A nontraditional unsupervised classification approach to multispectral data is considered which renders increased classification separability in land cover analysis of surface mined areas. The approach also reduces the dimensionality of the data and requires only minimal analytical skills in digital data processing.
ROLES OF REMOTE SENSING AND CARTOGRAPHY IN THE USGS NATIONAL MAPPING DIVISION.
Southard, Rupert B.; Salisbury, John W.
1983-01-01
The inseparable roles of remote sensing and photogrammetry have been recognized to be consistent with the aims and interests of the American Society of Photogrammetry. In particular, spatial data storage, data merging and manipulation methods and other techniques originally developed for remote sensing applications also have applications for digital cartography. Also, with the introduction of much improved digital processing techniques, even relatively low resolution (80 m) traditional Landsat images can now be digitally mosaicked into excellent quality 1:250,000-scale image maps.
Digital radiography: spatial and contrast resolution
NASA Astrophysics Data System (ADS)
Bjorkholm, Paul; Annis, M.; Frederick, E.; Stein, J.; Swift, R.
1981-07-01
The addition of digital image collection and storage to standard and newly developed x-ray imaging techniques has allowed spectacular improvements in some diagnostic procedures. There is no reason to expect that the developments in this area are yet complete. But no matter what further developments occur in this field, all the techniques will share a common element, digital image storage and processing. This common element alone determines some of the important imaging characteristics. These will be discussed using one system, the Medical MICRODOSE System as an example.
Digital image processing: a primer for JVIR authors and readers: Part 3: Digital image editing.
LaBerge, Jeanne M; Andriole, Katherine P
2003-12-01
This is the final installment of a three-part series on digital image processing intended to prepare authors for online submission of manuscripts. In the first two articles of the series, the fundamentals of digital image architecture were reviewed and methods of importing images to the computer desktop were described. In this article, techniques are presented for editing images in preparation for online submission. A step-by-step guide to basic editing with use of Adobe Photoshop is provided and the ethical implications of this activity are explored.
Relationships between digital signal processing and control and estimation theory
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1978-01-01
Research directions in the fields of digital signal processing and modern control and estimation theory are discussed. Stability theory, linear prediction and parameter identification, system synthesis and implementation, two-dimensional filtering, decentralized control and estimation, and image processing are considered in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the disciplines.
Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L
2018-01-01
An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Carrere, Veronique
1990-01-01
Various image processing techniques developed for enhancement and extraction of linear features, of interest to the structural geologist, from digital remote sensing, geologic, and gravity data, are presented. These techniques include: (1) automatic detection of linear features and construction of rose diagrams from Landsat MSS data; (2) enhancement of principal structural directions using selective filters on Landsat MSS, Spacelab panchromatic, and HCMM NIR data; (3) directional filtering of Spacelab panchromatic data using Fast Fourier Transform; (4) detection of linear/elongated zones of high thermal gradient from thermal infrared data; and (5) extraction of strong gravimetric gradients from digitized Bouguer anomaly maps. Processing results can be compared to each other through the use of a geocoded database to evaluate the structural importance of each lineament according to its depth: superficial structures in the sedimentary cover, or deeper ones affecting the basement. These image processing techniques were successfully applied to achieve a better understanding of the transition between Provence and the Pyrenees structural blocks, in southeastern France, for an improved structural interpretation of the Mediterranean region.
Multiscale image processing and antiscatter grids in digital radiography.
Lo, Winnie Y; Hornof, William J; Zwingenberger, Allison L; Robertson, Ian D
2009-01-01
Scatter radiation is a source of noise and results in decreased signal-to-noise ratio and thus decreased image quality in digital radiography. We determined subjectively whether a digitally processed image made without a grid would be of similar quality to an image made with a grid but without image processing. Additionally the effects of exposure dose and of a using a grid with digital radiography on overall image quality were studied. Thoracic and abdominal radiographs of five dogs of various sizes were made. Four acquisition techniques were included (1) with a grid, standard exposure dose, digital image processing; (2) without a grid, standard exposure dose, digital image processing; (3) without a grid, half the exposure dose, digital image processing; and (4) with a grid, standard exposure dose, no digital image processing (to mimic a film-screen radiograph). Full-size radiographs as well as magnified images of specific anatomic regions were generated. Nine reviewers rated the overall image quality subjectively using a five-point scale. All digitally processed radiographs had higher overall scores than nondigitally processed radiographs regardless of patient size, exposure dose, or use of a grid. The images made at half the exposure dose had a slightly lower quality than those made at full dose, but this was only statistically significant in magnified images. Using a grid with digital image processing led to a slight but statistically significant increase in overall quality when compared with digitally processed images made without a grid but whether this increase in quality is clinically significant is unknown.
Peuquet, D.J.
1981-01-01
Current graphic devices suitable for high-speed computer input and output of cartographic data are tending more and more to be raster-oriented, such as the rotating drum scanner and the color raster display. However, the majority of commonly used manipulative techniques in computer-assisted cartography and automated spatial data handling continue to require that the data be in vector format. This situation has recently precipitated the requirement for very fast techniques for converting digital cartographic data from raster to vector format for processing, and then back into raster format for plotting. The current article is part 1 of a 2 part paper concerned with examining the state-of-the-art in these conversion techniques. -from Author
Wholefield displacement measurements using speckle image processing techniques for crash tests
NASA Astrophysics Data System (ADS)
Sriram, P.; Hanagud, S.; Ranson, W. F.
The digital correlation scheme of Peters et al. (1983) was extended to measure out-of-plane deformations, using a white light projection speckle technique. A simple ray optic theory and the digital correlation scheme are outlined. The technique was applied successfully to measure out-of-plane displacements of initially flat rotorcraft structures (an acrylic circular plate and a steel cantilever beam), using a low cost video camera and a desktop computer. The technique can be extended to measurements of three-dimensional deformations and dynamic deformations.
Digital image transformation and rectification of spacecraft and radar images
NASA Technical Reports Server (NTRS)
Wu, S. S. C.
1985-01-01
The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.
Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F
2008-03-01
The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.
NASA Astrophysics Data System (ADS)
Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.
The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.
An Introduction to Data Analysis in Asteroseismology
NASA Astrophysics Data System (ADS)
Campante, Tiago L.
A practical guide is presented to some of the main data analysis concepts and techniques employed contemporarily in the asteroseismic study of stars exhibiting solar-like oscillations. The subjects of digital signal processing and spectral analysis are introduced first. These concern the acquisition of continuous physical signals to be subsequently digitally analyzed. A number of specific concepts and techniques relevant to asteroseismology are then presented as we follow the typical workflow of the data analysis process, namely, the extraction of global asteroseismic parameters and individual mode parameters (also known as peak-bagging) from the oscillation spectrum.
NASA Technical Reports Server (NTRS)
Coggeshall, M. E.; Hoffer, R. M.
1973-01-01
Remote sensing equipment and automatic data processing techniques were employed as aids in the institution of improved forest resource management methods. On the basis of automatically calculated statistics derived from manually selected training samples, the feature selection processor of LARSYS selected, upon consideration of various groups of the four available spectral regions, a series of channel combinations whose automatic classification performances (for six cover types, including both deciduous and coniferous forest) were tested, analyzed, and further compared with automatic classification results obtained from digitized color infrared photography.
The forensic validity of visual analytics
NASA Astrophysics Data System (ADS)
Erbacher, Robert F.
2008-01-01
The wider use of visualization and visual analytics in wide ranging fields has led to the need for visual analytics capabilities to be legally admissible, especially when applied to digital forensics. This brings the need to consider legal implications when performing visual analytics, an issue not traditionally examined in visualization and visual analytics techniques and research. While digital data is generally admissible under the Federal Rules of Evidence [10][21], a comprehensive validation of the digital evidence is considered prudent. A comprehensive validation requires validation of the digital data under rules for authentication, hearsay, best evidence rule, and privilege. Additional issues with digital data arise when exploring digital data related to admissibility and the validity of what information was examined, to what extent, and whether the analysis process was sufficiently covered by a search warrant. For instance, a search warrant generally covers very narrow requirements as to what law enforcement is allowed to examine and acquire during an investigation. When searching a hard drive for child pornography, how admissible is evidence of an unrelated crime, i.e. drug dealing. This is further complicated by the concept of "in plain view". When performing an analysis of a hard drive what would be considered "in plain view" when analyzing a hard drive. The purpose of this paper is to discuss the issues of digital forensics and the related issues as they apply to visual analytics and identify how visual analytics techniques fit into the digital forensics analysis process, how visual analytics techniques can improve the legal admissibility of digital data, and identify what research is needed to further improve this process. The goal of this paper is to open up consideration of legal ramifications among the visualization community; the author is not a lawyer and the discussions are not meant to be inclusive of all differences in laws between states and countries.
Application of digital control techniques for satellite medium power DC-DC converters
NASA Astrophysics Data System (ADS)
Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman
2010-09-01
The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.
Digital enhancement of X-rays for NDT
NASA Technical Reports Server (NTRS)
Butterfield, R. L.
1980-01-01
Report is "cookbook" for digital processing of industrial X-rays. Computer techniques, previously used primarily in laboratory and developmental research, have been outlined and codified into step by step procedures for enhancing X-ray images. Those involved in nondestructive testing should find report valuable asset, particularly is visual inspection is method currently used to process X-ray images.
Digital image processing for information extraction.
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1973-01-01
The modern digital computer has made practical image processing techniques for handling nonlinear operations in both the geometrical and the intensity domains, various types of nonuniform noise cleanup, and the numerical analysis of pictures. An initial requirement is that a number of anomalies caused by the camera (e.g., geometric distortion, MTF roll-off, vignetting, and nonuniform intensity response) must be taken into account or removed to avoid their interference with the information extraction process. Examples illustrating these operations are discussed along with computer techniques used to emphasize details, perform analyses, classify materials by multivariate analysis, detect temporal differences, and aid in human interpretation of photos.
Applications of digital image processing techniques to problems of data registration and correlation
NASA Technical Reports Server (NTRS)
Green, W. B.
1978-01-01
An overview is presented of the evolution of the computer configuration at JPL's Image Processing Laboratory (IPL). The development of techniques for the geometric transformation of digital imagery is discussed and consideration is given to automated and semiautomated image registration, and the registration of imaging and nonimaging data. The increasing complexity of image processing tasks at IPL is illustrated with examples of various applications from the planetary program and earth resources activities. It is noted that the registration of existing geocoded data bases with Landsat imagery will continue to be important if the Landsat data is to be of genuine use to the user community.
Digital video system for on-line portal verification
NASA Astrophysics Data System (ADS)
Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott
1990-07-01
A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.
Detection and Evaluation of Skin Disorders by One of Photogrammetric Image Analysis Methods
NASA Astrophysics Data System (ADS)
Güçin, M.; Patias, P.; Altan, M. O.
2012-08-01
Abnormalities on skin may vary from simple acne to painful wounds which affect a person's life quality. Detection of these kinds of disorders in early stages, followed by the evaluation of abnormalities is of high importance. At this stage, photogrammetry offers a non-contact solution to this concern by providing geometric highly accurate data. Photogrammetry, which has been used for firstly topographic purposes, in virtue of terrestrial photogrammetry became useful technique in non-topographic applications also (Wolf et al., 2000). Moreover the extension of usage of photogrammetry, in parallel with the development in technology, analogue photographs are replaced with digital images and besides digital image processing techniques, it provides modification of digital images by using filters, registration processes etc. Besides, photogrammetry (using same coordinate system by registration of images) can serve as a tool for the comparison of temporal imaging data. The aim of this study is to examine several digital image processing techniques, in particular the digital filters, which might be useful to determine skin disorders. In our study we examine affordable to purchase, user friendly software which needs neither expertise nor pre-training. Since it is a pre-work for subsequent and deeper studies, Adobe Photoshop 7.0 is used as a present software. In addition to that Adobe Photoshop released a DesAcc plug-ins with CS3 version and provides full compatibility with DICOM (Digital Imaging and Communications in Medicine) and PACS (Picture Archiving and Communications System) that enables doctors to store all medical data together with relevant images and share if necessary.
Phase in Optical Image Processing
NASA Astrophysics Data System (ADS)
Naughton, Thomas J.
2010-04-01
The use of phase has a long standing history in optical image processing, with early milestones being in the field of pattern recognition, such as VanderLugt's practical construction technique for matched filters, and (implicitly) Goodman's joint Fourier transform correlator. In recent years, the flexibility afforded by phase-only spatial light modulators and digital holography, for example, has enabled many processing techniques based on the explicit encoding and decoding of phase. One application area concerns efficient numerical computations. Pushing phase measurement to its physical limits, designs employing the physical properties of phase have ranged from the sensible to the wonderful, in some cases making computationally easy problems easier to solve and in other cases addressing mathematics' most challenging computationally hard problems. Another application area is optical image encryption, in which, typically, a phase mask modulates the fractional Fourier transformed coefficients of a perturbed input image, and the phase of the inverse transform is then sensed as the encrypted image. The inherent linearity that makes the system so elegant mitigates against its use as an effective encryption technique, but we show how a combination of optical and digital techniques can restore confidence in that security. We conclude with the concept of digital hologram image processing, and applications of same that are uniquely suited to optical implementation, where the processing, recognition, or encryption step operates on full field information, such as that emanating from a coherently illuminated real-world three-dimensional object.
[Digital x-ray image processing as an aid in forensic medicine].
Buitrago-Tellez, C; Wenz, W; Friedrich, G
1992-02-01
Radiology plays an important role in the identification of unknown corpses. Positive radiographic identification by comparison with antemortem films is an established technique in this setting. Technical defects together with non-well-preserved films make it sometimes difficult or even impossible to establish a confident comparison. Digital image processing after secondary digitalization of ante- and postmortem films represents an important development and aid in forensic medicine. The application of this method is demonstrated on a single case.
Computer image processing: Geologic applications
NASA Technical Reports Server (NTRS)
Abrams, M. J.
1978-01-01
Computer image processing of digital data was performed to support several geological studies. The specific goals were to: (1) relate the mineral content to the spectral reflectance of certain geologic materials, (2) determine the influence of environmental factors, such as atmosphere and vegetation, and (3) improve image processing techniques. For detection of spectral differences related to mineralogy, the technique of band ratioing was found to be the most useful. The influence of atmospheric scattering and methods to correct for the scattering were also studied. Two techniques were used to correct for atmospheric effects: (1) dark object subtraction, (2) normalization of use of ground spectral measurements. Of the two, the first technique proved to be the most successful for removing the effects of atmospheric scattering. A digital mosaic was produced from two side-lapping LANDSAT frames. The advantages were that the same enhancement algorithm can be applied to both frames, and there is no seam where the two images are joined.
A portable detection instrument based on DSP for beef marbling
NASA Astrophysics Data System (ADS)
Zhou, Tong; Peng, Yankun
2014-05-01
Beef marbling is one of the most important indices to assess beef quality. Beef marbling is graded by the measurement of the fat distribution density in the rib-eye region. However quality grades of beef in most of the beef slaughtering houses and businesses depend on trainees using their visual senses or comparing the beef slice to the Chinese standard sample cards. Manual grading demands not only great labor but it also lacks objectivity and accuracy. Aiming at the necessity of beef slaughtering houses and businesses, a beef marbling detection instrument was designed. The instrument employs Charge-coupled Device (CCD) imaging techniques, digital image processing, Digital Signal Processor (DSP) control and processing techniques and Liquid Crystal Display (LCD) screen display techniques. The TMS320DM642 digital signal processor of Texas Instruments (TI) is the core that combines high-speed data processing capabilities and real-time processing features. All processes such as image acquisition, data transmission, image processing algorithms and display were implemented on this instrument for a quick, efficient, and non-invasive detection of beef marbling. Structure of the system, working principle, hardware and software are introduced in detail. The device is compact and easy to transport. The instrument can determine the grade of beef marbling reliably and correctly.
The Instructional Instrument SL-EDGE Student Library-Educational DiGital Environment.
ERIC Educational Resources Information Center
Kyriakopoulou, Antonia; Kalamboukis, Theodore
An educational digital environment that will provide appropriate methods and techniques for the support and enhancement of the educational and learning process is a valuable tool for both educators and learners. In the context of such a mission, the educational tool SL-EDGE (Student Library-Educational DiGital Environment) has been developed. The…
Digital-Difference Processing For Collision Avoidance.
NASA Technical Reports Server (NTRS)
Shores, Paul; Lichtenberg, Chris; Kobayashi, Herbert S.; Cunningham, Allen R.
1988-01-01
Digital system for automotive crash avoidance measures and displays difference in frequency between two sinusoidal input signals of slightly different frequencies. Designed for use with Doppler radars. Characterized as digital mixer coupled to frequency counter measuring difference frequency in mixer output. Technique determines target path mathematically. Used for tracking cars, missiles, bullets, baseballs, and other fast-moving objects.
An automatic optimum kernel-size selection technique for edge enhancement
Chavez, Pat S.; Bauer, Brian P.
1982-01-01
Edge enhancement is a technique that can be considered, to a first order, a correction for the modulation transfer function of an imaging system. Digital imaging systems sample a continuous function at discrete intervals so that high-frequency information cannot be recorded at the same precision as lower frequency data. Because of this, fine detail or edge information in digital images is lost. Spatial filtering techniques can be used to enhance the fine detail information that does exist in the digital image, but the filter size is dependent on the type of area being processed. A technique has been developed by the authors that uses the horizontal first difference to automatically select the optimum kernel-size that should be used to enhance the edges that are contained in the image.
NASA Technical Reports Server (NTRS)
Edwards, M. H.; Arvidson, R. E.; Guinness, E. A.
1984-01-01
The problem of displaying information on the seafloor morphology is attacked by utilizing digital image processing techniques to generate images for Seabeam data covering three young seamounts on the eastern flank of the East Pacific Rise. Errors in locations between crossing tracks are corrected by interactively identifying features and translating tracks relative to a control track. Spatial interpolation techniques using moving averages are used to interpolate between gridded depth values to produce images in shaded relief and color-coded forms. The digitally processed images clarify the structural control on seamount growth and clearly show the lateral extent of volcanic materials, including the distribution and fault control of subsidiary volcanic constructional features. The image presentations also clearly show artifacts related to both residual navigational errors and to depth or location differences that depend on ship heading relative to slope orientation in regions with steep slopes.
Processing techniques for software based SAR processors
NASA Technical Reports Server (NTRS)
Leung, K.; Wu, C.
1983-01-01
Software SAR processing techniques defined to treat Shuttle Imaging Radar-B (SIR-B) data are reviewed. The algorithms are devised for the data processing procedure selection, SAR correlation function implementation, multiple array processors utilization, cornerturning, variable reference length azimuth processing, and range migration handling. The Interim Digital Processor (IDP) originally implemented for handling Seasat SAR data has been adapted for the SIR-B, and offers a resolution of 100 km using a processing procedure based on the Fast Fourier Transformation fast correlation approach. Peculiarities of the Seasat SAR data processing requirements are reviewed, along with modifications introduced for the SIR-B. An Advanced Digital SAR Processor (ADSP) is under development for use with the SIR-B in the 1986 time frame as an upgrade for the IDP, which will be in service in 1984-5.
NASA Astrophysics Data System (ADS)
Rahmes, Mark; Yates, J. Harlan; Allen, Josef DeVaughn; Kelley, Patrick
2007-04-01
High resolution Digital Surface Models (DSMs) may contain voids (missing data) due to the data collection process used to obtain the DSM, inclement weather conditions, low returns, system errors/malfunctions for various collection platforms, and other factors. DSM voids are also created during bare earth processing where culture and vegetation features have been extracted. The Harris LiteSite TM Toolkit handles these void regions in DSMs via two novel techniques. We use both partial differential equations (PDEs) and exemplar based inpainting techniques to accurately fill voids. The PDE technique has its origin in fluid dynamics and heat equations (a particular subset of partial differential equations). The exemplar technique has its origin in texture analysis and image processing. Each technique is optimally suited for different input conditions. The PDE technique works better where the area to be void filled does not have disproportionately high frequency data in the neighborhood of the boundary of the void. Conversely, the exemplar based technique is better suited for high frequency areas. Both are autonomous with respect to detecting and repairing void regions. We describe a cohesive autonomous solution that dynamically selects the best technique as each void is being repaired.
NASA Technical Reports Server (NTRS)
Bentley, P. B.
1975-01-01
The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.
Digital circuits for computer applications: A compilation
NASA Technical Reports Server (NTRS)
1972-01-01
The innovations in this updated series of compilations dealing with electronic technology represent a carefully selected collection of digital circuits which have direct application in computer oriented systems. In general, the circuits have been selected as representative items of each section and have been included on their merits of having universal applications in digital computers and digital data processing systems. As such, they should have wide appeal to the professional engineer and scientist who encounter the fundamentals of digital techniques in their daily activities. The circuits are grouped as digital logic circuits, analog to digital converters, and counters and shift registers.
Hydrographic Basins Analysis Using Digital Terrain Modelling
NASA Astrophysics Data System (ADS)
Mihaela, Pişleagă; -Minda Codruţa, Bădăluţă; Gabriel, Eleş; Daniela, Popescu
2017-10-01
The paper, emphasis the link between digital terrain modelling and studies of hydrographic basins, concerning the hydrological processes analysis. Given the evolution of computing techniques but also of the software digital terrain modelling made its presence felt increasingly, and established itself as a basic concept in many areas, due to many advantages. At present, most digital terrain modelling is derived from three alternative sources such as ground surveys, photogrammetric data capture or from digitized cartographic sources. A wide range of features may be extracted from digital terrain models, such as surface, specific points and landmarks, linear features but also areal futures like drainage basins, hills or hydrological basins. The paper highlights how the use appropriate software for the preparation of a digital terrain model, a model which is subsequently used to study hydrographic basins according to various geomorphological parameters. As a final goal, it shows the link between digital terrain modelling and hydrographic basins study that can be used to optimize the correlation between digital model terrain and hydrological processes in order to obtain results as close to the real field processes.
Implementation and Performance of GaAs Digital Signal Processing ASICs
NASA Technical Reports Server (NTRS)
Whitaker, William D.; Buchanan, Jeffrey R.; Burke, Gary R.; Chow, Terrance W.; Graham, J. Scott; Kowalski, James E.; Lam, Barbara; Siavoshi, Fardad; Thompson, Matthew S.; Johnson, Robert A.
1993-01-01
The feasibility of performing high speed digital signal processing in GaAs gate array technology has been demonstrated with the successful implementation of a VLSI communications chip set for NASA's Deep Space Network. This paper describes the techniques developed to solve some of the technology and implementation problems associated with large scale integration of GaAs gate arrays.
Computer-assisted techniques to evaluate fringe patterns
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Bhat, Gopalakrishna K.
1992-01-01
Strain measurement using interferometry requires an efficient way to extract the desired information from interferometric fringes. Availability of digital image processing systems makes it possible to use digital techniques for the analysis of fringes. In the past, there have been several developments in the area of one dimensional and two dimensional fringe analysis techniques, including the carrier fringe method (spatial heterodyning) and the phase stepping (quasi-heterodyning) technique. This paper presents some new developments in the area of two dimensional fringe analysis, including a phase stepping technique supplemented by the carrier fringe method and a two dimensional Fourier transform method to obtain the strain directly from the discontinuous phase contour map.
Digital mammography, cancer screening: Factors important for image compression
NASA Technical Reports Server (NTRS)
Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria
1993-01-01
The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.
BPSK Demodulation Using Digital Signal Processing
NASA Technical Reports Server (NTRS)
Garcia, Thomas R.
1996-01-01
A digital communications signal is a sinusoidal waveform that is modified by a binary (digital) information signal. The sinusoidal waveform is called the carrier. The carrier may be modified in amplitude, frequency, phase, or a combination of these. In this project a binary phase shift keyed (BPSK) signal is the communication signal. In a BPSK signal the phase of the carrier is set to one of two states, 180 degrees apart, by a binary (i.e., 1 or 0) information signal. A digital signal is a sampled version of a "real world" time continuous signal. The digital signal is generated by sampling the continuous signal at discrete points in time. The rate at which the signal is sampled is called the sampling rate (f(s)). The device that performs this operation is called an analog-to-digital (A/D) converter or a digitizer. The digital signal is composed of the sequence of individual values of the sampled BPSK signal. Digital signal processing (DSP) is the modification of the digital signal by mathematical operations. A device that performs this processing is called a digital signal processor. After processing, the digital signal may then be converted back to an analog signal using a digital-to-analog (D/A) converter. The goal of this project is to develop a system that will recover the digital information from a BPSK signal using DSP techniques. The project is broken down into the following steps: (1) Development of the algorithms required to demodulate the BPSK signal; (2) Simulation of the system; and (3) Implementation a BPSK receiver using digital signal processing hardware.
Digital Image Processing Overview For Helmet Mounted Displays
NASA Astrophysics Data System (ADS)
Parise, Michael J.
1989-09-01
Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.
Modified signed-digit trinary addition using synthetic wavelet filter
NASA Astrophysics Data System (ADS)
Iftekharuddin, K. M.; Razzaque, M. A.
2000-09-01
The modified signed-digit (MSD) number system has been a topic of interest as it allows for parallel carry-free addition of two numbers for digital optical computing. In this paper, harmonic wavelet joint transform (HWJT)-based correlation technique is introduced for optical implementation of MSD trinary adder implementation. The realization of the carry-propagation-free addition of MSD trinary numerals is demonstrated using synthetic HWJT correlator model. It is also shown that the proposed synthetic wavelet filter-based correlator shows high performance in logic processing. Simulation results are presented to validate the performance of the proposed technique.
NASA Astrophysics Data System (ADS)
Gabor, A.; Jivanescu, A.; Zaharia, C.; Hategan, S.; Topala, F. I.; Levai, C. M.; Negrutiu, M. L.; Sinescu, C.; Duma, V.-F.; Bradu, A.; Podoleanu, A. Gh.
2016-03-01
Digital impressions were introduced to overcome some of the obstacles due to traditional impression materials and techniques. The aim of this in vitro study is to compare the accuracy of all ceramic crowns obtained with digital impression and CAD-CAM technology with the accuracy of those obtained with conventional impression techniques. Two groups of 10 crowns each have been considered. The digital data obtained from Group 1 have been processed and the all-ceramic crowns were milled with a CAD/CAM technology (CEREC MCX, Sirona). The all ceramic crowns in Group 2 were obtained with the classical technique of pressing (emax, Ivoclar, Vivadent). The evaluation of the marginal adaptation was performed with Time Domain Optical Coherence Tomography (TD OCT), working at a wavelength of 1300 nm. Tri-dimensional (3D) reconstructions of the selected areas were obtained. Based on the findings in this study, one may conclude that the marginal accuracy of all ceramic crowns fabricated with digital impression and the CAD/CAM technique is superior to the conventional impression technique.
Processing techniques for digital sonar images from GLORIA.
Chavez, P.S.
1986-01-01
Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author
The application of digital techniques to the analysis of metallurgical experiments
NASA Technical Reports Server (NTRS)
Rathz, T. J.
1977-01-01
The application of a specific digital computer system (known as the Image Data Processing System) to the analysis of three NASA-sponsored metallurgical experiments is discussed in some detail. The basic hardware and software components of the Image Data Processing System are presented. Many figures are presented in the discussion of each experimental analysis in an attempt to show the accuracy and speed that the Image Data Processing System affords in analyzing photographic images dealing with metallurgy, and in particular with material processing.
Multi-carrier mobile TDMA system with active array antenna
NASA Technical Reports Server (NTRS)
Suzuki, Ryutaro; Matsumoto, Yasushi; Hamamoto, Naokazu
1990-01-01
A multi-carrier time division multiple access (TDMA) is proposed for the future mobile satellite communications systems that include a multi-satellite system. This TDMA system employs the active array antenna in which the digital beam forming technique is adopted to control the antenna beam direction. The antenna beam forming is carried out at the base band frequency by using the digital signal processing technique. The time division duplex technique is applied for the TDM/TDMA burst format, in order not to overlap transmit and receive timing.
Technology for Elevated Temperature Tests of Structural Panels
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1999-01-01
A technique for full-field measurement of surface temperature and in-plane strain using a single grid imaging technique was demonstrated on a sample subjected to thermally-induced strain. The technique is based on digital imaging of a sample marked by an alternating line array of La2O2S:Eu(+3) thermographic phosphor and chromium illuminated by a UV lamp. Digital images of this array in unstrained and strained states were processed using a modified spin filter. Normal strain distribution was determined by combining unstrained and strained grid images using a single grid digital moire technique. Temperature distribution was determined by ratioing images of phosphor intensity at two wavelengths. Combined strain and temperature measurements demonstrated on the thermally heated sample were DELTA-epsilon = +/- 250 microepsilon and DELTA-T = +/- 5 K respectively with a spatial resolution of 0.8 mm.
Applications of digital processing for noise removal from plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, R.J.; Candy, J.V.; Casper, T.A.
1985-11-11
The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs.
ERIC Educational Resources Information Center
Chowdhury, Gobinda G.
2003-01-01
Discusses issues related to natural language processing, including theoretical developments; natural language understanding; tools and techniques; natural language text processing systems; abstracting; information extraction; information retrieval; interfaces; software; Internet, Web, and digital library applications; machine translation for…
Digital pulse shape discrimination.
Miller, L F; Preston, J; Pozzi, S; Flaska, M; Neal, J
2007-01-01
Pulse-shape discrimination (PSD) has been utilised for about 40 years as a method to obtain estimates for dose in mixed neutron and photon fields. Digitizers that operate close to GHz are currently available at a reasonable cost, and they can be used to directly sample signals from photomultiplier tubes. This permits one to perform digital PSD rather than the traditional, and well-established, analogoue techniques. One issue that complicates PSD for neutrons in mixed fields is that the light output characteristics of typical scintillators available for PSD, such as BC501A, vary as a function of energy deposited in the detector. This behaviour is more easily accommodated with digital processing of signals than with analogoue signal processing. Results illustrate the effectiveness of digital PSD.
Radar data processing and analysis
NASA Technical Reports Server (NTRS)
Ausherman, D.; Larson, R.; Liskow, C.
1976-01-01
Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported.
Speech Recognition for A Digital Video Library.
ERIC Educational Resources Information Center
Witbrock, Michael J.; Hauptmann, Alexander G.
1998-01-01
Production of the meta-data supporting the Informedia Digital Video Library interface is automated using techniques derived from artificial intelligence research. Speech recognition and natural-language processing, information retrieval, and image analysis are applied to produce an interface that helps users locate information and navigate more…
USB video image controller used in CMOS image sensor
NASA Astrophysics Data System (ADS)
Zhang, Wenxuan; Wang, Yuxia; Fan, Hong
2002-09-01
CMOS process is mainstream technique in VLSI, possesses high integration. SE402 is multifunction microcontroller, which integrates image data I/O ports, clock control, exposure control and digital signal processing into one chip. SE402 reduces the number of chips and PCB's room. The paper studies emphatically on USB video image controller used in CMOS image sensor and give the application on digital still camera.
Programmable rate modem utilizing digital signal processing techniques
NASA Technical Reports Server (NTRS)
Bunya, George K.; Wallace, Robert L.
1989-01-01
The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery.
Lin, Wei-Shao; Harris, Bryan T; Pellerito, John; Morton, Dean
2018-04-30
This report describes a proof of concept for fabricating an interim complete removable dental prosthesis with a digital light processing 3-dimensional (3D) printer. Although an in-office 3D printer can reduce the overall production cost for an interim complete removable dental prosthesis, the process has not been validated with clinical studies. This report provided a preliminary proof of concept in developing a digital workflow for the in-office additively manufactured interim complete removable dental prosthesis. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Convolution neural-network-based detection of lung structures
NASA Astrophysics Data System (ADS)
Hasegawa, Akira; Lo, Shih-Chung B.; Freedman, Matthew T.; Mun, Seong K.
1994-05-01
Chest radiography is one of the most primary and widely used techniques in diagnostic imaging. Nowadays with the advent of digital radiology, the digital medical image processing techniques for digital chest radiographs have attracted considerable attention, and several studies on the computer-aided diagnosis (CADx) as well as on the conventional image processing techniques for chest radiographs have been reported. In the automatic diagnostic process for chest radiographs, it is important to outline the areas of the lungs, the heart, and the diaphragm. This is because the original chest radiograph is composed of important anatomic structures and, without knowing exact positions of the organs, the automatic diagnosis may result in unexpected detections. The automatic extraction of an anatomical structure from digital chest radiographs can be a useful tool for (1) the evaluation of heart size, (2) automatic detection of interstitial lung diseases, (3) automatic detection of lung nodules, and (4) data compression, etc. Based on the clearly defined boundaries of heart area, rib spaces, rib positions, and rib cage extracted, one should be able to use this information to facilitate the tasks of the CADx on chest radiographs. In this paper, we present an automatic scheme for the detection of lung field from chest radiographs by using a shift-invariant convolution neural network. A novel algorithm for smoothing boundaries of lungs is also presented.
A study for watermark methods appropriate to medical images.
Cho, Y; Ahn, B; Kim, J S; Kim, I Y; Kim, S I
2001-06-01
The network system, including the picture archiving and communication system (PACS), is essential in hospital and medical imaging fields these days. Many medical images are accessed and processed on the web, as well as in PACS. Therefore, any possible accidents caused by the illegal modification of medical images must be prevented. Digital image watermark techniques have been proposed as a method to protect against illegal copying or modification of copyrighted material. Invisible signatures made by a digital image watermarking technique can be a solution to these problems. However, medical images have some different characteristics from normal digital images in that one must not corrupt the information contained in the original medical images. In this study, we suggest modified watermark methods appropriate for medical image processing and communication system that prevent clinically important data contained in original images from being corrupted.
NASA Astrophysics Data System (ADS)
Saxena, Shefali; Hawari, Ayman I.
2017-07-01
Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.
Movies of cellular and sub-cellular motion by digital holographic microscopy.
Mann, Christopher J; Yu, Lingfeng; Kim, Myung K
2006-03-23
Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable focus, so that the moving object can be accurately tracked with a reconstruction rate of 300ms for each hologram. The holographic movies show paramecium swimming among other microbes as well as displaying some of their intracellular processes. A time lapse movie is also shown for fibroblast cells in the process of migration. Digital holography and movies of digital holography are seen to be useful new tools for visualization of dynamic processes in biological microscopy. Phase imaging digital holography is a promising technique in terms of the lack of coherent noise and the precision with which the optical thickness of a sample can be profiled, which can lead to images with an axial resolution of a few nanometres.
NASA Astrophysics Data System (ADS)
Pasetti Monizza, G.; Matt, D. T.; Benedetti, C.
2016-11-01
According to Wortmann classification, the Building Industry (BI) can be defined as engineer-to-order (ETO) industry: the engineering-process starts only when an order is acquired. This definition implies that every final product (building) is almost unique’ and processes cannot be easily standardized or automated. Because of this, BI is one of the less efficient industries today’ mostly leaded by craftsmanship. In the last years’ several improvements in process efficiency have been made focusing on manufacturing and installation processes only. In order to improve the efficiency of design and engineering processes as well, the scientific community agrees that the most fruitful strategy should be Front-End Design (FED). Nevertheless, effective techniques and tools are missing. This paper discusses outcomes of a research activity that aims at highlighting whether Parametric and Generative Design techniques allow reducing wastes of resources and improving the overall efficiency of the BI, by pushing the Digitalization of design and engineering processes of products. Focusing on the Glued-Laminated-Timber industry, authors will show how Parametric and Generative Design techniques can be introduced in a standard supply-chain system, highlighting potentials and criticism on the supply-chain system as a whole.
Diagnostic Radiology--The Impact of New Technology.
ERIC Educational Resources Information Center
Harrison, R. M.
1989-01-01
Discussed are technological advances applying computer techniques for image acquisition and processing, including digital radiography, computed tomography, and nuclear magnetic resonance imaging. Several diagrams and pictures showing the use of each technique are presented. (YP)
Digital computer processing of peach orchard multispectral aerial photography
NASA Technical Reports Server (NTRS)
Atkinson, R. J.
1976-01-01
Several methods of analysis using digital computers applicable to digitized multispectral aerial photography, are described, with particular application to peach orchard test sites. This effort was stimulated by the recent premature death of peach trees in the Southeastern United States. The techniques discussed are: (1) correction of intensity variations by digital filtering, (2) automatic detection and enumeration of trees in five size categories, (3) determination of unhealthy foliage by infrared reflectances, and (4) four band multispectral classification into healthy and declining categories.
All-digital precision processing of ERTS images
NASA Technical Reports Server (NTRS)
Bernstein, R. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Digital techniques have been developed and used to apply precision-grade radiometric and geometric corrections to ERTS MSS and RBV scenes. Geometric accuracies sufficient for mapping at 1:250,000 scale have been demonstrated. Radiometric quality has been superior to ERTS NDPF precision products. A configuration analysis has shown that feasible, cost-effective all-digital systems for correcting ERTS data are easily obtainable. This report contains a summary of all results obtained during this study and includes: (1) radiometric and geometric correction techniques, (2) reseau detection, (3) GCP location, (4) resampling, (5) alternative configuration evaluations, and (6) error analysis.
Study of pipe thickness loss using a neutron radiography method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Abdul Aziz; Wahab, Aliff Amiru Bin; Yazid, Hafizal B.
2014-02-12
The purpose of this preliminary work is to study for thickness changes in objects using neutron radiography. In doing the project, the technique for the radiography was studied. The experiment was done at NUR-2 facility at TRIGA research reactor in Malaysian Nuclear Agency, Malaysia. Test samples of varying materials were used in this project. The samples were radiographed using direct technique. Radiographic images were recorded using Nitrocellulose film. The films obtained were digitized to processed and analyzed. Digital processing is done on the images using software Isee!. The images were processed to produce better image for analysis. The thickness changesmore » in the image were measured to be compared with real thickness of the objects. From the data collected, percentages difference between measured and real thickness are below than 2%. This is considerably very low variation from original values. Therefore, verifying the neutron radiography technique used in this project.« less
Regeneration and repair of human digits and limbs: fact and fiction
Cheng, Tsun‐Chih
2015-01-01
Abstract A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's “wish list.” Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit‐ and limb‐building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations. PMID:27499873
NASA Technical Reports Server (NTRS)
Choi, H. J.; Su, Y. T.
1986-01-01
The User Constraint Measurement System (UCMS) is a hardware/software package developed by NASA Goddard to measure the signal parameter constraints of the user transponder in the TDRSS environment by means of an all-digital signal sampling technique. An account is presently given of the features of UCMS design and of its performance capabilities and applications; attention is given to such important aspects of the system as RF interface parameter definitions, hardware minimization, the emphasis on offline software signal processing, and end-to-end link performance. Applications to the measurement of other signal parameters are also discussed.
