Digital carrier demodulator employing components working beyond normal limits
NASA Technical Reports Server (NTRS)
Hurd, William J. (Inventor); Sadr, Ramin (Inventor)
1990-01-01
In a digital device, having an input comprised of a digital sample stream at a frequency F, a method is disclosed for employing a component designed to work at a frequency less than F. The method, in general, is comprised of the following steps: dividing the digital sample stream into odd and even digital samples streams each at a frequency of F/2; passing one of the digital sample streams through the component designed to work at a frequency less than F where the component responds only to the odd or even digital samples in one of the digital sample streams; delaying the other digital sample streams for the time it takes the digital sample stream to pass through the component; and adding the one digital sample stream after passing through the component with the other delayed digital sample streams. In the specific example, the component is a finite impulse response filter of the order ((N + 1)/2) and the delaying step comprised passing the other digital sample streams through a shift register for a time (in sampling periods) of ((N + 1)/2) + r, where r is a pipline delay through the finite impulse response filter.
Photographic techniques for characterizing streambed particle sizes
Whitman, Matthew S.; Moran, Edward H.; Ourso, Robert T.
2003-01-01
We developed photographic techniques to characterize coarse (>2-mm) and fine (≤2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wadeable and contained gravel—cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded a greater number of measured particles (mean = 989) than did the Wolman counts (mean = 328). Stream embeddedness ratings assigned from field and photographic observations were significantly different at 5 of the 12 sites, although both types of ratings showed a positive relationship with digitized surface fines. Visual estimates of embeddedness and digitized surface fines may both be useful indicators of benthic conditions, but digitizing surface fines produces quantitative rather than qualitative data. Benefits of the photographic techniques include reduced field time, minimal streambed disturbance, convenience of postfield processing, easy sample archiving, and improved accuracy and replication potential.
Johnson, Michaela R.; Clark, Jimmy M.; Dickinson, Ross G.; Sanocki, Chris A.; Tranmer, Andrew W.
2009-01-01
This data set was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study. This report is concerned with three of the eight NEET study units distributed across the United States: Ozark Plateaus, Upper Mississippi River Basin, and Upper Snake River Basin, collectively known as Group II of the NEET study. Ninety stream reaches were investigated during 2006-08 in these three study units. Stream segments, with lengths equal to the base-10 logarithm of the basin area, were delineated upstream from the stream reaches through the use of digital orthophoto quarter-quadrangle (DOQQ) imagery. The analysis area for each stream segment was defined by a streamside buffer extending laterally to 250 meters from the stream segment. Delineation of landuse and land-cover (LULC) map units within stream-segment buffers was completed using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were classified using a strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal riparian transects (lines offset from the stream segments) were generated digitally, used to sample the LULC maps, and partitioned in accord with the intersected LULC map-unit types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear estimates of LULC extent filled in the spatial-scale gap between the 30-meter resolution of the 1990s National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The resulting data consisted of 12 geospatial data sets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation at the reach scale (arc); stream reaches (arc); longitudinal LULC transect sample at the reach scale (arc); frequency of gaps in woody vegetation at the segment scale (arc); stream segments (arc); and longitudinal LULC transect sample at the segment scale (arc).
Systems and methods for self-synchronized digital sampling
NASA Technical Reports Server (NTRS)
Samson, Jr., John R. (Inventor)
2008-01-01
Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.
Generation of kth-order random toposequences
NASA Astrophysics Data System (ADS)
Odgers, Nathan P.; McBratney, Alex. B.; Minasny, Budiman
2008-05-01
The model presented in this paper derives toposequences from a digital elevation model (DEM). It is written in ArcInfo Macro Language (AML). The toposequences are called kth-order random toposequences, because they take a random path uphill to the top of a hill and downhill to a stream or valley bottom from a randomly selected seed point, and they are located in a streamshed of order k according to a particular stream-ordering system. We define a kth-order streamshed as the area of land that drains directly to a stream segment of stream order k. The model attempts to optimise the spatial configuration of a set of derived toposequences iteratively by using simulated annealing to maximise the total sum of distances between each toposequence hilltop in the set. The user is able to select the order, k, of the derived toposequences. Toposequences are useful for determining soil sampling locations for use in collecting soil data for digital soil mapping applications. Sampling locations can be allocated according to equal elevation or equal-distance intervals along the length of the toposequence, for example. We demonstrate the use of this model for a study area in the Hunter Valley of New South Wales, Australia. Of the 64 toposequences derived, 32 were first-order random toposequences according to Strahler's stream-ordering system, and 32 were second-order random toposequences. The model that we present in this paper is an efficient method for sampling soil along soil toposequences. The soils along a toposequence are related to each other by the topography they are found in, so soil data collected by this method is useful for establishing soil-landscape rules for the preparation of digital soil maps.
Measuring stream temperature with digital data loggers: a user's guide
Jason Dunham; Gwynne Chandler; Bruce Rieman; Don Martin
2005-01-01
Digital data loggers (thermographs) are among the most widespread instruments in use for monitoring physical conditions in aquatic ecosystems. The intent of this protocol is to provide guidelines for selecting and programming data loggers, sampling water temperatures in the field, data screening and analysis, and data archiving.
SAGITTARIUS STREAM THREE-DIMENSIONAL KINEMATICS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koposov, Sergey E.; Belokurov, Vasily; Evans, N. Wyn
2013-04-01
Using multi-epoch observations of the Stripe 82 region from the Sloan Digital Sky Survey (SDSS), we measure precise statistical proper motions of the stars in the Sagittarius (Sgr) stellar stream. The multi-band photometry and SDSS radial velocities allow us to efficiently select Sgr members and thus enhance the proper-motion precision to {approx}0.1 mas yr{sup -1}. We measure separately the proper motion of a photometrically selected sample of the main-sequence turn-off stars, as well as spectroscopically selected Sgr giants. The data allow us to determine the proper motion separately for the two Sgr streams in the south found in Koposov etmore » al. Together with the precise velocities from SDSS, our proper motions provide exquisite constraints of the three-dimensional motions of the stars in the Sgr streams.« less
CMOS Bit-Stream Band-Pass Beamforming
2016-03-31
unlimited. with direct IF sampling, most of the signal processing, including digital down-conversion ( DDC ), is carried out in the digital domain, and I/Q...level digitized signals are directly processed without decimation filtering for I/Q DDC and phase shifting. This novel BSP approach replaces bulky...positive feedback. The resonator center frequency of fs/4 (260MHz) simplifies the design of DDC . 4b tunable capacitors adjust the center frequency
NASA Astrophysics Data System (ADS)
Shoupeng, Song; Zhou, Jiang
2017-03-01
Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.
Digital analytical data from mineral resource assessments of national forest lands in Washington
Boleneus, D.E.; Chase, D.W.
1999-01-01
Extensive reconnaissance assessments of the mineral resource potential of the Colville and Okanogan National Forests in northeastern Washington were conducted during 1979-1982 by a private consultant A.R. Grant, under contract with the U.S. Department of Agriculture, Forest Service. These forests occupy large parts of Pend Oreille, Stevens, Ferry, and Okanogan counties, and smaller parts of Whatcom, Skagit, and Chelan counties adjoining Okanogan County in the Cascades. Sampled terrain also included the Kaniksu National Forest in Pend Oreille County and one stream bed of the Kaniksu in adjacent Bonner County, Idaho. Two unpublished reports resulting from the assessments (Grant, 1982a,b) list a total of 3,927 analyses of gold, silver, copper, lead, zinc, molybdenum, tungsten, and uranium content of stream sediment and bedrock samples collected at widely dispersed sites in the three National Forests. This report makes this important body of work available in digital form on diskettes, to enhance manipulations with computer spreadsheets, geographic information systems (GIS), and digital spatial analyses. This will allow for utilization of data by modern day explorationists and by the general geodata user community.
Johnson, Michaela R.; Buell, Gary R.; Kim, Moon H.; Nardi, Mark R.
2007-01-01
This dataset was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study for five study units distributed across the United States: Apalachicola-Chattahoochee-Flint River Basin, Central Columbia Plateau-Yakima River Basin, Central Nebraska Basins, Potomac River Basin and Delmarva Peninsula, and White, Great and Little Miami River Basins. One hundred forty-three stream reaches were examined as part of the NEET study conducted 2003-04. Stream segments, with lengths equal to the logarithm of the basin area, were delineated upstream from the downstream ends of the stream reaches with the use of digital orthophoto quarter quadrangles (DOQQ) or selected from the high-resolution National Hydrography Dataset (NHD). Use of the NHD was necessary when the stream was not distinguishable in the DOQQ because of dense tree canopy. The analysis area for each stream segment was defined by a buffer beginning at the segment extending to 250 meters lateral to the stream segment. Delineation of land use/land cover (LULC) map units within stream segment buffers was conducted using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were mapped using a classification strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal transect sampling lines offset from the stream segments were generated and partitioned into the underlying LULC types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear LULC data filled in the spatial-scale gap between the 30-meter resolution of the National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The final data consisted of 12 geospatial datasets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation LULC at the reach scale (arc); stream reaches (arc); longitudinal LULC at the reach scale (arc); frequency of gaps in woody vegetation LULC at the segment scale (arc); stream segments (arc); and longitudinal LULC at the segment scale (arc).
Securing Digital Audio using Complex Quadratic Map
NASA Astrophysics Data System (ADS)
Suryadi, MT; Satria Gunawan, Tjandra; Satria, Yudi
2018-03-01
In This digital era, exchanging data are common and easy to do, therefore it is vulnerable to be attacked and manipulated from unauthorized parties. One data type that is vulnerable to attack is digital audio. So, we need data securing method that is not vulnerable and fast. One of the methods that match all of those criteria is securing the data using chaos function. Chaos function that is used in this research is complex quadratic map (CQM). There are some parameter value that causing the key stream that is generated by CQM function to pass all 15 NIST test, this means that the key stream that is generated using this CQM is proven to be random. In addition, samples of encrypted digital sound when tested using goodness of fit test are proven to be uniform, so securing digital audio using this method is not vulnerable to frequency analysis attack. The key space is very huge about 8.1×l031 possible keys and the key sensitivity is very small about 10-10, therefore this method is also not vulnerable against brute-force attack. And finally, the processing speed for both encryption and decryption process on average about 450 times faster that its digital audio duration.
