Sample records for digital readout electronics

  1. General-purpose readout electronics for white neutron source at China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Cao, P.; Qi, X.; Yu, T.; Ji, X.; Xie, L.; An, Q.

    2018-01-01

    The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.

  2. Present and Future Applications of Digital Electronics in Nuclear Science - a Commercial Prospective

    NASA Astrophysics Data System (ADS)

    Tan, Hui

    2011-10-01

    Digital readout electronics instrumenting radiation detectors have experienced significant advancements in the last decade or so. This on one hand can be attributed to the steady improvements in commercial digital processing components such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), field-programmable-gate-arrays (FPGAs), and digital-signal-processors (DSPs), and on the other hand can also be attributed to the increasing needs for improved time, position, and energy resolution in nuclear physics experiments, which have spurred the rapid development of commercial off-the-shelf high speed, high resolution digitizers or spectrometers. Absent from conventional analog electronics, the capability to record fast decaying pulses from radiation detectors in digital readout electronics has profoundly benefited nuclear physics researchers since they now can perform detailed pulse processing for applications such as gamma-ray tracking and decay-event selection and reconstruction. In this talk, present state-of-the-art digital readout electronics and its applications in a variety of nuclear science fields will be discussed, and future directions in hardware development for digital electronics will also be outlined, all from the prospective of a commercial manufacturer of digital electronics.

  3. Read-out electronics for DC squid magnetic measurements

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.

  4. Digital signal processing for the ATLAS/LUCID detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-07-01

    Both the detector and the associated read-out electronics have been improved in order to cope with the LHC luminosity increase foreseen for RUN 2 and RUN 3. The new operating conditions require a careful tuning of the read-out electronics in order to optimize the signal-to-noise ratio. The new read-out electronics will allow the use of digital filtering of the photo multiplier tube signals. In this talk, we will present the first results that we obtained in the optimization of the signal-to-noise ratio. In addition, we will introduce the next steps to adapt this system to high performance read-out chains formore » low energy gamma rays. Such systems are based, for instance, on Silicon Drift Detector devices and can be used in applications at Free-Electron-Laser facilities such as the XFEL under construction at DESY. (authors)« less

  5. Design and performance of the readout electronics chain of the Delphi Forward Ring Imaging Cherenkov Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, P.; Nielsen, B.S.; Formenti, F.

    1992-10-01

    In this paper the Front End Readout electronics chain of the Forward Ring Imaging CHerenkov (FRICH) Detector used at the Delphi experiment of the Large Electron Positron (LEP) collider is presented. The system incorporates a wide band low noise preamplifier, mounted in the proximity of the MultiWire Proportional Chamber, an Amplifying-Discriminating-Multiple-xing FASTBUS unit for further signal amplification, discrimination and channel reduction and a LEP Time Digitizer FASTBUS unit for time digitization. The paper gives a general view of the detector and its electronics with particular emphasis on the novel characteristics and capabilities of the system.

  6. KM3NeT Digital Optical Module electronics

    NASA Astrophysics Data System (ADS)

    Real, Diego

    2016-04-01

    The KM3NeT collaboration is currently building of a neutrino telescope with a volume of several cubic kilometres at the bottom of the Mediterranean Sea. The telescope consists of a matrix of Digital Optical Modules that will detect the Cherenkov light originated by the interaction of the neutrinos in the proximity of the detector. This contribution describes the main components of the read-out electronics of the Digital Optical Module: the Power Board, which delivers all the power supply required by the Digital Optical Molule electronics; the Central Logic Board, the main core of the read-out system, hosting 31 Time to Digital Converters with 1 ns resolution and the White Rabbit protocol embedded in the Central Logic Board Field Programmable Gate Array; the Octopus boards, that transfer the Low Voltage Digital Signals from the PMT bases to the Central Logic Board and finally the PMT bases, in charge of converting the analogue signal produced in the 31 3" PMTs into a Low Voltage Digital Signal.

  7. Readout Electronics for the Central Drift Chamber of the Belle-II Detector

    NASA Astrophysics Data System (ADS)

    Uchida, Tomohisa; Taniguchi, Takashi; Ikeno, Masahiro; Iwasaki, Yoshihito; Saito, Masatoshi; Shimazaki, Shoichi; Tanaka, Manobu M.; Taniguchi, Nanae; Uno, Shoji

    2015-08-01

    We have developed readout electronics for the central drift chamber (CDC) of the Belle-II detector. The space near the endplate of the CDC for installation of the electronics was limited by the detector structure. Due to the large amounts of data generated by the CDC, a high-speed data link, with a greater than one gigabit transfer rate, was required to transfer the data to a back-end computer. A new readout module was required to satisfy these requirements. This module processes 48 signals from the CDC, converts them to digital data and transfers it directly to the computer. All functions that transfer digital data via the high speed link were implemented on the single module. We have measured its electrical characteristics and confirmed that the results satisfy the requirements of the Belle-II experiment.

  8. Recent Results with CVD Diamond Trackers

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; White, C.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-08-01

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm 2 diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 μs shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm 2 diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch.

  9. Status of the photomultiplier-based FlashCam camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Pühlhofer, G.; Bauer, C.; Eisenkolb, F.; Florin, D.; Föhr, C.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Koziol, J.; Lahmann, R.; Manalaysay, A.; Marszalek, A.; Rajda, P. J.; Reimer, O.; Romaszkan, W.; Rupinski, M.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Weitzel, Q.; Winiarski, K.; Zietara, K.

    2014-07-01

    The FlashCam project is preparing a camera prototype around a fully digital FADC-based readout system, for the medium sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The FlashCam design is the first fully digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for digitization and triggering, and a high performance camera server as back end. It provides the option to easily implement different types of trigger algorithms as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. The readout of the front end modules into the camera server is Ethernet-based using standard Ethernet switches and a custom, raw Ethernet protocol. In the current implementation of the system, data transfer and back end processing rates of 3.8 GB/s and 2.4 GB/s have been achieved, respectively. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several ten kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, mechanically detached from the front end modules. It interfaces to the digital readout system via analogue signal transmission. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. By now, a 144-pixel mini-camera" setup, fully equipped with photomultipliers, PDP electronics, and digitization/ trigger electronics, has been realized and extensively tested. Preparations for a full-scale, 1764 pixel camera mechanics and a cooling system are ongoing. The paper describes the status of the project.

  10. Electronic readout system for the Belle II imaging Time-Of-Propagation detector

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-07-01

    The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e- collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.

  11. Characteristics of Various Photodiode Structures in CMOS Technology with Monolithic Signal Processing Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sourav; Chandratre, V. B.; Sukhwani, Menka

    2011-10-20

    Monolithic optical sensor with readout electronics are needed in optical communication, medical imaging and scintillator based gamma spectroscopy system. This paper presents the design of three different CMOS photodiode test structures and two readout channels in a commercial CMOS technology catering to the need of nuclear instrumentation. The three photodiode structures each of 1 mm{sup 2} with readout electronics are fabricated in 0.35 um, 4 metal, double poly, N-well CMOS process. These photodiode structures are based on available P-N junction of standard CMOS process i.e. N-well/P-substrate, P+/N-well/P-substrate and inter-digitized P+/N-well/P-substrate. The comparisons of typical characteristics among three fabricated photo sensorsmore » are reported in terms of spectral sensitivity, dark current and junction capacitance. Among the three photodiode structures N-well/P-substrate photodiode shows higher spectral sensitivity compared to the other two photodiode structures. The inter-digitized P+/N-well/P-substrate structure has enhanced blue response compared to N-well/P-substrate and P+/N-well/P-substrate photodiode. Design and test results of monolithic readout electronics, for three different CMOS photodiode structures for application related to nuclear instrumentation, are also reported.« less

  12. A rack-mounted precision waveguide-below-cutoff attenuator with an absolute electronic readout

    NASA Technical Reports Server (NTRS)

    Cook, C. C.

    1974-01-01

    A coaxial precision waveguide-below-cutoff attenuator is described which uses an absolute (unambiguous) electronic digital readout of displacement in inches in addition to the usual gear driven mechanical counter-dial readout in decibels. The attenuator is rack-mountable and has the input and output RF connectors in a fixed position. The attenuation rate for 55, 50, and 30 MHz operation is given along with a discussion of sources of errors. In addition, information is included to aid the user in making adjustments on the attenuator should it be damaged or disassembled for any reason.

  13. Compact pulse width modulation circuitry for silicon photomultiplier readout.

    PubMed

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-08-07

    The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger multiplexing ratios are possible, limited only by count rate issues.

  14. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Read-out Upgrade of the ATLAS Liquid Argon Calorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milic, A.

    The ATLAS Liquid Argon calorimeters are designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, an upgrade of the read-out electronics is being launched to cope with luminosities of up to 3x10{sup 34} cm{sup -2}s{sup -1}, which are beyond the original design by a factor of 3. An improved spatial granularity of the triggermore » primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the upgrade Phase-1 in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The read-out of the trigger signals will process 34000 so-called Super Cells at every LHC bunch-crossing at a frequency of 40 MHz. The new LTDB on-detector electronics is designed to be radiation tolerant in order to be operated for the remaining live-time of the ATLAS detector up to a total luminosity of 3000 fb{sup -1}. For the analog-to-digital conversion (12-bit ADC at 40 MSPS), the data serialization and the fast optical link (5.44 Gb/s) custom components have been developed. They have been qualified for the expected radiation environment of a total ionization dose of 1.3 kGy and a hadron fluence of 6 x 10{sup 13} h/cm{sup 2} with energies above 20 MeV. For the digital components like the ADC, cross-sections for single event effects have been determined. This talk will present R and D results from tests of the radiation tolerant components, the fast data processing electronics and prototypes of the LTDB and LDPS boards. First experience from a Demonstrator setup will be reported, in which about 1/10 of the full Super Cell readout will be equipped with prototype versions of the LTDB and LDPS boards. The Demonstrator will be operated in parallel to the regular ATLAS trigger read-out during the upcoming LHC run. (authors)« less

  15. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges

    NASA Astrophysics Data System (ADS)

    Elsobky, Mourad; Mahsereci, Yigit; Keck, Jürgen; Richter, Harald; Burghartz, Joachim N.

    2017-09-01

    Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI) substrate to form a Hybrid System-in-Foil (HySiF), which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing) of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA) in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC). The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC), a differential difference amplifier (DDA), and a 10-bit successive approximation register (SAR) ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.

  16. The Phase-2 electronics upgrade of the ATLAS liquid argon calorimeter system

    NASA Astrophysics Data System (ADS)

    Vachon, B.

    2018-03-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and off-detector readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the off-detector electronics for further processing. Results from the design studies on the performance of the components of the readout system are presented, as well as the results of the tests of the first prototypes.

  17. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.

  18. Hyper Suprime-Cam: development of the CCD readout electronics

    NASA Astrophysics Data System (ADS)

    Nakaya, Hidehiko; Uchida, Tomohisa; Miyatake, Hironao; Fujimori, Hiroki; Mineo, Sogo; Aihara, Hiroaki; Furusawa, Hisanori; Kamata, Yukiko; Karoji, Hiroshi; Kawanomoto, Satoshi; Komiyama, Yutaka; Miyazaki, Satoshi; Morokuma, Tomoki; Obuchi, Yoshiyuki; Okura, Yuki; Tanaka, Manobu; Tanaka, Yoko; Uraguchi, Fumihiro; Utsumi, Yosuke

    2010-07-01

    Hyper Suprime-Cam (HSC) employs 116 of 2k×4k CCDs with 464 signal outputs in total. The image size exceeds 2 GBytes, and the data can be readout every 10 seconds which results in the data rate of 210 Mbytes / sec. The data is digitized to 16-bit. The readout noise of the electronics at the readout time of 20 seconds is ~0.9 ADU, and the one with CCD is ~1.5 ADU which corresponds to ~4.5 e. The linearity error fits within +/- 0.5 % up to 150,000 e. The CCD readout electronics for HSC was newly developed based on the electronics for Suprime-Cam. The frontend electronics (FEE) is placed in the vacuum dewar, and the backend electronics (BEE) is mounted on the outside of the dewar on the prime focus unit. The FEE boards were designed to minimize the outgas and to maximize the heat transfer efficiency to keep the vacuum of the dewar. The BEE boards were designed to be simple and small as long as to achieve the readout time within 10 seconds. The production of the system has been finished, and the full set of the boards are being tested with several CCDs installed in the HSC dewar. We will show the system design, performance, and the current status of the development.

  19. Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes

    NASA Astrophysics Data System (ADS)

    Bender, Amy N.; Cliche, Jean-François; de Haan, Tijmen; Dobbs, Matt A.; Gilbert, Adam J.; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M.; Smith, Ken; Wilson, Andrew

    2014-07-01

    Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.

  20. Radiation Tolerant Electronics and Digital Processing for the Phase-I Trigger Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milic, A.

    The high luminosities of L > 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detectormore » itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-l trigger processors. New trigger readout electronics have been designed for this purpose, which will withstand the radiation dose levels expected for an integrated luminosity of 3000 fb{sup -1} during the high luminosity LHC (HL-LHC), which is well above the original LHC design qualifications. (authors)« less

  1. Miniature Housings for Electronics With Standard Interfaces

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.; Alhorn, Dean C.

    2006-01-01

    A family of general-purpose miniature housings has been designed to contain diverse sensors, actuators, and drive circuits plus associated digital electronic readout and control circuits. The circuits contained in the housings communicate with the external world via standard RS-485 interfaces.

  2. A front-end readout Detector Board for the OpenPET electronics system

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  3. A front-end readout Detector Board for the OpenPET electronics system

    DOE PAGES

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...

    2015-08-12

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  4. Integrated readout electronics for Belle II pixel detector

    NASA Astrophysics Data System (ADS)

    Blanco, R.; Leys, R.; Perić, I.

    2018-03-01

    This paper describes the readout components for Belle II that have been designed as integrated circuits. The ICs are connected to DEPFET sensor by bump bonding. Three types of ICs have been developed: SWITCHER for pixel matrix control, DCD for readout and digitizing of sensor signals and DHP for digital data processing. The ICs are radiation tolerant and use several novel features, such as the multiple-input differential amplifiers and the fast and radiation hard high-voltage drivers. SWITCHER and DCD have been developed at University of Heidelberg, Karlsruhe Institute of Technology (KIT) and DHP at Bonn University. The IC-development started in 2009 and was accomplished in 2016 with the submissions of final designs. The final ICs for Belle II pixel detector and the related measurement results will be presented in this contribution.

  5. Central Drift Chamber for Belle-II

    NASA Astrophysics Data System (ADS)

    Taniguchi, N.

    2017-06-01

    The Central Drift Chamber (CDC) is the main device for tracking and identification of charged particles for Belle-II experiment. The Belle-II CDC is cylindrical wire chamber with 14336 sense wires, 2.3 m-length and 2.2 m-diameter. The wire chamber and readout electronics have been completely replaced from the Belle CDC. The new readout electronics system must handle higher trigger rate of 30 kHz with less dead time at the design luminosity of 8 × 1035 cm-2s-1. The front-end electronics are located close to detector and send digitized signal through optical fibers. The Amp-Shaper-Discriminator chips, FADC and FPGA are assembled on a single board. Belle-II CDC with readout electronics has been installed successfully in Belle structure in October 2016. We will present overview of the Belle-II CDC and status of commissioning with cosmic ray.

  6. Readout ASICs and Electronics for the 144-channel HAPDs for the Aerogel RICH at Belle II

    NASA Astrophysics Data System (ADS)

    Nishida, S.; Adachi, I.; Ikeda, H.; Hara, K.; Iijima, T.; Iwata, S.; Korpar, S.; Križan, P.; Kuroda, E.; Pestotnik, R.; Seljak, A.; Sumiyoshi, T.; Takagaki, H.

    The particle identification (PID) device in the endcap of the Belle detector will be upgraded to a ring imaging Cherenkov counter (RICH) using aerogel as a radiator at the Belle II experiment. We develop the electronics to read out the 70,000 channels of hit information from the 144-channel hybrid avalanche photodetectors (HAPD), of the aerogel RICH detector. A readout ASIC is developed to digitize the HAPD signals, and was used in a beam test with the prototype detector. The performance and plan of the ASIC is reported in this study. We have also designed the readout electronics for the aerogel RICH, which consist of front-end boards with the ASICs merger boards to collect data from the front-end boards. A front-end board that fits in the actual available space for the aerogel RICH electronics was produced.

  7. A discrete component low-noise preamplifier readout for a linear (1×16) SiC photodiode array

    NASA Astrophysics Data System (ADS)

    Kahle, Duncan; Aslam, Shahid; Herrero, Federico A.; Waczynski, Augustyn

    2016-09-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1×16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  8. A Discrete Component Low-Noise Preamplifier Readout for a Linear (1x16) SiC Photodiode Array

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Aslam, Shahid; Herrero, Frederico A.; Waczynski, Augustyn

    2016-01-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1x16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analogue signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  9. Clock distribution for BaF2 readout electronics at CSNS-WNS

    NASA Astrophysics Data System (ADS)

    He, Bing; Cao, Ping; Zhang, De-Liang; Wang, Qi; Zhang, Ya-Xi; Qi, Xin-Cheng; An, Qi

    2017-01-01

    A BaF2 (Barium Fluoride) detector array is designed to precisely measure the (n, γ) cross section at the CSNS-WNS (white neutron source at China Spallation Neutron Source). It is a 4π solid angle-shaped detector array consisting of 92 BaF2 crystal elements. To discriminate signals from the BaF2 detector, a pulse shape discrimination method is used, supported by a waveform digitization technique. There are 92 channels for digitizing. The precision and synchronization of clock distribution restricts the performance of waveform digitizing. In this paper, a clock prototype for the BaF2 readout electronics at CSNS-WNS is introduced. It is based on the PXIe platform and has a twin-stage tree topology. In the first stage, clock is synchronously distributed from the tree root to each PXIe crate through a coaxial cable over a long distance, while in the second stage, the clock is further distributed to each electronic module through a PXIe dedicated differential star bus. With the help of this topology, each tree node can fan out up to 20 clocks with 3U size. Test results show the clock jitter is less than 20 ps, which meets the requirements of the BaF2 readout electronics. Besides, this clock system has the advantages of high density, simplicity, scalability and cost saving, so it can be useful for other clock distribution applications. Supported by National Research and Development plan (2016 YFA0401602) NSAF (U1530111) and National Natural Science Foundation of China (11005107)

  10. MICROROC: MICRO-mesh gaseous structure Read-Out Chip

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Chefdeville, M.; Dalmaz, A.; Drancourt, C.; Dulucq, F.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Jacquemier, J.; Karyotakis, Y.; Martin-Chassard, G.; Prast, J.; Seguin-Moreau, N.; de La Taille, Ch; Vouters, G.

    2012-01-01

    MICRO MEsh GAseous Structure (MICROMEGAS) and Gas Electron Multipliers (GEM) detectors are two candidates for the active medium of a Digital Hadronic CALorimeter (DHCAL) as part of a high energy physics experiment at a future linear collider (ILC/CLIC). Physics requirements lead to a highly granular hadronic calorimeter with up to thirty million channels with probably only hit information (digital readout calorimeter). To validate the concept of digital hadronic calorimetry with such small cell size, the construction and test of a cubic meter technological prototype, made of 40 planes of one square meter each, is necessary. This technological prototype would contain about 400 000 electronic channels, thus requiring the development of front-end ASIC. Based on the experience gained with previous ASIC that were mounted on detectors and tested in particle beams, a new ASIC called MICROROC has been developped. This paper summarizes the caracterisation campaign that was conducted on this new chip as well as its integration into a large area Micromegas chamber of one square meter.

  11. FITPix COMBO—Timepix detector with integrated analog signal spectrometric readout

    NASA Astrophysics Data System (ADS)

    Holik, M.; Kraus, V.; Georgiev, V.; Granja, C.

    2016-02-01

    The hybrid semiconductor pixel detector Timepix has proven a powerful tool in radiation detection and imaging. Energy loss and directional sensitivity as well as particle type resolving power are possible by high resolution particle tracking and per-pixel energy and quantum-counting capability. The spectrometric resolving power of the detector can be further enhanced by analyzing the analog signal of the detector common sensor electrode (also called back-side pulse). In this work we present a new compact readout interface, based on the FITPix readout architecture, extended with integrated analog electronics for the detector's common sensor signal. Integrating simultaneous operation of the digital per-pixel information with the common sensor (called also back-side electrode) analog pulse processing circuitry into one device enhances the detector capabilities and opens new applications. Thanks to noise suppression and built-in electromagnetic interference shielding the common hardware platform enables parallel analog signal spectroscopy on the back side pulse signal with full operation and read-out of the pixelated digital part, the noise level is 600 keV and spectrometric resolution around 100 keV for 5.5 MeV alpha particles. Self-triggering is implemented with delay of few tens of ns making use of adjustable low-energy threshold of the particle analog signal amplitude. The digital pixelated full frame can be thus triggered and recorded together with the common sensor analog signal. The waveform, which is sampled with frequency 100 MHz, can be recorded in adjustable time window including time prior to the trigger level. An integrated software tool provides control, on-line display and read-out of both analog and digital channels. Both the pixelated digital record and the analog waveform are synchronized and written out by common time stamp.

  12. Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet

    NASA Astrophysics Data System (ADS)

    Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.

    2017-07-01

    The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.

  13. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Real, Diego; Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocolmore » used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board.« less

  14. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    NASA Astrophysics Data System (ADS)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  15. Remote balance weighs accurately amid high radiation

    NASA Technical Reports Server (NTRS)

    Eggenberger, D. N.; Shuck, A. B.

    1969-01-01

    Commercial beam-type balance, modified and outfitted with electronic controls and digital readout, can be remotely controlled for use in high radiation environments. This allows accurate weighing of breeder-reactor fuel pieces when they are radioactively hot.

  16. Development of a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography

    NASA Astrophysics Data System (ADS)

    Heo, D.; Jeon, S.; Kim, J.-S.; Kim, R. K.; Cha, B. K.; Moon, B. J.; Yoon, J.

    2013-02-01

    We developed a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography. The pixel resolution is 512 × 512 with 200 μm pixel and the overall active dimensions of the X-ray imaging panel is 10.24 cm × 10.24 cm. The detector consists of an X-ray absorption layer of amorphous selenium, a charge accumulation layer of metal, and a PID readout layer of amorphous silicon. In particular, the charge accumulation is pixelated because image charges generated by X-ray should be stored pixel by pixel. Here the image charges, or holes, are recombined with electrons generated by the PID method. We used a 405 nm laser diode and cylindrical lens to make a line beam source with a width of 50 μm for PID readout, which generates charges for each pixel lines during the scan. We obtained spatial frequencies of about 1.0 lp/mm for the X-direction (lateral direction) and 0.9 lp/mm for the Y-direction (scanning direction) at 50% modulation transfer function.

  17. Validation of a highly integrated SiPM readout system with a TOF-PET demonstrator

    NASA Astrophysics Data System (ADS)

    Niknejad, T.; Setayeshi, S.; Tavernier, S.; Bugalho, R.; Ferramacho, L.; Di Francesco, A.; Leong, C.; Rolo, M. D.; Shamshirsaz, M.; Silva, J. C.; Silva, R.; Silveira, M.; Zorraquino, C.; Varela, J.

    2016-12-01

    We have developed a highly integrated, fast and compact readout electronics for Silicon Photomultiplier (SiPM) based Time of Flight Positron Emission Tomography (TOF-PET) scanners. The readout is based on the use of TOP-PET Application Specific Integrated Circuit (PETsys TOFPET1 ASIC) with 64 channels, each with its amplifier, discriminator, Time to Digital Converter (TDC) and amplitude determination using Time Over Threshold (TOT). The ASIC has 25 ps r.m.s. intrinsic time resolution and fully digital output. The system is optimised for high rates, good timing, low power consumption and low cost. For validating the readout electronics, we have built a technical PET scanner, hereafter called ``demonstrator'', with 2'048 SiPM channels. The PET demonstrator has 16 compact Detector Modules (DM). Each DM has two ASICs reading 128 SiPM pixels in one-to-one coupling to 128 Lutetium Yttrium Orthosilicate (LYSO) crystals measuring 3.1 × 3.1 × 15 mm3 each. The data acquisition system for the demonstrator has two Front End Boards type D (FEB/D), each collecting the data of 1'024 channels (8 DMs), and transmitting assembled data frames through a serial link (4.8 Gbps), to a single Data Acquisition (DAQ) board plugged into the Peripheral Component Interconnect Express (PCIe) bus of the data acquisition PC. Results obtained with this PET demonstrator are presented.

  18. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    NASA Technical Reports Server (NTRS)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  19. Enhancements to a superconducting quantum interference device (SQUID) multiplexer readout and control system

    NASA Astrophysics Data System (ADS)

    Forgione, Joshua B.; Benford, Dominic J.; Buchanan, Ernest D.; Moseley, S. H., Jr.; Rebar, Joyce; Shafer, Richard A.

    2004-10-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA's Goddard Space Flight Center acquired a Mark III system and subsequently designed upgrades to suit our and our collaborators' purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided 'hooks' in the Mark III system to allow readout of signals from outside the Mark III system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  20. Energy and Timing Measurement with Time-Based Detector Readout for PET Applications: Principle and Validation with Discrete Circuit Components

    PubMed Central

    Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping

    2011-01-01

    A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761

  1. The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System

    NASA Astrophysics Data System (ADS)

    Ressler, M. E.; Sukhatme, K. G.; Franklin, B. R.; Mahoney, J. C.; Thelen, M. P.; Bouchet, P.; Colbert, J. W.; Cracraft, Misty; Dicken, D.; Gastaud, R.; Goodson, G. B.; Eccleston, Paul; Moreau, V.; Rieke, G. H.; Schneider, Analyn

    2015-07-01

    We describe the layout and unique features of the focal plane system for MIRI. We begin with the detector array and its readout integrated circuit (combining the amplifier unit cells and the multiplexer), the electronics, and the steps by which the data collection is controlled and the output signals are digitized and delivered to the JWST spacecraft electronics system. We then discuss the operation of this MIRI data system, including detector readout patterns, operation of subarrays, and data formats. Finally, we summarize the performance of the system, including remaining anomalies that need to be corrected in the data pipeline.

  2. Improved charge injection device and a focal plane interface electronics board for stellar tracking

    NASA Technical Reports Server (NTRS)

    Michon, G. J.; Burke, H. K.

    1984-01-01

    An improved Charge Injection Device (CID) stellar tracking sensor and an operating sensor in a control/readout electronics board were developed. The sensor consists of a shift register scanned, 256x256 CID array organized for readout of 4x4 subarrays. The 4x4 subarrays can be positioned anywhere within the 256x256 array with a 2 pixel resolution. This allows continuous tracking of a number of stars simultaneously since nine pixels (3x3) centered on any star can always be read out. Organization and operation of this sensor and the improvements in design and semiconductor processing are described. A hermetic package incorporating an internal thermoelectric cooler assembled using low temperature solders was developed. The electronics board, which contains the sensor drivers, amplifiers, sample hold circuits, multiplexer, analog to digital converter, and the sensor temperature control circuits, is also described. Packaged sensors were evaluated for readout efficiency, spectral quantum efficiency, temporal noise, fixed pattern noise, and dark current. Eight sensors along with two tracker electronics boards were completed, evaluated, and delivered.

  3. Equipment and New Products

    ERIC Educational Resources Information Center

    Poitras, Adrian W., Ed.

    1973-01-01

    The following items are discussed: Digital Counters and Readout Devices, Automatic Burette Outfits, Noise Exposure System, Helium-Cadmium Laser, New pH Buffers and Flip-Top Dispenser, Voltage Calibrator Transfer Standard, Photomicrographic Stereo Zoom Microscope, Portable pH Meter, Micromanipulators, The Snuffer, Electronic Top-Loading Balances,…

  4. A Front-End electronics board for single photo-electron timing and charge from MaPMT

    NASA Astrophysics Data System (ADS)

    Giordano, F.; Breton, D.; Beigbeder, C.; De Robertis, G.; Fusco, P.; Gargano, F.; Liuzzi, R.; Loparco, F.; Mazziotta, M. N.; Rizzi, V.; Tocut, V.

    2013-08-01

    A Front-End (FE) design based on commercial operational amplifiers has been developed to read-out signals from a Multianode PhotoMultiplier Tube (MaPMT). The overall design has been optimised for single photo-electron signal from the Hamamatsu H8500. The signal is collected by a current sensitive preamplifier and then it is fed into both a ECL fast discriminator and a shaper for analog output readout in differential mode. The analog signal and the digital gates are then registered on VME ADC and TDC modules respectively. Performances in terms of linearity, gain and timing resolution will be discussed, presenting results obtained on a test bench with differentiated step voltage inputs and also with a prototype electronic board plugged into the H8500 PMT illuminated by a picosecond laser.

  5. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors.

    PubMed

    Kawahito, Shoji; Seo, Min-Woong

    2016-11-06

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e - rms ) when compared with the CMS gain of two (2.4 e - rms ), or 16 (1.1 e - rms ).

  6. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    PubMed Central

    Kawahito, Shoji; Seo, Min-Woong

    2016-01-01

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e−rms) when compared with the CMS gain of two (2.4 e−rms), or 16 (1.1 e−rms). PMID:27827972

  7. Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

    NASA Astrophysics Data System (ADS)

    Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas

    2018-03-01

    Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

  8. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    PubMed Central

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-01-01

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively. PMID:27792131

  9. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose.

    PubMed

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-10-25

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal-oxide-semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm². The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively.

  10. A versatile localization system for microscopic multiparametric analysis of cells.

    PubMed

    Thaw, H H; Rundquist, I; Johansson, U; Svensson, I; Collins, V P

    1983-03-01

    A new, simple and relatively inexpensive electronic digital position readout (DPRO) system which can be applied to the rapid localization and recovery of microscopic material is described. It is based upon a commercially available digital position readout system which is routinely utilized by industry for small machine tools and measuring equipment. This has been mounted onto the stage of various microscopic instrumentation to provide X and Y coordinates relative to an arbitrary reference point. The integration of small computers interfaced to scanning interferometric, microdensitometric and fluorescence microscopes were used to demonstrate the reliability, versatility and ease of application of this system to problems of multiparametric measurements and analysis of cultured cells. The system may be expanded and applied to clinical material to obtain automatized, multiparametric measurements of cells in haematology and clinical cytology.

  11. Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.

    2008-03-01

    An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.

  12. Upgrading the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Carrió, Fernando

    2013-11-01

    This work summarizes the status of the on-detector and off-detector electronics developments for the Phase 2 Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in the middle of 2014 during the first Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The Main Board will provide communication and control to the FEBs and the Daughter Board will transmit the digitized data to the off-detector electronics in the counting room, where the super Read-Out Driver (sROD) will perform processing tasks on them and will be the interface to the trigger levels 0, 1 and 2.

  13. Pixel electronic noise as a function of position in an active matrix flat panel imaging array

    NASA Astrophysics Data System (ADS)

    Yazdandoost, Mohammad Y.; Wu, Dali; Karim, Karim S.

    2010-04-01

    We present an analysis of output referred pixel electronic noise as a function of position in the active matrix array for both active and passive pixel architectures. Three different noise sources for Active Pixel Sensor (APS) arrays are considered: readout period noise, reset period noise and leakage current noise of the reset TFT during readout. For the state-of-the-art Passive Pixel Sensor (PPS) array, the readout noise of the TFT switch is considered. Measured noise results are obtained by modeling the array connections with RC ladders on a small in-house fabricated prototype. The results indicate that the pixels in the rows located in the middle part of the array have less random electronic noise at the output of the off-panel charge amplifier compared to the ones in rows at the two edges of the array. These results can help optimize for clearer images as well as help define the region-of-interest with the best signal-to-noise ratio in an active matrix digital flat panel imaging array.

  14. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    NASA Astrophysics Data System (ADS)

    Bürger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-02-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 × 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout.

  15. Comparison of two optimized readout chains for low light CIS

    NASA Astrophysics Data System (ADS)

    Boukhayma, A.; Peizerat, A.; Dupret, A.; Enz, C.

    2014-03-01

    We compare the noise performance of two optimized readout chains that are based on 4T pixels and featuring the same bandwidth of 265kHz (enough to read 1Megapixel with 50frame/s). Both chains contain a 4T pixel, a column amplifier and a single slope analog-to-digital converter operating a CDS. In one case, the pixel operates in source follower configuration, and in common source configuration in the other case. Based on analytical noise calculation of both readout chains, an optimization methodology is presented. Analytical results are confirmed by transient simulations using 130nm process. A total input referred noise bellow 0.4 electrons RMS is reached for a simulated conversion gain of 160μV/e-. Both optimized readout chains show the same input referred 1/f noise. The common source based readout chain shows better performance for thermal noise and requires smaller silicon area. We discuss the possible drawbacks of the common source configuration and provide the reader with a comparative table between the two readout chains. The table contains several variants (column amplifier gain, in-pixel transistor sizes and type).

  16. Test of GET Electronics for the CHIMERA and FARCOS multi-detectors

    NASA Astrophysics Data System (ADS)

    De Luca, S.; Acosta, L.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D'Andrea, M.; De Filippo, E.; Dell'Aquila, D.; Fichera, F.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; Lombardo, I.; Martorana, N. S.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccà, G.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2017-11-01

    In this paper we present the results of the tests on the new digital electronics GET (General Electronics for Tpc), which will be used for the readout of the CsI(Tl) detectors of CHIMERA (Charged Heavy Ion Mass and Energy Resolving Array) and for the new correlator FARCOS (Femtoscope ARray for COrrelations and Spectroscopy). The new electronics allows us to digitize the full waveform of the signals produced by the detector. Among its features it is worth noticing the compactness and low power consumption (5W for 256 channels). Tests have been performed with pulsers, radioactive sources and ion beams. With such electronics very good results in energy resolution and isotope separation of the detected fragments were obtained, by using both hardware and software filters.

  17. A direct reading exposure monitor for radiation processing

    NASA Astrophysics Data System (ADS)

    Kantz, A. D.; Humpherys, K. C.

    Various plastic films have been utilized to measure radiation fields. In general such films are rugged, easily handled, small enough to cause neligible perturbation on the radiation fields, and relatively inexpensive. The radiachromic materials have been shown to have advantages over other plastic fabrications in stability, reproducibility, equivalent response to electron and gamma ray processing fields, dose rate independence, and ready availability of calibration standards. Using a nylon matrix radiachromic detector, a system of direct read-out of absorbed dose has been developed to facilitate monitoring in the megarad region. When an exposed detector is inserted into the reader, the optical transmission signal is processed through an analog to digital converter. The digitized signal addresses a memory bank where the standard response curve is stored. The corresponding absorbed dose is displayed on a digital panel meter. The variation of relative sensitivity of detectors, the background of unirradiated detectors, environmental parameters, and the capacity of the memory bank are contributing factors to the total precision of the read-out system.

  18. A custom readout electronics for the BESIII CGEM detector

    NASA Astrophysics Data System (ADS)

    Da Rocha Rolo, M.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bugalho, R.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Di Francesco, A.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Marciniewski, P.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Varela, J.; Verma, S.; Wheadon, R.; Yan, L.

    2017-07-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM readout, and reviewing the first silicon results of the chip prototype.

  19. X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography.

    PubMed

    Rowlands, J A; Hunter, D M; Araj, N

    1991-01-01

    A new digital image readout method for electrostatic charge images on photoconductive plates is described. The method can be used to read out images on selenium plates similar to those used in xeromammography. The readout method, called the air-gap photoinduced discharge method (PID), discharges the latent image pixel by pixel and measures the charge. The PID readout method, like electrometer methods, is linear. However, the PID method permits much better resolution than scanning electrometers while maintaining quantum limited performance at high radiation exposure levels. Thus the air-gap PID method appears to be uniquely superior for high-resolution digital imaging tasks such as mammography.

  20. A multi-purpose readout electronics for CdTe and CZT detectors for x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Yue, X. B.; Deng, Z.; Xing, Y. X.; Liu, Y. N.

    2017-09-01

    A multi-purpose readout electronics based on the DPLMS digital filter has been developed for CdTe and CZT detectors for X-ray imaging applications. Different filter coefficients can be synthesized optimized either for high energy resolution at relatively low counting rate or for high rate photon-counting with reduced energy resolution. The effects of signal width constraints, sampling rate and length were numerical studied by Mento Carlo simulation with simple CRRC shaper input signals. The signal width constraint had minor effect and the ENC was only increased by 6.5% when the signal width was shortened down to 2 τc. The sampling rate and length depended on the characteristic time constants of both input and output signals. For simple CR-RC input signals, the minimum number of the filter coefficients was 12 with 10% increase in ENC when the output time constant was close to the input shaping time. A prototype readout electronics was developed for demonstration, using a previously designed analog front ASIC and a commercial ADC card. Two different DPLMS filters were successfully synthesized and applied for high resolution and high counting rate applications respectively. The readout electronics was also tested with a linear array CdTe detector. The energy resolutions of Am-241 59.5 keV peak were measured to be 6.41% in FWHM for the high resolution filter and to be 13.58% in FWHM for the high counting rate filter with 160 ns signal width constraint.

  1. Three common faults in current practice that influence the validity of data obtained from electronic air pollution instrumentation.

    PubMed

    Dowd, G; Thomas, R S; Monkman, J L

    1975-01-01

    Instrumental development is now entering a more logical era, where the former artistic character of electronics is being replaced by cold technology. Because of this, one should be expect more reliability; however, there still exist many weak links in practical application. Digital readout systems and computer processing induce a false sense of security. In reality, it is the sample-measurement relationship that determines an instrument's credibility and not the number of digits on its meter. In describing three faulty practices that greatly influence an instrument's performance, it is hoped that measurement may be more closely related to the sample!

  2. Fast wire per wire X-ray data acquisition system for time-resolved small angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Epstein, A.; Briquet-Laugier, F.; Sheldon, S.; Boulin, C.

    2000-04-01

    Most of the X-ray multi-wire gas detectors used at the EMBL Hamburg outstation for time-resolved studies of biological samples are readout, using the delay line method. The main disadvantage of such readout systems is their event rate limitation introduced by the delay line and the required time to digital conversion step. They also lack the possibility to deal with multiple events. To overcome these limitations, a new approach for the complete readout system was introduced. The new linear detection system is based on the wire per wire approach where each individual wire is associated to preamplifier/discriminator/counter electronics channel. High-density, front-end electronics were designed around a fast current sensitive preamplifier. An eight-channel board was designed to include the preamplifiers-discriminators and the differential ECL drivers output stages. The detector front-end consists of 25 boards directly mounted inside the detector assembly. To achieve a time framing resolution as short as 10 /spl mu/s, very fast histogramming is required. The only way to implement this for a high number of channels (200 in our case) is by using a distributed system. The digital part of the system consists of a crate controller, up to 16 acquisition boards (capable of handling fast histogramming for up to 32-channels each) and an optical-link board (based on the Cypress "Hot-Link" chip set). Both the crate controller and the acquisition boards are based on a standard RISC microcontroller (IDT R3081) plug-in board. At present, a dedicated CAMAC module which we developed is used to interface the digital front-end acquisition crate to the host via the optical link.

  3. Fast Readout Architectures for Large Arrays of Digital Pixels: Examples and Applications

    PubMed Central

    Gabrielli, A.

    2014-01-01

    Modern pixel detectors, particularly those designed and constructed for applications and experiments for high-energy physics, are commonly built implementing general readout architectures, not specifically optimized in terms of speed. High-energy physics experiments use bidimensional matrices of sensitive elements located on a silicon die. Sensors are read out via other integrated circuits bump bonded over the sensor dies. The speed of the readout electronics can significantly increase the overall performance of the system, and so here novel forms of readout architectures are studied and described. These circuits have been investigated in terms of speed and are particularly suited for large monolithic, low-pitch pixel detectors. The idea is to have a small simple structure that may be expanded to fit large matrices without affecting the layout complexity of the chip, while maintaining a reasonably high readout speed. The solutions might be applied to devices for applications not only in physics but also to general-purpose pixel detectors whenever online fast data sparsification is required. The paper presents also simulations on the efficiencies of the systems as proof of concept for the proposed ideas. PMID:24778588

  4. Design and characterization of the PREC (Prototype Readout Electronics for Counting particles)

    NASA Astrophysics Data System (ADS)

    Assis, P.; Brogueira, P.; Ferreira, M.; Luz, R.; Mendes, L.

    2016-08-01

    The design, tests and performance of a novel, low noise, acquisition system—the PREC (Prototype Readout Electronics for Counting particles) is presented in this article. PREC is a system developed using discrete electronics for particle counting applications using RPCs (Resistive Plate Chamber) detectors. PREC can, however, be used with other kind of detectors that present fast pulses, e.g. Silicon Photomultipliers. The PREC system consists in several Front-End boards that transmit data to a purely digital Motherboard. The amplification and discrimination of the signal is performed in the Front-End boards, making them the critical component of the system. In this paper, the Front-End was tested extensively by measuring the gain, noise level, crosstalk, trigger efficiency, propagation time and power consumption. The gain shows a decrease with the working temperature and an increase with the power supply voltage. The Front-End board shows a low noise level (<= 1.6 mV at 3σ level) and no crosstalk is detected above this level. The s-curve of the trigger efficiency is characterized by a 3 mV gap from the region where most of the signals are triggered to almost no signal is triggered. The signal transit time between the Front-End input and the digital Motherboard is estimated to be 5.82 ns. The maximum power consumption is 3.372 W for the Motherboard and 3.576 W and 1.443 W for each Front-End analogue circuitry and digital part, respectively.

  5. A feasibility study of a data acquisition system for a silicon strip detector with a digital readout scheme

    NASA Astrophysics Data System (ADS)

    Ikeda, Hirokazu; Ikeda, Mitsuo; Inaba, Susumu; Tanaka, Manobu

    1993-06-01

    We describe a prototype data acquisition system for a silicon strip detector, which has been developed in terms of a digital readout scheme. The system consists of a master timing generator, readout controller, and a detector emulator card on which we use custom VLSI shift registers with operating clock frequency of 30 MHz.

  6. MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yiping

    Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less

  7. Two-dimensional ultrahigh-density X-ray optical memory.

    PubMed

    Bezirganyan, Hakob P; Bezirganyan, Siranush E; Bezirganyan, Hayk H; Bezirganyan, Petros H

    2007-01-01

    Most important aspect of nanotechnology applications in the information ultrahigh storage is the miniaturization of data carrier elements of the storage media with emphasis on the long-term stability. Proposed two-dimensional ultrahigh-density X-ray optical memory, named X-ROM, with long-term stability is an information carrier basically destined for digital data archiving. X-ROM is a semiconductor wafer, in which the high-reflectivity nanosized X-ray mirrors are embedded. Data are encoded due to certain positions of the mirrors. Ultrahigh-density data recording procedure can e.g., be performed via mask-less zone-plate-array lithography (ZPAL), spatial-phase-locked electron-beam lithography (SPLEBL), or focused ion-beam lithography (FIB). X-ROM manufactured by nanolithography technique is a write-once memory useful for terabit-scale memory applications, if the surface area of the smallest recording pits is less than 100 nm2. In this case the X-ROM surface-storage capacity of a square centimetre becomes by two orders of magnitude higher than the volumetric data density really achieved for three-dimensional optical data storage medium. Digital data read-out procedure from proposed X-ROM can e.g., be performed via glancing-angle incident X-ray micro beam (GIX) using the well-developed X-ray reflectometry technique. In presented theoretical paper the crystal-analyser operating like an image magnifier is added to the set-up of X-ROM data handling system for the purpose analogous to case of application the higher numerical aperture objective in optical data read-out system. We also propose the set-up of the X-ROM readout system based on more the one incident X-ray micro beam. Presented scheme of two-beam data handling system, which operates on two mutually perpendicular well-collimated monochromatic incident X-ray micro beams, essentially increases the reliability of the digital information read-out procedure. According the graphs of characteristic functions presented in paper, one may choose optimally the incident radiation wavelength, as well as the angle of incidence of X-ray micro beams, appropriate for proposed digital data read-out procedure.

  8. Tests with beam setup of the TileCal phase-II upgrade electronics

    NASA Astrophysics Data System (ADS)

    Reward Hlaluku, Dingane

    2017-09-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile calorimeter plans to introduce a new readout architecture by completely replacing the back-end and front-end electronics for the High Luminosity LHC. The photomultiplier signals will be fully digitized and transferred for every bunch crossing to the off-detector Tile PreProcessor. The Tile PreProcessor will further provide preprocessed digital data to the first level of trigger with improved spatial granularity and energy resolution in contrast to the current analog trigger signals. A single super-drawer module commissioned with the phase-II upgrade electronics is to be inserted into the real detector to evaluate and qualify the new readout and trigger concepts in the overall ATLAS data acquisition system. This new super-drawer, so-called hybrid Demonstrator, must provide analog trigger signals for backward compatibility with the current system. This Demonstrator drawer has been inserted into a Tile calorimeter module prototype to evaluate the performance in the lab. In parallel, one more module has been instrumented with two other front-end electronics options based on custom ASICs (QIE and FATALIC) which are under evaluation. These two modules together with three other modules composed of the current system electronics were exposed to different particles and energies in three test-beam campaigns during 2015 and 2016.

  9. Towards Gotthard-II: development of a silicon microstrip detector for the European X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Redford, S.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Turcato, M.; Vetter, S.

    2018-01-01

    Gotthard-II is a 1-D microstrip detector specifically developed for the European X-ray Free-Electron Laser. It will not only be used in energy dispersive experiments but also as a beam diagnostic tool with additional logic to generate veto signals for the other 2-D detectors. Gotthard-II makes use of a silicon microstrip sensor with a pitch of either 50 μm or 25 μm and with 1280 or 2560 channels wire-bonded to adaptive gain switching readout chips. Built-in analog-to-digital converters and digital memories will be implemented in the readout chip for a continuous conversion and storage of frames for all bunches in the bunch train. The performance of analogue front-end prototypes of Gotthard has been investigated in this work. The results in terms of noise, conversion gain, dynamic range, obtained by means of infrared laser and X-rays, will be shown. In particular, the effects of the strip-to-strip coupling are studied in detail and it is found that the reduction of the coupling effects is one of the key factors for the development of the analogue front-end of Gotthard-II.