A Minicomputer Based Scheme for Turbulence Measurements with Pulsed Doppler Ultrasound
Craig, J. I.; Saxena, Vijay; Giddens, D. P.
1979-01-01
The present paper describes the design and performance of a digital-based Doppler signal processing system that is currently being used in hemodynamics research on arteriosclerosis. The major emphasis is on the development of the digital signal processing technique and its implementation in a small but powerful minicomputer. The work reported on here is part of a larger ongoing effort that the authors are undertaking to study the structure of turbulence in blood flow and its relation to arteriosclerosis. Some of the techniques and instruments developed are felt to have a broad applicability to fluid mechanics and especially to pipe flow fluid mechanics.
NASA Technical Reports Server (NTRS)
Lorre, J. J.; Lynn, D. J.; Benton, W. D.
1976-01-01
Several techniques of a digital image-processing nature are illustrated which have proved useful in visual analysis of astronomical pictorial data. Processed digital scans of photographic plates of Stephans Quintet and NGC 4151 are used as examples to show how faint nebulosity is enhanced by high-pass filtering, how foreground stars are suppressed by linear interpolation, and how relative color differences between two images recorded on plates with different spectral sensitivities can be revealed by generating ratio images. Analyses are outlined which are intended to compensate partially for the blurring effects of the atmosphere on images of Stephans Quintet and to obtain more detailed information about Saturn's ring structure from low- and high-resolution scans of the planet and its ring system. The employment of a correlation picture to determine the tilt angle of an average spectral line in a low-quality spectrum is demonstrated for a section of the spectrum of Uranus.
NASA Technical Reports Server (NTRS)
Wiswell, E. R.; Cooper, G. R. (Principal Investigator)
1978-01-01
The author has identified the following significant results. The concept of average mutual information in the received spectral random process about the spectral scene was developed. Techniques amenable to implementation on a digital computer were also developed to make the required average mutual information calculations. These techniques required identification of models for the spectral response process of scenes. Stochastic modeling techniques were adapted for use. These techniques were demonstrated on empirical data from wheat and vegetation scenes.
Digital prototyping technique applied for redesigning plastic products
NASA Astrophysics Data System (ADS)
Pop, A.; Andrei, A.
2015-11-01
After products are on the market for some time, they often need to be redesigned to meet new market requirements. New products are generally derived from similar but outdated products. Redesigning a product is an important part of the production and development process. The purpose of this paper is to show that using modern technology, like Digital Prototyping in industry is an effective way to produce new products. This paper tries to demonstrate and highlight the effectiveness of the concept of Digital Prototyping, both to reduce the design time of a new product, but also the costs required for implementing this step. The results of this paper show that using Digital Prototyping techniques in designing a new product from an existing one available on the market mould offers a significantly manufacturing time and cost reduction. The ability to simulate and test a new product with modern CAD-CAM programs in all aspects of production (designing of the 3D model, simulation of the structural resistance, analysis of the injection process and beautification) offers a helpful tool for engineers. The whole process can be realised by one skilled engineer very fast and effective.
Real-time optical fiber digital speckle pattern interferometry for industrial applications
NASA Astrophysics Data System (ADS)
Chan, Robert K.; Cheung, Y. M.; Lo, C. H.; Tam, T. K.
1997-03-01
There is current interest, especially in the industrial sector, to use the digital speckle pattern interferometry (DSPI) technique to measure surface stress. Indeed, many publications in the subject are evident of the growing interests in the field. However, to bring the technology to industrial use requires the integration of several emerging technologies, viz. optics, feedback control, electronics, imaging processing and digital signal processing. Due to the highly interdisciplinary nature of the technique, successful implementation and development require expertise in all of the fields. At Baptist University, under the funding of a major industrial grant, we are developing the technology for the industrial sector. Our system fully exploits optical fibers and diode lasers in the design to enable practical and rugged systems suited for industrial applications. Besides the development in optics, we have broken away from the reliance of a microcomputer PC platform for both image capture and processing, and have developed a digital signal processing array system that can handle simultaneous and independent image capture/processing with feedback control. The system, named CASPA for 'cascadable architecture signal processing array,' is a third generation development system that utilizes up to 7 digital signal processors has proved to be a very powerful system. With our CASPA we are now in a better position to developing novel optical measurement systems for industrial application that may require different measurement systems to operate concurrently and requiring information exchange between the systems. Applications in mind such as simultaneous in-plane and out-of-plane DSPI image capture/process, vibrational analysis with interactive DSPI and phase shifting control of optical systems are a few good examples of the potentials.
NASA Technical Reports Server (NTRS)
1988-01-01
Estee Lauder uses digital image analyzer and software based on NASA lunar research in evaluation of cosmetic products for skincare. Digital image processing brings out subtleties otherwise undetectable, and allows better determination of product's effectiveness. Technique allows Estee Lauder to quantify changes in skin surface form and structure caused by application of cosmetic preparations.
Processing, mosaicking and management of the Monterey Bay digital sidescan-sonar images
Chavez, P.S.; Isbrecht, J.; Galanis, P.; Gabel, G.L.; Sides, S.C.; Soltesz, D.L.; Ross, Stephanie L.; Velasco, M.G.
2002-01-01
Sidescan-sonar imaging systems with digital capabilities have now been available for approximately 20 years. In this paper we present several of the various digital image processing techniques developed by the U.S. Geological Survey (USGS) and used to apply intensity/radiometric and geometric corrections, as well as enhance and digitally mosaic, sidescan-sonar images of the Monterey Bay region. New software run by a WWW server was designed and implemented to allow very large image data sets, such as the digital mosaic, to be easily viewed interactively, including the ability to roam throughout the digital mosaic at the web site in either compressed or full 1-m resolution. The processing is separated into the two different stages: preprocessing and information extraction. In the preprocessing stage, sensor-specific algorithms are applied to correct for both geometric and intensity/radiometric distortions introduced by the sensor. This is followed by digital mosaicking of the track-line strips into quadrangle format which can be used as input to either visual or digital image analysis and interpretation. An automatic seam removal procedure was used in combination with an interactive digital feathering/stenciling procedure to help minimize tone or seam matching problems between image strips from adjacent track-lines. The sidescan-sonar image processing package is part of the USGS Mini Image Processing System (MIPS) and has been designed to process data collected by any 'generic' digital sidescan-sonar imaging system. The USGS MIPS software, developed over the last 20 years as a public domain package, is available on the WWW at: http://terraweb.wr.usgs.gov/trs/software.html.
Digital processing of the Mariner 10 images of Venus and Mercury
NASA Technical Reports Server (NTRS)
Soha, J. M.; Lynn, D. J.; Mosher, J. A.; Elliot, D. A.
1977-01-01
An extensive effort was devoted to the digital processing of the Mariner 10 images of Venus and Mercury at the Image Processing Laboratory of the Jet Propulsion Laboratory. This effort was designed to optimize the display of the considerable quantity of information contained in the images. Several image restoration, enhancement, and transformation procedures were applied; examples of these techniques are included. A particular task was the construction of large mosaics which characterize the surface of Mercury and the atmospheric structure of Venus.
Fourier analysis and signal processing by use of the Moebius inversion formula
NASA Technical Reports Server (NTRS)
Reed, Irving S.; Yu, Xiaoli; Shih, Ming-Tang; Tufts, Donald W.; Truong, T. K.
1990-01-01
A novel Fourier technique for digital signal processing is developed. This approach to Fourier analysis is based on the number-theoretic method of the Moebius inversion of series. The Fourier transform method developed is shown also to yield the convolution of two signals. A computer simulation shows that this method for finding Fourier coefficients is quite suitable for digital signal processing. It competes with the classical FFT (fast Fourier transform) approach in terms of accuracy, complexity, and speed.
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1976-01-01
A number of current research directions in the fields of digital signal processing and modern control and estimation theory were studied. Topics such as stability theory, linear prediction and parameter identification, system analysis and implementation, two-dimensional filtering, decentralized control and estimation, image processing, and nonlinear system theory were examined in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the two disciplines. An extensive bibliography is included.
Digital analysis of wind tunnel imagery to measure fluid thickness
NASA Technical Reports Server (NTRS)
Easton, Roger L., Jr.; Enge, James
1992-01-01
Documented here are the procedure and results obtained from the application of digital image processing techniques to the problem of measuring the thickness of a deicing fluid on a model airfoil during simulated takeoffs. The fluid contained a fluorescent dye and the images were recorded under flash illumination on photographic film. The films were digitized and analyzed on a personal computer to obtain maps of the fluid thickness.
NASA Astrophysics Data System (ADS)
Zaripov, D. I.; Renfu, Li
2018-05-01
The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.
Viking image processing. [digital stereo imagery and computer mosaicking
NASA Technical Reports Server (NTRS)
Green, W. B.
1977-01-01
The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.
Optical information processing at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Reid, Max B.; Bualat, Maria G.; Cho, Young C.; Downie, John D.; Gary, Charles K.; Ma, Paul W.; Ozcan, Meric; Pryor, Anna H.; Spirkovska, Lilly
1993-01-01
The combination of analog optical processors with digital electronic systems offers the potential of tera-OPS computational performance, while often requiring less power and weight relative to all-digital systems. NASA is working to develop and demonstrate optical processing techniques for on-board, real time science and mission applications. Current research areas and applications under investigation include optical matrix processing for space structure vibration control and the analysis of Space Shuttle Main Engine plume spectra, optical correlation-based autonomous vision for robotic vehicles, analog computation for robotic path planning, free-space optical interconnections for information transfer within digital electronic computers, and multiplexed arrays of fiber optic interferometric sensors for acoustic and vibration measurements.
NASA Technical Reports Server (NTRS)
Valeriano, D. D. (Principal Investigator)
1984-01-01
The feasibility of mapping the floating macrophytes (mostly water hyacinth: (Eichornia crassipes) in the Salto Grande reservoir in Americana, SP, by means of digital processing of MSS/LANDSAT data is described. The area occupied by the macrophytes was extracted by exclusion after the merging of two thematic masks representing the area of vegetation free water surface. One of the masks was obtained from a date when the vegetal cover is insignificant, while the other represents a large infestation episode. The utilization of digital processing of MSS/LANDSAT data techniques for the documentation of macrophytes infestation is feasible only when the phenomenon occurs in large areas.
NASA Astrophysics Data System (ADS)
Trejos, Sorayda; Fredy Barrera, John; Torroba, Roberto
2015-08-01
We present for the first time an optical encrypting-decrypting protocol for recovering messages without speckle noise. This is a digital holographic technique using a 2f scheme to process QR codes entries. In the procedure, letters used to compose eventual messages are individually converted into a QR code, and then each QR code is divided into portions. Through a holographic technique, we store each processed portion. After filtering and repositioning, we add all processed data to create a single pack, thus simplifying the handling and recovery of multiple QR code images, representing the first multiplexing procedure applied to processed QR codes. All QR codes are recovered in a single step and in the same plane, showing neither cross-talk nor noise problems as in other methods. Experiments have been conducted using an interferometric configuration and comparisons between unprocessed and recovered QR codes have been performed, showing differences between them due to the involved processing. Recovered QR codes can be successfully scanned, thanks to their noise tolerance. Finally, the appropriate sequence in the scanning of the recovered QR codes brings a noiseless retrieved message. Additionally, to procure maximum security, the multiplexed pack could be multiplied by a digital diffuser as to encrypt it. The encrypted pack is easily decoded by multiplying the multiplexing with the complex conjugate of the diffuser. As it is a digital operation, no noise is added. Therefore, this technique is threefold robust, involving multiplexing, encryption, and the need of a sequence to retrieve the outcome.
Digital Screening and Halftone Techniques for Raster Processing,
1980-01-14
I 7 A)-AO81 090 ARMY ENGINEER TOPOGRAPH4IC LASS FORT Bs.voiR VA 161/ OIGITAL SCREENING ANO HALFTONE TECNNIOUIES FOR RASTER PROCLPSINM-.TC(U) JAN GO R... HALFTONE TECHNIQUES 0FOR RASTER PROCESSING BY RICHARD L. ROSENTHAL DTIC FEB 7 1980 W.A Approved for public release; distribution unlimited AU...creening and halftone techniques forlt -rastei’ processing ~ A 6. PERFORMING ORG. REPORT NUMBER 7. AUTNOP-r- S. CONTRACT OR GRANT NUMBER(*) c*t- Ri chard
Photo-reconnaissance applications of computer processing of images.
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1972-01-01
Discussion of imaging processing techniques for enhancement and calibration of Jet Propulsion Laboratory imaging experiment pictures returned from NASA space vehicles such as Ranger, Mariner and Surveyor. Particular attention is given to data transmission, resolution vs recognition, and color aspects of digital data processing. The effectiveness of these techniques in applications to images from a wide variety of sources is noted. It is anticipated that the use of computer processing for enhancement of imagery will increase with the improvement and cost reduction of these techniques in the future.
Image processing of aerodynamic data
NASA Technical Reports Server (NTRS)
Faulcon, N. D.
1985-01-01
The use of digital image processing techniques in analyzing and evaluating aerodynamic data is discussed. An image processing system that converts images derived from digital data or from transparent film into black and white, full color, or false color pictures is described. Applications to black and white images of a model wing with a NACA 64-210 section in simulated rain and to computed low properties for transonic flow past a NACA 0012 airfoil are presented. Image processing techniques are used to visualize the variations of water film thicknesses on the wing model and to illustrate the contours of computed Mach numbers for the flow past the NACA 0012 airfoil. Since the computed data for the NACA 0012 airfoil are available only at discrete spatial locations, an interpolation method is used to provide values of the Mach number over the entire field.
Introduction to computer image processing
NASA Technical Reports Server (NTRS)
Moik, J. G.
1973-01-01
Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.
Computerized Experiments Using an A/D Converter.
ERIC Educational Resources Information Center
Karl, John H.
The indroduction of on-line data collection and data processing techniques into an intermediate physics laboratory is described. Using a minimum configuration PDP-8L and a Digital Equipment AD01 analog to digital converter, an interface is developed with two existing experiments. These are a microwave apparatus used to simulate Bragg diffraction…
Comparative data compression techniques and multi-compression results
NASA Astrophysics Data System (ADS)
Hasan, M. R.; Ibrahimy, M. I.; Motakabber, S. M. A.; Ferdaus, M. M.; Khan, M. N. H.
2013-12-01
Data compression is very necessary in business data processing, because of the cost savings that it offers and the large volume of data manipulated in many business applications. It is a method or system for transmitting a digital image (i.e., an array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better transmission speed and saves time. In this communication, we always want to transmit data efficiently and noise freely. This paper will provide some compression techniques for lossless text type data compression and comparative result of multiple and single compression, that will help to find out better compression output and to develop compression algorithms.
Time-resolved gamma spectroscopy of single events
NASA Astrophysics Data System (ADS)
Wolszczak, W.; Dorenbos, P.
2018-04-01
In this article we present a method of characterizing scintillating materials by digitization of each individual scintillation pulse followed by digital signal processing. With this technique it is possible to measure the pulse shape and the energy of an absorbed gamma photon on an event-by-event basis. In contrast to time-correlated single photon counting technique, the digital approach provides a faster measurement, an active noise suppression, and enables characterization of scintillation pulses simultaneously in two domains: time and energy. We applied this method to study the pulse shape change of a CsI(Tl) scintillator with energy of gamma excitation. We confirmed previously published results and revealed new details of the phenomenon.
Digital Workflow for the Conservation of Bahrain Built Heritage: the Sheik Isa Bin ALI House
NASA Astrophysics Data System (ADS)
Barazzetti, L.; Mezzino, D.; Santana Quintero, M.
2017-08-01
Currently, the commercial market offers several tools for digital documentation of historic sites and buildings. Photogrammetry and laser scanning play a fundamental role in the acquisition of metric information, which is then processed to generate reliable records particularly useful also in the built heritage conservation field. Although potentially very fast and accurate, such techniques require expert operators to produce reliable results, especially in the case of complex and large sites. The aim of this paper is to present the digital workflow developed for data acquisition and processing of the Shaikh Isa Bin Ali house in Muharraq, Bahrain. This historic structure is an outstanding example of Bahrain architecture as well as tangible memory of the country history, with strong connotations in the Bahrain cultural identity. The building has been documented employing several digital techniques, including: aerial (drone) and terrestrial photogrammetry, rectifying photography, total station and laser scanning. The documentation project has been developed for the Bahrain Authority for Culture and Antiquities (BACA) by a multidisciplinary team of experts from Carleton Immersive Media Studio (CIMS, Carleton University, Canada) and Gicarus Lab (Politecnico di Milano, Italy).
Digital techniques for processing Landsat imagery
NASA Technical Reports Server (NTRS)
Green, W. B.
1978-01-01
An overview of the basic techniques used to process Landsat images with a digital computer, and the VICAR image processing software developed at JPL and available to users through the NASA sponsored COSMIC computer program distribution center is presented. Examples of subjective processing performed to improve the information display for the human observer, such as contrast enhancement, pseudocolor display and band rationing, and of quantitative processing using mathematical models, such as classification based on multispectral signatures of different areas within a given scene and geometric transformation of imagery into standard mapping projections are given. Examples are illustrated by Landsat scenes of the Andes mountains and Altyn-Tagh fault zone in China before and after contrast enhancement and classification of land use in Portland, Oregon. The VICAR image processing software system which consists of a language translator that simplifies execution of image processing programs and provides a general purpose format so that imagery from a variety of sources can be processed by the same basic set of general applications programs is described.
Energy-efficient digital and wireless IC design for wireless smart sensing
NASA Astrophysics Data System (ADS)
Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong
2017-10-01
Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.
Qin, Mian; Liu, Yaxiong; He, Jiankang; Wang, Ling; Lian, Qin; Li, Dichen; Jin, Zhongmin; He, Sanhu; Li, Gang; Liu, Yanpu; Wang, Zhen
2014-03-01
To summarize the latest research development of the application of digital design and three-dimensional (3-D) printing technique on individualized medical treatment. Recent research data and clinical literature about the application of digital design and 3-D printing technique on individualized medical treatment in Xi'an Jiaotong University and its cooperation unit were summarized, reviewed, and analyzed. Digital design and 3-D printing technique can design and manufacture individualized implant based on the patient's specific disease conditions. And the implant can satisfy the needs of specific shape and function of the patient, reducing dependence on the level of experience required for the doctor. So 3-D printing technique get more and more recognition of the surgeon on the individualized repair of human tissue. Xi'an Jiaotong University is the first unit to develop the commercial 3-D printer and conduct depth research on the design and manufacture of individualized medical implant. And complete technological processes and quality standards of product have been developed. The individualized medical implant manufactured by 3-D printing technique can not only achieve personalized match but also meet the functional requirements and aesthetic requirements of patients. In addition, the individualized medical implant has the advantages of accurate positioning, stable connection, and high strength. So 3-D printing technique has broad prospects in the manufacture and application of individualized implant.
Regionally adaptive histogram equalization of the chest.
Sherrier, R H; Johnson, G A
1987-01-01
Advances in the area of digital chest radiography have resulted in the acquisition of high-quality images of the human chest. With these advances, there arises a genuine need for image processing algorithms specific to the chest, in order to fully exploit this digital technology. We have implemented the well-known technique of histogram equalization, noting the problems encountered when it is adapted to chest images. These problems have been successfully solved with our regionally adaptive histogram equalization method. With this technique histograms are calculated locally and then modified according to both the mean pixel value of that region as well as certain characteristics of the cumulative distribution function. This process, which has allowed certain regions of the chest radiograph to be enhanced differentially, may also have broader implications for other image processing tasks.
Digital signal processor and processing method for GPS receivers
NASA Technical Reports Server (NTRS)
Thomas, Jr., Jess B. (Inventor)
1989-01-01
A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.
Real-time processing of interferograms for monitoring protein crystal growth on the Space Station
NASA Technical Reports Server (NTRS)
Choudry, A.; Dupuis, N.
1988-01-01
The possibility of using microscopic interferometric techniques to monitor the growth of protein crystals on the Space Station is studied. Digital image processing techniques are used to develop a system for the real-time analysis of microscopic interferograms of nucleation sites during protein crystal growth. Features of the optical setup and the image processing system are discussed and experimental results are presented.
[Digital thoracic radiology: devices, image processing, limits].
Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E
2001-09-01
In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.
D Digitization of AN Heritage Masterpiece - a Critical Analysis on Quality Assessment
NASA Astrophysics Data System (ADS)
Menna, F.; Nocerino, E.; Remondino, F.; Dellepiane, M.; Callieri, M.; Scopigno, R.
2016-06-01
Despite being perceived as interchangeable when properly applied, close-range photogrammetry and range imaging have both their pros and limitations that can be overcome using suitable procedures. Even if the two techniques have been frequently cross-compared, critical analysis discussing all sub-phases of a complex digitization project are quite rare. Comparisons taking into account the digitization of a cultural masterpiece, such as the Etruscan Sarcophagus of the Spouses (Figure 1) discussed in this paper, are even less common. The final 3D model of the Sarcophagus shows impressive spatial and texture resolution, in the order of tenths of millimetre for both digitization techniques, making it a large 3D digital model even though the physical size of the artwork is quite limited. The paper presents the survey of the Sarcophagus, a late 6th century BC Etruscan anthropoid Sarcophagus. Photogrammetry and laser scanning were used for its 3D digitization in two different times only few days apart from each other. The very short time available for the digitization was a crucial constraint for the surveying operations (due to constraints imposed us by the museum curators). Despite very high-resolution and detailed 3D models have been produced, a metric comparison between the two models shows intrinsic limitations of each technique that should be overcome through suitable onsite metric verification procedures as well as a proper processing workflow.
1983-09-01
duplicate a continuous function on a digital computer, and thus the machine representatic- of the GMA is only a close approximation of the continuous...error process. Thus, the manner in which the GMA process is digitally replicated has an effect on the results of the simulation. The parameterization of...Information Center 2 Cameron Station Alexandria, Virginia 22314 2. Libary , Code 0142 2 Naval Postgraduate School Monterey, California 93943 3. Professor
Hein, L R
2001-10-01
A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.
Mäkitie, A A; Salmi, M; Lindford, A; Tuomi, J; Lassus, P
2016-12-01
Prosthetic mask restoration of the donor face is essential in current facial transplant protocols. The aim was to develop a new three-dimensional (3D) printing (additive manufacturing; AM) process for the production of a donor face mask that fulfilled the requirements for facial restoration after facial harvest. A digital image of a single test person's face was obtained in a standardized setting and subjected to three different image processing techniques. These data were used for the 3D modeling and printing of a donor face mask. The process was also tested in a cadaver setting and ultimately used clinically in a donor patient after facial allograft harvest. and Conclusions: All the three developed and tested techniques enabled the 3D printing of a custom-made face mask in a timely manner that is almost an exact replica of the donor patient's face. This technique was successfully used in a facial allotransplantation donor patient. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
De Deus, Gustavo A; Gurgel-Filho, Eduardo Diogo; Maniglia-Ferreira, Cláudio; Coutinho-Filho, Tauby
2004-04-01
The purpose of this study was to compare the depth of sealer penetration into dentinal tubules by three root-filling techniques using light microscopy and digital image processing. Thirty-two maxillary central incisors were prepared. Two teeth were separated for the control group. The rest were divided into three equal groups and obturated as following--G1: lateral condensation; G2: warm vertical compaction of gutta-percha and G3: Thermafil system. Each sample was sectioned longitudinally and prepared for microscopic analysis. A sequence of photomicrographs with magnifications of X50, X200 and X500 were taken. Through digital image analysis and processing, measurements for each field were obtained. A non-parametric ANOVA Kruskal-Wallis analysis was used to determine whether there were significant differences among the groups. Significant differences between G2 and G1 (p = 0.034) and between G3 and G1 (p = 0.021) were identified. There were no significant differences between G2 and G3 (p > 0.05). The results of this research suggest that samples root-filled by thermoplasticised gutta-percha techniques lead to deeper penetration of the root canal sealer into the dentinal tubules.
Comparing Noun Phrasing Techniques for Use with Medical Digital Library Tools.
ERIC Educational Resources Information Center
Tolle, Kristin M.; Chen, Hsinchun
2000-01-01
Describes a study that investigated the use of a natural language processing technique called noun phrasing to determine whether it is a viable technique for medical information retrieval. Evaluates four noun phrase generation tools for their ability to isolate noun phrases from medical journal abstracts, focusing on precision and recall.…
A Technique for Digital Impression and Bite Registration for a Single Edentulous Arch.
Fang, Yiqin; Fang, Jing-Huan; Jeong, Seung-Mi; Choi, Byung-Ho
2018-03-09
Few studies have reported the application of digital technology for the process of impression and interocclusal recordings in edentulous patients. This article describes a digitizing system for generating digital edentulous models with a jaw relationship by taking direct digital impressions and a virtual bite registration using intraoral digital scanning. A specialized scan retractor was used to make digital impressions of edentulous jaws in patients' mouths using an intraoral scanner. Virtual bite registration was obtained with optical scanning of the buccal surfaces of both jaws at the occlusal vertical dimension. The registration was then used as a reference for aligning both jaws. Digital edentulous models that include the jaw relationship would be clinically beneficial for the fabrication of complete dentures in edentulous patients. © 2018 by the American College of Prosthodontists.
Data Services Upgrade: Perfecting the ISIS-I Topside Digital Ionogram Database
NASA Technical Reports Server (NTRS)
Wang, Yongli; Benson, Robert F.; Bilitza, Dieter; Fung, Shing. F.; Chu, Philip; Huang, Xueqin; Truhlik, Vladimir
2015-01-01
The ionospheric topside sounders of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. More than 16,000 of the original telemetry tapes from three satellites were used to produce topside digital ionograms, via an analog-to-digital (A/D) conversion process, suitable for modern analysis techniques. Unfortunately, many of the resulting digital topside ionogram files could not be auto-processed to produce topside Ne(h) profiles because of problems encountered during the A/D process. Software has been written to resolve these problems and here we report on (1) the first application of this software to a significant portion of the ISIS-1 digital topside-ionogram database, (2) software improvements motivated by this activity, (3) N(sub e)(h) profiles automatically produced from these corrected ISIS-1 digital ionogram files, and (4) the availability via the Virtual Wave Observatory (VWO) of the corrected ISIS-1 digital topside ionogram files for research. We will also demonstrate the use of these N(sub e)(h) profiles for making refinements in the International Reference Ionosphere (IRI) and in the determination of transition heights from Oxygen ion to Hydrogen ion.
NASA Technical Reports Server (NTRS)
Lillesand, T. M.; Meisner, D. E. (Principal Investigator)
1980-01-01
An investigation was conducted into ways to improve the involvement of state and local user personnel in the digital image analysis process by isolating those elements of the analysis process which require extensive involvement by field personnel and providing means for performing those activities apart from a computer facility. In this way, the analysis procedure can be converted from a centralized activity focused on a computer facility to a distributed activity in which users can interact with the data at the field office level or in the field itself. A general image processing software was developed on the University of Minnesota computer system (Control Data Cyber models 172 and 74). The use of color hardcopy image data as a primary medium in supervised training procedures was investigated and digital display equipment and a coordinate digitizer were procured.
A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.
Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing
2016-09-23
In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.
Merged GLORIA sidescan and hydrosweep pseudo-sidescan: Processing and creation of digital mosaics
Bird, R.T.; Searle, R.C.; Paskevich, V.; Twichell, D.C.
1996-01-01
We have replaced the usual band of poor-quality data in the near-nadir region of our GLORIA long-range sidescan-sonar imagery with a shaded-relief image constructed from swath bathymetry data (collected simultaneously with GLORIA) which completely cover the nadir area. We have developed a technique to enhance these "pseudo-sidescan" images in order to mimic the neighbouring GLORIA backscatter intensities. As a result, the enhanced images greatly facilitate the geologic interpretation of the adjacent GLORIA data, and geologic features evident in the GLORIA data may be correlated with greater confidence across track. Features interpreted from the pseudo-sidescan may be extrapolated from the near-nadir region out into the GLORIA range where they may not have been recognized otherwise, and therefore the pseudo-sidescan can be used to ground-truth GLORIA interpretations. Creation of digital sidescan mosaics utilized an approach not previously used for GLORIA data. Pixels were correctly placed in cartographic space and the time required to complete a final mosaic was significantly reduced. Computer software for digital mapping and mosaic creation is incorporated into the newly-developed Woods Hole Image Processing System (WHIPS) which can process both low- and high-frequency sidescan, and can interchange data with the Mini Image Processing System (MIPS) most commonly used for GLORIA processing. These techniques are tested by creating digital mosaics of merged GLORIA sidescan and Hydrosweep pseudo-sidescan data from the vicinity of the Juan Fernandez microplate along the East Pacific Rise (EPR).
NASA Astrophysics Data System (ADS)
Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.
2004-06-01
This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.
Robust watermark technique using masking and Hermite transform.
Coronel, Sandra L Gomez; Ramírez, Boris Escalante; Mosqueda, Marco A Acevedo
2016-01-01
The following paper evaluates a watermark algorithm designed for digital images by using a perceptive mask and a normalization process, thus preventing human eye detection, as well as ensuring its robustness against common processing and geometric attacks. The Hermite transform is employed because it allows a perfect reconstruction of the image, while incorporating human visual system properties; moreover, it is based on the Gaussian functions derivates. The applied watermark represents information of the digital image proprietor. The extraction process is blind, because it does not require the original image. The following techniques were utilized in the evaluation of the algorithm: peak signal-to-noise ratio, the structural similarity index average, the normalized crossed correlation, and bit error rate. Several watermark extraction tests were performed, with against geometric and common processing attacks. It allowed us to identify how many bits in the watermark can be modified for its adequate extraction.
Application of High Speed Digital Image Correlation in Rocket Engine Hot Fire Testing
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Schmidt, Tim
2016-01-01
Hot fire testing of rocket engine components and rocket engine systems is a critical aspect of the development process to understand performance, reliability and system interactions. Ground testing provides the opportunity for highly instrumented development testing to validate analytical model predictions and determine necessary design changes and process improvements. To properly obtain discrete measurements for model validation, instrumentation must survive in the highly dynamic and extreme temperature application of hot fire testing. Digital Image Correlation has been investigated and being evaluated as a technique to augment traditional instrumentation during component and engine testing providing further data for additional performance improvements and cost savings. The feasibility of digital image correlation techniques were demonstrated in subscale and full scale hotfire testing. This incorporated a pair of high speed cameras to measure three-dimensional, real-time displacements and strains installed and operated under the extreme environments present on the test stand. The development process, setup and calibrations, data collection, hotfire test data collection and post-test analysis and results are presented in this paper.
Photographic techniques for characterizing streambed particle sizes
Whitman, Matthew S.; Moran, Edward H.; Ourso, Robert T.
2003-01-01
We developed photographic techniques to characterize coarse (>2-mm) and fine (≤2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wadeable and contained gravel—cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded a greater number of measured particles (mean = 989) than did the Wolman counts (mean = 328). Stream embeddedness ratings assigned from field and photographic observations were significantly different at 5 of the 12 sites, although both types of ratings showed a positive relationship with digitized surface fines. Visual estimates of embeddedness and digitized surface fines may both be useful indicators of benthic conditions, but digitizing surface fines produces quantitative rather than qualitative data. Benefits of the photographic techniques include reduced field time, minimal streambed disturbance, convenience of postfield processing, easy sample archiving, and improved accuracy and replication potential.
Baldasso, Rosane Pérez; Tinoco, Rachel Lima Ribeiro; Vieira, Cristina Saft Matos; Fernandes, Mário Marques; Oliveira, Rogério Nogueira
2016-10-01
The process of forensic facial analysis may be founded on several scientific techniques and imaging modalities, such as digital signal processing, photogrammetry and craniofacial anthropometry. However, one of the main limitations in this analysis is the comparison of images acquired with different angles of incidence. The present study aimed to explore a potential approach for the correction of the planar perspective projection (PPP) in geometric structures traced from the human face. A technique for the correction of the PPP was calibrated within photographs of two geometric structures obtained with angles of incidence distorted in 80°, 60° and 45°. The technique was performed using ImageJ ® 1.46r (National Institutes of Health, Bethesda, Maryland). The corrected images were compared with photographs of the same object obtained in 90° (reference). In a second step, the technique was validated in a digital human face created using MakeHuman ® 1.0.2 (Free Software Foundation, Massachusetts, EUA) and Blender ® 2.75 (Blender ® Foundation, Amsterdam, Nederland) software packages. The images registered with angular distortion presented a gradual decrease in height when compared to the reference. The digital technique for the correction of the PPP is a valuable tool for forensic applications using photographic imaging modalities, such as forensic facial analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Aitkuzhinova-Arslan, Ainur; Gün, Süleyman; Üstünel, Eda
2016-01-01
Teaching vocabulary is a comprehensive process in foreign language learning requiring specific techniques of appropriate instruction and accurate strategy. The present study was conducted to examine the effects of teaching vocabulary to Turkish young learners in a semantic clustering way through digital storytelling. To investigate this aim, six…
Voyager image processing at the Image Processing Laboratory
NASA Astrophysics Data System (ADS)
Jepsen, P. L.; Mosher, J. A.; Yagi, G. M.; Avis, C. C.; Lorre, J. J.; Garneau, G. W.
1980-09-01
This paper discusses new digital processing techniques as applied to the Voyager Imaging Subsystem and devised to explore atmospheric dynamics, spectral variations, and the morphology of Jupiter, Saturn and their satellites. Radiometric and geometric decalibration processes, the modulation transfer function, and processes to determine and remove photometric properties of the atmosphere and surface of Jupiter and its satellites are examined. It is exhibited that selected images can be processed into 'approach at constant longitude' time lapse movies which are useful in observing atmospheric changes of Jupiter. Photographs are included to illustrate various image processing techniques.
Voyager image processing at the Image Processing Laboratory
NASA Technical Reports Server (NTRS)
Jepsen, P. L.; Mosher, J. A.; Yagi, G. M.; Avis, C. C.; Lorre, J. J.; Garneau, G. W.
1980-01-01
This paper discusses new digital processing techniques as applied to the Voyager Imaging Subsystem and devised to explore atmospheric dynamics, spectral variations, and the morphology of Jupiter, Saturn and their satellites. Radiometric and geometric decalibration processes, the modulation transfer function, and processes to determine and remove photometric properties of the atmosphere and surface of Jupiter and its satellites are examined. It is exhibited that selected images can be processed into 'approach at constant longitude' time lapse movies which are useful in observing atmospheric changes of Jupiter. Photographs are included to illustrate various image processing techniques.
Three-dimensional image signals: processing methods
NASA Astrophysics Data System (ADS)
Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru
2010-11-01
Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.
Development of electronic cinema projectors
NASA Astrophysics Data System (ADS)
Glenn, William E.
2001-03-01
All of the components for the electronic cinema are now commercially available. Sony has a high definition progressively scanned 24 frame per second electronic cinema camera. This can be recorded digitally on tape or film on hard drives in RAID recorders. Much of the post production processing is now done digitally by scanning film, processing it digitally, and recording it on film for release. Fiber links and satellites can transmit cinema program material to theaters in real time. RAID or tape recorders can play programs for viewing at a much lower cost than storage on film. Two companies now have electronic cinema projectors on the market. Of all of the components, the electronic cinema projector is the most challenging. Achieving the resolution, light, output, contrast ratio, and color rendition all at the same time without visible artifacts is a difficult task. Film itself is, of course, a form of light-valve. However, electronically modulated light uses other techniques rather than changes in density to control the light. The optical techniques that have been the basis for many electronic light-valves have been under development for over 100 years. Many of these techniques are based on optical diffraction to modulate the light. This paper will trace the history of these techniques and show how they may be extended to produce electronic cinema projectors in the future.
Commercial and industrial applications of color ink jet: a technological perspective
NASA Astrophysics Data System (ADS)
Dunand, Alain
1996-03-01
In just 5 years, color ink-jet has become the dominant technology for printing color images and graphics in the office and home markets. In commercial printing, the traditional printing processes are being influenced by new digital techniques. Color ink-jet proofing, and concepts such as computer to film/plate or digital processes are contributing to the evolution of the industry. In industrial color printing, the penetration of digital techniques is just beginning. All widely used conventional contact printing technologies involve mechanical printing forms including plates, screens or engraved cylinders. Such forms, which need to be newly created and set up for each job, increase costs. In our era of fast changing customer demands, growing needs for customization, and increasing use of digital exchange of information, the commercial and industrial printing markets represent an enormous potential for digital printing technologies. The adoption characteristics for the use of color ink-jet in these industries are discussed. Examples of color ink-jet applications in the fields of billboard printing, floor/wall covering decoration, and textile printing are described. The requirements on print quality, productivity, reliability, substrate compatibility, and color lead to the consideration of various types of ink-jet technologies. Key technical enabling factors and directions for future improvements are presented.
Insect Wing Displacement Measurement Using Digital Holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la
2008-04-15
Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame ratemore » digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.« less
Tri-state delta modulation system for Space Shuttle digital TV downlink
NASA Technical Reports Server (NTRS)
Udalov, S.; Huth, G. K.; Roberts, D.; Batson, B. H.
1981-01-01
Future requirements for Shuttle Orbiter downlink communication may include transmission of digital video which, in addition to black and white, may also be either field-sequential or NTSC color format. The use of digitized video could provide for picture privacy at the expense of additional onboard hardware, together with an increased bandwidth due to the digitization process. A general objective for the Space Shuttle application is to develop a digitization technique that is compatible with data rates in the 20-30 Mbps range but still provides good quality pictures. This paper describes a tri-state delta modulation/demodulation (TSDM) technique which is a good compromise between implementation complexity and performance. The unique feature of TSDM is that it provides for efficient run-length encoding of constant-intensity segments of a TV picture. Axiomatix has developed a hardware implementation of a high-speed TSDM transmitter and receiver for black-and-white TV and field-sequential color. The hardware complexity of this TSDM implementation is summarized in the paper.
NASA Astrophysics Data System (ADS)
Singh, Mandeep; Khare, Kedar
2018-05-01
We describe a numerical processing technique that allows single-shot region-of-interest (ROI) reconstruction in image plane digital holographic microscopy with full pixel resolution. The ROI reconstruction is modelled as an optimization problem where the cost function to be minimized consists of an L2-norm squared data fitting term and a modified Huber penalty term that are minimized alternately in an adaptive fashion. The technique can provide full pixel resolution complex-valued images of the selected ROI which is not possible to achieve with the commonly used Fourier transform method. The technique can facilitate holographic reconstruction of individual cells of interest from a large field-of-view digital holographic microscopy data. The complementary phase information in addition to the usual absorption information already available in the form of bright field microscopy can make the methodology attractive to the biomedical user community.