Watershed-based survey designs
Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.
2005-01-01
Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.
Modeling and Simulation of Lab-on-a-Chip Systems
2005-08-12
complex chip geometries (including multiple turns). Variations of sample concentration profiles in laminar diffusion-based micromixers are also derived...CHAPTER 6 MODELING OF LAMINAR DIFFUSION-BASED COMPLEX ELECTROKINETIC PASSIVE MICROMIXERS ...140 6.4.4 Multi-Stream (Inter-Digital) Micromixers
Low-Cutoff, High-Pass Digital Filtering of Neural Signals
NASA Technical Reports Server (NTRS)
Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard
2004-01-01
The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).
Streaming Audio and Video: New Challenges and Opportunities for Museums.
ERIC Educational Resources Information Center
Spadaccini, Jim
Streaming audio and video present new challenges and opportunities for museums. Streaming media is easier to author and deliver to Internet audiences than ever before; digital video editing is commonplace now that the tools--computers, digital video cameras, and hard drives--are so affordable; the cost of serving video files across the Internet…
Connected word recognition using a cascaded neuro-computational model
NASA Astrophysics Data System (ADS)
Hoya, Tetsuya; van Leeuwen, Cees
2016-10-01
We propose a novel framework for processing a continuous speech stream that contains a varying number of words, as well as non-speech periods. Speech samples are segmented into word-tokens and non-speech periods. An augmented version of an earlier-proposed, cascaded neuro-computational model is used for recognising individual words within the stream. Simulation studies using both a multi-speaker-dependent and speaker-independent digit string database show that the proposed method yields a recognition performance comparable to that obtained by a benchmark approach using hidden Markov models with embedded training.
Antibiotic resistance genes (ARGs) in freshwaters are an emerging contaminant of concern. We used 1,747 water samples from the USEPA’s 2013-2014 National Rivers and Streams Assessment and digital-droplet polymerase chain reaction techniques to quantify the concentrations (t...
Code of Federal Regulations, 2014 CFR
2014-07-01
....10 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS... AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming and Limited Downloads... interactive streams and limited downloads of musical works by subscription and nonsubscription digital music...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 385.11 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND... MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming and Limited Downloads... interactive streams or limited downloads of musical works, as applicable. Limited download means a digital...
Projecting the voice: observations of audience behaviours in ICT-mediated contemporary opera
NASA Astrophysics Data System (ADS)
Lin, Yu-Wei; Williams, Alan E.
2014-07-01
This paper examines how audiences experience live opera performance and the behaviours they exhibit during live-streaming of the performance. It aims to contribute to our understanding of how audiences, who increasingly inhabit an environment saturated with digital media, respond to contemporary opera performance. Based on a comparative study of audience experiences and behaviours during a live opera performance and the streamed opera screening, we investigate whether digital mediation affects audience appreciation, and whether streaming live opera means the same thing to an audience as the unmediated performance. We firstly outline the conception, design and performance of a contemporary opera and its simultaneous streaming to nearby digital screens. Then, we report the evaluation of the project as measured by a mix of qualitative and quantitative methods during the rehearsals, the live performance and the screening. As one of the few social studies of contemporary classical music in Britain, our study of opera audience behaviours sheds light on the challenges and opportunities afforded by digital technologies for opera companies. Understanding how audiences appreciate digital operas offers practical advice on how theatres and opera companies could respond to new forms of digital activities.
Three moving groups detected in the LAMOST DR1 archive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. K.; Zhao, G.; Chen, Y. Q.
2014-05-20
We analyze the kinematics of thick disk and halo stars observed by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope. We have constructed a sample of 7993 F, G, and K nearby main-sequence stars (d < 2 kpc) with estimates of position (x, y, z) and space velocity (U, V, W) based on color and proper motion from the Sloan Digital Sky Survey DR9 catalog. Three 'phase-space overdensities' are identified in (V, √(U{sup 2}+2V{sup 2})) with significance levels of σ > 3. Two of them (the Hyades-Pleiades stream and the Arcturus-AF06 stream) have been identified previously. We also find evidencemore » for a new stream (centered at V ∼ –180 km s{sup –1}) in the halo. The formation mechanisms of these three streams are analyzed. Our results support the hypothesis that the Arcturus-AF06 stream and the new stream originated from the debris of a disrupted satellite, while the Hyades-Pleiades stream has a dynamical origin.« less
NASA Astrophysics Data System (ADS)
Koblents, B.; Belanger, M.; Woods, D.; McLane, P. J.
While conventional analog modems employ some kind of clock wave regenerator circuit for synchronous timing recovery, in sampled modem receivers the timing is recovered asynchronously to the incoming data stream, with no adjustment being made to the input sampling rate. All timing corrections are accomplished by digital operations on the sampled data stream, and timing recovery is asynchronous with the uncontrolled, input A/D system. A good timing error measurement algorithm is a zero crossing tracker proposed by Gardner. Digital, speech rate (2400 - 4800 bps) M-PSK modem receivers employing Gardner's zero crossing tracker were implemented and tested and found to achieve BER performance very close to theoretical values on the AWGN channel. Nyguist pulse shaped modem systems with excess bandwidth factors ranging from 100 to 60 percent were considered. We can show that for any symmetric M-PSK signal set Gardner's NDA algorithm is free of pattern jitter for any carrier phase offset for rectangular pulses and for Nyquist pulses having 100 percent excess bandwidth. Also, the Nyquist pulse shaped system is studied on the mobile satellite channel, where Doppler shifts and multipath fading degrade the pi/4-DQPSK signal. Two simple modifications to Gardner's zero crossing tracker enable it to remain useful in the presence of multipath fading.
NASA Technical Reports Server (NTRS)
Koblents, B.; Belanger, M.; Woods, D.; Mclane, P. J.
1993-01-01
While conventional analog modems employ some kind of clock wave regenerator circuit for synchronous timing recovery, in sampled modem receivers the timing is recovered asynchronously to the incoming data stream, with no adjustment being made to the input sampling rate. All timing corrections are accomplished by digital operations on the sampled data stream, and timing recovery is asynchronous with the uncontrolled, input A/D system. A good timing error measurement algorithm is a zero crossing tracker proposed by Gardner. Digital, speech rate (2400 - 4800 bps) M-PSK modem receivers employing Gardner's zero crossing tracker were implemented and tested and found to achieve BER performance very close to theoretical values on the AWGN channel. Nyguist pulse shaped modem systems with excess bandwidth factors ranging from 100 to 60 percent were considered. We can show that for any symmetric M-PSK signal set Gardner's NDA algorithm is free of pattern jitter for any carrier phase offset for rectangular pulses and for Nyquist pulses having 100 percent excess bandwidth. Also, the Nyquist pulse shaped system is studied on the mobile satellite channel, where Doppler shifts and multipath fading degrade the pi/4-DQPSK signal. Two simple modifications to Gardner's zero crossing tracker enable it to remain useful in the presence of multipath fading.
Warburton, William K.; Zhou, Zhiquing
1999-01-01
A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.
47 CFR 73.403 - Digital audio broadcasting service requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... programming stream at no direct charge to listeners. In addition, a broadcast radio station must simulcast its analog audio programming on one of its digital audio programming streams. The DAB audio programming... analog programming service currently provided to listeners. (b) Emergency information. The emergency...
A Control Chart Approach for Representing and Mining Data Streams with Shape Based Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A
The mining of data streams for online condition monitoring is a challenging task in several domains including (electric) power grid system, intelligent manufacturing, and consumer science. Considering a power grid application in which thousands of sensors, called the phasor measurement units, are deployed on the power grid network to continuously collect streams of digital data for real-time situational awareness and system management. Depending on design, each sensor could stream between ten and sixty data samples per second. The myriad of sensory data captured could convey deeper insights about sequence of events in real-time and before major damages are done. However,more » the timely processing and analysis of these high-velocity and high-volume data streams is a challenge. Hence, a new data processing and transformation approach, based on the concept of control charts, for representing sequence of data streams from sensors is proposed. In addition, an application of the proposed approach for enhancing data mining tasks such as clustering using real-world power grid data streams is presented. The results indicate that the proposed approach is very efficient for data streams storage and manipulation.« less
NASA Technical Reports Server (NTRS)
Monroe, Ryan M.
2011-01-01
A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution unavailable elsewhere. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved Analog-to-Digital Converters, (ADC). This 6 Gsps (giga-sample per second) digital representation of the analog signal is then processed through an FPGA-based streaming Fast Fourier Transform (FFT), the key development described below. Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers. the implementation, results and underlying math for this spectrometer, as well as, potential for future extension to even higher bandwidth, resolution and channel orthogonality, needed to support proposed future advanced atmospheric science and radioastronomy, are discussed.
Wideband Spectroscopy: The Design and Implementation of a 3 GHz, 2048 Channel Digital Spectrometer
NASA Technical Reports Server (NTRS)
Monroe, Ryan M.
2011-01-01
A state-of-the-art digital Fourier Transform spectrometer has been developed, with a combination of high bandwidth and fine resolution unavailable elsewhere. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved Analog-to-Digital Converters (ADC). This 6 Gsps (giga sample per second) digital representation of the analog signal is then processed through an FPGA-based streaming Fast Fourier Transform (FFT), the key development described below. Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers. The implementation, results and underlying math for this spectrometer, as well as potential for future extension to even higher bandwidth, resolution and channel orthogonality, needed to support proposed future advanced atmospheric science and radioastronomy, are discussed.
Characterization, adaptive traffic shaping, and multiplexing of real-time MPEG II video
NASA Astrophysics Data System (ADS)
Agrawal, Sanjay; Barry, Charles F.; Binnai, Vinay; Kazovsky, Leonid G.