  10. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    NASA Astrophysics Data System (ADS)

    Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  11. Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solar, B.; Graafsma, H.; Potdevin, G.

    2010-06-23

    Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (

  12. The OPERA muon spectrometer tracking electronics

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Barichello, G.; Brugnera, R.; Carrara, E.; Consiglio, L.; Corradi, A.; Dal Corso, F.; Dusini, S.; Felici, G.; Garfagnini, A.; Manea, C.; Masone, V.; Paoloni, A.; Paoluzzi, G.; Papalino, G.; Parascandolo, P.; Sorrentino, G.; Spinetti, M.; Stanco, L.; Terranova, F.; Votano, L.

    2004-11-01

    The document describes the front-end electronics that instrument the spectrometer of the OPERA experiment. The spectrometer is made of two separate modules. Each module consists of 22 RPC planes equipped with horizontal and vertical strips readout for a total amount of about 25,000 digital channels. The front end electronics is self-triggered and has single plane readout capability. It is made of three different stages: the Front End Boards (FEBs) system, the Controller Boards (CBs) system and the Timing Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST OR output of the input signals is also available for trigger plane signal generation. FEBs discriminated signals are acquired by the CBs system that manages also the communication to the experiment DAQ and Slow Control interface. A Trigger Board allows to operate in both self-trigger (the FEB FAST OR signal starts the plane acquisition) or external-trigger (different conditions can be set on the OR signals generated from different planes) modes.

  13. A digital front-end and readout microsystem for calorimetry at LHC

    NASA Astrophysics Data System (ADS)

    Alippi, C.; Appelquist, G.; Berglund, S.; Bohm, C.; Breveglieri, L.; Brigati, S.; Carlson, P.; Cattaneo, P.; Dadda, L.; David, J.; Del Buono, L.; Dell'Acqua, A.; Engström, M.; Fumagalli, G.; Gatti, U.; Genat, J. F.; Goggi, G.; Hansen, M.; Hentzell, H.; Höglund, I.; Inkinen, S.; Kerek, A.; Lebbolo, H.; LeDortz, O.; Lofstedt, B.; Maloberti, F.; Nayman, P.; Persson, S.-T.; Piuri, V.; Salice, F.; Sami, M.; Savoy-Navarro, A.; Stefanelli, R.; Sundblad, R.; Svensson, C.; Torelli, G.; Vanuxem, J. P.; Yamdagni, N.; Yuan, J.; Zitoun, R.

    1994-04-01

    A digital solution to the front-end electronics for calorimetric detectors at future supercolliders is presented. The solution is based on high speed {A}/{D} converters, a fully programmable pipeline/digital filter chain and local intelligence. Questions of error correction, fault-tolerance and system redundancy are also being considered. A system integration of a multichannel device in a multichip, Silicon-on-Silicon Microsystem hybrid, is used. This solution allows a new level of integration of complex analogue and digital functions, with an excellent flexibility in mixing technologies for the different functional blocks. It also allows a high degree of programmability at both the function and the system level, and offers the possibility of customising the microsystem with detector-specific functions.

  14. Integration of the GET electronics for the CHIMERA and FARCOS devices

    NASA Astrophysics Data System (ADS)

    De Filippo, E.; Acosta, L.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D’Andrea, M.; De Luca, S.; Favela, F.; Fichera, F.; Giudice, N.; Gnoffo, B.; Grimaldi, A.; Guazzoni, C.; Lanzalone, G.; Librizzi, F.; Litrico, P.; Maiolino, C.; Maffesanti, S.; Martorana, NS; Pagano, A.; Pagano, EV; Papa, M.; Parsani, T.; Passaro, G.; Pirrone, S.; Politi, G.; Previdi, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccà, G.; Salemi, G.; Sciliberto, D.; Trifirò, A.; Trimarchi, M.

    2018-05-01

    A new front-end based on digital GET electronics has been adopted for the readout of the CsI(Tl) detectors of the CHIMERA 4π multi-detector and for the new modular Femtoscopy Array for Correlation and Spectroscopy (FARCOS). It is expected that the coupling of CHIMERA with the FARCOS array, featuring high angular and energy resolution, and the adoption of the new digital electronics will be well suited for improving specific future data analysis, with the full shape storage of the signals, in the field of heavy ion reactions with stable and exotic beams around the Fermi energies domain. Integration of the GET electronics with CHIMERA and FARCOS devices and with the local analog data acquisition will be briefly discussed. We present some results from previous experimental tests and from the first in-beam experiment (Hoyle-Gamma) with the coupled GET+CHIMERA data acquisition.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, W.; Yin, J.; Li, C.

    This paper presents a novel front-end electronics based on a front-end ASIC with post digital filtering and calibration dedicated to CZT detectors for PET imaging. A cascade amplifier based on split-leg topology is selected to realize the charge-sensitive amplifier (CSA) for the sake of low noise performances and the simple scheme of the power supplies. The output of the CSA is connected to a variable-gain amplifier to generate the compatible signals for the A/D conversion. A multi-channel single-slope ADC is designed to sample multiple points for the digital filtering and shaping. The digital signal processing algorithms are implemented by amore » FPGA. To verify the proposed scheme, a front-end readout prototype ASIC is designed and implemented in 0.35 μm CMOS process. In a single readout channel, a CSA, a VGA, a 10-bit ADC and registers are integrated. Two dummy channels, bias circuits, and time controller are also integrated. The die size is 2.0 mm x 2.1 mm. The input range of the ASIC is from 2000 e{sup -} to 100000 e{sup -}, which is suitable for the detection of the X-and gamma ray from 11.2 keV to 550 keV. The linearity of the output voltage is less than 1 %. The gain of the readout channel is 40.2 V/pC. The static power dissipation is about 10 mW/channel. The above tested results show that the electrical performances of the ASIC can well satisfy PET imaging applications. (authors)« less

  16. The use of low resistivity substrates for optimal noise reduction, ground referencing, and current conduction in mixed signal ASICs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, T.

    1997-12-01

    This paper is distilled from a talk given at the 3rd International Meeting on Front End Electronics in Taos, N.M. on Nov. 7,1997. It is based on experience gained by designing and testing the SVX3 128 channel silicon strip detector readout chip. The SVX3 chip organization is shown in Fig. 1. The Front End section consists of an integrator and analog pipeline designed at Fermilab, and the Back End section is an ADC plus sparsification and readout logic designed at LBL. SVX3 is a deadtimeless readout chip, which means that the front end is acquiring low level analog signals whilemore » the back end is digitizing and reading out digital signals. It is thus a true mixed signal chip, and demands close attention to avoid disastrous coupling from the digital to the analog sections. SVX3 is designed in a bulk CMOS process (i.e., the circuits sit in a silicon substrate). In such a process, the substrate becomes a potential coupling path. This paper discusses the effect of the substrate resistivity on coupling, and also goes into a more general discussion of grounding and referencing in mixed signal designs and how low resistivity substrates can be used to advantage. Finally, an alternative power supply current conduction method for ASICs is presented as an additional advantage which can be obtained with low resistivity substrates. 1 ref., 13 figs., 1 tab.« less

  17. Cryogenic readout techniques for germanium detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benato, G.; Cattadori, C.; Di Vacri, A.

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN -more » Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)« less

  18. Fast Low-Cost Multiple Sensor Readout System

    DOEpatents

    Carter-Lewis, David; Krennich, Frank; Le Bohec, Stephane; Petry, Dirk; Sleege, Gary

    2004-04-06

    A low resolution data acquisition system is presented. The data acquisition system has a plurality of readout modules serially connected to a controller. Each readout module has a FPGA in communication with analog to digital (A/D) converters, which are connected to sensors. The A/D converter has eight bit or lower resolution. The FPGA detects when a command is addressed to it and commands the A/D converters to convert analog sensor data into digital data. The digital data is sent on a high speed serial communication bus to the controller. A graphical display is used in one embodiment to indicate if a sensor reading is outside of a predetermined range.

  19. Optimal CCD readout by digital correlated double sampling

    NASA Astrophysics Data System (ADS)

    Alessandri, C.; Abusleme, A.; Guzman, D.; Passalacqua, I.; Alvarez-Fontecilla, E.; Guarini, M.

    2016-01-01

    Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices (CCD), is gaining popularity in astronomical applications. By using an oversampling ADC and a digital filter, a DCDS system can achieve a better performance than traditional analogue readout techniques at the expense of a more complex system analysis. Several attempts to analyse and optimize a DCDS system have been reported, but most of the work presented in the literature has been experimental. Some approximate analytical tools have been presented for independent parameters of the system, but the overall performance and trade-offs have not been yet modelled. Furthermore, there is disagreement among experimental results that cannot be explained by the analytical tools available. In this work, a theoretical analysis of a generic DCDS readout system is presented, including key aspects such as the signal conditioning stage, the ADC resolution, the sampling frequency and the digital filter implementation. By using a time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time process, thus avoiding the imprecision of continuous-time approximations that have been used so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the output of the readout system is reached. This expression can be easily optimized in order to meet a set of specifications for a given CCD, thus providing a systematic design methodology for an optimal readout system. Simulated results are presented to validate the theory, obtained with both time- and frequency-domain noise generation models for completeness.

  20. Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture.

    PubMed

    Narayanan, Balaji; Hardie, Russell C; Muse, Robert A

    2005-06-10

    Spatial fixed-pattern noise is a common and major problem in modern infrared imagers owing to the nonuniform response of the photodiodes in the focal plane array of the imaging system. In addition, the nonuniform response of the readout and digitization electronics, which are involved in multiplexing the signals from the photodiodes, causes further nonuniformity. We describe a novel scene based on a nonuniformity correction algorithm that treats the aggregate nonuniformity in separate stages. First, the nonuniformity from the readout amplifiers is corrected by use of knowledge of the readout architecture of the imaging system. Second, the nonuniformity resulting from the individual detectors is corrected with a nonlinear filter-based method. We demonstrate the performance of the proposed algorithm by applying it to simulated imagery and real infrared data. Quantitative results in terms of the mean absolute error and the signal-to-noise ratio are also presented to demonstrate the efficacy of the proposed algorithm. One advantage of the proposed algorithm is that it requires only a few frames to obtain high-quality corrections.

  1. Readout Strategy of an Electro-optical Coupled PET Detector for Time-of-Flight PET/MRI

    PubMed Central

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-01-01

    Combining PET with MRI in a single system provides clinicians with complementary molecular and anatomical information. However, existing integrated PET/MRI systems do not have time-of-flight PET capabilities. This work describes an MRI-compatible front-end electronic system with ToF capabilities. The approach employs a fast arrival-time pickoff comparator to digitize the timing information, and a laser diode to drive a 10m fiber-optic cable to optically transmit asynchronous timing information to a photodiode receiver readout system. The comparator and this electo-optical link show a combined 11.5ps fwhm jitter in response to a fast digital pulse. When configured with LYSO scintillation crystals and Hamamatsu MPPC silicon photo-multipliers the comparator and electro-optical link achieved a 511keV coincidence time resolution of 254.7ps +/− 8.0ps fwhm with 3×3×20mm crystals and 166.5 +/− 2.5ps fwhm with 3×3×5mm crystals. PMID:24061218

  2. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    DOE PAGES

    An, Mangmang; Chen, Chufeng; Gao, Chaosong; ...

    2015-12-12

    In this paper, we report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a <15e - analog noisemore » and a 200e - minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. Lastly, these characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.« less

  3. Development of a high-resolution automatic digital (urine/electrolytes) flow volume and rate measurement system of miniature size

    NASA Technical Reports Server (NTRS)

    Liu, F. F.

    1975-01-01

    To aid in the quantitative analysis of man's physiological rhythms, a flowmeter to measure circadian patterns of electrolyte excretion during various environmental stresses was developed. One initial flowmeter was designed and fabricated, the sensor of which is the approximate size of a wristwatch. The detector section includes a special type of dielectric integrating type sensor which automatically controls, activates, and deactivates the flow sensor data output by determining the presence or absence of fluid flow in the system, including operation under zero-G conditions. The detector also provides qualitative data on the composition of the fluid. A compact electronic system was developed to indicate flow rate as well as total volume per release or the cumulative volume of several releases in digital/analog forms suitable for readout or telemetry. A suitable data readout instrument is also provided. Calibration and statistical analyses of the performance functions required of the flowmeter were also conducted.

  4. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Mangmang; Chen, Chufeng; Gao, Chaosong

    In this paper, we report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a <15e - analog noisemore » and a 200e - minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. Lastly, these characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.« less

  5. Clock and trigger synchronization between several chassis of digital data acquisition modules

    NASA Astrophysics Data System (ADS)

    Hennig, W.; Tan, H.; Walby, M.; Grudberg, P.; Fallu-Labruyere, A.; Warburton, W. K.; Vaman, C.; Starosta, K.; Miller, D.

    2007-08-01

    In applications with segmented high purity Ge detectors or other detector arrays with tens or hundreds of channels, the high development cost and limited flexibility of application specific integrated circuits outweigh their benefits of low power and small size. The readout electronics typically consist of multi-channel data acquisition modules in a common chassis for power, clock and trigger distribution, and data readout. As arrays become larger and reach several hundred channels, the readout electronics have to be divided over several chassis, but still must maintain precise synchronization of clocks and trigger signals across all channels. This division becomes necessary not only because of limits given by the instrumentation standards on module size and chassis slot numbers, but also because data readout times increase when more modules share the same data bus and because power requirements approach the limits of readily available power supplies. In this paper, we present a method for distributing clocks and triggers between 4 PXI chassis containing DGF Pixie-16 modules with up to 226 acquisition channels per chassis. The data acquisition system is intended to instrument the over 600 channels of the SeGA detector array at the National Superconducting Cyclotron Laboratory. Our solution is designed to achieve synchronous acquisition of detector waveforms from all channels with a jitter of less than 1 ns, and can be extended to a larger number of chassis if desired.

  6. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners.

    PubMed

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-08-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μ m mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μ W from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e - RMS at room temperature.

  7. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    PubMed

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. Copyright © 2011. Published by Elsevier GmbH.

  8. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  9. Applications of Digitized 3-D Position-Sensitive CdZnTe Spectrometers for National Security and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    Streicher, Michael W.

    A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  11. MuTRiG: a mixed signal Silicon Photomultiplier readout ASIC with high timing resolution and gigabit data link

    NASA Astrophysics Data System (ADS)

    Chen, H.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Shen, W.; Stankova, V.; Schultz-Coulon, H. C.

    2017-01-01

    MuTRiG is a mixed signal Silicon Photomultiplier readout ASIC designed in UMC 180 nm CMOS technology for precise timing and high event rate applications in high energy physics experiments and medical imaging. It is dedicated to the readout of the scintillating fiber detector and the scintillating tile detector of the Mu3e experiment. The MuTRiG chip extends the excellent timing performance of the STiCv3 chip with a fast digital readout for high rate applications. The high timing performance of the fully differential SiPM readout channels and 50 ps time binning TDCs are complemented by an upgraded digital readout logic and a 1.28 Gbps LVDS serial data link. The design of the chip and the characterization results of the analog front-end, TDC and the LVDS data link are presented.

  12. Optical transmission modules for multi-channel superconducting quantum interference device readouts.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-01

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  13. Waveform digitization for high resolution timing detectors with silicon photomultipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronzhin, A.; Albrow, M. G.; Los, S.

    2012-03-01

    The results of time resolution studies with silicon photomultipliers (SiPMs) read out with high bandwidth constant fraction discrimination electronics were presented earlier [1-3]. Here we describe the application of fast waveform digitization readout based on the DRS4 chip [4], a switched capacitor array (SCA) produced by the Paul Scherrer Institute, to further our goal of developing high time resolution detectors based on SiPMs. The influence of the SiPM signal shape on the time resolution was investigated. Different algorithms to obtain the best time resolution are described, and test beam results are presented.

  14. A fast one-chip event-preprocessor and sequencer for the Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.

    2010-12-01

    We present an FPGA-based digital camera electronics consisting of an Event-Preprocessor (EPP) for on-board data preprocessing and a related Sequencer (SEQ) to generate the necessary signals to control the readout of the detector. The device has been originally designed for the Simbol-X low energy detector (LED). The EPP operates on 64×64 pixel images and has a real-time processing capability of more than 8000 frames per second. The already working releases of the EPP and the SEQ are now combined into one Digital-Camera-Controller-Chip (D3C).

  15. Method of multi-channel data readout and acquisition

    DOEpatents

    Degtiarenko, Pavel V.; Popov, Vladimir E.

    2010-06-15

    A method for dealing with the problem of simultaneous continuous readout of large number of data channels from the set of multiple sensors in instances where the use of multiple amplitude-to-digital converters is not practical or causes undesirable extra noise and distortion in the data. The new method uses sensor front-end s and subsequent electronics to transform the analog input signals and encode them into a series of short pulses that can be transmitted to a long distance via a high frequency transmission line without information loss. Upon arrival at a destination data decoder and analyzer device, the series of short pulses can be decoded and transformed back, to obtain, store, and utilize the sensor information with the required accuracy.

  16. Performance of GEM Detectors in the DarkLight Experiment at LERF

    NASA Astrophysics Data System (ADS)

    Mohammed Prem Nazeer, Sahara Jesmin; DarkLight Collaboration

    2017-01-01

    The DarkLight experiment has been proposed to search for a heavy photon A' in the mass range of 10-100 MeV/c2 produced in electron-proton collisions. Phase-I of DarkLight has started to take place in 2016 at the Low Energy Recirculator Facility (LERF) at Jefferson Lab. LERF delivered a 100 MeV electron beam onto a windowless hydrogen gas target. The phase-I detector tracks leptons inside the DarkLight solenoid with a set of Gas Electron Multiplier (GEM) detectors, combined with segmented scintillators for triggering. The GEM telescope consists of four 10 × 10 cm2 triple layer GEM chambers with 2D readout strips, mounted in a slightly angled fixed frame about 12 cm tall. The GEM data are read out with analog pipeline front-end cards (APV-25) each of which can process 128 readout channels. Each GEM chamber has 250 channels for each coordinate axis, read out with two APVs on each side, resulting in 2000 readout channels for the GEM stack, processed by 16 APVs. One Multi Purpose Digitizer (MPD) module is used to read out all of the 16 APV-25 cards. The current run status of DarkLight experiment and the performance of GEMs in the experiment will be discussed. This work has been supported by NSF PHY-1436680 and PHY-1505934.

  17. Digital radiography using amorphous selenium: photoconductively activated switch (PAS) readout system.

    PubMed

    Reznik, Nikita; Komljenovic, Philip T; Germann, Stephen; Rowlands, John A

    2008-03-01

    A new amorphous selenium (a-Se) digital radiography detector is introduced. The proposed detector generates a charge image in the a-Se layer in a conventional manner, which is stored on electrode pixels at the surface of the a-Se layer. A novel method, called photoconductively activated switch (PAS), is used to read out the latent x-ray charge image. The PAS readout method uses lateral photoconduction at the a-Se surface which is a revolutionary modification of the bulk photoinduced discharge (PID) methods. The PAS method addresses and eliminates the fundamental weaknesses of the PID methods--long readout times and high readout noise--while maintaining the structural simplicity and high resolution for which PID optical readout systems are noted. The photoconduction properties of the a-Se surface were investigated and the geometrical design for the electrode pixels for a PAS radiography system was determined. This design was implemented in a single pixel PAS evaluation system. The results show that the PAS x-ray induced output charge signal was reproducible and depended linearly on the x-ray exposure in the diagnostic exposure range. Furthermore, the readout was reasonably rapid (10 ms for pixel discharge). The proposed detector allows readout of half a pixel row at a time (odd pixels followed by even pixels), thus permitting the readout of a complete image in 30 s for a 40 cm x 40 cm detector with the potential of reducing that time by using greater readout light intensity. This demonstrates that a-Se based x-ray detectors using photoconductively activated switches could form a basis for a practical integrated digital radiography system.

  18. High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor D(-) Charge State.

    PubMed

    Watson, T F; Weber, B; House, M G; Büch, H; Simmons, M Y

    2015-10-16

    We demonstrate high-fidelity electron spin read-out of a precision placed single donor in silicon via spin selective tunneling to either the D(+) or D(-) charge state of the donor. By performing read-out at the stable two electron D(0)↔D(-) charge transition we can increase the tunnel rates to a nearby single electron transistor charge sensor by nearly 2 orders of magnitude, allowing faster qubit read-out (1 ms) with minimum loss in read-out fidelity (98.4%) compared to read-out at the D(+)↔D(0) transition (99.6%). Furthermore, we show that read-out via the D(-) charge state can be used to rapidly initialize the electron spin qubit in its ground state with a fidelity of F(I)=99.8%.

  19. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  20. X-ray imaging using amorphous selenium: photoinduced discharge (PID) readout for digital general radiography.

    PubMed

    Rowlands, J A; Hunter, D M

    1995-12-01

    Digital radiographic systems based on photoconductive layers with the latent charge image readout by photoinduced discharge (PID) are investigated theoretically. Previously, a number of different systems have been proposed using sandwiched photoconductor and insulator layers and readout using a scanning laser beam. These systems are shown to have the general property of being very closely coupled (i.e., optimization of one imaging characteristic usually impacts negatively on others). The presence of a condensed state insulator between the photoconductor surface and the readout electrode does, however, confer a great advantage over systems using air gaps with their relatively low breakdown field. The greater breakdown field of condensed state dielectrics permits the modification of the electric field during the period between image formation and image readout. The trade-off between readout speed and noise makes this system suitable for instant general radiography and even rapid sequence radiography, however, the system is unsuitable for the low exposure rates used in fluoroscopy.

  1. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  2. Tests of the MICE Electron Muon Ranger frontend electronics with a small scale prototype

    NASA Astrophysics Data System (ADS)

    Bolognini, D.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Giannini, G.; Graulich, J. S.; Lietti, D.; Masciocchi, F.; Prest, M.; Rothenfusser, K.; Vallazza, E.; Wisting, H.

    2011-08-01

    The MICE experiment is being commissioned at RAL to demonstrate the feasibility of the muon ionization cooling technique for future applications such as the Neutrino Factory and the Muon Collider. The cooling will be evaluated by measuring the emittance before and after the cooling channel with two 4 T spectrometers; to distinguish muons from the background, a multi-detector particle identification system is foreseen: three Time of Flight stations, two Cherenkov counters and a calorimetric system consisting of a pre-shower layer and a fully active scintillator detector (EMR) are used to discriminate muons from pions and electrons. EMR consists of 48 planes of triangular scintillating bars coupled to WLS fibers readout by single PMTs on one side and MAPMTs on the other; each plane sensible area is 1 m 2. This article deals with a small scale prototype of the EMR detector which has been used to test the MAPMT frontend electronics based on the MAROC ASIC; the tests with cosmic rays using both an analog mode and a digital readout mode are presented. A very preliminary study on the cross talk problem is also shown.

  3. Systems approach to the design of the CCD sensors and camera electronics for the AIA and HMI instruments on solar dynamics observatory

    NASA Astrophysics Data System (ADS)

    Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.

    2017-11-01

    Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.

  4. A front-end readout mixed chip for high-efficiency small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Ollivier-Henry, N.; Berst, J. D.; Colledani, C.; Hu-Guo, Ch.; Mbow, N. A.; Staub, D.; Guyonnet, J. L.; Hu, Y.

    2007-02-01

    Today, the main challenge of Positron Emission Tomography (PET) systems dedicated to small animal imaging is to obtain high detection efficiency and a highly accurate localization of radioisotopes. If we focus only on the PET characteristics such as the spatial resolution, its accuracy depends on the design of detector and on the electronics readout system as well. In this paper, we present a new design of such readout system with full custom submicrometer CMOS implementation. The front end chip consists of two main blocks from which the energy information and the time stamp with subnanosecond resolution can be obtained. In our A Multi-Modality Imaging System for Small Animal (AMISSA) PET system design, a matrix of LYSO crystals has to be read at each end by a 64 channels multianode photomultiplier tube. A specific readout electronic has been developed at the Hubert Curien Multidisciplinary Institute (IPHC, France). The architecture of this readout for the energy information detection is composed of a low-noise preamplifier, a CR-RC shaper and an analogue memory. In order to obtain the required dynamic range from 15 to 650 photoelectrons with good linearity, a current mode approach has been chosen for the preamplifier. To detect the signal with a temporal resolution of 1 ns, a comparator with a very low threshold (˜0.3 photoelectron) has been implemented. It gives the time reference of arrival signal coming from the detector. In order to obtain the time coincidence with a temporal resolution of 1 ns, a Time-to-Digital Converter (TDC) based on a Delay-Locked-Loop (DLL) has been designed. The chip is fabricated with AMS 0.35 μm process. The ASIC architecture and some simulation results will be presented in the paper.

  5. Superconductor Digital Electronics: -- Current Status, Future Prospects

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.

  6. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    PubMed

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

  7. On Certain New Methodology for Reducing Sensor and Readout Electronics Circuitry Noise in Digital Domain

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Miko, Joseph; Bradley, Damon; Heinzen, Katherine

    2008-01-01

    NASA Hubble Space Telescope (HST) and upcoming cosmology science missions carry instruments with multiple focal planes populated with many large sensor detector arrays. These sensors are passively cooled to low temperatures for low-level light (L3) and near-infrared (NIR) signal detection, and the sensor readout electronics circuitry must perform at extremely low noise levels to enable new required science measurements. Because we are at the technological edge of enhanced performance for sensors and readout electronics circuitry, as determined by thermal noise level at given temperature in analog domain, we must find new ways of further compensating for the noise in the signal digital domain. To facilitate this new approach, state-of-the-art sensors are augmented at their array hardware boundaries by non-illuminated reference pixels, which can be used to reduce noise attributed to sensors. There are a few proposed methodologies of processing in the digital domain the information carried by reference pixels, as employed by the Hubble Space Telescope and the James Webb Space Telescope Projects. These methods involve using spatial and temporal statistical parameters derived from boundary reference pixel information to enhance the active (non-reference) pixel signals. To make a step beyond this heritage methodology, we apply the NASA-developed technology known as the Hilbert- Huang Transform Data Processing System (HHT-DPS) for reference pixel information processing and its utilization in reconfigurable hardware on-board a spaceflight instrument or post-processing on the ground. The methodology examines signal processing for a 2-D domain, in which high-variance components of the thermal noise are carried by both active and reference pixels, similar to that in processing of low-voltage differential signals and subtraction of a single analog reference pixel from all active pixels on the sensor. Heritage methods using the aforementioned statistical parameters in the digital domain (such as statistical averaging of the reference pixels themselves) zeroes out the high-variance components, and the counterpart components in the active pixels remain uncorrected. This paper describes how the new methodology was demonstrated through analysis of fast-varying noise components using the Hilbert-Huang Transform Data Processing System tool (HHT-DPS) developed at NASA and the high-level programming language MATLAB (Trademark of MathWorks Inc.), as well as alternative methods for correcting for the high-variance noise component, using an HgCdTe sensor data. The NASA Hubble Space Telescope data post-processing, as well as future deep-space cosmology projects on-board instrument data processing from all the sensor channels, would benefit from this effort.

  8. Radiation dosimeter

    DOEpatents

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  9. Radiation dosimeter

    DOEpatents

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  10. Cross strip anode readouts for microchannel plate detectors: developing flight qualified prototypes

    NASA Astrophysics Data System (ADS)

    Vallerga, John; Cooney, M.; Raffanti, R.; Varner, G.; Siegmund, O.; McPhate, J. B.; Tremsin, A.

    2014-01-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last two decades (eg. EUVE, FUSE, COS on Hubble etc.). Over this duration, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x 1000) and output event rate (x100), all the while operating at lower gain (x 10) resulting in lower high voltage requirements and longer MCP lifetimes. One such technology is the parallel cross strip (PXS) readout. The PXS anode is a set of orthogonal conducting strips (80 x 80), typically spaced at a 635 micron pitch onto which charge clouds from MCP amplified events land. Each strip has its own charge sensitive amplifier that is sampled continuously by a dedicated analog to digital (ADC) converter at 50MHz. All of the 160 ADC digital output lines are fed into a field programmable gate array (FGPA) which can detect charge events landing on the strips, measure the peak amplitudes of those charge events and calculate their spatial centroid along with their time of arrival (X,Y,T). Laboratory versions of these electronics have demonstrated < 20 microns FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of ~ 1ns. In 2012 the our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a Strategic Astrophysics Technology grant to raise the TRL of the PXS detector from 4 to 6 by replacing most of the 19" rack mounted, high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass and volume requirements of the PXS detector. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). This detector design could then be modified for individual flight opportunities with a higher level of confidence than starting from scratch. We will present the latest progress on the ASIC designs, fabrication and performance and show imaging results from the 50mm XS detector using our current laboratory PXS electronics.

  11. Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Editor)

    1992-01-01

    The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.

  12. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerstedt, Henrik; Muschter, Steffen; Drake, Gary

    The Tile Calorimeter at ATLAS [1] is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links,more » will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new readout system will be installed in one slice of the ATLAS Tile Calorimeter. This will allow the proposed upgrade to be thoroughly evaluated well before the planned 2023 deployment in all slices, especially with regard to long term reliability. Different firmware strategies alongside with their integration in the demonstrator are presented in the context of high reliability protection against hardware malfunction and radiation induced errors.« less

  13. Construction of a technological semi-digital hadronic calorimeter using GRPC

    NASA Astrophysics Data System (ADS)

    Laktineh, I.

    2011-04-01

    A high-granularity semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two HCAL options considered by the ILD collaboration to be proposed for the detector of the future International Linear Collider project. A prototype of 1m3 has been conceived within the CALICE collaboration in order to validate this option. The prototype intends to be as close as possible to the one proposed in the ILD Letter Of Intent. Few units made of 1m2 GRPC fully equipped with semi-digital readout electronics and new gas distribution design were produced and successfully tested. In 2010 we intend to produce 40 similar units to be inserted in a self-supporting mechanical structure. The prototype will then be exposed to TestBeams at CERN for final validation.

  14. Frequency-domain cascading microwave superconducting quantum interference device multiplexers; beyond limitations originating from room-temperature electronics

    NASA Astrophysics Data System (ADS)

    Kohjiro, Satoshi; Hirayama, Fuminori

    2018-07-01

    A novel approach, frequency-domain cascading microwave multiplexers (MW-Mux), has been proposed and its basic operation has been demonstrated to increase the number of pixels multiplexed in a readout line U of MW-Mux for superconducting detector arrays. This method is an alternative to the challenging development of wideband, large power, and spurious-free room-temperature (300 K) electronics. The readout system for U pixels consists of four main parts: (1) multiplexer chips connected in series those contain U superconducting resonators in total. (2) A cryogenic high-electron-mobility transistor amplifier (HEMT). (3) A 300 K microwave frequency comb generator based on N(≡U/M) parallel units of digital-to-analog converters (DAC). (4) N parallel units of 300 K analog-to-digital converters (ADC). Here, M is the number of tones each DAC produces and each ADC handles. The output signal of U detectors multiplexed at the cryogenic stage is transmitted through a cable to the room temperature and divided into N processors where each handles M pixels. Due to the reduction factor of 1/N, U is not anymore dominated by the 300 K electronics but can be increased up to the potential value determined by either the bandwidth or the spurious-free power of the HEMT. Based on experimental results on the prototype system with N = 2 and M = 3, neither excess inter-pixel crosstalk nor excess noise has been observed in comparison with conventional MW-Mux. This indicates that the frequency-domain cascading MW-Mux provides the full (100%) usage of the HEMT band by assigning N 300 K bands on the frequency axis without inter-band gaps.

  15. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    PubMed

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.

  16. Processing inferences derived from event-related potential measures in a monitoring task

    NASA Technical Reports Server (NTRS)

    Horst, R. L.; Munson, R. C.; Ruchkin, D. S.

    1985-01-01

    Event-related potentials (ERPs) were recorded from the scalp of subjects as they monitored changing digital readouts for values that went 'out-of-bounds'. Workload was manipulated by varying the number of readouts that were monitored concurrently. The ERPs elicited by changes in the readouts showed long latency positivities that increased in amplitude, not only with the number of readouts monitored, but also with the number of monitored readouts that were 'in danger' of going out-of-bounds. No effects were found due to the number of nonmonitored readouts 'in danger'. This evidence indicates that subjects (1) selectively attended to the monitored readouts and (2) processed the monitored readouts differently as the readouts approached the out-of-bounds levels to which an overt response was required.

  17. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  18. Electronic method for autofluorography of macromolecules on two-D matrices

    DOEpatents

    Davidson, Jackson B.; Case, Arthur L.

    1983-01-01

    A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix, such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100-1000 times.

  19. A radiation-tolerant electronic readout system for portal imaging

    NASA Astrophysics Data System (ADS)

    Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.

    2004-06-01

    A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.

  20. The phase 1 upgrade of the CMS Pixel Front-End Driver

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Pernicka, M.; Steininger, H.

    2010-12-01

    The pixel detector of the CMS experiment at the LHC is read out by analog optical links, sending the data to 9U VME Front-End Driver (FED) boards located in the electronics cavern. There are plans for the phase 1 upgrade of the pixel detector (2016) to add one more layer, while significantly cutting down the overall material budget. At the same time, the optical data transmission will be replaced by a serialized digital scheme. A plug-in board solution with a high-speed digital optical receiver has been developed for the Pixel-FED readout boards and will be presented along with first tests of the future optical link.

  1. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    NASA Astrophysics Data System (ADS)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, T.; Diamond, J.; Liu, N.

    The readout electronics for the resonant beam position monitors (BPMs) in the Fermilab Switchyard (SY) have been upgraded, utilizing a low noise amplifier transition board and Fermilab designed digitizer boards. The stripline BPMs are estimated to have an average signal output of between -110 dBm and -80 dBm, with an estimated peak output of -70 dBm. The external resonant circuit is tuned to the SY machine frequency of 53.10348 MHz. Both the digitizer and transition boards have variable gain in order to accommodate the large dynamic range and irregularity of the resonant extraction spill. These BPMs will aid in auto-tuningmore » of the SY beamline as well as enabling operators to monitor beam position through the spill.« less

  3. Inflight characterization and correction of Planck/HFI analog to digital converter nonlinearity

    NASA Astrophysics Data System (ADS)

    Sauvé, A.; Couchot, F.; Patanchon, G.; Montier, L.

    2016-07-01

    The Planck Satellite launched in 2009 was targeted to observe the anisotropies of the Cosmic Microwave Back-ground (CMB) to an unprecedented sensitivity. While the Analog to Digital Converter of the HFI (High Frequency Instrument) readout electronics had not been properly characterized on ground, it has been shown to add a systematic nonlinearity effect up to 2% of the cosmological signal. This was a limiting factor for CMB science at large angular scale. We will present the in-flight analysis and method used to characterize and correct this effect down to 0.05% level. We also discuss how to avoid this kind of complex issue for future missions.

  4. The DCU: the detector control unit for SPICA-SAFARI

    NASA Astrophysics Data System (ADS)

    Clénet, Antoine; Ravera, Laurent; Bertrand, Bernard; den Hartog, Roland H.; Jackson, Brian D.; van Leeuven, Bert-Joost; van Loon, Dennis; Parot, Yann; Pointecouteau, Etienne; Sournac, Anthony

    2014-08-01

    IRAP is developing the warm electronic, so called Detector Control Unit" (DCU), in charge of the readout of the SPICA-SAFARI's TES type detectors. The architecture of the electronics used to readout the 3 500 sensors of the 3 focal plane arrays is based on the frequency domain multiplexing technique (FDM). In each of the 24 detection channels the data of up to 160 pixels are multiplexed in frequency domain between 1 and 3:3 MHz. The DCU provides the AC signals to voltage-bias the detectors; it demodulates the detectors data which are readout in the cold by a SQUID; and it computes a feedback signal for the SQUID to linearize the detection chain in order to optimize its dynamic range. The feedback is computed with a specific technique, so called baseband feedback (BBFB) which ensures that the loop is stable even with long propagation and processing delays (i.e. several µs) and with fast signals (i.e. frequency carriers at 3:3 MHz). This digital signal processing is complex and has to be done at the same time for the 3 500 pixels. It thus requires an optimisation of the power consumption. We took the advantage of the relatively reduced science signal bandwidth (i.e. 20 - 40 Hz) to decouple the signal sampling frequency (10 MHz) and the data processing rate. Thanks to this method we managed to reduce the total number of operations per second and thus the power consumption of the digital processing circuit by a factor of 10. Moreover we used time multiplexing techniques to share the resources of the circuit (e.g. a single BBFB module processes 32 pixels). The current version of the firmware is under validation in a Xilinx Virtex 5 FPGA, the final version will be developed in a space qualified digital ASIC. Beyond the firmware architecture the optimization of the instrument concerns the characterization routines and the definition of the optimal parameters. Indeed the operation of the detection and readout chains requires to properly define more than 17 500 parameters (about 5 parameters per pixel). Thus it is mandatory to work out an automatic procedure to set up these optimal values. We defined a fast algorithm which characterizes the phase correction to be applied by the BBFB firmware and the pixel resonance frequencies. We also defined a technique to define the AC-carrier initial phases in such a way that the amplitude of their sum is minimized (for a better use of the DAC dynamic range).

  5. The DIRC front-end electronics chain for BaBar

    NASA Astrophysics Data System (ADS)

    Bailly, P.; Beigbeder, C.; Bernier, R.; Breton, D.; Bonneaud, G.; Caceres, T.; Chase, R.; Chauveau, J.; Del Buono, L.; Dohou, F.; Ducorps, A.; Gastaldi, F.; Genat, J. F.; Hrisoho, A.; Imbert, P.; Lebbolo, H.; Matricon, P.; Oxoby, G.; Renard, C.; Roos, L.; Sen, S.; Thiebaux, C.; Truong, K.; Tocut, V.; Vasileiadis, G.; Va'Vra, J.; Verderi, M.; Warner, D.; Wilson, R. J.; Wormser, G.; Zhang, B.; Zomer, F.

    2000-12-01

    Recent results from the Front-End electronics of the Detector of Internally Reflected Cerenkov light (DIRC) for the BaBar experiment at SLAC (Stanford, USA) are presented. It measures to better than 1 ns the arrival time of Cerenkov photoelectrons detected in a 11000 phototubes array and their amplitude spectra. It mainly comprises 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom digital time to digital chips (TDC) for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected front up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test results of the pre-production chips are presented, as well as system tests.

  6. A Basic Research for the Development and Evaluation of Novel MEMS Digital Accelerometers

    DTIC Science & Technology

    2013-02-01

    that timing differences as measured by the circuit are linearly dependent on the measured capacitance changes. As such, the circuit’s readout is...error in the electronic measurement to refine the technique. An additional capability of the circuit is the ability to observe the impact of cold...low resistivity on (ɘ.01 Ω-cm) silicon on insulator wafers (SOI). The beams are fabricated in a 0.3 cm by 0.3 cm die which is then packaged and wire

  7. Digital Interface Modules for Active-Readout X-Ray Spectrometer.

    DTIC Science & Technology

    1985-03-01

    strategy. Emitting a significant fraction of its total energy as complex series of high temperature characteristic x-ray lines, the PRS source is used for...0.001’ for the Reticon RL1024S detector). This is done by calculating the increment in photon energy dE that maps into a sensor width dg. The required...peak signal to r.m.s. noise). For most work the effects of temperature on the SSPA and other electronics will be more significant to the repeatability

  8. Flight Qualified Micro Sun Sensor

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Mobasser, Sohrab; Wrigley, Chris; Schroeder, Jeffrey; Bae, Youngsam; Naegle, James; Katanyoutanant, Sunant; Jerebets, Sergei; Schatzel, Donald; Lee, Choonsup

    2007-01-01

    A prototype small, lightweight micro Sun sensor (MSS) has been flight qualified as part of the attitude-determination system of a spacecraft or for Mars surface operations. The MSS has previously been reported at a very early stage of development in NASA Tech Briefs, Vol. 28, No. 1 (January 2004). An MSS is essentially a miniature multiple-pinhole electronic camera combined with digital processing electronics that functions analogously to a sundial. A micromachined mask containing a number of microscopic pinholes is mounted in front of an active-pixel sensor (APS). Electronic circuits for controlling the operation of the APS, readout from the pixel photodetectors, and analog-to-digital conversion are all integrated onto the same chip along with the APS. The digital processing includes computation of the centroids of the pinhole Sun images on the APS. The spacecraft computer has the task of converting the Sun centroids into Sun angles utilizing a calibration polynomial. The micromachined mask comprises a 500-micron-thick silicon wafer, onto which is deposited a 57-nm-thick chromium adhesion- promotion layer followed by a 200-nm-thick gold light-absorption layer. The pinholes, 50 microns in diameter, are formed in the gold layer by photolithography. The chromium layer is thin enough to be penetrable by an amount of Sunlight adequate to form measurable pinhole images. A spacer frame between the mask and the APS maintains a gap of .1 mm between the pinhole plane and the photodetector plane of the APS. To minimize data volume, mass, and power consumption, the digital processing of the APS readouts takes place in a single field-programmable gate array (FPGA). The particular FPGA is a radiation- tolerant unit that contains .32,000 gates. No external memory is used so the FPGA calculates the centroids in real time as pixels are read off the APS with minimal internal memory. To enable the MSS to fit into a small package, the APS, the FPGA, and other components are mounted on a single two-sided board following chip-on-board design practices

  9. Report of the sensor readout electronics panel

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Carson, J.; Kleinhans, W.; Kosonocky, W.; Kozlowski, L.; Pecsalski, A.; Silver, A.; Spieler, H.; Woolaway, J.

    1991-01-01

    The findings of the Sensor Readout Electronics Panel are summarized in regard to technology assessment and recommended development plans. In addition to two specific readout issues, cryogenic readouts and sub-electron noise, the panel considered three advanced technology areas that impact the ability to achieve large format sensor arrays. These are mega-pixel focal plane packaging issues, focal plane to data processing module interfaces, and event driven readout architectures. Development in each of these five areas was judged to have significant impact in enabling the sensor performance desired for the Astrotech 21 mission set. Other readout issues, such as focal plane signal processing or other high volume data acquisition applications important for Eos-type mapping, were determined not to be relevant for astrophysics science goals.

  10. Test of ATLAS RPCs Front-End electronics

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Di Stante, L.; Liberti, B.; Paoloni, A.; Pastori, E.; Santonico, R.

    2003-08-01

    The Front-End Electronics performing the ATLAS RPCs readout is a full custom 8 channels GaAs circuit, which integrates in a single die both the analog and digital signal processing. The die is bonded on the Front-End board which is completely closed inside the detector Faraday cage. About 50 000 FE boards are foreseen for the experiment. The complete functionality of the FE boards will be certificated before the detector assembly. We describe here the systematic test devoted to check the dynamic functionality of each single channel and the selection criteria applied. It measures and registers all relevant electronics parameters to build up a complete database for the experiment. The statistical results from more than 1100 channels are presented.

  11. Development of low-noise CCD drive electronics for the world space observatory ultraviolet spectrograph subsystem

    NASA Astrophysics Data System (ADS)

    Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris

    2016-07-01

    World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass, to more detailed analysis of the video performance including noise, linearity, crosstalk, gain stability and transient response.

  12. Digital X-ray portable scanner based on monolithic semi-insulating GaAs detectors: General description and first “quantum” images

    NASA Astrophysics Data System (ADS)

    Dubecký, F.; Perd'ochová, A.; Ščepko, P.; Zat'ko, B.; Sekerka, V.; Nečas, V.; Sekáčová, M.; Hudec, M.; Boháček, P.; Huran, J.

    2005-07-01

    The present work describes a portable digital X-ray scanner based on bulk undoped semi-insulating (SI) GaAs monolithic strip line detectors. The scanner operates in "quantum" imaging mode ("single photon counting"), with potential improvement of the dynamic range in contrast of the observed X-ray images. The "heart" of the scanner (detection unit) is based on SI GaAs strip line detectors. The measured detection efficiency of the SI GaAs detector reached a value of over 60 % (compared to the theoretical one of ˜75 %) for the detection of 60 keV photons at a reverse bias of 200 V. The read-out electronics consists of 20 modules fabricated using a progressive SMD technology with automatic assembly of electronic devices. Signals from counters included in the digital parts of the modules are collected in a PC via a USB port and evaluated by custom developed software allowing X-ray image reconstruction. The collected data were used for the creation of the first X-ray "quantum" images of various test objects using the imaging software developed.

  13. A reconfigurable image tube using an external electronic image readout

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  14. A cylindrical SPECT camera with de-centralized readout scheme

    NASA Astrophysics Data System (ADS)

    Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.

    2001-09-01

    An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.

  15. Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Kim, J. E.; Lim, H.; Nam, J. W.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, H. S.; Grossan, B.; Huang, M. A.; Jeong, S.; Jung, A.; Kim, M. B.; Kim, S.-W.; Lee, J.; Linder, E. V.; Liu, T.-C.; Na, G. W.; Panasyuk, M. I.; Park, I. H.; Ripa, J.; Reglero, V.; Smoot, G. F.; Svertilov, S.; Vedenkin, N.; Yashin, I.

    2013-07-01

    The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its target within a second after triggering by an X-ray coded mask camera, which makes unnecessary a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accomplished by a 10 cm aperture Ritchey-Chrètien telescope and the focal plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200-650 nm in wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of 104-106 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340 interline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA). The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of the slewing mirror, the ICCD high voltage adjustments, power distribution, and system monitoring by interfacing to the UFFO-pathfinder. These functions are realized in the FPGA to minimize power consumption and to enhance processing time. The SMT readout electronics are designed and built to meet the spacecraft's constraints of power consumption, mass, and volume. The entire system is integrated with the SMT optics, as is the UFFO-pathfinder. The system has been tested and satisfies the conditions of launch and those of operation in space: those associated with shock and vibration and those associated with thermal and vacuum, respectively. In this paper, we present the SMT readout electronics: the design, construction, and performance, as well as the results of space environment test.