Scanning the Images of Science.
ERIC Educational Resources Information Center
Greenberg, Richard
1992-01-01
The Image Processing Technology Project explores the possibility of using digital image processing in mathematics and science education. Describes the origin of the project and reports the results of a 4-week teacher workshop that trained over 80 teachers in the techniques and technology of image processing. (MDH)
Digital signal processing the Tevatron BPM signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cancelo, G.; James, E.; Wolbers, S.
2005-05-01
The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describesmore » the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented.« less
Spectral analysis and filtering techniques in digital spatial data processing
Pan, Jeng-Jong
1989-01-01
A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author
The Ansel Adams zone system: HDR capture and range compression by chemical processing
NASA Astrophysics Data System (ADS)
McCann, John J.
2010-02-01
We tend to think of digital imaging and the tools of PhotoshopTM as a new phenomenon in imaging. We are also familiar with multiple-exposure HDR techniques intended to capture a wider range of scene information, than conventional film photography. We know about tone-scale adjustments to make better pictures. We tend to think of everyday, consumer, silver-halide photography as a fixed window of scene capture with a limited, standard range of response. This description of photography is certainly true, between 1950 and 2000, for instant films and negatives processed at the drugstore. These systems had fixed dynamic range and fixed tone-scale response to light. All pixels in the film have the same response to light, so the same light exposure from different pixels was rendered as the same film density. Ansel Adams, along with Fred Archer, formulated the Zone System, staring in 1940. It was earlier than the trillions of consumer photos in the second half of the 20th century, yet it was much more sophisticated than today's digital techniques. This talk will describe the chemical mechanisms of the zone system in the parlance of digital image processing. It will describe the Zone System's chemical techniques for image synthesis. It also discusses dodging and burning techniques to fit the HDR scene into the LDR print. Although current HDR imaging shares some of the Zone System's achievements, it usually does not achieve all of them.
Digital communications: Microwave applications
NASA Astrophysics Data System (ADS)
Feher, K.
Transmission concepts and techniques of digital systems are presented; and practical state-of-the-art implementation of digital communications systems by line-of-sight microwaves is described. Particular consideration is given to statistical methods in digital transmission systems analysis, digital modulation methods, microwave amplifiers, system gain, m-ary and QAM microwave systems, correlative techniques and applications to digital radio systems, hybrid systems, digital microwave systems design, diversity and protection switching techniques, measurement techniques, and research and development trends and unsolved problems.
room) or while being on the mobile (agents in action). While desktop based applications can be used to monitor but also process and analyse surveillance data coming from a variety of sources, mobile-based techniques Digital forensics analysis Visualization techniques for surveillance Mobile-based surveillance
Character recognition using a neural network model with fuzzy representation
NASA Technical Reports Server (NTRS)
Tavakoli, Nassrin; Seniw, David
1992-01-01
The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.
Digital signal processing methods for biosequence comparison.
Benson, D C
1990-01-01
A method is discussed for DNA or protein sequence comparison using a finite field fast Fourier transform, a digital signal processing technique; and statistical methods are discussed for analyzing the output of this algorithm. This method compares two sequences of length N in computing time proportional to N log N compared to N2 for methods currently used. This method makes it feasible to compare very long sequences. An example is given to show that the method correctly identifies sites of known homology. PMID:2349096
Digital Compositing Techniques for Coronal Imaging (Invited review)
NASA Astrophysics Data System (ADS)
Espenak, F.
2000-04-01
The solar corona exhibits a huge range in brightness which cannot be captured in any single photographic exposure. Short exposures show the bright inner corona and prominences, while long exposures reveal faint details in equatorial streamers and polar brushes. For many years, radial gradient filters and other analog techniques have been used to compress the corona's dynamic range in order to study its morphology. Such techniques demand perfect pointing and tracking during the eclipse, and can be difficult to calibrate. In the past decade, the speed, memory and hard disk capacity of personal computers have rapidly increased as prices continue to drop. It is now possible to perform sophisticated image processing of eclipse photographs on commercially available CPU's. Software programs such as Adobe Photoshop permit combining multiple eclipse photographs into a composite image which compresses the corona's dynamic range and can reveal subtle features and structures. Algorithms and digital techniques used for processing 1998 eclipse photographs will be discussed which are equally applicable to the recent eclipse of 1999 August 11.
Parker, Richard; Markov, Marko
2015-09-01
This article presents a novel modality for accelerating the repair of tendon and ligament lesions by means of a specifically designed electromagnetic field in an equine model. This novel therapeutic approach employs a delivery system that induces a specific electrical signal from an external magnetic field derived from Superconductive QUantum Interference Device (SQUID) measurements of injured vs. healthy tissue. Evaluation of this therapy technique is enabled by a proposed new technology described as Predictive Analytical Imagery (PAI™). This technique examines an ultrasound grayscale image and seeks to evaluate it by means of look-ahead predictive algorithms and digital signal processing. The net result is a significant reduction in background noise and the production of a high-resolution grayscale or digital image.
Comparison of Image Generation And Processing Techniques For 3D Reconstruction of The Human Skull
2001-10-25
inexpensive Microscribe (3D digitizer) with a standard widely used and expensive CT-Scan and/or MRI for 3D reconstruction of a human skull, which will be... Microscribe 3D digitizing unit and another one using the CT-Scans (2D cross-sections) obtained from a GE scanner. Both models were then subjected to stress...these methods are still elaborate, expensive and not readily accessible. Using the hand-held digitizer, the Microscribe , X, Y and Z coordinates
NASA Technical Reports Server (NTRS)
Lovegreen, J. R.; Prosser, W. J.; Millet, R. A.
1975-01-01
A site in the Great Valley subsection of the Valley and Ridge physiographic province in eastern Pennsylvania was studied to evaluate the use of digital and analog image processing for geologic investigations. Ground truth at the site was obtained by a field mapping program, a subsurface exploration investigation and a review of available published and unpublished literature. Remote sensing data were analyzed using standard manual techniques. LANDSAT-1 imagery was analyzed using digital image processing employing the multispectral Image 100 system and using analog color processing employing the VP-8 image analyzer. This study deals primarily with linears identified employing image processing and correlation of these linears with known structural features and with linears identified manual interpretation; and the identification of rock outcrops in areas of extensive vegetative cover employing image processing. The results of this study indicate that image processing can be a cost-effective tool for evaluating geologic and linear features for regional studies encompassing large areas such as for power plant siting. Digital image processing can be an effective tool for identifying rock outcrops in areas of heavy vegetative cover.
NASA Technical Reports Server (NTRS)
Baumgardner, M. F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The most significant result was the use of the temporal overlay technique where the computer was used to overlay ERTS-1 data from three different dates (9 Oct., 14 Nov., 2 Dec.). The registration of MSS digital data from different dates was estimated to be accurate within one half resolution element. The temporal overlay capability provides a significant advance in machine-processing of MSS data. It is no longer essential to go through the tedious exercise of locating ground observation sites on the digital data from each ERTS-1 overpass. Once the address of a ground observation site has been located on a digital tape from any ERTS-1 overpass, the overlay technique can be used to locate the same address on a digital tape of MSS data from any other ERTS-1 pass over the same area. The temporal overlay technique also adds a valuable dimension for identifying and mapping changes in vegetation, water, and other dynamic surface features.
Digital impression and jaw relation record for the fabrication of CAD/CAM custom tray.
Kanazawa, Manabu; Iwaki, Maiko; Arakida, Toshio; Minakuchi, Shunsuke
2018-03-16
This article describes the protocol of a digital impression technique to make an impression and recording of the jaw relationship of edentulous patients for the fabrication of CAD/CAM custom tray using computer-aided design and manufacturing (CAD/CAM) technology. Scan the maxillary and mandibular edentulous jaws using an intraoral scanner. Scan the silicone jig with the maxillary and mandibular jaws while keeping the jig between the jaws. Import the standard tessellation language data of the maxillary and mandibular jaws and jig to make a jaw relation record and fabricate custom trays (CAD/CAM trays) using a rapid prototyping system. Make a definitive impression of the maxillary and mandibular jaws using the CAD/CAM trays. Digitalization of the complete denture fabrication process can simplify the complicated treatment and laboratory process of conventional methods In addition, the proposed method enables quality control regardless of the operator's experience and technique. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Qi, Y. L.; Xu, B. Y.; Cai, S. L.
2006-12-01
To control fuel injection, optimize combustion and reduce emissions for LPG (liquefied petroleum gas) engines, it is necessary and important to understand the characteristics of LPG sprays. The present work investigates the geometry of LPG sprays, including spray tip penetration, spray angle, projected spray area and spray volume, by using schlieren photography and digital image processing techniques. Two types of single nozzle injectors were studied, with the same nozzle diameter, but one with and one without a double-hole flow-split head. A code developed to analyse the results directly from the digitized images is shown to be more accurate and efficient than manual measurement and analysis. Test results show that a higher injection pressure produces a longer spray tip penetration, a larger projected spray area and spray volume, but a smaller spray cone angle. The injector with the double-hole split-head nozzle produces better atomization and shorter tip penetration at medium and late injection times, but longer tip penetration in the early stage.
Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank
NASA Astrophysics Data System (ADS)
Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.
2014-05-01
Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is achieved without use of polyphase signal processing or time-interleaved ADC methods. That is, all digital processors operate at the same Fclk clock frequency without phasing, while wideband operation is achieved by sub-sampling of narrower sub-bands at the the RF channelizer outputs.
Digital Image Processing Technique for Breast Cancer Detection
NASA Astrophysics Data System (ADS)
Guzmán-Cabrera, R.; Guzmán-Sepúlveda, J. R.; Torres-Cisneros, M.; May-Arrioja, D. A.; Ruiz-Pinales, J.; Ibarra-Manzano, O. G.; Aviña-Cervantes, G.; Parada, A. González
2013-09-01
Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. As masses and benign glandular tissue typically appear with low contrast and often very blurred, several computer-aided diagnosis schemes have been developed to support radiologists and internists in their diagnosis. In this article, an approach is proposed to effectively analyze digital mammograms based on texture segmentation for the detection of early stage tumors. The proposed algorithm was tested over several images taken from the digital database for screening mammography for cancer research and diagnosis, and it was found to be absolutely suitable to distinguish masses and microcalcifications from the background tissue using morphological operators and then extract them through machine learning techniques and a clustering algorithm for intensity-based segmentation.
Chain of evidence generation for contrast enhancement in digital image forensics
NASA Astrophysics Data System (ADS)
Battiato, Sebastiano; Messina, Giuseppe; Strano, Daniela
2010-01-01
The quality of the images obtained by digital cameras has improved a lot since digital cameras early days. Unfortunately, it is not unusual in image forensics to find wrongly exposed pictures. This is mainly due to obsolete techniques or old technologies, but also due to backlight conditions. To extrapolate some invisible details a stretching of the image contrast is obviously required. The forensics rules to produce evidences require a complete documentation of the processing steps, enabling the replication of the entire process. The automation of enhancement techniques is thus quite difficult and needs to be carefully documented. This work presents an automatic procedure to find contrast enhancement settings, allowing both image correction and automatic scripting generation. The technique is based on a preprocessing step which extracts the features of the image and selects correction parameters. The parameters are thus saved through a JavaScript code that is used in the second step of the approach to correct the image. The generated script is Adobe Photoshop compliant (which is largely used in image forensics analysis) thus permitting the replication of the enhancement steps. Experiments on a dataset of images are also reported showing the effectiveness of the proposed methodology.
A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring
NASA Technical Reports Server (NTRS)
Stoughton, J. W.
1978-01-01
Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.
ERIC Educational Resources Information Center
Harris, Richard W.; And Others
1988-01-01
A two-microphone adaptive digital noise cancellation technique improved word-recognition ability for 20 normal and 12 hearing-impaired adults by reducing multitalker speech babble and speech spectrum noise 18-22 dB. Word recognition improvements averaged 37-50 percent for normal and 27-40 percent for hearing-impaired subjects. Improvement was best…
NASA Astrophysics Data System (ADS)
Naldi, G.; Bartolini, M.; Mattana, A.; Pupillo, G.; Hickish, J.; Foster, G.; Bianchi, G.; Lingua, A.; Monari, J.; Montebugnoli, S.; Perini, F.; Rusticelli, S.; Schiaffino, M.; Virone, G.; Zarb Adami, K.
In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications.
A digital gigapixel large-format tile-scan camera.
Ben-Ezra, M
2011-01-01
Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.
Digital SAR processing using a fast polynomial transform
NASA Technical Reports Server (NTRS)
Butman, S.; Lipes, R.; Rubin, A.; Truong, T. K.
1981-01-01
A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network.
Experimental research of digital holographic microscopic measuring
NASA Astrophysics Data System (ADS)
Zhu, Xueliang; Chen, Feifei; Li, Jicheng
2013-06-01
Digital holography is a new imaging technique, which is developed on the base of optical holography, Digital processing, and Computer techniques. It is using CCD instead of the conventional silver to record hologram, and then reproducing the 3D contour of the object by the way of computer simulation. Compared with the traditional optical holographic, the whole process is of simple measuring, lower production cost, faster the imaging speed, and with the advantages of non-contact real-time measurement. At present, it can be used in the fields of the morphology detection of tiny objects, micro deformation analysis, and biological cells shape measurement. It is one of the research hot spot at home and abroad. This paper introduced the basic principles and relevant theories about the optical holography and Digital holography, and researched the basic questions which influence the reproduce images in the process of recording and reconstructing of the digital holographic microcopy. In order to get a clear digital hologram, by analyzing the optical system structure, we discussed the recording distance and of the hologram. On the base of the theoretical studies, we established a measurement and analyzed the experimental conditions, then adjusted them to the system. To achieve a precise measurement of tiny object in three-dimension, we measured MEMS micro device for example, and obtained the reproduction three-dimensional contour, realized the three dimensional profile measurement of tiny object. According to the experiment results consider: analysis the reference factors between the zero-order term and a pair of twin-images by the choice of the object light and the reference light and the distance of the recording and reconstructing and the characteristics of reconstruction light on the measurement, the measurement errors were analyzed. The research result shows that the device owns certain reliability.
NASA Technical Reports Server (NTRS)
Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.
2015-01-01
Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.
NASA Astrophysics Data System (ADS)
Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.
2015-10-01
Thermal radiometers such as proposed for the Europa Clipper flyby mission [1] require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-cm2/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.
Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization.
Zhang, You; Ren, Lei; Vergalasova, Irina; Yin, Fang-Fang
2017-01-01
Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams' eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard deviation) error of 1.8 (0.7) mm for a 30° total scan angle. For the phantom study using aggregated kV-MV projections, the orthogonal-view phase-matched digital tomosynthesis localizes the tumor to an average error within 1 mm for varying magnitudes of scan angles. The pilot clinical study shows that the orthogonal-view phase-matched digital tomosynthesis technique enables fast and accurate localization of moving lung tumors.
Survey of Munitions Response Technologies
2006-06-01
3-34 3.3.4 Digital Data Processing .......................................................................... 3-36 4.0 SOURCE DATA AND METHODS...6-4 6.1.6 DGM versus Mag and Flag Processes ..................................................... 6-5 6.1.7 Translation to...signatures, surface clutter, variances in operator technique, target selection, and data processing all degrade from and affect optimum performance
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications
Park, Keunyeol; Song, Minkyu
2018-01-01
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.
Park, Keunyeol; Song, Minkyu; Kim, Soo Youn
2018-02-24
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.
NASA Astrophysics Data System (ADS)
Merida Martín, F.; Paz Otero, S.
2007-10-01
During the last two years the INTA -- National Institute for Aerospace Technique -- library has been improving different areas related to the information management processes, such as those related to cataloguing, dissemination of technical information, centralization at the Library of all relevant documents and information applicable to scientific research within our organization, implementation of library web services, etc. As part of these processes of modernization of services that the INTA Library is carrying out, a project of digitization of both technical documentation and historical records of the Institute has been defined. The goal is to achieve the total digitization of technical documents and historical papers through the year 2006, and provide access for the resulting electronic collection to the Spanish aerospace community. For the development of the project a deep study of the state of the art in digitization and preservation matters has been conducted. That study covers the different aspects of such a project that could be experienced, such as the risk of data loss, the bandwidth needed to guarantee access to this huge quantity of electronic documentation, the fragility of the digital media, the rapid obsolescence of hardware and software, etc. Also the project is going to assume the new reality of documents that are not originating in paper format, but are digital-born, and how to integrate all the electronic documents in one system, fulfilling the same standards and using the same available technology.
Application of comparative digital holography for distant shape control
NASA Astrophysics Data System (ADS)
Baumbach, Torsten; Osten, Wolfgang; von Kopylow, Christoph; Juptner, Werner P. O.
2004-09-01
The comparison of two objects is of great importance in the industrial production process. Especially comparing the shape is of particular interest for maintaining calibration tools or controlling the tolerance in the deviation between a sample and a master. Outsourcing and globalization of production places can result in large distances between co-operating partners and might cause problems for maintaining quality standards. Consequently new challenges arise for optical measurement techniques especially in the field of industrial shape control. In this paper we describe the progress of implementing a novel technique for comparing directly two objects with different microstructure. The technique is based on the combination of comparative holography and digital holography. Comparing the objects can be done in two ways. One is the digital comparison in the computer and the other way is by using the analogue reconstruction of a master hologram with a spatial light modulator (SLM) as coherent mask for illuminating the test object. Since this mask is stored digitally it can be transmitted via telecommunication networks and this enables the access to the full optical information of the master object at any place wanted. Beside the basic principle of comparative digital holography (CDH), we will show in this paper the set-up for doing the analogue comparison of two objects with increased sensitivity in comparison to former measurements and the calibration of the SLM that is used for the experiments. We will give examples for the digital and the analogue comparison of objects including a verification of our results by another optical measurement technique.
A low-power small-area ADC array for IRFPA readout
NASA Astrophysics Data System (ADS)
Zhong, Shengyou; Yao, Libin
2013-09-01
The readout integrated circuit (ROIC) is a bridge between the infrared focal plane array (IRFPA) and image processing circuit in an infrared imaging system. The ROIC is the first part of signal processing circuit and connected to detectors directly, so its performance will greatly affect the detector or even the whole imaging system performance. With the development of CMOS technologies, it's possible to digitalize the signal inside the ROIC and develop the digital ROIC. Digital ROIC can reduce complexity of the whole system and improve the system reliability. More importantly, it can accommodate variety of digital signal processing techniques which the traditional analog ROIC cannot achieve. The analog to digital converter (ADC) is the most important building block in the digital ROIC. The requirements for ADCs inside the ROIC are low power, high dynamic range and small area. In this paper we propose an RC hybrid Successive Approximation Register (SAR) ADC as the column ADC for digital ROIC. In our proposed ADC structure, a resistor ladder is used to generate several voltages. The proposed RC hybrid structure not only reduces the area of capacitor array but also releases requirement for capacitor array matching. Theory analysis and simulation show RC hybrid SAR ADC is suitable for ADC array applications
A Versatile Multichannel Digital Signal Processing Module for Microcalorimeter Arrays
NASA Astrophysics Data System (ADS)
Tan, H.; Collins, J. W.; Walby, M.; Hennig, W.; Warburton, W. K.; Grudberg, P.
2012-06-01
Different techniques have been developed for reading out microcalorimeter sensor arrays: individual outputs for small arrays, and time-division or frequency-division or code-division multiplexing for large arrays. Typically, raw waveform data are first read out from the arrays using one of these techniques and then stored on computer hard drives for offline optimum filtering, leading not only to requirements for large storage space but also limitations on achievable count rate. Thus, a read-out module that is capable of processing microcalorimeter signals in real time will be highly desirable. We have developed multichannel digital signal processing electronics that are capable of on-board, real time processing of microcalorimeter sensor signals from multiplexed or individual pixel arrays. It is a 3U PXI module consisting of a standardized core processor board and a set of daughter boards. Each daughter board is designed to interface a specific type of microcalorimeter array to the core processor. The combination of the standardized core plus this set of easily designed and modified daughter boards results in a versatile data acquisition module that not only can easily expand to future detector systems, but is also low cost. In this paper, we first present the core processor/daughter board architecture, and then report the performance of an 8-channel daughter board, which digitizes individual pixel outputs at 1 MSPS with 16-bit precision. We will also introduce a time-division multiplexing type daughter board, which takes in time-division multiplexing signals through fiber-optic cables and then processes the digital signals to generate energy spectra in real time.
Some thoughts on cartographic and geographic information systems for the 1980's
Starr, L.E.; Anderson, Kirk E.
1981-01-01
The U.S. Geological Survey is adopting computer techniques to meet the expanding need for cartographic base category data. Digital methods are becoming increasingly important in the mapmaking process, and the demand is growing for physical, social, and economic data. Recognizing these emerging needs, the National Mapping Division began, several years ago, an active program to develop advanced digital methods to support cartographic and geographic data processing. An integrated digital cartographic database would meet the anticipated needs. Such a database would contain data from various sources, and could provide a variety of standard and customized map and digital data file products. This cartographic database soon will be technologically feasible. The present trends in the economics of cartographic and geographic data handling and the growing needs for integrated physical, social, and economic data make such a database virtually mandatory.
NASA Technical Reports Server (NTRS)
Watson, H. K.
1971-01-01
Digital computer program determines tolerance values of end to end signal chain or flow path, given preselected probability value. Technique is useful in the synthesis and analysis phases of subsystem design processes.
NASA Technical Reports Server (NTRS)
Cornish, C. R.
1983-01-01
Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.
Additive Manufacturing Infrared Inspection
NASA Technical Reports Server (NTRS)
Gaddy, Darrell; Nettles, Mindy
2015-01-01
The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.
Non-parametric PCM to ADM conversion. [Pulse Code to Adaptive Delta Modulation
NASA Technical Reports Server (NTRS)
Locicero, J. L.; Schilling, D. L.
1977-01-01
An all-digital technique to convert pulse code modulated (PCM) signals into adaptive delta modulation (ADM) format is presented. The converter developed is shown to be independent of the statistical parameters of the encoded signal and can be constructed with only standard digital hardware. The structure of the converter is simple enough to be fabricated on a large scale integrated circuit where the advantages of reliability and cost can be optimized. A concise evaluation of this PCM to ADM translation technique is presented and several converters are simulated on a digital computer. A family of performance curves is given which displays the signal-to-noise ratio for sinusoidal test signals subjected to the conversion process, as a function of input signal power for several ratios of ADM rate to Nyquist rate.
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1974-01-01
Digital multiplication of two waveforms using delta modulation (DM) is discussed. It is shown that while conventional multiplication of two N bit words requires N2 complexity, multiplication using DM requires complexity which increases linearly with N. Bounds on the signal-to-quantization noise ratio (SNR) resulting from this multiplication are determined and compared with the SNR obtained using standard multiplication techniques. The phase locked loop (PLL) system, consisting of a phase detector, voltage controlled oscillator, and a linear loop filter, is discussed in terms of its design and system advantages. Areas requiring further research are identified.
NASA Technical Reports Server (NTRS)
Masuoka, Penny M.; Harris, Jeff; Lowman, Paul D., Jr.; Blodget, Herbert W.
1988-01-01
Various digital enhancement techniques for SAR are compared using SIR-B and Seasat images of the Canadian Shield. The three best methods for enhancing geological structure were found to be: (1) a simple linear contrast stretch; (2) a mean or median low-pass filter to reduce speckle prior to edge enhancement or a K nearest-neighbor average to cosmetically reduce speckle; and (3) a modification of the Moore-Waltz (1983) technique. Three look directions were coregistered and several means of data display were investigated as means of compensating for radar azimuth biasing.
NASA Technical Reports Server (NTRS)
Simon, M. K.
1974-01-01
Multilevel amplitude-shift-keying (MASK) and quadrature amplitude-shift-keying (QASK) as signaling techniques for multilevel digital communications systems, and the problem of providing symbol synchronization in the receivers of such systems are discussed. A technique is presented for extracting symbol sync from an MASK or QASK signal. The scheme is a generalization of the data transition tracking loop used in PSK systems. The performance of the loop was analyzed in terms of its mean-squared jitter and its effects on the data detection process in MASK and QASK systems.
Graphical Environment Tools for Application to Gamma-Ray Energy Tracking Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Richard A.; Radford, David C.
2013-12-30
Highly segmented, position-sensitive germanium detector systems are being developed for nuclear physics research where traditional electronic signal processing with mixed analog and digital function blocks would be enormously complex and costly. Future systems will be constructed using pipelined processing of high-speed digitized signals as is done in the telecommunications industry. Techniques which provide rapid algorithm and system development for future systems are desirable. This project has used digital signal processing concepts and existing graphical system design tools to develop a set of re-usable modular functions and libraries targeted for the nuclear physics community. Researchers working with complex nuclear detector arraysmore » such as the Gamma-Ray Energy Tracking Array (GRETA) have been able to construct advanced data processing algorithms for implementation in field programmable gate arrays (FPGAs) through application of these library functions using intuitive graphical interfaces.« less
Input-output characterization of an ultrasonic testing system by digital signal analysis
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Lee, S. S.; Karagulle, H.
1986-01-01
Ultrasonic test system input-output characteristics were investigated by directly coupling the transmitting and receiving transducers face to face without a test specimen. Some of the fundamentals of digital signal processing were summarized. Input and output signals were digitized by using a digital oscilloscope, and the digitized data were processed in a microcomputer by using digital signal-processing techniques. The continuous-time test system was modeled as a discrete-time, linear, shift-invariant system. In estimating the unit-sample response and frequency response of the discrete-time system, it was necessary to use digital filtering to remove low-amplitude noise, which interfered with deconvolution calculations. A digital bandpass filter constructed with the assistance of a Blackman window and a rectangular time window were used. Approximations of the impulse response and the frequency response of the continuous-time test system were obtained by linearly interpolating the defining points of the unit-sample response and the frequency response of the discrete-time system. The test system behaved as a linear-phase bandpass filter in the frequency range 0.6 to 2.3 MHz. These frequencies were selected in accordance with the criterion that they were 6 dB below the maximum peak of the amplitude of the frequency response. The output of the system to various inputs was predicted and the results were compared with the corresponding measurements on the system.
Curve and Polygon Evolution Techniques for Image Processing
2002-01-01
iterative image registration technique with an application to stereo vision. IJCAI, pages 674–679, 1981. 127 [93] R . Malladi , J.A. Sethian, and B.C...Notation A digital image to be processed is a 2-Dimensional (2-D) function denoted by I , I : ! R , where R2 is the domain of the function. Processing a...function Io(x; y), which depends on two spatial variables, x 2 R , and y 2 R , via a partial differential equation (PDE) takes the form; It = A(I; Ix
Digital Versus Conventional Impressions in Fixed Prosthodontics: A Review.
Ahlholm, Pekka; Sipilä, Kirsi; Vallittu, Pekka; Jakonen, Minna; Kotiranta, Ulla
2018-01-01
To conduct a systematic review to evaluate the evidence of possible benefits and accuracy of digital impression techniques vs. conventional impression techniques. Reports of digital impression techniques versus conventional impression techniques were systematically searched for in the following databases: Cochrane Central Register of Controlled Trials, PubMed, and Web of Science. A combination of controlled vocabulary, free-text words, and well-defined inclusion and exclusion criteria guided the search. Digital impression accuracy is at the same level as conventional impression methods in fabrication of crowns and short fixed dental prostheses (FDPs). For fabrication of implant-supported crowns and FDPs, digital impression accuracy is clinically acceptable. In full-arch impressions, conventional impression methods resulted in better accuracy compared to digital impressions. Digital impression techniques are a clinically acceptable alternative to conventional impression methods in fabrication of crowns and short FDPs. For fabrication of implant-supported crowns and FDPs, digital impression systems also result in clinically acceptable fit. Digital impression techniques are faster and can shorten the operation time. Based on this study, the conventional impression technique is still recommended for full-arch impressions. © 2016 by the American College of Prosthodontists.
Overview of a FPGA-based nuclear instrumentation dedicated to primary activity measurements.
Bobin, C; Bouchard, J; Pierre, S; Thiam, C
2012-09-01
In National Metrology Institutes like LNE-LNHB, renewal and improvement of the instrumentation is an important task. Nowadays, the current trend is to adopt digital boards, which present numerous advantages over the standard electronics. The feasibility of an on-line fulfillment of nuclear-instrumentation functionalities using a commercial FPGA-based (Field-Programmable Gate Array) board has been validated in the case of TDCR primary measurements (Triple to Double Coincidence Ratio method based on liquid scintillation). The new applications presented in this paper have been included to allow either an on-line processing of the information or a raw-data acquisition for an off-line treatment. Developed as a complementary tool for TDCR counting, a time-to-digital converter specifically designed for this technique has been added. In addition, the description is given of a spectrometry channel based on the connection between conventional shaping amplifiers and the analog-to-digital converter (ADC) input available on the same digital board. First results are presented in the case of α- and γ-counting related to, respectively, the defined solid angle and well-type NaI(Tl) primary activity techniques. The combination of two different channels (liquid scintillation and γ-spectrometry) implementing the live-time anticoincidence processing is also described for the application of the 4πβ-γ coincidence method. The need for an optimized coupling between the analog chain and the ADC stage is emphasized. The straight processing of the signals delivered by the preamplifier connected to a HPGe detector is also presented along with the first development of digital filtering. Copyright © 2012 Elsevier Ltd. All rights reserved.
A study of digital gyro compensation loops. [data conversion routines and breadboard models
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility is discussed of replacing existing state-of-the-art analog gyro compensation loops with digital computations. This was accomplished by designing appropriate compensation loops for the dry turned TDF gyro, selecting appropriate data conversion and processing techniques and algorithms, and breadboarding the design for laboratory evaluation. A breadboard design was established in which one axis of a Teledyne turned-gimbal TDF gyro was caged digitally while the other was caged using conventional analog electronics. The digital loop was designed analytically to closely resemble the analog loop in performance. The breadboard was subjected to various static and dynamic tests in order to establish the relative stability characteristics and frequency responses of the digital and analog loops. Several variations of the digital loop configuration were evaluated. The results were favorable.
Future use of digital remote sensing data
NASA Technical Reports Server (NTRS)
Spann, G. W.; Jones, N. L.
1978-01-01
Users of remote sensing data are increasingly turning to digital processing techniques for the extraction of land resource, environmental, and natural resource information. This paper presents the results of recent and ongoing research efforts sponsored, in part, by NASA/Marshall Space Flight Center on the current uses of and future needs for digital remote sensing data. An ongoing investigation involves a comprehensive survey of capabilities for digital Landsat data use in the Southeastern U.S. Another effort consists of an evaluation of future needs for digital remote sensing data by federal, state, and local governments and the private sector. These needs are projected into the 1980-1985 time frame. Furthermore, the accelerating use of digital remote sensing data is not limited to the U.S. or even to the developed countries of the world.
Digital Electronics for Nuclear Physics Experiments
NASA Astrophysics Data System (ADS)
Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team
2015-10-01
Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.
NASA Technical Reports Server (NTRS)
Belcastro, C. M.
1983-01-01
Flight critical computer based control systems designed for advanced aircraft must exhibit ultrareliable performance in lightning charged environments. Digital system upset can occur as a result of lightning induced electrical transients, and a methodology was developed to test specific digital systems for upset susceptibility. Initial upset data indicates that there are several distinct upset modes and that the occurrence of upset is related to the relative synchronization of the transient input with the processing sate of the digital system. A large upset test data base will aid in the formulation and verification of analytical upset reliability modeling techniques which are being developed.
Input-output characterization of an ultrasonic testing system by digital signal analysis
NASA Technical Reports Server (NTRS)
Karaguelle, H.; Lee, S. S.; Williams, J., Jr.
1984-01-01
The input/output characteristics of an ultrasonic testing system used for stress wave factor measurements were studied. The fundamentals of digital signal processing are summarized. The inputs and outputs are digitized and processed in a microcomputer using digital signal processing techniques. The entire ultrasonic test system, including transducers and all electronic components, is modeled as a discrete-time linear shift-invariant system. Then the impulse response and frequency response of the continuous time ultrasonic test system are estimated by interpolating the defining points in the unit sample response and frequency response of the discrete time system. It is found that the ultrasonic test system behaves as a linear phase bandpass filter. Good results were obtained for rectangular pulse inputs of various amplitudes and durations and for tone burst inputs whose center frequencies are within the passband of the test system and for single cycle inputs of various amplitudes. The input/output limits on the linearity of the system are determined.
Coherent-Phase Monitoring Of Cavitation In Turbomachines
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1996-01-01
Digital electronic signal-processing system analyzes outputs of accelerometers mounted on turbomachine to detect vibrations characteristic of cavitation. Designed to overcome limitation imposed by interference from discrete components. System digitally implements technique called "coherent-phase wide-band demodulation" (CPWBD), using phase-only (PO) filtering along envelope detection to search for unique coherent-phase relationship associated with cavitation and to minimize influence of large-amplitude discrete components.
Digital audio watermarking using moment-preserving thresholding
NASA Astrophysics Data System (ADS)
Choi, DooSeop; Jung, Hae Kyung; Choi, Hyuk; Kim, Taejeong
2007-09-01
The Moment-Preserving Thresholding technique for digital images has been used in digital image processing for decades, especially in image binarization and image compression. Its main strength lies in that the binary values that the MPT produces as a result, called representative values, are usually unaffected when the signal being thresholded goes through a signal processing operation. The two representative values in MPT together with the threshold value are obtained by solving the system of the preservation equations for the first, second, and third moment. Relying on this robustness of the representative values to various signal processing attacks considered in the watermarking context, this paper proposes a new watermarking scheme for audio signals. The watermark is embedded in the root-sum-square (RSS) of the two representative values of each signal block using the quantization technique. As a result, the RSS values are modified by scaling the signal according to the watermark bit sequence under the constraint of inaudibility relative to the human psycho-acoustic model. We also address and suggest solutions to the problem of synchronization and power scaling attacks. Experimental results show that the proposed scheme maintains high audio quality and robustness to various attacks including MP3 compression, re-sampling, jittering, and, DA/AD conversion.
Svenson, Björn; Ståhlnacke, Katri; Karlsson, Reet; Fält, Anna
2018-03-01
The present study aims to gain knowledge about the dentist's use and choice of digital intraoral imaging methods. A questionnaire sent to 2481 dentists within the Swedish Dental Society contained questions about the type of X-ray technique used, problems experienced with digital radiography, and reasons for choosing digital technology, and about indications, clinic size and type of service. Response rate was 53%. Ninety-eight percent of the dentists had made the transition to digital radiography; only 2% used film technique, and solid-state detector (SSD) was the most used digital technique. More years in service decreases the likelihood of applying individual indications for performing a full mouth examination. More retakes were done with SSDs compared to storage phosphor plates. Reasons for choosing digital techniques were that work was easier and communication with the patients improved. However, dentists also experienced problems with digital techniques, such as exposure and projection errors and inadequate image quality. The Swedish Radiation Safety Authority states that all radiological examinations should be justified, something not always followed. This study showed that 98% of the respondents, Swedish dentists within the Swedish Dental Society, used digital techniques, and the most used was the solid-state technique.
NASA Astrophysics Data System (ADS)
Rüther, Heinz; Martine, Hagai M.; Mtalo, E. G.
This paper presents a novel approach to semiautomatic building extraction in informal settlement areas from aerial photographs. The proposed approach uses a strategy of delineating buildings by optimising their approximate building contour position. Approximate building contours are derived automatically by locating elevation blobs in digital surface models. Building extraction is then effected by means of the snakes algorithm and the dynamic programming optimisation technique. With dynamic programming, the building contour optimisation problem is realized through a discrete multistage process and solved by the "time-delayed" algorithm, as developed in this work. The proposed building extraction approach is a semiautomatic process, with user-controlled operations linking fully automated subprocesses. Inputs into the proposed building extraction system are ortho-images and digital surface models, the latter being generated through image matching techniques. Buildings are modeled as "lumps" or elevation blobs in digital surface models, which are derived by altimetric thresholding of digital surface models. Initial windows for building extraction are provided by projecting the elevation blobs centre points onto an ortho-image. In the next step, approximate building contours are extracted from the ortho-image by region growing constrained by edges. Approximate building contours thus derived are inputs into the dynamic programming optimisation process in which final building contours are established. The proposed system is tested on two study areas: Marconi Beam in Cape Town, South Africa, and Manzese in Dar es Salaam, Tanzania. Sixty percent of buildings in the study areas have been extracted and verified and it is concluded that the proposed approach contributes meaningfully to the extraction of buildings in moderately complex and crowded informal settlement areas.
NASA Technical Reports Server (NTRS)
1972-01-01
The solar imaging X-ray telescope experiment (designated the S-056 experiment) is described. It will photograph the sun in the far ultraviolet or soft X-ray region. Because of the imaging characteristics of this telescope and the necessity of using special techniques for capturing images on film at these wave lengths, methods were developed for computer processing of the photographs. The problems of image restoration were addressed to develop and test digital computer techniques for applying a deconvolution process to restore overall S-056 image quality. Additional techniques for reducing or eliminating the effects of noise and nonlinearity in S-056 photographs were developed.
Study on key techniques for camera-based hydrological record image digitization
NASA Astrophysics Data System (ADS)
Li, Shijin; Zhan, Di; Hu, Jinlong; Gao, Xiangtao; Bo, Ping
2015-10-01
With the development of information technology, the digitization of scientific or engineering drawings has received more and more attention. In hydrology, meteorology, medicine and mining industry, the grid drawing sheet is commonly used to record the observations from sensors. However, these paper drawings may be destroyed and contaminated due to improper preservation or overuse. Further, it will be a heavy workload and prone to error if these data are manually transcripted into the computer. Hence, in order to digitize these drawings, establishing the corresponding data base will ensure the integrity of data and provide invaluable information for further research. This paper presents an automatic system for hydrological record image digitization, which consists of three key techniques, i.e., image segmentation, intersection point localization and distortion rectification. First, a novel approach to the binarization of the curves and grids in the water level sheet image has been proposed, which is based on the fusion of gradient and color information adaptively. Second, a fast search strategy for cross point location is invented and point-by-point processing is thus avoided, with the help of grid distribution information. And finally, we put forward a local rectification method through analyzing the central portions of the image and utilizing the domain knowledge of hydrology. The processing speed is accelerated, while the accuracy is still satisfying. Experiments on several real water level records show that our proposed techniques are effective and capable of recovering the hydrological observations accurately.