1997-01-01
We obtain network traffic model for real-time MPEG-II encoded digital video by analyzing video stream samples from real-time encoders from NUKO Information Systems. MPEG-II sample streams include a resolution intensive movie, City of Joy, an action intensive movie, Aliens, a luminance intensive (black and white) movie, Road To Utopia, and a chrominance intensive (color) movie, Dick Tracy. From our analysis we obtain a heuristic model for the encoded video traffic which uses a 15-stage Markov process to model the I,B,P frame sequences within a group of pictures (GOP). A jointly-correlated Gaussian process is used to model the individual frame sizes. Scene change arrivals are modeled according to a gamma process. Simulations show that our MPEG-II traffic model generates, I,B,P frame sequences and frame sizes that closely match the sample MPEG-II stream traffic characteristics as they relate to latency and buffer occupancy in network queues. To achieve high multiplexing efficiency we propose a traffic shaping scheme which sets preferred 1-frame generation times among a group of encoders so as to minimize the overall variation in total offered traffic while still allowing the individual encoders to react to scene changes. Simulations show that our scheme results in multiplexing gains of up to 10% enabling us to multiplex twenty 6 Mbps MPEG-II video streams instead of 18 streams over an ATM/SONET OC3 link without latency or cell loss penalty. This scheme is due for a patent.
Constant pressure high throughput membrane permeation testing system
Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.
2014-09-02
The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.
Warburton, W.K.
1999-02-16
A high speed, digitally based, signal processing system is disclosed which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system lifetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired. 31 figs.
47 CFR 76.640 - Support for unidirectional digital cable products on digital cable systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... transport stream shall include virtual channel data in-band in the form of ATSC A/65B: “ATSC Standard...) The data shall, at minimum, describe services carried within the transport stream carrying the PSIP data itself; (B) PSIP data describing a twelve-hour time period shall be carried for each service in...
47 CFR 76.640 - Support for unidirectional digital cable products on digital cable systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... transport stream shall include virtual channel data in-band in the form of ATSC A/65B: “ATSC Standard...) The data shall, at minimum, describe services carried within the transport stream carrying the PSIP data itself; (B) PSIP data describing a twelve-hour time period shall be carried for each service in...
47 CFR 76.640 - Support for unidirectional digital cable products on digital cable systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... transport stream shall include virtual channel data in-band in the form of ATSC A/65B: “ATSC Standard...) The data shall, at minimum, describe services carried within the transport stream carrying the PSIP data itself; (B) PSIP data describing a twelve-hour time period shall be carried for each service in...
47 CFR 76.640 - Support for unidirectional digital cable products on digital cable systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... transport stream shall include virtual channel data in-band in the form of ATSC A/65B: “ATSC Standard...) The data shall, at minimum, describe services carried within the transport stream carrying the PSIP data itself; (B) PSIP data describing a twelve-hour time period shall be carried for each service in...
ERIC Educational Resources Information Center
Palmer, Stuart
2007-01-01
A recent television documentary on the Columbia space shuttle disaster was converted to streaming digital video format for educational use by on- and off-campus students in an engineering management study unit examining issues in professional engineering ethics. An evaluation was conducted to assess the effectiveness of this new resource. Use of…
Cardenas, M.B.; Harvey, J.W.; Packman, A.I.; Scott, D.T.
2008-01-01
Temperature is a primary physical and biogeochemical variable in aquatic systems. Field-based measurement of temperature at discrete sampling points has revealed temperature variability in fluvial systems, but traditional techniques do not readily allow for synoptic sampling schemes that can address temperature-related questions with broad, yet detailed, coverage. We present results of thermal infrared imaging at different stream discharge (base flow and peak flood) conditions using a handheld IR camera. Remotely sensed temperatures compare well with those measured with a digital thermometer. The thermal images show that periphyton, wood, and sandbars induce significant thermal heterogeneity during low stages. Moreover, the images indicate temperature variability within the periphyton community and within the partially submerged bars. The thermal heterogeneity was diminished during flood inundation, when the areas of more slowly moving water to the side of the stream differed in their temperature. The results have consequences for thermally sensitive hydroelogical processes and implications for models of those processes, especially those that assume an effective stream temperature. Copyright ?? 2008 John Wiley & Sons, Ltd.
Development of Data Acquisition Set-up for Steady-state Experiments
NASA Astrophysics Data System (ADS)
Srivastava, Amit K.; Gupta, Arnab D.; Sunil, S.; Khan, Ziauddin
2017-04-01
For short duration experiments, generally digitized data is transferred for processing and storage after the experiment whereas in case of steady-state experiment the data is acquired, processed, displayed and stored continuously in pipelined manner. This requires acquiring data through special techniques for storage and on-the-go viewing data to display the current data trends for various physical parameters. A small data acquisition set-up is developed for continuously acquiring signals from various physical parameters at different sampling rate for long duration experiment. This includes the hardware set-up for signal digitization, Field Programmable Gate Arrays (FPGA) based timing system for clock synchronization and event/trigger distribution, time slicing of data streams for storage of data chunks to enable viewing of data during acquisition and channel profile display through down sampling etc. In order to store a long data stream of indefinite/long time duration, the data stream is divided into data slices/chunks of user defined time duration. Data chunks avoid the problem of non-access of server data until the channel data file is closed at the end of the long duration experiment. A graphical user interface has been developed in Lab VIEW application development environment for configuring the data acquisition hardware and storing data chunks on local machine as well as at remote data server through Python for further data access. The data plotting and analysis utilities have been developed with Python software, which provides tools for further data processing. This paper describes the development and implementation of data acquisition for steady-state experiment.
Ultralow-Power Digital Correlator for Microwave Polarimetry
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Hass, K. Joseph
2004-01-01
A recently developed high-speed digital correlator is especially well suited for processing readings of a passive microwave polarimeter. This circuit computes the autocorrelations of, and the cross-correlations among, data in four digital input streams representing samples of in-phase (I) and quadrature (Q) components of two intermediate-frequency (IF) signals, denoted A and B, that are generated in heterodyne reception of two microwave signals. The IF signals arriving at the correlator input terminals have been digitized to three levels (-1,0,1) at a sampling rate up to 500 MHz. Two bits (representing sign and magnitude) are needed to represent the instantaneous datum in each input channel; hence, eight bits are needed to represent the four input signals during any given cycle of the sampling clock. The accumulation (integration) time for the correlation is programmable in increments of 2(exp 8) cycles of the sampling clock, up to a maximum of 2(exp 24) cycles. The basic functionality of the correlator is embodied in 16 correlation slices, each of which contains identical logic circuits and counters (see figure). The first stage of each correlation slice is a logic gate that computes one of the desired correlations (for example, the autocorrelation of the I component of A or the negative of the cross-correlation of the I component of A and the Q component of B). The sampling of the output of the logic gate output is controlled by the sampling-clock signal, and an 8-bit counter increments in every clock cycle when the logic gate generates output. The most significant bit of the 8-bit counter is sampled by a 16-bit counter with a clock signal at 2(exp 8) the frequency of the sampling clock. The 16-bit counter is incremented every time the 8-bit counter rolls over.
IF digitization receiver of wideband digital array radar test-bed
NASA Astrophysics Data System (ADS)
Li, Weixing; Zhang, Yue; Lin, Jianzhi; Chen, Zengping
2014-10-01
In this paper, an X-band, 8-element wideband digital array radar (DAR) test-bed is presented, which makes use of a novel digital backend coupled with highly-integrated, multi-channel intermediate frequency (IF) digital receiver. Radar returns are received by the broadband antenna and then down-converted to the IF of 0.6GHz-3.0GHz. Four band-pass filters are applied in the front-end to divide the IF returns into four frequency bands with the instantaneous bandwidth of 500MHz. Every four array elements utilize a digital receiver, which is focused in this paper. The digital receivers are designed in a compact and flexible manner to meet the demands of DAR system. Each receiver consists of a fourchannel ADC, a high-performance FPGA, four DDR3 chips and two optical transceivers. With the sampling rate of up to 1.2GHz each channel, the ADC is capable of directly sampling the IF returns of four array elements at 10bits. In addition to serving as FIFO and controller, the onboard FPGA is also utilized for the implementation of various real-time algorithms such as DDC and channel calibration. Data is converted to bit stream and transferred through two low overhead, high data rate and multi-channel optical transceivers. Key technologies such as channel calibration and wideband DOA are studied with the measured data which is obtained in the experiments to illustrate the functionality of the system.
An evaluation of underwater epoxies to permanently install temperature sensors in mountain streams
Daniel J. Isaak; Dona L. Horan
2011-01-01
Stream temperature regimes are of fundamental importance in understanding the patterns and processes in aquatic ecosystems, and inexpensive digital sensors provide accurate and repeated measurements of temperature. Most temperature measurements in mountain streams are made only during summer months because of logistical constraints associated with stream access and...
Fast algorithm for automatically computing Strahler stream order
Lanfear, Kenneth J.
1990-01-01
An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.
Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny
2018-01-01
A better understanding of the dominant source areas and transport pathways of pesticide losses to surface water is needed for targeting mitigation efforts in a more cost-effective way. To this end, we monitored pesticides in surface water in an agricultural catchment typical of one of the main crop production regions in Sweden. Three small sub-catchments (88-242ha) were selected for water sampling based on a high-resolution digital soil map developed from proximal sensing methods and soil sampling; one sub-catchment had a high proportion of clay soils, another was dominated by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. These samples were analyzed by LC-MS/MS for 99 compounds, including most of the polar and semi-polar pesticides frequently used in Swedish agriculture. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide occurrence in the stream between the three sub-catchments, with both the numbers of detected compounds and concentrations being the largest in the area with a high proportion of clay soils and with very few detections in the sandy sub-catchment. Macropore flow to drains was most likely the dominant loss pathway in the studied area. Many of the compounds that were detected in drainage and stream water samples had not been applied for several years. This suggests that despite the predominant role of fast flow pathways in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil horizons where degradation is slow. Copyright © 2017 Elsevier B.V. All rights reserved.
The road to NHDPlus — Advancements in digital stream networks and associated catchments
Moore, Richard B.; Dewald, Thomas A.
2016-01-01
A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water-related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium-resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate-and-transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user-defined applications.
Rea, A.H.; Tortorelli, R.L.