  16. Cameras for digital microscopy.

    PubMed

    Spring, Kenneth R

    2013-01-01

    This chapter reviews the fundamental characteristics of charge-coupled devices (CCDs) and related detectors, outlines the relevant parameters for their use in microscopy, and considers promising recent developments in the technology of detectors. Electronic imaging with a CCD involves three stages--interaction of a photon with the photosensitive surface, storage of the liberated charge, and readout or measurement of the stored charge. The most demanding applications in fluorescence microscopy may require as much as four orders of greater magnitude sensitivity. The image in the present-day light microscope is usually acquired with a CCD camera. The CCD is composed of a large matrix of photosensitive elements (often referred to as "pixels" shorthand for picture elements, which simultaneously capture an image over the entire detector surface. The light-intensity information for each pixel is stored as electronic charge and is converted to an analog voltage by a readout amplifier. This analog voltage is subsequently converted to a numerical value by a digitizer situated on the CCD chip, or very close to it. Several (three to six) amplifiers are required for each pixel, and to date, uniform images with a homogeneous background have been a problem because of the inherent difficulties of balancing the gain in all of the amplifiers. Complementary metal oxide semiconductor sensors also exhibit relatively high noise associated with the requisite high-speed switching. Both of these deficiencies are being addressed, and sensor performance is nearing that required for scientific imaging. Copyright © 1998 Elsevier Inc. All rights reserved.

  17. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones

    PubMed Central

    2016-01-01

    Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests. PMID:26900709

  18. The design, status and performance of the ZEUS central tracking detector electronics

    NASA Astrophysics Data System (ADS)

    Cussans, D. G.; Fawcett, H. F.; Foster, B.; Gilmore, R. S.; Heath, G. P.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Gingrich, D. M.; Harnew, N.; Hallam-Baker, P.; Nash, J.; Khatri, T.; Shield, P. D.; McArthur, I.; Topp-Jorgensen, S.; Wilson, F. F.; Allen, D.; Baird, S. A.; Carter, R.; Galagardera, S.; Gibson, M. D.; Hatley, R. S.; Jeffs, M.; Milborrow, R.; Morissey, M.; Quinton, S. P. H.; White, D. J.; Lane, J.; Nixon, G.; Postranecky, M.; Jamdagni, A. K.; Marcou, C.; Miller, D. B.; Toudup, L.

    1992-05-01

    The readout system developed for the ZEUS central trackign detector (CDT) is described. The CTD is required to provide an accurate measurement of the sagitta and energy loss of charged particles as well as provide fast trigger information. This must be carried out in the HERA environment in which beams cross every 96 ns. The first two aims are achieved by digitizing chamber pulses using a pipelined 104 MHz FADC system. The trigger uses a fast determination of the difference in the arrival times of a pulse at each end of the CTD. It processes this data and gives information to the ZEUS global first level trigger. The modules are housed in custom-built racks and crates and read out using a DAQ system based on Transputer readout controllers. These also monitor data quality and produce data for the ZEUS second level Trigger.

  19. Drift chamber readout system of the DIRAC experiment

    NASA Astrophysics Data System (ADS)

    Afanasyev, L.; Karpukhin, V.

    2002-10-01

    A drift chamber readout system of the DIRAC experiment at CERN is presented. The system is intended to read out the signals from planar chambers operating in a high current mode. The sense wire signals are digitized in the 16-channel time-to-digital converter boards which are plugged in the signal plane connectors. This design results in a reduced number of modules, a small number of cables and high noise immunity. The system has been successfully operating in the experiment since 1999.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirolf, P. G.; Habs, D.; Filipescu, D.

    Next-generation {gamma} beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10{sup 13}{gamma}/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses ({approx}120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a {gamma} pulse series with a duration of about 100 ns will impinge on themore » target, resulting in an instantaneous photon flux of about 10{sup 18}{gamma}/s, thus introducing major challenges in view of pile-up. Novel {gamma} optics will be applied to monochromatize the {gamma} beam to ultimately {Delta}E/E{approx}10{sup -6}. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding {gamma} detectors, e.g. based on advanced scintillator technology (e.g. LaBr{sub 3}(Ce)) allow for measurements with count rates as high as 10{sup 6}-10{sup 7}{gamma}/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr{sub 3} detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.« less

  1. Performance study of large area encoding readout MRPC

    NASA Astrophysics Data System (ADS)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  2. Digital signal processing the Tevatron BPM signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cancelo, G.; James, E.; Wolbers, S.

    2005-05-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describesmore » the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented.« less

  3. SYRMEP front-end and read-out electronics

    NASA Astrophysics Data System (ADS)

    Arfelli, F.; Bonvicini, V.; Bravin, A.; Cantatore, G.; Castelli, E.; Cristaudo, P.; Di Michiel, M.; Longo, R.; Olivo, A.; Pani, S.; Pontoni, D.; Poropat, P.; Prest, M.; Rashevsky, A.; Tomasini, F.; Tromba, G.; Vacchi, A.; Vallazza, E.

    1998-02-01

    The SYRMEP approach to digital mammography implies the use of a monochromatic X-ray beam from a synchrotron source and a slot of superimposed silicon microstrip detectors as a scanning image receptor. The microstrips are read by 32-channel chips mounted on 7-layer hybrid circuits which receive control signals and operating voltages from a MASTER-SLAVE configuration of cards. The MASTER card is driven by the CIRM, a dedicated CAMAC module whose timing function can be easily excluded to obtain data-storage-only units connected to different MASTERs: this second-level modular expansion capability fully achieves the tasks of an electronics system able to follow the SYRMEP detector growth till the final size of seven thousands of channels.

  4. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    NASA Astrophysics Data System (ADS)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  5. Electronic method for autofluorography of macromolecules on two-D matrices. [Patent application

    DOEpatents

    Davidson, J.B.; Case, A.L.

    1981-12-30

    A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix, such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100 to 1000 times.

  6. The Muon Portal Double Tracker for the Inspection of Travelling Containers

    NASA Astrophysics Data System (ADS)

    Pugliatti, C.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluomo, F.; Blancato, A.; Bonanno, G.; Costa, A.; Fallica, P. G.; Garozzo, S.; Grillo, A.; Indelicato, V.; La Rocca, P.; Leonora, E.; Longhitano, F.; Longo, S.; Lo Presti, D.; Marano, D.; Massimino, P.; Petta, C.; Pistagna, C.; Puglisi, M.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Russo, G. V.; Santagati, G.; Timpanaro, M. C.; Valvo, G.; Vitello, F.; Zaia, A.

    2015-12-01

    The Muon Portal Project has as its goal the design and construction of a real-size working detector prototype in scale 1:1, to inspect the content of travelling containers by means of the secondary cosmic-ray muon radiation and to recognize high-Z hidden materials (i.e. U, Pu). The tomographic image is obtained by reconstructing the input and output trajectories of each muon when it crosses the container and, consequently, the scattering angle, making use of two trackers placed above and below the container. The scan is performed without adding any external radiation, in a reasonable time (few minutes) and with a good spatial and angular resolution. The detector consists of 8 planes each segmented in 6 identical modules. Each module is made of scintillating strips with two WaveLength Shifting fibers (WLS) inside, coupled to Silicon photomultipliers. The customized read-out electronics employs programmable boards. Thanks to a smart read-out system, the number of output channels is reduced by a factor 10. The signals from the front-end modules are sent to the read-out boards, in order to convert analog signals to digital ones, by comparison with a threshold. The data are pre-analyzed and stored into a data acquisition PC. After an intense measurement and simulation campaign to carefully characterize the detector components, the first detection modules ( 1 ×3 m2) have been already built. In this paper the detector architecture, particularly focusing on the used electronics and the main preliminary results will be presented.

  7. High-performance electronics for time-of-flight PET systems

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  8. High-performance electronics for time-of-flight PET systems.

    PubMed

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.

  9. Design, construction and commissioning of the Digital Hadron Calorimeter—DHCAL

    NASA Astrophysics Data System (ADS)

    Adams, C.; Bambaugh, A.; Bilki, B.; Butler, J.; Corriveau, F.; Cundiff, T.; Drake, G.; Francis, K.; Furst, B.; Guarino, V.; Haberichter, B.; Hazen, E.; Hoff, J.; Holm, S.; Kreps, A.; DeLurgio, P.; Matijas, Z.; Dal Monte, L.; Mucia, N.; Norbeck, E.; Northacker, D.; Onel, Y.; Pollack, B.; Repond, J.; Schlereth, J.; Skrzecz, F.; Smith, J. R.; Trojand, D.; Underwood, D.; Velasco, M.; Walendziak, J.; Wood, K.; Wu, S.; Xia, L.; Zhang, Q.; Zhao, A.

    2016-07-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 × 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of this prototype calorimeter.

  10. First light on a new fully digital camera based on SiPM for CTA SST-1M telescope

    NASA Astrophysics Data System (ADS)

    della Volpe, Domenico; Al Samarai, Imen; Alispach, Cyril; Bulik, Tomasz; Borkowski, Jerzy; Cadoux, Franck; Coco, Victor; Favre, Yannick; Grudzińska, Mira; Heller, Matthieu; Jamrozy, Marek; Kasperek, Jerzy; Lyard, Etienne; Mach, Emil; Mandat, Dusan; Michałowski, Jerzy; Moderski, Rafal; Montaruli, Teresa; Neronov, Andrii; Niemiec, Jacek; Njoh Ekoume, T. R. S.; Ostrowski, Michal; Paśko, Paweł; Pech, Miroslav; Rajda, Pawel; Rafalski, Jakub; Schovanek, Petr; Seweryn, Karol; Skowron, Krzysztof; Sliusar, Vitalii; Stawarz, Łukasz; Stodulska, Magdalena; Stodulski, Marek; Travnicek, Petr; Troyano Pujadas, Isaac; Walter, Roland; Zagdański, Adam; Zietara, Krzysztof

    2017-08-01

    The Cherenkov Telescope Array (CTA) will explore with unprecedented precision the Universe in the gammaray domain covering an energy range from 50 GeV to more the 300 TeV. To cover such a broad range with a sensitivity which will be ten time better than actual instruments, different types of telescopes are needed: the Large Size Telescopes (LSTs), with a ˜24 m diameter mirror, a Medium Size Telescopes (MSTs), with a ˜12 m mirror and the small size telescopes (SSTs), with a ˜4 m diameter mirror. The single mirror small size telescope (SST-1M), one of the proposed solutions to become part of the small-size telescopes of CTA, will be equipped with an innovative camera. The SST-1M has a Davies-Cotton optical design with a mirror dish of 4 m diameter and focal ratio 1.4 focussing the Cherenkov light produced in atmospheric showers onto a 90 cm wide hexagonal camera providing a FoV of 9 degrees. The camera is an innovative design based on silicon photomultipliers (SiPM ) and adopting a fully digital trigger and readout architecture. The camera features 1296 custom designed large area hexagonal SiPM coupled to hollow optical concentrators to achieve a pixel size of almost 2.4 cm. The SiPM is a custom design developed with Hamamatsu and with its active area of almost 1 cm2 is one of the largest monolithic SiPM existing. Also the optical concentrators are innovative being light funnels made of a polycarbonate substrate coated with a custom designed UV-enhancing coating. The analog signals coming from the SiPM are fed into the fully digital readout electronics, where digital data are processed by high-speed FPGAs both for trigger and readout. The trigger logic, implemented into an Virtex 7 FPGA, uses the digital data to elaborate a trigger decision by matching data against predefined patterns. This approach is extremely flexible and allows improvements and continued evolutions of the system. The prototype camera is being tested in laboratory prior to its installation expected in fall 2017 on the telescope prototype in Krakow (Poland). In this contribution, we will describe the design of the camera and show the performance measured in laboratory.

  11. FERMI: a digital Front End and Readout MIcrosystem for high resolution calorimetry

    NASA Astrophysics Data System (ADS)

    Alexanian, H.; Appelquist, G.; Bailly, P.; Benetta, R.; Berglund, S.; Bezamat, J.; Blouzon, F.; Bohm, C.; Breveglieri, L.; Brigati, S.; Cattaneo, P. W.; Dadda, L.; David, J.; Engström, M.; Genat, J. F.; Givoletti, M.; Goggi, V. G.; Gong, S.; Grieco, G. M.; Hansen, M.; Hentzell, H.; Holmberg, T.; Höglund, I.; Inkinen, S. J.; Kerek, A.; Landi, C.; Ledortz, O.; Lippi, M.; Lofstedt, B.; Lund-Jensen, B.; Maloberti, F.; Mutz, S.; Nayman, P.; Piuri, V.; Polesello, G.; Sami, M.; Savoy-Navarro, A.; Schwemling, P.; Stefanelli, R.; Sundblad, R.; Svensson, C.; Torelli, G.; Vanuxem, J. P.; Yamdagni, N.; Yuan, J.; Ödmark, A.; Fermi Collaboration

    1995-02-01

    We present a digital solution for the front-end electronics of high resolution calorimeters at future colliders. It is based on analogue signal compression, high speed {A}/{D} converters, a fully programmable pipeline and a digital signal processing (DSP) chain with local intelligence and system supervision. This digital solution is aimed at providing maximal front-end processing power by performing waveform analysis using DSP methods. For the system integration of the multichannel device a multi-chip, silicon-on-silicon multi-chip module (MCM) has been adopted. This solution allows a high level of integration of complex analogue and digital functions, with excellent flexibility in mixing technologies for the different functional blocks. This type of multichip integration provides a high degree of reliability and programmability at both the function and the system level, with the additional possibility of customising the microsystem to detector-specific requirements. For enhanced reliability in high radiation environments, fault tolerance strategies, i.e. redundancy, reconfigurability, majority voting and coding for error detection and correction, are integrated into the design.

  12. Latency study of the High Performance Time to Digital Converter for the ATLAS Muon Spectrometer trigger upgrade

    NASA Astrophysics Data System (ADS)

    Meng, X. T.; Levin, D. S.; Chapman, J. W.; Li, D. C.; Yao, Z. E.; Zhou, B.

    2017-02-01

    The High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by the CERN Microelectronics group, has been proposed for the digitization of the thin-Resistive Plate Chambers (tRPC) in the ATLAS Muon Spectrometer Phase-1 upgrade project. These chambers, to be staged for higher luminosity LHC operation, will increase trigger acceptance and reduce or eliminate the fake muon trigger rates in the barrel-endcap transition region, corresponding to pseudo-rapidity range 1<|η|<1.3. Low level trigger candidates must be flagged within a maximum latency of 1075 ns, thus imposing stringent signal processing time performance requirements on the readout system in general, and on the digitization electronics in particular. This paper investigates the HPTDC signal latency performance based on a specially designed evaluation board coupled with an external FPGA evaluation board, when operated in triggerless mode, and under hit rate conditions expected in Phase-I. This hardware based study confirms previous simulations and demonstrates that the HPTDC in triggerless operation satisfies the digitization timing requirements in both leading edge and pair modes.

  13. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  14. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  15. The DCU: the detector control unit of the SAFARI instrument onboard SPICA

    NASA Astrophysics Data System (ADS)

    Clénet, A.; Ravera, L.; Bertrand, B.; Cros, A.; Hou, R.; Jackson, B. D.; van Leeuwen, B. J.; Van Loon, D.; Parot, Y.; Pointecouteau, E.; Sournac, A.; Ta, N.

    2012-09-01

    The SpicA FAR infrared Instrument (SAFARI) is a European instrument for the infrared domain telescope SPICA, a JAXA space mission. The SAFARI detectors are Transistor Edge Sensors (TES) arranged in 3 matrixes. The TES front end electronic is based on Superconducting Quantum Interference Devices (SQUIDs) and it does the readout of the 3500 detectors with Frequency Division Multiplexing (FDM) type architecture. The Detector Control Unit (DCU), contributed by IRAP, manages the readout of the TES by computing and providing the AC-bias signals (1 - 3 MHz) to the TES and by computing the demodulation of the returning signals. The SQUID being highly non-linear, the DCU has also to provide a feedback signal to increase the SQUID dynamic. Because of the propagation delay in the cables and the processing time, a classic feedback will not be stable for AC-bias frequencies up to 3 MHz. The DCU uses a specific technique to compensate for those delays: the BaseBand FeedBack (BBFB). This digital data processing is done for the 3500 pixels in parallel. Thus, to keep the DCU power budget within its allocation we have to specifically optimize the architecture of the digital circuit with respect to the power consumption. In this paper we will mainly present the DCU architecture. We will particularly focus on the BBFB technique used to linearize the SQUID and on the optimization done to reduce the power consumption of the digital processing circuit.

  16. Untitled Document

    Science.gov Websites

    charged tracks or associated with photons or neutral hadrons. Hardware effort: A Digital Hadron fine segmentation, the energy resolution for single hadrons is preserved with a simple digital readout Physics Division Digital Hadron Calorimeter with RPCs (US effort) CALICE Collaboration American Linear

  17. BAE Systems' 17μm LWIR camera core for civil, commercial, and military applications

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey; Rodriguez, Christian; Blackwell, Richard

    2013-06-01

    Seventeen (17) µm pixel Long Wave Infrared (LWIR) Sensors based on vanadium oxide (VOx) micro-bolometers have been in full rate production at BAE Systems' Night Vision Sensors facility in Lexington, MA for the past five years.[1] We introduce here a commercial camera core product, the Airia-MTM imaging module, in a VGA format that reads out in 30 and 60Hz progressive modes. The camera core is architected to conserve power with all digital interfaces from the readout integrated circuit through video output. The architecture enables a variety of input/output interfaces including Camera Link, USB 2.0, micro-display drivers and optional RS-170 analog output supporting legacy systems. The modular board architecture of the electronics facilitates hardware upgrades allow us to capitalize on the latest high performance low power electronics developed for the mobile phones. Software and firmware is field upgradeable through a USB 2.0 port. The USB port also gives users access to up to 100 digitally stored (lossless) images.

  18. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.

    PubMed

    Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D

    2009-10-09

    Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.

  19. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    NASA Astrophysics Data System (ADS)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  20. Review of the development of diamond radiation sensors

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-09-01

    Diamond radiation sensors produced by chemical vapour deposition are studied for the application as tracking detectors in high luminosity experiments. Sensors with a charge collection distance up to 250 μm have been manufactured. Their radiation hardness has been studied with pions, proton and neutrons up to fluences of 1.9×10 15 π cm -2, 5×10 15 p cm -2 and 1.35×10 15 n cm -2, respectively. Diamond micro-strip detectors with 50 μm pitch have been exposed in a high-energy test beam in order to investigate their charge collection properties. The measured spatial resolution using a centre-of-gravity position finding algorithm corresponds to the digital resolution for this strip pitch. First results from a strip tracker with a 2×4 cm 2 surface area are reported as well as the performance of a diamond tracker read out by radiation-hard electronics with 25 ns shaping time. Diamond pixel sensors have been prepared to match the geometries of the recently available read-out chip prototypes for ATLAS and CMS. Beam test results are shown from a diamond detector bump-bonded to an ATLAS prototype read-out. They demonstrate a 98% bump-bonding efficiency and a digital resolution in both dimensions.

  1. Readout and DAQ for Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Platkevic, Michal

    2010-01-01

    Data readout and acquisition control of pixel detectors demand the transfer of significantly a large amounts of bits between the detector and the computer. For this purpose dedicated interfaces are used which are designed with focus on features like speed, small dimensions or flexibility of use such as digital signal processors, field-programmable gate arrays (FPGA) and USB communication ports. This work summarizes the readout and DAQ system built for state-of-the-art pixel detectors of the Medipix family.

  2. Readout, first- and second-level triggers of the new Belle silicon vertex detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Abe, R.; Abe, T.; Aihara, H.; Asano, Y.; Aso, T.; Bakich, A.; Browder, T.; Chang, M. C.; Chao, Y.; Chen, K. F.; Chidzik, S.; Dalseno, J.; Dowd, R.; Dragic, J.; Everton, C. W.; Fernholz, R.; Fujii, H.; Gao, Z. W.; Gordon, A.; Guo, Y. N.; Haba, J.; Hara, K.; Hara, T.; Harada, Y.; Haruyama, T.; Hasuko, K.; Hayashi, K.; Hazumi, M.; Heenan, E. M.; Higuchi, T.; Hirai, H.; Hitomi, N.; Igarashi, A.; Igarashi, Y.; Ikeda, H.; Ishino, H.; Itoh, K.; Iwaida, S.; Kaneko, J.; Kapusta, P.; Karawatzki, R.; Kasami, K.; Kawai, H.; Kawasaki, T.; Kibayashi, A.; Koike, S.; Korpar, S.; Križan, P.; Kurashiro, H.; Kusaka, A.; Lesiak, T.; Limosani, A.; Lin, W. C.; Marlow, D.; Matsumoto, H.; Mikami, Y.; Miyake, H.; Moloney, G. R.; Mori, T.; Nakadaira, T.; Nakano, Y.; Natkaniec, Z.; Nozaki, S.; Ohkubo, R.; Ohno, F.; Okuno, S.; Onuki, Y.; Ostrowicz, W.; Ozaki, H.; Peak, L.; Pernicka, M.; Rosen, M.; Rozanska, M.; Sato, N.; Schmid, S.; Shibata, T.; Stamen, R.; Stanič, S.; Steininger, H.; Sumisawa, K.; Suzuki, J.; Tajima, H.; Tajima, O.; Takahashi, K.; Takasaki, F.; Tamura, N.; Tanaka, M.; Taylor, G. N.; Terazaki, H.; Tomura, T.; Trabelsi, K.; Trischuk, W.; Tsuboyama, T.; Uchida, K.; Ueno, K.; Ueno, K.; Uozaki, N.; Ushiroda, Y.; Vahsen, S.; Varner, G.; Varvell, K.; Velikzhanin, Y. S.; Wang, C. C.; Wang, M. Z.; Watanabe, M.; Watanabe, Y.; Yamada, Y.; Yamamoto, H.; Yamashita, Y.; Yamashita, Y.; Yamauchi, M.; Yanai, H.; Yang, R.; Yasu, Y.; Yokoyama, M.; Ziegler, T.; Žontar, D.

    2004-12-01

    A major upgrade of the Silicon Vertex Detector (SVD 2.0) of the Belle experiment at the KEKB factory was installed along with new front-end and back-end electronics systems during the summer shutdown period in 2003 to cope with higher particle rates, improve the track resolution and meet the increasing requirements of radiation tolerance. The SVD 2.0 detector modules are read out by VA1TA chips which provide "fast or" (hit) signals that are combined by the back-end FADCTF modules to coarse, but immediate level 0 track trigger signals at rates of several tens of a kHz. Moreover, the digitized detector signals are compared to threshold lookup tables in the FADCTFs to pass on hit information on a single strip basis to the subsequent level 1.5 trigger system, which reduces the rate below the kHz range. Both FADCTF and level 1.5 electronics make use of parallel real-time processing in Field Programmable Gate Arrays (FPGAs), while further data acquisition and event building is done by PC farms running Linux. The new readout system hardware is described and the first results obtained with cosmics are shown.

  3. Web-based DAQ systems: connecting the user and electronics front-ends

    NASA Astrophysics Data System (ADS)

    Lenzi, Thomas

    2016-12-01

    Web technologies are quickly evolving and are gaining in computational power and flexibility, allowing for a paradigm shift in the field of Data Acquisition (DAQ) systems design. Modern web browsers offer the possibility to create intricate user interfaces and are able to process and render complex data. Furthermore, new web standards such as WebSockets allow for fast real-time communication between the server and the user with minimal overhead. Those improvements make it possible to move the control and monitoring operations from the back-end servers directly to the user and to the front-end electronics, thus reducing the complexity of the data acquisition chain. Moreover, web-based DAQ systems offer greater flexibility, accessibility, and maintainability on the user side than traditional applications which often lack portability and ease of use. As proof of concept, we implemented a simplified DAQ system on a mid-range Spartan6 Field Programmable Gate Array (FPGA) development board coupled to a digital front-end readout chip. The system is connected to the Internet and can be accessed from any web browser. It is composed of custom code to control the front-end readout and of a dual soft-core Microblaze processor to communicate with the client.

  4. The PAUCam readout electronics system

    NASA Astrophysics Data System (ADS)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  5. Low cost digital electronics for isotope analysis with microcalorimeters - final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Hennig

    2006-09-11

    The overall goal of the Phase I research was to demonstrate that the digital readout electronics and filter algorithms developed by XIA for use with HPGe detectors can be adapted to high precision, cryogenic gamma detectors (microcalorimeters) and not only match the current state of the art in terms of energy resolution, but do so at a significantly reduced cost. This would make it economically feasible to instrument large arrays of microcalorimeters and would also allow automation of the setup, calibration and operation of large numbers of channels through software. We expected, and have demonstrated, that this approach would furthermore » allow much higher count rates than the optimum filter algorithms currently used. In particular, in measurements with a microcalorimeter at LLNL, the adapted Pixie-16 spectrometer achieved an energy resolution of 0.062%, significantly better than the targeted resolution of 0.1% in the Phase I proposal and easily matching resolutions obtained with LLNL readout electronics and optimum filtering (0.066%). The theoretical maximum output count rate for the filter settings used to achieve this resolution is about 120cps. If the filter is adjusted for maximum throughput with an energy resolution of 0.1% or better, rates of 260cps are possible. This is 20-50 times higher than the maximum count rates of about 5cps with optimum filters for this detector. While microcalorimeter measurements were limited to count rates of ~1.3cps due to the strength of available sources, pulser measurements demonstrated that measured energy resolutions were independent of counting rate to output counting rates well in excess of 200cps or more.. We also developed a preliminary hardware design of a spectrometer module, consisting of a digital processing core and several input options that can be implemented on daughter boards. Depending upon the daughter board, the total parts cost per channel ranged between $12 and $27, resulting in projected product prices of $80 to $160 per channel. This demonstrates that a price of $100 per channel is economically very feasible for large microcalorimeter arrays.« less

  6. Design and performance of a custom ASIC digitizer for wire chamber readout in 65 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Lee, M. J.; Brown, D. N.; Chang, J. K.; Ding, D.; Gnani, D.; Grace, C. R.; Jones, J. A.; Kolomensky, Y. G.; von der Lippe, H.; Mcvittie, P. J.; Stettler, M. W.; Walder, J.-P.

    2015-06-01

    We present the design and performance of a prototype ASIC digitizer for integrated wire chamber readout, implemented in 65 nm commercial CMOS technology. Each channel of the 4-channel prototype is composed of two 16-bit Time-to-Digital Converters (TDCs), one 8-bit Analog-to-Digital Converter (ADC), a front-end preamplifier and shaper, plus digital and analog buffers that support a variety of digitization chains. The prototype has a multiplexed digital backend that executes a state machine, distributes control and timing signals, and buffers data for serial output. Laboratory bench tests measure the absolute TDC resolution between 74 ps and 480 ps, growing with the absolute delay, and a relative time resolution of 19 ps. Resolution outliers due to cross-talk between clock signals and supply or reference voltages are seen. After calibration, the ADC displays good linearity and noise performance, with an effective number of bits of 6.9. Under normal operating conditions the circuit consumes 32 mW per channel. Potential design improvements to address the resolution drift and tails are discussed.

  7. Development of a Crosstalk Suppression Algorithm for KID Readout

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmin; Ishitsuka, H.; Oguri, S.; Suzuki, J.; Tajima, O.; Tomita, N.; Won, Eunil; Yoshida, M.

    2018-06-01

    The GroundBIRD telescope aims to detect B-mode polarization of the cosmic microwave background radiation using the kinetic inductance detector array as a polarimeter. For the readout of the signal from detector array, we have developed a frequency division multiplexing readout system based on a digital down converter method. These techniques in general have the leakage problems caused by the crosstalks. The window function was applied in the field programmable gate arrays to mitigate the effect of these problems and tested it in algorithm level.

  8. IDSAC-IUCAA digital sampler array controller

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sabyasachi; Chordia, Pravin; Ramaprakash, A. N.; Burse, Mahesh P.; Joshi, Bhushan; Chillal, Kalpesh

    2016-07-01

    In order to run the large format detector arrays and mosaics that are required by most astronomical instruments, readout electronic controllers are required which can process multiple CCD outputs simultaneously at high speeds and low noise levels. These CCD controllers need to be modular and configurable, should be able to run multiple detector types to cater to a wide variety of requirements. IUCAA Digital Sampler Array Controller (IDSAC), is a generic CCD Controller based on a fully scalable architecture which is adequately flexible and powerful enough to control a wide variety of detectors used in ground based astronomy. The controller has a modular backplane architecture that consists of Single Board Controller Cards (SBCs) and can control up to 5 CCDs (mosaic or independent). Each Single Board Controller (SBC) has all the resources to a run Single large format CCD having up to four outputs. All SBCs are identical and are easily interchangeable without needing any reconfiguration. A four channel video processor on each SBC can process up to four output CCDs with or without dummy outputs at 0.5 Megapixels/Sec/Channel with 16 bit resolution. Each SBC has a USB 2.0 interface which can be connected to a host computer via optional USB to Fibre converters. The SBC uses a reconfigurable hardware (FPGA) as a Master Controller. IDSAC offers Digital Correlated Double Sampling (DCDS) to eliminate thermal kTC noise. CDS performed in Digital domain (DCDS) has several advantages over its analog counterpart, such as - less electronics, faster readout and easier post processing. It is also flexible with sampling rate and pixel throughput while maintaining the core circuit topology intact. Noise characterization of the IDSAC CDS signal chain has been performed by analytical modelling and practical measurements. Various types of noise such as white, pink, power supply, bias etc. has been considered while creating an analytical noise model tool to predict noise of a controller system like IDSAC. Several tests are performed to measure the actual noise of IDSAC. The theoretical calculation matches very well with practical measurements within 10% accuracy.

  9. New Position Algorithms for the 3-D CZT Drift Detector

    NASA Astrophysics Data System (ADS)

    Budtz-Jørgensen, C.; Kuvvetli, I.

    2017-06-01

    The 3-D position sensitive CZT detector for high-energy astrophysics developed at DTU has been investigated with a digitizer readout system. The 3-D CZT detector is based on the CZT drift-strip detector principle and was fabricated using a REDLEN CZT crystal (20 mm × 20 mm × 5 mm). The detector contains 12 drift cells, each comprising one collecting anode strip with four drift strips, biased such that the electrons are focused and collected by the anode strips. Three-dimensional position determination is achieved using the anode strip signals, the drift-strip signals, and the signals from ten cathode strips. For the characterization work, we used a DAQ system with a 16 channels 250-MHz 14-b digitizer, SIS3316. It allowed us to analyze the pulse shapes of the signals from four detector cells at a time. The 3-D CZT setup was characterized with a finely collimated radioactive source of 137Cs at 662 keV. The analysis required development of novel position determination algorithms which are the subject of this paper. Using the digitizer readout, we demonstrate improved position determination compared to the previous read out system based on analog electronics. Position resolutions of 0.4-mm full width at half maximum (FWHM) in the x-, y-, and z-directions were achieved and the energy resolution was 7.2-keV FWHM at 662 keV. The timing information allows identification of multiple interaction events within one detector cell, e.g., Compton scattering followed by photoelectric absorption. These characteristics are very important for a high-energy spectral-imager suitable for use in advanced Compton telescopes, or as focal detector for new hard X-ray and soft γ-ray focusing telescopes or in polarimeter instrumentation. CZT detectors are attractive for these applications since they offer relatively high-quantum efficiency. From a technical point of view it is advantageous that their cooling requirements are modest.

  10. Prototype readout system for a multi Mpixels UV single-photon imaging detector capable of space flight operation

    NASA Astrophysics Data System (ADS)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2018-02-01

    Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.

  11. Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy.

    PubMed

    Matsuura, N; Zhao, W; Huang, Z; Rowlands, J A

    1999-05-01

    Active matrix array technology has made possible the concept of flat panel imaging systems for radiography. In the conventional approach a thin-film circuit built on glass contains the necessary switching components (thin-film transistors or TFTs) to readout an image formed in either a phosphor or photoconductor layer. Extension of this concept to real time imaging--fluoroscopy--has had problems due to the very low noise required. A new design strategy for fluoroscopic active matrix flat panel detectors has therefore been investigated theoretically. In this approach, the active matrix has integrated thin-film amplifiers and readout electronics at each pixel and is called the amplified pixel detector array (APDA). Each amplified pixel consists of three thin-film transistors: an amplifier, a readout, and a reset TFT. The performance of the APDA approach compared to the conventional active matrix was investigated for two semiconductors commonly used to construct active matrix arrays--hydrogenated amorphous silicon and polycrystalline silicon. The results showed that with amplification close to the pixel, the noise from the external charge preamplifiers becomes insignificant. The thermal and flicker noise of the readout and the amplifying TFTs at the pixel become the dominant sources of noise. The magnitude of these noise sources is strongly dependent on the TFT geometry and its fabrication process. Both of these could be optimized to make the APDA active matrix operate at lower noise levels than is possible with the conventional approach. However, the APDA cannot be made to operate ideally (i.e., have noise limited only by the amount of radiation used) at the lowest exposure rate required in medical fluoroscopy.

  12. The IBL readout system

    NASA Astrophysics Data System (ADS)

    Dopke, J.; Falchieri, D.; Flick, T.; Gabrielli, A.; Kugel, A.; Mättig, P.; Morettini, P.; Polini, A.; Schroer, N.

    2011-01-01

    The first upgrade for the ATLAS Pixel Detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer, built from new electronics, an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth, but also compatible with the existing system to be integrated into it. This paper describes the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  13. Performance of CATIROC: ASIC for smart readout of large photomultiplier arrays

    NASA Astrophysics Data System (ADS)

    Blin, S.; Callier, S.; Conforti Di Lorenzo, S.; Dulucq, F.; De La Taille, C.; Martin-Chassard, G.; Seguin-Moreau, N.

    2017-03-01

    CATIROC (Charge And Time Integrated Read Out Chip) is a complete read-out chip manufactured in AustriaMicroSystem (AMS) SiGe 0.35 μm technology, designed to read arrays of 16 photomultipliers (PMTs). It is an upgraded version of PARISROC2 [1] designed in 2010 in the context of the PMm2 (square meter PhotoMultiplier) project [2]. CATIROC is a SoC (System on Chip) that processes analog signals up to the digitization and sparsification to reduce the cost and cable number. The ASIC is composed of 16 independent channels that work in triggerless mode, auto-triggering on the single photo-electron. It provides a charge measurement up to 400 photoelectrons (70 pC) on two scales of 10 bits and a timing information with an accuracy of 200 ps rms. The ASIC was sent for fabrication in February 2015 and then received in September 2015. It is a good candidate for two Chinese projects (LHAASO and JUNO). The architecture and the measurements will be detailed in the paper.

  14. ePix: a class of architectures for second generation LCLS cameras

    DOE PAGES

    Dragone, A.; Caragiulo, P.; Markovic, B.; ...

    2014-03-31

    ePix is a novel class of ASIC architectures, based on a common platform, optimized to build modular scalable detectors for LCLS. The platform architecture is composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog-to-digital converters per column. It also implements a dedicated control interface and all the required support electronics to perform configuration, calibration and readout of the matrix. Based on this platform a class of front-end ASICs and several camera modules, meeting different requirements, can be developed by designing specific pixel architectures. This approach reduces development time andmore » expands the possibility of integration of detector modules with different size, shape or functionality in the same camera. The ePix platform is currently under development together with the first two integrating pixel architectures: ePix100 dedicated to ultra low noise applications and ePix10k for high dynamic range applications.« less

  15. DIODE STEERED MANGETIC-CORE MEMORY

    DOEpatents

    Melmed, A.S.; Shevlin, R.T.; Laupheimer, R.

    1962-09-18

    A word-arranged magnetic-core memory is designed for use in a digital computer utilizing the reverse or back current property of the semi-conductor diodes to restore the information in the memory after read-out. In order to ob tain a read-out signal from a magnetic core storage unit, it is necessary to change the states of some of the magnetic cores. In order to retain the information in the memory after read-out it is then necessary to provide a means to return the switched cores to their states before read-out. A rewrite driver passes a pulse back through each row of cores in which some switching has taken place. This pulse combines with the reverse current pulses of diodes for each column in which a core is switched during read-out to cause the particular cores to be switched back into their states prior to read-out. (AEC)

  16. Digital communication with Rydberg atoms and amplitude-modulated microwave fields

    NASA Astrophysics Data System (ADS)

    Meyer, David H.; Cox, Kevin C.; Fatemi, Fredrik K.; Kunz, Paul D.

    2018-05-01

    Rydberg atoms, with one highly excited, nearly ionized electron, have extreme sensitivity to electric fields, including microwave fields ranging from 100 MHz to over 1 THz. Here, we show that room-temperature Rydberg atoms can be used as sensitive, high bandwidth, microwave communication antennas. We demonstrate near photon-shot-noise limited readout of data encoded in amplitude-modulated 17 GHz microwaves, using an electromagnetically induced-transparency (EIT) probing scheme. We measure a photon-shot-noise limited channel capacity of up to 8.2 Mbit s-1 and implement an 8-state phase-shift-keying digital communication protocol. The bandwidth of the EIT probing scheme is found to be limited by the available coupling laser power and the natural linewidth of the rubidium D2 transition. We discuss how atomic communication receivers offer several opportunities to surpass the capabilities of classical antennas.

  17. SAMPA Chip: the New 32 Channels ASIC for the ALICE TPC and MCH Upgrades

    NASA Astrophysics Data System (ADS)

    Adolfsson, J.; Ayala Pabon, A.; Bregant, M.; Britton, C.; Brulin, G.; Carvalho, D.; Chambert, V.; Chinellato, D.; Espagnon, B.; Hernandez Herrera, H. D.; Ljubicic, T.; Mahmood, S. M.; Mjörnmark, U.; Moraes, D.; Munhoz, M. G.; Noël, G.; Oskarsson, A.; Osterman, L.; Pilyar, A.; Read, K.; Ruette, A.; Russo, P.; Sanches, B. C. S.; Severo, L.; Silvermyr, D.; Suire, C.; Tambave, G. J.; Tun-Lanoë, K. M. M.; van Noije, W.; Velure, A.; Vereschagin, S.; Wanlin, E.; Weber, T. O.; Zaporozhets, S.

    2017-04-01

    This paper presents the test results of the second prototype of SAMPA, the ASIC designed for the upgrade of read-out front end electronics of the ALICE Time Projection Chamber (TPC) and Muon Chamber (MCH). SAMPA is made in a 130 nm CMOS technology with 1.25 V nominal voltage supply and provides 32 channels, with selectable input polarity, and three possible combinations of shaping time and sensitivity. Each channel consists of a Charge Sensitive Amplifier, a semi-Gaussian shaper and a 10-bit ADC; a Digital Signal Processor provides digital filtering and compression capability. In the second prototype run both full chip and single test blocks were fabricated, allowing block characterization and full system behaviour studies. Experimental results are here presented showing agreement with requirements for both the blocks and the full chip.

  18. Optimizing read-out of the NECTAr front-end electronics

    NASA Astrophysics Data System (ADS)

    Vorobiov, S.; Feinstein, F.; Bolmont, J.; Corona, P.; Delagnes, E.; Falvard, A.; Gascón, D.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribo, M.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.

    2012-12-01

    We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.

  19. A generic readout system for astrophysical detectors

    NASA Astrophysics Data System (ADS)

    Doumayrou, E.; Lortholary, M.

    2012-09-01

    We have developed a generic digital platform to fulfill the needs for the development of new detectors in astrophysics, which is used in lab, for ground-based telescopes instruments and also in prototype versions for space instruments development. This system is based on hardware FPGA electronic board (called MISE) together with software on a PC computer (called BEAR). The MISE board generates the fast clocking which reads the detectors thanks to a programmable digital sequencer and performs data acquisition, buffering of digitalized pixels outputs and interfaces with others boards. The data are then sent to the PC via a SpaceWire or Usb link. The BEAR software sets the MISE board up, makes data acquisition and enables the visualization, processing and the storage of data in line. These software tools are made of C++ and Labview (NI) on a Linux OS. MISE and BEAR make a generic acquisition architecture, on which dedicated analog boards are plugged, so that to accommodate with detectors specificity: number of pixels, the readout channels and frequency, analog bias and clock interfaces. We have used this concept to build a camera for the P-ARTEMIS project including a 256 pixels sub-millimeter bolometer detector at 10Kpixel/s (SPIE 7741-12 (2010)). For the EUCLID project, a lab camera is now working for the test of CCDs 4Mpixels at 4*200Kpixel/s. Another is working for the testing of new near infrared detectors (NIR LFSA for the ESA TRP program) 110Kpixels at 2*100Kpixels/s. Other projects are in progress for the space missions PLATO and SPICA.

  20. Resistor-less charge sensitive amplifier for semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Pelczar, K.; Panas, K.; Zuzel, G.

    2016-11-01

    A new concept of a Charge Sensitive Amplifier without a high-value resistor in the feedback loop is presented. Basic spectroscopic parameters of the amplifier coupled to a coaxial High Purity Germanium detector (HPGe) are discussed. The amplifier signal input is realized with an n-channel J-FET transistor. The feedback capacitor is discharged continuously by the second, forward biased n-channel J-FET, driven by an RC low-pass filter. Both the analog-with a standard spectroscopy amplifier and a multi-channel analyzer-and the digital-by applying a Flash Analog to Digital Converter-signal readouts were tested. The achieved resolution in the analog and the digital readouts was 0.17% and 0.21%, respectively, at the Full Width at Half Maximum of the registered 60Co 1332.5 keV gamma line.

  1. Prototype readout electronics and silicon strip detector study for the silicon tracking system at compressed baryonic matter experiment

    NASA Astrophysics Data System (ADS)

    Kasiński, Krzysztof; Szczygieł, Robert; Gryboś, Paweł

    2011-10-01

    This paper presents the prototype detector readout electronics for the STS (Silicon Tracking System) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The emphasis has been put on the strip detector readout chip and its interconnectivity with detector. Paper discusses the impact of the silicon strip detector and interconnection cable construction on the overall noise of the system and architecture of the TOT02 readout ASIC. The idea and problems of the double-sided silicon detector usage are also presented.

  2. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  3. Design and Implementation of Readout Circuit with Threshold Voltage Compensation on Glass Substrate for Touch Panel Applications

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ta; Ker, Ming-Dou; Wang, Tzu-Ming

    2011-03-01

    A new on-panel readout circuit with threshold voltage compensation for capacitive sensor in low temperature polycrystalline silicon (poly-Si) thin-film transistor (LTPS-TFT) process has been proposed. In order to compensate the threshold voltage variation from LTPS process variation, the proposed readout circuit applies a novel compensation approach with switch capacitor technique. In addition, a 4-bit analog-to-digital converter (ADC) is added to identify different sensed capacitor values and further enhances the overall resolution of touch panel.

  4. Development of the new trigger for VANDLE neutron detector

    NASA Astrophysics Data System (ADS)

    Hasse, Adam; Taylor, Steven; Daugherty, Hadyn; Grzywacz, Robert

    2014-09-01

    Beta-delayed neutron emission (βn) is the dominant decay channel for the majority of very neutron-rich nuclei. In order to study these decays a new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed. A critical part of this neutron time of flight detector is a trigger unit. This trigger is sensitive to electron from beta decay down to very low energies, insensitive to gamma rays and have a good timing performance, better than 1 ns. In order to satisfy these condition, we have developed a new system, which utilizes plastic scintillator but uses recently developed light readout technique, based on the so called Silicon Photomultiplier, manufactured by Sensl. New system has been developed and performance tested using digital data acquisition system at the University of Tennessee and will be utilized in future experiments involving VANDLE. Beta-delayed neutron emission (βn) is the dominant decay channel for the majority of very neutron-rich nuclei. In order to study these decays a new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed. A critical part of this neutron time of flight detector is a trigger unit. This trigger is sensitive to electron from beta decay down to very low energies, insensitive to gamma rays and have a good timing performance, better than 1 ns. In order to satisfy these condition, we have developed a new system, which utilizes plastic scintillator but uses recently developed light readout technique, based on the so called Silicon Photomultiplier, manufactured by Sensl. New system has been developed and performance tested using digital data acquisition system at the University of Tennessee and will be utilized in future experiments involving VANDLE. Department of Physics and Astronomy, University of Tennessee, Knoxville, USA.

  5. Evaluating noise performance of the IUCAA sidecar drive electronics controller (ISDEC) based system for TMT on-instrument wavefront sensing (OIWFS) application

    NASA Astrophysics Data System (ADS)

    Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay

    2016-07-01

    As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.

  6. Detection of pulsed neutrons with solid-state electronics

    NASA Astrophysics Data System (ADS)

    Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.

    2016-09-01

    Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.

  7. A Simulation of the Front End Signal Digitization for the ATLAS Muon Spectrometer thin RPC trigger upgrade project

    NASA Astrophysics Data System (ADS)

    Meng, Xiangting; Chapman, John; Levin, Daniel; Dai, Tiesheng; Zhu, Junjie; Zhou, Bing; Um Atlas Group Team

    2016-03-01

    The ATLAS Muon Spectrometer Phase-I (and Phase-II) upgrade includes the BIS78 muon trigger detector project: two sets of eight very thin Resistive Place Chambers (tRPCs) combined with small Monitored Drift Tube (MDT) chambers in the pseudorapidity region 1<| η|<1.3. The tRPCs will be comprised of triplet readout layer in each of the eta and azimuthal phi coordinates, with about 400 readout strips per layer. The anticipated hit rate is 100-200 kHz per strip. Digitization of the strip signals will be done by 32-channel CERN HPTDC chips. The HPTDC is a highly configurable ASIC designed by the CERN Microelectronics group. It can work in both trigger and trigger-less modes, be readout in parallel or serially. For Phase-I operation, a stringent latency requirement of 43 bunch crossings (1075 ns) is imposed. The latency budget for the front end digitization must be kept to a minimal value, ideally less than 350 ns. We conducted detailed HPTDC latency simulations using the Behavioral Verilog code from the CERN group. We will report the results of these simulations run for the anticipated detector operating environment and for various HPTDC configurations.

  8. A Binary Offset Effect in CCD Readout and Its Impact on Astronomical Data

    NASA Astrophysics Data System (ADS)

    Boone, K.; Aldering, G.; Copin, Y.; Dixon, S.; Domagalski, R. S.; Gangler, E.; Pecontal, E.; Perlmutter, S.