Mapping land use changes in the carboniferous region of Santa Catarina, report 2
NASA Technical Reports Server (NTRS)
Valeriano, D. D. (Principal Investigator); Bitencourtpereira, M. D.
1983-01-01
The techniques applied to MSS-LANDSAT data in the land-use mapping of Criciuma region (Santa Catarina state, Brazil) are presented along with the results of a classification accuracy estimate tested on the resulting map. The MSS-LANDSAT data digital processing involves noise suppression, features selection and a hybrid classifier. The accuracy test is made through comparisons with aerial photographs of sampled points. The utilization of digital processing to map the classes agricultural lands, forest lands and urban areas is recommended, while the coal refuse areas should be mapped visually.
Automated image processing of Landsat II digital data for watershed runoff prediction
NASA Technical Reports Server (NTRS)
Sasso, R. R.; Jensen, J. R.; Estes, J. E.
1977-01-01
Digital image processing of Landsat data from a 230 sq km area was examined as a possible means of generating soil cover information for use in the watershed runoff prediction of Kern County, California. The soil cover information included data on brush, grass, pasture lands and forests. A classification accuracy of 94% for the Landsat-based soil cover survey suggested that the technique could be applied to the watershed runoff estimate. However, problems involving the survey of complex mountainous environments may require further attention
EROS Data Center Landsat digital enhancement techniques and imagery availability
Rohde, Wayne G.; Lo, Jinn Kai; Pohl, Russell A.
1978-01-01
The US Geological Survey's EROS Data Center (EDC) is experimenting with the production of digitally enhanced Landsat imagery. Advanced digital image processing techniques are used to perform geometric and radiometric corrections and to perform contrast and edge enhancements. The enhanced image product is produced from digitally preprocessed Landsat computer compatible tapes (CCTs) on a laser beam film recording system. Landsat CCT data have several geometric distortions which are corrected when NASA produces the standard film products. When producing film images from CCT's, geometric correction of the data is required. The EDC Digital Image Enhancement System (EDIES) compensates for geometric distortions introduced by Earth's rotation, variable line length, non-uniform mirror scan velocity, and detector misregistration. Radiometric anomalies such as bad data lines and striping are common to many Landsat film products and are also in the CCT data. Bad data lines or line segments with more than 150 contiguous bad pixels are corrected by inserting data from the previous line in place of the bad data. Striping, caused by variations in detector gain and offset, is removed with a destriping algorithm applied after digitally enhancing the data. Image enhancement is performed by applying a linear contrast stretch and an edge enhancement algorithm. The linear contrast enhancement algorithm is designed to expand digitally the full range of useful data recorded on the CCT over the range of 256 digital counts. This minimizes the effect of atmospheric scattering and saturates the relative brightness of highly reflecting features such as clouds or snow. It is the intent that no meaningful terrain data are eliminated by the digital processing. The edge enhancement algorithm is designed to enhance boundaries between terrain features that exhibit subtle differences in brightness values along edges of features. After the digital data have been processed, data for each Landsat band are recorded on black-and-white film with a laser beam film recorder (LBR). The LBR corrects for aspect ratio distortions as the digital data are recorded on the recording film over a preselected density range. Positive transparencies of MSS bands 4, 5, and 7 produced by the LBR are used to make color composite transparencies. Color film positives are made photographically from first generation black-and-white products generated on the LBR.
Processing for spaceborne synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Lybanon, M.
1973-01-01
The data handling and processing in using synthetic aperture radar as a satellite-borne earth resources remote sensor is considered. The discussion covers the nature of the problem, the theory, both conventional and potential advanced processing techniques, and a complete computer simulation. It is shown that digital processing is a real possibility and suggests some future directions for research.
NASA Astrophysics Data System (ADS)
Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.
2008-02-01
Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.
Digital data base application to porphyry copper mineralization in Alaska; case study summary
Trautwein, Charles M.; Greenlee, David D.; Orr, Donald G.
1982-01-01
The purpose of this report is to summarize the progress in use of digital image analysis techniques in developing a conceptual model for assessing porphyry copper mineral potential. The study area consists of approximately the southern one-half of the 1? by 3? Nabesna quadrangle in east-central Alaska. The digital geologic data base consists of data compiled under the Alaskan Mineral Resource Assessment Program (AMRAP) as well as digital elevation data and Landsat spectral reflectance data from the Multispectral Scanner System. The digital data base used to develop and implement a conceptual model for porphyry-type copper mineralization consisted of 16 original data types and 18 derived data sets formatted in a grid-cell (raster) structure and registered to a map base in the Universal Transverse Mercator (UTM) projection. Minimum curvature and inverse distance squared interpolation techniques were used to generate continuous surfaces from sets of irregularly spaced data points. Processing requirements included: (1) merging or overlaying of data sets, (2) display and color coding of maps and images, (3) univariate and multivariate statistical analyses, and (4) compound overlaying operations. Data sets were merged and processed to create stereoscopic displays of continuous surfaces. The ratio of several data sets were calculated to evaluate relative variations and to enhance the display of surface alteration (gossans). Factor analysis and principal components analysis techniques were used to determine complex relationships and correlations between data sets. The resultant model consists of 10 parameters that identify three areas most likely to contain porphyry copper mineralization; two of these areas are known occurrences of mineralization and the third is not well known. Field studies confirmed that the three areas identified by the model have significant copper potential.
DOT National Transportation Integrated Search
2006-02-01
Problem: State-of-the-art airborne mapping is in major : transition, which affects both the data acquisition and : data processing technologies. The IT age has brought : powerful sensors and revolutionary new techniques to : acquire spatial data in l...
Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.
1991-01-01
Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.
An analysis of a digital variant of the Trail Making Test using machine learning techniques.
Dahmen, Jessamyn; Cook, Diane; Fellows, Robert; Schmitter-Edgecombe, Maureen
2017-01-01
The goal of this work is to develop a digital version of a standard cognitive assessment, the Trail Making Test (TMT), and assess its utility. This paper introduces a novel digital version of the TMT and introduces a machine learning based approach to assess its capabilities. Using digital Trail Making Test (dTMT) data collected from (N = 54) older adult participants as feature sets, we use machine learning techniques to analyze the utility of the dTMT and evaluate the insights provided by the digital features. Predicted TMT scores correlate well with clinical digital test scores (r = 0.98) and paper time to completion scores (r = 0.65). Predicted TICS exhibited a small correlation with clinically derived TICS scores (r = 0.12 Part A, r = 0.10 Part B). Predicted FAB scores exhibited a small correlation with clinically derived FAB scores (r = 0.13 Part A, r = 0.29 for Part B). Digitally derived features were also used to predict diagnosis (AUC of 0.65). Our findings indicate that the dTMT is capable of measuring the same aspects of cognition as the paper-based TMT. Furthermore, the dTMT's additional data may be able to help monitor other cognitive processes not captured by the paper-based TMT alone.
NASA Astrophysics Data System (ADS)
Siregar, H.; Junaeti, E.; Hayatno, T.
2017-03-01
Activities correspondence is often used by agencies or companies, so that institutions or companies set up a special division to handle issues related to the letter management. Most of the distribution of letters using electronic media, then the letter should be kept confidential in order to avoid things that are not desirable. Techniques that can be done to meet the security aspect is by using cryptography or by giving a digital signature. The addition of asymmetric and symmetric algorithms, i.e. RSA and AES algorithms, on the digital signature had been done in this study to maintain data security. The RSA algorithm was used during the process of giving digital signature, while the AES algorithm was used during the process of encoding a message that will be sent to the receiver. Based on the research can be concluded that the additions of AES and RSA algorithms on the digital signature meet four objectives of cryptography: Secrecy, Data Integrity, Authentication and Non-repudiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidsmeier, T.; Koehl, R.; Lanham, R.
2008-07-15
The current design and fabrication process for RERTR fuel plates utilizes film radiography during the nondestructive testing and characterization. Digital radiographic methods offer a potential increases in efficiency and accuracy. The traditional and digital radiographic methods are described and demonstrated on a fuel plate constructed with and average of 51% by volume fuel using the dispersion method. Fuel loading data from each method is analyzed and compared to a third baseline method to assess accuracy. The new digital method is shown to be more accurate, save hours of work, and provide additional information not easily available in the traditional method.more » Additional possible improvements suggested by the new digital method are also raised. (author)« less
Nobukawa, Teruyoshi; Nomura, Takanori
2017-01-23
Digital super-resolution holographic data storage based on Hermitian symmetry is proposed to store digital data in a tiny area of a medium. In general, reducing a recording area with an aperture leads to the improvement in the storage capacity of holographic data storage. Conventional holographic data storage systems however have a limitation in reducing a recording area. This limitation is called a Nyquist size. Unlike the conventional systems, our proposed system can overcome the limitation with the help of a digital holographic technique and digital signal processing. Experimental result shows that the proposed system can record and retrieve a hologram in a smaller area than the Nyquist size on the basis of Hermitian symmetry.
Li, Zhe; Erkilinc, M Sezer; Galdino, Lidia; Shi, Kai; Thomsen, Benn C; Bayvel, Polina; Killey, Robert I
2016-12-12
Single-polarization direct-detection transceivers may offer advantages compared to digital coherent technology for some metro, back-haul, access and inter-data center applications since they offer low-cost and complexity solutions. However, a direct-detection receiver introduces nonlinearity upon photo detection, since it is a square-law device, which results in signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to develop effective and low-cost SSBI compensation techniques to improve the performance of such transceivers. In this paper, we compare the performance of a number of recently proposed digital signal processing-based SSBI compensation schemes, including the use of single- and two-stage linearization filters, an iterative linearization filter and a SSBI estimation and cancellation technique. Their performance is assessed experimentally using a 7 × 25 Gb/s wavelength division multiplexed (WDM) single-sideband 16-QAM Nyquist-subcarrier modulation system operating at a net information spectral density of 2.3 (b/s)/Hz.
Video multiple watermarking technique based on image interlacing using DWT.
Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M
2014-01-01
Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.
Computer image processing in marine resource exploration
NASA Technical Reports Server (NTRS)
Paluzzi, P. R.; Normark, W. R.; Hess, G. R.; Hess, H. D.; Cruickshank, M. J.
1976-01-01
Pictographic data or imagery is commonly used in marine exploration. Pre-existing image processing techniques (software) similar to those used on imagery obtained from unmanned planetary exploration were used to improve marine photography and side-scan sonar imagery. Features and details not visible by conventional photo processing methods were enhanced by filtering and noise removal on selected deep-sea photographs. Information gained near the periphery of photographs allows improved interpretation and facilitates construction of bottom mosaics where overlapping frames are available. Similar processing techniques were applied to side-scan sonar imagery, including corrections for slant range distortion, and along-track scale changes. The use of digital data processing and storage techniques greatly extends the quantity of information that can be handled, stored, and processed.
Development of a digital method for neutron/gamma-ray discrimination based on matched filtering
NASA Astrophysics Data System (ADS)
Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.
2016-09-01
Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.
Digital SAR processing using a fast polynomial transform
NASA Technical Reports Server (NTRS)
Truong, T. K.; Lipes, R. G.; Butman, S. A.; Reed, I. S.; Rubin, A. L.
1984-01-01
A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network. Previously announced in STAR as N82-11295
GrinLine identification using digital imaging and Adobe Photoshop.
Bollinger, Susan A; Brumit, Paula C; Schrader, Bruce A; Senn, David R
2009-03-01
The purpose of this study was to outline a method by which an antemortem photograph of a victim can be critically compared with a postmortem photograph in an effort to facilitate the identification process. Ten subjects, between 27 and 55 years old provided historical pictures of themselves exhibiting a broad smile showing anterior teeth to some extent (a grin). These photos were termed "antemortem" for the purpose of the study. A digital camera was used to take a current photo of each subject's grin. These photos represented the "postmortem" images. A single subject's "postmortem" photo set was randomly selected to be the "unknown victim." These combined data of the unknown and the 10 antemortem subjects were digitally stored and, using Adobe Photoshop software, the images were sized and oriented for comparative analysis. The goal was to devise a technique that could facilitate the accurate determination of which "antemortem" subject was the "unknown." The generation of antemortem digital overlays of the teeth visible in a grin and the comparison of those overlays to the images of the postmortem dentition is the foundation of the technique. The comparisons made using the GrinLine Identification Technique may assist medical examiners and coroners in making identifications or exclusions.
In situ spectroradiometric quantification of ERTS data. [Prescott and Phoenix, Arizona
NASA Technical Reports Server (NTRS)
Yost, E. F. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Analyses of ERTS-1 photographic data were made to quantitatively relate ground reflectance measurements to photometric characteristics of the images. Digital image processing of photographic data resulted in a nomograph to correct for atmospheric effects over arid terrain. Optimum processing techniques to derive maximum geologic information from desert areas were established. Additive color techniques to provide quantitative measurements of surface water between different orbits were developed which were accepted as the standard flood mapping techniques using ERTS.
The trophic classification of lakes using ERTS multispectral scanner data
NASA Technical Reports Server (NTRS)
Blackwell, R. J.; Boland, D. H.
1975-01-01
Lake classification methods based on the use of ERTS data are described. Preliminary classification results obtained by multispectral and digital image processing techniques indicate satisfactory correlation between ERTS data and EPA-supplied water analysis. Techniques for determining lake trophic levels using ERTS data are examined, and data obtained for 20 lakes are discussed.
Antimisting kerosene atomization and flammability
NASA Technical Reports Server (NTRS)
Fleeter, R.; Petersen, R. A.; Toaz, R. D.; Jakub, A.; Sarohia, V.
1982-01-01
Various parameters found to affect the flammability of antimisting kerosene (Jet A + polymer additive) are investigated. Digital image processing was integrated into a technique for measurement of fuel spray characteristics. This technique was developed to avoid many of the error sources inherent to other spray assessment techniques and was applied to the study of engine fuel nozzle atomization performance with Jet A and antimisting fuel. Aircraft accident fuel spill and ignition dynamics were modeled in a steady state simulator allowing flammability to be measured as a function of airspeed, fuel flow rate, fuel jet Reynolds number and polymer concentration. The digital imaging technique was employed to measure spray characteristics in this simulation and these results were related to flammability test results. Scaling relationships were investigated through correlation of experimental results with characteristic dimensions spanning more than two orders of magnitude.
Synchronization-insensitive video watermarking using structured noise pattern
NASA Astrophysics Data System (ADS)
Setyawan, Iwan; Kakes, Geerd; Lagendijk, Reginald L.
2002-04-01
For most watermarking methods, preserving the synchronization between the watermark embedded in a digital data (image, audio or video) and the watermark detector is critical to the success of the watermark detection process. Many digital watermarking attacks exploit this fact by disturbing the synchronization of the watermark and the watermark detector, and thus disabling proper watermark detection without having to actually remove the watermark from the data. Some techniques have been proposed in the literature to deal with this problem. Most of these techniques employ methods to reverse the distortion caused by the attack and then try to detect the watermark from the repaired data. In this paper, we propose a watermarking technique that is not sensitive to synchronization. This technique uses a structured noise pattern and embeds the watermark payload into the geometrical structure of the embedded pattern.
Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers
NASA Astrophysics Data System (ADS)
Taler, Dawid; Sury, Adam
2011-12-01
The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.
Digital Signal Processing For Low Bit Rate TV Image Codecs
NASA Astrophysics Data System (ADS)
Rao, K. R.
1987-06-01
In view of the 56 KBPS digital switched network services and the ISDN, low bit rate codecs for providing real time full motion color video are under various stages of development. Some companies have already brought the codecs into the market. They are being used by industry and some Federal Agencies for video teleconferencing. In general, these codecs have various features such as multiplexing audio and data, high resolution graphics, encryption, error detection and correction, self diagnostics, freezeframe, split video, text overlay etc. To transmit the original color video on a 56 KBPS network requires bit rate reduction of the order of 1400:1. Such a large scale bandwidth compression can be realized only by implementing a number of sophisticated,digital signal processing techniques. This paper provides an overview of such techniques and outlines the newer concepts that are being investigated. Before resorting to the data compression techniques, various preprocessing operations such as noise filtering, composite-component transformation and horizontal and vertical blanking interval removal are to be implemented. Invariably spatio-temporal subsampling is achieved by appropriate filtering. Transform and/or prediction coupled with motion estimation and strengthened by adaptive features are some of the tools in the arsenal of the data reduction methods. Other essential blocks in the system are quantizer, bit allocation, buffer, multiplexer, channel coding etc.
Deformation analysis of MEMS structures by modified digital moiré methods
NASA Astrophysics Data System (ADS)
Liu, Zhanwei; Lou, Xinhao; Gao, Jianxin
2010-11-01
Quantitative deformation analysis of micro-fabricated electromechanical systems is of importance for the design and functional control of microsystems. In this paper, two modified digital moiré processing methods, Gaussian blurring algorithm combined with digital phase shifting and geometrical phase analysis (GPA) technique based on digital moiré method, are developed to quantitatively analyse the deformation behaviour of micro-electro-mechanical system (MEMS) structures. Measuring principles and experimental procedures of the two methods are described in detail. A digital moiré fringe pattern is generated by superimposing a specimen grating etched directly on a microstructure surface with a digital reference grating (DRG). Most of the grating noise is removed from the digital moiré fringes, which enables the phase distribution of the moiré fringes to be obtained directly. Strain measurement result of a MEMS structure demonstrates the feasibility of the two methods.
Current trends in geomorphological mapping
NASA Astrophysics Data System (ADS)
Seijmonsbergen, A. C.
2012-04-01
Geomorphological mapping is a world currently in motion, driven by technological advances and the availability of new high resolution data. As a consequence, classic (paper) geomorphological maps which were the standard for more than 50 years are rapidly being replaced by digital geomorphological information layers. This is witnessed by the following developments: 1. the conversion of classic paper maps into digital information layers, mainly performed in a digital mapping environment such as a Geographical Information System, 2. updating the location precision and the content of the converted maps, by adding more geomorphological details, taken from high resolution elevation data and/or high resolution image data, 3. (semi) automated extraction and classification of geomorphological features from digital elevation models, broadly separated into unsupervised and supervised classification techniques and 4. New digital visualization / cartographic techniques and reading interfaces. Newly digital geomorphological information layers can be based on manual digitization of polygons using DEMs and/or aerial photographs, or prepared through (semi) automated extraction and delineation of geomorphological features. DEMs are often used as basis to derive Land Surface Parameter information which is used as input for (un) supervised classification techniques. Especially when using high-res data, object-based classification is used as an alternative to traditional pixel-based classifications, to cluster grid cells into homogeneous objects, which can be classified as geomorphological features. Classic map content can also be used as training material for the supervised classification of geomorphological features. In the classification process, rule-based protocols, including expert-knowledge input, are used to map specific geomorphological features or entire landscapes. Current (semi) automated classification techniques are increasingly able to extract morphometric, hydrological, and in the near future also morphogenetic information. As a result, these new opportunities have changed the workflows for geomorphological mapmaking, and their focus have shifted from field-based techniques to using more computer-based techniques: for example, traditional pre-field air-photo based maps are now replaced by maps prepared in a digital mapping environment, and designated field visits using mobile GIS / digital mapping devices now focus on gathering location information and attribute inventories and are strongly time efficient. The resulting 'modern geomorphological maps' are digital collections of geomorphological information layers consisting of georeferenced vector, raster and tabular data which are stored in a digital environment such as a GIS geodatabase, and are easily visualized as e.g. 'birds' eye' views, as animated 3D displays, on virtual globes, or stored as GeoPDF maps in which georeferenced attribute information can be easily exchanged over the internet. Digital geomorphological information layers are increasingly accessed via web-based services distributed through remote servers. Information can be consulted - or even build using remote geoprocessing servers - by the end user. Therefore, it will not only be the geomorphologist anymore, but also the professional end user that dictates the applied use of digital geomorphological information layers.
Digital processing of array seismic recordings
Ryall, Alan; Birtill, John
1962-01-01
This technical letter contains a brief review of the operations which are involved in digital processing of array seismic recordings by the methods of velocity filtering, summation, cross-multiplication and integration, and by combinations of these operations (the "UK Method" and multiple correlation). Examples are presented of analyses by the several techniques on array recordings which were obtained by the U.S. Geological Survey during chemical and nuclear explosions in the western United States. Seismograms are synthesized using actual noise and Pn-signal recordings, such that the signal-to-noise ratio, onset time and velocity of the signal are predetermined for the synthetic record. These records are then analyzed by summation, cross-multiplication, multiple correlation and the UK technique, and the results are compared. For all of the examples presented, analysis by the non-linear techniques of multiple correlation and cross-multiplication of the traces on an array recording are preferred to analyses by the linear operations involved in summation and the UK Method.
Sparse Data Representation: The Role of Redundancy in Data Processing
2005-09-13
directions The Error Diffusion Halftoning Algorithm: Some Recent Stability Results and Applications Beyond Halftoning Dr. Chai Wu Thomas J. Watson Research...digital and analog printers use some form of halftoning ; just look at any picture in a newspaper or magazine under a magnifying glass. Error diffusion is...a popular technique for high quality digital halftoning . The purpose of this talk is to illustrate the versatility of error diffusion with
UNDERWATER MAPPING USING GLORIA AND MIPS.
Chavez, Pat S.; Anderson, Jeffrey A.; Schoonmaker, James W.
1987-01-01
Advances in digital image processing of the (GLORIA) Geological Long-Range Induced Asdic) sidescan-sonar image data have made it technically and economically possible to map large areas of the ocean floor including the Exclusive Economic Zone. Software was written to correct both geometric and radiometric distortions that exist in the original raw GLORIA data. A digital mosaicking technique was developed enabling 2 degree by 2 degree quadrangles to be generated.
A Ratiometric Method for Johnson Noise Thermometry Using a Quantized Voltage Noise Source
NASA Astrophysics Data System (ADS)
Nam, S. W.; Benz, S. P.; Martinis, J. M.; Dresselhaus, P.; Tew, W. L.; White, D. R.
2003-09-01
Johnson Noise Thermometry (JNT) involves the measurement of the statistical variance of a fluctuating voltage across a resistor in thermal equilibrium. Modern digital techniques make it now possible to perform many functions required for JNT in highly efficient and predictable ways. We describe the operational characteristics of a prototype JNT system which uses digital signal processing for filtering, real-time spectral cross-correlation for noise power measurement, and a digitally synthesized Quantized Voltage Noise Source (QVNS) as an AC voltage reference. The QVNS emulates noise with a constant spectral density that is stable, programmable, and calculable in terms of known parameters using digital synthesis techniques. Changes in analog gain are accounted for by alternating the inputs between the Johnson noise sensor and the QVNS. The Johnson noise power at a known temperature is first balanced with a synthesized noise power from the QVNS. The process is then repeated by balancing the noise power from the same resistor at an unknown temperature. When the two noise power ratios are combined, a thermodynamic temperature is derived using the ratio of the two QVNS spectral densities. We present preliminary results where the ratio between the gallium triple point and the water triple point is used to demonstrate the accuracy of the measurement system with a standard uncertainty of 0.04 %.
DIGITAL CARTOGRAPHY OF THE PLANETS: NEW METHODS, ITS STATUS, AND ITS FUTURE.
Batson, R.M.
1987-01-01
A system has been developed that establishes a standardized cartographic database for each of the 19 planets and major satellites that have been explored to date. Compilation of the databases involves both traditional and newly developed digital image processing and mosaicking techniques, including radiometric and geometric corrections of the images. Each database, or digital image model (DIM), is a digital mosaic of spacecraft images that have been radiometrically and geometrically corrected and photometrically modeled. During compilation, ancillary data files such as radiometric calibrations and refined photometric values for all camera lens and filter combinations and refined camera-orientation matrices for all images used in the mapping are produced.
Development of digital stethoscope for telemedicine.
Lakhe, Aparna; Sodhi, Isha; Warrier, Jyothi; Sinha, Vineet
2016-01-01
The stethoscope is a medical acoustic device which is used to auscultate internal body sounds, mainly the heart and lungs. A digital stethoscope overcomes the limitations of a conventional stethoscope as the sound data is transformed into electrical signals which can be amplified, stored, replayed and, more importantly, sent for an expert opinion, making it very useful in telemedicine. With the above in view, a low cost digital stethoscope has been developed which is interfaceble with mobile communication devices. In this instrument sounds from various locations can be captured with the help of an electret condenser microphone. Captured sound is filtered, amplified and processed digitally using an adaptive line enhancement technique to obtain audible and distinct heart sounds.
Dental digital radiographic imaging.
Mauriello, S M; Platin, E
2001-01-01
Radiographs are an important adjunct to providing oral health care for the total patient. Historically, radiographic images have been produced using film-based systems. However, in recent years, with the arrival of new technologies, many practitioners have begun to incorporate digital radiographic imaging into their practices. Since dental hygienists are primarily responsible for exposing and processing radiographs in the provision of dental hygiene care, it is imperative that they become knowledgeable on the use and application of digital imaging in patient care and record keeping. The purpose of this course is to provide a comprehensive overview of digital radiography in dentistry. Specific components addressed are technological features, diagnostic software, advantages and disadvantages, technique procedures, and legal implications.
Evaluating video digitizer errors
NASA Astrophysics Data System (ADS)
Peterson, C.
2016-01-01
Analog output video cameras remain popular for recording meteor data. Although these cameras uniformly employ electronic detectors with fixed pixel arrays, the digitization process requires resampling the horizontal lines as they are output in order to reconstruct the pixel data, usually resulting in a new data array of different horizontal dimensions than the native sensor. Pixel timing is not provided by the camera, and must be reconstructed based on line sync information embedded in the analog video signal. Using a technique based on hot pixels, I present evidence that jitter, sync detection, and other timing errors introduce both position and intensity errors which are not present in cameras which internally digitize their sensors and output the digital data directly.
Reducing Noise by Repetition: Introduction to Signal Averaging
ERIC Educational Resources Information Center
Hassan, Umer; Anwar, Muhammad Sabieh
2010-01-01
This paper describes theory and experiments, taken from biophysics and physiological measurements, to illustrate the technique of signal averaging. In the process, students are introduced to the basic concepts of signal processing, such as digital filtering, Fourier transformation, baseline correction, pink and Gaussian noise, and the cross- and…
Displays, memories, and signal processing: A compilation
NASA Technical Reports Server (NTRS)
1975-01-01
Articles on electronics systems and techniques were presented. The first section is on displays and other electro-optical systems; the second section is devoted to signal processing. The third section presented several new memory devices for digital equipment, including articles on holographic memories. The latest patent information available is also given.
Digital Beamforming Scatterometer
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul
2009-01-01
This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics
Digital transceiver implementation for wavelet packet modulation
NASA Astrophysics Data System (ADS)
Lindsey, Alan R.; Dill, Jeffrey C.
1998-03-01
Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.
Frequency domain zero padding for accurate autofocusing based on digital holography
NASA Astrophysics Data System (ADS)
Shin, Jun Geun; Kim, Ju Wan; Eom, Tae Joong; Lee, Byeong Ha
2018-01-01
The numerical refocusing feature of digital holography enables the reconstruction of a well-focused image from a digital hologram captured at an arbitrary out-of-focus plane without the supervision of end users. However, in general, the autofocusing process for getting a highly focused image requires a considerable computational cost. In this study, to reconstruct a better-focused image, we propose the zero padding technique implemented in the frequency domain. Zero padding in the frequency domain enhances the visibility or numerical resolution of the image, which allows one to measure the degree of focus with more accuracy. A coarse-to-fine search algorithm is used to reduce the computing load, and a graphics processing unit (GPU) is employed to accelerate the process. The performance of the proposed scheme is evaluated with simulation and experiment, and the possibility of obtaining a well-refocused image with an enhanced accuracy and speed are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham
2015-12-01
Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-componentmore » velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham
2015-12-01
Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-componentmore » velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.« less
Video encryption using chaotic masks in joint transform correlator
NASA Astrophysics Data System (ADS)
Saini, Nirmala; Sinha, Aloka
2015-03-01
A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.
FOCIS: A forest classification and inventory system using LANDSAT and digital terrain data
NASA Technical Reports Server (NTRS)
Strahler, A. H.; Franklin, J.; Woodcook, C. E.; Logan, T. L.
1981-01-01
Accurate, cost-effective stratification of forest vegetation and timber inventory is the primary goal of a Forest Classification and Inventory System (FOCIS). Conventional timber stratification using photointerpretation can be time-consuming, costly, and inconsistent from analyst to analyst. FOCIS was designed to overcome these problems by using machine processing techniques to extract and process tonal, textural, and terrain information from registered LANDSAT multispectral and digital terrain data. Comparison of samples from timber strata identified by conventional procedures showed that both have about the same potential to reduce the variance of timber volume estimates over simple random sampling.
Development of Total Knee Replacement Digital Templating Software
NASA Astrophysics Data System (ADS)
Yusof, Siti Fairuz; Sulaiman, Riza; Thian Seng, Lee; Mohd. Kassim, Abdul Yazid; Abdullah, Suhail; Yusof, Shahril; Omar, Masbah; Abdul Hamid, Hamzaini
In this study, by taking full advantage of digital X-ray and computer technology, we have developed a semi-automated procedure to template knee implants, by making use of digital templating method. Using this approach, a software system called OrthoKneeTMhas been designed and developed. The system is to be utilities as a study in the Department of Orthopaedic and Traumatology in medical faculty, UKM (FPUKM). OrthoKneeTMtemplating process employs uses a technique similar to those used by many surgeons, using acetate templates over X-ray films. Using template technique makes it easy to template various implant from every Implant manufacturers who have with a comprehensive database of templates. The templating functionality includes, template (knee) and manufactures templates (Smith & Nephew; and Zimmer). From an image of patient x-ray OrthoKneeTMtemplates help in quickly and easily reads to the approximate template size needed. The visual templating features then allow us quickly review multiple template sizes against the X-ray and thus obtain the nearly precise view of the implant size required. The system can assist by templating on one patient image and will generate reports that can accompany patient notes. The software system was implemented in Visual basic 6.0 Pro using the object-oriented techniques to manage the graphics and objects. The approaches for image scaling will be discussed. Several of measurement in orthopedic diagnosis process have been studied and added in this software as measurement tools features using mathematic theorem and equations. The study compared the results of the semi-automated (using digital templating) method to the conventional method to demonstrate the accuracy of the system.
Optically Remote Noncontact Heart Rates Sensing Technique
NASA Astrophysics Data System (ADS)
Thongkongoum, W.; Boonduang, S.; Limsuwan, P.
2017-09-01
Heart rate monitoring via optically remote noncontact technique was reported in this research. A green laser (5 mW, 532±10 nm) was projected onto the left carotid artery. The reflected laser light on the screen carried the deviation of the interference patterns. The interference patterns were recorded by the digital camera. The recorded videos of the interference patterns were frame by frame analysed by 2 standard digital image processing (DIP) techniques, block matching (BM) and optical flow (OF) techniques. The region of interest (ROI) pixels within the interference patterns were analysed for periodically changes of the interference patterns due to the heart pumping action. Both results of BM and OF techniques were compared with the reference medical heart rate monitoring device by which a contact measurement using pulse transit technique. The results obtained from BM technique was 74.67 bpm (beats per minute) and OF technique was 75.95 bpm. Those results when compared with the reference value of 75.43±1 bpm, the errors were found to be 1.01% and 0.69%, respectively.
High-speed digital signal normalization for feature identification
NASA Technical Reports Server (NTRS)
Ortiz, J. A.; Meredith, B. D.
1983-01-01
A design approach for high speed normalization of digital signals was developed. A reciprocal look up table technique is employed, where a digital value is mapped to its reciprocal via a high speed memory. This reciprocal is then multiplied with an input signal to obtain the normalized result. Normalization improves considerably the accuracy of certain feature identification algorithms. By using the concept of pipelining the multispectral sensor data processing rate is limited only by the speed of the multiplier. The breadboard system was found to operate at an execution rate of five million normalizations per second. This design features high precision, a reduced hardware complexity, high flexibility, and expandability which are very important considerations for spaceborne applications. It also accomplishes a high speed normalization rate essential for real time data processing.
Techniques for digital enhancement of Landsat MSS data using an Apple II+ microcomputer
NASA Technical Reports Server (NTRS)
Harrington, J. A., Jr.; Cartin, K. F.
1984-01-01
The information provided by remotely sensed data collected from orbiting platforms has been useful in many research fields. Particularly convenient for evaluation are generally digital data stored on computer compatible tapes (CCT's). The major advantages of CCT's are the quality of the data and the accessibility to computer manipulation. Minicomputer systems are widely used for the required computer processing operations. However, microprocessor-related technological advances make it now possible to process CCT data with computing systems which can be obtained at a much lower price than minicomputer systems. A detailed description is provided of the design considerations of a microcomputer-based Digital Image Analysis System (DIAS). Particular attention is given to the algorithms which are incorporated for eighter edge enhancement or smoothing Landsat multispectral scanner data.
On detection of median filtering in digital images
NASA Astrophysics Data System (ADS)
Kirchner, Matthias; Fridrich, Jessica
2010-01-01
In digital image forensics, it is generally accepted that intentional manipulations of the image content are most critical and hence numerous forensic methods focus on the detection of such 'malicious' post-processing. However, it is also beneficial to know as much as possible about the general processing history of an image, including content-preserving operations, since they can affect the reliability of forensic methods in various ways. In this paper, we present a simple yet effective technique to detect median filtering in digital images-a widely used denoising and smoothing operator. As a great variety of forensic methods relies on some kind of a linearity assumption, a detection of non-linear median filtering is of particular interest. The effectiveness of our method is backed with experimental evidence on a large image database.
Application of digital image processing techniques to astronomical imagery 1980
NASA Technical Reports Server (NTRS)
Lorre, J. J.
1981-01-01
Topics include: (1) polar coordinate transformations (M83); (2) multispectral ratios (M82); (3) maximum entropy restoration (M87); (4) automated computation of stellar magnitudes in nebulosity; (5) color and polarization; (6) aliasing.
Qualitative and quantitative interpretation of SEM image using digital image processing.
Saladra, Dawid; Kopernik, Magdalena
2016-10-01
The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
A digital computer simulation and study of a direct-energy-transfer power-conditioning system
NASA Technical Reports Server (NTRS)
Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.
1974-01-01
A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Raghuwanshi, Sanjeev Kumar
2016-06-01
The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.
Method and apparatus for data decoding and processing
Hunter, Timothy M.; Levy, Arthur J.
1992-01-01
A system and technique is disclosed for automatically controlling the decoding and digitizaiton of an analog tape. The system includes the use of a tape data format which includes a plurality of digital codes recorded on the analog tape in a predetermined proximity to a period of recorded analog data. The codes associated with each period of analog data include digital identification codes prior to the analog data, a start of data code coincident with the analog data recording, and an end of data code subsequent to the associated period of recorded analog data. The formatted tape is decoded in a processing and digitization system which includes an analog tape player coupled to a digitizer to transmit analog information from the recorded tape over at least one channel to the digitizer. At the same time, the tape player is coupled to a decoder and interface system which detects and decodes the digital codes on the tape corresponding to each period of recorded analog data and controls tape movement and digitizer initiation in response to preprogramed modes. A host computer is also coupled to the decoder and interface system and the digitizer and programmed to initiate specific modes of data decoding through the decoder and interface system including the automatic compilation and storage of digital identification information and digitized data for the period of recorded analog data corresponding to the digital identification data, compilation and storage of selected digitized data representing periods of recorded analog data, and compilation of digital identification information related to each of the periods of recorded analog data.
An Analysis of a Digital Variant of the Trail Making Test Using Machine Learning Techniques
Dahmen, Jessamyn; Cook, Diane; Fellows, Robert; Schmitter-Edgecombe, Maureen
2017-01-01
BACKGROUND The goal of this work is to develop a digital version of a standard cognitive assessment, the Trail Making Test (TMT), and assess its utility. OBJECTIVE This paper introduces a novel digital version of the TMT and introduces a machine learning based approach to assess its capabilities. METHODS Using digital Trail Making Test (dTMT) data collected from (N=54) older adult participants as feature sets, we use machine learning techniques to analyze the utility of the dTMT and evaluate the insights provided by the digital features. RESULTS Predicted TMT scores correlate well with clinical digital test scores (r=0.98) and paper time to completion scores (r=0.65). Predicted TICS exhibited a small correlation with clinically-derived TICS scores (r=0.12 Part A, r=0.10 Part B). Predicted FAB scores exhibited a small correlation with clinically-derived FAB scores (r=0.13 Part A, r=0.29 for Part B). Digitally-derived features were also used to predict diagnosis (AUC of 0.65). CONCLUSION Our findings indicate that the dTMT is capable of measuring the same aspects of cognition as the paper-based TMT. Furthermore, the dTMT’s additional data may be able to help monitor other cognitive processes not captured by the paper-based TMT alone. PMID:27886019
Artifact Noise Removal Techniques on Seismocardiogram Using Two Tri-Axial Accelerometers
Luu, Loc; Dinh, Anh
2018-01-01
The aim of this study is on the investigation of motion noise removal techniques using two-accelerometer sensor system and various placements of the sensors on gentle movement and walking of the patients. A Wi-Fi based data acquisition system and a framework on Matlab are developed to collect and process data while the subjects are in motion. The tests include eight volunteers who have no record of heart disease. The walking and running data on the subjects are analyzed to find the minimal-noise bandwidth of the SCG signal. This bandwidth is used to design filters in the motion noise removal techniques and peak signal detection. There are two main techniques of combining signals from the two sensors to mitigate the motion artifact: analog processing and digital processing. The analog processing comprises analog circuits performing adding or subtracting functions and bandpass filter to remove artifact noises before entering the data acquisition system. The digital processing processes all the data using combinations of total acceleration and z-axis only acceleration. The two techniques are tested on three placements of accelerometer sensors including horizontal, vertical, and diagonal on gentle motion and walking. In general, the total acceleration and z-axis acceleration are the best techniques to deal with gentle motion on all sensor placements which improve average systolic signal-noise-ratio (SNR) around 2 times and average diastolic SNR around 3 times comparing to traditional methods using only one accelerometer. With walking motion, ADDER and z-axis acceleration are the best techniques on all placements of the sensors on the body which enhance about 7 times of average systolic SNR and about 11 times of average diastolic SNR comparing to only one accelerometer method. Among the sensor placements, the performance of horizontal placement of the sensors is outstanding comparing with other positions on all motions. PMID:29614821
[Impact of digital technology on clinical practices: perspectives from surgery].