1997-01-01
This digital report contains two digital-map grids of data that were used to develop peak-flow regression equations in Tortorelli, 1997, 'Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 97-4202. One data set is a grid of mean annual precipitation, in inches, based on the period 1961-90, for Oklahoma. The data set was derived from the PRISM (Parameter-elevation Regressions on Independent Slopes Model) mean annual precipitation grid for the United States, developed by Daly, Neilson, and Phillips (1994, 'A statistical-topographic model for mapping climatological precipitation over mountainous terrain:' Journal of Applied Meteorology, v. 33, no. 2, p. 140-158). The second data set is a grid of generalized skew coefficients of logarithms of annual maximum streamflow for Oklahoma streams less than or equal to 2,510 square miles in drainage area. This grid of skew coefficients is taken from figure 11 of Tortorelli and Bergman, 1985, 'Techniques for estimating flood peak discharges for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 84-4358. To save disk space, the skew coefficient values have been multiplied by 100 and rounded to integers with two significant digits. The data sets are provided in an ASCII grid format.
An Analysis of Music Fan towards Music Streaming Purchase Intention of Thailand's Music Industry
ERIC Educational Resources Information Center
Sanitnarathorn, Pannawit
2018-01-01
Digital music streaming are climbing but overall music revenue is declining with digital music piracy being blamed as the culprit. In a 10 year period from 2003 to 2013, global music sales dropped from $US23.3 to $US15 billion dollars with Thailand's music industry following the trend dropping from $US 304 million in 2010 to $US 279 million in…
Roadside-based communication system and method
NASA Technical Reports Server (NTRS)
Bachelder, Aaron D. (Inventor)
2007-01-01
A roadside-based communication system providing backup communication between emergency mobile units and emergency command centers. In the event of failure of a primary communication, the mobile units transmit wireless messages to nearby roadside controllers that may take the form of intersection controllers. The intersection controllers receive the wireless messages, convert the messages into standard digital streams, and transmit the digital streams along a citywide network to a destination intersection or command center.
ERIC Educational Resources Information Center
Raths, David
2008-01-01
With the widespread digitization of art, photography, and music, plus the introduction of streaming video, many colleges and universities are realizing that they must develop or purchase systems to preserve their school's digitized objects; that they must create searchable databases so that researchers can find and share copies of digital files;…
ATLAS Live: Collaborative Information Streams
NASA Astrophysics Data System (ADS)
Goldfarb, Steven; ATLAS Collaboration
2011-12-01
I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.
A Standardized Interface for Obtaining Digital Planetary and Heliophysics Time Series Data
NASA Astrophysics Data System (ADS)
Vandegriff, Jon; Weigel, Robert; Faden, Jeremy; King, Todd; Candey, Robert
2016-10-01
We describe a low level interface for accessing digital Planetary and Heliophysics data, focusing primarily on time-series data from in-situ instruments. As the volume and variety of planetary data has increased, it has become harder to merge diverse datasets into a common analysis environment. Thus we are building low-level computer-to-computer infrastructure to enable data from different missions or archives to be able to interoperate. The key to enabling interoperability is a simple access interface that standardizes the common capabilities available from any data server: 1. identify the data resources that can be accessed; 2. describe each resource; and 3. get the data from a resource. We have created a standardized way for data servers to perform each of these three activities. We are also developing a standard streaming data format for the actual data content to be returned (i.e., the result of item 3). Our proposed standard access interface is simple enough that it could be implemented on top of or beside existing data services, or it could even be fully implemented by a small data provider as a way to ensure that the provider's holdings can participate in larger data systems or joint analysis with other datasets. We present details of the interface and of the streaming format, including a sample server designed to illustrate the data request and streaming capabilities.
COMPLEX CONDITIONAL CONTROL BY PIGEONS IN A CONTINUOUS VIRTUAL ENVIRONMENT
Qadri, Muhammad A. J.; Reid, Sean; Cook, Robert G.
2016-01-01
We tested two pigeons in a continuously streaming digital environment. Using animation software that constantly presented a dynamic, three-dimensional (3D) environment, the animals were tested with a conditional object identification task. The correct object at a given time depended on the virtual context currently streaming in front of the pigeon. Pigeons were required to accurately peck correct target objects in the environment for food reward, while suppressing any pecks to intermixed distractor objects which delayed the next object’s presentation. Experiment 1 established that the pigeons’ discrimination of two objects could be controlled by the surface material of the digital terrain. Experiment 2 established that the pigeons’ discrimination of four objects could be conjunctively controlled by both the surface material and topography of the streaming environment. These experiments indicate that pigeons can simultaneously process and use at least two context cues from a streaming environment to control their identification behavior of passing objects. These results add to the promise of testing interactive digital environments with animals to advance our understanding of cognition and behavior. PMID:26781058
Code of Federal Regulations, 2011 CFR
2011-07-01
....10 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS... AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital... and nonsubscription digital music services in accordance with the provisions of 17 U.S.C. 115. (b...
Code of Federal Regulations, 2013 CFR
2013-07-01
....10 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS... AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital... and nonsubscription digital music services in accordance with the provisions of 17 U.S.C. 115. (b...
Code of Federal Regulations, 2012 CFR
2012-07-01
....10 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS... AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital... and nonsubscription digital music services in accordance with the provisions of 17 U.S.C. 115. (b...
Integrating Streaming Media to Web-based Learning: A Modular Approach.
ERIC Educational Resources Information Center
Miltenoff, Plamen
2000-01-01
Explains streaming technology and discusses how to integrate it into Web-based instruction based on experiences at St. Cloud State University (Minnesota). Topics include a modular approach, including editing, copyright concerns, digitizing, maintenance, and continuing education needs; the role of the library; and how streaming can enhance…
77 FR 68075 - Mechanical and Digital Phonorecord Delivery Compulsory License
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
... LIBRARY OF CONGRESS Copyright Office 37 CFR Part 201 and 210 [Docket No. 2012-7] Mechanical and Digital Phonorecord Delivery Compulsory License AGENCY: Copyright Office, Library of Congress. ACTION... for limited downloads, interactive streaming and incidental digital phonorecord deliveries, and to...
Brakebill, J.W.; Preston, S.D.
2003-01-01
The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.
Modeling of the "PLAN DA MATTUN" Archaeological Site Using a Combination of Different Sensors
NASA Astrophysics Data System (ADS)
Novák, D.; Tokarczyk, P.; Theiler, P. W.
2012-07-01
Plan da Mattun is located at ~2200 metre above sea level in the Tasna valley in alpine south-eastern Switzerland. In this remote location, finds dating back to the time of Ötzi (3000 B.C.) were discovered by archaeologists from the University of Zurich. For detailed investigations of the site as well as for documentation and visualization purposes the archaeologists were interested in digital models of the terrain and of certain boulders. In the presented project a digital terrain model of the rock stream located at the beginning of the valley was created, as well as detailed models of four larger boulders. These boulders average to 15 metre in height and width. The roughness of terrain makes it difficult to access certain areas and requires using multiple surveying techniques in order to cover all objects of interest. Therefore the digital terrain model was acquired using a combination of terrestrial laser scanning (TLS) and photogrammetric recording from an unmanned aerial vehicle (UAV). The larger boulders were reconstructed with a combination of TLS, terrestrial and UAV-based photogrammetry. With this approach it was possible to acquire a highaccuracy dataset over an area of 0.12 km2 under difficult conditions. The dataset includes a digital terrain model with a ground sampling distance of 10 cm and a relative accuracy of 2 cm in moderately sloped terrain. The larger boulders feature a resolution of 1 cm and a relative accuracy of 0.5 cm. The 3D data is to be used both for archaeological visualization purposes and for geological analysis of the rock stream.
Learning in Stochastic Bit Stream Neural Networks.
van Daalen, Max; Shawe-Taylor, John; Zhao, Jieyu
1996-08-01
This paper presents learning techniques for a novel feedforward stochastic neural network. The model uses stochastic weights and the "bit stream" data representation. It has a clean analysable functionality and is very attractive with its great potential to be implemented in hardware using standard digital VLSI technology. The design allows simulation at three different levels and learning techniques are described for each level. The lowest level corresponds to on-chip learning. Simulation results on three benchmark MONK's problems and handwritten digit recognition with a clean set of 500 16 x 16 pixel digits demonstrate that the new model is powerful enough for the real world applications. Copyright 1996 Elsevier Science Ltd
Galloway, Joel M.; Vecchia, Aldo V.
2014-01-01
Modeled sulfate concentrations generally were highest (greater than 750 milligrams per liter) in basins in western North Dakota and lowest (less than 250 milligrams per liter) in basins in the upper Sheyenne River and upper James River. Area-weighted means for the basin characteristics also were computed for 10-digit and 8-digit hydrologic units for streams in North Dakota and modeled sulfate concentrations were computed from the characteristics. The resulting distribution of modeled sulfate concentrations was similar to the distribution of estimates for the 12-digit hydrologic units, but less variable because the basin characteristics were averaged over larger areas.
VLBI2010 Receiver Back End Comparison
NASA Technical Reports Server (NTRS)
Petrachenko, Bill
2013-01-01
VLBI2010 requires a receiver back-end to convert analog RF signals from the receiver front end into channelized digital data streams to be recorded or transmitted electronically. The back end functions are typically performed in two steps: conversion of analog RF inputs into IF bands (see Table 2), and conversion of IF bands into channelized digital data streams (see Tables 1a, 1b and 1c). The latter IF systems are now completely digital and generically referred to as digital back ends (DBEs). In Table 2 two RF conversion systems are compared, and in Tables 1a, 1b, and 1c nine DBE systems are compared. Since DBE designs are advancing rapidly, the data in these tables are only guaranteed to be current near the update date of this document.
Digital pathology: DICOM-conform draft, testbed, and first results.
Zwönitzer, Ralf; Kalinski, Thomas; Hofmann, Harald; Roessner, Albert; Bernarding, Johannes
2007-09-01
Hospital information systems are state of the art nowadays. Therefore, Digital Pathology, also labelled as Virtual Microscopy, has gained increased attention. Triggered by radiology, standardized information models and workflows were world-wide defined based on DICOM. However, DICOM-conform integration of Digital Pathology into existing clinical information systems imposes new problems requiring specific solutions concerning the huge amount of data as well as the special structure of the data to be managed, transferred, and stored. We implemented a testbed to realize and evaluate the workflow of digitized slides from acquisition to archiving. The experiences led to the draft of a DICOM-conform information model that accounted for extensions, definitions, and technical requirements necessary to integrate digital pathology in a hospital-wide DICOM environment. Slides were digitized, compressed, and could be viewed remotely. Real-time transfer of the huge amount of data was optimized using streaming techniques. Compared to a recent discussion in the DICOM Working Group for Digital Pathology (WG26) our experiences led to a preference of a JPEG2000/JPIP-based streaming of the whole slide image. The results showed that digital pathology is feasible but strong efforts by users and vendors are still necessary to integrate Digital Pathology into existing information systems.