    2018-06-01

    We have discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications. An offset in the digitization of the CCD output voltage that depends on the binary encoding of one pixel is added to pixels that are read out one, two, and/or three pixels later. One result of this effect is the introduction of a differential offset in the background when comparing regions with and without flux from science targets. Conventional data reduction methods do not correct for this offset. We find this effect in 16 of 22 instruments investigated, covering a variety of telescopes and many different front-end electronics systems. The affected instruments include LRIS and DEIMOS on the Keck telescopes, WFC3 UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. The amplitude of the introduced offset is up to 4.5 ADU per pixel, and it is not directly proportional to the measured ADU level. We have developed a model that can be used to detect this “binary offset effect” in data, and correct for it. Understanding how data are affected and applying a correction for the effect is essential for precise astronomical measurements.

  9. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.

    PubMed

    Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2012-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).

  10. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems

    PubMed Central

    Dey, Samrat; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.

    2013-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs). PMID:24301987

  11. An application specific integrated circuit based multi-anode microchannel array readout system

    NASA Technical Reports Server (NTRS)

    Smeins, Larry G.; Stechman, John M.; Cole, Edward H.

    1991-01-01

    Size reduction of two new multi-anode microchannel array (MAMA) readout systems is described. The systems are based on two analog and one digital application specific integrated circuits (ASICs). The new readout systems reduce volume over previous discrete designs by 80 percent while improving electrical performance on virtually every significant parameter. Emphasis is made on the packaging used to achieve the volume reduction. Surface mount technology (SMT) is combined with modular construction for the analog portion of the readout. SMT reliability concerns and the board area impact of MIL SPEC SMT components is addressed. Package selection for the analog ASIC is discussed. Future sytems will require even denser packaging and the volume reduction progression is shown.

  12. Front-end electronics for PWO-based PHOS calorimeter of ALICE

    NASA Astrophysics Data System (ADS)

    Muller, Hans; Budnikov, Dmitry; Ippolitov, Mikhail; Li, Qingxia; Manko, Vladislav; Pimenta, Rui; Rohrich, Dieter; Sibiryak, Iouri; Skaali, Bernhard; Vinogradov, Alexandre

    2006-11-01

    The electromagnetic Photon Spectrometer (PHOS) of ALICE consists of five modules with 56×64 PWO crystals, operated at -25 °C. Glued to each crystal are APD diodes which amplify a lightyield of 4.4 photoelectrons/MeV, followed by charge-sensitive pre-amplifiers with a charge conversion gain of ca. 1 V/pC. We describe our new 32-channel shaper/digitizer and readout electronics for gain-programmable photodiodes. These Front-End Electronics (FEE) cards are installed below the crystals in an isolated warm volume in geometrical correspondence to 2×16 crystal rows per card. With a total detector capacitance of 100 pF and a noise level of 3 MeV, the FEEs cover a 14 bit dynamic range from 5 MeV to 80 GeV. The low noise level is achieved by operating the APDs and preamplifiers at low temperature and by applying a relatively long shaping time of 1 μs. The offline timing resolution, obtained via a Gamma-2 fit is less than 2 ns. The second-order, dual-gain shapers produce semi-Gaussian output for 10 bit ADCs with embedded multi-event buffers. A Readout Control Unit (RCU) masters data readout with address-mapped access to the event-buffers and controls registers via a custom bus which interconnects up to 14 FEE cards. Programmable bias voltage controllers on the FEE cards allow for very precise gain adjustment of each individual APD. Being co-designed with the TRU trigger cards, each FEE card generates eight fast signal sums (2×2 crystals) as input to the TRU. FPGA-based algorithms generate level-0 and level-1 trigger decisions at 40 MHz and allow PHOS also to operate in self-triggered mode. Inside each PHOS module there are 112 FEE and 8 TRU cards which dissipate ca. 1 kW heat which is extracted via a water cooling system.

  13. Hand-Held Electronic Gap-Measuring Tools

    NASA Technical Reports Server (NTRS)

    Sugg, F. E.; Thompson, F. W.; Aragon, L. A.; Harrington, D. B.

    1985-01-01

    Repetitive measurements simplified by tool based on LVDT operation. With fingers in open position, Gap-measuring tool rests on digital readout instrument. With fingers inserted in gap, separation alters inductance of linear variable-differential transformer in plastic handle. Originally developed for measuring gaps between surface tiles of Space Shuttle orbiter, tool reduces measurement time from 20 minutes per tile to 2 minutes. Also reduces possibility of damage to tiles during measurement. Tool has potential applications in mass production; helps ensure proper gap dimensions in assembly of refrigerator and car doors and also used to measure dimensions of components and to verify positional accuracy of components during progressive assembly operations.

  14. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  15. Research on phase locked loop in optical memory servo system

    NASA Astrophysics Data System (ADS)

    Qin, Liqin; Ma, Jianshe; Zhang, Jianyong; Pan, Longfa; Deng, Ming

    2005-09-01

    Phase locked loop (PLL) is a closed loop automatic control system, which can track the phase of input signal. It widely applies in each area of electronic technology. This paper research the phase locked loop in optical memory servo area. This paper introduces the configuration of digital phase locked loop (PLL) and phase locked servo system, the control theory, and analyses system's stability. It constructs the phase locked loop experiment system of optical disk spindle servo, which based on special chip. DC motor is main object, this system adopted phase locked servo technique and digital signal processor (DSP) to achieve constant linear velocity (CLV) in controlling optical spindle motor. This paper analyses the factors that affect the stability of phase locked loop in spindle servo system, and discusses the affection to the optical disk readout signal and jitter due to the stability of phase locked loop.

  16. A front end readout electronics ASIC chip for position sensitive solid state detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravis, S.D.; Tuemer, T.O.; Visser, G.J.

    1998-12-31

    A mixed signal Application Specific Integrated Circuit (ASIC) chip for front end readout electronics of position sensitive solid state detectors has been manufactured. It is called RENA (Readout Electronics for Nuclear Applications). This chip can be used for both medical and industrial imaging of X-rays and gamma rays. The RENA chip is a monolithic integrated circuit and has 32 channels with low noise high input impedance charge sensitive amplifiers. It works in pulse counting mode with good energy resolution. It also has a self triggering output which is essential for nuclear applications when the incident radiation arrives at random. Different,more » externally selectable, operational modes that includes a sparse readout mode is available to increase data throughput. It also has externally selectable shaping (peaking) times.« less

  17. Backside illuminated CMOS-TDI line scan sensor for space applications

    NASA Astrophysics Data System (ADS)

    Cohen, Omer; Ofer, Oren; Abramovich, Gil; Ben-Ari, Nimrod; Gershon, Gal; Brumer, Maya; Shay, Adi; Shamay, Yaron

    2018-05-01

    A multi-spectral backside illuminated Time Delayed Integration Radiation Hardened line scan sensor utilizing CMOS technology was designed for continuous scanning Low Earth Orbit small satellite applications. The sensor comprises a single silicon chip with 4 independent arrays of pixels where each array is arranged in 2600 columns with 64 TDI levels. A multispectral optical filter whose spectral responses per array are adjustable per system requirement is assembled at the package level. A custom 4T Pixel design provides the required readout speed, low-noise, very low dark current, and high conversion gains. A 2-phase internally controlled exposure mechanism improves the sensor's dynamic MTF. The sensor high level of integration includes on-chip 12 bit per pixel analog to digital converters, on-chip controller, and CMOS compatible voltage levels. Thus, the power consumption and the weight of the supporting electronics are reduced, and a simple electrical interface is provided. An adjustable gain provides a Full Well Capacity ranging from 150,000 electrons up to 500,000 electrons per column and an overall readout noise per column of less than 120 electrons. The imager supports line rates ranging from 50 to 10,000 lines/sec, with power consumption of less than 0.5W per array. Thus, the sensor is characterized by a high pixel rate, a high dynamic range and a very low power. To meet a Latch-up free requirement RadHard architecture and design rules were utilized. In this paper recent electrical and electro-optical measurements of the sensor's Flight Models will be presented for the first time.

  18. Study report on laser storage and retrieval of image data

    NASA Technical Reports Server (NTRS)

    Becker, C. H.

    1976-01-01

    The theoretical foundation is presented for a system of real-time nonphotographic and nonmagnetic digital laser storage and retrieval of image data. The system utilizes diffraction-limited laser focusing upon thin metal films, melting elementary holes in the metal films in laser focus. The metal films are encapsulated in rotating flexible mylar discs which act as the permanent storage carries. Equal sized holes encompass two dimensional digital ensembles of information bits which are time-sequentially (bit by bit) stored and retrieved. The bits possess the smallest possible size, defined by the Rayleigh criterion of coherent physical optics. Space and time invariant reflective read-out of laser discs with a small laser, provides access to the stored digital information. By eliminating photographic and magnetic data processing, which characterize the previous state of the art, photographic grain, diffusion, and gamma-distortion do not exist. Similarly, magnetic domain structures, magnetic gaps, and magnetic read-out are absent with a digital laser disc system.

  19. Radiation Hardening of Digital Color CMOS Camera-on-a-Chip Building Blocks for Multi-MGy Total Ionizing Dose Environments

    NASA Astrophysics Data System (ADS)

    Goiffon, Vincent; Rolando, Sébastien; Corbière, Franck; Rizzolo, Serena; Chabane, Aziouz; Girard, Sylvain; Baer, Jérémy; Estribeau, Magali; Magnan, Pierre; Paillet, Philippe; Van Uffelen, Marco; Mont Casellas, Laura; Scott, Robin; Gaillardin, Marc; Marcandella, Claude; Marcelot, Olivier; Allanche, Timothé

    2017-01-01

    The Total Ionizing Dose (TID) hardness of digital color Camera-on-a-Chip (CoC) building blocks is explored in the Multi-MGy range using 60Co gamma-ray irradiations. The performances of the following CoC subcomponents are studied: radiation hardened (RH) pixel and photodiode designs, RH readout chain, Color Filter Arrays (CFA) and column RH Analog-to-Digital Converters (ADC). Several radiation hardness improvements are reported (on the readout chain and on dark current). CFAs and ADCs degradations appear to be very weak at the maximum TID of 6 MGy(SiO2), 600 Mrad. In the end, this study demonstrates the feasibility of a MGy rad-hard CMOS color digital camera-on-a-chip, illustrated by a color image captured after 6 MGy(SiO2) with no obvious degradation. An original dark current reduction mechanism in irradiated CMOS Image Sensors is also reported and discussed.

  20. GEM detector performance with innovative micro-TPC readout in high magnetic field

    NASA Astrophysics Data System (ADS)

    Garzia, I.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Cassariti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Dong, J.; Evangelisti, F.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Rolo, M. D.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Verma, S.; Wheadon, R.; Yan, L.

    2018-01-01

    Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD), allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs). Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  1. Event-related potential indices of workload in a single task paradigm

    NASA Technical Reports Server (NTRS)

    Horst, R. L.; Munson, R. C.; Ruchkin, D. S.

    1984-01-01

    Many previous studies of both behavioral and physiological correlates of cognitive workload have burdened subjects with a contrived secondary task in order to assess the workload of a primary task. The present study investigated event-related potential (ERP) indices of workload in a single task paradigm. Subjects monitored changing digital readouts for values that went 'out-of-bounds'. The amplitude of a long-latency positivity in the ERPs elicited by readout changes increased with the number of readouts being monitored. This effect of workload on ERPs is reported, along with plans for additional analyses to address theoretical implications.

  2. Fast Magnetoresistive Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1991-01-01

    Magnetoresistive binary digital memories of proposed new type expected to feature high speed, nonvolatility, ability to withstand ionizing radiation, high density, and low power. In memory cell, magnetoresistive effect exploited more efficiently by use of ferromagnetic material to store datum and adjacent magnetoresistive material to sense datum for readout. Because relative change in sensed resistance between "zero" and "one" states greater, shorter sampling and readout access times achievable.

  3. Upgrade of the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Moreno, Pablo; ATLAS Tile Calorimeter System

    2016-04-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of 9852 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase II) where the peak luminosity will increase 5× compared to the design luminosity (1034 cm-2s-1) at center of mass energy of 14 TeV. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10.24 Gbps optical links are used to read out all digitized data to the counting room while 4.8 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and de-randomizer memories. Field Programmable Gate Arrays are extensively used for the logic functions off- and on-detector. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS at the end of 2015.

  4. Tunneling Statistics for Analysis of Spin-Readout Fidelity

    NASA Astrophysics Data System (ADS)

    Gorman, S. K.; He, Y.; House, M. G.; Keizer, J. G.; Keith, D.; Fricke, L.; Hile, S. J.; Broome, M. A.; Simmons, M. Y.

    2017-09-01

    We investigate spin and charge dynamics of a quantum dot of phosphorus atoms coupled to a radio-frequency single-electron transistor (SET) using full counting statistics. We show how the magnetic field plays a role in determining the bunching or antibunching tunneling statistics of the donor dot and SET system. Using the counting statistics, we show how to determine the lowest magnetic field where spin readout is possible. We then show how such a measurement can be used to investigate and optimize single-electron spin-readout fidelity.

  5. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    NASA Astrophysics Data System (ADS)

    Plimley, Brian; Coffer, Amy; Zhang, Yigong; Vetter, Kai

    2016-08-01

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  6. ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Bender, A. N.; Cliche, J. F.; de Haan, T.; Dobbs, M. A.; Gilbert, A. J.; Griffin, S.; Hsyu, G.; Ittah, D.; Parra, J. Mena; Montgomery, J.; Pinsonneault-Marotte, T.; Siegel, S.; Smecher, G.; Tang, Q. Y.; Vanderlinde, K.; Whitehorn, N.

    2016-03-01

    We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) radio interferometers.

  7. Image charge multi-role and function detectors

    NASA Astrophysics Data System (ADS)

    Milnes, James; Lapington, Jon S.; Jagutzki, Ottmar; Howorth, Jon

    2009-06-01

    The image charge technique used with microchannel plate imaging tubes provides several operational and practical benefits by serving to isolate the electronic image readout from the detector. The simple dielectric interface between detector and readout provides vacuum isolation and no vacuum electrical feed-throughs are required. Since the readout is mechanically separate from the detector, an image tube of generic design can be simply optimised for various applications by attaching it to different readout devices and electronics. We present imaging performance results using a single image tube with a variety of readout devices suited to differing applications: (a) A four electrode charge division tetra wedge anode, optimised for best spatial resolution in photon counting mode. (b) A cross delay line anode, enabling higher count rate, and the possibility of discriminating near co-incident events, and an event timing resolution of better than 1 ns. (c) A multi-anode readout connected, either to a multi-channel oscilloscope for analogue measurements of fast optical pulses, or alternately, to a multi-channel time correlated single photon counting (TCSPC) card.

  8. A low-power small-area ADC array for IRFPA readout

    NASA Astrophysics Data System (ADS)

    Zhong, Shengyou; Yao, Libin

    2013-09-01

    The readout integrated circuit (ROIC) is a bridge between the infrared focal plane array (IRFPA) and image processing circuit in an infrared imaging system. The ROIC is the first part of signal processing circuit and connected to detectors directly, so its performance will greatly affect the detector or even the whole imaging system performance. With the development of CMOS technologies, it's possible to digitalize the signal inside the ROIC and develop the digital ROIC. Digital ROIC can reduce complexity of the whole system and improve the system reliability. More importantly, it can accommodate variety of digital signal processing techniques which the traditional analog ROIC cannot achieve. The analog to digital converter (ADC) is the most important building block in the digital ROIC. The requirements for ADCs inside the ROIC are low power, high dynamic range and small area. In this paper we propose an RC hybrid Successive Approximation Register (SAR) ADC as the column ADC for digital ROIC. In our proposed ADC structure, a resistor ladder is used to generate several voltages. The proposed RC hybrid structure not only reduces the area of capacitor array but also releases requirement for capacitor array matching. Theory analysis and simulation show RC hybrid SAR ADC is suitable for ADC array applications

  9. Trigger readout electronics upgrade for the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Dinkespiler, B.

    2017-09-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the 2019-2020 shut-down period, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to deliver digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the Back End using a custom serializer and optical converter and 5.12 Gb/s optical links. In order to verify the full functionality of the future Liquid Argon trigger system, a demonstrator set-up has been installed on the ATLAS detector and is operated in parallel to the regular ATLAS data taking during the LHC Run-2 in 2015 and 2016. Noise level and linearity on the energy measurement have been verified to be within our requirements. In addition, we have collected data from 13 TeV proton collisions during the LHC 2015 and 2016 runs, and have observed real pulses from the detector through the demonstrator system. The talk will give an overview of the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeter readout and present the custom developed hardware including their role in real-time data processing and fast data transfer. This contribution will also report on the performance of the newly developed ASICs including their radiation tolerance and on the performance of the prototype boards in the demonstrator system based on various measurements with the 13 TeV collision data. Results of the high-speed link test with the prototypes of the final electronic boards will be also reported.

  10. Status of the NectarCAM camera project

    NASA Astrophysics Data System (ADS)

    Glicenstein, J.-F.; Barcelo, M.; Barrio, J.-A.; Blanch, O.; Boix, J.; Bolmont, J.; Boutonnet, C.; Brun, P.; Chabanne, E.; Champion, C.; Colonges, S.; Corona, P.; Courty, B.; Delagnes, E.; Delgado, C.; Diaz, C.; Ernenwein, J.-P.; Fegan, S.; Ferreira, O.; Fesquet, M.; Fontaine, G.; Fouque, N.; Henault, F.; Gascón, D.; Giebels, B.; Herranz, D.; Hermel, R.; Hoffmann, D.; Horan, D.; Houles, J.; Jean, P.; Karkar, S.; Knödlseder, J.; Martinez, G.; Lamanna, G.; LeFlour, T.; Lévêque, A.; Lopez-Coto, R.; Louis, F.; Moudden, Y.; Moulin, E.; Nayman, P.; Nunio, F.; Olive, J.-F.; Panazol, J.-L.; Pavy, S.; Petrucci, P.-O.; Punch, M.; Prast, Julie; Ramon, P.; Rateau, S.; Ribó, M.; Rosier-Lees, S.; Sanuy, A.; Sizun, P.; Sieiro, J.; Sulanke, K.-H.; Tavernet, J.-P.; Tejedor, L. A.; Toussenel, F.; Vasileiadis, G.; Voisin, V.; Waegebert, V.; Zurbach, C.

    2014-07-01

    NectarCAM is a camera designed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range 100 GeV to 30 TeV. It has a modular design based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 7 to 8 degrees. Each module includes the photomultiplier bases, High Voltage supply, pre-amplifier, trigger, readout and Thernet transceiver. Events recorded last between a few nanoseconds and tens of nanoseconds. A flexible trigger scheme allows to read out very long events. NectarCAM can sustain a data rate of 10 kHz. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, the cooling of electronics, read-out, clock distribution, slow control, data-acquisition, trigger, monitoring and services. A 133-pixel prototype with full scale mechanics, cooling, data acquisition and slow control will be built at the end of 2014.

  11. NaNet3: The on-shore readout and slow-control board for the KM3NeT-Italia underwater neutrino telescope

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Martinelli, M.; Paolucci, P. S.; Pontisso, L.; Simula, F.; Vicini, P.; Ameli, F.; Nicolau, C. A.; Pastorelli, E.; Simeone, F.; Tosoratto, L.; Lonardo, A.

    2016-04-01

    The KM3NeT-Italia underwater neutrino detection unit, the tower, consists of 14 floors. Each floor supports 6 Optical Modules containing front-end electronics needed to digitize the PMT signal, format and transmit the data and 2 hydrophones that reconstruct in real-time the position of Optical Modules, for a maximum tower throughput of more than 600 MB/s. All floor data are collected by the Floor Control Module (FCM) board and transmitted by optical bidirectional virtual point-to-point connections to the on-shore laboratory, each FCM needing an on-shore counterpart as communication endpoint. In this contribution we present NaNet3, an on-shore readout board based on Altera Stratix V GX FPGA able to manage multiple FCM data channels with a capability of 800 Mbps each. The design is a NaNet customization for the KM3NeT-Italia experiment, adding support in its I/O interface for a synchronous link protocol with deterministic latency at physical level and for a Time Division Multiplexing protocol at data level.

  12. Evaluation of Multi-Channel ADCs for Gamma-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson

    2013-04-01

    As nuclear physicists increasingly design large scale experiments with hundreds or thousands of detector channels, there are growing needs for high density readout electronics with good timing and energy resolution that at the same time offer lower cost per channel compared to existing commercial solutions. Recent improvements in the design of commercial analog to digital converters (ADCs) have resulted in a variety of multi-channel ADCs that are natural choice for designing such high density readout modules. However, multi-channel ADCs typically are designed for medical imaging/ultrasound applications and therefore are not rated for their spectroscopic characteristics. In this work, we evaluated the gamma-ray spectroscopic performance of several multi-channel ADCs, including their energy resolution, nonlinearity, and timing resolution. Some of these ADCs demonstrated excellent energy resolution, 2.66% FWHM at 662 keV with a LaBr3 or 1.78 keV FWHM at 1332.5 keV with a high purity germanium (HPGe) detector, and sub-nanosecond timing resolution with LaBr 3. We present results from these measurements to illustrate their suitability for gamma-ray spectroscopy.

  13. TES Detector Noise Limited Readout Using SQUID Multiplexers

    NASA Technical Reports Server (NTRS)

    Staguhn, J. G.; Benford, D. J.; Chervenak, J. A.; Khan, S. A.; Moseley, S. H.; Shafer, R. A.; Deiker, S.; Grossman, E. N.; Hilton, G. C.; Irwin, K. D.

    2004-01-01

    The availability of superconducting Transition Edge Sensors (TES) with large numbers of individual detector pixels requires multiplexers for efficient readout. The use of multiplexers reduces the number of wires needed between the cryogenic electronics and the room temperature electronics and cuts the number of required cryogenic amplifiers. We are using an 8 channel SQUID multiplexer to read out one-dimensional TES arrays which are used for submillimeter astronomical observations. We present results from test measurements which show that the low noise level of the SQUID multiplexers allows accurate measurements of the TES Johnson noise, and that in operation, the readout noise is dominated by the detector noise. Multiplexers for large number of channels require a large bandwidth for the multiplexed readout signal. We discuss the resulting implications for the noise performance of these multiplexers which will be used for the readout of two dimensional TES arrays in next generation instruments.

  14. An integrated wire harp and readout electronics inside vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Mou; Nabhiraj, P. Y.

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10{sup −7} Torr) to make the system much simpler, easy to operate, and measure small beammore » current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.« less

  15. An integrated wire harp and readout electronics inside vacuum.

    PubMed

    Chatterjee, Mou; Nabhiraj, P Y

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10(-7) Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  16. An integrated wire harp and readout electronics inside vacuum

    NASA Astrophysics Data System (ADS)

    Chatterjee, Mou; Nabhiraj, P. Y.

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10-7 Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  17. The Analog Revolution and Its On-Going Role in Modern Analytical Measurements.

    PubMed

    Enke, Christie G

    2015-12-15

    The electronic revolution in analytical instrumentation began when we first exceeded the two-digit resolution of panel meters and chart recorders and then took the first steps into automated control. It started with the first uses of operational amplifiers (op amps) in the analog domain 20 years before the digital computer entered the analytical lab. Their application greatly increased both accuracy and precision in chemical measurement and they provided an elegant means for the electronic control of experimental quantities. Later, laboratory and personal computers provided an unlimited readout resolution and enabled programmable control of instrument parameters as well as storage and computation of acquired data. However, digital computers did not replace the op amp's critical role of converting the analog sensor's output to a robust and accurate voltage. Rather it added a new role: converting that voltage into a number. These analog operations are generally the limiting portions of our computerized instrumentation systems. Operational amplifier performance in gain, input current and resistance, offset voltage, and rise time have improved by a remarkable 3-4 orders of magnitude since their first implementations. Each 10-fold improvement has opened the doors for the development of new techniques in all areas of chemical analysis. Along with some interesting history, the multiple roles op amps play in modern instrumentation are described along with a number of examples of new areas of analysis that have been enabled by their improvements.

  18. Design of a laser scanner for a digital mammography system.

    PubMed

    Rowlands, J A; Taylor, J E

    1996-05-01

    We have developed a digital readout system for radiographic images using a scanning laser beam. In this system, electrostatic charge images on amorphous selenium (alpha-Se) plates are read out using photo-induced discharge (PID). We discuss the design requirements of a laser scanner for the PID system and describe its construction from commercially available components. The principles demonstrated can be adapted to a variety of digital imaging systems.

  19. RF Single Electron Transistor Readout Amplifiers for Superconducting Astronomical Detectors for X-Ray to Sub-mm Wavelengths

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl

    2000-01-01

    We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.

  20. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    PubMed

    Aull, Brian

    2016-04-08

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

  1. Fast, high-fidelity readout of multiple qubits

    NASA Astrophysics Data System (ADS)

    Bronn, N. T.; Abdo, B.; Inoue, K.; Lekuch, S.; Córcoles, A. D.; Hertzberg, J. B.; Takita, M.; Bishop, L. S.; Gambetta, J. M.; Chow, J. M.

    2017-05-01

    Quantum computing requires a delicate balance between coupling quantum systems to external instruments for control and readout, while providing enough isolation from sources of decoherence. Circuit quantum electrodynamics has been a successful method for protecting superconducting qubits, while maintaining the ability to perform readout [1, 2]. Here, we discuss improvements to this method that allow for fast, high-fidelity readout. Specifically, the integration of a Purcell filter, which allows us to increase the resonator bandwidth for fast readout, the incorporation of a Josephson parametric converter, which enables us to perform high-fidelity readout by amplifying the readout signal while adding the minimum amount of noise required by quantum mechanics, and custom control electronics, which provide us with the capability of fast decision and control.

  2. Readout Electronics for the Forward Vertex Detector at PHENIX

    NASA Astrophysics Data System (ADS)

    Phillips, Michael

    2010-11-01

    The PHENIX experiment at RHIC at Brookhaven National Laboratory has been providing high quality physics data for over 10 years. The current PHENIX physics program will be significantly enhanced by addition of the Forward Silicon Vertex upgrade detector (FVTX) in the acceptance of existing muon arm detectors. The proposed tracker is planned to be put into operation in 2012. Each arm of the FVTX detector consist of 4 discs of silicon strip sensors combined with FPHX readout chips, designed at FNAL. The full detector consists of over 1 million active mini-strip channels with instantaneous bandwidth topping 3.4 Tb/s. The FPHX chip utilizes data push architecture with 2 serial output streams at 200 MHz. The readout electronics design consists of Read-Out Cards (ROC) located in the vicinity of the detector and Front End Modules (FEM) located in the Counting House. ROC boards combine the data from several chips, synchronizes data streams and send them to FEM over a Fiber Optics Link. The data are buffered in the FEM and then sent to a standard PHENIX DAQ interface upon Level-1 trigger request. We will present the current status of the readout electronics development and testing, including tests with data from production wedges.

  3. LSST camera readout chip ASPIC: test tools

    NASA Astrophysics Data System (ADS)

    Antilogus, P.; Bailly, Ph; Jeglot, J.; Juramy, C.; Lebbolo, H.; Martin, D.; Moniez, M.; Tocut, V.; Wicek, F.

    2012-02-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  4. Two-dimensional ultraviolet imagery with a microchannel-plate/resistive-anode detector

    NASA Technical Reports Server (NTRS)

    Opal, C. B.; Feldman, P. D.; Weaver, H. A.; Mcclintock, J. A.

    1979-01-01

    An imaging ultraviolet detector has been designed for use with a precision pointed telescope flown on a sounding rocket. Resolution of better than 80 microns over a field of 5 mm has been achieved. The ultraviolet image is converted to electrons at the front surface of a CsI coated chevron microchannel-plate electron multiplier. For each photoelectron, the multiplier produces a burst of about 3,000,000 electrons, which impinges on a tellurium-coated resistive anode with four evaporated hyperbolic readout electrodes. The sizes of the four resulting output pulses are digitized to 10 bit accuracy and telemetered to the ground, where they are divided in pairs to give the x and y coordinates of the photoelectron event. The coordinates are used to generate a picture in real time, and are recorded for computer processing later. The detector was successfully flown in December 1978. Good images of Jupiter and Capella in hydrogen Lyman alpha emission were obtained.

  5. The HADES-RICH upgrade using Hamamatsu H12700 MAPMTs with DiRICH FEE + Readout

    NASA Astrophysics Data System (ADS)

    Patel, V.; Traxler, M.

    2018-03-01

    The High Acceptance Di-Electron Spectrometer (HADES) is operational since the year 2000 and uses a hadron blind RICH detector for electron identification. The RICH photon detector is currently replaced by Hamamatsu H12700 MAPMTs with a readout system based on the DiRICH front-end module. The electronic readout chain is being developed as a joint effort of the HADES-, CBM- and PANDA collaborations and will also be used in the photon detectors for the upcoming Compressed Baryonic Matter (CBM) and PANDA experiments at FAIR . This article gives a brief overview on the photomultipliers and their quality assurance test measurements, as well as first measurements of the new DiRICH front-end module in final configurations.

  6. High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; D'Anjou, Benjamin; Rudolph, Martin; Jacobson, N. Tobias; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Coish, William A.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    2018-04-01

    The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)-(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. It further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.

  7. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Cometti, S.

    2018-03-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with a 13 bits resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring a fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  8. Skeletal status and soft tissue composition in astronauts. Tissue and fluid changes by radionuclide absorptiometry in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Mazess, R. B.; Wilson, C. R.

    1973-01-01

    A device has been constructed and tested which provides immediate readout of bone mineral content and bone width from absorptiometric scans with low energy radionuclides. The basis of this analog system is a logarithmic converter-integrator coupled with a precision linear ratemeter. The system provided accurate and reliable results on standards and ashed bone sections. Clinical measurements were made on about 100 patients with the direct readout system, and these were highly correlated with the results from digital scan data on the same patients. The direct readout system has been used successfully in field studies and surveys as well as for clinical observations.

  9. Optical delay encoding for fast timing and detector signal multiplexing in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford

    2015-08-15

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less

  10. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-06-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  11. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  12. Characterization and commissioning of the SST-1M camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Błocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Medina Miranda, L. D.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2017-02-01

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-rays observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The SSTs are dedicated to the observation of gamma-rays with energy between a few TeV and a few hundreds of TeV. The SST array is expected to have 70 telescopes of different designs. The single-mirror small size telescope (SST-1 M) is one of the proposed telescope designs under consideration for the SST array. It will be equipped with a 4 m diameter segmented mirror dish and with an innovative camera based on silicon photomultipliers (SiPMs). The challenge is not only to build a telescope with exceptional performance but to do it foreseeing its mass production. To address both of these challenges, the camera adopts innovative solutions both for the optical system and readout. The Photo-Detection Plane (PDP) of the camera is composed of 1296 pixels, each made of a hollow, hexagonal light guide coupled to a hexagonal SiPM designed by the University of Geneva and Hamamatsu. As no commercial ASIC would satisfy the CTA requirements when coupled to such a large sensor, dedicated preamplifier electronics have been designed. The readout electronics also use an innovative approach in gamma-ray astronomy by adopting a fully digital approach. All signals coming from the PDP are digitized in a 250 MHz Fast ADC and stored in ring buffers waiting for a trigger decision to send them to the pre-processing server where calibration and higher level triggers will decide whether the data are stored. The latest generation of FPGAs is used to achieve high data rates and also to exploit all the flexibility of the system. As an example each event can be flagged according to its trigger pattern. All of these features have been demonstrated in laboratory measurements on realistic elements and the results of these measurements will be presented in this contribution.

  13. MODIFICATIONS OF THE RAND REAC,

    DTIC Science & Technology

    The major items of the modification program were the installation of a removable plugboard of the type used on the International Business Machines punched card tabulators, and a digital readout device.

  14. Development of a flight qualified 100 x 100 mm MCP UV detector using advanced cross strip anodes and associated ASIC electronics

    NASA Astrophysics Data System (ADS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Raffanti, Rick; Cumming, Harley; Seljak, Andrej; Virta, Vihtori; Varner, Gary

    2016-07-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last three decades (e.g. EUVE, FUSE, COS on Hubble etc.) and been mentioned for instruments on future large telescopes in space such as LUVOIR14. Using cross strip anodes, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x 1000) and output event rate (x100), all the while operating at lower gain (x10) resulting in lower high voltage requirements and longer MCP lifetimes. A crossed strip anode MCP readout starts with a set of orthogonal conducting strips (e.g. 80 x 80), typically spaced at a 635 micron pitch onto which charge clouds from MCP amplified events land. Each strip has its own charge sensitive amplifier that is sampled continuously by a dedicated analog to digital converter (ADC). All of the ADC digital output lines are fed into a field programmable gate array (FGPA) which can detect charge events landing on the strips, measure the peak amplitudes of those charge events and calculate their spatial centroid along with their time of arrival (X,Y,T) and pass this information to a downstream computer. Laboratory versions of these electronics have demonstrated < 20 microns FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of 1ns. In 2012 our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a NASA Strategic Astrophysics Technology (SAT) grant to raise the TRL of a cross strip detector from 4 to 6 by replacing most of the 19" rack mounted, high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass, and volume requirements of the detector electronics. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). ASICs designed for this program have been successfully fabricated and are undergoing extensive testing. We will present the latest progress on these ASIC designs and their performance. We will also show our preliminary work on scaling these designs (detector and electronics) to a flight qualified 100 x 100 mm cross strip detector, which has recently been funded through a follow on SAT grant.

  15. Integration of a High Sensitivity MEMS Directional Sound Sensor With Readout Electronics

    DTIC Science & Technology

    2012-12-01

    Readout Electronics 5. FUNDING NUMBERS 6. AUTHOR(S) John D. Roth 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School...Monterey, CA 93943–5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) Space and Naval Warfare...1   1.   The Anatomy of the Ormia Ochracea Hearing Organ

  16. Imaging Demonstration of a Glass Gas Electron Multiplier with Electronic Charge Readout

    NASA Astrophysics Data System (ADS)

    Mitsuya, Yuki; Thuiner, Patrik; Oliveri, Eraldo; Resnati, Filippo; Stenis, Miranda van; Fujiwara, Takeshi; Takahashi, Hiroyuki; Ropelewski, Leszek

    2018-02-01

    We have developed a Glass Gas Electron Multiplier (Glass GEM, G-GEM), which is composed of two copper electrodes separated by a photosensitive etchable glass substrate having holes arranged in a hexagonal pattern. In this paper, we report the result of imaging using a G-GEM combined with a 2D electronic charge readout. We used a crystallized photosensitive etchable glass as the G-GEM substrate. A precise X-ray image of a small mammal was successfully obtained with position resolutions of approximately 110 to 140 μm in RMS.

  17. Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Q.; Liang, Y. X.; Ferry, D.

    2014-07-07

    We report on the results obtained from specially designed high electron mobility transistors at 4.2 K: the gate leakage current can be limited lower than 1 aA, and the equivalent input noise-voltage and noise-current at 1 Hz can reach 6.3 nV/Hz{sup 1∕2} and 20 aA/Hz{sup 1∕2}, respectively. These results open the way to realize high performance low-frequency readout electronics under very low-temperature conditions.

  18. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    DOE PAGES

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; ...

    2015-06-10

    In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less

  19. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    NASA Astrophysics Data System (ADS)

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D. D. S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G.; Kamto, J.

    2015-09-01

    A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.

  20. 640 X 480 PtSi MOS infrared imager

    NASA Astrophysics Data System (ADS)

    Sauer, Donald J.; Shallcross, Frank V.; Hseuh, Fu-Lung; Meray, Grazyna M.; Levine, Peter A.; Gilmartin, Harvey R.; Villani, Thomas S.; Esposito, Benjamin J.; Tower, John R.

    1992-09-01

    The design and performance of a 640 (H) X 480 (V) element PtSi Schottky-barrier infrared image sensor employing a low-noise MOS X-Y addressable readout multiplexer and on-chip low-noise output amplifier is described. The imager achieves an NEDT equals 0.10 K at 30 Hz frame rates with f/1.5 optics (300 K background). The MOS design provides a measured saturation level of 1.5 X 10(superscript 6) electrons (5 V bias) and a noise floor of 300 rms electrons per pixel. A multiplexed horizontal/vertical input address port and on-chip decoding is used to load scan data into CMOS horizontal and vertical scanning registers. This allows random access to any sub-frame in the 640 X 480 element focal plane array. By changing the digital pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or non-interlaced format, and the integration time may be varied over a wide range (60 microsecond(s) to > 30 ms, for RS 170 operation) resulting in `electronic shutter' variable exposure control. The pixel size of 24 micrometers X 24 micrometers results in a fill factor of 38% for 1.5 micrometers process design rules. The overall die size for the IR imager is 13.7 mm X 17.2 mm. All digital inputs to the chip are TTL compatible and include ESD protection.

  1. A SAR-ADC using unit bridge capacitor and with calibration for the front-end electronics of PET imaging

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wei, Tingcun; Li, Bo; Yang, Lifeng; Xue, Feifei; Hu, Yongcai

    2016-05-01

    This paper presents a 12-bit 1 MS/s successive approximation register-analog to digital converter (SAR-ADC) for the 32-channel front-end electronics of CZT-based PET imaging system. To reduce the capacitance mismatch, instead of the fractional capacitor, the unit capacitor is used as the bridge capacitor in the split-capacitor digital to analog converter (DAC) circuit. In addition, in order to eliminate the periodical DNL errors of -1 LSB which often exists in the SAR-ADC using the charge-redistributed DAC, a calibration algorithm is proposed and verified by the experiments. The proposed 12-bit 1 MS/s SAR-ADC is designed and implemented using a 0.35 μm CMOS technology, it occupies only an active area of 986×956 μm2. The measurement results show that, at the power supply of 3.3/5.0 V and the sampling rate of 1 MS/s, the ADC with calibration has a signal-to-noise-and-distortion ratio (SINAD) of 67.98 dB, the power dissipation of 5 mW, and a figure of merit (FOM) of 2.44 pJ/conv.-step. This ADC is with the features of high accuracy, low power and small layout area, it is especially suitable to the one-chip integration of the front-end readout electronics.

  2. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Francis, K.; Repond, J.; Smith, J.; Trojand, D.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Göttlicher, P.; Günter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Haller, J.; Richter, S.; Samson, J.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kawagoe, K.; Uozumi, S.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Salvatore, F.; Laktineh, I.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Frey, A.; Kiesling, C.; Simon, F.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de La Taille, Ch.; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Marcisovsky, M.; Sicho, P.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Calice Collaboration

    2011-10-01

    Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers. In this article it is shown that interactions of shower particles in the volume of the readout electronics do not alter the noise pattern of the ASICs. No signal at or above the MIP level has been observed during the exposure. The upper limit at the 95% confidence level on the frequency of fake signals is smaller than 1×10-5 for a noise threshold of about 60% of a MIP. For ASICs with similar design to those which were tested, it can thus be largely excluded that the embedding of the electronics into the calorimeter layers compromises the performance of the calorimeters.

  3. Photographic and photometric enhancement of Lunar Orbiter products, projects A, B and C

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A detailed discussion is presented of the framelet joining, photometric data improvement, and statistical error analysis. The Lunar Orbiter film handling system, readout system, and the digitization are described, along with the technique of joining adjacent framelets by a using a digital computer. Time and cost estimates are given. The problems and techniques involved in improving the digitized data are discussed. It was found that spectacular improvements are possible. Program documentations are included.

  4. Extended SWIR imaging sensors for hyperspectral imaging applications

    NASA Astrophysics Data System (ADS)

    Weber, A.; Benecke, M.; Wendler, J.; Sieck, A.; Hübner, D.; Figgemeier, H.; Breiter, R.

    2016-05-01

    AIM has developed SWIR modules including FPAs based on liquid phase epitaxy (LPE) grown MCT usable in a wide range of hyperspectral imaging applications. Silicon read-out integrated circuits (ROIC) provide various integration and readout modes including specific functions for spectral imaging applications. An important advantage of MCT based detectors is the tunable band gap. The spectral sensitivity of MCT detectors can be engineered to cover the extended SWIR spectral region up to 2.5μm without compromising in performance. AIM developed the technology to extend the spectral sensitivity of its SWIR modules also into the VIS. This has been successfully demonstrated for 384x288 and 1024x256 FPAs with 24μm pitch. Results are presented in this paper. The FPAs are integrated into compact dewar cooler configurations using different types of coolers, like rotary coolers, AIM's long life split linear cooler MCC030 or extreme long life SF100 Pulse Tube cooler. The SWIR modules include command and control electronics (CCE) which allow easy interfacing using a digital standard interface. The development status and performance results of AIM's latest MCT SWIR modules suitable for hyperspectral systems and applications will be presented.

  5. Self-triggering readout system for the neutron lifetime experiment PENeLOPE

    NASA Astrophysics Data System (ADS)

    Gaisbauer, D.; Bai, Y.; Konorov, I.; Paul, S.; Steffen, D.

    2016-02-01

    PENeLOPE is a neutron lifetime measurement developed at the Technische Universität München and located at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) aiming to achieve a precision of 0.1 seconds. The detector for PENeLOPE consists of about 1250 Avalanche Photodiodes (APDs) with a total active area of 1225 cm2. The decay proton detector and electronics will be operated at a high electrostatic potential of -30 kV and a magnetic field of 0.6 T. This includes shaper, preamplifier, ADC and FPGA cards. In addition, the APDs will be cooled to 77 K. The 1250 APDs are divided into 14 groups of 96 channels, including spares. A 12-bit ADC digitizes the detector signals with 1 MSps. A firmware was developed for the detector including a self-triggering readout with continuous pedestal calculation and configurable signal detection. The data transmission and configuration is done via the Switched Enabling Protocol (SEP). It is a time-division multiplexing low layer protocol which provides determined latency for time critical messages, IPBus, and JTAG interfaces. The network has a n:1 topology, reducing the number of optical links.

  6. A new data acquisition system for the CMS Phase 1 pixel detector

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-12-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ system, integration tests and gives an outline for the activities up to commissioning the final system at CMS in 2017.

  7. 3D-optical measurement system using a new vignetting aperture procedure

    NASA Astrophysics Data System (ADS)

    Hofbauer, Engelbert; Rascher, Rolf; Wühr, Konrad; Friedke, Felix; Stubenrauch, Thomas; Pastötter, Benjamin; Schleich, Sebastian; Zöcke, Christine

    2014-05-01

    A newly developed measuring procedure uses vignetting to evaluate angles and angle changes, independently from the measurement distance. Further on, the same procedure enables the transmission of a digital readout and therefore a better automation of the electronic signal evaluation, for use as an alignment telescope. The fully extended readout by a simple 3-D reflector will provide the user with a measurement result with six degrees of freedom. The vignetting field stop procedure will be described. Firstly, considering artificial vignetting, the theoretical basics from geometric-optical view are represented. Secondly, the natural vignetting with photometric effects will be considered. The distribution of intensity in the image plane light spot, the so-called V-SPOT, is analytically deduced as a function of differently measured variables. Intensity shifts within the V-Spot are examined independently from different effects by numeric simulation. On these basics, the theoretical research regarding accuracy, linearity as well as results in 2 dimensional surface reconstruction on precision optical mirrors and also three dimensional measurements in mechanical engineering are examined. Effects and deviations will be discussed. The project WiPoVi is sponsored by "Ingenieur Nachwuchs - Qualifizierung von Ingenieurnachwuchs an Fachhochschulen" by Bavarian State Ministry of Education, Science and the Arts.

  8. Design of 90×8 ROIC with pixel level digital TDI implementation for scanning type LWIR FPAs

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Gurbuz, Yasar

    2013-06-01

    Design of a 90×8 CMOS readout integrated circuit (ROIC) based on pixel level digital time delay integration (TDI) for scanning type LWIR focal plane arrays (FPAs) is presented. TDI is implemented on 8 pixels which improves the SNR of the system with a factor of √8. Oversampling rate of 3 improves the spatial resolution of the system. TDI operation is realized with a novel under-pixel analog-to-digital converter, which improves the noise performance of ROIC with a lower quantization noise. Since analog signal is converted to digital domain in-pixel, non-uniformities and inaccuracies due to analog signal routing over large chip area is eliminated. Contributions of each pixel for proper TDI operation are added in summation counters, no op-amps are used for summation, hence power consumption of ROIC is lower than its analog counterparts. Due to lack of multiple capacitors or summation amplifiers, ROIC occupies smaller chip area compared to its analog counterparts. ROIC is also superior to its digital counterparts due to novel digital TDI implementation in terms of power consumption, noise and chip area. ROIC supports bi-directional scan, multiple gain settings, bypass operation, automatic gain adjustment, pixel select/deselect, and is programmable through serial or parallel interface. Input referred noise of ROIC is less than 750 rms electrons, while power consumption is less than 20mW. ROIC is designed to perform both in room and cryogenic temperatures.

  9. A time-based front-end ASIC for the silicon micro strip sensors of the bar PANDA Micro Vertex Detector

    NASA Astrophysics Data System (ADS)

    Di Pietro, V.; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Zambanini, A.

    2016-03-01

    The bar PANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA (bar PANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels.

  10. Investigating the Binary Offset Effect in the STIS CCD

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Lockwood, Sean A.

    2018-05-01

    Recently, Boone et al., (2018) presented the "Binary Offset Effect" for the SNIFS instrument, which uses a CCD detector. The source of this uncertainty is related to the analog-to-digital readout process, which converts the analog electronic signal of the detector into a digital number as represented by binary bits. The Binary Offset Effect is due to cross-talk between the digital conversion process for a source or driver pixel and pixels read out after the driver. In the course of Boone et al.'s experimentation with this effect they identified a similar effect with the STIS CCD. The STIS team has independently investigated the Binary Offset Effect for a range of bias images currently used for scientific observations, broadly confirming that the effect exists. However, our preliminary investigation suggests that the impact is smaller than reported in Boone et al. (2018) for biases taken with Amplifier=D and GAIN=1, and a lesser effect exists for Amplifier=D and GAIN=4. There is a hint that the effect is time variable for the detector. We broadly assess the potential impact of this effect and make recommendations both for users and future directions of investigation.

  11. Analog Signal Pre-Processing For The Fermilab Main Injector BPM Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saewert, A. L.; Rapisarda, S. M.; Wendt, M.