Zhang, Y; Liu, X J
2016-04-09
Digital medical technologies or computer aided medical procedures, refer to imaging, 3D reconstruction, virtual design, 3D printing, navigation guided surgery and robotic assisted surgery techniques. These techniques are integrated into conventional surgical procedures to create new clinical protocols that are known as "digital surgical techniques". Conventional health care is characterized by subjective experiences, while digital medical technologies bring quantifiable information, transferable data, repeatable methods and predictable outcomes into clinical practices. Being integrated into clinical practice, digital techniques facilitate surgical care by improving outcomes and reducing risks. Digital techniques are becoming increasingly popular in trauma surgery, orthopedics, neurosurgery, plastic and reconstructive surgery, imaging and anatomic sciences. Robotic assisted surgery is also evolving and being applied in general surgery, cardiovascular surgery and orthopedic surgery. Rapid development of digital medical technologies is changing healthcare and clinical practices. It is therefore important for all clinicians to purposefully adapt to these technologies and improve their clinical outcomes.
Digital processing of radiographic images
NASA Technical Reports Server (NTRS)
Bond, A. D.; Ramapriyan, H. K.
1973-01-01
Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.
Training site statistics from Landsat and Seasat satellite imagery registered to a common map base
NASA Technical Reports Server (NTRS)
Clark, J.
1981-01-01
Landsat and Seasat satellite imagery and training site boundary coordinates were registered to a common Universal Transverse Mercator map base in the Newport Beach area of Orange County, California. The purpose was to establish a spatially-registered, multi-sensor data base which would test the use of Seasat synthetic aperture radar imagery to improve spectral separability of channels used for land use classification of an urban area. Digital image processing techniques originally developed for the digital mosaics of the California Desert and the State of Arizona were adapted to spatially register multispectral and radar data. Techniques included control point selection from imagery and USGS topographic quadrangle maps, control point cataloguing with the Image Based Information System, and spatial and spectral rectifications of the imagery. The radar imagery was pre-processed to reduce its tendency toward uniform data distributions, so that training site statistics for selected Landsat and pre-processed Seasat imagery indicated good spectral separation between channels.
NASA Technical Reports Server (NTRS)
Anderson, A. T.; Schubert, J.
1974-01-01
The largest contour strip mining operations in western Maryland and West Virginia are located within the Georges Creek and the Upper Potomac Basins. These two coal basins lie within the Georges Creek (Wellersburg) syncline. The disturbed strip mine areas were delineated with the surrounding geological and vegetation features using ERTS-1 data in both analog (imagery) and digital form. The two digital systems used were: (1) the ERTS-Analysis system, a point-by-point digital analysis of spectral signatures based on known spectral values, and (2) the LARS Automatic Data Processing System. The digital techniques being developed will later be incorporated into a data base for land use planning. These two systems aided in efforts to determine the extent and state of strip mining in this region. Aircraft data, ground verification information, and geological field studies also aided in the application of ERTS-1 imagery to perform an integrated analysis that assessed the adverse effects of strip mining. The results indicated that ERTS can both monitor and map the extent of strip mining to determine immediately the acreage affected and indicate where future reclamation and revegetation may be necessary.
NASA Astrophysics Data System (ADS)
Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang
2015-04-01
A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.
Smartphone schlieren and shadowgraph imaging
NASA Astrophysics Data System (ADS)
Settles, Gary S.
2018-05-01
Schlieren and shadowgraph techniques are used throughout the realm of scientific experimentation to reveal transparent refractive phenomena, but the requirement of large precise optics has kept them mostly out of reach of the public. New developments, including the ubiquity of smartphones with high-resolution digital cameras and the Background-Oriented Schlieren technique (BOS), which replaces the precise optics with digital image processing, have changed these circumstances. This paper demonstrates a number of different schlieren and shadowgraph setups and image examples based only on a smartphone, its software applications, and some inexpensive accessories. After beginning with a simple traditional schlieren system the emphasis is placed on what can be visualized and measured using BOS and digital slit-scan imaging on the smartphone. Thermal plumes, liquid mixing and glass are used as subjects of investigation. Not only recreational and experimental photography, but also serious scientific imaging can be done.
Subranging technique using superconducting technology
Gupta, Deepnarayan
2003-01-01
Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.
Handwritten digits recognition based on immune network
NASA Astrophysics Data System (ADS)
Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe
2011-11-01
With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Desjardins, M.; Shenk, W. E.
1979-01-01
Simultaneous Geosynchronous Operational Environmental Satellite (GOES) 1 km resolution visible image pairs can provide quantitative three dimensional measurements of clouds. These data have great potential for severe storms research and as a basic parameter measurement source for other areas of meteorology (e.g. climate). These stereo cloud height measurements are not subject to the errors and ambiguities caused by unknown cloud emissivity and temperature profiles that are associated with infrared techniques. This effort describes the display and measurement of stereo data using digital processing techniques.
Quigley, Elizabeth A; Tokay, Barbara A; Jewell, Sarah T; Marchetti, Michael A; Halpern, Allan C
2015-08-01
Photographs are invaluable dermatologic diagnostic, management, research, teaching, and documentation tools. Digital Imaging and Communications in Medicine (DICOM) standards exist for many types of digital medical images, but there are no DICOM standards for camera-acquired dermatologic images to date. To identify and describe existing or proposed technology and technique standards for camera-acquired dermatologic images in the scientific literature. Systematic searches of the PubMed, EMBASE, and Cochrane databases were performed in January 2013 using photography and digital imaging, standardization, and medical specialty and medical illustration search terms and augmented by a gray literature search of 14 websites using Google. Two reviewers independently screened titles of 7371 unique publications, followed by 3 sequential full-text reviews, leading to the selection of 49 publications with the most recent (1985-2013) or detailed description of technology or technique standards related to the acquisition or use of images of skin disease (or related conditions). No universally accepted existing technology or technique standards for camera-based digital images in dermatology were identified. Recommendations are summarized for technology imaging standards, including spatial resolution, color resolution, reproduction (magnification) ratios, postacquisition image processing, color calibration, compression, output, archiving and storage, and security during storage and transmission. Recommendations are also summarized for technique imaging standards, including environmental conditions (lighting, background, and camera position), patient pose and standard view sets, and patient consent, privacy, and confidentiality. Proposed standards for specific-use cases in total body photography, teledermatology, and dermoscopy are described. The literature is replete with descriptions of obtaining photographs of skin disease, but universal imaging standards have not been developed, validated, and adopted to date. Dermatologic imaging is evolving without defined standards for camera-acquired images, leading to variable image quality and limited exchangeability. The development and adoption of universal technology and technique standards may first emerge in scenarios when image use is most associated with a defined clinical benefit.
Application of digital image processing techniques to astronomical imagery, 1979
NASA Technical Reports Server (NTRS)
Lorre, J. J.
1979-01-01
Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.
Ballistic Signature Identification System Study
NASA Technical Reports Server (NTRS)
1976-01-01
The first phase of a research project directed toward development of a high speed automatic process to be used to match gun barrel signatures imparted to fired bullets was documented. An optical projection technique has been devised to produce and photograph a planar image of the entire signature, and the phototransparency produced is subjected to analysis using digital Fourier transform techniques. The success of this approach appears to be limited primarily by the accuracy of the photographic step since no significant processing limitations have been encountered.
A novel pre-processing technique for improving image quality in digital breast tomosynthesis.
Kim, Hyeongseok; Lee, Taewon; Hong, Joonpyo; Sabir, Sohail; Lee, Jung-Ryun; Choi, Young Wook; Kim, Hak Hee; Chae, Eun Young; Cho, Seungryong
2017-02-01
Nonlinear pre-reconstruction processing of the projection data in computed tomography (CT) where accurate recovery of the CT numbers is important for diagnosis is usually discouraged, for such a processing would violate the physics of image formation in CT. However, one can devise a pre-processing step to enhance detectability of lesions in digital breast tomosynthesis (DBT) where accurate recovery of the CT numbers is fundamentally impossible due to the incompleteness of the scanned data. Since the detection of lesions such as micro-calcifications and mass in breasts is the purpose of using DBT, it is justified that a technique producing higher detectability of lesions is a virtue. A histogram modification technique was developed in the projection data domain. Histogram of raw projection data was first divided into two parts: One for the breast projection data and the other for background. Background pixel values were set to a single value that represents the boundary between breast and background. After that, both histogram parts were shifted by an appropriate amount of offset and the histogram-modified projection data were log-transformed. Filtered-backprojection (FBP) algorithm was used for image reconstruction of DBT. To evaluate performance of the proposed method, we computed the detectability index for the reconstructed images from clinically acquired data. Typical breast border enhancement artifacts were greatly suppressed and the detectability of calcifications and masses was increased by use of the proposed method. Compared to a global threshold-based post-reconstruction processing technique, the proposed method produced images of higher contrast without invoking additional image artifacts. In this work, we report a novel pre-processing technique that improves detectability of lesions in DBT and has potential advantages over the global threshold-based post-reconstruction processing technique. The proposed method not only increased the lesion detectability but also reduced typical image artifacts pronounced in conventional FBP-based DBT. © 2016 American Association of Physicists in Medicine.
VHDL Implementation of Sigma-Delta Analog To Digital Converter
NASA Astrophysics Data System (ADS)
Chavan, R. N.; Chougule, D. G.
2010-11-01
Sigma-Delta modulation techniques provide a range of opportunities in a signal processing system for both increasing performance and data path optimization along the silicon area axis in the design space. One of the most challenging tasks in Analog to Digital Converter (ADC) design is to adapt the circuitry to ever new CMOS process technology. For digital circuits the number of gates per square mm app. doubles per chip generation. Integration of analog parts in newer deep submicron technologies is much more tough and additionally complicated because the usable voltage ranges are decreasing with every new integration step. This paper shows an approach which only uses 2 resistors and 1 capacitor which are located outside a pure digital chip. So all integration advantages of pure digital chips are preserved, there is no design effort for a new chip generation and the ADC also can be used for FPGAs. Resolutions of up to 16 bit are achievable. Sample rates in the 1 MHz region are feasible so that the approach is also useful for ADCs for xDSL technologies.
The influence of software filtering in digital mammography image quality
NASA Astrophysics Data System (ADS)
Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.
2009-05-01
Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.
Computer aided fringe pattern analysis
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.
The paper reviews the basic laws of fringe pattern interpretation. The different techniques that are currently utilized are presented using a common frame of reference stressing the fact that these techniques are different variations of the same basic principle. Digital and analog techniques are discussed. Currently available hardware is presented and the relationships between hardware and the operations of pattern fringe processing are pointed out. Examples are given to illustrate the ideas discussed in the paper.
Employment of adaptive learning techniques for the discrimination of acoustic emissions
NASA Astrophysics Data System (ADS)
Erkes, J. W.; McDonald, J. F.; Scarton, H. A.; Tam, K. C.; Kraft, R. P.
1983-11-01
The following aspects of this study on the discrimination of acoustic emissions (AE) were examined: (1) The analytical development and assessment of digital signal processing techniques for AE signal dereverberation, noise reduction, and source characterization; (2) The modeling and verification of some aspects of key selected techniques through a computer-based simulation; and (3) The study of signal propagation physics and their effect on received signal characteristics for relevant physical situations.
1985-01-01
The NASA imaging processing technology, an advanced computer technique to enhance images sent to Earth in digital form by distant spacecraft, helped develop a new vision screening process. The Ocular Vision Screening system, an important step in preventing vision impairment, is a portable device designed especially to detect eye problems in children through the analysis of retinal reflexes.
A Q-Ising model application for linear-time image segmentation
NASA Astrophysics Data System (ADS)
Bentrem, Frank W.
2010-10-01
A computational method is presented which efficiently segments digital grayscale images by directly applying the Q-state Ising (or Potts) model. Since the Potts model was first proposed in 1952, physicists have studied lattice models to gain deep insights into magnetism and other disordered systems. For some time, researchers have realized that digital images may be modeled in much the same way as these physical systems ( i.e., as a square lattice of numerical values). A major drawback in using Potts model methods for image segmentation is that, with conventional methods, it processes in exponential time. Advances have been made via certain approximations to reduce the segmentation process to power-law time. However, in many applications (such as for sonar imagery), real-time processing requires much greater efficiency. This article contains a description of an energy minimization technique that applies four Potts (Q-Ising) models directly to the image and processes in linear time. The result is analogous to partitioning the system into regions of four classes of magnetism. This direct Potts segmentation technique is demonstrated on photographic, medical, and acoustic images.
Nonlinear and Digital Man-machine Control Systems Modeling
NASA Technical Reports Server (NTRS)
Mekel, R.
1972-01-01
An adaptive modeling technique is examined by which controllers can be synthesized to provide corrective dynamics to a human operator's mathematical model in closed loop control systems. The technique utilizes a class of Liapunov functions formulated for this purpose, Liapunov's stability criterion and a model-reference system configuration. The Liapunov function is formulated to posses variable characteristics to take into consideration the identification dynamics. The time derivative of the Liapunov function generate the identification and control laws for the mathematical model system. These laws permit the realization of a controller which updates the human operator's mathematical model parameters so that model and human operator produce the same response when subjected to the same stimulus. A very useful feature is the development of a digital computer program which is easily implemented and modified concurrent with experimentation. The program permits the modeling process to interact with the experimentation process in a mutually beneficial way.
Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon
2014-05-21
We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.
Phase-locked loop design with fast-digital-calibration charge pump
NASA Astrophysics Data System (ADS)
Wang, San-Fu; Hwang, Tsuen-Shiau; Wang, Jhen-Ji
2016-02-01
A fast-digital-calibration technique is proposed for reducing current mismatch in the charge pump (CP) of a phase-locked loop (PLL). The current mismatch in the CP generates fluctuations, which is transferred to the input of voltage-controlled oscillator (VCO). Therefore, the current mismatch increases the reference spur in the PLL. Improving current match of CP will reduce the reference spur and decrease the static phase offset of PLLs. Moreover, the settling time, ripple and power consumption of the PLL are also improved by the proposed technique. This study evaluated a 2.27-2.88 GHz frequency synthesiser fabricated in TSMC 0.18 μm CMOS 1.8 V process. The tuning range of proposed VCO is about 26%. By using the fast-digital-calibration technique, current mismatch is reduced to lower than 0.97%, and the operation range of the proposed CP is between 0.2 and 1.6 V. The proposed PLL has a total power consumption of 22.57 mW and a settling time of 10 μs or less.
The FBI compression standard for digitized fingerprint images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brislawn, C.M.; Bradley, J.N.; Onyshczak, R.J.
1996-10-01
The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the currentmore » status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.« less
FBI compression standard for digitized fingerprint images
NASA Astrophysics Data System (ADS)
Brislawn, Christopher M.; Bradley, Jonathan N.; Onyshczak, Remigius J.; Hopper, Thomas
1996-11-01
The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.
A hybrid voice/data modulation for the VHF aeronautical channels
NASA Technical Reports Server (NTRS)
Akos, Dennis M.
1993-01-01
A method of improving the spectral efficiency of the existing Very High Frequency (VHF) Amplitude Modulation (AM) voice communication channels is proposed. The technique is to phase modulate the existing voice amplitude modulated carrier with digital data. This allows the transmission of digital information over an existing AM voice channel with no change to the existing AM signal format. There is no modification to the existing AM receiver to demodulate the voice signal and an additional receiver module can be added for processing of the digital data. The existing VHF AM transmitter requires only a slight modification for the addition of the digital data signal. The past work in the area is summarized and presented together with an improved system design and the proposed implementation.
Improved JPEG anti-forensics with better image visual quality and forensic undetectability.
Singh, Gurinder; Singh, Kulbir
2017-08-01
There is an immediate need to validate the authenticity of digital images due to the availability of powerful image processing tools that can easily manipulate the digital image information without leaving any traces. The digital image forensics most often employs the tampering detectors based on JPEG compression. Therefore, to evaluate the competency of the JPEG forensic detectors, an anti-forensic technique is required. In this paper, two improved JPEG anti-forensic techniques are proposed to remove the blocking artifacts left by the JPEG compression in both spatial and DCT domain. In the proposed framework, the grainy noise left by the perceptual histogram smoothing in DCT domain can be reduced significantly by applying the proposed de-noising operation. Two types of denoising algorithms are proposed, one is based on the constrained minimization problem of total variation of energy and other on the normalized weighted function. Subsequently, an improved TV based deblocking operation is proposed to eliminate the blocking artifacts in the spatial domain. Then, a decalibration operation is applied to bring the processed image statistics back to its standard position. The experimental results show that the proposed anti-forensic approaches outperform the existing state-of-the-art techniques in achieving enhanced tradeoff between image visual quality and forensic undetectability, but with high computational cost. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1998-01-01
Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.
Optical Correlation Techniques In Fluid Dynamics
NASA Astrophysics Data System (ADS)
Schatzel, K.; Schulz-DuBois, E. O.; Vehrenkamp, R.
1981-05-01
Three flow measurement techniques make use of fast digital correlators. (1) Most widely spread is photon correlation velocimetry using crossed laser beams and detecting Doppler shifted light scattered by small particles in the flow. Depending on the processing of the photon correlogram, this technique yields mean velocity, turbulence level, or even the detailed probability distribution of one velocity component. An improved data processing scheme is demonstrated on laminar vortex flow in a curved channel. (2) Rate correlation based upon threshold crossings of a high pass filtered laser Doppler signal can he used to obtain velocity correlation functions. The most powerful setup developed in our laboratory uses a phase locked loop type tracker and a multibit correlator to analyse time-dependent Taylor vortex flow. With two optical systems and trackers, crosscorrelation functions reveal phase relations between different vortices. (3) Making use of refractive index fluctuations (e. g. in two phase flows) instead of scattering particles, interferometry with bidirectional fringe counting and digital correlation and probability analysis constitute a new quantitative technique related to classical Schlieren methods. Measurements on a mixing flow of heated and cold air contribute new ideas to the theory of turbulent random phase screens.
Optical correlation techniques in fluid dynamics
NASA Astrophysics Data System (ADS)
Schätzel, K.; Schulz-Dubois, E. O.; Vehrenkamp, R.
1981-04-01
Three flow measurement techniques make use of fast digital correlators. The most widely spread is photon correlation velocimetry using crossed laser beams, and detecting Doppler shifted light scattered by small particles in the flow. Depending on the processing of the photon correlation output, this technique yields mean velocity, turbulence level, and even the detailed probability distribution of one velocity component. An improved data processing scheme is demonstrated on laminar vortex flow in a curved channel. In the second method, rate correlation based upon threshold crossings of a high pass filtered laser Doppler signal can be used to obtain velocity correlation functions. The most powerful set-up developed in our laboratory uses a phase locked loop type tracker and a multibit correlator to analyze time-dependent Taylor vortex flow. With two optical systems and trackers, cross-correlation functions reveal phase relations between different vortices. The last method makes use of refractive index fluctuations (eg in two phase flows) instead of scattering particles. Interferometry with bidirectional counting, and digital correlation and probability analysis, constitutes a new quantitative technique related to classical Schlieren methods. Measurements on a mixing flow of heated and cold air contribute new ideas to the theory of turbulent random phase screens.
Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler
NASA Technical Reports Server (NTRS)
Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel
2017-01-01
This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called digital materials. We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.
Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler
NASA Technical Reports Server (NTRS)
Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel
2017-01-01
This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called "digital materials." We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.
John, Susan D; Moore, Quentin T; Herrmann, Tracy; Don, Steven; Powers, Kevin; Smith, Susan N; Morrison, Greg; Charkot, Ellen; Mills, Thalia T; Rutz, Lois; Goske, Marilyn J
2013-10-01
Transition from film-screen to digital radiography requires changes in radiographic technique and workflow processes to ensure that the minimum radiation exposure is used while maintaining diagnostic image quality. Checklists have been demonstrated to be useful tools for decreasing errors and improving safety in several areas, including commercial aviation and surgical procedures. The Image Gently campaign, through a competitive grant from the FDA, developed a checklist for technologists to use during the performance of digital radiography in pediatric patients. The checklist outlines the critical steps in digital radiography workflow, with an emphasis on steps that affect radiation exposure and image quality. The checklist and its accompanying implementation manual and practice quality improvement project are open source and downloadable at www.imagegently.org. The authors describe the process of developing and testing the checklist and offer suggestions for using the checklist to minimize radiation exposure to children during radiography. Copyright © 2013 American College of Radiology. All rights reserved.
Optical scanning holography based on compressive sensing using a digital micro-mirror device
NASA Astrophysics Data System (ADS)
A-qian, Sun; Ding-fu, Zhou; Sheng, Yuan; You-jun, Hu; Peng, Zhang; Jian-ming, Yue; xin, Zhou
2017-02-01
Optical scanning holography (OSH) is a distinct digital holography technique, which uses a single two-dimensional (2D) scanning process to record the hologram of a three-dimensional (3D) object. Usually, these 2D scanning processes are in the form of mechanical scanning, and the quality of recorded hologram may be affected due to the limitation of mechanical scanning accuracy and unavoidable vibration of stepper motor's start-stop. In this paper, we propose a new framework, which replaces the 2D mechanical scanning mirrors with a Digital Micro-mirror Device (DMD) to modulate the scanning light field, and we call it OSH based on Compressive Sensing (CS) using a digital micro-mirror device (CS-OSH). CS-OSH can reconstruct the hologram of an object through the use of compressive sensing theory, and then restore the image of object itself. Numerical simulation results confirm this new type OSH can get a reconstructed image with favorable visual quality even under the condition of a low sample rate.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudipta; Deb, Debasis
2016-07-01
Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.
NASA Technical Reports Server (NTRS)
Feinstein, S. P.; Girard, M. A.
1979-01-01
An automated technique for measuring particle diameters and their spatial coordinates from holographic reconstructions is being developed. Preliminary tests on actual cold-flow holograms of impinging jets indicate that a suitable discriminant algorithm consists of a Fourier-Gaussian noise filter and a contour thresholding technique. This process identifies circular as well as noncircular objects. The desired objects (in this case, circular or possibly ellipsoidal) are then selected automatically from the above set and stored with their parametric representations. From this data, dropsize distributions as a function of spatial coordinates can be generated and combustion effects due to hardware and/or physical variables studied.
One way Doppler Extractor. Volume 2: Digital VCO technique
NASA Technical Reports Server (NTRS)
Nossen, E. J.; Starner, E. R.
1974-01-01
A feasibility analysis and trade-offs for a one-way Doppler extractor using digital VCO techniques is presented. The method of Doppler measurement involves the use of a digital phase lock loop; once this loop is locked to the incoming signal, the precise frequency and hence the Doppler component can be determined directly from the contents of the digital control register. The only serious error source is due to internally generated noise. Techniques are presented for minimizing this error source and achieving an accuracy of 0.01 Hz in a one second averaging period. A number of digitally controlled oscillators were analyzed from a performance and complexity point of view. The most promising technique uses an arithmetic synthesizer as a digital waveform generator.
Focus measure method based on the modulus of the gradient of the color planes for digital microscopy
NASA Astrophysics Data System (ADS)
Hurtado-Pérez, Román; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso; Aguilar-Valdez, J. Félix; Ortega-Mendoza, Gabriel
2018-02-01
The modulus of the gradient of the color planes (MGC) is implemented to transform multichannel information to a grayscale image. This digital technique is used in two applications: (a) focus measurements during autofocusing (AF) process and (b) extending the depth of field (EDoF) by means of multifocus image fusion. In the first case, the MGC procedure is based on an edge detection technique and is implemented in over 15 focus metrics that are typically handled in digital microscopy. The MGC approach is tested on color images of histological sections for the selection of in-focus images. An appealing attribute of all the AF metrics working in the MGC space is their monotonic behavior even up to a magnification of 100×. An advantage of the MGC method is its computational simplicity and inherent parallelism. In the second application, a multifocus image fusion algorithm based on the MGC approach has been implemented on graphics processing units (GPUs). The resulting fused images are evaluated using a nonreference image quality metric. The proposed fusion method reveals a high-quality image independently of faulty illumination during the image acquisition. Finally, the three-dimensional visualization of the in-focus image is shown.
Reconstructing the past: methods and techniques for the digital restoration of fossils
2016-01-01
During fossilization, the remains of extinct organisms are subjected to taphonomic and diagenetic processes. As a result, fossils show a variety of preservational artefacts, which can range from small breaks and cracks, disarticulation and fragmentation, to the loss and deformation of skeletal structures and other hard parts. Such artefacts can present a considerable problem, as the preserved morphology of fossils often forms the basis for palaeontological research. Phylogenetic and taxonomic studies, inferences on appearance, ecology and behaviour and functional analyses of fossil organisms strongly rely on morphological information. As a consequence, the restoration of fossil morphology is often a necessary prerequisite for further analyses. Facilitated by recent computational advances, virtual reconstruction and restoration techniques offer versatile tools to restore the original morphology of fossils. Different methodological steps and approaches, as well as software are outlined and reviewed here, and advantages and disadvantages are discussed. Although the complexity of the restorative processes can introduce a degree of interpretation, digitally restored fossils can provide useful morphological information and can be used to obtain functional estimates. Additionally, the digital nature of the restored models can open up possibilities for education and outreach and further research. PMID:27853548
Developing tools for digital radar image data evaluation
NASA Technical Reports Server (NTRS)
Domik, G.; Leberl, F.; Raggam, J.
1986-01-01
The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.
Additive Manufacturing Infrared Inspection
NASA Technical Reports Server (NTRS)
Gaddy, Darrell
2014-01-01
Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.
Mapping invasive weeds and their control with spatial information technologies
USDA-ARS?s Scientific Manuscript database
We discuss applications of airborne multispectral digital imaging systems, imaging processing techniques, global positioning systems (GPS), and geographic information systems (GIS) for mapping the invasive weeds giant salvinia (Salvinia molesta) and Brazilian pepper (Schinus terebinthifolius) and fo...
100 Gbps Wireless System and Circuit Design Using Parallel Spread-Spectrum Sequencing
NASA Astrophysics Data System (ADS)
Scheytt, J. Christoph; Javed, Abdul Rehman; Bammidi, Eswara Rao; KrishneGowda, Karthik; Kallfass, Ingmar; Kraemer, Rolf
2017-09-01
In this article mixed analog/digital signal processing techniques based on parallel spread-spectrum sequencing (PSSS) and radio frequency (RF) carrier synchronization for ultra-broadband wireless communication are investigated on system and circuit level.
Radiation Discrimination in LiBaF3 Scintillator Using Digital Signal Processing Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalseth, Craig E.; Bowyer, Sonya M.; Reeder, Paul L.
2002-11-01
The new scintillator material LiBaF3:Ce offers the possibility of measuring neutron or alpha count rates and energy spectra simultaneously while measuring gamma count rates and spectra using a single detector.
78 FR 47784 - Notice of Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... Standards and Technology (NIST) Federal Information Processing Standard (FIPS) 201: Personal Identity...), address, employment history, biometric identifiers (e.g. fingerprints), signature, digital photograph... collection techniques or the use of other forms of information technology. Comments submitted in response to...
Single Event Effects mitigation with TMRG tool
NASA Astrophysics Data System (ADS)
Kulis, S.
2017-01-01
Single Event Effects (SEE) are a major concern for integrated circuits exposed to radiation. There have been several techniques proposed to protect circuits against radiation-induced upsets. Among the others, the Triple Modular Redundancy (TMR) technique is one of the most popular. The purpose of the Triple Modular Redundancy Generator (TMRG) tool is to automatize the process of triplicating digital circuits freeing the designer from introducing the TMR code manually at the implementation stage. It helps to ensure that triplicated logic is maintained through the design process. Finally, the tool streamlines the process of introducing SEE in gate level simulations for final verification.
Quantitative optical scanning tests of complex microcircuits
NASA Technical Reports Server (NTRS)
Erickson, J. J.
1980-01-01
An approach for the development of the optical scanner as a screening inspection instrument for microcircuits involves comparing the quantitative differences in photoresponse images and then correlating them with electrical parameter differences in test devices. The existing optical scanner was modified so that the photoresponse data could be recorded and subsequently digitized. A method was devised for applying digital image processing techniques to the digitized photoresponse data in order to quantitatively compare the data. Electrical tests were performed and photoresponse images were recorded before and following life test intervals on two groups of test devices. Correlations were made between differences or changes in the electrical parameters of the test devices.
Application of digital interferogram evaluation techniques to the measurement of 3-D flow fields
NASA Technical Reports Server (NTRS)
Becker, Friedhelm; Yu, Yung H.
1987-01-01
A system for digitally evaluating interferograms, based on an image processing system connected to a host computer, was implemented. The system supports one- and two-dimensional interferogram evaluations. Interferograms are digitized, enhanced, and then segmented. The fringe coordinates are extracted, and the fringes are represented as polygonal data structures. Fringe numbering and fringe interpolation modules are implemented. The system supports editing and interactive features, as well as graphic visualization. An application of the system to the evaluation of double exposure interferograms from the transonic flow field around a helicopter blade and the reconstruction of the three dimensional flow field is given.
[INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology
NASA Astrophysics Data System (ADS)
Delaporte, Philippe; Alloncle, Anne-Patricia
2016-04-01
Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.
Adaptive histogram equalization in digital radiography of destructive skeletal lesions.
Braunstein, E M; Capek, P; Buckwalter, K; Bland, P; Meyer, C R
1988-03-01
Adaptive histogram equalization, an image-processing technique that distributes pixel values of an image uniformly throughout the gray scale, was applied to 28 plain radiographs of bone lesions, after they had been digitized. The non-equalized and equalized digital images were compared by two skeletal radiologists with respect to lesion margins, internal matrix, soft-tissue mass, cortical breakthrough, and periosteal reaction. Receiver operating characteristic (ROC) curves were constructed on the basis of the responses. Equalized images were superior to nonequalized images in determination of cortical breakthrough and presence or absence of periosteal reaction. ROC analysis showed no significant difference in determination of margins, matrix, or soft-tissue masses.
NASA Technical Reports Server (NTRS)
1981-01-01
Data from LANDSAT, low altitude color aerial photography, and ground visits were combined and used to produce vegetation cover maps and to estimate productivity of range, woodland, and forest resources in northwestern Arizona. A planning session, two workshops, and four status reviews were held to assist technology transfer from NASA. Computer aided digital classification of LANDSAT data was selected as a major source of input data. An overview is presented of the data processing, data collection, productivity estimation, and map verification techniques used. Cost analysis and digital LANDSAT digital products are also considered.
NASA Astrophysics Data System (ADS)
Cline, Julia Elaine
2011-12-01
Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.
Image sensor for testing refractive error of eyes
NASA Astrophysics Data System (ADS)
Li, Xiangning; Chen, Jiabi; Xu, Longyun
2000-05-01
It is difficult to detect ametropia and anisometropia for children. Image sensor for testing refractive error of eyes does not need the cooperation of children and can be used to do the general survey of ametropia and anisometropia for children. In our study, photographs are recorded by a CCD element in a digital form which can be directly processed by a computer. In order to process the image accurately by digital technique, formula considering the effect of extended light source and the size of lens aperture has been deduced, which is more reliable in practice. Computer simulation of the image sensing is made to verify the fineness of the results.
A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Rao, Hariprasad Nannapaneni
1989-01-01
The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.
Wab-InSAR: a new wavelet based InSAR time series technique applied to volcanic and tectonic areas
NASA Astrophysics Data System (ADS)
Walter, T. R.; Shirzaei, M.; Nankali, H.; Roustaei, M.
2009-12-01
Modern geodetic techniques such as InSAR and GPS provide valuable observations of the deformation field. Because of the variety of environmental interferences (e.g., atmosphere, topography distortion) and incompleteness of the models (assumption of the linear model for deformation), those observations are usually tainted by various systematic and random errors. Therefore we develop and test new methods to identify and filter unwanted periodic or episodic artifacts to obtain accurate and precise deformation measurements. Here we present and implement a new wavelet based InSAR (Wab-InSAR) time series approach. Because wavelets are excellent tools for identifying hidden patterns and capturing transient signals, we utilize wavelet functions for reducing the effect of atmospheric delay and digital elevation model inaccuracies. Wab-InSAR is a model free technique, reducing digital elevation model errors in individual interferograms using a 2D spatial Legendre polynomial wavelet filter. Atmospheric delays are reduced using a 3D spatio-temporal wavelet transform algorithm and a novel technique for pixel selection. We apply Wab-InSAR to several targets, including volcano deformation processes at Hawaii Island, and mountain building processes in Iran. Both targets are chosen to investigate large and small amplitude signals, variable and complex topography and atmospheric effects. In this presentation we explain different steps of the technique, validate the results by comparison to other high resolution processing methods (GPS, PS-InSAR, SBAS) and discuss the geophysical results.
X-ray beam equalization for digital fluoroscopy
NASA Astrophysics Data System (ADS)
Molloi, Sabee Y.; Tang, Jerry; Marcin, Martin R.; Zhou, Yifang; Anvar, Behzad
1996-04-01
The concept of radiographic equalization has previously been investigated. However, a suitable technique for digital fluoroscopic applications has not been developed. The previously reported scanning equalization techniques cannot be applied to fluoroscopic applications due to their exposure time limitations. On the other hand, area beam equalization techniques are more suited for digital fluoroscopic applications. The purpose of this study is to develop an x- ray beam equalization technique for digital fluoroscopic applications that will produce an equalized radiograph with minimal image artifacts and tube loading. Preliminary unequalized images of a humanoid chest phantom were acquired using a digital fluoroscopic system. Using this preliminary image as a guide, an 8 by 8 array of square pistons were used to generate masks in a mold with CeO2. The CeO2 attenuator thicknesses were calculated using the gray level information from the unequalized image. The generated mask was positioned close to the focal spot (magnification of 8.0) in order to minimize edge artifacts from the mask. The masks were generated manually in order to investigate the piston and matrix size requirements. The development of an automated version of mask generation and positioning is in progress. The results of manual mask generation and positioning show that it is possible to generate equalized radiographs with minimal perceptible artifacts. The equalization of x-ray transmission across the field exiting from the object significantly improved the image quality by preserving local contrast throughout the image. Furthermore, the reduction in dynamic range significantly reduced the effect of x-ray scatter and veiling glare from high transmission to low transmission areas. Also, the x-ray tube loading due to the mask assembly itself was negligible. In conclusion it is possible to produce area beam compensation that will be compatible with digital fluoroscopy with minimal compensation artifacts. The compensation process produces an image with equalized signal to noise ratio in all parts of the image.
Modems for emerging digital cellular-mobile radio system
NASA Technical Reports Server (NTRS)
Feher, Kamilo
1991-01-01
Digital modem techniques for emerging digital cellular telecommunications-mobile radio system applications are described and analyzed. In particular, theoretical performance, experimental results, principles of operation, and various architectures of pi/4-QPSK (pi/4-shifted coherent or differential QPSK) modems for second-generation US digital cellular radio system applications are presented. The spectral/power efficiency and performance of the pi/4-QPSK modems (American and Japanese digital cellular emerging standards) are studied and briefly compared to GMSK (Gaussian minimum-shift keying) modems (proposed for European DECT and GSM cellular standards). Improved filtering strategies and digital pilot-aided (digital channel sounding) techniques are also considered for pi/4-QPSK and other digital modems. These techniques could significantly improve the performance of digital cellular and other digital land mobile and satellite mobile radio systems. More spectrally efficient modem trends for future cellular/mobile (land mobile) and satellite communication systems applications are also highlighted.
Self-Calibration Approach for Mixed Signal Circuits in Systems-on-Chip
NASA Astrophysics Data System (ADS)
Jung, In-Seok
MOSFET scaling has served industry very well for a few decades by proving improvements in transistor performance, power, and cost. However, they require high test complexity and cost due to several issues such as limited pin count and integration of analog and digital mixed circuits. Therefore, self-calibration is an excellent and promising method to improve yield and to reduce manufacturing cost by simplifying the test complexity, because it is possible to address the process variation effects by means of self-calibration technique. Since the prior published calibration techniques were developed for a specific targeted application, it is not easy to be utilized for other applications. In order to solve the aforementioned issues, in this dissertation, several novel self-calibration design techniques in mixed-signal mode circuits are proposed for an analog to digital converter (ADC) to reduce mismatch error and improve performance. These are essential components in SOCs and the proposed self-calibration approach also compensates the process variations. The proposed novel self-calibration approach targets the successive approximation (SA) ADC. First of all, the offset error of the comparator in the SA-ADC is reduced using the proposed approach by enabling the capacitor array in the input nodes for better matching. In addition, the auxiliary capacitors for each capacitor of DAC in the SA-ADC are controlled by using synthesized digital controller to minimize the mismatch error of the DAC. Since the proposed technique is applied during foreground operation, the power overhead in SA-ADC case is minimal because the calibration circuit is deactivated during normal operation time. Another benefit of the proposed technique is that the offset voltage of the comparator is continuously adjusted for every step to decide one-bit code, because not only the inherit offset voltage of the comparator but also the mismatch of DAC are compensated simultaneously. Synthesized digital calibration control circuit operates as fore-ground mode, and the controller has been highly optimized for low power and better performance with simplified structure. In addition, in order to increase the sampling clock frequency of proposed self-calibration approach, novel variable clock period method is proposed. To achieve high speed SAR operation, a variable clock time technique is used to reduce not only peak current but also die area. The technique removes conversion time waste and extends the SAR operation speed easily. To verify and demonstrate the proposed techniques, a prototype charge-redistribution SA-ADCs with the proposed self-calibration is implemented in a 130nm standard CMOS process. The prototype circuit's silicon area is 0.0715 mm 2 and consumers 4.62mW with 1.2V power supply.
The precision-processing subsystem for the Earth Resources Technology Satellite.
NASA Technical Reports Server (NTRS)
Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.
1972-01-01
Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.
Coniferous forest classification and inventory using Landsat and digital terrain data
NASA Technical Reports Server (NTRS)
Franklin, J.; Logan, T. L.; Woodcock, C. E.; Strahler, A. H.
1986-01-01
Machine-processing techniques were used in a Forest Classification and Inventory System (FOCIS) procedure to extract and process tonal, textural, and terrain information from registered Landsat multispectral and digital terrain data. Using FOCIS as a basis for stratified sampling, the softwood timber volumes of the Klamath National Forest and Eldorado National Forest were estimated within standard errors of 4.8 and 4.0 percent, respectively. The accuracy of these large-area inventories is comparable to the accuracy yielded by use of conventional timber inventory methods, but, because of automation, the FOCIS inventories are more rapid (9-12 months compared to 2-3 years for conventional manual photointerpretation, map compilation and drafting, field sampling, and data processing) and are less costly.
The development of machine technology processing for earth resource survey
NASA Technical Reports Server (NTRS)
Landgrebe, D. A.
1970-01-01
The following technologies are considered for automatic processing of earth resources data: (1) registration of multispectral and multitemporal images, (2) digital image display systems, (3) data system parameter effects on satellite remote sensing systems, and (4) data compression techniques based on spectral redundancy. The importance of proper spectral band and compression algorithm selections is pointed out.