ERIC Educational Resources Information Center
Technology & Learning, 2008
2008-01-01
More than ever, teachers are using digital video to enhance their lessons. In fact, the number of schools using video streaming increased from 30 percent to 45 percent between 2004 and 2006, according to Market Data Retrieval. Why the popularity? For starters, video-streaming products are easy to use. They allow teachers to punctuate lessons with…
Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-900 series system
NASA Technical Reports Server (NTRS)
Raphael, David
1995-01-01
This handbook explicates the hardware and software properties of a time division multiplex system. This system is used to sample analog and digital data. The data is then merged with frame synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information in this handbook is required by users to design congruous interface and attest effective utilization of this encoder system. Aydin Vector provides all of the components for these systems to Goddard Space Flight Center/Wallops Flight Facility.
Pattern detection in stream networks: Quantifying spatialvariability in fish distribution
Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.
2004-01-01
Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.
TWO NEW HALO DEBRIS STREAMS IN THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grillmair, C. J., E-mail: carl@ipac.caltech.edu
2014-07-20
Using photometry from Data Release 10 of the northern footprint of the Sloan Digital Sky Survey, we detect two new stellar streams with lengths of between 25° and 50°. The streams, which we designate Hermus and Hyllus, are at distances of between 15 and 23 kpc from the Sun and pass primarily through Hercules and Corona Borealis. Stars in the streams appear to be metal-poor, with [Fe/H] ∼ – 2.3, though we cannot rule out metallicities as high as [Fe/H] = –1.2. While Hermus passes within 1° (in projection) of the globular cluster NGC 6229, a roughly one magnitude difference in distancemore » modulus, combined with no signs of connecting with NGC 6229's Roche lobe, argue against any physical association between the two. Though the two streams almost certainly had different progenitors, similarities in preliminary orbit estimates suggest that those progenitors may themselves have been a product of a single accretion event.« less
An analysis of technology usage for streaming digital video in support of a preclinical curriculum.
Dev, P; Rindfleisch, T C; Kush, S J; Stringer, J R
2000-01-01
Usage of streaming digital video of lectures in preclinical courses was measured by analysis of the data in the log file maintained on the web server. We observed that students use the video when it is available. They do not use it to replace classroom attendance but rather for review before examinations or when a class has been missed. Usage of video has not increased significantly for any course within the 18 month duration of this project.
Modeling Student Cognition in Digital and Nondigital Assessment Environments
ERIC Educational Resources Information Center
DiCerbo, Kristen E.; Xu, Yuning; Levy, Roy; Lai, Emily; Holland, Laura
2017-01-01
Inferences about student knowledge, skills, and attributes based on digital activity still largely come from whether students ultimately get a correct result or not. However, the ability to collect activity stream data as individuals interact with digital environments provides information about students' processes as they progress through learning…
Formal development of a clock synchronization circuit
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1995-01-01
This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.
Streaming Video--The Wave of the Video Future!
ERIC Educational Resources Information Center
Brown, Laura
2004-01-01
Videos and DVDs give the teachers more flexibility than slide projectors, filmstrips, and 16mm films but teachers and students are excited about a new technology called streaming. Streaming allows the educators to view videos on demand via the Internet, which works through the transfer of digital media like video, and voice data that is received…
Calculating terrain indices along streams: A new method for separating stream sides
T. J. Grabs; K. G. Jencso; B. L. McGlynn; J. Seibert
2010-01-01
There is increasing interest in assessing riparian zones and their hydrological and biogeochemical buffering capacity with indices derived from hydrologic landscape analysis of digital elevation data. Upslope contributing area is a common surrogate for lateral water flows and can be used to assess the variability of local water inflows to riparian zones and streams....
Restrepo, John F; Garcia-Sucerquia, Jorge
2012-02-15
We present an automatic procedure for 3D tracking of micrometer-sized particles with high-NA digital lensless holographic microscopy. The method uses a two-feature approach to search for the best focal planes and to distinguish particles from artifacts or other elements on the reconstructed stream of the holograms. A set of reconstructed images is axially projected onto a single image. From the projected image, the centers of mass of all the reconstructed elements are identified. Starting from the centers of mass, the morphology of the profile of the maximum intensity along the reconstruction direction allows for the distinguishing of particles from others elements. The method is tested with modeled holograms and applied to automatically track micrometer-sized bubbles in a sample of 4 mm3 of soda.
Digital images are data: and should be treated as such.
Cromey, Douglas W
2013-01-01
The scientific community has become very concerned about inappropriate image manipulation. In journals that check figures after acceptance, 20-25% of the papers contained at least one figure that did not comply with the journal's instructions to authors. The scientific press continues to report a small, but steady stream of cases of fraudulent image manipulation. Inappropriate image manipulation taints the scientific record, damages trust within science, and degrades science's reputation with the general public. Scientists can learn from historians and photojournalists, who have provided a number of examples of attempts to alter or misrepresent the historical record. Scientists must remember that digital images are numerically sampled data that represent the state of a specific sample when examined with a specific instrument. These data should be carefully managed. Changes made to the original data need to be tracked like the protocols used for other experimental procedures. To avoid pitfalls, unexpected artifacts, and unintentional misrepresentation of the image data, a number of image processing guidelines are offered.
Digital Images Are Data: And Should Be Treated as Such
Cromey, Douglas W.
2014-01-01
The scientific community has become very concerned about inappropriate image manipulation. In journals that check figures after acceptance, 20–25% of the papers contained at least one figure that did not comply with the journal’s instructions to authors. The scientific press continues to report a small, but steady stream of cases of fraudulent image manipulation. Inappropriate image manipulation taints the scientific record, damages trust within science, and degrades science’s reputation with the general public. Scientists can learn from historians and photojournalists, who have provided a number of examples of attempts to alter or misrepresent the historical record. Scientists must remember that digital images are numerically sampled data that represent the state of a specific sample when examined with a specific instrument. These data should be carefully managed. Changes made to the original data need to be tracked like the protocols used for other experimental procedures. To avoid pitfalls, unexpected artifacts, and unintentional misrepresentation of the image data, a number of image processing guidelines are offered. PMID:23026995
Code of Federal Regulations, 2013 CFR
2013-07-01
..., and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES... PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES... PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES... PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries...
Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.
2006-01-01
The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each stream reach. State watershed boundaries replaced the Digital Elevation Model-derived watersheds where coincident. After a number of corrections, the watersheds were coded to indicate major and minor basin, mean annual streamflow, and each watershed's unique identifier as well as that of the downstream watershed. Land segments and watersheds were intersected to create land-watershed segments for the model.
NASA Astrophysics Data System (ADS)
Benkler, Erik; Telle, Harald R.
2007-06-01
An improved phase-locked loop (PLL) for versatile synchronization of a sampling pulse train to an optical data stream is presented. It enables optical sampling of the true waveform of repetitive high bit-rate optical time division multiplexed (OTDM) data words such as pseudorandom bit sequences. Visualization of the true waveform can reveal details, which cause systematic bit errors. Such errors cannot be inferred from eye diagrams and require word-synchronous sampling. The programmable direct-digital-synthesis circuit used in our novel PLL approach allows flexible adaption of virtually any problem-specific synchronization scenario, including those required for waveform sampling, for jitter measurements by slope detection, and for classical eye-diagrams. Phase comparison of the PLL is performed at 10-GHz OTDM base clock rate, leading to a residual synchronization jitter of less than 70 fs.
King, Harley D.; Chaffee, Maurice A.
2000-01-01
INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado Desert BLM Resource Area and vicinity. Included in the 1,245 stream-sediment samples collected by the USGS are 284 samples collected as part of the current study, 817 samples collected as part of investigations of the12 BLM WSAs and re-analyzed for the present study, 45 samples from the Needles 1? X 2? quadrangle, and 99 samples from the El Centro 1? X 2? quadrangle. The NURE stream-sediment and soil samples were re-analyzed as part of the USGS study in the Needles quadrangle. Analytical data for samples from the Chocolate Mountain Aerial Gunnery Range, which is located within the area of the NECD, were previously reported (King and Chaffee, 1999a). For completeness, these results are also included in this report. Analytical data for samples from the area of Joshua Tree National Park that is within the NECD have also been reported (King and Chaffee, 1999b). These results are not included in this report. The analytical data presented here can be used for baseline geochemical, mineral resource, and environmental geochemical studies.
A video event trigger for high frame rate, high resolution video technology
NASA Astrophysics Data System (ADS)
Williams, Glenn L.
1991-12-01
When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.
A video event trigger for high frame rate, high resolution video technology
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1991-01-01
When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.
Recognition of degraded handwritten digits using dynamic Bayesian networks
NASA Astrophysics Data System (ADS)
Likforman-Sulem, Laurence; Sigelle, Marc
2007-01-01
We investigate in this paper the application of dynamic Bayesian networks (DBNs) to the recognition of handwritten digits. The main idea is to couple two separate HMMs into various architectures. First, a vertical HMM and a horizontal HMM are built observing the evolving streams of image columns and image rows respectively. Then, two coupled architectures are proposed to model interactions between these two streams and to capture the 2D nature of character images. Experiments performed on the MNIST handwritten digit database show that coupled architectures yield better recognition performances than non-coupled ones. Additional experiments conducted on artificially degraded (broken) characters demonstrate that coupled architectures better cope with such degradation than non coupled ones and than discriminative methods such as SVMs.
Parallel-Processing Equalizers for Multi-Gbps Communications
NASA Technical Reports Server (NTRS)
Gray, Andrew; Ghuman, Parminder; Hoy, Scott; Satorius, Edgar H.