    2006-11-20

    An analog signal pre-processing scheme was developed, in the framework of the Fermilab Main Injector Beam Position Monitor (BPM) Upgrade, to interface BPM pickup signals to the new digital receiver based read-out system. A key component is the 8-channel electronics module, which uses separate frequency-selective gain stages to acquire 53 MHz bunched proton and 2.5 MHz antiproton signals. Related hardware includes a filter and combiner box to sum pickup electrode signals in the tunnel. A controller module allows local/remote control of gain settings and activation of gain stages and supplies test signals. Theory of operation, system overview, and some designmore » details are presented, as well as first beam measurements of the prototype hardware.« less

  12. Unattended Sensor System With CLYC Detectors

    NASA Astrophysics Data System (ADS)

    Myjak, Mitchell J.; Becker, Eric M.; Gilbert, Andrew J.; Hoff, Jonathan E.; Knudson, Christa K.; Landgren, Peter C.; Lee, Samantha F.; McDonald, Benjamin S.; Pfund, David M.; Redding, Rebecca L.; Smart, John E.; Taubman, Matthew S.; Torres-Torres, Carlos R.; Wiseman, Clinton G.

    2016-06-01

    We have developed an unattended sensor for detecting anomalous radiation sources. The system combines several technologies to reduce size and weight, increase battery lifetime, and improve decision-making capabilities. Sixteen Cs2LiYCl6:Ce (CLYC) scintillators allow for gamma-ray spectroscopy and neutron detection in the same volume. Low-power electronics for readout, high voltage bias, and digital processing reduce the total operating power to 1.7 W. Computationally efficient analysis algorithms perform spectral anomaly detection and isotope identification. When an alarm occurs, the system transmits alarm information over a cellular modem. In this paper, we describe the overall design of the unattended sensor, present characterization results, and compare the performance to stock NaI:Tl and 3He detectors.

  13. Unattended Sensor System With CLYC Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myjak, Mitchell J.; Becker, Eric M.; Gilbert, Andrew J.

    2016-06-01

    We have developed a next-generation unattended sensor for detecting anomalous radiation sources. The system combines several technologies to reduce size and weight, increase battery lifetime, and improve decision-making capabilities. Sixteen Cs2LiYCl6:Ce (CLYC) scintillators allow for gamma-ray spectroscopy and neutron detection in the same volume. Low-power electronics for readout, high voltage bias, and digital processing reduce the total operating power to 1.3 W. Computationally efficient analysis algorithms perform spectral anomaly detection and isotope identification. When an alarm occurs, the system transmits alarm information over a cellular modem. In this paper, we describe the overall design of the unattended sensor, present characterizationmore » results, and compare the performance to stock NaI:Tl and 3He detectors.« less

  14. Radiation imaging with optically read out GEM-based detectors

    NASA Astrophysics Data System (ADS)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible scintillating gases and the strong signal amplification factors achieved by MPGDs makes optical readout an attractive alternative to the common concept of electronic readout of radiation detectors. Outstanding signal-to-noise ratios and robustness against electronic noise allow unprecedented imaging capabilities for various applications in fields ranging from high energy physics to medical instrumentation.

  15. Response of Nanodot Optically Stimulated Luminescence Dosimeters to Therapeutic Electron Beams.

    PubMed

    Ponmalar, Y Retna; Manickam, Ravikumar; Sathiyan, S; Ganesh, K M; Arun, R; Godson, Henry Finlay

    2017-01-01

    Response of Al 2 O 3 :C-based nanoDot optically stimulated luminescence (OSL) dosimeter was studied for the dosimetry of 6, 9, 12, 16, and 20 MeV therapeutic electron beams. With reference to ionization chamber, no change in the response was observed with the change in the energy of electron beams for the field size from 6 cm × 6 cm to 25 cm × 25 cm, dose rates from 100 MU/min to 600 MU/min, and the linearity in the response up to 300 cGy. The fading of the transient signal was higher for 20 MeV electron beam than that of 6 MeV electron beam by about 5% as compared to value at 20 min after irradiation. The depletion of OSL signal per readout in 200 successive readouts was also found to change with dose and energy of electron beam from 6 MeV (9% and 12% per readout at 2 and 10 Gy, respectively) to 20 MeV (9% and 16% at 2 and 10 Gy, respectively). The OSL sensitivity changed in the range from 2% to 6% with accumulated doses from 2 to 8 Gy and with electron energy from 6 to 20 MeV, but the sensitivity could be reset using an optical annealing treatment. Although negligible fading for postirradiation storage from 20 min to several months, acceptable precision and linearity in the desired range, and high reproducibility makes nanoDot dosimeters very attractive for the dosimetry of therapeutic electron beams, a note should be made for changes in sensitivity at doses beyond 2 Gy and electron beams energy dependence in reuse, short-term fading, and signal depletion on repeated readout.

  16. Response of Nanodot Optically Stimulated Luminescence Dosimeters to Therapeutic Electron Beams

    PubMed Central

    Ponmalar, Y. Retna; Manickam, Ravikumar; Sathiyan, S.; Ganesh, K. M.; Arun, R.; Godson, Henry Finlay

    2017-01-01

    Response of Al2O3:C-based nanoDot optically stimulated luminescence (OSL) dosimeter was studied for the dosimetry of 6, 9, 12, 16, and 20 MeV therapeutic electron beams. With reference to ionization chamber, no change in the response was observed with the change in the energy of electron beams for the field size from 6 cm × 6 cm to 25 cm × 25 cm, dose rates from 100 MU/min to 600 MU/min, and the linearity in the response up to 300 cGy. The fading of the transient signal was higher for 20 MeV electron beam than that of 6 MeV electron beam by about 5% as compared to value at 20 min after irradiation. The depletion of OSL signal per readout in 200 successive readouts was also found to change with dose and energy of electron beam from 6 MeV (9% and 12% per readout at 2 and 10 Gy, respectively) to 20 MeV (9% and 16% at 2 and 10 Gy, respectively). The OSL sensitivity changed in the range from 2% to 6% with accumulated doses from 2 to 8 Gy and with electron energy from 6 to 20 MeV, but the sensitivity could be reset using an optical annealing treatment. Although negligible fading for postirradiation storage from 20 min to several months, acceptable precision and linearity in the desired range, and high reproducibility makes nanoDot dosimeters very attractive for the dosimetry of therapeutic electron beams, a note should be made for changes in sensitivity at doses beyond 2 Gy and electron beams energy dependence in reuse, short-term fading, and signal depletion on repeated readout. PMID:28405107

  17. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.

    PubMed

    Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu

    2014-10-01

    Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction.

  18. Development of readout electronics for POLARBEAR-2 cosmic microwave background experiment

    DOE PAGES

    Hattori, K.; Akiba, Y.; Arnold, K.; ...

    2016-01-06

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less

  19. A UVM simulation environment for the study, optimization and verification of HL-LHC digital pixel readout chips

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Conti, E.; Christiansen, J.; Placidi, P.

    2018-05-01

    The operating conditions of the High Luminosity upgrade of the Large Hadron Collider are very demanding for the design of next generation hybrid pixel readout chips in terms of particle rate, radiation level and data bandwidth. To this purpose, the RD53 Collaboration has developed for the ATLAS and CMS experiments a dedicated simulation and verification environment using industry-consolidated tools and methodologies, such as SystemVerilog and the Universal Verification Methodology (UVM). This paper presents how the so-called VEPIX53 environment has first guided the design of digital architectures, optimized for processing and buffering very high particle rates, and secondly how it has been reused for the functional verification of the first large scale demonstrator chip designed by the collaboration, which has recently been submitted.

  20. Digital readout for image converter cameras

    NASA Astrophysics Data System (ADS)

    Honour, Joseph

    1991-04-01

    There is an increasing need for fast and reliable analysis of recorded sequences from image converter cameras so that experimental information can be readily evaluated without recourse to more time consuming photographic procedures. A digital readout system has been developed using a randomly triggerable high resolution CCD camera, the output of which is suitable for use with IBM AT compatible PC. Within half a second from receipt of trigger pulse, the frame reformatter displays the image and transfer to storage media can be readily achieved via the PC and dedicated software. Two software programmes offer different levels of image manipulation which includes enhancement routines and parameter calculations with accuracy down to pixel levels. Hard copy prints can be acquired using a specially adapted Polaroid printer, outputs for laser and video printer extend the overall versatility of the system.

  1. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  2. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2000-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  3. CALORIC: A readout chip for high granularity calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, L.; Bonnard, J.; Manen, S.

    2011-07-01

    A very-front-end electronics has been developed to fulfil requirements for the next generation of electromagnetic calorimeters. The compactness of this kind of detector and its large number of channels (up to several millions) impose a drastic limitation of the power consumption and a high level of integration. The electronic channel proposed is first of all composed of a low-noise Charge Sensitive Amplifier (CSA) able to amplify the charge delivered by a silicon diode up to 10 pC. Next, a two-gain shaping, based on a Gated Integration (G.I.), is implemented to cover the 15 bits dynamic range required: a high gainmore » shaper processes signals from 4 fC (charge corresponding to the MIP) up to 1 pC, and a low gain filter handles charges up to 10 pC. The G.I. performs also the analog memorization of the signal until it is digitalized. Hence, the analog-to-digital conversion is carried out through a low-power 12-bit cyclic ADC. If the signal overloads the high-gain channel dynamic range, a comparator selects the low-gain channel instead. Moreover, an auto-trigger channel has been implemented in order to select and store a valid event over the noise. The timing sequence of the channel is managed by a digital IP. It controls the G.I. switches, generates all needed clocks, drives the ADC and delivers the final result over 12 bits. The whole readout channel is power controlled, which permits to reduce the consumption according to the duty cycle of the beam collider. Simulations have been performed with Spectre simulator on the prototype chip designed with the 0.35 {mu}m CMOS technology from Austriamicrosystems. Results show a non-linearity better than 0.1% for the high-gain channel, and a non-linearity limited to 1% for the low-gain channel. The Equivalent Noise Charge referred to the input of the channel is evaluated to 0.4 fC complying with the MIP/10 limit. With the timing sequence of the International Linear Collider, which presents a duty cycle of 1%, the power consumption of the complete channel is limited to 43 {mu}W thanks to the power pulsing. The total area of the channel is 1.2 mm{sup 2} with an analog memory depth of 16. (authors)« less

  4. OpenPET: A Flexible Electronics System for Radiotracer Imaging

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Buckley, S.; Vu, C.; Peng, Q.; Pavlov, N.; Choong, W.-S.; Wu, J.; Jackson, C.

    2010-10-01

    We present the design for OpenPET, an electronics readout system designed for prototype radiotracer imaging instruments. The critical requirements are that it has sufficient performance, channel count, channel density, and power consumption to service a complete camera, and yet be simple, flexible, and customizable enough to be used with almost any detector or camera design. An important feature of this system is that each analog input is processed independently. Each input can be configured to accept signals of either polarity as well as either differential or ground referenced signals. Each signal is digitized by a continuously sampled ADC, which is processed by an FPGA to extract pulse height information. A leading edge discriminator creates a timing edge that is “time stamped” by a TDC implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc. As all of this processing is controlled by firmware and software, it can be modified/customized easily. The system is open source, meaning that all technical data (specifications, schematics and board layout files, source code, and instructions) will be publicly available.

  5. TDC-based readout electronics for real-time acquisition of high resolution PET bio-images

    NASA Astrophysics Data System (ADS)

    Marino, N.; Saponara, S.; Ambrosi, G.; Baronti, F.; Bisogni, M. G.; Cerello, P.,; Ciciriello, F.; Corsi, F.; Fanucci, L.; Ionica, M.; Licciulli, F.; Marzocca, C.; Morrocchi, M.; Pennazio, F.; Roncella, R.; Santoni, C.; Wheadon, R.; Del Guerra, A.

    2013-02-01

    Positron emission tomography (PET) is a clinical and research tool for in vivo metabolic imaging. The demand for better image quality entails continuous research to improve PET instrumentation. In clinical applications, PET image quality benefits from the time of flight (TOF) feature. Indeed, by measuring the photons arrival time on the detectors with a resolution less than 100 ps, the annihilation point can be estimated with centimeter resolution. This leads to better noise level, contrast and clarity of detail in the images either using analytical or iterative reconstruction algorithms. This work discusses a silicon photomultiplier (SiPM)-based magnetic-field compatible TOF-PET module with depth of interaction (DOI) correction. The detector features a 3D architecture with two tiles of SiPMs coupled to a single LYSO scintillator on both its faces. The real-time front-end electronics is based on a current-mode ASIC where a low input impedance, fast current buffer allows achieving the required time resolution. A pipelined time to digital converter (TDC) measures and digitizes the arrival time and the energy of the events with a timestamp of 100 ps and 400 ps, respectively. An FPGA clusters the data and evaluates the DOI, with a simulated z resolution of the PET image of 1.4 mm FWHM.

  6. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD

    DOE PAGES

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; ...

    2017-09-26

    Here, we have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e - rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime.more » Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.« less

  7. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD

    NASA Astrophysics Data System (ADS)

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien

    2017-09-01

    We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e- rms /pixel . This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.

  8. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD.

    PubMed

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien

    2017-09-29

    We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068  e^{-} rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.

  9. Front-end electronics of the Belle II drift chamber

    NASA Astrophysics Data System (ADS)

    Shimazaki, Shoichi; Taniguchi, Takashi; Uchida, Tomohisa; Ikeno, Masahiro; Taniguchi, Nanae; Tanaka, Manobu M.

    2014-01-01

    This paper describes the performance of the Belle II central drift chamber (CDC) front-end electronics. The front-end electronics consists of a current sensitive preamplifier, a 1/t cancellation circuit, baseline restorers, a comparator for timing measurement and an analog buffer for the dE/dx measurement on a CDC readout card. The CDC readout card is located on the endplate of the CDC. Mass production will be completed after the performance of the chip is verified. The electrical performance and results of a neutron/gamma-ray irradiation test are reported here.

  10. Leveraging multi-layer imager detector design to improve low-dose performance for megavoltage cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Hu, Yue-Houng; Rottmann, Joerg; Fueglistaller, Rony; Myronakis, Marios; Wang, Adam; Huber, Pascal; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Star-Lack, Josh; Berbeco, Ross

    2018-02-01

    While megavoltage cone-beam computed tomography (CBCT) using an electronic portal imaging device (EPID) provides many advantages over kilovoltage (kV) CBCT, clinical adoption is limited by its high doses. Multi-layer imager (MLI) EPIDs increase DQE(0) while maintaining high resolution. However, even well-designed, high-performance MLIs suffer from increased electronic noise from each readout, degrading low-dose image quality. To improve low-dose performance, shift-and-bin addition (ShiBA) imaging is proposed, leveraging the unique architecture of the MLI. ShiBA combines hardware readout-binning and super-resolution concepts, reducing electronic noise while maintaining native image sampling. The imaging performance of full-resolution (FR); standard, aligned binned (BIN); and ShiBA images in terms of noise power spectrum (NPS), electronic NPS, modulation transfer function (MTF), and the ideal observer signal-to-noise ratio (SNR)—the detectability index (d‧)—are compared. The FR 4-layer readout of the prototype MLI exhibits an electronic NPS magnitude 6-times higher than a state-of-the-art single layer (SLI) EPID. Although the MLI is built on the same readout platform as the SLI, with each layer exhibiting equivalent electronic noise, the multi-stage readout of the MLI results in electronic noise 50% higher than simple summation. Electronic noise is mitigated in both BIN and ShiBA imaging, reducing its total by ~12 times. ShiBA further reduces the NPS, effectively upsampling the image, resulting in a multiplication by a sinc2 function. Normalized NPS show that neither ShiBA nor BIN otherwise affects image noise. The LSF shows that ShiBA removes the pixilation artifact of BIN images and mitigates the effect of detector shift, but does not quantifiably improve the MTF. ShiBA provides a pre-sampled representation of the images, mitigating phase dependence. Hardware binning strategies lower the quantum noise floor, with 2  ×  2 implementation reducing the dose at which DQE(0) degrades by 10% from 0.01 MU to 0.004 MU, representing 20% improvement in d‧.

  11. Front-end electronics development for TPC detector in the MPD/NICA project

    NASA Astrophysics Data System (ADS)

    Cheremukhina, G.; Movchan, S.; Vereschagin, S.; Zaporozhets, S.

    2017-06-01

    The article is aimed at describing the development status, measuring results and design changes of the TPC front-end electronics. The TPC is placed in the middle of Multi-Purpose Detector (MPD) and provides tracing and identifying of charged particles in the pseudorapidity range |η| < 1.2. The readout system is one of the most complex parts of the TPC. The electronics of each readout chamber is an independent system. The whole system contains 95232 channels, 1488 64-channel—front-end cards (FEC), 24 readout control units (RCU). The front-end electronics (FEE) is based on ASICs, FPGAs and high-speed serial links. The concept of the TPC front-end electronics has been motivated from one side—by the requirements concerning the NICA accelerator complex which will operate at the luminosity up to 1027 cm-2 s-1 for Au79+ ions over the energy range of 4 < √SNN < 11 GeV with the trigger rate up to 7 kHz and from the other side—by the requirements of the 4-π geometry to minimize the substance on the end-caps of the TPC.

  12. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeeck, Jens; Cao, Ying; Van Uffelen, Marco

    Decommissioning, dismantling and remote handling applications in nuclear facilities all require robotic solutions that are able to survive in radiation environments. Recently raised safety, radiation hardness and cost efficiency demands from both the nuclear regulatory and the society impose severe challenges in traditional methods. For example, in case of the dismantling of the Fukushima sites, solutions that survive accumulated doses higher than 1 MGy are mandatory. To allow remote operation of these tools in nuclear environments, electronics were used to be shielded with several centimeters of lead or even completely banned in these solutions. However, shielding electronics always leads tomore » bulky and heavy solutions, which reduces the flexibility of robotic tools. It also requires longer repair time and produces extra waste further in a dismantling or decommissioning cycle. In addition, often in current reactor designs, due to size restrictions and the need to inspect very tight areas there are limitations to the use of shielding. A MGy radiation-hardened sensor instrumentation link developed by MAGyICS provides a solution to build a flexible, easy removable and small I and C module with MGy radiation tolerance without any shielding. Hereby it removes all these pains to implement electronics in robotic tools. The demonstrated solution in this poster is developed for ITER Remote Handling equipments operating in high radiation environments (>1 MGy) in and around the Tokamak. In order to obtain adequately accurate instrumentation and control information, as well as to ease the umbilical management, there is a need of front-end electronics that will have to be located close to those actuators and sensors on the remote handling tool. In particular, for diverter remote handling, it is estimated that these components will face gamma radiation up to 300 Gy/h (in-vessel) and a total dose of 1 MGy. The radiation-hardened sensor instrumentation link presented here, consists of multiple in-house developed, state-of-the-art building blocks. They have all been assessed and characterized up to a dose higher than 1 MGy. The first block in the signal chain is a smaller than 1 uV offset, low noise instrumentation amplifier that has a programmable gain between 8 and 256. This amplifier is followed by a high precision 16 bit ADC. Its main function is to digitize the amplified signal coming from the amplifier. The output of the ADC is a serial digital data stream. The next block is a 8 channel digital multiplexer. It converts the 8 digital data streams into 1 digital data stream. Hereby the instrumentation solution reduces the number of cables from 16 to 1 (8* 2 analogue differential signals). In addition, the multiplexer modules can be combined with other modules to reduce even further the number of cables. Every instrumentation solution requires a stable high precision voltage reference. Therefore also a bandgap reference has been developed and assessed under gamma irradiation. A low jitter, 10 MHz clock generator has been developed and qualified to clock the ADC and the multiplexer with high accuracy. Finally, an on-chip radiation-hard temperature sensor is also included. A complete remote, real-time test setup was prepared by MAGyICS in cooperation with Fusion for Energy to qualify the sensor instrumentation link at SCK-CEN. It is qualified by closely following the ESCC22900 space standard for electronics used in a radiation environment. The main benefit of the sensor instrumentation solution discussed here is that it can be directly employed in a MGy-level accumulated dose radiation environment, therefore it can digitize and multiplex sensor readout values early in the signal chain. Hereby the sensor values are not distorted by external interferences on the long transmission cable. Moreover it allows readout and digitize multiple low-bandwidth sensors ( pressure and temperature sensors, thermocouples, angular resolvers and LVDTs). Hence these instrumentation modules can be used to follow the trend of the digitalization in the nuclear industry. (authors)« less

  13. ALICE inner tracking system readout electronics prototype testing with the CERN "Giga Bit Transceiver''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.

  14. ALICE inner tracking system readout electronics prototype testing with the CERN "Giga Bit Transceiver''

    DOE PAGES

    Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.; ...

    2016-12-28

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.

  15. Cavity-Enhanced Optical Readout of a Single Solid-State Spin

    NASA Astrophysics Data System (ADS)

    Sun, Shuo; Kim, Hyochul; Solomon, Glenn S.; Waks, Edo

    2018-05-01

    We demonstrate optical readout of a single spin using cavity quantum electrodynamics. The spin is based on a single trapped electron in a quantum dot that has a poor branching ratio of 0.43. Selectively coupling one of the optical transitions of the quantum dot to the cavity mode results in a spin-dependent cavity reflectivity that enables spin readout by monitoring the reflected intensity of an incident optical field. Using this approach, we demonstrate spin-readout fidelity of 0.61. Achieving this fidelity using resonance fluorescence from a bare dot would require 43 times improvement in photon collection efficiency.

  16. ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver''

    NASA Astrophysics Data System (ADS)

    Schambach, J.; Rossewij, M. J.; Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Vanat, T.

    2016-12-01

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. This contribution describes laboratory and radiation testing results with this prototype board set.

  17. Towards fully analog hardware reservoir computing for speech recognition

    NASA Astrophysics Data System (ADS)

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Haelterman, Marc; Schrauwen, Benjamin; Massar, Serge

    2012-09-01

    Reservoir computing is a very recent, neural network inspired unconventional computation technique, where a recurrent nonlinear system is used in conjunction with a linear readout to perform complex calculations, leveraging its inherent internal dynamics. In this paper we show the operation of an optoelectronic reservoir computer in which both the nonlinear recurrent part and the readout layer are implemented in hardware for a speech recognition application. The performance obtained is close to the one of to state-of-the-art digital reservoirs, while the analog architecture opens the way to ultrafast computation.

  18. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    NASA Astrophysics Data System (ADS)

    Koestner, Stefan

    2009-09-01

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahim, Farah; Deptuch, Grzegorz; Shenai, Alpana

    The Vertically Integrated Photon Imaging Chip - Large, (VIPIC-L), is a large area, small pixel (65μm), 3D integrated, photon counting ASIC with zero-suppressed or full frame dead-time-less data readout. It features data throughput of 14.4 Gbps per chip with a full frame readout speed of 56kframes/s in the imaging mode. VIPIC-L contain 192 x 192 pixel array and the total size of the chip is 1.248cm x 1.248cm with only a 5μm periphery. It contains about 120M transistors. A 1.3M pixel camera module will be developed by arranging a 6 x 6 array of 3D VIPIC-L’s bonded to a largemore » area silicon sensor on the analog side and to a readout board on the digital side. The readout board hosts a bank of FPGA’s, one per VIPIC-L to allow processing of up to 0.7 Tbps of raw data produced by the camera.« less

  20. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  1. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  2. Proposal to upgrade the MIPP data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, W.; Carey, D.; Johnstone, C.

    2005-03-01

    The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost effective scheme of upgrading the MIPP data acquisition speed to 3000 Hz.

  3. Progress on the FDM Development at SRON: Toward 160 Pixels

    NASA Astrophysics Data System (ADS)

    den Hartog, R. H.; Bruijn, M. P.; Clenet, A.; Gottardi, L.; Hijmering, R.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Loon, D.; Nieuwenhuizen, A.; Ridder, M.; van Winden, P.

    2014-08-01

    SRON is developing the electronic read-out for arrays of transition edge sensors using frequency domain multiplexing in combination with base-band feedback. The astronomical applications of this system are the read-out of soft X-ray micro-calorimeters in a potential instrument on the European X-ray mission-under-study Athena+ and far-IR bolometers for the Safari instrument on the Japanese mission SPICA. In this paper we demonstrate the simultaneous read-out of 38 bolometer pixels at a 12 aW/Hz dark NEP level. The stability of the read-out is assessed over 400 s. time spans. Although some 1/f noise is present, there are several bolometers for which 1/f-free read-out can be demonstrated.

  4. Construction of the DHCAL

    NASA Astrophysics Data System (ADS)

    Francis, Kurt; CALICE Collaboration

    Particle Flow Algorithms (PFAs) have been proposed as a method of improving the jet energy resolution of future colliding beam detectors. PFAs require calorimeters with high granularity to enable three-dimensional imaging of events. The Calorimeter for the Linear Collider Collaboration (CALICE) is developing and testing prototypes of such highly segmented calorimeters. In this context, a large prototype of a Digital Hadron Calorimeter (DHCAL) was developed and constructed by a group led by Argonne National Laboratory. The DHCAL consists of 52 layers, instrumented with Resistive Plate Chambers (RPCs) and interleaved with steel absorber plates. The RPCs are read out by 1 x 1 cm2 pads with a 1-bit resolution (digital readout). The DHCAL prototype has approximately 480,000 readout channels. This talk reports on the design, construction and commissioning of the DHCAL. The DHCAL was installed at the Fermilab Test Beam Facility in fall 2010 and data was collected through the summer 2011.

  5. Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone

    PubMed Central

    Im, Hyungsoon; Castro, Cesar M.; Shao, Huilin; Liong, Monty; Song, Jun; Pathania, Divya; Fexon, Lioubov; Min, Changwook; Avila-Wallace, Maria; Zurkiya, Omar; Rho, Junsung; Magaoay, Brady; Tambouret, Rosemary H.; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2015-01-01

    The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables molecular and cellular diagnostics. The D3 (digital diffraction diagnosis) system uses microbeads to generate unique diffraction patterns which can be acquired by smartphones and processed by a remote server. We applied the D3 platform to screen for precancerous or cancerous cells in cervical specimens and to detect human papillomavirus (HPV) DNA. The D3 assay generated readouts within 45 min and showed excellent agreement with gold-standard pathology or HPV testing, respectively. This approach could have favorable global health applications where medical access is limited or when pathology bottlenecks challenge prompt diagnostic readouts. PMID:25870273

  6. Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone.

    PubMed

    Im, Hyungsoon; Castro, Cesar M; Shao, Huilin; Liong, Monty; Song, Jun; Pathania, Divya; Fexon, Lioubov; Min, Changwook; Avila-Wallace, Maria; Zurkiya, Omar; Rho, Junsung; Magaoay, Brady; Tambouret, Rosemary H; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2015-05-05

    The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables molecular and cellular diagnostics. The D3 (digital diffraction diagnosis) system uses microbeads to generate unique diffraction patterns which can be acquired by smartphones and processed by a remote server. We applied the D3 platform to screen for precancerous or cancerous cells in cervical specimens and to detect human papillomavirus (HPV) DNA. The D3 assay generated readouts within 45 min and showed excellent agreement with gold-standard pathology or HPV testing, respectively. This approach could have favorable global health applications where medical access is limited or when pathology bottlenecks challenge prompt diagnostic readouts.

  7. A Three-Step Resolution-Reconfigurable Hazardous Multi-Gas Sensor Interface for Wireless Air-Quality Monitoring Applications.

    PubMed

    Choi, Subin; Park, Kyeonghwan; Lee, Seungwook; Lim, Yeongjin; Oh, Byungjoo; Chae, Hee Young; Park, Chan Sam; Shin, Heugjoo; Kim, Jae Joon

    2018-03-02

    This paper presents a resolution-reconfigurable wide-range resistive sensor readout interface for wireless multi-gas monitoring applications that displays results on a smartphone. Three types of sensing resolutions were selected to minimize processing power consumption, and a dual-mode front-end structure was proposed to support the detection of a variety of hazardous gases with wide range of characteristic resistance. The readout integrated circuit (ROIC) was fabricated in a 0.18 μm CMOS process to provide three reconfigurable data conversions that correspond to a low-power resistance-to-digital converter (RDC), a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC), and a 16-bit delta-sigma modulator. For functional feasibility, a wireless sensor system prototype that included in-house microelectromechanical (MEMS) sensing devices and commercial device products was manufactured and experimentally verified to detect a variety of hazardous gases.

  8. Digitized molecular diagnostics: reading disk-based bioassays with standard computer drives.

    PubMed

    Li, Yunchao; Ou, Lily M L; Yu, Hua-Zhong

    2008-11-01

    We report herein a digital signal readout protocol for screening disk-based bioassays with standard optical drives of ordinary desktop/notebook computers. Three different types of biochemical recognition reactions (biotin-streptavidin binding, DNA hybridization, and protein-protein interaction) were performed directly on a compact disk in a line array format with the help of microfluidic channel plates. Being well-correlated with the optical darkness of the binding sites (after signal enhancement by gold nanoparticle-promoted autometallography), the reading error levels of prerecorded audio files can serve as a quantitative measure of biochemical interaction. This novel readout protocol is about 1 order of magnitude more sensitive than fluorescence labeling/scanning and has the capability of examining multiplex microassays on the same disk. Because no modification to either hardware or software is needed, it promises a platform technology for rapid, low-cost, and high-throughput point-of-care biomedical diagnostics.

  9. PANDORA, a large volume low-energy neutron detector with real-time neutron-gamma discrimination

    NASA Astrophysics Data System (ADS)

    Stuhl, L.; Sasano, M.; Yako, K.; Yasuda, J.; Baba, H.; Ota, S.; Uesaka, T.

    2017-09-01

    The PANDORA (Particle Analyzer Neutron Detector Of Real-time Acquisition) system, which was developed for use in inverse kinematics experiments with unstable isotope beams, is a neutron detector based on a plastic scintillator coupled to a digital readout. PANDORA can be used for any reaction study involving the emission of low energy neutrons (100 keV-10 MeV) where background suppression and an increased signal-to-noise ratio are crucial. The digital readout system provides an opportunity for pulse shape discrimination (PSD) of the detected particles as well as intelligent triggering based on PSD. The figure of merit results of PANDORA are compared to the data in literature. Using PANDORA, 91 ± 1% of all detected neutrons can be separated, while 91 ± 1% of the detected gamma rays can be excluded, reducing the gamma ray background by one order of magnitude.

  10. A frequency-sensing readout using piezoelectric sensors for sensing of physiological signals.

    PubMed

    Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2014-01-01

    Together with a charge or voltage amplifier, piezoelectric sensors are commonly used to pick up physiological vibrations from the body. As an alternative to chopper or auto-zero amplifiers, frequency sensing is known in literature to provide advantages of noise immunity, interfacing to digital readout systems as well as tunable range of sensing. A frequency-sensing readout circuit for sensing low voltage signals from piezoelectric sensors is successfully developed and tested in this work. The output voltage of a piezoelectric sensor is fed to a varactor, which is part of an Colpitts LC oscillator. The oscillation frequency is converted into a voltage using a phase locked loop. The circuit is compared to a reference design in terms of linearity, noise and transfer function. The readout has a input-referred noise voltage of 2.24μV/√Hz and consumes 15 mA at 5V supply. Arterial pulse wave signals and the cardiac vibrations from the chest are measured from one subject to show the proof of concept of the proposed readout. The results of this work are intended to contribute towards alternative low noise analog front end designs for piezoelectric sensors.

  11. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bullard, B.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; De Geronimo, G.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, S.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Rescia, S.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Thorn, C.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Yu, B.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-08-01

    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.

  12. Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.

    2015-07-01

    Many high resolution event counting devices process one event at a time and cannot register simultaneous events. In this article a frame-based readout event counting detector consisting of a pair of Microchannel Plates and a quad Timepix readout is described. More than 104 simultaneous events can be detected with a spatial resolution of 55 μm, while >103 simultaneous events can be detected with <10 μm spatial resolution when event centroiding is implemented. The fast readout electronics is capable of processing >1200 frames/sec, while the global count rate of the detector can exceed 5×108 particles/s when no timing information on every particle is required. For the first generation Timepix readout, the timing resolution is limited by the Timepix clock to 10-20 ns. Optimization of the MCP gain, rear field voltage and Timepix threshold levels are crucial for the device performance and that is the main subject of this article. These devices can be very attractive for applications where the photon/electron/ion/neutron counting with high spatial and temporal resolution is required, such as energy resolved neutron imaging, Time of Flight experiments in lidar applications, experiments on photoelectron spectroscopy and many others.

  13. Front-end electronics for the Muon Portal project

    NASA Astrophysics Data System (ADS)

    Garozzo, S.; Marano, D.; Bonanno, G.; Grillo, A.; Romeo, G.; Timpanaro, M. C.; Lo Presti, D.; Riggi, F.; Russo, V.; Bonanno, D.; La Rocca, P.; Longhitano, F.; Bongiovanni, D. G.; Fallica, G.; Valvo, G.

    2016-10-01

    The Muon Portal Project was born as a joint initiative between Italian research and industrial partners, aimed at the construction of a real-size working detector prototype to inspect the content of traveling containers by means of secondary cosmic-ray muon radiation and recognize potentially dangerous hidden materials. The tomographic image is obtained by reconstructing the incoming and outgoing muon trajectories when crossing the inspected volume, employing two tracker planes located above and below the container under inspection. In this paper, the design and development of the front-end electronics of the Muon Portal detector is presented, with particular emphasis being devoted to the photo-sensor devices detecting the scintillation light and to the read-out circuitry which is in charge of processing and digitizing the analog pulse signals. In addition, the remote control system, mechanical housing, and thermal cooling system of all structural blocks of the Muon Portal tracker are also discussed, demonstrating the effectiveness and functionality of the adopted design.

  14. A 90GHz Bolometer Camera Detector System for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  15. A 90GHz Bolometer Camera Detector System for the Green

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  16. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.; Panda Collaboration

    2012-02-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.

  17. Analog signal pre-processing for the Fermilab Main Injector BPM upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saewert, A.L.; Rapisarda, S.M.; Wendt, M.

    2006-05-01

    An analog signal pre-processing scheme was developed, in the framework of the Fermilab Main Injector Beam Position Monitor (BPM) Upgrade, to interface BPM pickup signals to the new digital receiver based read-out system. A key component is the 8-channel electronics module, which uses separate frequency selective gain stages to acquire 53 MHz bunched proton, and 2.5 MHz anti-proton signals. Related hardware includes a filter and combiner box to sum pickup electrode signals in the tunnel. A controller module allows local/remote control of gain settings and activation of gain stages, and supplies test signals. Theory of operation, system overview, and somemore » design details are presented, as well as first beam measurements of the prototype hardware.« less

  18. The DIRC front-end electronics chain for BaBar

    NASA Astrophysics Data System (ADS)

    Bailly, P.; Chauveau, J.; Del Buono, L.; Genat, J. F.; Lebbolo, H.; Roos, L.; Zhang, B.; Beigbeder, C.; Bernier, R.; Breton, D.; Caceres, T.; Chase, R.; Ducorps, A.; Hrisoho, A.; Imbert, P.; Sen, S.; Tocut, V.; Truong, K.; Wormser, G.; Zomer, F.; Bonneaud, G.; Dohou, F.; Gastaldi, F.; Matricon, P.; Renard, C.; Thiebaux, C.; Vasileiadis, G.; Verderi, M.; Oxoby, G.; Va'Vra, J.; Warner, D.; Wilson, R. J.

    1999-08-01

    The detector of Internally Reflected Cherenkov light (DIRC) of the BaBar detector (SLAC Stanford, USA) measures better than 1 ns the arrival time of Cherenkov photoelectrons, detected in a 11 000 phototubes array and their amplitude spectra. It mainly comprises of 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom Analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom Digital TDC chips for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected from up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test of the pre-production chips have been performed as well as system tests.

  19. Side readout of long scintillation crystal elements with digital SiPM for TOF-DOI PET.

    PubMed

    Yeom, Jung Yeol; Vinke, Ruud; Levin, Craig S

    2014-12-01

    Side readout of scintillation light from crystal elements in positron emission tomography (PET) is an alternative to conventional end-readout configurations, with the benefit of being able to provide accurate depth-of-interaction (DOI) information and good energy resolution while achieving excellent timing resolution required for time-of-flight PET. This paper explores different readout geometries of scintillation crystal elements with the goal of achieving a detector that simultaneously achieves excellent timing resolution, energy resolution, spatial resolution, and photon sensitivity. The performance of discrete LYSO scintillation elements of different lengths read out from the end/side with digital silicon photomultipliers (dSiPMs) has been assessed. Compared to 3 × 3 × 20 mm(3) LYSO crystals read out from their ends with a coincidence resolving time (CRT) of 162 ± 6 ps FWHM and saturated energy spectra, a side-readout configuration achieved an excellent CRT of 144 ± 2 ps FWHM after correcting for timing skews within the dSiPM and an energy resolution of 11.8% ± 0.2% without requiring energy saturation correction. Using a maximum likelihood estimation method on individual dSiPM pixel response that corresponds to different 511 keV photon interaction positions, the DOI resolution of this 3 × 3 × 20 mm(3) crystal side-readout configuration was computed to be 0.8 mm FWHM with negligible artifacts at the crystal ends. On the other hand, with smaller 3 × 3 × 5 mm(3) LYSO crystals that can also be tiled/stacked to provide DOI information, a timing resolution of 134 ± 6 ps was attained but produced highly saturated energy spectra. The energy, timing, and DOI resolution information extracted from the side of long scintillation crystal elements coupled to dSiPM have been acquired for the first time. The authors conclude in this proof of concept study that such detector configuration has the potential to enable outstanding detector performance in terms of timing, energy, and DOI resolution.

  20. Side readout of long scintillation crystal elements with digital SiPM for TOF-DOI PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, Jung Yeol, E-mail: yeomjy@kumoh.ac.kr, E-mail: cslevin@stanford.edu; Vinke, Ruud; Levin, Craig S., E-mail: yeomjy@kumoh.ac.kr, E-mail: cslevin@stanford.edu

    Purpose: Side readout of scintillation light from crystal elements in positron emission tomography (PET) is an alternative to conventional end-readout configurations, with the benefit of being able to provide accurate depth-of-interaction (DOI) information and good energy resolution while achieving excellent timing resolution required for time-of-flight PET. This paper explores different readout geometries of scintillation crystal elements with the goal of achieving a detector that simultaneously achieves excellent timing resolution, energy resolution, spatial resolution, and photon sensitivity. Methods: The performance of discrete LYSO scintillation elements of different lengths read out from the end/side with digital silicon photomultipliers (dSiPMs) has been assessed.more » Results: Compared to 3 × 3 × 20 mm{sup 3} LYSO crystals read out from their ends with a coincidence resolving time (CRT) of 162 ± 6 ps FWHM and saturated energy spectra, a side-readout configuration achieved an excellent CRT of 144 ± 2 ps FWHM after correcting for timing skews within the dSiPM and an energy resolution of 11.8% ± 0.2% without requiring energy saturation correction. Using a maximum likelihood estimation method on individual dSiPM pixel response that corresponds to different 511 keV photon interaction positions, the DOI resolution of this 3 × 3 × 20 mm{sup 3} crystal side-readout configuration was computed to be 0.8 mm FWHM with negligible artifacts at the crystal ends. On the other hand, with smaller 3 × 3 × 5 mm{sup 3} LYSO crystals that can also be tiled/stacked to provide DOI information, a timing resolution of 134 ± 6 ps was attained but produced highly saturated energy spectra. Conclusions: The energy, timing, and DOI resolution information extracted from the side of long scintillation crystal elements coupled to dSiPM have been acquired for the first time. The authors conclude in this proof of concept study that such detector configuration has the potential to enable outstanding detector performance in terms of timing, energy, and DOI resolution.« less

  1. Microwave SQUID Multiplexing of Metallic Magnetic Calorimeters: Status of Multiplexer Performance and Room-Temperature Readout Electronics Development

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Karcher, N.; Krömer, O.; Richter, D.; Ahrens, F.; Sander, O.; Kempf, S.; Weber, M.; Enss, C.

    2018-02-01

    To our present best knowledge, microwave SQUID multiplexing (μ MUXing) is the most suitable technique for reading out large-scale low-temperature microcalorimeter arrays that consist of hundreds or thousands of individual pixels which require a large readout bandwidth per pixel. For this reason, the present readout strategy for metallic magnetic calorimeter (MMC) arrays combining an intrinsic fast signal rise time, an excellent energy resolution, a large energy dynamic range, a quantum efficiency close to 100% as well as a highly linear detector response is based on μ MUXing. Within this paper, we summarize the state of the art in MMC μ MUXing and discuss the most recent results. This particularly includes the discussion of the performance of a 64-pixel detector array with integrated, on-chip microwave SQUID multiplexer, the progress in flux ramp modulation of MMCs as well as the status of the development of a software-defined radio-based room-temperature electronics which is specifically optimized for MMC readout.

  2. CMOS SiPM with integrated amplifier

    NASA Astrophysics Data System (ADS)

    Schwinger, Alexander; Brockherde, Werner; Hosticka, Bedrich J.; Vogt, Holger

    2017-02-01

    The integration of silicon photomultiplier (SiPM) and frontend electronics in a suitable optoelectronic CMOS process is a promising approach to increase the versatility of single-photon avalanche diode (SPAD)-based singlephoton detectors. By integrating readout amplifiers, the device output capacitance can be reduced to minimize the waveform tail, which is especially important for large area detectors (>10 × 10mm2). Possible architectures include a single readout amplifier for the whole detector, which reduces the output capacitance to 1:1 pF at minimal reduction in detector active area. On the other hand, including a readout amplifier in every SiPM cell would greatly improve the total output capacitance by minimizing the influence of metal routing parasitic capacitance, but requiring a prohibitive amount of detector area. As tradeoff, the proposed detector features one readout amplifier for each column of the detector matrix to allow for a moderate reduction in output capacitance while allowing the electronics to be placed in the periphery of the active detector area. The presented detector with a total size of 1.7 ♢ 1.0mm2 features 400 cells with a 50 μm pitch, where the signal of each column of 20 SiPM cells is summed in a readout channel. The 20 readout channels are subsequently summed into one output channel, to allow the device to be used as a drop-in replacement for commonly used analog SiPMs.

  3. Gamma ray spectroscopy employing divalent europium-doped alkaline earth halides and digital readout for accurate histogramming

    DOEpatents

    Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B.; Sturm, Benjamin W.

    2016-02-09

    According to one embodiment, a scintillator radiation detector system includes a scintillator, and a processing device for processing pulse traces corresponding to light pulses from the scintillator, where the processing device is configured to: process each pulse trace over at least two temporal windows and to use pulse digitization to improve energy resolution of the system. According to another embodiment, a scintillator radiation detector system includes a processing device configured to: fit digitized scintillation waveforms to an algorithm, perform a direct integration of fit parameters, process multiple integration windows for each digitized scintillation waveform to determine a correction factor, and apply the correction factor to each digitized scintillation waveform.

  4. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  5. A PET detector prototype based on digital SiPMs and GAGG scintillators.

    PubMed

    Schneider, Florian R; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I

    2015-02-21

    Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm(2), comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm(-3), 520 nm peak emission, 46 000 photons MeV(-1), 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm(3) were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm(3)) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with (18)F was used for tomographic tests.

  6. A PET detector prototype based on digital SiPMs and GAGG scintillators

    NASA Astrophysics Data System (ADS)

    Schneider, Florian R.; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I.

    2015-02-01

    Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm2, comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm-3, 520 nm peak emission, 46 000 photons MeV-1, 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm3 were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm3) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with 18F was used for tomographic tests.

  7. Intelligent FPGA Data Acquisition Framework

    NASA Astrophysics Data System (ADS)

    Bai, Yunpeng; Gaisbauer, Dominic; Huber, Stefan; Konorov, Igor; Levit, Dmytro; Steffen, Dominik; Paul, Stephan

    2017-06-01

    In this paper, we present the field programmable gate arrays (FPGA)-based framework intelligent FPGA data acquisition (IFDAQ), which is used for the development of DAQ systems for detectors in high-energy physics. The framework supports Xilinx FPGA and provides a collection of IP cores written in very high speed integrated circuit hardware description language, which use the common interconnect interface. The IP core library offers functionality required for the development of the full DAQ chain. The library consists of Serializer/Deserializer (SERDES)-based time-to-digital conversion channels, an interface to a multichannel 80-MS/s 10-b analog-digital conversion, data transmission, and synchronization protocol between FPGAs, event builder, and slow control. The functionality is distributed among FPGA modules built in the AMC form factor: front end and data concentrator. This modular design also helps to scale and adapt the DAQ system to the needs of the particular experiment. The first application of the IFDAQ framework is the upgrade of the read-out electronics for the drift chambers and the electromagnetic calorimeters (ECALs) of the COMPASS experiment at CERN. The framework will be presented and discussed in the context of this paper.

  8. Development of Residual Gas Profile Monitors at GSI

    NASA Astrophysics Data System (ADS)

    Giacomini, T.; Barabin, S.; Forck, P.; Liakin, D.; Skachkov, V.

    2004-11-01

    Beam profile measurements at modern ion synchrotrons and storage rings require high timing performances on a turn-by-turn basis. High spatial resolutions are essential for cold beams and beamwidth measurings. The currently used RGM supported very interesting measurements and applications. Due to the readout technology the spatial and time resolution is limited. To meet the expanded demands a more comprehensive device is under development. It will be an all-purpose residual gas monitor to cover the wide range of beam currents and transversal particle distributions. Due to the fast profile detection it will operate on primary electrons after residual gas ionization. A magnetic field of 100 mT binds them to the ionization point inside 0.1-mm orbits. The high-resolution mode will be read out by a digital CCD camera with an upstream MCP-phosphor screen assembly. It is planned to read out the fast turn-by-turn mode by an array of 100 photodiodes with a resolution of 1 mm. Every photodiode is equipped with an amplifier-digitizer device providing a frame rate of ˜ 10 MSamples/s.

  9. A solid-state digital temperature recorder for space use

    NASA Technical Reports Server (NTRS)

    Westbrook, R. M.; Bennett, L. D.; Steinhaver, R. A.; Deboo, G. J.