ERIC Educational Resources Information Center
Barajas-Saavedra, Arturo; Álvarez-Rodriguez, Francisco J.; Mendoza-González, Ricardo; Oviedo-De-Luna, Ana C.
2015-01-01
Development of digital resources is difficult due to their particular complexity relying on pedagogical aspects. Another aspect is the lack of well-defined development processes, experiences documented, and standard methodologies to guide and organize game development. Added to this, there is no documented technique to ensure correct…
A Digital Bistatic Radar Instrument for High-Latitude Ionospheric E-region Research
NASA Astrophysics Data System (ADS)
Huyghebaert, D. R.; Hussey, G. C.; McWilliams, K. A.; St-Maurice, J. P.
2015-12-01
A new 50 MHz ionospheric E-region radar is currently being developed and will be operational for the summer of 2016. The radar group in the Institute of Space and Atmospheric Studies (ISAS) at the University of Saskatchewan is designing and building the radar which will be located near the university in Saskatoon, SK, Canada and will have a field of view over Wollaston Lake in northern Saskatchewan. This novel radar will simultaneously obtain high spatial and temporal resolution through the use of a bistatic setup and pulse modulation techniques. The bistatic setup allows the radar to transmit and receive continuously, while pulse modulation techniques allow for enhanced spatial resolution, only constrained by the radio bandwidth licensing available. A ten antenna array will be used on both the transmitter and receiver sides, with each antenna having an independent radio path. This enables complete digital control of the transmitted 1 kW signal at each antenna, allowing for digital beam steering and multimode broadcasting. On the receiver side the raw digitized signal will be recorded from each antenna, allowing for complete digital post-processing to be performed on the data. From the measurements provided using these modern digital radar capabilities, further insights into the physics of E-region phenomena, such as Alfvén waves propagating from the magnetosphere above and ionospheric irregularities, may be investigated.
Digital synchronization and communication techniques
NASA Technical Reports Server (NTRS)
Lindsey, William C.
1992-01-01
Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.
Edge enhancement of color images using a digital micromirror device.
Di Martino, J Matías; Flores, Jorge L; Ayubi, Gastón A; Alonso, Julia R; Fernández, Ariel; Ferrari, José A
2012-06-01
A method for orientation-selective enhancement of edges in color images is proposed. The method utilizes the capacity of digital micromirror devices to generate a positive and a negative color replica of the image used as input. When both images are slightly displaced and imagined together, one obtains an image with enhanced edges. The proposed technique does not require a coherent light source or precise alignment. The proposed method could be potentially useful for processing large image sequences in real time. Validation experiments are presented.
On DSS Implementation in the Dynamic Model of the Digital Oil field
NASA Astrophysics Data System (ADS)
Korovin, Iakov S.; Khisamutdinov, Maksim V.; Kalyaev, Anatoly I.
2018-02-01
Decision support systems (DSS), especially based on the artificial intelligence (AI) techniques are been widely applied in different domains nowadays. In the paper we depict an approach of implementing DSS in to Digital Oil Field (DOF) dynamic model structure in order to reduce the human factor influence, considering the automation of all production processes to be the DOF model clue element. As the basic tool of data handling we propose the hybrid application on artificial neural networks and evolutional algorithms.
Non-invasive assessment of skeletal muscle activity
NASA Astrophysics Data System (ADS)
Merletti, Roberto; Orizio, Claudio; di Prampero, Pietro E.; Tesch, Per
2005-10-01
After the first 3 years (2002-2005), the MAP project has made available: - systems fo electrodes, signal conditioning and digital processing for multichannel simultaneously-detected EMG and MMG as well as for simultaneous electrical stimulation and EMG detection with artifact cancellation. - innovative non-invasive techniques for the extraction of individual motor unit action potentials (MUAPS) and individual motor and MMG contributions from the surface EMG interference signal and the MMG signal. - processing techniques for extractions of indicators of progressive fatigue from the electrically-elicited (M-wave) EMG signal. - techniques for the analysis of dynamic multichannel EMG during cyclic or explosive exercise (in collaboration with project EXER/MAP-MED-027).
Evaluation of user input methods for manipulating a tablet personal computer in sterile techniques.
Yamada, Akira; Komatsu, Daisuke; Suzuki, Takeshi; Kurozumi, Masahiro; Fujinaga, Yasunari; Ueda, Kazuhiko; Kadoya, Masumi
2017-02-01
To determine a quick and accurate user input method for manipulating tablet personal computers (PCs) in sterile techniques. We evaluated three different manipulation methods, (1) Computer mouse and sterile system drape, (2) Fingers and sterile system drape, and (3) Digitizer stylus and sterile ultrasound probe cover with a pinhole, in terms of the central processing unit (CPU) performance, manipulation performance, and contactlessness. A significant decrease in CPU score ([Formula: see text]) and an increase in CPU temperature ([Formula: see text]) were observed when a system drape was used. The respective mean times taken to select a target image from an image series (ST) and the mean times for measuring points on an image (MT) were [Formula: see text] and [Formula: see text] s for the computer mouse method, [Formula: see text] and [Formula: see text] s for the finger method, and [Formula: see text] and [Formula: see text] s for the digitizer stylus method, respectively. The ST for the finger method was significantly longer than for the digitizer stylus method ([Formula: see text]). The MT for the computer mouse method was significantly longer than for the digitizer stylus method ([Formula: see text]). The mean success rate for measuring points on an image was significantly lower for the finger method when the diameter of the target was equal to or smaller than 8 mm than for the other methods. No significant difference in the adenosine triphosphate amount at the surface of the tablet PC was observed before, during, or after manipulation via the digitizer stylus method while wearing starch-powdered sterile gloves ([Formula: see text]). Quick and accurate manipulation of tablet PCs in sterile techniques without CPU load is feasible using a digitizer stylus and sterile ultrasound probe cover with a pinhole.
Evaluation Digital Elevation Model Generated by Synthetic Aperture Radar Data
NASA Astrophysics Data System (ADS)
Makineci, H. B.; Karabörk, H.
2016-06-01
Digital elevation model, showing the physical and topographical situation of the earth, is defined a tree-dimensional digital model obtained from the elevation of the surface by using of selected an appropriate interpolation method. DEMs are used in many areas such as management of natural resources, engineering and infrastructure projects, disaster and risk analysis, archaeology, security, aviation, forestry, energy, topographic mapping, landslide and flood analysis, Geographic Information Systems (GIS). Digital elevation models, which are the fundamental components of cartography, is calculated by many methods. Digital elevation models can be obtained terrestrial methods or data obtained by digitization of maps by processing the digital platform in general. Today, Digital elevation model data is generated by the processing of stereo optical satellite images, radar images (radargrammetry, interferometry) and lidar data using remote sensing and photogrammetric techniques with the help of improving technology. One of the fundamental components of remote sensing radar technology is very advanced nowadays. In response to this progress it began to be used more frequently in various fields. Determining the shape of topography and creating digital elevation model comes the beginning topics of these areas. It is aimed in this work , the differences of evaluation of quality between Sentinel-1A SAR image ,which is sent by European Space Agency ESA and Interferometry Wide Swath imaging mode and C band type , and DTED-2 (Digital Terrain Elevation Data) and application between them. The application includes RMS static method for detecting precision of data. Results show us to variance of points make a high decrease from mountain area to plane area.
Charge pump-based MOSFET-only 1.5-bit pipelined ADC stage in digital CMOS technology
NASA Astrophysics Data System (ADS)
Singh, Anil; Agarwal, Alpana
2016-10-01
A simple low-power and low-area metal-oxide-semiconductor field-effect transistor-only fully differential 1.5-bit pipelined analog-to-digital converter stage is proposed and designed in Taiwan Semiconductor Manufacturing Company 0.18 μm-technology using BSIM3v3 parameters with supply voltage of 1.8 V in inexpensive digital complementary metal-oxide semiconductor (CMOS) technology. It is based on charge pump technique to achieve the desired voltage gain of 2, independent of capacitor mismatch and avoiding the need of power hungry operational amplifier-based architecture to reduce the power, Si area and cost. Various capacitances are implemented by metal-oxide semiconductor capacitors, offering compatibility with cheaper digital CMOS process in order to reduce the much required manufacturing cost.
Video on phone lines: technology and applications
NASA Astrophysics Data System (ADS)
Hsing, T. Russell
1996-03-01
Recent advances in communications signal processing and VLSI technology are fostering tremendous interest in transmitting high-speed digital data over ordinary telephone lines at bit rates substantially above the ISDN Basic Access rate (144 Kbit/s). Two new technologies, high-bit-rate digital subscriber lines and asymmetric digital subscriber lines promise transmission over most of the embedded loop plant at 1.544 Mbit/s and beyond. Stimulated by these research promises and rapid advances on video coding techniques and the standards activity, information networks around the globe are now exploring possible business opportunities of offering quality video services (such as distant learning, telemedicine, and telecommuting etc.) through this high-speed digital transport capability in the copper loop plant. Visual communications for residential customers have become more feasible than ever both technically and economically.
NASA Astrophysics Data System (ADS)
Zhao, Yuchen; Zemmamouche, Redouane; Vandenrijt, Jean-François; Georges, Marc P.
2018-05-01
A combination of digital holographic interferometry (DHI) and digital speckle photography (DSP) allows in-plane and out-of-plane displacement measurement between two states of an object. The former can be determined by correlating the two speckle patterns whereas the latter is given by the phase difference obtained from DHI. We show that the amplitude of numerically reconstructed object wavefront obtained from Fresnel in-line digital holography (DH), in combination with phase shifting techniques, can be used as speckle patterns in DSP. The accuracy of in-plane measurement is improved after correcting the phase errors induced by reference wave during reconstruction process. Furthermore, unlike conventional imaging system, Fresnel DH offers the possibility to resize the pixel size of speckle patterns situated on the reconstruction plane under the same optical configuration simply by zero-padding the hologram. The flexibility of speckle size adjustment in Fresnel DH ensures the accuracy of estimation result using DSP.
Automation in photogrammetry: Recent developments and applications (1972-1976)
Thompson, M.M.; Mikhail, E.M.
1976-01-01
An overview of recent developments in the automation of photogrammetry in various countries is presented. Conclusions regarding automated photogrammetry reached at the 1972 Congress in Ottawa are reviewed first as a background for examining the developments of 1972-1976. Applications are described for each country reporting significant developments. Among fifteen conclusions listed are statements concerning: the widespread practice of equipping existing stereoplotters with simple digitizers; the growing tendency to use minicomputers on-line with stereoplotters; the optimization of production of digital terrain models by progressive sampling in stereomodels; the potential of digitization of a photogrammetric model by density correlation on epipolar lines; the capabilities and economic aspects of advanced systems which permit simultaneous production of orthophotos, contours, and digital terrain models; the economy of off-line orthophoto systems; applications of digital image processing; automation by optical techniques; applications of sensors other than photographic imagery, and the role of photogrammetric phases in a completely automated cartographic system. ?? 1976.
Zeng, Fei-huang; Xu, Yuan-zhi; Fang, Li; Tang, Xiao-shan
2012-02-01
To describe a new technique for fabricating an 3D resin model by 3D reconstruction and rapid prototyping, and to analyze the precision of this method. An optical grating scanner was used to acquire the data of silastic cavity block , digital dental cast was reconstructed with the data through Geomagic Studio image processing software. The final 3D reconstruction was saved in the pattern of Stl. The 3D resin model was fabricated by fuse deposition modeling, and was compared with the digital model and gypsum model. The data of three groups were statistically analyzed using SPSS 16.0 software package. No significant difference was found in gypsum model,digital dental cast and 3D resin model (P>0.05). Rapid prototyping manufacturing and digital modeling would be helpful for dental information acquisition, treatment design, appliance manufacturing, and can improve the communications between patients and doctors.
Jeon, Young-Chan; Jeong, Chang-Mo
2017-01-01
PURPOSE The purpose of this study was to compare the fit of cast gold crowns fabricated from the conventional and the digital impression technique. MATERIALS AND METHODS Artificial tooth in a master model and abutment teeth in ten patients were restored with cast gold crowns fabricated from the digital and the conventional impression technique. The forty silicone replicas were cut in three sections; each section was evaluated in nine points. The measurement was carried out by using a measuring microscope and I-Soultion. Data from the silicone replica were analyzed and all tests were performed with α-level of 0.05. RESULTS 1. The average gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. 2. In marginal and internal axial gap of cast gold crowns, no statistical differences were found between the two impression techniques. 3. The internal occlusal gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. CONCLUSION Both prostheses presented clinically acceptable results with comparing the fit. The prostheses fabricated from the digital impression technique showed more gaps, in respect of occlusal surface. PMID:28243386
Data Unfolding with Wiener-SVD Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, W.; Li, X.; Qian, X.
Here, data unfolding is a common analysis technique used in HEP data analysis. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the SVD technique and the well-known Wiener filter is introduced. The Wiener-SVD unfolding approach achieves the unfolding by maximizing the signal to noise ratios in the effective frequency domain given expectations of signal and noise and is free from regularization parameter. Through a couple examples, the pros and cons of the Wiener-SVD approach as well as the nature of the unfolded results are discussed.
NASA Technical Reports Server (NTRS)
Faller, K. H.
1976-01-01
A technique for the detection and measurement of surface feature interfaces in remotely acquired data was developed and evaluated. A computer implementation of this technique was effected to automatically process classified data derived from various sources such as the LANDSAT multispectral scanner and other scanning sensors. The basic elements of the operational theory of the technique are described, followed by the details of the procedure. An example of an application of the technique to the analysis of tidal shoreline length is given with a breakdown of manpower requirements.
Data Unfolding with Wiener-SVD Method
Tang, W.; Li, X.; Qian, X.; ...
2017-10-04
Here, data unfolding is a common analysis technique used in HEP data analysis. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the SVD technique and the well-known Wiener filter is introduced. The Wiener-SVD unfolding approach achieves the unfolding by maximizing the signal to noise ratios in the effective frequency domain given expectations of signal and noise and is free from regularization parameter. Through a couple examples, the pros and cons of the Wiener-SVD approach as well as the nature of the unfolded results are discussed.
Reliable enumeration of malaria parasites in thick blood films using digital image analysis.
Frean, John A
2009-09-23
Quantitation of malaria parasite density is an important component of laboratory diagnosis of malaria. Microscopy of Giemsa-stained thick blood films is the conventional method for parasite enumeration. Accurate and reproducible parasite counts are difficult to achieve, because of inherent technical limitations and human inconsistency. Inaccurate parasite density estimation may have adverse clinical and therapeutic implications for patients, and for endpoints of clinical trials of anti-malarial vaccines or drugs. Digital image analysis provides an opportunity to improve performance of parasite density quantitation. Accurate manual parasite counts were done on 497 images of a range of thick blood films with varying densities of malaria parasites, to establish a uniformly reliable standard against which to assess the digital technique. By utilizing descriptive statistical parameters of parasite size frequency distributions, particle counting algorithms of the digital image analysis programme were semi-automatically adapted to variations in parasite size, shape and staining characteristics, to produce optimum signal/noise ratios. A reliable counting process was developed that requires no operator decisions that might bias the outcome. Digital counts were highly correlated with manual counts for medium to high parasite densities, and slightly less well correlated with conventional counts. At low densities (fewer than 6 parasites per analysed image) signal/noise ratios were compromised and correlation between digital and manual counts was poor. Conventional counts were consistently lower than both digital and manual counts. Using open-access software and avoiding custom programming or any special operator intervention, accurate digital counts were obtained, particularly at high parasite densities that are difficult to count conventionally. The technique is potentially useful for laboratories that routinely perform malaria parasite enumeration. The requirements of a digital microscope camera, personal computer and good quality staining of slides are potentially reasonably easy to meet.
Digital Mapping Techniques '11–12 workshop proceedings
Soller, David R.
2014-01-01
At these meetings, oral and poster presentations and special discussion sessions emphasized: (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase formats; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.
Memory skills mediating superior memory in a world-class memorist.
Ericsson, K Anders; Cheng, Xiaojun; Pan, Yafeng; Ku, Yixuan; Ge, Yi; Hu, Yi
2017-10-01
Laboratory studies have investigated how individuals with normal memory spans attained digit spans over 80 digits after hundreds of hours of practice. Experimental analyses of their memory skills suggested that their attained memory spans were constrained by the encoding time, for the time needed will increase if the length of digit sequences to be memorised becomes longer. These constraints seemed to be violated by a world-class memorist, Feng Wang (FW), who won the World Memory Championship by recalling 300 digits presented at 1 digit/s. In several studies we examined FW's memory skills underlying his exceptional performance. First FW reproduced his superior memory span of 200 digits under laboratory condition, and we obtained his retrospective reports describing his encoding/retrieval processes (Experiment 1). Further experiments used self-paced memorisation to identify temporal characteristics of encoding of digits in 4-digit clusters (Experiment 2), and explored memory encoding at presentation speeds much faster than 1 digit/s (Experiment 3). FW's superiority over previous digit span experts is explained by his acquisition of well-known mnemonic techniques and his training that focused on rapid memorisation. His memory performance supports the feasibility of acquiring memory skills for improved working memory based on storage in long-term memory.
Large-scale quantitative analysis of painting arts.
Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong
2014-12-11
Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images - the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances.
Asif, Muhammad; Guo, Xiangzhou; Zhang, Jing; Miao, Jungang
2018-04-17
Digital cross-correlation is central to many applications including but not limited to Digital Image Processing, Satellite Navigation and Remote Sensing. With recent advancements in digital technology, the computational demands of such applications have increased enormously. In this paper we are presenting a high throughput digital cross correlator, capable of processing 1-bit digitized stream, at the rate of up to 2 GHz, simultaneously on 64 channels i.e., approximately 4 Trillion correlation and accumulation operations per second. In order to achieve higher throughput, we have focused on frequency based partitioning of our design and tried to minimize and localize high frequency operations. This correlator is designed for a Passive Millimeter Wave Imager intended for the detection of contraband items concealed on human body. The goals are to increase the system bandwidth, achieve video rate imaging, improve sensitivity and reduce the size. Design methodology is detailed in subsequent sections, elaborating the techniques enabling high throughput. The design is verified for Xilinx Kintex UltraScale device in simulation and the implementation results are given in terms of device utilization and power consumption estimates. Our results show considerable improvements in throughput as compared to our baseline design, while the correlator successfully meets the functional requirements.
Ultra-high throughput real-time instruments for capturing fast signals and rare events
NASA Astrophysics Data System (ADS)
Buckley, Brandon Walter
Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and processing. The act of time-stretching effectively boosts the performance of the back-end electronics and digital signal processors. The slowed down signals reach the back-end electronics with reduced bandwidth, and are therefore less affected by high-frequency roll-off and distortion. Time-stretching also increases the effective sampling rate of analog-to-digital converters and reduces aperture jitter, thereby improving resolution. Finally, the instantaneous throughputs of digital signal processors are enhanced by the stretch factor to otherwise unattainable speeds. Leveraging these unique capabilities, TiSER becomes the ideal tool for capturing high-speed signals and characterizing rare phenomena. For this thesis, I have developed techniques to improve the spectral efficiency, bandwidth, and resolution of TiSER using polarization multiplexing, all-optical modulation, and coherent dispersive Fourier transformation. To reduce the latency and improve the data handling capacity, I have also designed and implemented a real-time digital signal processing electronic backend, achieving 1.5 tera-bit per second instantaneous processing throughput. Finally, I will present results from experiments highlighting TiSER's impact in real-world applications. Confocal fluorescence microscopy is the most widely used method for unveiling the molecular composition of biological specimens. However, the weak optical emission of fluorescent probes and the tradeoff between imaging speed and sensitivity is problematic for acquiring blur-free images of fast phenomena and cells flowing at high speed. Here I introduce a new fluorescence imaging modality, which leverages techniques from wireless communication to reach record pixel and frame rates. Termed Fluorescence Imaging using Radio-frequency tagged Emission (FIRE), this new imaging modality is capable of resolving never before seen dynamics in living cells - such as action potentials in neurons and metabolic waves in astrocytes - as well as performing high-content image assays of cells and particles in high-speed flow.
All-digital pulse-expansion-based CMOS digital-to-time converter.
Chen, Chun-Chi; Chu, Che-Hsun
2017-02-01
This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μm Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm 2 . Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.
All-digital pulse-expansion-based CMOS digital-to-time converter
NASA Astrophysics Data System (ADS)
Chen, Chun-Chi; Chu, Che-Hsun
2017-02-01
This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μ m Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm2. Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.
Towards Automatic Image Segmentation Using Optimised Region Growing Technique
NASA Astrophysics Data System (ADS)
Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi
Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.
Computer-Assisted Digital Image Analysis of Plus Disease in Retinopathy of Prematurity.
Kemp, Pavlina S; VanderVeen, Deborah K
2016-01-01
The objective of this study is to review the current state and role of computer-assisted analysis in diagnosis of plus disease in retinopathy of prematurity. Diagnosis and documentation of retinopathy of prematurity are increasingly being supplemented by digital imaging. The incorporation of computer-aided techniques has the potential to add valuable information and standardization regarding the presence of plus disease, an important criterion in deciding the necessity of treatment of vision-threatening retinopathy of prematurity. A review of literature found that several techniques have been published examining the process and role of computer aided analysis of plus disease in retinopathy of prematurity. These techniques use semiautomated image analysis techniques to evaluate retinal vascular dilation and tortuosity, using calculated parameters to evaluate presence or absence of plus disease. These values are then compared with expert consensus. The study concludes that computer-aided image analysis has the potential to use quantitative and objective criteria to act as a supplemental tool in evaluating for plus disease in the setting of retinopathy of prematurity.
Raster and vector processing for scanned linework
Greenlee, David D.
1987-01-01
An investigation of raster editing techniques, including thinning, filling, and node detecting, was performed by using specialized software. The techniques were based on encoding the state of the 3-by-3 neighborhood surrounding each pixel into a single byte. A prototypical method for converting the edited raster linkwork into vectors was also developed. Once vector representations of the lines were formed, they were formatted as a Digital Line Graph, and further refined by deletion of nonessential vertices and by smoothing with a curve-fitting technique.
Stochastic Feedforward Control Technique
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1990-01-01
Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.
An array processing system for lunar geochemical and geophysical data
NASA Technical Reports Server (NTRS)
Eliason, E. M.; Soderblom, L. A.
1977-01-01
A computerized array processing system has been developed to reduce, analyze, display, and correlate a large number of orbital and earth-based geochemical, geophysical, and geological measurements of the moon on a global scale. The system supports the activities of a consortium of about 30 lunar scientists involved in data synthesis studies. The system was modeled after standard digital image-processing techniques but differs in that processing is performed with floating point precision rather than integer precision. Because of flexibility in floating-point image processing, a series of techniques that are impossible or cumbersome in conventional integer processing were developed to perform optimum interpolation and smoothing of data. Recently color maps of about 25 lunar geophysical and geochemical variables have been generated.
NASA Technical Reports Server (NTRS)
1975-01-01
Two digital video data compression systems directly applicable to the Space Shuttle TV Communication System were described: (1) For the uplink, a low rate monochrome data compressor is used. The compression is achieved by using a motion detection technique in the Hadamard domain. To transform the variable source rate into a fixed rate, an adaptive rate buffer is provided. (2) For the downlink, a color data compressor is considered. The compression is achieved first by intra-color transformation of the original signal vector, into a vector which has lower information entropy. Then two-dimensional data compression techniques are applied to the Hadamard transformed components of this last vector. Mathematical models and data reliability analyses were also provided for the above video data compression techniques transmitted over a channel encoded Gaussian channel. It was shown that substantial gains can be achieved by the combination of video source and channel coding.
Improved stereo matching applied to digitization of greenhouse plants
NASA Astrophysics Data System (ADS)
Zhang, Peng; Xu, Lihong; Li, Dawei; Gu, Xiaomeng
2015-03-01
The digitization of greenhouse plants is an important aspect of digital agriculture. Its ultimate aim is to reconstruct a visible and interoperable virtual plant model on the computer by using state-of-the-art image process and computer graphics technologies. The most prominent difficulties of the digitization of greenhouse plants include how to acquire the three-dimensional shape data of greenhouse plants and how to carry out its realistic stereo reconstruction. Concerning these issues an effective method for the digitization of greenhouse plants is proposed by using a binocular stereo vision system in this paper. Stereo vision is a technique aiming at inferring depth information from two or more cameras; it consists of four parts: calibration of the cameras, stereo rectification, search of stereo correspondence and triangulation. Through the final triangulation procedure, the 3D point cloud of the plant can be achieved. The proposed stereo vision system can facilitate further segmentation of plant organs such as stems and leaves; moreover, it can provide reliable digital samples for the visualization of greenhouse tomato plants.
Multiplexed Oversampling Digitizer in 65 nm CMOS for Column-Parallel CCD Readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grace, Carl; Walder, Jean-Pierre; von der Lippe, Henrik
2012-04-10
A digitizer designed to read out column-parallel charge-coupled devices (CCDs) used for high-speed X-ray imaging is presented. The digitizer is included as part of the High-Speed Image Preprocessor with Oversampling (HIPPO) integrated circuit. The digitizer module comprises a multiplexed, oversampling, 12-bit, 80 MS/s pipelined Analog-to-Digital Converter (ADC) and a bank of four fast-settling sample-and-hold amplifiers to instrument four analog channels. The ADC multiplexes and oversamples to reduce its area to allow integration that is pitch-matched to the columns of the CCD. Novel design techniques are used to enable oversampling and multiplexing with a reduced power penalty. The ADC exhibits 188more » ?V-rms noise which is less than 1 LSB at a 12-bit level. The prototype is implemented in a commercially available 65 nm CMOS process. The digitizer will lead to a proof-of-principle 2D 10 Gigapixel/s X-ray detector.« less
Correlation and registration of ERTS multispectral imagery. [by a digital processing technique
NASA Technical Reports Server (NTRS)
Bonrud, L. O.; Henrikson, P. J.
1974-01-01
Examples of automatic digital processing demonstrate the feasibility of registering one ERTS multispectral scanner (MSS) image with another obtained on a subsequent orbit, and automatic matching, correlation, and registration of MSS imagery with aerial photography (multisensor correlation) is demonstrated. Excellent correlation was obtained with patch sizes exceeding 16 pixels square. Qualities which lead to effective control point selection are distinctive features, good contrast, and constant feature characteristics. Results of the study indicate that more than 300 degrees of freedom are required to register two standard ERTS-1 MSS frames covering 100 by 100 nautical miles to an accuracy of 0.6 pixel mean radial displacement error. An automatic strip processing technique demonstrates 600 to 1200 degrees of freedom over a quater frame of ERTS imagery. Registration accuracies in the range of 0.3 pixel to 0.5 pixel mean radial error were confirmed by independent error analysis. Accuracies in the range of 0.5 pixel to 1.4 pixel mean radial error were demonstrated by semi-automatic registration over small geographic areas.
NASA Astrophysics Data System (ADS)
Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.
1999-05-01
We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent manner to the DSF systems for the TCDD comparisons. This would suggest that FDXD would therefore perform adequately in a clinical fluoroscopic environment and our initial clinical experiences support this. Noise reduction processing of the fluoroscopic data acquired on FDXD was also found to further improve TCDD performance for FDXD. FDXD therefore combines acceptable fluoroscopic performance with excellent radiographic (snap shot) imaging fidelity, allowing the possibility of a universal x-ray detector to be developed, based on FDXD's technology. It is also envisaged that fluoroscopic performance will be improved by the development of digital image enhancement techniques specifically tailored to the characteristics of the FDXD detector.
Robertson, Stephanie; Azizpour, Hossein; Smith, Kevin; Hartman, Johan
2018-04-01
Breast cancer is the most common malignant disease in women worldwide. In recent decades, earlier diagnosis and better adjuvant therapy have substantially improved patient outcome. Diagnosis by histopathology has proven to be instrumental to guide breast cancer treatment, but new challenges have emerged as our increasing understanding of cancer over the years has revealed its complex nature. As patient demand for personalized breast cancer therapy grows, we face an urgent need for more precise biomarker assessment and more accurate histopathologic breast cancer diagnosis to make better therapy decisions. The digitization of pathology data has opened the door to faster, more reproducible, and more precise diagnoses through computerized image analysis. Software to assist diagnostic breast pathology through image processing techniques have been around for years. But recent breakthroughs in artificial intelligence (AI) promise to fundamentally change the way we detect and treat breast cancer in the near future. Machine learning, a subfield of AI that applies statistical methods to learn from data, has seen an explosion of interest in recent years because of its ability to recognize patterns in data with less need for human instruction. One technique in particular, known as deep learning, has produced groundbreaking results in many important problems including image classification and speech recognition. In this review, we will cover the use of AI and deep learning in diagnostic breast pathology, and other recent developments in digital image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
2013-05-01
Measurement of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC...of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique Todd C...Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Learning by Peers: An Alternative Learning Model for Digital Inclusion of Elderly People
NASA Astrophysics Data System (ADS)
de Sales, Márcia Barros; Silveira, Ricardo Azambuja; de Sales, André Barros; de Cássia Guarezi, Rita
This paper presents a model of digital inclusion for the elderly people, using learning by peers methodology. The model’s goal was valuing and promoting the potential capabilities of the elderly people by promoting some of them to instruct other elderly people to deal with computers and to use several software tools and internet services. The project involved 66 volunteering elderly people. However, 19 of them acted effectively as multipliers and the others as students. The process was observed through the empirical technique of interaction workshops. This technique was chosen for demanding direct participation of the people involved in real interaction. We worked with peer learning to facilitate the communication between elderly-learners and elderly-multipliers, due to the similarity in language, rhythm and life history, and because they felt more secure to develop the activities with people in their age group. This multiplying model can be used in centers, organizations and other entities that work with elderly people for their digital inclusion.
A microprocessor application to a strapdown laser gyro navigator
NASA Technical Reports Server (NTRS)
Giardina, C.; Luxford, E.
1980-01-01
The replacement of analog circuit control loops for laser gyros (path length control, cross axis temperature compensation loops, dither servo and current regulators) with digital filters residing in microcomputers is addressed. In addition to the control loops, a discussion is given on applying the microprocessor hardware to compensation for coning and skulling motion where simple algorithms are processed at high speeds to compensate component output data (digital pulses) for linear and angular vibration motions. Highlights are given on the methodology and system approaches used in replacing differential equations describing the analog system in terms of the mechanized difference equations of the microprocessor. Standard one for one frequency domain techniques are employed in replacing analog transfer functions by their transform counterparts. Direct digital design techniques are also discussed along with their associated benefits. Time and memory loading analyses are also summarized, as well as signal and microprocessor architecture. Trade offs in algorithm, mechanization, time/memory loading, accuracy, and microprocessor architecture are also given.
An evaluation of student and clinician perception of digital and conventional implant impressions.
Lee, Sang J; Macarthur, Robert X; Gallucci, German O
2013-11-01
The accuracy and efficiency of digital implant impressions should match conventional impressions. Comparisons should be made with clinically relevant data. The purpose of this study was to evaluate the difficulty level and operator's perception between dental students and experienced clinicians when making digital and conventional implant impressions. Thirty experienced dental professionals and 30 second-year dental students made conventional and digital impressions of a single implant model. A visual analog scale (VAS) and multiple-choice questionnaires were used to assess the participant's perception of difficulty, preference, and effectiveness. Wilcoxon signed-rank test within the groups and Wilcoxon rank-sum test between the groups were used for statistical analysis (α=.05). On a 0 to 100 VAS, the student group scored a mean difficulty level of 43.1 (±18.5) for the conventional impression technique and 30.6 (±17.6) for the digital impression technique (P=.006). The clinician group scored a mean (standard deviation) difficulty level of 30.9 (±19.6) for conventional impressions and 36.5 (±20.6) for digital impressions (P=.280). Comparison between groups showed a mean difficulty level with the conventional impression technique significantly higher in the student group (P=.030). The digital impression was not significantly different between the groups (P=.228). Sixty percent of the students preferred the digital impression and 7% the conventional impression; 33% expressed no preference. In the clinician group, 33% preferred the digital impression and 37% the conventional impression; 30% had no preference. Seventy-seven percent of the student group felt most effective with digital impressions, 10% with conventional impressions, and 13% with either technique, whereas 40% of the clinician group chose the digital impression as the most effective technique, 53% the conventional impression, and 7% either technique. The conventional impression was more difficult to perform for the student group than the clinician group; however, the difficulty level of the digital impression was the same in both groups. It was also determined that the student group preferred the digital impression as the most efficient impression technique, and the clinician group had an even distribution in the choice of preferred and efficient impression techniques. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Using stereophotogrammetric technology for obtaining intraoral digital impressions of implants.
Pradíes, Guillermo; Ferreiroa, Alberto; Özcan, Mutlu; Giménez, Beatriz; Martínez-Rus, Francisco
2014-04-01
The procedure for making impressions of multiple implants continues to be a challenge, despite the various techniques proposed to date. The authors' objective in this case report is to describe a novel digital impression method for multiple implants involving the use of stereophotogrammetric technology. The authors present three cases of patients who had multiple implants in which the impressions were obtained with this technology. Initially, a stereo camera with an infrared flash detects the position of special flag abutments screwed into the implants. This process is based on registering the x, y and z coordinates of each implant and the distances between them. This information is converted into a stereolithographic (STL) file. To add the soft-tissue information, the user must obtain another STL file by using an intraoral or extraoral scanner. In the first case presented, this information was acquired from the plaster model with an extraoral scanner; in the second case, from a Digital Imaging and Communication in Medicine (DICOM) file of the plaster model obtained with cone-beam computed tomography; and in the third case, through an intraoral digital impression with a confocal scanner. In the three cases, the frameworks manufactured from this technique showed a correct clinical passive fit. At follow-up appointments held six, 12 and 24 months after insertion of the prosthesis, no complications were reported. Stereophotogrammetric technology is a viable, accurate and easy technique for making multiple implant impressions. Clinicians can use stereophotogrammetric technology to acquire reliable digital master models as a first step in producing frameworks with a correct passive fit.
NASA Technical Reports Server (NTRS)
Tomaine, R. L.
1976-01-01
Flight test data from a large 'crane' type helicopter were collected and processed for the purpose of identifying vehicle rigid body stability and control derivatives. The process consisted of using digital and Kalman filtering techniques for state estimation and Extended Kalman filtering for parameter identification, utilizing a least squares algorithm for initial derivative and variance estimates. Data were processed for indicated airspeeds from 0 m/sec to 152 m/sec. Pulse, doublet and step control inputs were investigated. Digital filter frequency did not have a major effect on the identification process, while the initial derivative estimates and the estimated variances had an appreciable effect on many derivative estimates. The major derivatives identified agreed fairly well with analytical predictions and engineering experience. Doublet control inputs provided better results than pulse or step inputs.
NASA Technical Reports Server (NTRS)
Tranter, W. H.; Turner, M. D.
1977-01-01
Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation.
Wilk, Brian L
2015-01-01
Over the course of the past two to three decades, intraoral digital impression systems have gained acceptance due to high accuracy and ease of use as they have been incorporated into the fabrication of dental implant restorations. The use of intraoral digital impressions enables the clinician to produce accurate restorations without the unpleasant aspects of traditional impression materials and techniques. This article discusses the various types of digital impression systems and their accuracy compared to traditional impression techniques. The cost, time, and patient satisfaction components of both techniques will also be reviewed.
Wehde, M. E.
1995-01-01
The common method of digital image comparison by subtraction imposes various constraints on the image contents. Precise registration of images is required to assure proper evaluation of surface locations. The attribute being measured and the calibration and scaling of the sensor are also important to the validity and interpretability of the subtraction result. Influences of sensor gains and offsets complicate the subtraction process. The presence of any uniform systematic transformation component in one of two images to be compared distorts the subtraction results and requires analyst intervention to interpret or remove it. A new technique has been developed to overcome these constraints. Images to be compared are first transformed using the cumulative relative frequency as a transfer function. The transformed images represent the contextual relationship of each surface location with respect to all others within the image. The process of differentiating between the transformed images results in a percentile rank ordered difference. This process produces consistent terrain-change information even when the above requirements necessary for subtraction are relaxed. This technique may be valuable to an appropriately designed hierarchical terrain-monitoring methodology because it does not require human participation in the process.
Fractional-N phase-locked loop for split and direct automatic frequency control in A-GPS
NASA Astrophysics Data System (ADS)
Park, Chester Sungchung; Park, Sungkyung
2018-07-01
A low-power mixed-signal phase-locked loop (PLL) is modelled and designed for the DigRF interface between the RF chip and the modem chip. An assisted-GPS or A-GPS multi-standard system includes the DigRF interface and uses the split automatic frequency control (AFC) technique. The PLL circuitry uses the direct AFC technique and is based on the fractional-N architecture using a digital delta-sigma modulator along with a digital counter, fulfilling simple ultra-high-resolution AFC with robust digital circuitry and its timing. Relative to the output frequency, the measured AFC resolution or accuracy is <5 parts per billion (ppb) or on the order of a Hertz. The cycle-to-cycle rms jitter is <6 ps and the typical settling time is <30 μs. A spur reduction technique is adopted and implemented as well, demonstrating spur reduction without employing dithering. The proposed PLL includes a low-leakage phase-frequency detector, a low-drop-out regulator, power-on-reset circuitry and precharge circuitry. The PLL is implemented in a 90-nm CMOS process technology with 1.2 V single supply. The overall PLL draws about 1.1 mA from the supply.
Cartography for lunar exploration: 2008 status and mission plans
Kirk, R.L.; Archinal, B.A.; Gaddis, L.R.; Rosiek, M.R.; Chen, Jun; Jiang, Jie; Nayak, Shailesh
2008-01-01
The initial spacecraft exploration of the Moon in the 1960s-70s yielded extensive data, primarily in the form of film and television images, which were used to produce a large number of hardcopy maps by conventional techniques. A second era of exploration, beginning in the early 1990s, has produced digital data including global multispectral imagery and altimetry, from which a new generation of digital map products tied to a rapidly evolving global control network has been made. Efforts are also underway to scan the earlier hardcopy maps for online distribution and to digitize the film images so that modern processing techniques can be used to make high-resolution digital terrain models (DTMs) and image mosaics consistent with the current global control. The pace of lunar exploration is accelerating dramatically, with as many as eight new missions already launched or planned for the current decade. These missions, of which the most important for cartography are SMART-1 (Europe), Kaguya/SELENE (Japan), Chang'e-1 (China), Chandrayaan-1 (India), and Lunar Reconnaissance Orbiter (USA), will return a volume of data exceeding that of all previous lunar and planetary missions combined. Framing and scanner camera images, including multispectral and stereo data, hyperspectral images, synthetic aperture radar (SAR) images, and laser altimetry will all be collected, including, in most cases, multiple data sets of each type. Substantial advances in international standardization and cooperation, development of new and more efficient data processing methods, and availability of resources for processing and archiving will all be needed if the next generation of missions are to fulfill their potential for high-precision mapping of the Moon in support of subsequent exploration and scientific investigation.