2004-01-01
Architectures have been proposed for the design of frequency-domain least-mean-square complex equalizers that would be integral parts of parallel- processing digital receivers of multi-gigahertz radio signals and other quadrature-phase-shift-keying (QPSK) or 16-quadrature-amplitude-modulation (16-QAM) of data signals at rates of multiple gigabits per second. Equalizers as used here denotes receiver subsystems that compensate for distortions in the phase and frequency responses of the broad-band radio-frequency channels typically used to convey such signals. The proposed architectures are suitable for realization in very-large-scale integrated (VLSI) circuitry and, in particular, complementary metal oxide semiconductor (CMOS) application- specific integrated circuits (ASICs) operating at frequencies lower than modulation symbol rates. A digital receiver of the type to which the proposed architecture applies (see Figure 1) would include an analog-to-digital converter (A/D) operating at a rate, fs, of 4 samples per symbol period. To obtain the high speed necessary for sampling, the A/D and a 1:16 demultiplexer immediately following it would be constructed as GaAs integrated circuits. The parallel-processing circuitry downstream of the demultiplexer, including a demodulator followed by an equalizer, would operate at a rate of only fs/16 (in other words, at 1/4 of the symbol rate). The output from the equalizer would be four parallel streams of in-phase (I) and quadrature (Q) samples.
Compton suppression and event triggering in a commercial data acquisition system
NASA Astrophysics Data System (ADS)
Tabor, Samuel; Caussyn, D. D.; Tripathi, Vandana; Vonmoss, J.; Liddick, S. N.
2012-10-01
A number of groups are starting to use flash digitizer systems to directly convert the preamplifier signals of high-resolution Ge detectors to a stream of digital data. Some digitizers are also equipped with software constant fraction discriminator algorithms capable of operating on the resulting digital data stream to provide timing information. Because of the dropping cost per channel of these systems, it should now be possible to also connect outputs of the Bismuth Germanate (BGO) scintillators used for Compton suppression to other digitizer inputs so that BGO logic signals can also be available in the same system. This provides the possibility to perform all the Compton suppression and multiplicity trigger logic within the digital system, thus eliminating the need for separate timing filter amplifiers (TFA), constant fraction discriminators (CFD), logic units, and lots of cables. This talk will describe the performance of such a system based on Pixie16 modules from XIA LLC with custom field programmable gate array (FPGA) programming for an array of Compton suppressed single Ge crystal and 4-crystal ``Clover'' detector array along with optional particle detectors. Initial tests of the system have produced results comparable with the current traditional system of individual electronics and peak sensing analog to digital converters. The advantages of the all digital system will be discussed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 385.11 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND... MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.11 Definitions. For purposes of this subpart...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 385.11 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND... MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.11 Definitions. For purposes of this subpart...
37 CFR 385.14 - Promotional royalty rate.
Code of Federal Regulations, 2012 CFR
2012-07-01
....14 Section 385.14 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS... FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.14 Promotional royalty rate. (a...
37 CFR 385.14 - Promotional royalty rate.
Code of Federal Regulations, 2013 CFR
2013-07-01
....14 Section 385.14 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS... FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.14 Promotional royalty rate. (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 385.11 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND... MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.11 Definitions. For purposes of this subpart...
ERIC Educational Resources Information Center
Anderson, Talea
2015-01-01
In 2013-2014, Brooks Library at Central Washington University (CWU) launched library content in three systems: a digital asset-management system, an institutional repository (IR), and a web-based discovery layer. In early 2014, the archives at the library began to use these systems to disseminate media recently digitized from legacy formats. As…
Pulse Code Modulation (PCM) encoder handbook for Aydin Vector MMP-600 series system
NASA Technical Reports Server (NTRS)
Currier, S. F.; Powell, W. R.
1986-01-01
The hardware and software characteristics of a time division multiplex system are described. The system is used to sample analog and digital data. The data is merged with synchronization information to produce a serial pulse coded modulation (PCM) bit stream. Information presented herein is required by users to design compatible interfaces and assure effective utilization of this encoder system. GSFC/Wallops Flight Facility has flown approximately 50 of these systems through 1984 on sounding rockets with no inflight failures. Aydin Vector manufactures all of the components for these systems.
Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y
2016-03-01
Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.
Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation
NASA Astrophysics Data System (ADS)
Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y.
2016-03-01
Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.
The GOES-R Rebroadcast (GRB) Data Stream Simulator
NASA Astrophysics Data System (ADS)
Dittberner, G. J.; Gibbons, K.; Czopkiewicz, E.; Miller, C.; Brown-Bergtold, B.; Haman, B.; Marley, S.
2013-12-01
GOES Rebroadcast (GRB) signals in the GOES-R era will replace the current legacy GOES Variable (GVAR) signal and will have substantially different characteristics, including a change in data rate from a single 2.1 Mbps stream to two digital streams of 15.5 Mbps each. Five GRB Simulators were developed as portable systems that output a high-fidelity stream of Consultative Committee for Space Data Systems (CCSDS) formatted GRB packet data equivalent to live GRB data. The data are used for on-site testing of user ingest and data handling systems known as field terminal sites. The GRB Simulator is a fully self-contained system which includes all software and hardware units needed for operation. The operator manages configurations to edit preferences, define individual test scenarios, and manage event logs and reports. Simulations are controlled by test scenarios, which are scripts that specify the test data and provide a series of actions for the GRB Simulator to perform when generating GRB output. Scenarios allow for the insertion of errors or modification of GRB packet headers for testing purposes. The GRB Simulator provides a built-in editor for managing scenarios. The GRB Simulator provides GRB data as either baseband (digital) or Intermediate Frequency (IF) output to the test system. GRB packet data are sent in the same two output streams used in the operational system: one for Left Hand Circular Polarization (LHCP) and one for Right Hand Circular Polarization (RHCP). Use of circular polarization in the operational system allows the transmitting antenna to multiplex the two digital streams into the same signal, thereby doubling the available bandwidth. The GRB Simulator is designed to be used at sites that receive the GRB downlink.
Digital PCM bit synchronizer and detector
NASA Astrophysics Data System (ADS)
Moghazy, A. E.; Maral, G.; Blanchard, A.
1980-08-01
A theoretical analysis of a digital self-bit synchronizer and detector is presented and supported by the implementation of an experimental model that utilizes standard TTL logic circuits. This synchronizer is based on the generation of spectral line components by nonlinear filtering of the received bit stream, and extracting the line by a digital phase-locked loop (DPLL). The extracted reference signal instructs a digital matched filter (DMF) data detector. This realization features a short acquisition time and an all-digital structure.
Cederstrand, J.R.; Rea, A.H.
1995-01-01
This document provides a general description of the procedures used to develop the data sets included on this compact disc. This compact disc contains watershed boundaries for Oklahoma, a digital elevation model, and other data sets derived from the digital elevation model. The digital elevation model was produced using the ANUDEM software package, written by Michael Hutchinson and licensed from the Centre for Resource and Environmental Studies at The Australian National University. Elevation data (hypsography) and streams (hydrography) from digital versions of the U.S. Geological Survey 1:100,000-scale topographic maps were used by the ANUDEM package to produce a hydrologically conditioned digital elevation model with a 60-meter cell size. This digital elevation model is well suited for drainage-basin delineation using automated techniques. Additional data sets include flow-direction, flow-accumulation, and shaded-relief grids, all derived from the digital elevation model, and the hydrography data set used in producing the digital elevation model. The watershed boundaries derived from the digital elevation model have been edited to be consistent with contours and streams from the U.S. Geological Survey 1:100,000-scale topographic maps. The watershed data set includes boundaries for 11-digit Hydrologic Unit Codes (watersheds) within Oklahoma, and 8-digit Hydrologic Unit Codes (cataloging units) outside Oklahoma. Cataloging-unit boundaries based on 1:250,000-scale maps outside Oklahoma for the Arkansas, Red, and White River basins are included. The other data sets cover Oklahoma, and where available, portions of 1:100,000-scale quadrangles adjoining Oklahoma.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false [Reserved] 385.15 Section 385.15 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS... AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false [Reserved] 385.15 Section 385.15 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS... AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false [Reserved] 385.15 Section 385.15 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS... AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false [Reserved] 385.15 Section 385.15 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS... AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital...
Cartwright, Jennifer M.; Diehl, Timothy H.
2017-01-17
High-resolution digital elevation models (DEMs) derived from light detection and ranging (lidar) enable investigations of stream-channel geomorphology with much greater precision than previously possible. The U.S. Geological Survey has developed the DEM Geomorphology Toolbox, containing seven tools to automate the identification of sites of geomorphic instability that may represent sediment sources and sinks in stream-channel networks. These tools can be used to modify input DEMs on the basis of known locations of stormwater infrastructure, derive flow networks at user-specified resolutions, and identify possible sites of geomorphic instability including steep banks, abrupt changes in channel slope, or areas of rough terrain. Field verification of tool outputs identified several tool limitations but also demonstrated their overall usefulness in highlighting likely sediment sources and sinks within channel networks. In particular, spatial clusters of outputs from multiple tools can be used to prioritize field efforts to assess and restore eroding stream reaches.
Viewing Michigan's Digital Future: Results of a Survey of Educators' Use of Digital Video in the USA
ERIC Educational Resources Information Center
Mardis, Marcia A.
2009-01-01
Digital video is a growing and important presence in student learning. This paper reports the results of a survey of American educators in Michigan (n = 426) conducted in spring 2008. The survey included questions about educators' attitudes toward the streaming and downloadable video services available to them in their schools. The survey results…
Out of Print: Reimagining the K-12 Textbook in a Digital Age
ERIC Educational Resources Information Center
Fletcher, Geoffrey; Schaffhauser, Dian; Levin, Douglas
2012-01-01
Technological innovation is driving fundamental changes in all aspects of our lives. This is especially true of digital content, as our use of e-books, downloadable music, streaming television and movies, and online social networks has exploded. However, the explosive growth in our use of digital content seems so far to have eluded many of the 50…
Booth, Robert W
2017-03-01
Attentional bias to threat is a much-studied feature of anxiety; it is typically assessed using response time (RT) tasks such as the dot probe. Findings regarding the time course of attentional bias have been inconsistent, possibly because RT tasks are sensitive to processes downstream of attention. Attentional bias was assessed using an accuracy-based task in which participants detected a single digit in two simultaneous rapid serial visual presentation (RSVP) streams of letters. Before the target, two coloured shapes were presented simultaneously, one in each RSVP stream; one shape had previously been associated with threat through Pavlovian fear conditioning. Attentional bias was indicated wherever participants identified targets in the threat's RSVP stream more accurately than targets in the other RSVP stream. In 87 unselected undergraduates, trait anxiety only predicted attentional bias when the target was presented immediately following the shapes, i.e. 160 ms later; by 320 ms the bias had disappeared. This suggests attentional bias in anxiety can be extremely brief and transitory. This initial study utilised an analogue sample, and was unable to physiologically verify the efficacy of the conditioning. The next steps will be to verify these results in a sample of diagnosed anxious patients, and to use alternative threat stimuli. The results of studies using response time to assess the time course of attentional bias may partially reflect later processes such as decision making and response preparation. This may limit the efficacy of therapies aiming to retrain attentional biases using response time tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2014-03-27
This final research report culminates a decade-long initiative to demonstrate and implement streaming media technologies at CONNDOT. This effort began in 2001 during an earlier related-study (SPR-2231) that concluded in 2006. This study (SPR-2254) re...