    1981-01-01

    A solid-state, digital, temperature recorder has been developed for use in space experiments. The recorder is completely self-contained and includes a temperature sensor; all necessary electronics for signal conditioning, processing, storing, control and timing; and a battery power supply. No electrical interfacing with the particular spacecraft on which the unit is used is required. The recorder is small, light, and sturdy, and has no moving parts. It uses only biocompatible materials and has passed vibration and shock spaceflight qualification tests. The unit is capable of storing 2048, -10 to +45 C, 8-bit temperature measurements taken at intervals selectable by factors of 2 from 1.875 to 240 min; data can be retained for at least 6 months. The basic recorder can be simplified to accommodate a variety of applications by adding memory to allow more data to be recorded, by changing the front end to permit measurements other than temperature to be made, and by using different batteries to realize various operating periods. Stored flight data are read out from the recorder by means of a ground read-out unit.

  10. A whole-system approach to x-ray spectroscopy in cargo inspection systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langeveld, Willem G. J.; Gozani, Tsahi; Ryge, Peter

    The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniquesmore » require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R and D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF{sub 2} and PbWO{sub 4}, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high-duty-factor linear-accelerator x-ray sources and their associated requirements, and how such sources improve spectroscopic techniques. We further discuss how image processing techniques help in correcting for backgrounds and overlapping materials. In sum, we present an integrated picture of how to optimize a cargo inspection system for x-ray spectroscopy.« less

  11. Frequency division multiplexed readout of TES detectors with baseband feedback

    NASA Astrophysics Data System (ADS)

    den Hartog, R.; Audley, M. D.; Beyer, J.; Bruijn, M. P.; de Korte, P.; Gottardi, L.; Hijmering, R.; Jackson, B.; Nieuwenhuizen, A.; van der Kuur, J.; van Leeuwen, B.-J.; Van Loon, D.

    2012-09-01

    SRON is developing an electronic system for the multiplexed read-out of an array of transition edge sensors (TES) by combining the techniques of frequency domain multiplexing (FDM) with base-band feedback (BBFB). The astronomical applications are the read-out of soft X-ray microcalorimeters and the far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In this paper we derive the requirements for the read-out system regarding noise and dynamic range in the context of the SAFARI instrument, and demonstrate that the current experimental prototype is capable of simultaneously locking 57 channels and complies with these requirements.

  12. The readout system for the ArTeMis camera

    NASA Astrophysics Data System (ADS)

    Doumayrou, E.; Lortholary, M.; Dumaye, L.; Hamon, G.

    2014-07-01

    During ArTeMiS observations at the APEX telescope (Chajnantor, Chile), 5760 bolometric pixels from 20 arrays at 300mK, corresponding to 3 submillimeter focal planes at 450μm, 350μm and 200μm, have to be read out simultaneously at 40Hz. The read out system, made of electronics and software, is the full chain from the cryostat to the telescope. The readout electronics consists of cryogenic buffers at 4K (NABU), based on CMOS technology, and of warm electronic acquisition systems called BOLERO. The bolometric signal given by each pixel has to be amplified, sampled, converted, time stamped and formatted in data packets by the BOLERO electronics. The time stamping is obtained by the decoding of an IRIG-B signal given by APEX and is key to ensure the synchronization of the data with the telescope. Specifically developed for ArTeMiS, BOLERO is an assembly of analogue and digital FPGA boards connected directly on the top of the cryostat. Two detectors arrays (18*16 pixels), one NABU and one BOLERO interconnected by ribbon cables constitute the unit of the electronic architecture of ArTeMiS. In total, the 20 detectors for the tree focal planes are read by 10 BOLEROs. The software is working on a Linux operating system, it runs on 2 back-end computers (called BEAR) which are small and robust PCs with solid state disks. They gather the 10 BOLEROs data fluxes, and reconstruct the focal planes images. When the telescope scans the sky, the acquisitions are triggered thanks to a specific network protocol. This interface with APEX enables to synchronize the acquisition with the observations on sky: the time stamped data packets are sent during the scans to the APEX software that builds the observation FITS files. A graphical user interface enables the setting of the camera and the real time display of the focal plane images, which is essential in laboratory and commissioning phases. The software is a set of C++, Labview and Python, the qualities of which are respectively used for rapidity, powerful graphic interfacing and scripting. The commands to the camera can be sequenced in Python scripts. The paper describes the whole electronic and software readout chain designed to fulfill the specificities of ArTeMiS and its performances. The specific options used are explained, for example, the limited room in the Cassegrain cabin of APEX has led us to a quite compact design. This system was successfully used in summer 2013 for the commissioning and the first scientific observations with a preliminary set of 4 detectors at 350μm.

  13. Fabrication of Tunnel Junctions For Direct Detector Arrays With Single-Electron Transistor Readout Using Electron-Beam Lithography

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Rhee, K. W.; Teufel, J.; Schoelkopf, R. J.

    2002-01-01

    This paper will describe the fabrication of small aluminum tunnel junctions for applications in astronomy. Antenna-coupled superconducting tunnel junctions with integrated single-electron transistor readout have the potential for photon-counting sensitivity at sub-millimeter wavelengths. The junctions for the detector and single-electron transistor can be made with electron-beam lithography and a standard self-aligned double-angle deposition process. However, high yield and uniformity of the junctions is required for large-format detector arrays. This paper will describe how measurement and modification of the sensitivity ratio in the resist bilayer was used to greatly improve the reliability of forming devices with uniform, sub-micron size, low-leakage junctions.

  14. A CMOS smart temperature and humidity sensor with combined readout.

    PubMed

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  15. Integrated tests of a high speed VXS switch card and 250 MSPS flash ADCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Dong, C. Cuevas, D. Curry, E. Jastrzembski, F. Barbosa, J. Wilson, M. Taylor, B. Raydo

    2008-01-01

    High trigger rate nuclear physics experiments proposed for the 12 GeV upgrade at the Thomas Jefferson National Accelerator Facility create a need for new high speed digital systems for energy summing. Signals from electronic detectors will be captured with the Jefferson Lab FADC module, which collects and processes data from 16 charged particle sensors with 10 or 12 bit resolution at 250 MHz sample rate. Up to sixteen FADC modules transfer energy information to a central energy summing module for each readout crate. The sums from the crates are combined to form a global energy sum that is used tomore » trigger data readout for all modules. The Energy Sum module and FADC modules have been designed using the VITA-41 VME64 switched serial (VXS) standard. The VITA- 41 standard defines payload and switch slot module functions, and offers an elegant engineered solution for Multi-Gigabit serial transmission on a standard VITA-41 backplane. The Jefferson Lab Energy Sum module receives data serially at a rate of up to 6 Giga-bits per second from the FADC modules. Both FADC and Energy Sum modules have been designed and assembled and this paper describes the integrated tests using both high speed modules in unison« less

  16. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    NASA Astrophysics Data System (ADS)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  17. Target-Tracking Camera for a Metrology System

    NASA Technical Reports Server (NTRS)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  18. A portable electronic system for radiation dosimetry using electrets

    NASA Astrophysics Data System (ADS)

    Cruvinel, P. E.; Mascarenhas, S.; Cameron, J.

    1990-02-01

    An electret dosimeter with a cylindrical active volume has been introduced by Mascarenhas and collaborators [Proc. 10th Anniversary Conf. 1969-1979, Associacâo Brasileira de Fisicos em Medicina, p. 488; Topics Appl. Phys. 33 (1987) 321] for possible use in personnel and area monitoring. The full energy response curve as well as the degree of reproducibility and accuracy of the dosimeter are reported in a previous report [O. Guerrini, Master Science Thesis, São Carlos, USP-IFQSC (1982)]. For dimensions similar to those of the common pen dosimeter, the electret has a total surface charge of the order of 10 -9 C and it has a readout sensitivity of the order of 10 -5 Gy with a useful range of 5 × 10 -2 Gy. In this paper we describe a portable electronic system to measure X and γ-rays using a cylindrical electret ionization chamber. It uses commercially available operational amplifiers, and charge measurements can also be made by connecting a suitable capacitor in the feedback loop. With this system it is possible to measure equivalent surface charges up to (19.99±0.01) on the dosimeter. The readout doses are shown on a 3 {1}/{2} digit liquid crystal display (LCD). We have used complementary metal oxide semiconductor (CMOS) and bipolar metal oxide semiconductor (BiMOS) operatonal amplifier devices in the system's design. This choice provides small power consumption and is ideal for battery powered instruments. Furthermore the instrument is ideally suited for in situ measurements of X and γ radiation using a cylindrical electret ionization chamber.

  19. Clock and trigger distribution for CBM-TOF quality evaluation of RPC super module detector assemblies

    NASA Astrophysics Data System (ADS)

    Li, C.; Huang, X.; Cao, P.; Wang, J.; An, Q.

    2018-03-01

    RPC Super module (SM) detector assemblies are used for charged hadron identification in the Time-of-Flight (TOF) spectrometer at the Compressed Baryonic Matter (CBM) experiment. Each SM contains several multi-gap Resistive Plate Chambers (MRPCs) and provides up to 320 electronic channels in total for high-precision time measurements. Time resolution of the Time-to-Digital Converter (TDC) is required to be better than 20 ps. During mass production, the quality of each SM needs to be evaluated. In order to meet the requirements, the system clock signal as well as the trigger signal should be distributed precisely and synchronously to all electronics modules within the evaluation readout system. In this paper, a hierarchical clock and trigger distribution method is proposed for the quality evaluation of CBM-TOF SM detectors. In a first stage, the master clock and trigger module (CTM) allocated in a 6U PXI chassis distributes the clock and trigger signals to the slave CTM in the same chassis. In a second stage, the slave CTM transmits the clock and trigger signals to the TDC readout module (TRM) through one optical link. In a third stage, the TRM distributes the clock and trigger signals synchronously to 10 individual TDC boards. Laboratory test results show that the clock jitter at the third stage is less than 4 ps (RMS) and the trigger transmission latency from the master CTM to the TDC is about 272 ns with 11 ps (RMS) jitter. The overall performance complies well with the required specifications.

  20. Differential temperature stress measurement employing array sensor with local offset

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    1993-01-01

    The instrument has a focal plane array of infrared sensors of the integrating type such as a multiplexed device in which a charge is built up on a capacitor which is proportional to the total number of photons which that sensor is exposed to between read-out cycles. The infrared sensors of the array are manufactured as part of an overall array which is part of a micro-electronic device. The sensor achieves greater sensitivity by applying a local offset to the output of each sensor before it is converted into a digital word. The offset which is applied to each sensor will typically be the sensor's average value so that the digital signal which is periodically read from each sensor of the array corresponds to the portion of the signal which is varying in time. With proper synchronization between the cyclical loading of the test object and the frame rate of the infrared array the output of the A/D converted signal will correspond to the stress field induced temperature variations. A digital lock-in operation may be performed on the output of each sensor in the array. This results in a test instrument which can rapidly form a precise image of the thermoelastic stresses in an object.

  1. Readout electronics for the GEM detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Czarski, T.; Chernyshova, M.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Jakubowska, K.; Karpinski, L.; Kierzkowski, K.; Kudla, I. M.; Pozniak, K.; Rzadkiewicz, J.; Salapa, Z.; Scholz, M.; Zabolotny, W.

    2011-10-01

    A novel approach to the Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators[2],[3] and analogue FIFOs[1], the method developed uses simultaneously sampling high speed ADCs and advanced FPGA-based processing logic to estimate the energy of every single photon. Such method is applied to every GEM strip signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, where higher order reflections need to be identified and rejected[5].

  2. Bloch oscillating transistor as the readout element for hot electron bolometers

    NASA Astrophysics Data System (ADS)

    Hassel, Juha; Seppä, Heikki; Lindell, Rene; Hakonen, Pertti

    2004-10-01

    In this paper we analyse the properties of the Bloch oscillating transistor as a preamplifier in cryogenic devices. We consider here especially the readout of hot electron bolometers (HEBs) based on Normal-Superconductor-Insulator tunnel junctions, but the results also apply more generally. We show that one can get an equivalent noise voltage below 1 nV/√Hz with a single BOT. By using N BOTs in a parallel array configuration, a further reduction by factor √N may be achieved.

  3. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung

    2016-10-01

    In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4  ×  4 LGSO crystals, each with a dimension of 3  ×  3  ×  20 mm3, and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.

  4. Subelectron readout noise focal plane arrays for space imaging

    NASA Astrophysics Data System (ADS)

    Atlas, Gene; Wadsworth, Mark

    2004-01-01

    Readout noise levels of under 1 electron have long been a goal for the FPA community. In the quest to enhance the FPA sensitivity, various approaches have been attempted ranging from the exotic Photo-multiplier tubes, Image Intensifier tubes, Avalanche photo diodes, and now the on-chip avalanche charge amplification technologies from the CCD manufacturers. While these techniques reduce the readout noise, each offers a set of compromises that negatively affect the overall performance of the sensor in parameters such as power dissipation, dynamic range, uniformity or system complexity. In this work, we overview the benefits and tradeoffs of each approach, and introduce a new technique based on ImagerLabs" exclusive HIT technology which promises sub-electron read noise and other benefits without the tradeoffs of the other noise reduction techniques.

  5. Ga:Ge array development

    NASA Technical Reports Server (NTRS)

    Young, Erick T.; Rieke, G. H.; Low, Frank J.; Haller, E. E.; Beeman, J. W.

    1989-01-01

    Work at the University of Arizona and at Lawrence Berkeley Laboratory on the development of a far infrared array camera for the Multiband Imaging Photometer on the Space Infrared Telescope Facility (SIRTF) is discussed. The camera design uses stacked linear arrays of Ge:Ga photoconductors to make a full two-dimensional array. Initial results from a 1 x 16 array using a thermally isolated J-FET readout are presented. Dark currents below 300 electrons s(exp -1) and readout noises of 60 electrons were attained. Operation of these types of detectors in an ionizing radiation environment are discussed. Results of radiation testing using both low energy gamma rays and protons are given. Work on advanced C-MOS cascode readouts that promise lower temperature operation and higher levels of performance than the current J-FET based devices is described.

  6. Method and apparatus for optical encoding with compressible imaging

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2006-01-01

    The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.

  7. The readout electronics for Plastic Scintillator Detector of DAMPE

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Yang, Haibo; Zhao, Hongyun; Su, Hong; Sun, Zhiyu; Yu, Yuhong; JingZhe, Zhang; Wang, XiaoHui; Liu, Jie; Xiao, Guoqing; Ma, Xinwen

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) satellite, which launched in December 2015, is designed to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. Plastic Scintillator Detector (PSD) is one of major part of the satellite payload, which is comprised of a crossed pair of layers with 41 plastic scintillator-strips, each read out from both ends by the same Hamamatsu R4443MOD2 photo-multiplier tubes (PMTs). In order to extend linear dynamic range of detector, PMTs read out each plastic scintillator-strip separately with two dynode pickoffs. Therefore, the readout electronics system comprises of four Front-end boards to receive the pulses from 328 PMTs and implement charge measurement, which is based on the Application Specific Integrated Circuit (ASIC) chip VA160, 16 bits ADC and FPGA. The electronics of the detector has been designed following stringent requirements on mechanical and thermal stability, power consumption, radiation hardness and double redundancy. Various experiments are designed and implemented to check the performance of the electronics, some excellent results has been achieved.According to experimental results analysis, it is proved that the readout electronics works well.

  8. IRAC test report. Gallium doped silicon band 2: Read noise and dark current

    NASA Technical Reports Server (NTRS)

    Lamb, Gerald; Shu, Peter; Mather, John; Ewin, Audrey; Bowser, Jeffrey

    1987-01-01

    A direct readout infrared detector array, a candidate for the Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC), has been tested. The array has a detector surface of gallium doped silicon, bump bonded to a 58x62 pixel MOSFET multiplexer on a separate chip. Although this chip and system do not meet all the SIRTF requirements, the critically important read noise is within a factor of 3 of the requirement. Significant accomplishments of this study include: (1) development of a low noise correlated double sampling readout system with a readout noise of 127 to 164 electrons (based on the detector integrator capacitance of 0.1 pF); (2) measurement of the readout noise of the detector itself, ranging from 123 to 214 electrons with bias only (best to worst pixel), and 256 to 424 electrons with full clocking in normal operation at 5.4 K where dark current is small. Thirty percent smaller read noises are obtained at a temperature of 15K; (3) measurement of the detector response versus integration time, showing significant nonlinear behavior for large signals, well below the saturation level; and (4) development of a custom computer interface and suitable software for collection, analysis and display of data.

  9. A PFM-based MWIR DROIC employing off-pixel fine conversion of photocharge to digital using integrated column ADCs

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Galioglu, A.; Shafique, A.; Ceylan, O.; Yazici, M.; Gurbuz, Y.

    2017-02-01

    A 32x32 prototype of a digital readout IC (DROIC) for medium-wave infrared focal plane arrays (MWIR IR-FPAs) is presented. The DROIC employs in-pixel photocurrent to digital conversion based on a pulse frequency modulation (PFM) loop and boasts a novel feature of off-pixel residue conversion using 10-bit column SAR ADCs. The remaining charge at the end of integration in typical PFM based digital pixel sensors is usually wasted. Previous works employing in-pixel extended counting methods make use of extra memory and counters to convert this left-over charge to digital, thereby performing fine conversion of the incident photocurrent. This results in a low quantization noise and hence keeps the readout noise low. However, focal plane arrays (FPAs) with small pixel pitch are constrained in pixel area, which makes it difficult to benefit from in-pixel extended counting circuitry. Thus, in this work, a novel approach to measure the residue outside the pixel using column -parallel SAR ADCs has been proposed. Moreover, a modified version of the conventional PFM based pixel has been designed to help hold the residue charge and buffer it to the column ADC. In addition to the 2D array of pixels, the prototype consists of 32 SAR ADCs, a timing controller block and a memory block to buffer the residue data coming out of the ADCs. The prototype has been designed and fabricated in 90nm CMOS.

  10. The New APD Based Readout for the Crystal Barrel Calorimeter

    NASA Astrophysics Data System (ADS)

    Urban, M.; Honisch, Ch; Steinacher, M.; CBELSA/TAPS Collaboration

    2015-02-01

    The CBELSA/TAPS experiment at ELSA measures double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions off polarized neutrons with high efficiency, the main calorimeter has to be integrated into the first level trigger. This requires to exchange the existing PIN photo diode by a new avalanche photo diode (APD) readout. The newly developed readout electronics will provide an energy resolution compatible to the previous set-up and a fast trigger signal down to 10 MeV energy deposit per crystal. After the successful final tests with a 3x3 CsI crystal matrix in Bonn at ELSA and in Mainz at MAMI all front-end electronics were produced in fall 2013. Automated test routines for the front-end electronics were developed and the characterization measurements of all APDs were successfully accomplished in Bonn. The project is supported by the Deutsche Forschungsgemeinschaft (SFB/TR16) and Schweizerischer Nationalfonds.

  11. Novel x-ray silicon detector for 2D imaging and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Castoldi, Andrea; Gatti, Emilio; Guazzoni, Chiara; Longoni, Antonio; Rehak, Pavel; Strueder, Lothar

    1999-10-01

    A novel x-ray silicon detector for 2D imaging has been recently proposed. The detector, called Controlled-Drift Detector, is operated in integrate-readout mode. Its basic feature is the fast transport of the integrated charge to the output electrode by means of a uniform drift field. The drift time of the charge packet identifies the pixel of incidence. A new architecture to implement the Controlled- Drift Detector concept will be presented. The potential wells for the integration of the signal charge are obtained by means of a suitable pattern of deep n-implants and deep p-implants. During the readout mode the signal electrons are transferred in the drift channel that flanks each column of potential wells where they drift towards the collecting electrode at constant velocity. The first experimental measurements demonstrate the successful integration, transfer and drift of the signal electrons. The low output capacitance of the readout electrode together with the on- chip front-end electronics allows high resolution spectroscopy of the detected photons.

  12. The GANDALF 128-Channel Time-to-Digital Converter

    NASA Astrophysics Data System (ADS)

    Büchele, M.; Fischer, H.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.

    The GANDALF 6U-VME64x/VXS module has been designed to cope with a variety of readout tasks in high energy and nuclear physics experiments, in particular the COMPASS experiment at CERN. The exchangeable mezzanine cards allow for an employment of the system in very different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition or fast trigger generation. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In this concept each input signal is continuously sampled by 16 flip-flops using equidistant phase-shifted clocks. Compared to previous FPGA designs, usually based on delay lines and comprising few TDC channels with resolutions in the order of 10 ps, our design permits the implementation of a large number of TDC channels with a resolution of 64 ps in a single FPGA. Predictable placement of logic components and uniform routing inside the FPGA fabric is a particular challenge of this design. We present measurement results for the time resolution and the nonlinearity of the TDC readout system.

  13. A flexible FPGA based QDC and TDC for the HADES and the CBM calorimeters

    NASA Astrophysics Data System (ADS)

    Rost, A.; Galatyuk, T.; Koenig, W.; Michel, J.; Pietraszko, J.; Skott, P.; Traxler, M.

    2017-02-01

    A Charge-to-Digital-Converter (QDC) and Time-to-Digital-Converter (TDC) based on a commercial FPGA (Field Programmable Gate Array) was developed to read out PMT signals of the planned HADES electromagnetic calorimeter (ECAL) at GSI Helmholtzzentrum für Schwerionenforschung GmbH (Darmstadt, Germany). The main idea is to convert the charge measurement of a detector signal into a time measurement, where the charge is encoded in the width of a digital pulse, while the arrival time information is encoded in the leading edge time of the pulse. The PaDiWa-AMPS prototype front-end board for the TRB3 (General Purpose Trigger and Readout Board—version 3) which implements this conversion method was developed and qualified. The already well established TRB3 platform provides the needed precise time measurements and serves as a data acquisition system. We present the read-out concept and the performance of the prototype boards in laboratory and also under beam conditions. First steps have been completed in order to adapt this concept to SiPM signals of the hadron calorimeter in the CBM experiment at the planned FAIR facility (Darmstadt).

  14. Energy discrimination for positron emission tomography using the time information of the first detected photons

    NASA Astrophysics Data System (ADS)

    Therrien, A. C.; Lemaire, W.; Lecoq, P.; Fontaine, R.; Pratte, J.-F.

    2018-01-01

    The advantages of Time-of-Flight positron emission tomography (TOF-PET) have pushed the development of detectors with better time resolution. In particular, Silicon Photomultipliers (SiPM) have evolved tremendously in the past decade and arrays with a fully digital readout are the next logical step (dSiPM). New multi-timestamp methods use the precise time information of multiple photons to estimate the time of a PET event with greater accuracy, resulting in excellent time resolution. We propose a method which uses the same timestamps as the time estimator to perform energy discrimination, thus using data obtained within 5 ns of the beginning of the event. Having collected all the necessary information, the dSiPM could then be disabled for the remaining scintillation while dedicated electronics process the collected data. This would reduce afterpulsing as the SPAD would be turned off for several hundred nanoseconds, emptying the majority of traps. The proposed method uses a strategy based on subtraction and minimal electronics to reject energy below a selected threshold. This method achieves an error rate of less than 3% for photopeak discrimination (threshold at 400 keV) for dark count rates up to 100 cps/μm2, time-to-digital converter resolution up to 50 ps and a photon detection efficiency ranging from 10 to 70%.

  15. Conceptual design of the SMART dosimeter

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Vogel, Sam; Frank, Rebecca; Stoddard, Graham; Vera, Alonzo; Alexander, David; Christian, James

    2017-08-01

    Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, these technologies do not lend themselves to a viable solution for active dosimetry for an astronaut, particularly for deep space missions. For future missions, nano- and micro-satellites will require compact instruments that will accurately assess the radiation hazard without consuming major resources on the spacecraft. RMD has developed the methods for growing an advanced scintillation material called phenylcarbazole, which provides pulse shape discrimination between protons and electrons. When used in combination with an anti-coincidence detector system, an assessment of the dose from charged ions and neutral particles can be determined. This is valuable as damage on a system (such as silicon or tissue) is dependent on the particle species. Using this crystal with readout electronics developed in partnership with COSMIAC at the University of New Mexico, the design of the Small Mixed field Autonomous Radiation Tracker (SMART) Dosimeter consists of a low-power analog to digital conversion scheme with low-power digital signal processing algorithms, which are to be implemented within a compact system on a chip, such as the Xilinx Zynq series. A review of the conceptual design is presented.

  16. A Front-End Electronics Prototype Based on Gigabit Ethernet for the ATLAS Small-Strip Thin Gap Chamber

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Lu, Houbing; Wang, Xu; Li, Feng; Wang, Xinxin; Geng, Tianru; Yang, Hang; Liu, Shengquan; Han, Liang; Jin, Ge

    2017-06-01

    A front-end electronics prototype for the ATLAS small-strip Thin Gap Chamber (sTGC) based on gigabit Ethernet has been developed. The prototype is designed to read out signals of pads, wires, and strips of the sTGC detector. The prototype includes two VMM2 chips developed to read out the signals of the sTGC, a Xilinx Kintex-7 field-programmable gate array (FPGA) used for the VMM2 configuration and the events storage, and a gigabit Ethernet transceiver PHY chip for interfacing with a computer. The VMM2 chip is designed for the readout of the Micromegas detector and sTGC detector, which is composed of 64 linear front-end channels. Each channel integrates a charge-sensitive amplifier, a shaper, several analog-to-digital converters, and other digital functions. For a bunch-crossing interval of 25 ns, events are continuously read out by the FPGA and forwarded to the computer. The interface between the computer and the prototype has been measured to reach an error-free rate of 900 Mb/s, therefore making a very effective use of the available bandwidth. Additionally, the computer can control several prototypes of this kind simultaneously via the Ethernet interface. At present, the prototype will be used for the sTGC performance test. The features of the prototype are described in detail.

  17. First images of a digital autoradiography system based on a Medipix2 hybrid silicon pixel detector.

    PubMed

    Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2003-06-21

    We present the first images of beta autoradiography obtained with the high-resolution hybrid pixel detector consisting of the Medipix2 single photon counting read-out chip bump-bonded to a 300 microm thick silicon pixel detector. This room temperature system has 256 x 256 square pixels of 55 microm pitch (total sensitive area of 14 x 14 mm2), with a double threshold discriminator and a 13-bit counter in each pixel. It is read out via a dedicated electronic interface and control software, also developed in the framework of the European Medipix2 Collaboration. Digital beta autoradiograms of 14C microscale standard strips (containing separate bands of increasing specific activity in the range 0.0038-32.9 kBq g(-1)) indicate system linearity down to a total background noise of 1.8 x 10(-3) counts mm(-2) s(-1). The minimum detectable activity is estimated to be 0.012 Bq for 36,000 s exposure and 0.023 Bq for 10,800 s exposure. The measured minimum detection threshold is less than 1600 electrons (equivalent to about 6 keV Si). This real-time system for beta autoradiography offers lower pixel pitch and higher sensitive area than the previous Medipix1-based system. It has a 14C sensitivity better than that of micro channel plate based systems, which, however, shows higher spatial resolution and sensitive area.

  18. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    DOE PAGES

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; ...

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272more » is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).« less

  19. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan

    2018-01-01

    Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

  20. Investigation of image distortion due to MCP electronic readout misalignment and correction via customized GUI application

    NASA Astrophysics Data System (ADS)

    Vitucci, G.; Minniti, T.; Tremsin, A. S.; Kockelmann, W.; Gorini, G.

    2018-04-01

    The MCP-based neutron counting detector is a novel device that allows high spatial resolution and time-resolved neutron radiography and tomography with epithermal, thermal and cold neutrons. Time resolution is possible by the high readout speeds of ~ 1200 frames/sec, allowing high resolution event counting with relatively high rates without spatial resolution degradation due to event overlaps. The electronic readout is based on a Timepix sensor, a CMOS pixel readout chip developed at CERN. Currently, a geometry of a quad Timepix detector is used with an active format of 28 × 28 mm2 limited by the size of the Timepix quad (2 × 2 chips) readout. Measurements of a set of high-precision micrometers test samples have been performed at the Imaging and Materials Science & Engineering (IMAT) beamline operating at the ISIS spallation neutron source (U.K.). The aim of these experiments was the full characterization of the chip misalignment and of the gaps between each pad in the quad Timepix sensor. Such misalignment causes distortions of the recorded shape of the sample analyzed. We present in this work a post-processing image procedure that considers and corrects these effects. Results of the correction will be discussed and the efficacy of this method evaluated.

  1. QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout †

    PubMed Central

    Ni, Yang

    2018-01-01

    In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout. PMID:29443903

  2. QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout.

    PubMed

    Ni, Yang

    2018-02-14

    In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout.

  3. High-fidelity projective read-out of a solid-state spin quantum register.

    PubMed

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  4. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    NASA Astrophysics Data System (ADS)

    Arefin, Md Shamsul; Bulut Coskun, M.; Alan, Tuncay; Redoute, Jean-Michel; Neild, Adrian; Rasit Yuce, Mehmet

    2014-06-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0-5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  5. Latest generation of ASICs for photodetector readout

    NASA Astrophysics Data System (ADS)

    Seguin-Moreau, N.

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the "ROC" family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the "ROC" chips.

  6. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  7. Detector Control and Data Acquisition for the Wide-Field Infrared Survey Telescope (WFIRST) with a Custom ASIC

    NASA Technical Reports Server (NTRS)

    Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; hide

    2016-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allman, M. S., E-mail: shane.allman@boulder.nist.gov; Verma, V. B.; Stevens, M.

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  9. A Synthetic Teammate for UAV Applications: A Prospective Look

    DTIC Science & Technology

    2006-08-01

    was facilitated by the use of digital readouts for the flight instruments (other than the horizon line and reticle) in the STE, such that the model ...ACT-R returns a digital value for pitch and bank to the model (as reflected in the orientation of the horizon line with respect to the reticle), even...the development of a Situation Model (Zwann & Radvansky , 1998) to ground the n Historically Black Colleges and Universities (HBCU) research contract

  10. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems

    PubMed Central

    Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon

    2017-01-01

    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors. PMID:28368355

  11. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.

    PubMed

    Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon

    2017-04-03

    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  12. Injection moulded microneedle sensor for real-time wireless pH monitoring.

    PubMed

    Mirza, Khalid B; Zuliani, Claudio; Hou, Benjamin; Ng, Fu Siong; Peters, Nicholas S; Toumazou, Christofer

    2017-07-01

    This paper describes the development of an array of individually addressable pH sensitive microneedles using injection moulding and their integration within a portable device for real-time wireless recording of pH distributions in biological samples. The fabricated microneedles are subjected to gold patterning followed by electrodeposition of iridium oxide to sensitize them to 0.07 units of pH change. Miniaturised electronics suitable for the sensors readout, analog-to-digital conversion and wireless transmission of the potentiometric data are embodied within the device, enabling it to measure real-time pH of soft biological samples such as muscles. In this paper, real-time recording of the cardiac pH distribution, during ischemia followed by reperfusion cycles in cardiac muscles of male Wistar rats has been demonstrated by using the microneedle array.

  13. A readout system for X-ray powder crystallography

    NASA Astrophysics Data System (ADS)

    Loukas, D.; Haralabidis, N.; Pavlidis, A.; Karvelas, E.; Psycharis a, K. Misiakos, V.; Mousa, J.; Dre, Ch.

    2000-06-01

    A system for capturing and processing data, from radiation detectors, in the field of X-ray crystallography has been developed. The system includes a custom-made mixed analog-digital 16-channel VLSI circuit in 50 μm pitch. Each channel comprises a charge amplifier, a shaper, a comparator and a 21-bit counter. The circuit can be scaled in a daisy chain configuration. Data acquisition is performed with a custom made PCI card while the control software is developed with Visual C++ under the MS Windows NT environment. Performance of a fully operational system, in terms of electronic noise, statistical variations and data capture speed is presented. The noise level permits counting of X-rays down to 8 keV while the counting capability is in excess of 200 kHz. The system is intended for X-ray crystallography with silicon detectors.

  14. Volatility of aerosols in the western European environment. Interim report No. 1 thru 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennings, S.G.

    1987-10-01

    The volatility apparatus to be used in the proposed work is being currently assembled at the Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico. When the volatility apparatus is constructed and tested it will be shipped to University College Galway. It is then planned to carry out field-volatility measurements of the ambient aerosol, primarily for the unmodified maritime air mass and secondly for the partially modified European continental air mass. Continuous measurements for periods up to some weeks spanning all four seasons are planned. In preparation for these measurements, a digital readout facility was acquired for the IM 146more » velocity and direction transmitter to be used for recording wind speed and direction. The measurement system was electronically processed to facilitate continuous recording on a microcomputer.« less

  15. Digital barcodes of suspension array using laser induced breakdown spectroscopy

    PubMed Central

    He, Qinghua; Liu, Yixi; He, Yonghong; Zhu, Liang; Zhang, Yilong; Shen, Zhiyuan

    2016-01-01

    We show a coding method of suspension array based on the laser induced breakdown spectroscopy (LIBS), which promotes the barcodes from analog to digital. As the foundation of digital optical barcodes, nanocrystals encoded microspheres are prepared with self-assembly encapsulation method. We confirm that digital multiplexing of LIBS-based coding method becomes feasible since the microsphere can be coded with direct read-out data of wavelengths, and the method can avoid fluorescence signal crosstalk between barcodes and analyte tags, which lead to overall advantages in accuracy and stability to current fluorescent multicolor coding method. This demonstration increases the capability of multiplexed detection and accurate filtrating, expanding more extensive applications of suspension array in life science. PMID:27808270

  16. HYMOSS signal processing for pushbroom spectral imaging

    NASA Technical Reports Server (NTRS)

    Ludwig, David E.

    1991-01-01

    The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.

  17. HYMOSS signal processing for pushbroom spectral imaging

    NASA Astrophysics Data System (ADS)

    Ludwig, David E.

    1991-06-01

    The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.

  18. Readout characteristics of a minute aperture-mounted optical head slider flying above a submicron wide metal patterned medium track

    NASA Astrophysics Data System (ADS)

    Ohkubo, Toshifumi; Hirota, Terunao; Oumi, Manabu; Hirata, Masakazu; Nakajima, Kunio

    2004-10-01

    Advances in a digital network society require both higher densities and higher transfer rates in all sorts of storage devices. In optical recording, the trend toward higher recording density and larger storage capacity requires novel surface recording technologies that would drastically improve recording density. To satisfy these severe requirements, we have already proposed a compact integrated optical head slider assembly for proximity optical recording based on the "near field principle". Using the optical head slider, we have successfully demonstrated readout signals from 200 to 150-nm-long bit patterns at frequency bands up to approximately 10 MHz. However, from the practical point of view, it is quite necessary to evaluate readout signals from patterns of smaller (sub-micron to sub-sub-micron) track width in order to prove high-density recording potential. In this paper, we have investigated tracking accuracy characteristics utilizing sub-micron sized alternate patterns of 1-mm length formed in a straight line in the circumferential direction of the medium. Arranging precisely the head's relative position to these recorded patterns, we have successfully obtained readout signals just crossing the sub-micron line-and-space pattern's boundaries. Assuming that an aperture runs along an accurate trajectory of the arc of a circle, readout signal amplitude variations when crossing the pattern edge at a right angle have precisely predicted. Also, the influences of track width on maximum readout signal intensity and tracking sensitivity are discussed in detail.

  19. Ultralow-noise readout circuit with an avalanche photodiode: toward a photon-number-resolving detector.

    PubMed

    Tsujino, Kenji; Akiba, Makoto; Sasaki, Masahide

    2007-03-01

    The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low-capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40 ms. We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.

  20. C2D8: An eight channel CCD readout electronics dedicated to low energy neutron detection

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Clement, B.; Tourres, D.; Pignol, G.; Xi, Y.; Rebreyend, D.; Nesvizhevsky, V. V.

    2018-02-01

    Position-sensitive detectors for cold and ultra-cold neutrons (UCN) are in use in fundamental research. In particular, measuring the properties of the quantum states of bouncing neutrons requires micro-metric spatial resolution. To this end, a Charge Coupled Device (CCD) coated with a thin conversion layer that allows a real time detection of neutron hits is under development at LPSC. In this paper, we present the design and performance of a dedicated electronic board designed to read-out eight CCDs simultaneously and operating under vacuum.

  1. Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments

    NASA Astrophysics Data System (ADS)

    Prele, D.

    2015-08-01

    As we have seen for digital camera market and a sensor resolution increasing to "megapixels", all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, "simple" and "efficient" techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described.

  2. The readout chain for the bar PANDA MVD strip detector

    NASA Astrophysics Data System (ADS)

    Schnell, R.; Brinkmann, K.-Th.; Di Pietro, V.; Kleines, H.; Goerres, A.; Riccardi, A.; Rivetti, A.; Rolo, M. D.; Sohlbach, H.; Zaunick, H.-G.

    2015-02-01

    The bar PANDA (antiProton ANnihilation at DArmstadt) experiment will study the strong interaction in annihilation reactions between an antiproton beam and a stationary gas jet target. The detector will comprise different sub-detectors for tracking, particle identification and calorimetry. The Micro-Vertex Detector (MVD) as the innermost part of the tracking system will allow precise tracking and detection of secondary vertices. For the readout of the double-sided silicon strip sensors a custom-made ASIC is being developed, employing the Time-over-Threshold (ToT) technique for digitization and utilize time-to-digital converters (TDC) to provide a high-precision time stamp of the hit. A custom-made Module Data Concentrator ASIC (MDC) will multiplex the data of all front-ends of one sensor towards the CERN-developed GBT chip set (GigaBit Transceiver). The MicroTCA-based MVD Multiplexer Board (MMB) at the off-detector site will receive and concentrate the data from the GBT links and transfer it to FPGA-based compute nodes for global event building.

  3. Recording and reading of information on optical disks

    NASA Astrophysics Data System (ADS)

    Bouwhuis, G.; Braat, J. J. M.

    In the storage of information, related to video programs, in a spiral track on a disk, difficulties arise because the bandwidth for video is much greater than for audio signals. An attractive solution was found in optical storage. The optical noncontact method is free of wear, and allows for fast random access. Initial problems regarding a suitable light source could be overcome with the aid of appropriate laser devices. The basic concepts of optical storage on disks are treated insofar as they are relevant for the optical arrangement. A general description is provided of a video, a digital audio, and a data storage system. Scanning spot microscopy for recording and reading of optical disks is discussed, giving attention to recording of the signal, the readout of optical disks, the readout of digitally encoded signals, and cross talk. Tracking systems are also considered, taking into account the generation of error signals for radial tracking and the generation of focus error signals.

  4. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  5. A 32 mm  ×  32 mm  ×  22 mm monolithic LYSO:Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI

    NASA Astrophysics Data System (ADS)

    Borghi, Giacomo; Peet, Bart Jan; Tabacchini, Valerio; Schaart, Dennis R.

    2016-07-01

    New applications for positron emission tomography (PET) and combined PET/magnetic resonance imaging (MRI) are currently emerging, for example in the fields of neurological, breast, and pediatric imaging. Such applications require improved image quality, reduced dose, shorter scanning times, and more precise quantification. This can be achieved by means of dedicated scanners based on ultrahigh-performance detectors, which should provide excellent spatial resolution, precise depth-of-interaction (DOI) estimation, outstanding time-of-flight (TOF) capability, and high detection efficiency. Here, we introduce such an ultrahigh-performance TOF/DOI PET detector, based on a 32 mm  ×  32 mm  ×  22 mm monolithic LYSO:Ce crystal. The 32 mm  ×  32 mm front and back faces of the crystal are coupled to a digital photon counter (DPC) array, in so-called dual-sided readout (DSR) configuration. The fully digital detector offers a spatial resolution of ~1.1 mm full width at half maximum (FWHM)/~1.2 mm mean absolute error, together with a DOI resolution of ~2.4 mm FWHM, an energy resolution of 10.2% FWHM, and a coincidence resolving time of 147 ps FWHM. The time resolution closely approaches the best results (135 ps FWHM) obtained to date with small crystals made from the same material coupled to the same DPC arrays, illustrating the excellent correction for optical and electronic transit time spreads that can be achieved in monolithic scintillators using maximum-likelihood techniques for estimating the time of interaction. The performance barely degrades for events with missing data (up to 6 out of 32 DPC dies missing), permitting the use of almost all events registered under realistic acquisition conditions. Moreover, the calibration procedures and computational methods used for position and time estimation follow recently made improvements that make them fast and practical, opening up realistic perspectives for using DSR monolithic scintillator detectors in TOF-PET and TOF-PET/MRI systems.

  6. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  7. Data and clock transmission interface for the WCDA in LHAASO

    NASA Astrophysics Data System (ADS)

    Chu, S. P.; Zhao, L.; Jiang, Z. Y.; Ma, C.; Gao, X. S.; Yang, Y. F.; Liu, S. B.; An, Q.

    2016-12-01

    The Water Cherenkov Detector Array (WCDA) is one of the major components of the Large High Altitude Air Shower Observatory (LHAASO). In the WCDA, 3600 Photomultiplier Tubes (PMTs) and the Front End Electronics (FEEs) are scattered over a 90000 m2 area, while high precision time measurements (0.5 ns RMS) are required in the readout electronics. To meet this requirement, the clock has to be distributed to the FEEs with high precision. Due to the ``triggerless'' architecture, high speed data transfer is required based on the TCP/IP protocol. To simplify the readout electronics architecture and be consistent with the whole LHAASO readout electronics, the White Rabbit (WR) switches are used to transfer clock, data, and commands via a single fiber of about 400 meters. In this paper, a prototype of data and clock transmission interface for LHAASO WCDA is developed. The performance tests are conducted and the results indicate that the clock synchronization precision of the data and clock transmission is better than 50 ps. The data transmission throughput can reach 400 Mbps for one FEE board and 180 Mbps for 4 FEE boards sharing one up link port in WR switch, which is better than the requirement of the LHAASO WCDA.

  8. Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C.

    2014-06-01

    We have realized a frequency-domain multiplexing technique for the readout of large metallic magnetic calorimeter detector arrays. It is based on non-hysteretic single-junction SQUIDs and allows for a simultaneous readout of hundreds or thousands of detectors by using a single cryogenic high electron mobility transistor amplifier and two coaxial cables that are routed from room-temperature to the detector array. We discuss the working principle of the multiplexer and present details about our prototype multiplexer design. We show that fabricated devices are fully operational and that characteristic SQUID parameters such as the input sensitivity of the SQUID or the resonance frequency of the readout circuit can be predicted with confidence. Our best device so far has shown a magnetic flux white noise level of 1.4 m which can in future be reduced by an optimization of the fabrication processes as well as an improved microwave readout system.

  9. A PCIe Gen3 based readout for the LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Bellato, M.; Collazuol, G.; D'Antone, I.; Durante, P.; Galli, D.; Jost, B.; Lax, I.; Liu, G.; Marconi, U.; Neufeld, N.; Schwemmer, R.; Vagnoni, V.

    2014-06-01

    The architecture of the data acquisition system foreseen for the LHCb upgrade, to be installed by 2018, is devised to readout events trigger-less, synchronously with the LHC bunch crossing rate at 40 MHz. Within this approach the readout boards act as a bridge between the front-end electronics and the High Level Trigger (HLT) computing farm. The baseline design for the LHCb readout is an ATCA board requiring dedicated crates. A local area standard network protocol is implemented in the on-board FPGAs to read out the data. The alternative solution proposed here consists in building the readout boards as PCIe peripherals of the event-builder servers. The main architectural advantage is that protocol and link-technology of the event-builder can be left open until very late, to profit from the most cost-effective industry technology available at the time of the LHC LS2.

  10. Ionization Readout Electronics for SuperCDMS SNOLAB Employing a HEMT Front-End

    NASA Astrophysics Data System (ADS)

    Partridge, R.

    2014-09-01

    The SuperCDMS SNOLAB experiment seeks to deploy 200 kg of cryogenic Ge detectors employing phonon and ionization readout to identify dark matter interactions. One of the design challenges for the experiment is to provide amplification of the high impedance ionization signal while minimizing power dissipation and noise. This paper describes the design and expected performance of the ionization readout being developed for an engineering model of the SuperCDMS SNOLAB Ge Tower System. The readout features the use of a low-noise HEMT front end transistor operating at 4 K to achieve a power dissipation of 100 W per channel, local grounding to minimize noise injection, and biasing circuitry that allows precise control of the HEMT operating point.

  11. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; et al.

    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outsidemore » the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.« less

  12. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outsidemore » the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. In conclusion, this noise level is significantly lower than previous experiments utilizing warm front-end electronics.« less

  13. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-08-04

    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outsidemore » the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. In conclusion, this noise level is significantly lower than previous experiments utilizing warm front-end electronics.« less

  14. A new MicroTCA-based waveform digitizer for the Muon g-2 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweigart, David A.

    We present the design of a newmore » $$\\mu$$TCA-based waveform digitizer, which will be deployed in the Muon g-2 experiment at Fermilab and will allow our pileup identification requirement to be met. This digitizer features five independent channels, each with 12-bit, 800-MSPS digitization and a 1-Gbit memory buffer. The data storage and readout along with configuration are handled by six Xilinx Kintex-7 FPGAs. In addition, the digitizer is equipped with a mezzanine card for analog signal conditioning prior to digitization, further widening its range of possible applications. The performance results of this design are also presented, highlighting its $$0.51 \\pm 0.13$$ mV intrinsic noise level and $< 22$ ps intrinsic timing resolution between channels. We believe that its performance, together with its flexible design, could be of interest to future experiments in search of a cost-effective waveform digitizer.« less

  15. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  16. Phase-locked tracking loops for LORAN-C

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1978-01-01

    Portable battery operated LORAN-C receivers were fabricated to evaluate simple envelope detector methods with hybrid analog to digital phase locked loop sensor processors. The receivers are used to evaluate LORAN-C in general aviation applications. Complete circuit details are given for the experimental sensor and readout system.

  17. Late Quaternary to Holocene Geology, Geomorphology and Glacial History of Dawson Creek and Surrounding area, Northeast British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Henry, Edward Trowbridge

    Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.

  18. Digital Microarrays: Single-Molecule Readout with Interferometric Detection of Plasmonic Nanorod Labels.

    PubMed

    Sevenler, Derin; Daaboul, George G; Ekiz Kanik, Fulya; Ünlü, Neşe Lortlar; Ünlü, M Selim

    2018-05-21

    DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and limited dynamic range of traditional fluorescence microarrays compared to other detection techniques have been the technology's Achilles' heel and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule ("digital") regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform's primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about 3 orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10× objective lens. This approach does not require any chemical signal enhancement such as silver deposition and scans arrays with a throughput similar to commercial fluorescence scanners. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about 6 orders of magnitude directly from a single scan. As a proof-of-concept digital protein microarray assay, we demonstrated detection of hepatitis B virus surface antigen in buffer with a limit of detection of 3.2 pg/mL. More broadly, the technique's simplicity and high-throughput nature make digital microarrays a flexible platform technology with a wide range of potential applications in biomedical research and clinical diagnostics.