Linear programming phase unwrapping for dual-wavelength digital holography.
Wang, Zhaomin; Jiao, Jiannan; Qu, Weijuan; Yang, Fang; Li, Hongru; Tian, Ailing; Asundi, Anand
2017-01-20
A linear programming phase unwrapping method in dual-wavelength digital holography is proposed and verified experimentally. The proposed method uses the square of height difference as a convergence standard and theoretically gives the boundary condition in a searching process. A simulation was performed by unwrapping step structures at different levels of Gaussian noise. As a result, our method is capable of recovering the discontinuities accurately. It is robust and straightforward. In the experiment, a microelectromechanical systems sample and a cylindrical lens were measured separately. The testing results were in good agreement with true values. Moreover, the proposed method is applicable not only in digital holography but also in other dual-wavelength interferometric techniques.
Towards Trustable Digital Evidence with PKIDEV: PKI Based Digital Evidence Verification Model
NASA Astrophysics Data System (ADS)
Uzunay, Yusuf; Incebacak, Davut; Bicakci, Kemal
How to Capture and Preserve Digital Evidence Securely? For the investigation and prosecution of criminal activities that involve computers, digital evidence collected in the crime scene has a vital importance. On one side, it is a very challenging task for forensics professionals to collect them without any loss or damage. On the other, there is the second problem of providing the integrity and authenticity in order to achieve legal acceptance in a court of law. By conceiving digital evidence simply as one instance of digital data, it is evident that modern cryptography offers elegant solutions for this second problem. However, to our knowledge, there is not any previous work proposing a systematic model having a holistic view to address all the related security problems in this particular case of digital evidence verification. In this paper, we present PKIDEV (Public Key Infrastructure based Digital Evidence Verification model) as an integrated solution to provide security for the process of capturing and preserving digital evidence. PKIDEV employs, inter alia, cryptographic techniques like digital signatures and secure time-stamping as well as latest technologies such as GPS and EDGE. In our study, we also identify the problems public-key cryptography brings when it is applied to the verification of digital evidence.
Real-time demonstration hardware for enhanced DPCM video compression algorithm
NASA Technical Reports Server (NTRS)
Bizon, Thomas P.; Whyte, Wayne A., Jr.; Marcopoli, Vincent R.
1992-01-01
The lack of available wideband digital links as well as the complexity of implementation of bandwidth efficient digital video CODECs (encoder/decoder) has worked to keep the cost of digital television transmission too high to compete with analog methods. Terrestrial and satellite video service providers, however, are now recognizing the potential gains that digital video compression offers and are proposing to incorporate compression systems to increase the number of available program channels. NASA is similarly recognizing the benefits of and trend toward digital video compression techniques for transmission of high quality video from space and therefore, has developed a digital television bandwidth compression algorithm to process standard National Television Systems Committee (NTSC) composite color television signals. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a non-adaptive predictor, non-uniform quantizer and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The non-adaptive predictor and multilevel Huffman coder combine to set this technique apart from other DPCM encoding algorithms. All processing is done on a intra-field basis to prevent motion degradation and minimize hardware complexity. Computer simulations have shown the algorithm will produce broadcast quality reconstructed video at an average transmission rate of 1.8 bits/pixel. Hardware implementation of the DPCM circuit, non-adaptive predictor and non-uniform quantizer has been completed, providing realtime demonstration of the image quality at full video rates. Video sampling/reconstruction circuits have also been constructed to accomplish the analog video processing necessary for the real-time demonstration. Performance results for the completed hardware compare favorably with simulation results. Hardware implementation of the multilevel Huffman encoder/decoder is currently under development along with implementation of a buffer control algorithm to accommodate the variable data rate output of the multilevel Huffman encoder. A video CODEC of this type could be used to compress NTSC color television signals where high quality reconstruction is desirable (e.g., Space Station video transmission, transmission direct-to-the-home via direct broadcast satellite systems or cable television distribution to system headends and direct-to-the-home).
Automated response matching for organic scintillation detector arrays
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Cave, F. D.; Plenteda, R.; Tomanin, A.
2017-07-01
This paper identifies a digitizer technology with unique features that facilitates feedback control for the realization of a software-based technique for automatically calibrating detector responses. Three such auto-calibration techniques have been developed and are described along with an explanation of the main configuration settings and potential pitfalls. Automating this process increases repeatability, simplifies user operation, enables remote and periodic system calibration where consistency across detectors' responses are critical.
Electromagnetic Counter-Counter Measure (ECCM) Techniques of the Digital Microwave Radio.
1982-05-01
Frequency hopping requires special synthesizers and filter banks. Large bandwidth expansion in a microwave radio relay application can best be achieved with...34 processing gain " performance as a function of jammer modulation type " pulse jammer performance • emission bandwidth and spectral shaping 0... spectral efficiency, implementation complexity, and suitability for ECCK techniques will be considered. A sumary of the requirements and characteristics of
Dudik, Joshua M.; Coyle, James L.
2015-01-01
Cervical auscultation is the recording of sounds and vibrations caused by the human body from the throat during swallowing. While traditionally done by a trained clinician with a stethoscope, much work has been put towards developing more sensitive and clinically useful methods to characterize the data obtained with this technique. The eventual goal of the field is to improve the effectiveness of screening algorithms designed to predict the risk that swallowing disorders pose to individual patients’ health and safety. This paper provides an overview of these signal processing techniques and summarizes recent advances made with digital transducers in hopes of organizing the highly varied research on cervical auscultation. It investigates where on the body these transducers are placed in order to record a signal as well as the collection of analog and digital filtering techniques used to further improve the signal quality. It also presents the wide array of methods and features used to characterize these signals, ranging from simply counting the number of swallows that occur over a period of time to calculating various descriptive features in the time, frequency, and phase space domains. Finally, this paper presents the algorithms that have been used to classify this data into ‘normal’ and ‘abnormal’ categories. Both linear as well as non-linear techniques are presented in this regard. PMID:26213659
Method of recording bioelectrical signals using a capacitive coupling
NASA Astrophysics Data System (ADS)
Simon, V. A.; Gerasimov, V. A.; Kostrin, D. K.; Selivanov, L. M.; Uhov, A. A.
2017-11-01
In this article a technique for the bioelectrical signals acquisition by means of the capacitive sensors is described. A feedback loop for the ultra-high impedance biasing of the input instrumentation amplifier, which provides receiving of the electrical cardiac signal (ECS) through a capacitive coupling, is proposed. The mains 50/60 Hz noise is suppressed by a narrow-band stop filter with an independent notch frequency and quality factor tuning. Filter output is attached to a ΣΔ analog-to-digital converter (ADC), which acquires the filtered signal with a 24-bit resolution. Signal processing board is connected through universal serial bus interface to a personal computer, where ECS in a digital form is recorded and processed.
Advanced digital signal processing for short haul optical fiber transmission beyond 100G
NASA Astrophysics Data System (ADS)
Kikuchi, Nobuhiko
2017-01-01
Significant increase of intra and inter data center traffic has been expected by the rapid spread of various network applications like SNS, IoT, mobile and cloud computing, and the needs for ultra-high speed and cost-effective short- to medium-reach optical fiber links beyond 100-Gbit/s is becoming larger and larger. Such high-speed links typically use multilevel modulation to lower signaling speed, which in turn face serious challenges in limited loss budget and waveform distortion tolerance. One of the promising techniques to overcome them is the use of advanced digital signal processing (DSP) and we review various DSP applications for short-to-medium reach applications.
Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.
Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R
2013-01-01
A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.
Analog and digital transport of RF channels over converged 5G wireless-optical networks
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen
2016-02-01
Under the exponential increase demand by the emerging 5G wireless access networking and thus data-center based Internet, novel and economical transport of RF channels to and from wireless access systems. This paper presents the transport technologies of RF channels over the analog and digital domain so as to meet the demands of the transport capacity reaching multi-Tbps, in the followings: (i) The convergence of 5G broadband wireless and optical networks and its demands on capacity delivery and network structures; (ii) Analog optical technologies for delivery of both the information and RF carriers to and from multiple-input multiple-output (MIMO) antenna sites so as to control the beam steering of MIMO antenna in the mmW at either 28.6 GHz and 56.8 GHz RF carrier and delivery of channels of aggregate capacity reaching several Tbps; (ii) Transceiver employing advanced digital modulation formats and digital signal processing (DSP) so as to provide 100G and beyond transmission rate to meet the ultra-high capacity demands with flexible spectral grids, hence pay-on-demand services. The interplay between DSP-based and analog transport techniques is examined; (iii) Transport technologies for 5G cloud access networks and associate modulation and digital processing techniques for capacity efficiency; and (iv) Finally the integrated optic technologies with novel lasers, comb generators and simultaneous dual function photonic devices for both demultiplexing/multiplexing and modulation are proposed, hence a system on chip structure can be structured. Quantum dot lasers and matrixes of micro ring resonators are integrated on the same Si-on-Silica substrate are proposed and described.
NASA Astrophysics Data System (ADS)
Joyce, Malcolm J.; Aspinall, Michael D.; Cave, Francis D.; Lavietes, Anthony D.
2012-08-01
Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and γ rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/γ-ray separation. Moreover, the scintillation media on which the technique relies usually have a low flashpoint and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/γ-ray separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 × 106 events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous.
Digital map databases in support of avionic display systems
NASA Astrophysics Data System (ADS)
Trenchard, Michael E.; Lohrenz, Maura C.; Rosche, Henry, III; Wischow, Perry B.
1991-08-01
The emergence of computerized mission planning systems (MPS) and airborne digital moving map systems (DMS) has necessitated the development of a global database of raster aeronautical chart data specifically designed for input to these systems. The Naval Oceanographic and Atmospheric Research Laboratory''s (NOARL) Map Data Formatting Facility (MDFF) is presently dedicated to supporting these avionic display systems with the development of the Compressed Aeronautical Chart (CAC) database on Compact Disk Read Only Memory (CDROM) optical discs. The MDFF is also developing a series of aircraft-specific Write-Once Read Many (WORM) optical discs. NOARL has initiated a comprehensive research program aimed at improving the pilots'' moving map displays current research efforts include the development of an alternate image compression technique and generation of a standard set of color palettes. The CAC database will provide digital aeronautical chart data in six different scales. CAC is derived from the Defense Mapping Agency''s (DMA) Equal Arc-second (ARC) Digitized Raster Graphics (ADRG) a series of scanned aeronautical charts. NOARL processes ADRG to tailor the chart image resolution to that of the DMS display while reducing storage requirements through image compression techniques. CAC is being distributed by DMA as a library of CDROMs.
NASA Astrophysics Data System (ADS)
Nguyen, Duy
2012-07-01
Digital Elevation Models (DEMs) are used in many applications in the context of earth sciences such as in topographic mapping, environmental modeling, rainfall-runoff studies, landslide hazard zonation, seismic source modeling, etc. During the last years multitude of scientific applications of Synthetic Aperture Radar Interferometry (InSAR) techniques have evolved. It has been shown that InSAR is an established technique of generating high quality DEMs from space borne and airborne data, and that it has advantages over other methods for the generation of large area DEM. However, the processing of InSAR data is still a challenging task. This paper describes InSAR operational steps and processing chain for DEM generation from Single Look Complex (SLC) SAR data and compare a satellite SAR estimate of surface elevation with a digital elevation model (DEM) from Topography map. The operational steps are performed in three major stages: Data Search, Data Processing, and product Validation. The Data processing stage is further divided into five steps of Data Pre-Processing, Co-registration, Interferogram generation, Phase unwrapping, and Geocoding. The Data processing steps have been tested with ERS 1/2 data using Delft Object-oriented Interferometric (DORIS) InSAR processing software. Results of the outcome of the application of the described processing steps to real data set are presented.
Frequency domain laser velocimeter signal processor: A new signal processing scheme
NASA Technical Reports Server (NTRS)
Meyers, James F.; Clemmons, James I., Jr.
1987-01-01
A new scheme for processing signals from laser velocimeter systems is described. The technique utilizes the capabilities of advanced digital electronics to yield a smart instrument that is able to configure itself, based on the characteristics of the input signals, for optimum measurement accuracy. The signal processor is composed of a high-speed 2-bit transient recorder for signal capture and a combination of adaptive digital filters with energy and/or zero crossing detection signal processing. The system is designed to accept signals with frequencies up to 100 MHz with standard deviations up to 20 percent of the average signal frequency. Results from comparative simulation studies indicate measurement accuracies 2.5 times better than with a high-speed burst counter, from signals with as few as 150 photons per burst.
NASA Astrophysics Data System (ADS)
Vargas, E.; Cifuentes, A.; Alvarado, S.; Cabrera, H.; Delgado, O.; Calderón, A.; Marín, E.
2018-02-01
Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.
Vargas, E; Cifuentes, A; Alvarado, S; Cabrera, H; Delgado, O; Calderón, A; Marín, E
2018-02-01
Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.
Digital Photon Correlation Data Processing Techniques
1976-07-01
velocimeter signals. During the conduct of the contract a complementary theoretical effort with the NASA Langley Research Center was in progress ( NASI -13140...6.3.2 Variability Error In an earlier very brief contract with NASA Langley ( NASI -13140) a simplified variability error analysis was performed
Techniques and Practices in the Training of Digital Operator Skills
2007-09-01
changes in environmental stimuli. Early behaviorists strongly opposed the study of any sort of mental event, but more recent behaviorists like Albert ... Bandura and Edward Tolman recognized that processes like vicarious learning and latent learning could not be explained unless some unobservable
Classified one-step high-radix signed-digit arithmetic units
NASA Astrophysics Data System (ADS)
Cherri, Abdallah K.
1998-08-01
High-radix number systems enable higher information storage density, less complexity, fewer system components, and fewer cascaded gates and operations. A simple one-step fully parallel high-radix signed-digit arithmetic is proposed for parallel optical computing based on new joint spatial encodings. This reduces hardware requirements and improves throughput by reducing the space-bandwidth produce needed. The high-radix signed-digit arithmetic operations are based on classifying the neighboring input digit pairs into various groups to reduce the computation rules. A new joint spatial encoding technique is developed to present both the operands and the computation rules. This technique increases the spatial bandwidth product of the spatial light modulators of the system. An optical implementation of the proposed high-radix signed-digit arithmetic operations is also presented. It is shown that our one-step trinary signed-digit and quaternary signed-digit arithmetic units are much simpler and better than all previously reported high-radix signed-digit techniques.
NASA Technical Reports Server (NTRS)
Gopher, D.; Wickens, C. D.
1975-01-01
A one dimensional compensatory tracking task and a digit processing reaction time task were combined in a three phase experiment designed to investigate tracking performance in time sharing. Adaptive techniques, elaborate feedback devices, and on line standardization procedures were used to adjust task difficulty to the ability of each individual subject and manipulate time sharing demands. Feedback control analysis techniques were employed in the description of tracking performance. The experimental results show that when the dynamics of a system are constrained, in such a manner that man machine system stability is no longer a major concern of the operator, he tends to adopt a first order control describing function, even with tracking systems of higher order. Attention diversion to a concurrent task leads to an increase in remnant level, or nonlinear power. This decrease in linearity is reflected both in the output magnitude spectra of the subjects, and in the linear fit of the amplitude ratio functions.
Moura, Renata Vasconcellos; Kojima, Alberto Noriyuki; Saraceni, Cintia Helena Coury; Bassolli, Lucas; Balducci, Ivan; Özcan, Mutlu; Mesquita, Alfredo Mikail Melo
2018-05-01
The increased use of CAD systems can generate doubt about the accuracy of digital impressions for angulated implants. The aim of this study was to evaluate the accuracy of different impression techniques, two conventional and one digital, for implants with and without angulation. We used a polyurethane cast that simulates the human maxilla according to ASTM F1839, and 6 tapered implants were installed with external hexagonal connections to simulate tooth positions 17, 15, 12, 23, 25, and 27. Implants 17 and 23 were placed with 15° of mesial angulation and distal angulation, respectively. Mini cone abutments were installed on these implants with a metal strap 1 mm in height. Conventional and digital impression procedures were performed on the maxillary master cast, and the implants were separated into 6 groups based on the technique used and measurement type: G1 - control, G2 - digital impression, G3 - conventional impression with an open tray, G4 - conventional impression with a closed tray, G5 - conventional impression with an open tray and a digital impression, and G6 - conventional impression with a closed tray and a digital impression. A statistical analysis was performed using two-way repeated measures ANOVA to compare the groups, and a Kruskal-Wallis test was conducted to analyze the accuracy of the techniques. No significant difference in the accuracy of the techniques was observed between the groups. Therefore, no differences were found among the conventional impression and the combination of conventional and digital impressions, and the angulation of the implants did not affect the accuracy of the techniques. All of the techniques exhibited trueness and had acceptable precision. The variation of the angle of the implants did not affect the accuracy of the techniques. © 2018 by the American College of Prosthodontists.
[Digital radiography in young children. Considerations based on experiences in practice].
Berkhout, W E R; Mileman, P A; Weerheijm, K L
2004-10-01
In dentistry, digital radiology techniques, such as a charge-coupled device and a storage phosphor plate, are gaining popularity. It was the objective of this study to assess the importance of the advantages and disadvantages of digital radiology techniques for bitewing radiography in young children, when compared to conventional film. A group of dentists received a questionnaire regarding their experiences with digital radiology techniques or conventional films among young children. Using the Simple Multi-Attributive Rating Technique (SMART) a final weighted score was calculated for the charge-coupled device, the phosphor plate, and conventional film. The scores were 7.40, 7.38, and 6.98 respectively. The differences were not statistically significant (p > 0.47). It could be concluded that, on the basis of experiences in practice, there are no statistically significant preferences for the use of digital radioogy techniques for bitewing radiography in young children.
Capture of Fluorescence Decay Times by Flow Cytometry
Naivar, Mark A.; Jenkins, Patrick; Freyer, James P.
2012-01-01
In flow cytometry, the fluorescence decay time of an excitable species has been largely underutilized and is not likely found as a standard parameter on any imaging cytometer, sorting, or analyzing system. Most cytometers lack fluorescence lifetime hardware mainly owing to two central issues. Foremost, research and development with lifetime techniques has lacked proper exploitation of modern laser systems, data acquisition boards, and signal processing techniques. Secondly, a lack of enthusiasm for fluorescence lifetime applications in cells and with bead-based assays has persisted among the greater cytometry community. In this unit, we describe new approaches that address these issues and demonstrate the simplicity of digitally acquiring fluorescence relaxation rates in flow. The unit is divided into protocol and commentary sections in order to provide a most comprehensive discourse on acquiring the fluorescence lifetime with frequency-domain methods. The unit covers (i) standard fluorescence lifetime acquisition (protocol-based) with frequency-modulated laser excitation, (ii) digital frequency-domain cytometry analyses, and (iii) interfacing fluorescence lifetime measurements onto sorting systems. Within the unit is also a discussion on how digital methods are used for aliasing in order to harness higher frequency ranges. Also, a final discussion is provided on heterodyning and processing of waveforms for multi-exponential decay extraction. PMID:25419263
Efficient image acquisition design for a cancer detection system
NASA Astrophysics Data System (ADS)
Nguyen, Dung; Roehrig, Hans; Borders, Marisa H.; Fitzpatrick, Kimberly A.; Roveda, Janet
2013-09-01
Modern imaging modalities, such as Computed Tomography (CT), Digital Breast Tomosynthesis (DBT) or Magnetic Resonance Tomography (MRT) are able to acquire volumetric images with an isotropic resolution in micrometer (um) or millimeter (mm) range. When used in interactive telemedicine applications, these raw images need a huge storage unit, thereby necessitating the use of high bandwidth data communication link. To reduce the cost of transmission and enable archiving, especially for medical applications, image compression is performed. Recent advances in compression algorithms have resulted in a vast array of data compression techniques, but because of the characteristics of these images, there are challenges to overcome to transmit these images efficiently. In addition, the recent studies raise the low dose mammography risk on high risk patient. Our preliminary studies indicate that by bringing the compression before the analog-to-digital conversion (ADC) stage is more efficient than other compression techniques after the ADC. The linearity characteristic of the compressed sensing and ability to perform the digital signal processing (DSP) during data conversion open up a new area of research regarding the roles of sparsity in medical image registration, medical image analysis (for example, automatic image processing algorithm to efficiently extract the relevant information for the clinician), further Xray dose reduction for mammography, and contrast enhancement.
Dual-channel in-line digital holographic double random phase encryption
Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N
2012-01-01
We present a robust encryption method for the encoding of 2D/3D objects using digital holography and virtual optics. Using our recently developed dual-plane in-line digital holography technique, two in-line digital holograms are recorded at two different planes and are encrypted using two different double random phase encryption configurations, independently. The process of using two mutually exclusive encryption channels makes the system more robust against attacks since both the channels should be decrypted accurately in order to get a recognizable reconstruction. Results show that the reconstructed object is unrecognizable even when the portion of the correct phase keys used during decryption is close to 75%. The system is verified against blind decryptions by evaluating the SNR and MSE. Validation of the proposed method and sensitivities of the associated parameters are quantitatively analyzed and illustrated. PMID:23471012
Application of Remote Sensing Techniques for Appraising Changes in Wildlife Habitat
NASA Technical Reports Server (NTRS)
Nelson, H. K.; Klett, A. T.; Johnston, J. E.
1971-01-01
An attempt was made to investigate the potential of airborne, multispectral, line scanner data acquisition and computer-implemented automatic recognition techniques for providing useful information about waterfowl breeding habitat in North Dakota. The spectral characteristics of the components of a landscape containing waterfowl habitat can be detected with airborne scanners. By analyzing these spectral characteristics it is possible to identify and map the landscape components through analog and digital processing methods. At the present stage of development multispectral remote sensing techniques are not ready for operational application to surveys of migratory bird habitat and other such resources. Further developments are needed to: (1) increase accuracy; (2) decrease retrieval and processing time; and (3) reduce costs.
Large scale digital atlases in neuroscience
NASA Astrophysics Data System (ADS)
Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.
2014-03-01
Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.
Experimental study of digital image processing techniques for LANDSAT data
NASA Technical Reports Server (NTRS)
Rifman, S. S. (Principal Investigator); Allendoerfer, W. B.; Caron, R. H.; Pemberton, L. J.; Mckinnon, D. M.; Polanski, G.; Simon, K. W.
1976-01-01
The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections.
NASA Astrophysics Data System (ADS)
van Eycke, Yves-Rémi; Allard, Justine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine
2017-02-01
Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns.
Arellano, María Paz; Aguilera, José Miguel; Bouchon, Pedro
2004-11-15
Polarised light microscopy was employed non-invasively to monitor lactose crystallisation from non-seeded supersaturated solutions in real time. Images were continuously recorded, processed and characterised by image analysis, and the results were compared with those obtained by refractometry. Three crystallisation temperatures (10, 20 and 30 degrees C) and three different levels of initial relative supersaturation (C/C(s)=1.95; 2.34; 3.15) were investigated. Induction times using the imaging technique proved to be substantially lower than those determined using refractive index. Lactose crystals were isolated digitally to determine geometrical parameters of interest, such as perimeter, diameter, area, roundness and Feret mean, and to derive crystal growth rates. Mean growth rates obtained for single crystals were fitted to a combined mass transfer model (R(2)=0.9766). The model allowed the effects of temperature and supersaturation on crystallisation rate to be clearly identified. It also suggested that, in this set of experiments, surface integration seemed to be the rate controlling step. It is believed that a similar experimental set-up could be implemented in a real food system to characterise a particular process where crystallisation control is of interest and where traditional techniques are difficult to implement.
Van Eycke, Yves-Rémi; Allard, Justine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine
2017-01-01
Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns. PMID:28220842
Digital Mapping Techniques '09-Workshop Proceedings, Morgantown, West Virginia, May 10-13, 2009
Soller, David R.
2011-01-01
As in the previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.
One Controller at a Time (1-CAT): A mimo design methodology
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Lucas, J. C.
1987-01-01
The One Controller at a Time (1-CAT) methodology for designing digital controllers for Large Space Structures (LSS's) is introduced and illustrated. The flexible mode problem is first discussed. Next, desirable features of a LSS control system design methodology are delineated. The 1-CAT approach is presented, along with an analytical technique for carrying out the 1-CAT process. Next, 1-CAT is used to design digital controllers for the proposed Space Based Laser (SBL). Finally, the SBL design is evaluated for dynamical performance, noise rejection, and robustness.
High resolution upgrade of the ATF damping ring BPM system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terunuma, N.; Urakawa, J.; /KEK, Tsukuba
2008-05-01
A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.
Radar studies related to the earth resources program. [remote sensing programs
NASA Technical Reports Server (NTRS)
Holtzman, J.
1972-01-01
The radar systems research discussed is directed toward achieving successful application of radar to remote sensing problems in such areas as geology, hydrology, agriculture, geography, forestry, and oceanography. Topics discussed include imaging radar and evaluation of its modification, study of digital processing for synthetic aperture system, digital simulation of synthetic aperture system, averaging techniques studies, ultrasonic modeling of panchromatic system, panchromatic radar/radar spectrometer development, measuring octave-bandwidth response of selected targets, scatterometer system analysis, and a model Fresnel-zone processor for synthetic aperture imagery.
Removal of instrument signature from Mariner 9 television images of Mars
NASA Technical Reports Server (NTRS)
Green, W. B.; Jepsen, P. L.; Kreznar, J. E.; Ruiz, R. M.; Schwartz, A. A.; Seidman, J. B.
1975-01-01
The Mariner 9 spacecraft was inserted into orbit around Mars in November 1971. The two vidicon camera systems returned over 7300 digital images during orbital operations. The high volume of returned data and the scientific objectives of the Television Experiment made development of automated digital techniques for the removal of camera system-induced distortions from each returned image necessary. This paper describes the algorithms used to remove geometric and photometric distortions from the returned imagery. Enhancement processing of the final photographic products is also described.
Advanced reliability modeling of fault-tolerant computer-based systems
NASA Technical Reports Server (NTRS)
Bavuso, S. J.
1982-01-01
Two methodologies for the reliability assessment of fault tolerant digital computer based systems are discussed. The computer-aided reliability estimation 3 (CARE 3) and gate logic software simulation (GLOSS) are assessment technologies that were developed to mitigate a serious weakness in the design and evaluation process of ultrareliable digital systems. The weak link is based on the unavailability of a sufficiently powerful modeling technique for comparing the stochastic attributes of one system against others. Some of the more interesting attributes are reliability, system survival, safety, and mission success.
NASA Technical Reports Server (NTRS)
1990-01-01
The present conference on digital avionics discusses vehicle-management systems, spacecraft avionics, special vehicle avionics, communication/navigation/identification systems, software qualification and quality assurance, launch-vehicle avionics, Ada applications, sensor and signal processing, general aviation avionics, automated software development, design-for-testability techniques, and avionics-software engineering. Also discussed are optical technology and systems, modular avionics, fault-tolerant avionics, commercial avionics, space systems, data buses, crew-station technology, embedded processors and operating systems, AI and expert systems, data links, and pilot/vehicle interfaces.
NASA Technical Reports Server (NTRS)
Paradella, W. R. (Principal Investigator); Vitorello, I.; Monteiro, M. D.
1984-01-01
Enhancement techniques and thematic classifications were applied to the metasediments of Bambui Super Group (Upper Proterozoic) in the Region of Serra do Ramalho, SW of the state of Bahia. Linear contrast stretch, band-ratios with contrast stretch, and color-composites allow lithological discriminations. The effects of human activities and of vegetation cover mask and limit, in several ways, the lithological discrimination with digital MSS data. Principal component images and color composite of linear contrast stretch of these products, show lithological discrimination through tonal gradations. This set of products allows the delineations of several metasedimentary sequences to a level superior to reconnaissance mapping. Supervised (maximum likelihood classifier) and nonsupervised (K-Means classifier) classification of the limestone sequence, host to fluorite mineralization show satisfactory results.
Vorticity field measurement using digital inline holography
NASA Astrophysics Data System (ADS)
Mallery, Kevin; Hong, Jiarong
2017-11-01
We demonstrate the direct measurement of a 3D vorticity field using digital inline holographic microscopy. Microfiber tracer particles are illuminated with a 532 nm continuous diode laser and imaged using a single CCD camera. The recorded holographic images are processed using a GPU-accelerated inverse problem approach to reconstruct the 3D structure of each microfiber in the imaged volume. The translation and rotation of each microfiber are measured using a time-resolved image sequence - yielding velocity and vorticity point measurements. The accuracy and limitations of this method are investigated using synthetic holograms. Measurements of solid body rotational flow are used to validate the accuracy of the technique under known flow conditions. The technique is further applied to a practical turbulent flow case for investigating its 3D velocity field and vorticity distribution.
Large-Scale Quantitative Analysis of Painting Arts
Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong
2014-01-01
Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images – the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances. PMID:25501877
Perceptual approach for unsupervised digital color restoration of cinematographic archives
NASA Astrophysics Data System (ADS)
Chambah, Majed; Rizzi, Alessandro; Gatta, Carlo; Besserer, Bernard; Marini, Daniele
2003-01-01
The cinematographic archives represent an important part of our collective memory. We present in this paper some advances in automating the color fading restoration process, especially with regard to the automatic color correction technique. The proposed color correction method is based on the ACE model, an unsupervised color equalization algorithm based on a perceptual approach and inspired by some adaptation mechanisms of the human visual system, in particular lightness constancy and color constancy. There are some advantages in a perceptual approach: mainly its robustness and its local filtering properties, that lead to more effective results. The resulting technique, is not just an application of ACE on movie images, but an enhancement of ACE principles to meet the requirements in the digital film restoration field. The presented preliminary results are satisfying and promising.
Denoising time-domain induced polarisation data using wavelet techniques
NASA Astrophysics Data System (ADS)
Deo, Ravin N.; Cull, James P.
2016-05-01
Time-domain induced polarisation (TDIP) methods are routinely used for near-surface evaluations in quasi-urban environments harbouring networks of buried civil infrastructure. A conventional technique for improving signal to noise ratio in such environments is by using analogue or digital low-pass filtering followed by stacking and rectification. However, this induces large distortions in the processed data. In this study, we have conducted the first application of wavelet based denoising techniques for processing raw TDIP data. Our investigation included laboratory and field measurements to better understand the advantages and limitations of this technique. It was found that distortions arising from conventional filtering can be significantly avoided with the use of wavelet based denoising techniques. With recent advances in full-waveform acquisition and analysis, incorporation of wavelet denoising techniques can further enhance surveying capabilities. In this work, we present the rationale for utilising wavelet denoising methods and discuss some important implications, which can positively influence TDIP methods.
Digital Longitudinal Tomosynthesis
NASA Astrophysics Data System (ADS)
Rimkus, Daniel Steven
1985-12-01
The purpose of this dissertation was to investigate the clinical utility of digital longitudinal tomosynthesis in radiology. By acquiring a finite group of digital images during a longitudinal tomographic exposure, and processing these images, tomographic planes, other than the fulcrum plane, can be reconstructed. This process is now termed "tomosynthesis". A prototype system utilizing this technique was developed. Both phantom and patient studies were done with this system. The phantom studies were evaluated by subjective, visual criterion and by quantitative analysis of edge sharpness and noise in the reconstructions. Two groups of patients and one volunteer were studied. The first patient group consisted of 8 patients undergoing intravenous urography (IVU). These patients had digital tomography and film tomography of the abdomen. The second patient group consisted of 4 patients with lung cancer admitted to the hospital for laser resection of endobronchial tumor. These patients had mediastinal digital tomograms to evaluate the trachea and mainstem bronchi. The knee of one volunteer was imaged by film tomography and digital tomography. The results of the phantom studies showed that the digital reconstructions accurately produced images of the desired planes. The edge sharpness of the reconstructions approached that of the acquired images. Adequate reconstructions were achieved with as few as 5 images acquired during the exposure, with the quality of the reconstructions improving as the number of images acquired increased. The IVU patients' digital studies had less contrast and spatial resolution than the film tomograms. The single renal lesion visible on the film tomograms was also visible in the digital images. The digital mediastinal studies were felt by several radiologists to be superior to a standard chest xray in evaluating the airways. The digital images of the volunteer's knee showed many of the same anatomic features as the film tomogram, but the digital images had less spatial and contrast resolution. With the equipment improvements discussed in the thesis, digital tomography may have an important role in radiology.
Integration of Landsat, Seasat, and other geo-data sources
NASA Technical Reports Server (NTRS)
Zobrist, A. L.; Blackwell, R. J.; Stromberg, W. D.
1979-01-01
The paper discusses integration of Landsat, Seasat, and other geographic information sources. Mosaicking of radar data and registration of radar to Landsat digital imagery are described, and six types of geophysical data, including gravity and magnetic measurements, are integrated and analyzed using image processing techniques.
1996-06-01
switches 5-43 Figure 5-27. Mechanical interference between ’Pull Spring’ devices 5-45 Figure 5-28. Array of LIGA mechanical relay switches 5-49...like coating DM Direct metal interconnect technique DMD ™ Digital Micromirror Device EDP Ethylene, diamine, pyrocatechol and water; silicon anisotropic...mechanical systems MOSIS MOS Implementation Service PGA Pin grid array, an electronic die package PZT Lead-zirconate-titanate LIGA Lithographie
NASA Astrophysics Data System (ADS)
Li, Xiang; Luo, Ming; Qiu, Ying; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan; Yang, Qi
2018-02-01
In this paper, channel equalization techniques for coherent optical fiber transmission systems based on independent component analysis (ICA) are reviewed. The principle of ICA for blind source separation is introduced. The ICA based channel equalization after both single-mode fiber and few-mode fiber transmission for single-carrier and orthogonal frequency division multiplexing (OFDM) modulation formats are investigated, respectively. The performance comparisons with conventional channel equalization techniques are discussed.
The DCU: the detector control unit of the SAFARI instrument onboard SPICA
NASA Astrophysics Data System (ADS)
Clénet, A.; Ravera, L.; Bertrand, B.; Cros, A.; Hou, R.; Jackson, B. D.; van Leeuwen, B. J.; Van Loon, D.; Parot, Y.; Pointecouteau, E.; Sournac, A.; Ta, N.
2012-09-01
The SpicA FAR infrared Instrument (SAFARI) is a European instrument for the infrared domain telescope SPICA, a JAXA space mission. The SAFARI detectors are Transistor Edge Sensors (TES) arranged in 3 matrixes. The TES front end electronic is based on Superconducting Quantum Interference Devices (SQUIDs) and it does the readout of the 3500 detectors with Frequency Division Multiplexing (FDM) type architecture. The Detector Control Unit (DCU), contributed by IRAP, manages the readout of the TES by computing and providing the AC-bias signals (1 - 3 MHz) to the TES and by computing the demodulation of the returning signals. The SQUID being highly non-linear, the DCU has also to provide a feedback signal to increase the SQUID dynamic. Because of the propagation delay in the cables and the processing time, a classic feedback will not be stable for AC-bias frequencies up to 3 MHz. The DCU uses a specific technique to compensate for those delays: the BaseBand FeedBack (BBFB). This digital data processing is done for the 3500 pixels in parallel. Thus, to keep the DCU power budget within its allocation we have to specifically optimize the architecture of the digital circuit with respect to the power consumption. In this paper we will mainly present the DCU architecture. We will particularly focus on the BBFB technique used to linearize the SQUID and on the optimization done to reduce the power consumption of the digital processing circuit.
Interagency Report: Astrogeology 58, television cartography
Batson, Raymond M.
1973-01-01
The purpose of this paper is to illustrate the processing of digital television pictures into base maps. In this context, a base map is defined as a pictorial representation of planetary surface morphology accurately reproduced on standard map projections. Topographic contour lines, albedo or geologic overprints may be super imposed on these base maps. The compilation of geodetic map controls, the techniques of mosaic compilation, computer processing and airbrush enhancement, and the compilation of con tour lines are discussed elsewhere by the originators of these techniques. A bibliography of applicable literature is included for readers interested in more detailed discussions.
Signal processing in ultrasound. [for diagnostic medicine
NASA Technical Reports Server (NTRS)
Le Croissette, D. H.; Gammell, P. M.
1978-01-01
Signal is the term used to denote the characteristic in the time or frequency domain of the probing energy of the system. Processing of this signal in diagnostic ultrasound occurs as the signal travels through the ultrasonic and electrical sections of the apparatus. The paper discusses current signal processing methods, postreception processing, display devices, real-time imaging, and quantitative measurements in noninvasive cardiology. The possibility of using deconvolution in a single transducer system is examined, and some future developments using digital techniques are outlined.
Digital technology in fixed implant prosthodontics.
Joda, Tim; Ferrari, Marco; Gallucci, German O; Wittneben, Julia-Gabriela; Brägger, Urs
2017-02-01
Digital protocols are increasingly influencing prosthodontic treatment concepts. Implant-supported single-unit and short-span reconstructions will benefit mostly from the present digital trends. In these protocols, monolithic implant crowns connected to prefabricated titanium abutments, which are created based on data obtained from an intraoral scan followed by virtual design and production, without the need of a physical master cast, have to be considered in lieu of conventional manufacturing techniques for posterior implant restorations. No space for storage is needed in the complete digital workflow, and if a remake is required a replica of the original reconstruction can be produced quickly and inexpensively using rapid prototyping. The technological process is split into subtractive methods, such as milling or laser ablation, and additive processing, such as three-dimensional printing and selective laser melting. The dimensions of the supra-implant soft-tissue architecture can be calculated in advance of implant placement, according to the morphologic copy, and consequently are individualized for each patient. All these technologies have to be considered before implementing new digital dental workflows in daily routine. The correct indication and application are prerequisite and crucial for the success of the overall therapy, and, finally, for a satisfied patient. This includes a teamwork approach and equally affects the clinician, the dental assistant and the technician as well. The digitization process has the potential to change the entire dental profession. The major benefits will be reduced production costs, improvement in time efficiency and fulfilment of patients' perceptions of a modernized treatment concept. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Osman, Reham B; Alharbi, Nawal; Wismeijer, Daniel
The aim of this study was to evaluate the effect of the build orientation/build angle on the dimensional accuracy of full-coverage dental restorations manufactured using digital light-processing technology (DLP-AM). A full dental crown was digitally designed and 3D-printed using DLP-AM. Nine build angles were used: 90, 120, 135, 150, 180, 210, 225, 240, and 270 degrees. The specimens were digitally scanned using a high-resolution optical surface scanner (IScan D104i, Imetric). Dimensional accuracy was evaluated using the digital subtraction technique. The 3D digital files of the scanned printed crowns (test model) were exported in standard tessellation language (STL) format and superimposed on the STL file of the designed crown [reference model] using Geomagic Studio 2014 (3D Systems). The root mean square estimate (RMSE) values were evaluated, and the deviation patterns on the color maps were further assessed. The build angle influenced the dimensional accuracy of 3D-printed restorations. The lowest RMSE was recorded for the 135-degree and 210-degree build angles. However, the overall deviation pattern on the color map was more favorable with the 135-degree build angle in contrast with the 210-degree build angle where the deviation was observed around the critical marginal area. Within the limitations of this study, the recommended build angle using the current DLP system was 135 degrees. Among the selected build angles, it offers the highest dimensional accuracy and the most favorable deviation pattern. It also offers a self-supporting crown geometry throughout the building process.