37 CFR 385.14 - Promotional royalty rate.
Code of Federal Regulations, 2014 CFR
2014-07-01
....14 Section 385.14 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS... FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming and Limited... promotional limited downloads offered in the context of a free trial period for a digital music subscription...
37 CFR 385.17 - Effect of rates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 385.17 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND... MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.17 Effect of rates. In any future proceedings...
37 CFR 385.17 - Effect of rates.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 385.17 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND... MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.17 Effect of rates. In any future proceedings...
37 CFR 385.17 - Effect of rates.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 385.17 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND... MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.17 Effect of rates. In any future proceedings...
37 CFR 385.17 - Effect of rates.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 385.17 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND... MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.17 Effect of rates. In any future proceedings...
Mars, J.C.; Crowley, J.K.
2003-01-01
Remotely sensed hyperspectral and digital elevation data from southeastern Idaho are combined in a new method to assess mine waste contamination. Waste rock from phosphorite mining in the area contains selenium, cadmium, vanadium, and other metals. Toxic concentrations of selenium have been found in plants and soils near some mine waste dumps. Eighteen mine waste dumps and five vegetation cover types in the southeast Idaho phosphate district were mapped by using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) imagery and field data. The interaction of surface water runoff with mine waste was assessed by registering the AVIRIS results to digital elevation data, enabling determinations of (1) mine dump morphologies, (2) catchment watershed areas above each mine dump, (3) flow directions from the dumps, (4) stream gradients, and (5) the extent of downstream wetlands available for selenium absorption. Watersheds with the most severe selenium contamination, such as the South Maybe Canyon watershed, are associated with mine dumps that have large catchment watershed areas, high stream gradients, a paucity of downstream wetlands, and dump forms that tend to obstruct stream flow. Watersheds associated with low concentrations of dissolved selenium, such as Angus Creek, have mine dumps with small catchment watershed areas, low stream gradients, abundant wetlands vegetation, and less obstructing dump morphologies. ?? 2002 Elsevier Science Inc. All rights reserved.
622-Mbps Orthogonal Frequency Division Multiplexing (OFDM) Digital Modem Implemented
NASA Technical Reports Server (NTRS)
Kifle, Muli; Bizon, Thomas P.; Nguyen, Nam T.; Tran, Quang K.; Mortensen, Dale J.
2002-01-01
Future generation space communications systems feature significantly higher data rates and relatively smaller frequency spectrum allocations than systems currently deployed. This requires the application of bandwidth- and power-efficient signal transmission techniques. There are a number of approaches to implementing such techniques, including analog, digital, mixed-signal, single-channel, or multichannel systems. In general, the digital implementations offer more advantages; however, a fully digital implementation is very difficult because of the very high clock speeds required. Multichannel techniques are used to reduce the sampling rate. One such technique, multicarrier modulation, divides the data into a number of low-rate channels that are stacked in frequency. Orthogonal frequency division multiplexing (OFDM), a form of multicarrier modulation, is being proposed for numerous systems, including mobile wireless and digital subscriber link communication systems. In response to this challenge, NASA Glenn Research Center's Communication Technology Division has developed an OFDM digital modem (modulator and demodulator) with an aggregate information throughput of 622 Mbps. The basic OFDM waveform is constructed by dividing an incoming data stream into four channels, each using either 16- ary quadrature amplitude modulation (16-QAM) or 8-phase shift keying (8-PSK). An efficient implementation for an OFDM architecture is being achieved using the combination of a discrete Fourier transform (DFT) at the transmitter to digitally stack the individual carriers, inverse DFT at the receiver to perform the frequency translations, and a polyphase filter to facilitate the pulse shaping.
Learning Analytics Platform, towards an Open Scalable Streaming Solution for Education
ERIC Educational Resources Information Center
Lewkow, Nicholas; Zimmerman, Neil; Riedesel, Mark; Essa, Alfred
2015-01-01
Next generation digital learning environments require delivering "just-in-time feedback" to learners and those who support them. Unlike traditional business intelligence environments, streaming data requires resilient infrastructure that can move data at scale from heterogeneous data sources, process the data quickly for use across…
37 CFR 385.16 - Reproduction and distribution rights covered.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.16 Reproduction and...
37 CFR 385.16 - Reproduction and distribution rights covered.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.16 Reproduction and...
37 CFR 385.16 - Reproduction and distribution rights covered.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.16 Reproduction and...
37 CFR 385.16 - Reproduction and distribution rights covered.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.16 Reproduction and...
Teaching Energy Geographies via Videography
ERIC Educational Resources Information Center
Graybill, Jessica K.
2016-01-01
In our digital age of information acquisition, multimedia information streams are constant, constantly changing and often contain multiple messages about topics important to everyday life, such as energy geographies. Recognizing that college students are prime consumers of digital information, it seems that crafting of academic engagement for and…
Digital implementation of a neural network for imaging
NASA Astrophysics Data System (ADS)
Wood, Richard; McGlashan, Alex; Yatulis, Jay; Mascher, Peter; Bruce, Ian
2012-10-01
This paper outlines the design and testing of a digital imaging system that utilizes an artificial neural network with unsupervised and supervised learning to convert streaming input (real time) image space into parameter space. The primary objective of this work is to investigate the effectiveness of using a neural network to significantly reduce the information density of streaming images so that objects can be readily identified by a limited set of primary parameters and act as an enhanced human machine interface (HMI). Many applications are envisioned including use in biomedical imaging, anomaly detection and as an assistive device for the visually impaired. A digital circuit was designed and tested using a Field Programmable Gate Array (FPGA) and an off the shelf digital camera. Our results indicate that the networks can be readily trained when subject to limited sets of objects such as the alphabet. We can also separate limited object sets with rotational and positional invariance. The results also show that limited visual fields form with only local connectivity.
New metrics for evaluating channel networks extracted in grid digital elevation models
NASA Astrophysics Data System (ADS)
Orlandini, S.; Moretti, G.
2017-12-01
Channel networks are critical components of drainage basins and delta regions. Despite the important role played by these systems in hydrology and geomorphology, there are at present no well-defined methods to evaluate numerically how two complex channel networks are geometrically far apart. The present study introduces new metrics for evaluating numerically channel networks extracted in grid digital elevation models with respect to a reference channel network (see the figure below). Streams of the evaluated network (EN) are delineated as in the Horton ordering system and examined through a priority climbing algorithm based on the triple index (ID1,ID2,ID3), where ID1 is a stream identifier that increases as the elevation of lower end of the stream increases, ID2 indicates the ID1 of the draining stream, and ID3 is the ID1 of the corresponding stream in the reference network (RN). Streams of the RN are identified by the double index (ID1,ID2). Streams of the EN are processed in the order of increasing ID1 (plots a-l in the figure below). For each processed stream of the EN, the closest stream of the RN is sought by considering all the streams of the RN sharing the same ID2. This ID2 in the RN is equal in the EN to the ID3 of the stream draining the processed stream, the one having ID1 equal to the ID2 of the processed stream. The mean stream planar distance (MSPD) and the mean stream elevation drop (MSED) are computed as the mean distance and drop, respectively, between corresponding streams. The MSPD is shown to be useful for evaluating slope direction methods and thresholds for channel initiation, whereas the MSED is shown to indicate the ability of grid coarsening strategies to retain the profiles of observed channels. The developed metrics fill a gap in the existing literature by allowing hydrologists and geomorphologists to compare descriptions of a fixed physical system obtained by using different terrain analysis methods, or different physical systems described by using the same methods.
Modularized compact positron emission tomography detector for rapid system development
Xi, Daoming; Liu, Xiang; Zeng, Chen; Liu, Wei; Li, Yanzhao; Hua, Yuexuan; Mei, Xiongze; Kim, Heejong; Xiao, Peng; Kao, Chien-Min; Xie, Qingguo
2016-01-01
Abstract. We report the development of a modularized compact positron emission tomography (PET) detector that outputs serial streams of digital samples of PET event pulses via an Ethernet interface using the UDP/IP protocol to enable rapid configuration of a PET system by connecting multiple such detectors via a network switch to a computer. Presently, the detector is 76 mm×50 mm×55 mm in extent (excluding I/O connectors) and contains an 18×12 array of 4.2×4.2×20 mm3 one-to-one coupled lutetium-yttrium oxyorthosilicate/silicon photomultiplier pixels. It employs cross-wire and stripline readouts to merge the outputs of the 216 detector pixels to 24 channels. Signals at these channels are sampled using a built-in 24-ch, 4-level field programmable gate arrays-only multivoltage threshold digitizer. In the computer, software programs are implemented to analyze the digital samples to extract event information and to perform energy qualification and coincidence filtering. We have developed two such detectors. We show that all their pixels can be accurately discriminated and measure a crystal-level energy resolution of 14.4% to 19.4% and a detector-level coincidence time resolution of 1.67 ns FWHM. Preliminary imaging results suggests that a PET system based on the detectors can achieve an image resolution of ∼1.6 mm. PMID:28018941
Rea, Alan; Cederstrand, Joel R.