  19. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  20. A portable battery powered microfluidic impedance cytometer with smartphone readout: towards personal health monitoring.

    PubMed

    Talukder, Niloy; Furniturewalla, Abbas; Le, Tuan; Chan, Matthew; Hirday, Shreyas; Cao, Xinnan; Xie, Pengfei; Lin, Zhongtian; Gholizadeh, Azam; Orbine, Steve; Javanmard, Mehdi

    2017-06-01

    We present a portable system for personalized blood cell counting consisting of a microfluidic impedance cytometer and portable analog readout electronics, feeding into an analog-to-digital converter (ADC), and being transmitted via Bluetooth to a user-accessible mobile application. We fabricated a microfluidic impedance cytometer with a novel portable analog readout. The novel design of the analog readout, which consists of a lock-in-amplifier followed by a high-pass filter stage for subtraction of drift and DC offset, and a post-subtraction high gain stage, enables detection of particles and cells as small as 1 μm in diameter, despite using a low-end 8-bit ADC. The lock-in-amplifier and the ADC were set up to receive and transmit data from a Bluetooth module. In order to initiate the system, as well as to transmit all of the data, a user friendly mobile application was developed, and a proof-of-concept trial was run on a blood sample. Applications such as personalized health monitoring require robust device operation and resilience to clogging. It is desirable to avoid using channels comparable in size to the particles being detected thus requiring high levels of sensitivity. Despite using low-end off-the-shelf hardware, our sensing platform was capable of detecting changes in impedance as small as 0.032%, allowing detection of 3 μm diameter particles in a 300 μm wide channel. The sensitivity of our system is comparable to that of a high-end bench-top impedance spectrometer when tested using the same sensors. The novel analog design allowed for an instrument with a footprint of less than 80 cm 2 . The aim of this work is to demonstrate the potential of using microfluidic impedance spectroscopy for low cost health monitoring. We demonstrated the utility of the platform technology towards cell counting, however, our platform is broadly applicable to assaying wide panels of biomarkers including proteins, nucleic acids, and various cell types.

  1. Implementation of a 4x8 NIR and CCD Mosaic Focal Plane Technology

    NASA Astrophysics Data System (ADS)

    Jelinsky, Patrick; Bebek, C. J.; Besuner, R. W.; Haller, G. M.; Harris, S. E.; Hart, P. A.; Heetderks, H. D.; Levi, M. E.; Maldonado, S. E.; Roe, N. A.; Roodman, A. J.; Sapozhnikov, L.

    2011-01-01

    Mission concepts for NASA's Wide Field Infrared Survey Telescope (WFIRST), ESA's EUCLID mission, as well as for ground based observations, have requirements for large mosaic focal planes to image visible and near infrared (NIR) wavelengths. We have developed detectors, readout electronics and focal plane design techniques that can be used to create very large scalable focal plane mosaic cameras. In our technology, CCDs and HgCdTe detectors can be intermingled on a single, silicon carbide (SiC) cold plate. This enables optimized, wideband observing strategies. The CCDs, developed at Lawrence Berkeley National Laboratory, are fully-depleted, p-channel devices that are backside illuminated capable of operating at temperatures as low as 110K and have been optimized for the weak lensing dark energy technique. The NIR detectors are 1.7µm and 2.0µm wavelength cutoff H2RG® HgCdTe, manufactured by Teledyne Imaging Sensors under contract to LBL. Both the CCDs and NIR detectors are packaged on 4-side abuttable SiC pedestals with a common mounting footprint supporting a 44.16mm mosaic pitch and are coplanar. Both types of detectors have direct-attached, readout electronics that convert the detector signal directly to serial, digital data streams and allow a flexible, low cost data acquisition strategy, despite the large data volume. A mosaic of these detectors can be operated at a common temperature that achieves the required dark current and read noise performance in both types of detectors necessary for dark energy observations. We report here the design and integration for a focal plane designed to accommodate a 4x8 heterogeneous array of CCDs and HgCdTe detectors. Our current implementation contains over 1/4-billion pixels.

  2. Deterministic quantum teleportation with feed-forward in a solid state system.

    PubMed

    Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A

    2013-08-15

    Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.

  3. Analyzing blinking effects in super resolution localization microscopy with single-photon SPAD imagers

    NASA Astrophysics Data System (ADS)

    Antolovic, Ivan Michel; Burri, Samuel; Bruschini, Claudio; Hoebe, Ron; Charbon, Edoardo

    2016-02-01

    For many scientific applications, electron multiplying charge coupled devices (EMCCDs) have been the sensor of choice because of their high quantum efficiency and built-in electron amplification. Lately, many researchers introduced scientific complementary metal-oxide semiconductor (sCMOS) imagers in their instrumentation, so as to take advantage of faster readout and the absence of excess noise. Alternatively, single-photon avalanche diode (SPAD) imagers can provide even faster frame rates and zero readout noise. SwissSPAD is a 1-bit 512×128 SPAD imager, one of the largest of its kind, featuring a frame duration of 6.4 μs. Additionally, a gating mechanism enables photosensitive windows as short as 5 ns with a skew better than 150 ps across the entire array. The SwissSPAD photon detection efficiency (PDE) uniformity is very high, thanks on one side to a photon-to-digital conversion and on the other to a reduced fraction of "hot pixels" or "screamers", which would pollute the image with noise. A low native fill factor was recovered to a large extent using a microlens array, leading to a maximum PDE increase of 12×. This enabled us to detect single fluorophores, as required by ground state depletion followed by individual molecule return imaging microscopy (GSDIM). We show the first super resolution results obtained with a SPAD imager, with an estimated localization uncertainty of 30 nm and resolution of 100 nm. The high time resolution of 6.4 μs can be utilized to explore the dye's photophysics or for dye optimization. We also present the methodology for the blinking analysis on experimental data.

  4. New electronics for the Cherenkov Telescope Array (NECTAr)

    NASA Astrophysics Data System (ADS)

    Naumann, C. L.; Delagnes, E.; Bolmont, J.; Corona, P.; Dzahini, D.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Guilloux, F.; Nayman, P.; Rarbi, F.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main component, the NECTAr ASIC.

  5. Development of cryogenic CMOS Readout ASICs for the Point-Contact HPGe Detectors for Dark Matter Search and Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Deng, Zhi; He, Li; Liu, Feng; Liu, Yinong; Xue, Tao; Li, Yulan; Yue, Qian

    2017-05-01

    The paper presents the developments of two cryogenic readout ASICs for the point-contact HPGe detectors for dark matter search and neutrino experiments. Extremely low noise readout electronics were demanded and the capability of working at cryogenic temperatures may bring great advantages. The first ASIC was a monolithic CMOS charge sensitive preamplifier with its noise optimized for ∼1 pF input capacitance. The second ASIC was a waveform recorder based on switched capacitor array. These two ASICs were fabricated in CMOS 350 nm and 180 nm processes respectively. The prototype chips were tested and showed promising results. Both ASICs worked well at low temperature. The preamplifier had achieved ENC of 10.3 electrons with 0.7 pF input capacitance and the SCA chip could run at 9 bit effective resolution and 25 MSPS sampling rate.

  6. Gate-Sensing the Potential Landscape of a GaAs Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Croot, Xanthe; Mahoney, Alice; Pauka, Sebastian; Colless, James; Reilly, David; Watson, John; Fallahi, Saeed; Gardner, Geoff; Manfra, Michael; Lu, Hong; Gossard, Arthur

    In situ dispersive gate sensors hold potential as a means of enabling the scalable readout of quantum dot arrays. Sensitive to quantum capacitance, dispersive sensors have been used to detect inter- and intra-dot transitions in GaAs double quantum dots, and can distinguish the spin states of singlet triplet qubits. In addition, the gate-sensing technique is likely of value in probing the physics of Majorana zero modes in nanowire devices. Beyond the readout signatures associated with charge and spin configurations of qubits, gate-sensing is sensitive to trapped charge in the potential landscape. Here, we report gate-sensing signals arising from tunnelling of electrons between puddles of trapped charge in a GaAs 2DEG. We examine these signals in a family of different devices with varying mobilities, and as a function of temperature and bias. Implications for qubit readout using the gate-sensing technique are discussed.

  7. Inexpensive Neutron Imaging Cameras Using CCDs for Astronomy

    NASA Astrophysics Data System (ADS)

    Hewat, A. W.

    We have developed inexpensive neutron imaging cameras using CCDs originally designed for amateur astronomical observation. The low-light, high resolution requirements of such CCDs are similar to those for neutron imaging, except that noise as well as cost is reduced by using slower read-out electronics. For example, we use the same 2048x2048 pixel ;Kodak; KAI-4022 CCD as used in the high performance PCO-2000 CCD camera, but our electronics requires ∼5 sec for full-frame read-out, ten times slower than the PCO-2000. Since neutron exposures also require several seconds, this is not seen as a serious disadvantage for many applications. If higher frame rates are needed, the CCD unit on our camera can be easily swapped for a faster readout detector with similar chip size and resolution, such as the PCO-2000 or the sCMOS PCO.edge 4.2.

  8. Implementation of the Timepix ASIC in the Scalable Readout System

    NASA Astrophysics Data System (ADS)

    Lupberger, M.; Desch, K.; Kaminski, J.

    2016-09-01

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  9. Solution-based circuits enable rapid and multiplexed pathogen detection.

    PubMed

    Lam, Brian; Das, Jagotamoy; Holmes, Richard D; Live, Ludovic; Sage, Andrew; Sargent, Edward H; Kelley, Shana O

    2013-01-01

    Electronic readout of markers of disease provides compelling simplicity, sensitivity and specificity in the detection of small panels of biomarkers in clinical samples; however, the most important emerging tests for disease, such as infectious disease speciation and antibiotic-resistance profiling, will need to interrogate samples for many dozens of biomarkers. Electronic readout of large panels of markers has been hampered by the difficulty of addressing large arrays of electrode-based sensors on inexpensive platforms. Here we report a new concept--solution-based circuits formed on chip--that makes highly multiplexed electrochemical sensing feasible on passive chips. The solution-based circuits switch the information-carrying signal readout channels and eliminate all measurable crosstalk from adjacent, biomolecule-specific microsensors. We build chips that feature this advance and prove that they analyse unpurified samples successfully, and accurately classify pathogens at clinically relevant concentrations. We also show that signature molecules can be accurately read 2  minutes after sample introduction.

  10. Large size three-dimensional video by electronic holography using multiple spatial light modulators

    PubMed Central

    Sasaki, Hisayuki; Yamamoto, Kenji; Wakunami, Koki; Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori

    2014-01-01

    In this paper, we propose a new method of using multiple spatial light modulators (SLMs) to increase the size of three-dimensional (3D) images that are displayed using electronic holography. The scalability of images produced by the previous method had an upper limit that was derived from the path length of the image-readout part. We were able to produce larger colour electronic holographic images with a newly devised space-saving image-readout optical system for multiple reflection-type SLMs. This optical system is designed so that the path length of the image-readout part is half that of the previous method. It consists of polarization beam splitters (PBSs), half-wave plates (HWPs), and polarizers. We used 16 (4 × 4) 4K×2K-pixel SLMs for displaying holograms. The experimental device we constructed was able to perform 20 fps video reproduction in colour of full-parallax holographic 3D images with a diagonal image size of 85 mm and a horizontal viewing-zone angle of 5.6 degrees. PMID:25146685

  11. Large size three-dimensional video by electronic holography using multiple spatial light modulators.

    PubMed

    Sasaki, Hisayuki; Yamamoto, Kenji; Wakunami, Koki; Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori

    2014-08-22

    In this paper, we propose a new method of using multiple spatial light modulators (SLMs) to increase the size of three-dimensional (3D) images that are displayed using electronic holography. The scalability of images produced by the previous method had an upper limit that was derived from the path length of the image-readout part. We were able to produce larger colour electronic holographic images with a newly devised space-saving image-readout optical system for multiple reflection-type SLMs. This optical system is designed so that the path length of the image-readout part is half that of the previous method. It consists of polarization beam splitters (PBSs), half-wave plates (HWPs), and polarizers. We used 16 (4 × 4) 4K×2K-pixel SLMs for displaying holograms. The experimental device we constructed was able to perform 20 fps video reproduction in colour of full-parallax holographic 3D images with a diagonal image size of 85 mm and a horizontal viewing-zone angle of 5.6 degrees.

  12. Experimental Setup and Commissioning of a Test Facility for Gain Evaluation of Microchannel-Plate Photomultipliers in High Magnetic Field at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Bringley, Eric; Cao, Tongtong; Ilieva, Yordonka; Nadel-Turonski, Pawel; Park, Kijun; Zorn, Carl

    2014-09-01

    At the Thomas Jefferson National Accelerator Facility (JLab) a research and development project for a Detector of Internally-Reflected Cherenkov light for the upcoming Electron Ion Collider is underway. One goal is the development of a compact readout camera that can operate in high magnetic fields. Small-size photon sensors, such as Microchannel-Plate Photomultipliers (MCP-PMT), are key components of the readout. Here we present our work to set up and commission a dedicated test facility at JLab where MCP-PMT gain is evaluated in magnetic fields of up to 5 T, and to develop a test procedure and analysis software to determine the gain. We operate the setup in a single-photon mode, where a light-emitting diode delivers photons to the sensor's photocathode. The PMT spectrum is measured with a flash Analog-to-Digital converter (fADC). We model the spectrum as a sum of an exponential background and a convolution of Poisson and Gaussian distributions of the pedestal and multiple photoelectron peaks, respectively. We determine the PMT's gain from the position of the single-photoelectron peak obtained by fitting the fADC spectrum to the model. Our gain uncertainty is <10%. The facility is now established and will have a long-lasting value for sensor tests and beyond-nuclear-physics applications.

  13. Borexino's search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; D'Angelo, D.; Davini, S.; de Kerret, H.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration

    2017-01-01

    A search for neutrino and antineutrino events correlated with 2350 gamma-ray bursts (GRBs) is performed with Borexino data collected between December 2007 and November 2015. No statistically significant excess over background is observed. We look for electron antineutrinos (νbare) that inverse beta decay on protons with energies from 1.8 MeV to 15 MeV and set the best limit on the neutrino fluence from GRBs below 8 MeV. The signals from neutrinos and antineutrinos from GRBs that scatter on electrons are also searched for, a detection channel made possible by the particularly radio-pure scintillator of Borexino. We obtain currently the best limits on the neutrino fluence of all flavors and species below 7 MeV. Finally, time correlations between GRBs and bursts of events are investigated. Our analysis combines two semi-independent data acquisition systems for the first time: the primary Borexino readout optimized for solar neutrino physics up to a few MeV, and a fast waveform digitizer system tuned for events above 1 MeV.

  14. Noncontact optical motion sensing for real-time analysis

    NASA Astrophysics Data System (ADS)

    Fetzer, Bradley R.; Imai, Hiromichi

    1990-08-01

    The adaptation of an image dissector tube (IDT) within the OPTFOLLOW system provides high resolution displacement measurement of a light discontinuity. Due to the high speed response of the IDT and the advanced servo loop circuitry, the system is capable of real time analysis of the object under test. The image of the discontinuity may be contoured by direct or reflected light and ranges spectrally within the field of visible light. The image is monitored to 500 kHz through a lens configuration which transposes the optical image upon the photocathode of the IDT. The photoelectric effect accelerates the resultant electrons through a photomultiplier and an enhanced current is emitted from the anode. A servo loop controls the electron beam, continually centering it within the IDT using magnetic focusing of deflection coils. The output analog voltage from the servo amplifier is thereby proportional to the displacement of the target. The system is controlled by a microprocessor with a 32kbyte memory and provides a digital display as well as instructional readout on a color monitor allowing for offset image tracking and automatic system calibration.

  15. Design of a radiation tolerant system for total ionizing dose monitoring using floating gate and RadFET dosimeters

    NASA Astrophysics Data System (ADS)

    Ferraro, R.; Danzeca, S.; Brucoli, M.; Masi, A.; Brugger, M.; Dilillo, L.

    2017-04-01

    The need for upgrading the Total Ionizing Dose (TID) measurement resolution of the current version of the Radiation Monitoring system for the LHC complex has driven the research of new TID sensors. The sensors being developed nowadays can be defined as Systems On Chip (SOC) with both analog and digital circuitries embedded in the same silicon. A radiation tolerant TID Monitoring System (TIDMon) has been designed to allow the placement of the entire dosimeter readout electronics in very harsh environments such as calibration rooms and even in the mixed radiation field such as the one of the LHC complex. The objective of the TIDMon is to measure the effect of the TID on the new prototype of Floating Gate Dosimeter (FGDOS) without using long cables and with a reliable measurement system. This work introduces the architecture of the TIDMon, the radiation tolerance techniques applied on the controlling electronics as well as the design choices adopted for the system. Finally, results of several tests of TIDMon under different radiation environments such as gamma rays or mixed radiation field at CHARM are presented.

  16. Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project

    NASA Astrophysics Data System (ADS)

    Frisch, Benjamin

    2013-12-01

    The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype detector system with a CTR better than 240 ps FWHM. We discuss the challenges in simulating such a system and introduce reconstruction algorithms based on graphics processing units (GPU).

  17. Demonstration of holographic smart card system using the optical memory technology

    NASA Astrophysics Data System (ADS)

    Kim, JungHoi; Choi, JaeKwang; An, JunWon; Kim, Nam; Lee, KwonYeon; Jeon, SeckHee

    2003-05-01

    In this paper, we demonstrate the holographic smart card system using digital holographic memory technique that uses reference beam encrypted by the random phase mask to prevent unauthorized users from accessing the stored digital page. The input data that include document data, a picture of face, and a fingerprint for identification is encoded digitally and then coupled with the reference beam modulated by a random phase mask. Therefore, this proposed system can execute recording in the order of MB~GB and readout all personal information from just one card without any additional database system. Also, recorded digital holograms can't be reconstructed without a phase key and can't be copied by using computers, scanners, or photography.

  18. Optimal design of waveform digitisers for both energy resolution and pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Cang, Jirong; Xue, Tao; Zeng, Ming; Zeng, Zhi; Ma, Hao; Cheng, Jianping; Liu, Yinong

    2018-04-01

    Fast digitisers and digital pulse processing have been widely used for spectral application and pulse shape discrimination (PSD) owing to their advantages in terms of compactness, higher trigger rates, offline analysis, etc. Meanwhile, the noise of readout electronics is usually trivial for organic, plastic, or liquid scintillator with PSD ability because of their poor intrinsic energy resolution. However, LaBr3(Ce) has been widely used for its excellent energy resolution and has been proven to have PSD ability for alpha/gamma particles. Therefore, designing a digital acquisition system for such scintillators as LaBr3(Ce) with both optimal energy resolution and promising PSD ability is worthwhile. Several experimental research studies about the choice of digitiser properties for liquid scintillators have already been conducted in terms of the sampling rate and vertical resolution. Quantitative analysis on the influence of waveform digitisers, that is, fast amplifier (optional), sampling rates, and vertical resolution, on both applications is still lacking. The present paper provides quantitative analysis of these factors and, hence, general rules about the optimal design of digitisers for both energy resolution and PSD application according to the noise analysis of time-variant gated charge integration.

  19. Large Format, Background Limited Arrays of Kinetic Inductance Detectors for Sub-mm Astronomy

    NASA Astrophysics Data System (ADS)

    Baselmans, Jochem

    2018-01-01

    We present the development of large format imaging arrays for sub-mm astronomy based upon microwave Kinetic Inductance detectors and their read-out. In particular we focus on the arrays developed for the A-MKID instrument for the APEX telescope. AMKID contains 2 focal plane arrays, covering a field of view of 15?x15?. One array is optimized for the 350 GHz telluric window, the other for the 850 GHz window. Both arrays are constructed from four 61 x 61 mm detector chips, each of which contains up to 3400 detectors and up to 880 detectors per readout line. The detectors are lens antenna coupled MKIDs made from NbTiN and Aluminium that reach photon noise limited sensitivity in combination with a high optical coupling. The lens-antenna radiation coupling enables the use of 4K optics and Lyot stop due to the intrinsic directivity of the detector beam, allowing a simple cryogenic architecture. We discuss the pixel design and verification, detector packaging and the array performance. We will also discuss the readout system, which is a combination of a digital and analog back-end that can read-out up to 4000 pixels simultaneously using frequency division multiplexing.

  20. Evaluation of RCA thinned buried channel charge-coupled devices /CCDs/ for scientific applications

    NASA Technical Reports Server (NTRS)

    Zucchino, P.; Long, D.; Lowrance, J. L.; Renda, G.; Crawshaw, D. D.; Battson, D. F.

    1981-01-01

    An experimental version of a thinned illuminated buried-channel 512 x 320 pixel CCD with reduced amplifier input capacitance has been produced which is characterized by lower readout noise. Changes made to the amplifier are discussed, and readout noise measurements obtained by several different techniques are presented. The single energetic electron response of the CCD in the electron-bombarded mode and the single 5.9 keV X-ray pulse height distribution are reported. Results are also given on the dark current versus temperature and the spatial frequency response as a function of signal level.

  1. Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Tracy, L. A.; Luhman, D. R.; Carr, S. M.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ˜9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ˜ 2.7 × 10 3 , the power dissipation of the amplifier is 13 μW, the bandwidth is ˜ 1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/ √{ Hz } . With this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.

  2. Performance of 20:1 multiplexer for large area charge readouts in directional dark matter TPC detectors

    NASA Astrophysics Data System (ADS)

    Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.

    2018-02-01

    More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.

  3. Data acquisition and readout system for the LUX dark matter experiment

    DOE PAGES

    Akerib, D. S.; Bai, X.; Bedikian, S.; ...

    2011-11-28

    LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils from interactions with dark matter particles. Signals from the LUX detector are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. The DAQ is comprised of commercial digitizers with firmware customized for the LUX experiment. Data acquisition systems in rare-event searches must accommodate high rate and large dynamic range during precision calibrations involving radioactive sources, while also delivering low threshold for maximum sensitivity. The LUX DAQ meets these challenges using real-time baseline sup- pression that allows formore » a maximum event acquisition rate in excess of 1.5 kHz with virtually no deadtime. This work describes the LUX DAQ and the novel acquisition techniques employed in the LUX experiment.« less

  4. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    NASA Astrophysics Data System (ADS)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  5. Rare Kaon Decays, KEK experiment E391 and E14 at the Japan Physics and Accelerator Research Complex (J-PARC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wah, Yau Wai

    2012-12-06

    The goal of the J-PARC neutral kaon experiment (E14/KOTO) is to discover and measure the rate of the kaon rare decay to pi-zero and two neutrinos. This flavor changing neutral current decay proceeds through second-order weak interactions. Other, as yet undiscovered particles, which can mediate the decay could provide an enhancement (or depletion) to the branching ratio which in the Standard Model is accurately predicted within a few percent to be 2.8x10-11. The experiment is designed to observe more than 100 events at the Standard Model branching. It is a follow-up of the KEK E391a experiment and has stage-2 approvalmore » by J-PARC PAC in 2007. E14/KOTO has collaborators from Japan (Kyoto, Osaka, Yamagata, Saga), US (Arizona State, Chicago, Michigan Ann Arbor), Taiwan (National Taiwan), Korea, and Russia (Dubna). The experiment exploits the 300kW 30-50 GeV proton delivery of the J-PARC accelerator with a hermetic high acceptance detector with a fine grained Cesium Iodide (CsI) crystal calorimeter, and state of the art electronic front end and data acquisition system. With the recovery of the tsunami disaster on March 11th 2011, E14 is scheduled to start collecting data in December 2012. During the detector construction phase, Chicago focuses on the front end electronics readout of the entire detector system, particularly the CsI calorimeter. The CsI crystals together with its photomultipliers were previously used at the Fermilab KTeV experiment (E832/E799), and were loaned to E14 via this Chicago DOE support. The new readout electronics includes an innovative 10-pole pulse-shaping technique coupled with high speed digitization (14-bit 125MHz and 12-bit 500MHz). This new instrument enables us to measure both energy and timing, particularly with timing resolution better than 100 psec. Besides the cost saving by elimination of the standard time to digital converters, it is now possible to measure the momenta of the final state photons for additional background suppression. Chicago also designed and built several technically difficult hardware items including the vacuum cable feed-through (for a total of 3500 channels); special 50 ohm single-ended signal to 100 ohm differential signal converters; and last but not least, the recommendations on the selection of the differential signal cables for all detector elements to eliminate ground loops while maintaining signal fidelity.« less

  6. A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout

    NASA Astrophysics Data System (ADS)

    Miao, W.; Gao, H.; Wang, Z.; Zhang, W.; Ren, Y.; Zhou, K. M.; Shi, S. C.; Yu, C.; He, Z. Z.; Liu, Q. B.; Feng, Z. H.

    2018-05-01

    In this paper, we present the development of a graphene-based hot electron bolometer with Johnson noise readout. The bolometer is a graphene microbridge connected to a log spiral antenna by Au contact pads. The Fourier transform spectrometer measurement shows the bolometer has high coupling efficiency in the frequency range from 0.3 to 1.6 THz. Using 300/77 K blackbody loads, we measure an optical noise equivalent power of 5.6 × 10-12 W/Hz0.5 at 3.0 K. To understand the thermal transport inside the graphene microbridge, we measure the bolometers with different microbridge lengths at different bath temperatures. We find that the thermal conductance due to electron diffusion is significant in the bolometers.

  7. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Massironi, A.

    2018-04-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO4 crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO4 crystals with different photosensors and readout electronics will be shown.

  8. The design of high dynamic range ROIC for IRFPAs

    NASA Astrophysics Data System (ADS)

    Jiang, Dazhao; Liang, Qinghua; Zhang, Qiwen; Chen, Honglei; Ding, Ruijun

    2015-10-01

    The charge packet readout integrated circuit (ROIC) technology for the IRFPAs is introduced, which can realize that every pixel achieves a very high capacity of the electrons storage, and it also improves the performance of the SNR and reduces the saturation possibility of the pixels. The ROIC for the LWIR requires ability that obtaining high capacity for storing electrons. For the conventional ROIC, the maximum charge capacity is determined by the integration capacitance and the operating voltage, it can achieve a high charge capacity through increasing the area of the integration capacitor or raising the operating voltage. And this paper would introduce a digital method of ROIC that can achieve a very high charge capacity. The circuit architecture of this approach includes the following parts, a preamplifier, a comparator, a counter, and memory arrays. And the maximum charge capacity of the pixel is determined by the counter bits. This new method can achieve a high charge capacity more than 1Ge- every pixel and output the digital signal directly, while that of conventional ROIC is less than 50Me- and output the analog signal from the pixel. In this new circuit, the comparator is a important module, as the integration voltage value need compare with threshold voltage through the comparator all the time during the integration period, and we will discuss the influence of the comparator. This work design the circuit with the CSMC 0.35um CMOS technology, and the simulation use the spectre model.

  9. Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell

    NASA Astrophysics Data System (ADS)

    Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.

    2018-05-01

    Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.

  10. World's Cheapest Readout Electronics for Kinetic Inductance Detector by Using RedPitaya

    NASA Astrophysics Data System (ADS)

    Tomita, N.; Jeong, H.; Choi, J.; Ishitsuka, H.; Mima, S.; Nagasaki, T.; Oguri, S.; Tajima, O.

    2016-07-01

    The kinetic inductance detector (KID) is a cutting-edge superconducting detector. The number of KID developers is growing. Most of them have switched from their previous study to superconducting technologies. Therefore, infrastructures for the fabrication of KIDs and cooling systems for their tests have already been established. However, readout electronics have to be newly prepared. Neither a commercial system nor low-cost standard electronics are available despite various attempts to create a standard one. We suggest the use of RedPitaya as readout electronics for the initial step of KID development, which is low cost (≈ 400 USD) and easy to set up. The RedPitaya consists of an all-programmable FPGA-CPU module and a dual-channel 14 bit DAC (ADC) to generate (measure) fast analog signals with 125 MSpS. Each port can be synchronized in-phase or quadrature-phase, and functions for generating and sampling analog signal are prepared. It is straightforward to construct vector network analyzer-like logic by using a combination of these default functions. Up-conversion and down-conversion of its frequency range are also possible by using commercial equipment, i.e., mixers, couplers, and a local oscillator. We implemented direct down-conversion logic on the RedPitaya, and successfully demonstrated KID signal measurements.

  11. Resistive Plate Chambers for imaging calorimetry — The DHCAL

    NASA Astrophysics Data System (ADS)

    Repond, J.

    2014-09-01

    The DHCAL — the Digital Hadron Calorimeter — is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Flow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 × 1 cm2 pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.

  12. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers.

  13. High-fidelity readout and control of a nuclear spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2013-04-18

    Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.

  14. Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.

    2018-03-01

    Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.

  15. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, TImothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nicholas P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  16. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    NASA Astrophysics Data System (ADS)

    Valero, A.; Tile Calorimeter System, ATLAS

    2017-10-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  17. Enabling Large Focal Plane Arrays through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Costen, Nick; Benford, Dominic J.

    2012-01-01

    We have demonstrated the hybridization of large mosaics of far-infrared detectors, joining separately fabricated sub-units into a single unit on a single, large substrate. We produced a single detector mockup on a 100mm diameter wafer and four mockup readout quadrant chips from a separate 100mm wafer. The individually fabricated parts were hybridized using a Suss FC150 flip chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion (CTE) match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the mockup mosaic-hybridized detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently demonstrated.

  18. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less

  19. Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Lin, Z. R.; Inomata, K.; Koshino, K.; Oliver, W. D.; Nakamura, Y.; Tsai, J. S.; Yamamoto, T.

    2014-07-01

    The parametric phase-locked oscillator (PPLO) is a class of frequency-conversion device, originally based on a nonlinear element such as a ferrite ring, that served as a fundamental logic element for digital computers more than 50 years ago. Although it has long since been overtaken by the transistor, there have been numerous efforts more recently to realize PPLOs in different physical systems such as optical photons, trapped atoms, and electromechanical resonators. This renewed interest is based not only on the fundamental physics of nonlinear systems, but also on the realization of new, high-performance computing devices with unprecedented capabilities. Here we realize a PPLO with Josephson-junction circuitry and operate it as a sensitive phase detector. Using a PPLO, we demonstrate the demodulation of a weak binary phase-shift keying microwave signal of the order of a femtowatt. We apply PPLO to dispersive readout of a superconducting qubit, and achieved high-fidelity, single-shot and non-destructive readout with Rabi-oscillation contrast exceeding 90%.

  20. Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu-Guo, C.; Dorokhov, A.; Pham, H.; Hu, Y.

    2013-07-01

    In order to exploit the ability to integrate a charge collecting electrode with analog and digital processing circuitry down to the pixel level, a new type of CMOS pixel sensors with full CMOS capability is presented in this paper. The pixel array is read out based on a column-parallel read-out architecture, where each pixel incorporates a diode, a preamplifier with a double sampling circuitry and a discriminator to completely eliminate analog read-out bottlenecks. The sensor featuring a pixel array of 8 rows and 32 columns with a pixel pitch of 80 μm×16 μm was fabricated in a 0.18 μm CMOS process. The behavior of each pixel-level discriminator isolated from the diode and the preamplifier was studied. The experimental results indicate that all in-pixel discriminators which are fully operational can provide significant improvements in the read-out speed and the power consumption of CMOS pixel sensors.

  1. The E and B EXperiment: EBEX

    NASA Astrophysics Data System (ADS)

    Helson, Kyle

    2014-03-01

    We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis.

  2. Optical and x-ray characterization of two novel CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Bohndiek, Sarah E.; Arvanitis, Costas D.; Venanzi, Cristian; Royle, Gary J.; Clark, Andy T.; Crooks, Jamie P.; Prydderch, Mark L.; Turchetta, Renato; Blue, Andrew; Speller, Robert D.

    2007-02-01

    A UK consortium (MI3) has been founded to develop advanced CMOS pixel designs for scientific applications. Vanilla, a 520x520 array of 25μm pixels benefits from flushed reset circuitry for low noise and random pixel access for region of interest (ROI) readout. OPIC, a 64x72 test structure array of 30μm digital pixels has thresholding capabilities for sparse readout at 3,700fps. Characterization is performed with both optical illumination and x-ray exposure via a scintillator. Vanilla exhibits 34+/-3e - read noise, interactive quantum efficiency of 54% at 500nm and can read a 6x6 ROI at 24,395fps. OPIC has 46+/-3e - read noise and a wide dynamic range of 65dB due to high full well capacity. Based on these characterization studies, Vanilla could be utilized in applications where demands include high spectral response and high speed region of interest readout while OPIC could be used for high speed, high dynamic range imaging.

  3. Recent advances in superconducting nanowire single photon detectors for single-photon imaging

    NASA Astrophysics Data System (ADS)

    Verma, V. B.; Allman, M. S.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Marsili, F.; Beyer, A.; Shaw, M. D.; Stern, J. A.; Mirin, R. P.; Nam, S. W.

    2016-05-01

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.

  4. A Versatile Multichannel Digital Signal Processing Module for Microcalorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Tan, H.; Collins, J. W.; Walby, M.; Hennig, W.; Warburton, W. K.; Grudberg, P.

    2012-06-01

    Different techniques have been developed for reading out microcalorimeter sensor arrays: individual outputs for small arrays, and time-division or frequency-division or code-division multiplexing for large arrays. Typically, raw waveform data are first read out from the arrays using one of these techniques and then stored on computer hard drives for offline optimum filtering, leading not only to requirements for large storage space but also limitations on achievable count rate. Thus, a read-out module that is capable of processing microcalorimeter signals in real time will be highly desirable. We have developed multichannel digital signal processing electronics that are capable of on-board, real time processing of microcalorimeter sensor signals from multiplexed or individual pixel arrays. It is a 3U PXI module consisting of a standardized core processor board and a set of daughter boards. Each daughter board is designed to interface a specific type of microcalorimeter array to the core processor. The combination of the standardized core plus this set of easily designed and modified daughter boards results in a versatile data acquisition module that not only can easily expand to future detector systems, but is also low cost. In this paper, we first present the core processor/daughter board architecture, and then report the performance of an 8-channel daughter board, which digitizes individual pixel outputs at 1 MSPS with 16-bit precision. We will also introduce a time-division multiplexing type daughter board, which takes in time-division multiplexing signals through fiber-optic cables and then processes the digital signals to generate energy spectra in real time.

  5. Method To Display Data On A Face Mask

    NASA Technical Reports Server (NTRS)

    Moore, Kevin-Duron

    1995-01-01

    Proposed electronic instrument displays information on diver's or firefighter's face mask. Includes mask, prism, electronic readouts, transceiver and control electronics. Mounted at periphery of diver's field of view to provide data on elapsed time, depth, pressure, and temperature. Provides greater safety and convenience to user.

  6. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2014-10-01

    We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.

  7. Performances of the Front-End Electronics for the HADES RPC TOF wall on a 12C beam

    NASA Astrophysics Data System (ADS)

    Belver, D.; Cabanelas, P.; Castro, E.; Díaz, J.; Garzón, J. A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Traxler, M.; Zapata, M.

    2009-05-01

    A Front-End Electronics (FEE) chain for timing accurate measurements has been developed for the RPC wall upgrade of the High-Acceptance DiElectron Spectrometer (HADES). The wall will cover an area of around 8 m with 1122 RPC cells (2244 electronic channels). The FEE chain consists of two boards: a four-channel DaughterBOard (DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a discriminator. The time and the charge information are encoded in the leading and the trailing edge (by a charge to width method) of an LVDS signal. Each MBO houses up to eight DBOs providing them regulated voltage supply, threshold values via DACs, test signals and collection of their trigger outputs. The MBO delivers LVDS signals to a time-to-digital converter readout board (TRB) based on HPTDC for data acquisition. In this work, we present the performance of the FEE measured using: (a) narrow electronic test pulses and (b) real signals read out in a fully instrumented RPC sextant installed in its final position at the HADES. The detector was exposed to particles coming from reactions of a 12C beam on Be and Nb targets at 2 GeV/A kinetic energy. Results for the whole electronic chain (DBO+MBO+TRB) show a timing jitter of around 40 ps/channel for pulses above 100 fC and 80 ps/channel for beam data taken with the RPC.

  8. A 1024×768-12μm Digital ROIC for uncooled microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim

    2017-02-01

    This paper reports the development of a new digital microbolometer Readout Integrated Circuit (D-ROIC), called MT10212BD. It has a format of 1024 × 768 (XGA) and a pixel pitch of 12μm. MT10212BD is Mikro Tasarim's second 12μm pitch microbolometer ROIC, which is developed specifically for surface micro machined microbolometer detector arrays with small pixel pitch using high-TCR pixel materials, such as VOx and a Si. MT10212BD has an alldigital system on-chip architecture, which generates programmable timing and biasing, and performs 14-bit analog to digital conversion (ADC). The signal processing chain in the ROIC is composed of pixel bias circuitry, integrator based programmable gain amplifier followed by column parallel ADC circuitry. MT10212BD has a serial programming interface that can be used to configure the programmable ROIC features and to load the Non-Uniformity-Correction (NUC) date to the ROIC. MT10212BD has a total of 8 high-speed serial digital video outputs, which can be programmed to operate in the 2, 4, and 8-output modes and can support frames rates above 60 fps. The high-speed serial digital outputs supports data rates as high as 400 Mega-bits/s, when operated at 50 MHz system clock frequency. There is an on-chip phase-locked-loop (PLL) based timing circuitry to generate the high speed clocks used in the ROIC. The ROIC is designed to support pixel resistance values ranging from 30KΩ to 90kΩ, with a nominal value of 60KΩ. The ROIC has a globally programmable gain in the column readout, which can be adjusted based on the detector resistance value.

  9. JPL CMOS Active Pixel Sensor Technology

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.

  10. 47 CFR 90.494 - Paging operations on shared channels in the 929-930 MHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... under subpart B or C of this part, representatives of Federal Government agencies, individuals, and foreign governments and their representatives. The provisions of § 90.173(b) apply to all frequencies... desired (tone only, tone-voice, digital, tactile, optical readout, etc.). (e) There shall be no minimum or...

  11. CMOS image sensor with organic photoconductive layer having narrow absorption band and proposal of stack type solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi

    2006-02-01

    Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.

  12. High resolution upgrade of the ATF damping ring BPM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  13. MiniDSS: a low-power and high-precision miniaturized digital sun sensor

    NASA Astrophysics Data System (ADS)

    de Boer, B. M.; Durkut, M.; Laan, E.; Hakkesteegt, H.; Theuwissen, A.; Xie, N.; Leijtens, J. L.; Urquijo, E.; Bruins, P.

    2017-11-01

    A high-precision and low-power miniaturized digital sun sensor has been developed at TNO. The single-chip sun sensor comprises an application specific integrated circuit (ASIC) on which an active pixel sensor (APS), read-out and processing circuitry as well as communication circuitry are combined. The design was optimized for low recurrent cost. The sensor is albedo insensitive and the prototype combines an accuracy in the order of 0.03° with a mass of just 72 g and a power consumption of only 65 mW.

  14. Automation of fluorescent differential display with digital readout.

    PubMed

    Meade, Jonathan D; Cho, Yong-Jig; Fisher, Jeffrey S; Walden, Jamie C; Guo, Zhen; Liang, Peng

    2006-01-01

    Since its invention in 1992, differential display (DD) has become the most commonly used technique for identifying differentially expressed genes because of its many advantages over competing technologies such as DNA microarray, serial analysis of gene expression (SAGE), and subtractive hybridization. Despite the great impact of the method on biomedical research, there has been a lack of automation of DD technology to increase its throughput and accuracy for systematic gene expression analysis. Most of previous DD work has taken a "shot-gun" approach of identifying one gene at a time, with a limited number of polymerase chain reaction (PCR) reactions set up manually, giving DD a low-tech and low-throughput image. We have optimized the DD process with a new platform that incorporates fluorescent digital readout, automated liquid handling, and large-format gels capable of running entire 96-well plates. The resulting streamlined fluorescent DD (FDD) technology offers an unprecedented accuracy, sensitivity, and throughput in comprehensive and quantitative analysis of gene expression. These major improvements will allow researchers to find differentially expressed genes of interest, both known and novel, quickly and easily.

  15. Implementing a Digital Phasemeter in an FPGA

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2008-01-01

    Firmware for implementing a digital phasemeter within a field-programmable gate array (FPGA) has been devised. In the original application of this firmware, the phase that one seeks to measure is the difference between the phases of two nominally-equal-frequency heterodyne signals generated by two interferometers. In that application, zero-crossing detectors convert the heterodyne signals to trains of rectangular pulses, the two pulse trains are fed to a fringe counter (the major part of the phasemeter) controlled by a clock signal having a frequency greater than the heterodyne frequency, and the fringe counter computes a time-averaged estimate of the difference between the phases of the two pulse trains. The firmware also does the following: Causes the FPGA to compute the frequencies of the input signals; Causes the FPGA to implement an Ethernet (or equivalent) transmitter for readout of phase and frequency values; and Provides data for use in diagnosis of communication failures. The readout rate can be set, by programming, to a value between 250 Hz and 1 kHz. Network addresses can be programmed by the user.

  16. Looking at Earth from space: Direct readout from environmental satellites

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  17. High-Fidelity Single-Shot Singlet-Triplet Readout of Precision-Placed Donors in Silicon.

    PubMed

    Broome, M A; Watson, T F; Keith, D; Gorman, S K; House, M G; Keizer, J G; Hile, S J; Baker, W; Simmons, M Y

    2017-07-28

    In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision-placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin blockaded (2,0) triplet states, from which we can achieve a single-shot readout fidelity of 98.4±0.2%. We measure the triplet-minus relaxation time to be of the order 3 s at 2.5 T and observe its predicted decrease as a function of magnetic field, reaching 0.5 s at 1 T.

  18. A 16-ch module for thermal neutron detection using ZnS:6LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    NASA Astrophysics Data System (ADS)

    Mosset, J.-B.; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-01

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:6LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current 3He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  19. Using resistive readout to probe ultrafast dynamics of a plasmonic sensor

    NASA Astrophysics Data System (ADS)

    Cheney, Alec; Chen, Borui; Cartwright, Alexander; Thomay, Tim

    2018-02-01

    Surface plasmons in a DC current lead to an increase in scattering processes, resulting in a measurable increase in electrical resistance of a plasmonic nano-grating. This enables a purely electronic readout of plasmonically mediated optical absorption. We show that there is a time-dependence in these resistance changes on the order of 100ps that we attribute to electron-phonon and phonon-phonon scattering processes in the metal of the nano-gratings. Since plasmonic responses are strongly structurally dependent, an appropriately designed plasmoelectronic detector could potentially offer an extremely fast response at communication wavelengths in a fully CMOS compatible system.

  20. Integrated input protection against discharges for Micro Pattern Gas Detectors readout ASICs

    NASA Astrophysics Data System (ADS)

    Fiutowski, T.; Dąbrowski, W.; Koperny, S.; Wiącek, P.

    2017-02-01

    Immunity against possible random discharges inside active detector volume of MPGDs is one of the key aspects that should be addressed in the design of the front-end electronics. This issue becomes particularly critical for systems with high channel counts and high density readout employing the front-end electronics built as multichannel ASICs implemented in modern CMOS technologies, for which the breakdown voltages are in the range of a few Volts. The paper presents the design of various input protection structures integrated in the ASIC manufactured in a 350 nm CMOS process and test results using an electrical circuit to mimic discharges in the detectors.

  1. Optimization of the microcable and detector parameters towards low noise in the STS readout system

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Kleczek, Rafal; Schmidt, Christian J.

    2015-09-01

    Successful operation of the Silicon Tracking System requires charge measurement of each hit with equivalent noise charge lower than 1000 e- rms. Detector channels will not be identical, they will be constructed accordingly to the estimated occupancy, therefore for the readout electronics, detector system will exhibit various parameters. This paper presents the simulation-based study on the required microcable (trace width, dielectric material), detector (aluminum strip resistance) and external passives' (decoupling capacitors) parameters in the Silicon Tracking System. Studies will be performed using a front-end electronics (charge sensitive amplifier with shaper) designed for the power budget of 10 mA/channel.

  2. MUSIC: An 8 channel readout ASIC for SiPM arrays

    NASA Astrophysics Data System (ADS)

    Gómez, Sergio; Gascón, David; Fernández, Gerard; Sanuy, Andreu; Mauricio, Joan; Graciani, Ricardo; Sanchez, David

    2016-04-01

    This paper presents an 8 channel ASIC for SiPM anode readout based on a novel low input impedance current conveyor (under patent1). This Multiple Use SiPM Integrated Circuit (MUSIC) has been designed to serve several purposes, including, for instance, the readout of SiPM arrays for some of the Cherenkov Telescope Array (CTA) cameras. The current division scheme at the very front end part of the circuit splits the input current into differently scaled copies which are connected to independent current mirrors. The circuit contains a tunable pole zero cancellation of the SiPM recovery time constant to deal with sensors from different manufacturers. Decay times up to 100 ns are supported covering most of the available SiPM devices in the market. MUSIC offers three main features: (1) differential output of the sum of the individual input channels; (2) 8 individual single ended analog outputs and; (3) 8 individual binary outputs. The digital outputs encode the amount of collected charge in the duration of the digital signal using a time over threshold technique. For each individual channel, the user must select the analog or digital output. Each functionality, the signal sum and the 8 A/D outputs, include a selectable dual-gain configuration. Moreover, the signal sum implements dual-gain output providing a 15 bit dynamic range. Full die simulation results of the MUSIC designed using AMS 0.35 µm SiGe technology are presented: total die size of 9 mm2, 500 MHz bandwidth for channel sum and 150 MHz bandwidth for A/D channels, low input impedance (≍32 Ω), single photon output pulse width at half maximum (FWHM) between 5 and 10 ns and with a power consumption of ≍ 30 mW/ch plus ≍ 200 mW for the 8 ch sum. Encapsulated prototype samples of the MUSIC are expected by March 2016.