Liquid crystal thermography and true-colour digital image processing
NASA Astrophysics Data System (ADS)
Stasiek, J.; Stasiek, A.; Jewartowski, M.; Collins, M. W.
2006-06-01
In the last decade thermochromic liquid crystals (TLC) and true-colour digital image processing have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. Thin coatings of TLCs at surfaces are utilized to obtain detailed temperature distributions and heat transfer rates for steady or transient processes. Liquid crystals also can be used to make visible the temperature and velocity fields in liquids by the simple expedient of directly mixing the liquid crystal material into the liquid (water, glycerol, glycol, and silicone oils) in very small quantities to use as thermal and hydrodynamic tracers. In biomedical situations e.g., skin diseases, breast cancer, blood circulation and other medical application, TLC and image processing are successfully used as an additional non-invasive diagnostic method especially useful for screening large groups of potential patients. The history of this technique is reviewed, principal methods and tools are described and some examples are also presented.
Desolvation Induced Origami of Photocurable Polymers by Digit Light Processing.
Zhao, Zeang; Wu, Jiangtao; Mu, Xiaoming; Chen, Haosen; Qi, H Jerry; Fang, Daining
2017-07-01
Self-folding origami is of great interest in current research on functional materials and structures, but there is still a challenge to develop a simple method to create freestanding, reversible, and complex origami structures. This communication provides a feasible solution to this challenge by developing a method based on the digit light processing technique and desolvation-induced self-folding. In this new method, flat polymer sheets can be cured by a light field from a commercial projector with varying intensity, and the self-folding process is triggered by desolvation in water. Folded origami structures can be recovered once immersed in the swelling medium. The self-folding process is investigated both experimentally and theoretically. Diverse 3D origami shapes are demonstrated. This method can be used for responsive actuators and the fabrication of 3D electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holographic digital microscopy in on-line process control
NASA Astrophysics Data System (ADS)
Osanlou, Ardeshir
2011-09-01
This article investigates the feasibility of real-time three-dimensional imaging of microscopic objects within various emulsions while being produced in specialized production vessels. The study is particularly relevant to on-line process monitoring and control in chemical, pharmaceutical, food, cleaning, and personal hygiene industries. Such processes are often dynamic and the materials cannot be measured once removed from the production vessel. The technique reported here is applicable to three-dimensional characterization analyses on stirred fluids in small reaction vessels. Relatively expensive pulsed lasers have been avoided through the careful control of the speed of the moving fluid in relation to the speed of the camera exposure and the wavelength of the continuous wave laser used. The ultimate aim of the project is to introduce a fully robust and compact digital holographic microscope as a process control tool in a full size specialized production vessel.
A digital ISO expansion technique for digital cameras
NASA Astrophysics Data System (ADS)
Yoo, Youngjin; Lee, Kangeui; Choe, Wonhee; Park, SungChan; Lee, Seong-Deok; Kim, Chang-Yong
2010-01-01
Market's demands of digital cameras for higher sensitivity capability under low-light conditions are remarkably increasing nowadays. The digital camera market is now a tough race for providing higher ISO capability. In this paper, we explore an approach for increasing maximum ISO capability of digital cameras without changing any structure of an image sensor or CFA. Our method is directly applied to the raw Bayer pattern CFA image to avoid non-linearity characteristics and noise amplification which are usually deteriorated after ISP (Image Signal Processor) of digital cameras. The proposed method fuses multiple short exposed images which are noisy, but less blurred. Our approach is designed to avoid the ghost artifact caused by hand-shaking and object motion. In order to achieve a desired ISO image quality, both low frequency chromatic noise and fine-grain noise that usually appear in high ISO images are removed and then we modify the different layers which are created by a two-scale non-linear decomposition of an image. Once our approach is performed on an input Bayer pattern CFA image, the resultant Bayer image is further processed by ISP to obtain a fully processed RGB image. The performance of our proposed approach is evaluated by comparing SNR (Signal to Noise Ratio), MTF50 (Modulation Transfer Function), color error ~E*ab and visual quality with reference images whose exposure times are properly extended into a variety of target sensitivity.
Automatic rice crop height measurement using a field server and digital image processing.
Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit
2014-01-07
Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.
Peuquet, D.J.
1981-01-01
Current graphic devices suitable for high-speed computer input and output of cartographic data are tending more and more to be raster-oriented, such as the rotating drum scanner and the color raster display. However, the majority of commonly used manipulative techniques in computer-assisted cartography and automated spatial data handling continue to require that the data be in vector format. The current article is the second part of a two-part paper that examines the state of the art in these conversion techniques. - from Author
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ming; Harvey, David M.
2012-03-01
Various signal processing techniques have been used for the enhancement of defect detection and defect characterisation. Cross-correlation, filtering, autoregressive analysis, deconvolution, neural network, wavelet transform and sparse signal representations have all been applied in attempts to analyse ultrasonic signals. In ultrasonic nondestructive evaluation (NDE) applications, a large number of materials have multilayered structures. NDE of multilayered structures leads to some specific problems, such as penetration, echo overlap, high attenuation and low signal-to-noise ratio. The signals recorded from a multilayered structure are a class of very special signals comprised of limited echoes. Such signals can be assumed to have a sparse representation in a proper signal dictionary. Recently, a number of digital signal processing techniques have been developed by exploiting the sparse constraint. This paper presents a review of research to date, showing the up-to-date developments of signal processing techniques made in ultrasonic NDE. A few typical ultrasonic signal processing techniques used for NDE of multilayered structures are elaborated. The practical applications and limitations of different signal processing methods in ultrasonic NDE of multilayered structures are analysed.
Applied Space Systems Engineering. Chapter 17; Manage Technical Data
NASA Technical Reports Server (NTRS)
Kent, Peter
2008-01-01
Effective space systems engineering (SSE) is conducted in a fully electronic manner. Competitive hardware, software, and system designs are created in a totally digital environment that enables rapid product design and manufacturing cycles, as well as a multitude of techniques such as modeling, simulation, and lean manufacturing that significantly reduce the lifecycle cost of systems. Because the SSE lifecycle depends on the digital environment, managing the enormous volumes of technical data needed to describe, build, deploy, and operate systems is a critical factor in the success of a project. This chapter presents the key aspects of Technical Data Management (TDM) within the SSE process. It is written from the perspective of the System Engineer tasked with establishing the TDM process and infrastructure for a major project. Additional perspectives are reflected from the point of view of the engineers on the project who work within the digital engineering environment established by the TDM toolset and infrastructure, and from the point of view of the contactors who interface via the TDM infrastructure. Table 17.1 lists the TDM process as it relates to SSE.
Thom, Joseph; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G
2013-08-12
We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.
Samei, Ehsan; Buhr, Egbert; Granfors, Paul; Vandenbroucke, Dirk; Wang, Xiaohui
2005-08-07
The modulation transfer function (MTF) is well established as a metric to characterize the resolution performance of a digital radiographic system. Implemented by various laboratories, the edge technique is currently the most widespread approach to measure the MTF. However, there can be differences in the results attributed to differences in the analysis technique employed. The objective of this study was to determine whether comparable results can be obtained from different algorithms processing identical images representative of those of current digital radiographic systems. Five laboratories participated in a round-robin evaluation of six different algorithms including one prescribed in the International Electrotechnical Commission (IEC) 62220-1 standard. The algorithms were applied to two synthetic and 12 real edge images from different digital radiographic systems including CR, and direct- and indirect-conversion detector systems. The results were analysed in terms of variability as well as accuracy of the resulting presampled MTFs. The results indicated that differences between the individual MTFs and the mean MTF were largely below 0.02. In the case of the two simulated edge images, all algorithms yielded similar results within 0.01 of the expected true MTF. The findings indicated that all algorithms tested in this round-robin evaluation, including the IEC-prescribed algorithm, were suitable for accurate MTF determination from edge images, provided the images are not excessively noisy. The agreement of the MTF results was judged sufficient for the measurement of the MTF necessary for the determination of the DQE.
NASA Astrophysics Data System (ADS)
Dogon-yaro, M. A.; Kumar, P.; Rahman, A. Abdul; Buyuksalih, G.
2016-10-01
Timely and accurate acquisition of information on the condition and structural changes of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting tree features include; ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraint, such as labour intensive field work, a lot of financial requirement, influences by weather condition and topographical covers which can be overcome by means of integrated airborne based LiDAR and very high resolution digital image datasets. This study presented a semi-automated approach for extracting urban trees from integrated airborne based LIDAR and multispectral digital image datasets over Istanbul city of Turkey. The above scheme includes detection and extraction of shadow free vegetation features based on spectral properties of digital images using shadow index and NDVI techniques and automated extraction of 3D information about vegetation features from the integrated processing of shadow free vegetation image and LiDAR point cloud datasets. The ability of the developed algorithms shows a promising result as an automated and cost effective approach to estimating and delineated 3D information of urban trees. The research also proved that integrated datasets is a suitable technology and a viable source of information for city managers to be used in urban trees management.
Development of a digital automatic control law for steep glideslope capture and flare
NASA Technical Reports Server (NTRS)
Halyo, N.
1977-01-01
A longitudinal digital guidance and control law for steep glideslopes using MLS (Microwave Landing System) data is developed for CTOL aircraft using modern estimation and control techniques. The control law covers the final approach phases of glideslope capture, glideslope tracking, and flare to touchdown for automatic landings under adverse weather conditions. The control law uses a constant gain Kalman filter to process MLS and body-mounted accelerometer data to form estimates of flight path errors and wind velocities including wind shear. The flight path error estimates and wind estimates are used for feedback in generating control surface commands. Results of a digital simulation of the aircraft dynamics and the guidance and control law are presented for various wind conditions.
Effective use of remote sensing products in litigation
NASA Technical Reports Server (NTRS)
Jaynes, R. A.
1983-01-01
A boiled-down version of major legal principles affecting the admissibility of data and products from remote sensing devices is presented. It is suggested that enhancements or classifications of digital data (from scanning devices or from digitized aerial photography) be proffered as evidence in a fashion similar to the manner in which maps from photogrammetric techniques are introduced as evidence. Every effort should be made to illucidate the processes by which digital data are analytically treated or manipulated. Remote sensing expert witnesses should be practiced in providing concise and clear explanations of both data and methods. Special emphasis should be placed on being prepared to provide a detailed accounting of steps taken to calibrate and verify spectral characteristics with ground truth.
3D printing in social education: Eki-Fab and student PBL
NASA Astrophysics Data System (ADS)
Makino, Masato; Saito, Azusa; Kodama, Mai; Takamatsu, Kyuuichiro; Tamate, Hideaki; Sakai, Kazuyuki; Wada, Masato; Khosla, Ajit; Kawakami, Masaru; Furukawa, Hidemitsu
2017-04-01
Additive manufacturing or 3D printer is one of the most innovative material processing methods. We are considering that human resources for 3D printing would be needed in the future. To educate the abilities of the digital fabrication, we have the public digital fabrication space "Eki-Fab" for junior and high school students and Project Based Learning (PBL) class for undergraduate students. Eki-Fab is held on every Saturday at the Yonezawa train station. In the "Eki-Fab", anybody can study the utilizing of 3D printer and modeling technics under the instruction of staff in Yamagata University. In the PBL class, we have the class every Thursday. The students get the techniques of the digital fabrication through the PBL.
Digital video steganalysis exploiting collusion sensitivity
NASA Astrophysics Data System (ADS)
Budhia, Udit; Kundur, Deepa
2004-09-01
In this paper we present an effective steganalyis technique for digital video sequences based on the collusion attack. Steganalysis is the process of detecting with a high probability and low complexity the presence of covert data in multimedia. Existing algorithms for steganalysis target detecting covert information in still images. When applied directly to video sequences these approaches are suboptimal. In this paper, we present a method that overcomes this limitation by using redundant information present in the temporal domain to detect covert messages in the form of Gaussian watermarks. Our gains are achieved by exploiting the collusion attack that has recently been studied in the field of digital video watermarking, and more sophisticated pattern recognition tools. Applications of our scheme include cybersecurity and cyberforensics.
NASA Astrophysics Data System (ADS)
Marrugo, Andrés G.; Millán, María S.; Cristóbal, Gabriel; Gabarda, Salvador; Sorel, Michal; Sroubek, Filip
2012-06-01
Medical digital imaging has become a key element of modern health care procedures. It provides visual documentation and a permanent record for the patients, and most important the ability to extract information about many diseases. Modern ophthalmology thrives and develops on the advances in digital imaging and computing power. In this work we present an overview of recent image processing techniques proposed by the authors in the area of digital eye fundus photography. Our applications range from retinal image quality assessment to image restoration via blind deconvolution and visualization of structural changes in time between patient visits. All proposed within a framework for improving and assisting the medical practice and the forthcoming scenario of the information chain in telemedicine.
A seamless acquisition digital storage oscilloscope with three-dimensional waveform display
NASA Astrophysics Data System (ADS)
Yang, Kuojun; Tian, Shulin; Zeng, Hao; Qiu, Lei; Guo, Lianping
2014-04-01
In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, which converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.
A seamless acquisition digital storage oscilloscope with three-dimensional waveform display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Kuojun, E-mail: kuojunyang@gmail.com; Guo, Lianping; School of Electrical and Electronic Engineering, Nanyang Technological University
In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, whichmore » converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.« less
Restoration of singularities in reconstructed phase of crystal image in electron holography.
Li, Wei; Tanji, Takayoshi
2014-12-01
Off-axis electron holography can be used to measure the inner potential of a specimen from its reconstructed phase image and is thus a powerful technique for materials scientists. However, abrupt reversals of contrast from white to black may sometimes occur in a digitally reconstructed phase image, which results in inaccurate information. Such phase distortion is mainly due to the digital reconstruction process and weak electron wave amplitude in some areas of the specimen. Therefore, digital image processing can be applied to the reconstruction and restoration of phase images. In this paper, fringe reconnection processing is applied to phase image restoration of a crystal structure image. The disconnection and wrong connection of interference fringes in the hologram that directly cause a 2π phase jump imperfection are correctly reconnected. Experimental results show that the phase distortion is significantly reduced after the processing. The quality of the reconstructed phase image was improved by the removal of imperfections in the final phase. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Implementation and evaluation of ILLIAC 4 algorithms for multispectral image processing
NASA Technical Reports Server (NTRS)
Swain, P. H.
1974-01-01
Data concerning a multidisciplinary and multi-organizational effort to implement multispectral data analysis algorithms on a revolutionary computer, the Illiac 4, are reported. The effectiveness and efficiency of implementing the digital multispectral data analysis techniques for producing useful land use classifications from satellite collected data were demonstrated.
1999-05-05
processing and artificial neural network (ANN) technology. The detector will classify incipient faults based on real-tine vibration data taken from the...provided the vibration data necessary to develop and test the feasibility of en artificial neural network for fault classification. This research
A Contextual Model for Identity Management (IdM) Interfaces
ERIC Educational Resources Information Center
Fuller, Nathaniel J.
2014-01-01
The usability of Identity Management (IdM) systems is highly dependent upon design that simplifies the processes of identification, authentication, and authorization. Recent findings reveal two critical problems that degrade IdM usability: (1) unfeasible techniques for managing various digital identifiers, and (2) ambiguous security interfaces.…
NASA Astrophysics Data System (ADS)
Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan
2015-03-01
Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.
High data volume and transfer rate techniques used at NASA's image processing facility
NASA Technical Reports Server (NTRS)
Heffner, P.; Connell, E.; Mccaleb, F.
1978-01-01
Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.
An on-board processing satellite payload for European mobile communications
NASA Astrophysics Data System (ADS)
Evans, B. G.; Casewell, I. E.; Craig, A. D.
1987-06-01
An examination of the use of satellite on-board processing (OBP) for land mobile applications shows the feasibility of designing an OBP payload to satisfy the functional requirements of the land mobile system projected for the 1990s. Following a discussion of the proposed land mobile system, advantages of OBP over conventional transport payloads are considered. The use of digital signal processing techniques is shown to provide a solution for the merging of the routing and transmultiplexing functions into a single element, and such techniques are ideally suited to space applications. It is suggested that the projected power, mass, and size estimates are compatible with the payload capacity of one of the large Olympus satellites.
NASA Astrophysics Data System (ADS)
Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.
2016-03-01
Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.
Direct write of microlens array using digital projection photopolymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Yi; Chen Shaochen
Microlens array is a key element in the field of information processing, optoelectronics, and integrated optics. Many existing fabrication processes remain expensive and complicated even though relatively low-cost replication processes have been developed. Here, we demonstrate the fabrication of microlens arrays through projection photopolymerization using a digital micromirror device (DMD) as a dynamic photomask. The DMD projects grayscale images, which are designed in a computer, onto a photocurable resin. The resin is then solidified with its thickness determined by a grayscale ultraviolet light and exposure time. Therefore, various geometries can be formed in a single-step, massively parallel fashion. We presentmore » microlens arrays made of acrylate-based polymer precursor. The physical and optical characteristics of the resulting lenses suggest that this fabrication technique is potentially suitable for applications in integrated optics.« less
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Goldberg, M.
1982-01-01
NASA's Eastern Regional Remote Sensing Applications Center (ERRSAC) has recognized the need to accommodate spatial analysis techniques in its remote sensing technology transfer program. A computerized Geographic Information System to incorporate remotely sensed data, specifically Landsat, with other relevant data was considered a realistic approach to address a given resource problem. Questions arose concerning the selection of a suitable available software system to demonstrate, train, and undertake demonstration projects with ERRSAC's user community. The very specific requirements for such a system are discussed. The solution found involved the addition of geographic information processing functions to the Interactive Digital Image Manipulation System (IDIMS). Details regarding the functions of the new integrated system are examined along with the characteristics of the software.
ERIC Educational Resources Information Center
Anderson, Paul S.; Schoner, James S.
The MDT multi-digit technique, a development in testing technology, is described; and its application to science classrooms is discussed. Some actual materials for use in a cell biology class are included. The primary characteristic of an MDT multi-digit test is a long list of possible responses, with each term marked with a three-digit number…
Serial position effects in the identification of letters, digits, and symbols.
Tydgat, Ilse; Grainger, Jonathan
2009-04-01
In 6 experiments, the authors investigated the form of serial position functions for identification of letters, digits, and symbols presented in strings. The results replicated findings obtained with the target search paradigm, showing an interaction between the effects of serial position and type of stimulus, with symbols generating a distinct serial position function compared with letters and digits. When the task was 2-alternative forced choice, this interaction was driven almost exclusively by performance at the first position in the string, with letters and digits showing much higher levels of accuracy than symbols at this position. A final-position advantage was reinstated in Experiment 6 by placing the two alternative responses below the target string. The end-position (first and last positions) advantage for letters and digits compared with symbol stimuli was further confirmed with the bar-probe technique (postcued partial report) in Experiments 5 and 6. Overall, the results further support the existence of a specialized mechanism designed to optimize processing of strings of letters and digits by modifying the size and shape of retinotopic character detectors' receptive fields. (c) 2009 APA, all rights reserved.
Digital test assembly of truck parts with the IMMA-tool--an illustrative case.
Hanson, L; Högberg, D; Söderholm, M
2012-01-01
Several digital human modelling (DHM) tools have been developed for simulation and visualisation of human postures and motions. In 2010 the DHM tool IMMA (Intelligently Moving Manikins) was introduced as a DHM tool that uses advanced path planning techniques to generate collision free and biomechanically acceptable motions for digital human models (as well as parts) in complex assembly situations. The aim of the paper is to illustrate how the IPS/IMMA tool is used at Scania CV AB in a digital test assembly process, and to compare the tool with other DHM tools on the market. The illustrated case of using the IMMA tool, here combined with the path planner tool IPS, indicates that the tool is promising. The major strengths of the tool are its user friendly interface, the motion generation algorithms, the batch simulation of manikins and the ergonomics assessment methods that consider time.
Digital fabrication of textiles: an analysis of electrical networks in 3D knitted functional fabrics
NASA Astrophysics Data System (ADS)
Vallett, Richard; Knittel, Chelsea; Christe, Daniel; Castaneda, Nestor; Kara, Christina D.; Mazur, Krzysztof; Liu, Dani; Kontsos, Antonios; Kim, Youngmoo; Dion, Genevieve
2017-05-01
Digital fabrication methods are reshaping design and manufacturing processes through the adoption of pre-production visualization and analysis tools, which help minimize waste of materials and time. Despite the increasingly widespread use of digital fabrication techniques, comparatively few of these advances have benefited the design and fabrication of textiles. The development of functional fabrics such as knitted touch sensors, antennas, capacitors, and other electronic textiles could benefit from the same advances in electrical network modeling that revolutionized the design of integrated circuits. In this paper, the efficacy of using current state-of-the-art digital fabrication tools over the more common trialand- error methods currently used in textile design is demonstrated. Gaps are then identified in the current state-of-the-art tools that must be resolved to further develop and streamline the rapidly growing field of smart textiles and devices, bringing textile production into the realm of 21st century manufacturing.
Radiation Effects and Hardening Techniques for Spacecraft Microelectronics
NASA Astrophysics Data System (ADS)
Gambles, J. W.; Maki, G. K.
2002-01-01
The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.
Shui, Wuyang; Zhou, Mingquan; Chen, Shi; Pan, Zhouxian; Deng, Qingqiong; Yao, Yong; Pan, Hui; He, Taiping; Wang, Xingce
2017-01-01
Virtual digital resources and printed models have become indispensable tools for medical training and surgical planning. Nevertheless, printed models of soft tissue organs are still challenging to reproduce. This study adopts open source packages and a low-cost desktop 3D printer to convert multiple modalities of medical images to digital resources (volume rendering images and digital models) and lifelike printed models, which are useful to enhance our understanding of the geometric structure and complex spatial nature of anatomical organs. Neuroimaging technologies such as CT, CTA, MRI, and TOF-MRA collect serial medical images. The procedures for producing digital resources can be divided into volume rendering and medical image reconstruction. To verify the accuracy of reconstruction, this study presents qualitative and quantitative assessments. Subsequently, digital models are archived as stereolithography format files and imported to the bundled software of the 3D printer. The printed models are produced using polylactide filament materials. We have successfully converted multiple modalities of medical images to digital resources and printed models for both hard organs (cranial base and tooth) and soft tissue organs (brain, blood vessels of the brain, the heart chambers and vessel lumen, and pituitary tumor). Multiple digital resources and printed models were provided to illustrate the anatomical relationship between organs and complicated surrounding structures. Three-dimensional printing (3DP) is a powerful tool to produce lifelike and tangible models. We present an available and cost-effective method for producing both digital resources and printed models. The choice of modality in medical images and the processing approach is important when reproducing soft tissue organs models. The accuracy of the printed model is determined by the quality of organ models and 3DP. With the ongoing improvement of printing techniques and the variety of materials available, 3DP will become an indispensable tool in medical training and surgical planning.
NASA Astrophysics Data System (ADS)
Flores-Moreno, J. M.; Furlong, Cosme; Cheng, Jeffrey T.; Rosowski, John J.; Merchant, S. N.
2011-08-01
Recently, we introduced a Digital Optoelectronic Holographic System (DOEHS) for measurement of acoustically induced deformations of the human tympanic membrane (TM) in order to study and diagnose pathologic conditions of the middle-ear. The DOEHS consists of laser-delivery illumination (IS), optical head (OH), image-processing computer (IP), and positioning arm (PS) subsystems. Holographic information is recorded by a CCD and numerically reconstructed by Fresnel approximation. Our holographic otoscope system is currently deployed in a clinic and is packaged in a custom design. Since digital holography is a high sensitivity measurement technique and the interfering light waves travel along different paths, it makes measurements acquired by DOEHS susceptible to external vibrations. In order to avoid this susceptibility, we are testing a shearography setup as OH. Shearography presents same advantages as holographic interferometry, but it is less susceptible to vibration and external noise, which is a characteristic needed for the use of our techniques in a clinical environment. In this paper we present work in progress in our development of a shearography technique based on a Mach-Zehnder configuration as OH and demonstrate its application by quantifying vibrations modes in thin membranes, including human TM. Results are compared with those obtained with DOEHS.
Reduction and analysis of data collected during the electromagnetic tornado experiment
NASA Technical Reports Server (NTRS)
Davisson, L. D.
1976-01-01
Techniques for data processing and analysis are described to support tornado detection by analysis of radio frequency interference in various frequency bands, and sea state determination from short pulse radar measurements. Activities include: strip chart recording of tornado data; the development and implementation of computer programs for digitalization and analysis of the data; data reduction techniques for short pulse radar data, and the simulation of radar returns from the sea surface by computer models.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Paradella, W. R.; Vitorello, I.
1982-01-01
Several aspects of computer-assisted analysis techniques for image enhancement and thematic classification by which LANDSAT MSS imagery may be treated quantitatively are explained. On geological applications, computer processing of digital data allows, possibly, the fullest use of LANDSAT data, by displaying enhanced and corrected data for visual analysis and by evaluating and assigning each spectral pixel information to a given class.
NASA Astrophysics Data System (ADS)
McEwan, W.; Butterfield, J.
2011-05-01
The well established benefits of composite materials are driving a significant shift in design and manufacture strategies for original equipment manufacturers (OEMs). Thermoplastic composites have advantages over the traditional thermosetting materials with regards to sustainability and environmental impact, features which are becoming increasingly pertinent in the aerospace arena. However, when sustainability and environmental impact are considered as design drivers, integrated methods for part design and product development must be developed so that any benefits of sustainable composite material systems can be assessed during the design process. These methods must include mechanisms to account for process induced part variation and techniques related to re-forming, recycling and decommissioning, which are in their infancy. It is proposed in this paper that predictive techniques related to material specification, part processing and product cost of thermoplastic composite components, be integrated within a Through Life Management (TLM) product development methodology as part of a larger strategy of product system modeling to improve disciplinary concurrency, realistic part performance, and to place sustainability at the heart of the design process. This paper reports the enhancement of digital manufacturing tools as a means of drawing simulated part manufacturing scenarios, real time costing mechanisms, and broader lifecycle performance data capture into the design cycle. The work demonstrates predictive processes for sustainable composite product manufacture and how a Product-Process-Resource (PPR) structure can be customised and enhanced to include design intent driven by `Real' part geometry and consequent assembly. your paper.
Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry
Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.
2010-01-01
Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will both allow better dissemination of this technology and better exploit the traditionally underutilized parameter of fluorescence lifetime. PMID:20662090
NASA Astrophysics Data System (ADS)
Sankaran, A.; Chuang, Keh-Shih; Yonekawa, Hisashi; Huang, H. K.
1992-06-01
The imaging characteristics of two chest radiographic equipment, Advanced Multiple Beam Equalization Radiography (AMBER) and Konica Direct Digitizer [using a storage phosphor (SP) plate] systems have been compared. The variables affecting image quality and the computer display/reading systems used are detailed. Utilizing specially designed wedge, geometric, and anthropomorphic phantoms, studies were conducted on: exposure and energy response of detectors; nodule detectability; different exposure techniques; various look- up tables (LUTs), gray scale displays and laser printers. Methods for scatter estimation and reduction were investigated. It is concluded that AMBER with screen-film and equalization techniques provides better nodule detectability than SP plates. However, SP plates have other advantages such as flexibility in the selection of exposure techniques, image processing features, and excellent sensitivity when combined with optimum reader operating modes. The equalization feature of AMBER provides better nodule detectability under the denser regions of the chest. Results of diagnostic accuracy are demonstrated with nodule detectability plots and analysis of images obtained with phantoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yonggang
In implementation of nuclear safeguards, many different techniques are being used to monitor operation of nuclear facilities and safeguard nuclear materials, ranging from radiation detectors, flow monitors, video surveillance, satellite imagers, digital seals to open source search and reports of onsite inspections/verifications. Each technique measures one or more unique properties related to nuclear materials or operation processes. Because these data sets have no or loose correlations, it could be beneficial to analyze the data sets together to improve the effectiveness and efficiency of safeguards processes. Advanced visualization techniques and machine-learning based multi-modality analysis could be effective tools in such integratedmore » analysis. In this project, we will conduct a survey of existing visualization and analysis techniques for multi-source data and assess their potential values in nuclear safeguards.« less
Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S
2014-01-01
Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.
Discrete Walsh Hadamard transform based visible watermarking technique for digital color images
NASA Astrophysics Data System (ADS)
Santhi, V.; Thangavelu, Arunkumar
2011-10-01
As the size of the Internet is growing enormously the illegal manipulation of digital multimedia data become very easy with the advancement in technology tools. In order to protect those multimedia data from unauthorized access the digital watermarking system is used. In this paper a new Discrete walsh Hadamard Transform based visible watermarking system is proposed. As the watermark is embedded in transform domain, the system is robust to many signal processing attacks. Moreover in this proposed method the watermark is embedded in tiling manner in all the range of frequencies to make it robust to compression and cropping attack. The robustness of the algorithm is tested against noise addition, cropping, compression, Histogram equalization and resizing attacks. The experimental results show that the algorithm is robust to common signal processing attacks and the observed peak signal to noise ratio (PSNR) of watermarked image is varying from 20 to 30 db depends on the size of the watermark.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poling, Whitney A.; Savic, Vesna; Hector, Louis G.
2016-04-05
The strain-induced, diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain in TRIP-assisted steels with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut frommore » the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing. Results obtained for a QP980 steel are used to study the influence of initial volume fraction of austenite and the austenite transformation with strain on tensile mechanical behavior.« less
Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George
2017-06-26
We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.
High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations
NASA Astrophysics Data System (ADS)
Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas
2007-10-01
A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.
Okur, O M; Şener, A; Kavakli, H Ş; Çelik, G K; Doğan, N Ö; Içme, F; Günaydin, G P
2017-12-01
We aimed to compare two digital nerve block techniques in patients due to traumatic digital lacerations. This was a randomized-controlled study designed prospectively in the emergency department of a university-based training and research hospital. Randomization was achieved by sealed envelopes. Half of the patients were randomised to traditional (two-injection) digital nerve block technique while single-injection digital nerve block technique was applied to the other half. Score of pain due to anesthetic infiltration and suturing, onset time of total anesthesia, need for an additional rescue injection were the parameters evaluated with both groups. Epinephrin added lidocaine hydrochloride preparation was used for the anesthetic application. Visual analog scale was used for the evaluation of pain scores. Outcomes were compared by using Mann-Whitney U test and Student t-test. Fifty emergency department patients ≥18 years requiring digital nerve block were enrolled in the study. Mean age of the patients was 33 (min-max: 19-86) and 39 (78 %) were male. No statistically significant difference was found between the two groups in terms of our main parameters; anesthesia pain score, suturing pain score, onset time of total anesthesia and rescue injection need. Single injection volar digital nerve block technique is a suitable alternative for digital anesthesias in emergency departments.
Kamimura, Emi; Tanaka, Shinpei; Takaba, Masayuki; Tachi, Keita; Baba, Kazuyoshi
2017-01-01
The aim of this study was to evaluate and compare the inter-operator reproducibility of three-dimensional (3D) images of teeth captured by a digital impression technique to a conventional impression technique in vivo. Twelve participants with complete natural dentition were included in this study. A digital impression of the mandibular molars of these participants was made by two operators with different levels of clinical experience, 3 or 16 years, using an intra-oral scanner (Lava COS, 3M ESPE). A silicone impression also was made by the same operators using the double mix impression technique (Imprint3, 3M ESPE). Stereolithography (STL) data were directly exported from the Lava COS system, while STL data of a plaster model made from silicone impression were captured by a three-dimensional (3D) laboratory scanner (D810, 3shape). The STL datasets recorded by two different operators were compared using 3D evaluation software and superimposed using the best-fit-algorithm method (least-squares method, PolyWorks, InnovMetric Software) for each impression technique. Inter-operator reproducibility as evaluated by average discrepancies of corresponding 3D data was compared between the two techniques (Wilcoxon signed-rank test). The visual inspection of superimposed datasets revealed that discrepancies between repeated digital impression were smaller than observed with silicone impression. Confirmation was forthcoming from statistical analysis revealing significantly smaller average inter-operator reproducibility using a digital impression technique (0.014± 0.02 mm) than when using a conventional impression technique (0.023 ± 0.01 mm). The results of this in vivo study suggest that inter-operator reproducibility with a digital impression technique may be better than that of a conventional impression technique and is independent of the clinical experience of the operator.
NASA Technical Reports Server (NTRS)
Houts, R. C.; Burlage, D. W.
1972-01-01
A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.
Development of a parameter optimization technique for the design of automatic control systems
NASA Technical Reports Server (NTRS)
Whitaker, P. H.
1977-01-01
Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.
Imaging photonic crystals using hemispherical digital condensers and phase-recovery techniques.
Alotaibi, Maged; Skinner-Ramos, Sueli; Farooq, Hira; Alharbi, Nouf; Alghasham, Hawra; de Peralta, Luis Grave
2018-05-10
We describe experiments where Fourier ptychographic microscopy (FPM) and dual-space microscopy (DSM) are implemented for imaging photonic crystals using a hemispherical digital condenser (HDC). Phase-recovery imaging simulations show that both techniques should be able to image photonic crystals with a period below the Rayleigh resolution limit. However, after processing the experimental images using both phase-recovery algorithms, we found that DSM can, but FPM cannot, image periodic structures with a period below the diffraction limit. We studied the origin of this apparent contradiction between simulations and experiments, and we concluded that the occurrence of unwanted reflections in the HDC is the source of the apparent failure of FPM. We thereafter solved the problem of reflections by using a single-directional illumination source and showed that FPM can image photonic crystals with a period below the Rayleigh resolution limit.
NASA Astrophysics Data System (ADS)
Ahn, Y.; Box, J. E.; Balog, J.; Lewinter, A.
2008-12-01
Monitoring Greenland outlet glaciers using remotely sensed data has drawn a great attention in earth science communities for decades and time series analysis of sensory data has provided important variability information of glacier flow by detecting speed and thickness changes, tracking features and acquiring model input. Thanks to advancements of commercial digital camera technology and increased solid state storage, we activated automatic ground-based time-lapse camera stations with high spatial/temporal resolution in west Greenland outlet and collected one-hour interval data continuous for more than one year at some but not all sites. We believe that important information of ice dynamics are contained in these data and that terrestrial mono-/stereo-photogrammetry can provide theoretical/practical fundamentals in data processing along with digital image processing techniques. Time-lapse images over periods in west Greenland indicate various phenomenon. Problematic is rain, snow, fog, shadows, freezing of water on camera enclosure window, image over-exposure, camera motion, sensor platform drift, and fox chewing of instrument cables, and the pecking of plastic window by ravens. Other problems include: feature identification, camera orientation, image registration, feature matching in image pairs, and feature tracking. Another obstacle is that non-metric digital camera contains large distortion to be compensated for precise photogrammetric use. Further, a massive number of images need to be processed in a way that is sufficiently computationally efficient. We meet these challenges by 1) identifying problems in possible photogrammetric processes, 2) categorizing them based on feasibility, and 3) clarifying limitation and alternatives, while emphasizing displacement computation and analyzing regional/temporal variability. We experiment with mono and stereo photogrammetric techniques in the aide of automatic correlation matching for efficiently handling the enormous data volumes.
Linguistically informed digital fingerprints for text
NASA Astrophysics Data System (ADS)
Uzuner, Özlem
2006-02-01
Digital fingerprinting, watermarking, and tracking technologies have gained importance in the recent years in response to growing problems such as digital copyright infringement. While fingerprints and watermarks can be generated in many different ways, use of natural language processing for these purposes has so far been limited. Measuring similarity of literary works for automatic copyright infringement detection requires identifying and comparing creative expression of content in documents. In this paper, we present a linguistic approach to automatically fingerprinting novels based on their expression of content. We use natural language processing techniques to generate "expression fingerprints". These fingerprints consist of both syntactic and semantic elements of language, i.e., syntactic and semantic elements of expression. Our experiments indicate that syntactic and semantic elements of expression enable accurate identification of novels and their paraphrases, providing a significant improvement over techniques used in text classification literature for automatic copy recognition. We show that these elements of expression can be used to fingerprint, label, or watermark works; they represent features that are essential to the character of works and that remain fairly consistent in the works even when works are paraphrased. These features can be directly extracted from the contents of the works on demand and can be used to recognize works that would not be correctly identified either in the absence of pre-existing labels or by verbatim-copy detectors.
Textured digital elevation model formation from low-cost UAV LADAR/digital image data
NASA Astrophysics Data System (ADS)
Bybee, Taylor C.; Budge, Scott E.
2015-05-01
Textured digital elevation models (TDEMs) have valuable use in precision agriculture, situational awareness, and disaster response. However, scientific-quality models are expensive to obtain using conventional aircraft-based methods. The cost of creating an accurate textured terrain model can be reduced by using a low-cost (<$20k) UAV system fitted with ladar and electro-optical (EO) sensors. A texel camera fuses calibrated ladar and EO data upon simultaneous capture, creating a texel image. This eliminates the problem of fusing the data in a post-processing step and enables both 2D- and 3D-image registration techniques to be used. This paper describes formation of TDEMs using simulated data from a small UAV gathering swaths of texel images of the terrain below. Being a low-cost UAV, only a coarse knowledge of position and attitude is known, and thus both 2D- and 3D-image registration techniques must be used to register adjacent swaths of texel imagery to create a TDEM. The process of creating an aggregate texel image (a TDEM) from many smaller texel image swaths is described. The algorithm is seeded with the rough estimate of position and attitude of each capture. Details such as the required amount of texel image overlap, registration models, simulated flight patterns (level and turbulent), and texture image formation are presented. In addition, examples of such TDEMs are shown and analyzed for accuracy.