  3. The AGILE silicon tracker: an innovative /γ-ray instrument for space

    NASA Astrophysics Data System (ADS)

    Prest, M.; Barbiellini, G.; Bordignon, G.; Fedel, G.; Liello, F.; Longo, F.; Pontoni, C.; Vallazza, E.

    2003-03-01

    AGILE (Light Imager for Gamma-ray Astrophysics) is the first small scientific mission of ASI, the Italian Space Agency. It is a light (100kg for the scientific instrument) satellite for the detection of /γ-ray sources in the energy range 30MeV-50GeV within a large field of view (1/4 of the sky). It is planned to be operational in the years 2003-2006, a period in which no other gamma-ray mission in the same energy range is foreseen. AGILE is made of a silicon tungsten tracker, a CsI(Tl) minicalorimeter (1.5X0), an anticoincidence system of segmented plastic scintillators and a X-ray imaging detector sensitive in the 10-40keV range. The tracker consists of 14 planes, each of them made of two layers of 16 single-sided, AC coupled, 410μm thick, 9.5×9.5cm2 silicon detectors with a readout pitch of 242μm and a floating strip. The readout ASIC is the TAA1, an analog-digital, low noise, self-triggering ASIC used in a very low power configuration (<400μW/channel) with full analog readout. The trigger of the satellite is given by the tracker. The total number of readout channels is around 43000. We present a detailed description of the tracker, its trigger and readout logic, its assembly procedures and the prototype performance in several testbeam periods at the CERN PS.

  4. A high-speed pnCCD detector system for optical applications

    NASA Astrophysics Data System (ADS)

    Hartmann, R.; Buttler, W.; Gorke, H.; Herrmann, S.; Holl, P.; Meidinger, N.; Soltau, H.; Strüder, L.

    2006-11-01

    Measurements of a frame-store pnCCD detector system, optimized for high-speed applications in the optical and near infrared (NIR) region, will be presented. The device with an image area of 13.5 mm by 13.5 mm and a pixelsize of 51 μm by 51 μm exhibits a readout time faster than 1100 frames per second with an overall electronic noise contribution of less than three electrons. Variable operation modes of the detector system allow for even higher readout speeds by a pixel binning in transfer direction or, at slightly slower readout speeds, a further improvement in noise performance. We will also present the concept of a data acquisition system being able to handle pixel rates of more than 75 megapixel per second. The application of an anti-reflective coating on the ultra-thin entrance window of the back illuminated detector together with the large sensitive volume ensures a high and uniform detection efficiency from the ultra violet to the NIR.

  5. Development of 3He LPSDs and read-out system for the SANS spectrometer at CPHS

    NASA Astrophysics Data System (ADS)

    Huang, T. C.; Gong, H.; Shao, B. B.; Wang, X. W.; Zhang, Y.; Pang, B. B.

    2014-01-01

    The Compact Pulsed Hadron Source (CPHS) is a 13-MeV proton-linac-driven neutron source under construction in Tsinghua University. Time-of-flight (TOF) small-angle neutron scattering (SANS) spectrometer is one of the first instruments to be built. It is designed to use linear position-sensitive detectors (LPSDs) of 3He gas proportional counters to cover a 1 m×1 m area. Prototypical LPSDs (Φ = 12 mm, L=1 m) have been made and read-out system is developed based on charge division. This work describes the in-house fabrication of the prototypical LPSDs and design of the read-out system including front-end electronics and data acquisition (DAQ) system. Key factors of the front-end electronics are studied and optimized with PSPICE simulation. DAQ system is designed based on VME bus architecture and FPGA Mezzanine Card (FMC) standard with high flexibility and extendibility. Preliminary experiments are carried out and the results are present and discussed.

  6. Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yu; Tan, Ren-Bing; Sun, Jian-Dong; Li, Xin-Xing; Zhou, Yu; Lü, Li; Qin, Hua

    2015-10-01

    An AlGaN/GaN high electron mobility transistor (HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency (RF) readout circuit is designed and the HEMT device is assembled in an RF circuit through a coplanar waveguide transmission line. A gate capacitor of the HEMT and a surface-mounted inductor on the transmission line are formed to generate LC resonance. By tuning the gate voltage Vg, the variations of gate capacitance and conductance of the HEMT are reflected sensitively from the resonance frequency and the magnitude of the RF reflection signal. The aim of the designed RF readout setup is to develop a highly sensitive HEMT-based detector. Project supported by the National Natural Science Foundation of China (Grant No. 61107093), the Suzhou Science and Technology Project, China (Grant No. ZXG2012024), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2012243).

  7. Architecture of PAU survey camera readout electronics

    NASA Astrophysics Data System (ADS)

    Castilla, Javier; Cardiel-Sas, Laia; De Vicente, Juan; Illa, Joseph; Jimenez, Jorge; Maiorino, Marino; Martinez, Gustavo

    2012-07-01

    PAUCam is a new camera for studying the physics of the accelerating universe. The camera will consist of eighteen 2Kx4K HPK CCDs: sixteen for science and two for guiding. The camera will be installed at the prime focus of the WHT (William Herschel Telescope). In this contribution, the architecture of the readout electronics system is presented. Back- End and Front-End electronics are described. Back-End consists of clock, bias and video processing boards, mounted on Monsoon crates. The Front-End is based on patch panel boards. These boards are plugged outside the camera feed-through panel for signal distribution. Inside the camera, individual preamplifier boards plus kapton cable completes the path to connect to each CCD. The overall signal distribution and grounding scheme is shown in this paper.

  8. GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array

    NASA Astrophysics Data System (ADS)

    Campbell, M.; Heijne, E. H. M.; Llopart, X.; Colas, P.; Giganon, A.; Giomataris, Y.; Chefdeville, M.; Colijn, A. P.; Fornaini, A.; van der Graaf, H.; Kluit, P.; Timmermans, J.; Visschers, J. L.; Schmitz, J.

    2006-05-01

    A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50 μm above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficiency for detecting single electrons of better than 90%. With this new readout technology for gas-filled detectors we recorded many image frames containing 2D images with tracks from cosmic muons. Along these tracks, electron clusters were observed, as well as δ-rays. With a gas layer thickness of only 1 mm, the device could be applied as vertex detector, outperforming all Si-based detectors.

  9. The DEPFET Sensor-Amplifier Structure: A Method to Beat 1/f Noise and Reach Sub-Electron Noise in Pixel Detectors

    PubMed Central

    Lutz, Gerhard; Porro, Matteo; Aschauer, Stefan; Wölfel, Stefan; Strüder, Lothar

    2016-01-01

    Depleted field effect transistors (DEPFET) are used to achieve very low noise signal charge readout with sub-electron measurement precision. This is accomplished by repeatedly reading an identical charge, thereby suppressing not only the white serial noise but also the usually constant 1/f noise. The repetitive non-destructive readout (RNDR) DEPFET is an ideal central element for an active pixel sensor (APS) pixel. The theory has been derived thoroughly and results have been verified on RNDR-DEPFET prototypes. A charge measurement precision of 0.18 electrons has been achieved. The device is well-suited for spectroscopic X-ray imaging and for optical photon counting in pixel sensors, even at high photon numbers in the same cell. PMID:27136549

  10. Experiments with synchronized sCMOS cameras

    NASA Astrophysics Data System (ADS)

    Steele, Iain A.; Jermak, Helen; Copperwheat, Chris M.; Smith, Robert J.; Poshyachinda, Saran; Soonthorntham, Boonrucksar

    2016-07-01

    Scientific-CMOS (sCMOS) cameras can combine low noise with high readout speeds and do not suffer the charge multiplication noise that effectively reduces the quantum efficiency of electron multiplying CCDs by a factor 2. As such they have strong potential in fast photometry and polarimetry instrumentation. In this paper we describe the results of laboratory experiments using a pair of commercial off the shelf sCMOS cameras based around a 4 transistor per pixel architecture. In particular using a both stable and a pulsed light sources we evaluate the timing precision that may be obtained when the cameras readouts are synchronized either in software or electronically. We find that software synchronization can introduce an error of 200-msec. With electronic synchronization any error is below the limit ( 50-msec) of our simple measurement technique.

  11. A Normal Incidence X-ray Telescope (NIXT) sounding rocket payload

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1989-01-01

    Work on the High Resolution X-ray (HRX) Detector Program is described. In the laboratory and flight programs, multiple copies of a general purpose set of electronics which control the camera, signal processing and data acquisition, were constructed. A typical system consists of a phosphor convertor, image intensifier, a fiber optics coupler, a charge coupled device (CCD) readout, and a set of camera, signal processing and memory electronics. An initial rocket detector prototype camera was tested in flight and performed perfectly. An advanced prototype detector system was incorporated on another rocket flight, in which a high resolution heterojunction vidicon tube was used as the readout device for the H(alpha) telescope. The camera electronics for this tube were built in-house and included in the flight electronics. Performance of this detector system was 100 percent satisfactory. The laboratory X-ray system for operation on the ground is also described.

  12. TDC Array Tradeoffs in Current and Upcoming Digital SiPM Detectors for Time-of-Flight PET

    NASA Astrophysics Data System (ADS)

    Tétrault, Marc-André; Therrien, Audrey Corbeil; Lemaire, William; Fontaine, Réjean; Pratte, Jean-François

    2017-03-01

    Radiation detection used in positron emission tomography (PET) exploits the timing information to remove background noise and refine position measurement through time-of-flight information. Fine time resolution in the order of 10 ps full-width at half-maximum (FWHM) would not only improve contrast in the image, but would also enable direct image reconstruction without iterative or back-projected algorithms. Currently, PET experimental setups based on silicon photomultipliers (SiPMs) reach 73 ps FWHM, where the scintillation process plays the larger role in spreading the timing resolution. This will change with the optimization of faster light emission mechanisms (prompt photons), where readout optoelectronics will once more have a noticeable contribution to the timing resolution limit. In addition to reducing electronic jitter as much as possible, other aspects of the design space must also explored, especially for digital SiPMs. Unlike traditional SiPMs, digital SiPMs can integrate circuits like time-to-digital converters (TDCs) directly with individual or groups of light sensing cells. Designers should consider the number of TDCs to integrate, the area they occupy, their power consumption, their resolution, and the impact of signal processing algorithms and find a compromise with the figure of merit and the coincidence timing resolution (CTR). This paper presents a parametric simulation flow for digital SiPM microsystems that evaluates CTR based on these aspects and on the best linear unbiased estimator (BLUE) in order to guide their design for present and future PET systems. For a small 1.1 × 1.1 × 3.0 mm3 LYSO crystal, the simulations indicate that for a low jitter digital SiPM microsystem with 18.2% photon detection efficiency, fewer than four timestamps with any multi-TDC configuration scheme nearly obtain the optimal CTR with BLUE (just below 100 ps FWHM), but with limited 5% improvement over only using the first observed photon. On the other hand, if a similar crystal but with 2.5% prompt photon fraction is considered, BLUE provides an improvement between 80% and 200% (depending on electronic jitter) over using only the first observed photon. In this case, a few tens of timestamps are required, yielding very different design guidelines than for standard LYSO scintillators.

  13. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  14. Use of electronic microprocessor-based instrumentation by the U.S. geological survey for hydrologic data collection

    USGS Publications Warehouse

    Shope, William G.; ,

    1991-01-01

    The U.S. Geological Survey is acquiring a new generation of field computers and communications software to support hydrologic data-collection at field locations. The new computer hardware and software mark the beginning of the Survey's transition from the use of electromechanical devices and paper tapes to electronic microprocessor-based instrumentation. Software is being developed for these microprocessors to facilitate the collection, conversion, and entry of data into the Survey's National Water Information System. The new automated data-collection process features several microprocessor-controlled sensors connected to a serial digital multidrop line operated by an electronic data recorder. Data are acquired from the sensors in response to instructions programmed into the data recorder by the user through small portable lap-top or hand-held computers. The portable computers, called personal field computers, also are used to extract data from the electronic recorders for transport by courier to the office computers. The Survey's alternative to manual or courier retrieval is the use of microprocessor-based remote telemetry stations. Plans have been developed to enhance the Survey's use of the Geostationary Operational Environmental Satellite telemetry by replacing the present network of direct-readout ground stations with less expensive units. Plans also provide for computer software that will support other forms of telemetry such as telephone or land-based radio.

  15. A 128-channel Time-to-Digital Converter (TDC) inside a Virtex-5 FPGA on the GANDALF module

    NASA Astrophysics Data System (ADS)

    Büchele, M.; Fischer, H.; Gorzellik, M.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.

    2012-03-01

    The GANDALF 6U-VME64x/VXS module has been developed for the digitization and real time analysis of detector signals. To perform different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition and trigger generation, this module comes with exchangeable analog and digital mezzanine cards. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In contrast to common TDC concepts, the input signal is sampled by 16 equidistant phase-shifted clocks. A particular challenge of the design is the minimum skew routing of the input signals to the sampling flip-flops. We present measurement results for the differential nonlinearity and the time resolution of the TDC readout system.

  16. Gamma ray spectroscopy employing divalent europium-doped alkaline earth halides and digital readout for accurate histogramming

    DOEpatents

    Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B; Sturm, Benjamin W

    2014-11-11

    A scintillator radiation detector system according to one embodiment includes a scintillator; and a processing device for processing pulse traces corresponding to light pulses from the scintillator, wherein pulse digitization is used to improve energy resolution of the system. A scintillator radiation detector system according to another embodiment includes a processing device for fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times and performing a direct integration of fit parameters. A method according to yet another embodiment includes processing pulse traces corresponding to light pulses from a scintillator, wherein pulse digitization is used to improve energy resolution of the system. A method in a further embodiment includes fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times; and performing a direct integration of fit parameters. Additional systems and methods are also presented.

  17. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    NASA Astrophysics Data System (ADS)

    Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-01

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e- at zero farad plus 10 e- per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source 241Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si).

  18. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors.

    PubMed

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-11-06

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within -T(clk)~+T(clk). A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  19. VizieR Online Data Catalog: BVRI photometry of S5 0716+714 (Liao+, 2014)

    NASA Astrophysics Data System (ADS)

    Liao, N. H.; Bai, J. M.; Liu, H. T.; Weng, S. S.; Chen, L.; Li, F.

    2016-04-01

    The variability of S5 0716+714 was photometrically monitored in the optical bands at Yunnan Observatories, making use of the 2.4m telescope (http://www.gmg.org.cn/) and the 1.02m telescope (http://www1.ynao.ac.cn/~omt/). The 2.4m telescope, which began working in 2008 May, is located at the Lijiang Observatory of Yunnan Observatories, where the longitude is 100°01'51''E and the latitude is 26°42'32''N, with an altitude of 3193m. There are two photometric terminals. The PI VersArry 1300B CCD camera with 1340*1300 pixels covers a field of view 4'48''*4'40'' at the Cassegrain focus. The readout noise and gain are 6.05 electrons and 1.1 electrons ADU-1, respectively. The Yunnan Faint Object Spectrograph and Camera (YFOSC) has a field of view of about 10'*10' and 2000*2000 pixels for photometric observation. Each pixel corresponds to 0.283'' of the sky. The readout noise and gain of the YFOSC CCD are 7.5 electrons and 0.33 electrons ADU-1, respectively. The 1.02m telescope is located at the headquarters of Yunnan Observatories and is mainly used for photometry with standard Johnson UBV and Cousins RI filters. An Andor CCD camera with 2048*2048 pixels has been installed at its Cassegrain focus since 2008 May. The readout noise and gain are 7.8 electrons and 1.1 electrons ADU-1, respectively. (1 data file).

  20. A fluorometric lateral flow assay for visual detection of nucleic acids using a digital camera readout.

    PubMed

    Magiati, Maria; Sevastou, Areti; Kalogianni, Despina P

    2018-06-04

    A fluorometric lateral flow assay has been developed for the detection of nucleic acids. The fluorophores phycoerythrin (PE) and fluorescein isothiocyanate (FITC) were used as labels, while a common digital camera and a colored vinyl-sheet, acting as a cut-off optical filter, are used for fluorescence imaging. After DNA amplification by polymerase chain reaction (PCR), the biotinylated PCR product is hybridized to its complementary probe that carries a poly(dA) tail at 3΄ edge and then applied to the lateral flow strip. The hybrids are captured to the test zone of the strip by immobilized poly(dT) sequences and detected by streptavidin-fluorescein and streptavidin-phycoerythrin conjugates, through streptavidin-biotin interaction. The assay is widely applicable, simple, cost-effective, and offers a large multiplexing potential. Its performance is comparable to assays based on the use of streptavidin-gold nanoparticles conjugates. As low as 7.8 fmol of a ssDNA and 12.5 fmol of an amplified dsDNA target were detectable. Graphical abstract Schematic presentation of a fluorometric lateral flow assay based on fluorescein and phycoerythrin fluorescent labels for the detection of single-stranded (ssDNA) and double-stranded DNA (dsDNA) sequences and using a digital camera readout. SA: streptavidin, BSA: Bovine Serum Albumin, B: biotin, FITC: fluorescein isothiocyanate, PE: phycoerythrin, TZ: test zone, CZ: control zone.

  1. A finite state machine read-out chip for integrated surface acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Rakshit, Sambarta; Iliadis, Agis A.

    2015-01-01

    A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.

  2. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less

  3. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    DOE PAGES

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; ...

    2016-02-08

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less

  4. 8-channel prototype of SALT readout ASIC for Upstream Tracker in the upgraded LHCb experiment

    NASA Astrophysics Data System (ADS)

    Abellan Beteta, C.; Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kane, C.; Moron, J.; Swientek, K.; Wang, J.

    2017-02-01

    SALT is a new 128-channel readout ASIC for silicon strip detectors in the upgraded Upstream Tracker of the LHCb experiment. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of an analogue front-end and an ultra-low power (<0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. An 8-channel prototype (SALT8), comprising all important functionalities was designed, fabricated and tested. A full 128-channel version was also submitted. The design and test results of the SALT8 prototype are presented showing its full functionality.

  5. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    NASA Astrophysics Data System (ADS)

    Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS and its LAr calorimeters have been operating and collecting proton-proton collisions at LHC since 2009. The current front-end electronics of the LAr calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded high luminosity LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. The complexity of the present electronics and the obsolescence of some of components of which it is made, will not allow a partial replacement of the system. A completely new readout architecture scheme is under study and many components are being developed in various R&D programs of the LAr Calorimeter Group.The new front-end readout electronics will send data continuously at each bunch crossing through high speed radiation resistant optical links. The data will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a higher granularity than that which is currently implemented. The new architecture will eliminate the intrinsic limitation presently existing on Level-1 trigger acceptance. This article is an overview of the R&D activities which covers architectural design aspects of the new electronics as well as some detailed progress on the development of several ASICs needed, and preliminary studies with FPGAs to cover the backend functions including part of the Level-1 trigger requirements. A recently proposed staged upgrade with hybrid Tower Builder Board (TBB) is also described.

  6. 2017 Cybersecurity Workshop: Readouts from Working Groups - Video Text

    Science.gov Websites

    applicability of artificial intelligence to search for cybersecurity gaps in our existing SKATA networks. Second primarily renewable that all back each other up; that are all highly intelligent, artificial intelligence we have in cyber security, digital technologies, artificial intelligence. We think that that would

  7. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    NASA Astrophysics Data System (ADS)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-05-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R&D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision.

  8. Perforated semiconductor neutron detectors for battery operated portable modules

    NASA Astrophysics Data System (ADS)

    McGregor, Douglas S.; Bellinger, Steven L.; Bruno, David; McNeil, Walter J.; Patterson, Eric; Shultis, J. Kenneth; Solomon, C. J.; Unruh, Troy

    2007-09-01

    Perforated semiconductor diode detectors have been under development for several years at Kansas State University for a variety of neutron detection applications. The fundamental device configuration is a pin diode detector fabricated from high-purity float zone refined Si wafers. Perforations are etched into the diode surface with inductively-coupled plasma (ICP) reactive ion etching (RIE) and backfilled with 6LiF neutron reactive material. The perforation shapes and depths can be optimized to yield a flat response to neutrons over a wide variation of angles. The prototype devices delivered over 3.8% thermal neutron detection efficiency while operating on only 15 volts. The highest efficiency devices thus far have delivered over 12% thermal neutron detection efficiency. The miniature devices are 5.6 mm in diameter and require minimal power to operate, ranging from 3.3 volts to 15 volts, depending upon the amplifying electronics. The battery operated devices have been incorporated into compact modules with a digital readout. Further, the new modules have incorporated wireless readout technology and can be monitored remotely. The neutron detection modules can be used for neutron dosimetry and neutron monitoring. When coupled with high-density polyethylene, the detectors can be used to measure fission neutrons from spontaneous fission sources. Monto Carlo analysis indicates that the devices can be used in cargo containers as a passive search tool for spontaneous fission sources, such as 240Pu. Measurements with a 252Cf source are being conducted for verification.

  9. Low-cost flexible thin-film detector for medical dosimetry applications.

    PubMed

    Zygmanski, P; Abkai, C; Han, Z; Shulevich, Y; Menichelli, D; Hesser, J

    2014-03-06

    The purpose of this study is to characterize dosimetric properties of thin film photovoltaic sensors as a platform for development of prototype dose verification equipment in radiotherapy. Towards this goal, flexible thin-film sensors of dose with embedded data acquisition electronics and wireless data transmission are prototyped and tested in kV and MV photon beams. Fundamental dosimetric properties are determined in view of a specific application to dose verification in multiple planes or curved surfaces inside a phantom. Uniqueness of the new thin-film sensors consists in their mechanical properties, low-power operation, and low-cost. They are thinner and more flexible than dosimetric films. In principle, each thin-film sensor can be fabricated in any size (mm² - cm² areas) and shape. Individual sensors can be put together in an array of sensors spreading over large areas and yet being light. Photovoltaic mode of charge collection (of electrons and holes) does not require external electric field applied to the sensor, and this implies simplicity of data acquisition electronics and low power operation. The prototype device used for testing consists of several thin film dose sensors, each of about 1.5 cm × 5 cm area, connected to simple readout electronics. Sensitivity of the sensors is determined per unit area and compared to EPID sensitivity, as well as other standard photodiodes. Each sensor independently measures dose and is based on commercially available flexible thin-film aSi photodiodes. Readout electronics consists of an ultra low-power microcontroller, radio frequency transmitter, and a low-noise amplification circuit implemented on a flexible printed circuit board. Detector output is digitized and transmitted wirelessly to an external host computer where it is integrated and processed. A megavoltage medical linear accelerator (Varian Tx) equipped with kilovoltage online imaging system and a Cobalt source are used to irradiate different thin-film detector sensors in a Solid Water phantom under various irradiation conditions. Different factors are considered in characterization of the device attributes: energies (80 kVp, 130 kVp, 6 MV, 15 MV), dose rates (different ms × mA, 100-600 MU/min), total doses (0.1 cGy-500 cGy), depths (0.5 cm-20 cm), irradiation angles with respect to the detector surface (0°-180°), and IMRT tests (closed MLC, sweeping gap). The detector response to MV radiation is both linear with total dose (~1-400 cGy) and independent of dose rate (100-600 Mu/min). The sensitivity per unit area of thin-film sensors is lower than for aSi flat-panel detectors, but sufficient to acquire stable and accurate signals during irradiations. The proposed thin-film photodiode system has properties which make it promising for clinical dosimetry. Due to the mechanical flexibility of each sensor and readout electronics, low-cost, and wireless data acquisition, it could be considered for quality assurance (e.g., IMRT, mechanical linac QA), as well as real-time dose monitoring in challenging setup configurations, including large area and 3D detection (multiple planes or curved surfaces).

  10. Low‐cost flexible thin‐film detector for medical dosimetry applications

    PubMed Central

    Abkai, C.; Han, Z.; Shulevich, Y.; Menichelli, D.; Hesser, J.

    2014-01-01

    The purpose of this study is to characterize dosimetric properties of thin film photovoltaic sensors as a platform for development of prototype dose verification equipment in radiotherapy. Towards this goal, flexible thin‐film sensors of dose with embedded data acquisition electronics and wireless data transmission are prototyped and tested in kV and MV photon beams. Fundamental dosimetric properties are determined in view of a specific application to dose verification in multiple planes or curved surfaces inside a phantom. Uniqueness of the new thin‐film sensors consists in their mechanical properties, low‐power operation, and low‐cost. They are thinner and more flexible than dosimetric films. In principle, each thin‐film sensor can be fabricated in any size (mm2 – cm2 areas) and shape. Individual sensors can be put together in an array of sensors spreading over large areas and yet being light. Photovoltaic mode of charge collection (of electrons and holes) does not require external electric field applied to the sensor, and this implies simplicity of data acquisition electronics and low power operation. The prototype device use for testing consists of several thin film dose sensors, each of about 1.5 cm×5 cm area, connected to simple readout electronics. Sensitivity of the sensors is determined per unit area and compared to EPID sensitivity, as well as other standard photodiodes. Each sensor independently measures dose and is based on commercially available flexible thin‐film aSi photodiodes. Readout electronics consists of an ultra low‐power microcontroller, radio frequency transmitter, and a low‐noise amplification circuit implemented on a flexible printed circuit board. Detector output is digitized and transmitted wirelessly to an external host computer where it is integrated and processed. A megavoltage medical linear accelerator (Varian Tx) equipped with kilovoltage online imaging system and a Cobalt source are use to irradiate different thin‐film detector sensors in a Solid Water phantom under various irradiation conditions. Different factors are considered in characterization of the device attributes: energies (80 kVp, 130 kVp, 6 MV, 15 MV), dose rates (different ms × mA, 100–600 MU/min), total doses (0.1 cGy‐500 cGy), depths (0.5 cm–20 cm), irradiation angles with respect to the detector surface (0°‐180°), and IMRT tests (closed MLC, sweeping gap). The detector response to MV radiation is both linear with total dose (~1‐400 cGy) and independent of dose rate (100‐600 Mu/min). The sensitivity per unit area of thin‐film sensors is lower than for aSi flat‐panel detectors, but sufficient to acquire stable and accurate signals during irradiations. The proposed thin‐film photodiode system has properties which make it promising for clinical dosimetry. Due to the mechanical flexibility of each sensor and readout electronics, low‐cost, and wireless data acquisition, it could be considered for quality assurance (e.g., IMRT, mechanical linac QA), as well as real‐time dose monitoring in challenging setup configurations, including large area and 3D detection (multiple planes or curved surfaces). PACS number: 87.56.Fc PMID:24710432

  11. Noise and spectroscopic performance of DEPMOSFET matrix devices for XEUS

    NASA Astrophysics Data System (ADS)

    Treis, J.; Fischer, P.; Hälker, O.; Herrmann, S.; Kohrs, R.; Krüger, H.; Lechner, P.; Lutz, G.; Peric, I.; Porro, M.; Richter, R. H.; Strüder, L.; Trimpl, M.; Wermes, N.; Wölfel, S.

    2005-08-01

    DEPMOSFET based Active Pixel Sensor (APS) matrix devices, originally developed to cope with the challenging requirements of the XEUS Wide Field Imager, have proven to be a promising new imager concept for a variety of future X-ray imaging and spectroscopy missions like Simbol-X. The devices combine excellent energy resolution, high speed readout and low power consumption with the attractive feature of random accessibility of pixels. A production of sensor prototypes with 64 x 64 pixels with a size of 75 μm x 75 μm each has recently been finished at the MPI semiconductor laboratory in Munich. The devices are built for row-wise readout and require dedicated control and signal processing electronics of the CAMEX type, which is integrated together with the sensor onto a readout hybrid. A number of hybrids incorporating the most promising sensor design variants has been built, and their performance has been studied in detail. A spectroscopic resolution of 131 eV has been measured, the readout noise is as low as 3.5 e- ENC. Here, the dependence of readout noise and spectroscopic resolution on the device temperature is presented.

  12. Room temperature 1040fps, 1 megapixel photon-counting image sensor with 1.1um pixel pitch

    NASA Astrophysics Data System (ADS)

    Masoodian, S.; Ma, J.; Starkey, D.; Wang, T. J.; Yamashita, Y.; Fossum, E. R.

    2017-05-01

    A 1Mjot single-bit quanta image sensor (QIS) implemented in a stacked backside-illuminated (BSI) process is presented. This is the first work to report a megapixel photon-counting CMOS-type image sensor to the best of our knowledge. A QIS with 1.1μm pitch tapered-pump-gate jots is implemented with cluster-parallel readout, where each cluster of jots is associated with its own dedicated readout electronics stacked under the cluster. Power dissipation is reduced with this cluster readout because of the reduced column bus parasitic capacitance, which is important for the development of 1Gjot arrays. The QIS functions at 1040fps with binary readout and dissipates only 17.6mW, including I/O pads. The readout signal chain uses a fully differential charge-transfer amplifier (CTA) gain stage before a 1b-ADC to achieve an energy/bit FOM of 16.1pJ/b and 6.9pJ/b for the whole sensor and gain stage+ADC, respectively. Analog outputs with on-chip gain are implemented for pixel characterization purposes.

  13. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nick P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit patbs by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabric.ted parts were hybridized using a Suss FCI50 flip chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  14. MEDIPIX: a VLSI chip for a GaAs pixel detector for digital radiology

    NASA Astrophysics Data System (ADS)

    Amendolia, S. R.; Bertolucci, E.; Bisogni, M. G.; Bottigli, U.; Ceccopieri, A.; Ciocci, M. A.; Conti, M.; Delogu, P.; Fantacci, M. E.; Maestro, P.; Marzulli, V.; Pernigotti, E.; Romeo, N.; Rosso, V.; Rosso, P.; Stefanini, A.; Stumbo, S.

    1999-02-01

    A GaAs pixel detector designed for digital mammography, equipped with a 36-channel single photon counting discrete read-out electronics, was tested using a test object developed for quality control purposes in mammography. Each pixel was 200×200 μm 2 large, and 200 μm deep. The choice of GaAs with respect to silicon (largely used in other applications and with a more established technique) has been made because of the much better detection efficiency at mammographic energies, combined with a very good charge collection efficiency achieved thanks to new ohmic contacts. This GaAs detector is able to perform a measurement of low-contrast details, with minimum contrast lower (nearly a factor two) than that typically achievable with standard mammographic film+screen systems in the same conditions of clinical routine. This should allow for an earlier diagnosis of breast tumour masses. Due to these encouraging results, the next step in the evolution of our imaging system based on GaAs detectors has been the development of a VLSI front-end prototype chip (MEDIPIX ) in order to cover a much larger diagnostic area. The chip reads 64×64 channels in single photon counting mode, each one 170 μm wide. Each channel contains also a test input where a signal can be simulated, injecting a known charge through a 16 f F capacitor. Fake signals have been injected via the test input measuring and equalizing minimum thresholds for all the channels. On an average, in most of the performing chips available up to now, we have found that it is possible to set a threshold as low as 1800 electrons with an RMS of 150 electrons (10 standard deviations lower than the 20 keV photon signal roughly equivalent to 4500 electrons). The detector, bump-bonded to the chip, will be tested and a ladder of detectors will be prepared to be able to scan large surface objects.

  15. Multiplexed Oversampling Digitizer in 65 nm CMOS for Column-Parallel CCD Readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grace, Carl; Walder, Jean-Pierre; von der Lippe, Henrik

    2012-04-10

    A digitizer designed to read out column-parallel charge-coupled devices (CCDs) used for high-speed X-ray imaging is presented. The digitizer is included as part of the High-Speed Image Preprocessor with Oversampling (HIPPO) integrated circuit. The digitizer module comprises a multiplexed, oversampling, 12-bit, 80 MS/s pipelined Analog-to-Digital Converter (ADC) and a bank of four fast-settling sample-and-hold amplifiers to instrument four analog channels. The ADC multiplexes and oversamples to reduce its area to allow integration that is pitch-matched to the columns of the CCD. Novel design techniques are used to enable oversampling and multiplexing with a reduced power penalty. The ADC exhibits 188more » ?V-rms noise which is less than 1 LSB at a 12-bit level. The prototype is implemented in a commercially available 65 nm CMOS process. The digitizer will lead to a proof-of-principle 2D 10 Gigapixel/s X-ray detector.« less

  16. Summary: Disabled Submarine Heat Stress Conference

    DTIC Science & Technology

    2009-09-11

    by dry bulb thermometer and humidity using either a sling psychrometer or a portable battery-powered electronic device providing a direct readout of...and sling psychrometer in each compartment 3) One battery-powered electronic thermometer/hygrometer in each compartment Heat Stress When-To

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore themore » architecture of larger systems such as those currently in use at LHC experiments.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budden, B. S.; Stonehill, L. C.; Warniment, A.

    In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less

  19. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  20. 640 X 480 MOS PtSi IR sensor

    NASA Astrophysics Data System (ADS)

    Sauer, Donald J.; Shallcross, Frank V.; Hseuh, Fu-Lung; Meray, Grazyna M.; Levine, Peter A.; Gilmartin, Harvey R.; Villani, Thomas S.; Esposito, Benjamin J.; Tower, John R.

    1991-12-01

    The design of a 1st and 2nd generation 640(H) X 480(V) element PtSi Schottky-barrier infrared image sensor employing a low-noise MOS X-Y addressable readout multiplexer and on-chip low-noise output amplifier is described. Measured performance characteristics for Gen 1 devices are presented along with calculated performance for the Gen 2 design. A multiplexed horizontal/vertical input address port and on-chip decoding is used to load scan data into CMOS horizontal and vertical scanning registers. This allows random access to any sub-frame in the 640 X 480 element focal plane array. By changing the digital pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or non- interlaced format, and the integration time may be varied over a wide range (60 microsecond(s) to > 30 ms, for RS170 operation) resulting in a form of 'electronic shutter,' or variable exposure control. The pixel size of 24-micrometers X 24-micrometers results in a fill factor of 38% for 1.5-micrometers process design rules. The overall die size for the IR imager is 13.7 mm X 17.2 mm. All digital inputs to the chip are TTL compatible and include ESD protection.

  1. High speed holographic digital recorder.

    PubMed

    Roberts, H N; Watkins, J W; Johnson, R H

    1974-04-01

    Concepts, feasibility experiments, and key component developments are described for a holographic digital record/reproduce system with the potential for 1.0 Gbit/sec rates and higher. Record rates of 500 Mbits/sec have been demonstrated with a ten-channel acoustooptic modulator array and a mode-locked, cavity-dumped argon-ion laser. Acoustooptic device technology has been advanced notably during the development of mode lockers, cavity dumpers, beam deflectors, and multichannel modulator arrays. The development of high speed multichannel photodetector arrays for the readout subsystem requires special attention. The feasibility of 1.0 Gbits/sec record rates has been demonstrated.

  2. Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation.

    PubMed

    Schmidt, M; Fürstenau, N

    1999-05-01

    A three-wavelength-based passive quadrature digital phase-demodulation scheme has been developed for readout of fiber-optic extrinsic Fabry-Perot interferometer vibration, acoustic, and strain sensors. This scheme uses a superluminescent diode light source with interference filters in front of the photodiodes and real-time arctan calculation. Quasi-static strain and dynamic vibration sensing with up to an 80-kHz sampling rate is demonstrated. Periodic nonlinearities owing to dephasing with increasing fringe number are corrected for with a suitable algorithm, resulting in significant improvement of the linearity of the sensor characteristics.

  3. Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors.

    PubMed

    Tremblay, Noah J; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E

    2011-11-22

    Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards 'intelligent sensors' that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations.

  4. Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors

    PubMed Central

    Tremblay, Noah J.; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E.

    2013-01-01

    Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards ‘intelligent sensors’ that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations. PMID:23754969

  5. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    NASA Astrophysics Data System (ADS)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  6. Inexpensive Implementation of Many Strain Gauges

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.

    2010-01-01

    It has been proposed to develop arrays of strain gauges as arrays of ordinary metal film resistors and associated electronic readout circuitry on printed circuit boards or other suitable substrates. This proposal is a by-product of a development of instrumentation utilizing metal film resistors on printed-circuit boards to measure temperatures at multiple locations. In the course of that development, it was observed that in addition to being sensitive to temperature, the metal film resistors were also sensitive to strains in the printed-circuit boards to which they were attached. Because of the low cost of ordinary metal film resistors (typically <$0.01 apiece at 2007 prices), the proposal could enable inexpensive implementation of arrays of many (e.g., 100 or more) strain gauges, possibly concentrated in small areas. For example, such an array could be designed for use as a computer keyboard with no moving parts, as a device for sensing the shape of an object resting on a surface, or as a device for measuring strains at many points on a mirror, a fuel tank, an airplane wing, or other large object. Ordinarily, the effect of strain on resistance would be regarded as a nuisance in a temperature-measuring application, and the effect of temperature on resistance would be regarded as a nuisance in a strain-measuring application. The strain-induced changes in resistance of the metal film resistors in question are less than those of films in traditional strain gauges. The main novel aspect of present proposal lies in the use of circuitry affording sufficient sensitivity to measure strain plus means for compensating for the effect of temperature. For an array of metal film resistors used as proposed, the readout circuits would include a high-accuracy analog-to-digital converter fed by a low noise current source, amplifier chain, and an analog multiplexer chain. Corrections would be provided by use of high-accuracy calibration resistors and a temperature sensor. By use of such readout circuitry, it would be possible to read the resistances of as many as 100 fixed resistors in a time interval of 1 second at a resolution much greater than 16 bits. The readout data would be processed, along with temperature calibration data, to deduce the strain on the printed-circuit board or other substrate in the areas around the resistors. It should also be possible to also deduce the temperature from the readings.

  7. Design and implementation of the ATLAS TRT front end electronics

    NASA Astrophysics Data System (ADS)

    Newcomer, Mitch; Atlas TRT Collaboration

    2006-07-01

    The ATLAS TRT subsystem is comprised of 380,000 4 mm straw tube sensors ranging in length from 30 to 80 cm. Polypropelene plastic layers between straws and a xenon-based gas mixture in the straws allow the straws to be used for both tracking and transition radiation detection. Detector-mounted electronics with data sparsification was chosen to minimize the cable plant inside the super-conducting solenoid of the ATLAS inner tracker. The "on detector" environment required a small footprint, low noise, low power and radiation-tolerant readout capable of triggering at rates up to 20 MHz with an analog signal dynamic range of >300 times the discriminator setting. For tracking, a position resolution better than 150 μm requires leading edge trigger timing with ˜1 ns precision and for transition radiation detection, a charge collection time long enough to integrate the direct and reflected signal from the unterminated straw tube is needed for position-independent energy measurement. These goals have been achieved employing two custom Application-specific integrated circuits (ASICS) and board design techniques that successfully separate analog and digital functionality while providing an integral part of the straw tube shielding.

  8. Processing of the signals from the Liquid Xenon Calorimeter for timing measurements

    NASA Astrophysics Data System (ADS)

    Epshteyn, L. B.; Grebenuyk, A. A.; Kozyrev, A. N.; Logashenko, I. B.; Mikhaylov, K. Yu.; Ruban, A. A.; Yudin, Yu. V.

    2017-02-01

    One of the goals of the Cryogenic Magnetic Detector at Budker Institute of Nuclear Physics SB RAS (Novosibirsk, Russia) is a study of hadron production in electron-positron collisions near threshold. The neutron-antineutron pair production events can be detected only by the calorimeters. In the barrel calorimeter the antineutron annihilation typically occurs about 5 ns or later after the beams crossing. For identification of such events it is necessary to measure the time of flight of particles to the LXe-calorimeter with an accuracy of about a few nanoseconds. The LXe-calorimeter consists of 14 layers of ionization chambers with two readout: anode and cathode. The duration of charge collection to the anodes is about 4.5 μs, while the required accuracy of measuring of the signal arrival time is less than 1/1000 of that (i.e. 4.5 ns). Besides, the signals' shapes differ substantially from event to event, so the signal arrival time is measured in two stages. In the paper we describ the development of the special electronics which performs waveform digitization and the on-line measurement of signals' arrival times and amplitudes.

  9. Fan-out Estimation in Spin-based Quantum Computer Scale-up.

    PubMed

    Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R

    2017-10-17

    Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.

  10. Taking the CCDs to the ultimate performance for low threshold experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Miguel; Moroni, Guillermo; Tiffenberg, Javier

    2016-11-14

    Scientific grade CCDs show atractive capabilities for the detection of particles with small energy deposition in matter. Their very low threshold of approximately 40 eV and their good spatial reconstruction of the event are key properties for currently running experiments: CONNIE and DAMIC. Both experiments can benefit from any increase of the detection efficiency of nuclear recoils at low energy. In this work we present two different approaches to increase this efficiency by increasing the SNR of events. The first one is based on the reduction of the readout noise of the device, which is the main contribution of uncertaintymore » to the signal measurement. New studies on the electronic noise from the integrated output amplifier and the readout electronics will be presented together with result of a new configuration showing a lower limit on the readout noise which can be implemented on the current setup of the CCD based experiments. A second approach to increase the SNR of events at low energy that will be presented is the studies of the spatial conformation of nuclear recoil events at different depth in the active volume by studies of new effects that differ from expected models based on not interacting diffusion model of electrons in the semiconductor.« less

  11. The E and B EXperiment: EBEX

    NASA Astrophysics Data System (ADS)

    Helson, Kyle R.

    2015-08-01

    We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis. We also discuss the next generation of EBEX called EBEX10k, currently in development.

  12. Prototype AEGIS: A Pixel-Array Readout Circuit for Gamma-Ray Imaging.

    PubMed

    Barber, H Bradford; Augustine, F L; Furenlid, L; Ingram, C M; Grim, G P

    2005-07-31

    Semiconductor detector arrays made of CdTe/CdZnTe are expected to be the main components of future high-performance, clinical nuclear medicine imaging systems. Such systems will require small pixel-pitch and much larger numbers of pixels than are available in current semiconductor-detector cameras. We describe the motivation for developing a new readout integrated circuit, AEGIS, for use in hybrid semiconductor detector arrays, that may help spur the development of future cameras. A basic design for AEGIS is presented together with results of an HSPICE ™ simulation of the performance of its unit cell. AEGIS will have a shaper-amplifier unit cell and neighbor pixel readout. Other features include the use of a single input power line with other biases generated on-board, a control register that allows digital control of all thresholds and chip configurations and an output approach that is compatible with list-mode data acquisition. An 8×8 prototype version of AEGIS is currently under development; the full AEGIS will be a 64×64 array with 300 μm pitch.

  13. Absolute Position Encoders With Vertical Image Binning

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2005-01-01

    Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.

  14. Multiplexing readout channels in proportional counters

    NASA Technical Reports Server (NTRS)

    Caristi, James

    1991-01-01

    Proportional counters are important instruments used in sensing hard x-rays. The possibility is described of doubling the number of readout channels in the detector without increasing the electronics needed to amplify channel signals. This suggests that it should be possible, conversely, to reduce the number of amplifiers, thereby reducing the weight and energy budget of the instrument. Various numerical multiplexing schemes are analyzed, and a computer program is presented that can reconstruct multiplexed channel outputs with very good accuracy.

  15. Common Readout Unit (CRU) - A new readout architecture for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Mitra, J.; Khan, S. A.; Mukherjee, S.; Paul, R.

    2016-03-01

    The ALICE experiment at the CERN Large Hadron Collider (LHC) is presently going for a major upgrade in order to fully exploit the scientific potential of the upcoming high luminosity run, scheduled to start in the year 2021. The high interaction rate and the large event size will result in an experimental data flow of about 1 TB/s from the detectors, which need to be processed before sending to the online computing system and data storage. This processing is done in a dedicated Common Readout Unit (CRU), proposed for data aggregation, trigger and timing distribution and control moderation. It act as common interface between sub-detector electronic systems, computing system and trigger processors. The interface links include GBT, TTC-PON and PCIe. GBT (Gigabit transceiver) is used for detector data payload transmission and fixed latency path for trigger distribution between CRU and detector readout electronics. TTC-PON (Timing, Trigger and Control via Passive Optical Network) is employed for time multiplex trigger distribution between CRU and Central Trigger Processor (CTP). PCIe (Peripheral Component Interconnect Express) is the high-speed serial computer expansion bus standard for bulk data transport between CRU boards and processors. In this article, we give an overview of CRU architecture in ALICE, discuss the different interfaces, along with the firmware design and implementation of CRU on the LHCb PCIe40 board.

  16. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullom, Joel

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced tomore » the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.« less

  17. Indications of vigor loss after fire in Caribbean pine (Pinus caribaea) from electrical resistance measurements

    Treesearch

    T.E. Paysen; A.L. Koonce; E. Taylor; M.O. Rodriquez

    2006-01-01

    In May 1993, electrical resistance measurements were performed on trees in burned and unburned stands of Caribbean pine (Pinus caribaea Mor.) in north-eastern Nicaragua to determine whether tree vigor was affected by fire. An Osmose model OZ-67 Shigometer with digital readout was used to collect the sample electrical resistance data. Computer-...

  18. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays.

    PubMed

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-26

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  19. Architecture and settings optimization procedure of a TES frequency domain multiplexed readout firmware

    NASA Astrophysics Data System (ADS)

    Clenet, A.; Ravera, L.; Bertrand, B.; den Hartog, R.; Jackson, B.; van Leeuwen, B.-J.; van Loon, D.; Parot, Y.; Pointecouteau, E.; Sournac, A.

    2014-11-01

    IRAP is developing the readout electronics of the SPICA-SAFARI's TES bolometer arrays. Based on the frequency domain multiplexing technique the readout electronics provides the AC-signals to voltage-bias the detectors; it demodulates the data; and it computes a feedback to linearize the detection chain. The feedback is computed with a specific technique, so called baseband feedback (BBFB) which ensures that the loop is stable even with long propagation and processing delays (i.e. several μ s) and with fast signals (i.e. frequency carriers of the order of 5 MHz). To optimize the power consumption we took advantage of the reduced science signal bandwidth to decouple the signal sampling frequency and the data processing rate. This technique allowed a reduction of the power consumption of the circuit by a factor of 10. Beyond the firmware architecture the optimization of the instrument concerns the characterization routines and the definition of the optimal parameters. Indeed, to operate an array TES one has to properly define about 21000 parameters. We defined a set of procedures to automatically characterize these parameters and find out the optimal settings.

  20. Measurement, modeling, and simulation of cryogenic SiGe HBT amplifier circuits for fast single spin readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm

    2015-03-01

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

Top