1994-01-01
The data sets on this compact disc are a compilation of several geographic reference data sets of interest to the global-change research community. The data sets were chosen with input from the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) Data Committee and the GCIP Hydrometeorology and Atmospheric Subpanels. The data sets include: locations and periods of record for stream gages, reservoir gages, and meteorological stations; a 500-meter-resolution digital elevation model; grid-node locations for the Eta numerical weather-prediction model; and digital map data sets of geology, land use, streams, large reservoirs, average annual runoff, average annual precipitation, average annual temperature, average annual heating and cooling degree days, hydrologic units, and state and county boundaries. Also included are digital index maps for LANDSAT scenes, and for the U.S. Geological Survey 1:250,000, 1:100,000, and 1:24,000-scale map series. Most of the data sets cover the conterminous United States; the digital elevation model also includes part of southern Canada. The stream and reservoir gage and meteorological station files cover all states having area within the Mississippi River Basin plus that part of the Mississippi River Basin lying within Canada. Several data-base retrievals were processed by state, therefore many sites outside the Mississippi River Basin are included.
VLSI-based video event triggering for image data compression
NASA Astrophysics Data System (ADS)
Williams, Glenn L.
1994-02-01
Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.
VLSI-based Video Event Triggering for Image Data Compression
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1994-01-01
Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.
37 CFR 385.12 - Calculation of royalty payments in general.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.12 Calculation of royalty...
37 CFR 385.12 - Calculation of royalty payments in general.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming, Other Incidental Digital Phonorecord Deliveries and Limited Downloads § 385.12 Calculation of royalty...
Digital elevation model (DEM) data are essential to hydrological applications and have been widely used to calculate a variety of useful topographic characteristics, e.g., slope, flow direction, flow accumulation area, stream channel network, topographic index, and others. Excep...
Influence of video compression on the measurement error of the television system
NASA Astrophysics Data System (ADS)
Sotnik, A. V.; Yarishev, S. N.; Korotaev, V. V.
2015-05-01
Video data require a very large memory capacity. Optimal ratio quality / volume video encoding method is one of the most actual problem due to the urgent need to transfer large amounts of video over various networks. The technology of digital TV signal compression reduces the amount of data used for video stream representation. Video compression allows effective reduce the stream required for transmission and storage. It is important to take into account the uncertainties caused by compression of the video signal in the case of television measuring systems using. There are a lot digital compression methods. The aim of proposed work is research of video compression influence on the measurement error in television systems. Measurement error of the object parameter is the main characteristic of television measuring systems. Accuracy characterizes the difference between the measured value abd the actual parameter value. Errors caused by the optical system can be selected as a source of error in the television systems measurements. Method of the received video signal processing is also a source of error. Presence of error leads to large distortions in case of compression with constant data stream rate. Presence of errors increases the amount of data required to transmit or record an image frame in case of constant quality. The purpose of the intra-coding is reducing of the spatial redundancy within a frame (or field) of television image. This redundancy caused by the strong correlation between the elements of the image. It is possible to convert an array of image samples into a matrix of coefficients that are not correlated with each other, if one can find corresponding orthogonal transformation. It is possible to apply entropy coding to these uncorrelated coefficients and achieve a reduction in the digital stream. One can select such transformation that most of the matrix coefficients will be almost zero for typical images . Excluding these zero coefficients also possible reducing of the digital stream. Discrete cosine transformation is most widely used among possible orthogonal transformation. Errors of television measuring systems and data compression protocols analyzed In this paper. The main characteristics of measuring systems and detected sources of their error detected. The most effective methods of video compression are determined. The influence of video compression error on television measuring systems was researched. Obtained results will increase the accuracy of the measuring systems. In television image quality measuring system reduces distortion identical distortion in analog systems and specific distortions resulting from the process of coding / decoding digital video signal and errors in the transmission channel. By the distortions associated with encoding / decoding signal include quantization noise, reducing resolution, mosaic effect, "mosquito" effect edging on sharp drops brightness, blur colors, false patterns, the effect of "dirty window" and other defects. The size of video compression algorithms used in television measuring systems based on the image encoding with intra- and inter prediction individual fragments. The process of encoding / decoding image is non-linear in space and in time, because the quality of the playback of a movie at the reception depends on the pre- and post-history of a random, from the preceding and succeeding tracks, which can lead to distortion of the inadequacy of the sub-picture and a corresponding measuring signal.
Photon Counting Using Edge-Detection Algorithm
NASA Technical Reports Server (NTRS)
Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.
2010-01-01
New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1-bit comparator, which digitizes the input referenced to an adjustable threshold value. This results in four independent serial sample streams of binary 1s and 0s, which are ORed together at rates up to 10 GHz. This single serial stream is then deserialized by a factor of 16 to create 16 signal lines at a rate of 622.5 MHz or lower for input to a high-speed digital processor assembly. The new design and corresponding hardware can be employed with a quad-photon counting detector capable of handling photon rates on the order of multi-gigaphotons per second, whereas prior art was only capable of handling a single input at 1/4 the flux rate. Additionally, the hardware edge-detection algorithm has provided the ability to process 3-10 higher photon flux rates than previously possible by removing the limitation that photoncounting detector output pulses on multiple channels being ORed not overlap. Now, only the leading edges of the pulses are required to not overlap. This new photon counting digitizer hardware architecture supports a universal front end for an optical communications receiver operating at data rates from kilobits to over one gigabit per second to meet increased mission data volume requirements.
A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy
NASA Astrophysics Data System (ADS)
Veiga, Alejandro; Grunfeld, Christian
2016-02-01
The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.
Analog Signal Correlating Using an Analog-Based Signal Conditioning Front End
NASA Technical Reports Server (NTRS)
Prokop, Norman; Krasowski, Michael
2013-01-01
This innovation is capable of correlating two analog signals by using an analog-based signal conditioning front end to hard-limit the analog signals through adaptive thresholding into a binary bit stream, then performing the correlation using a Hamming "similarity" calculator function embedded in a one-bit digital correlator (OBDC). By converting the analog signal into a bit stream, the calculation of the correlation function is simplified, and less hardware resources are needed. This binary representation allows the hardware to move from a DSP where instructions are performed serially, into digital logic where calculations can be performed in parallel, greatly speeding up calculations.
Thermal imagers: from ancient analog video output to state-of-the-art video streaming
NASA Astrophysics Data System (ADS)
Haan, Hubertus; Feuchter, Timo; Münzberg, Mario; Fritze, Jörg; Schlemmer, Harry
2013-06-01
The video output of thermal imagers stayed constant over almost two decades. When the famous Common Modules were employed a thermal image at first was presented to the observer in the eye piece only. In the early 1990s TV cameras were attached and the standard output was CCIR. In the civil camera market output standards changed to digital formats a decade ago with digital video streaming being nowadays state-of-the-art. The reasons why the output technique in the thermal world stayed unchanged over such a long time are: the very conservative view of the military community, long planning and turn-around times of programs and a slower growth of pixel number of TIs in comparison to consumer cameras. With megapixel detectors the CCIR output format is not sufficient any longer. The paper discusses the state-of-the-art compression and streaming solutions for TIs.
USDA-ARS?s Scientific Manuscript database
Laser scanning data streams, when linked with multi-spectral, hyperspectral, apparent soil electro-conductivity (ECa), or other kinds of geo-referenced data streams, aid in the creation of maps that allow useful applications in agricultural systems. These combinations of georeferenced information p...
Modeling streams and hydrogeomorphic attributes in Oregon from digital and field data
Sharon E. Clarke; Kelly M. Burnett; Daniel J. Miller
2008-01-01
Managers, regulators, and researchers of aquatic ecosystems are increasingly pressed to consider large areas. However, accurate stream maps with geo-referenced attributes are uncommon over relevant spatial extents. Field inventories provide high-quality data, particularly for habitat characteristics at fine spatial resolutions (e.g., large wood), but are costly and so...
Electronic Warfare M-on-N Digital Simulation Logging Requirements and HDF5: A Preliminary Analysis
2017-04-12
LOGGING STREAM The goal of this report is to investigate logging of EW simulations not at the level of implementation in a database management ...differences of the logging stream and relational models. A hierarchical navigation query style appears very natural for our application. Yet the
Analog Correlator Based on One Bit Digital Correlator
NASA Technical Reports Server (NTRS)
Prokop, Norman (Inventor); Krasowski, Michael (Inventor)
2017-01-01
A two input time domain correlator may perform analog correlation. In order to achieve high throughput rates with reduced or minimal computational overhead, the input data streams may be hard limited through adaptive thresholding to yield two binary bit streams. Correlation may be achieved through the use of a Hamming distance calculation, where the distance between the two bit streams approximates the time delay that separates them. The resulting Hamming distance approximates the correlation time delay with high accuracy.
ERIC Educational Resources Information Center
Van Horn, Royal
2001-01-01
Several years after the first audiovisual Macintosh computer appeared, most educators are still oblivious of this technology. Almost every other economic sector (including the porn industry) makes abundant use of digital and streaming video. Desktop movie production is so easy that primary grade students can do it. Tips are provided. (MLH)
Naval Postgraduate School Research. Volume 9, Number 1, February 1999
1999-02-01
before the digitization, since these add noise and nonlinear distortion to the signal. After digitization by the digital antenna, the data stream can be...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information...like pulse compression. (Gener- ally, few experiments have measured the jitter of the lasers.) From the data , we note that the pulse width require
SHD digital cinema distribution over a long distance network of Internet2
NASA Astrophysics Data System (ADS)
Yamaguchi, Takahiro; Shirai, Daisuke; Fujii, Tatsuya; Nomura, Mitsuru; Fujii, Tetsuro; Ono, Sadayasu
2003-06-01
We have developed a prototype SHD (Super High Definition) digital cinema distribution system that can store, transmit and display eight-million-pixel motion pictures that have the image quality of a 35-mm film movie. The system contains a video server, a real-time decoder, and a D-ILA projector. Using a gigabit Ethernet link and TCP/IP, the server transmits JPEG2000 compressed motion picture data streams to the decoder at transmission speeds as high as 300 Mbps. The received data streams are decompressed by the decoder, and then projected onto a screen via the projector. With this system, digital cinema contents can be distributed over a wide-area optical gigabit IP network. However, when digital cinema contents are delivered over long distances by using a gigabit IP network and TCP, the round-trip time increases and network throughput either stops rising or diminishes. In a long-distance SHD digital cinema transmission experiment performed on the Internet2 network in October 2002, we adopted enlargement of the TCP window, multiple TCP connections, and shaping function to control the data transmission quantity. As a result, we succeeded in transmitting the SHD digital cinema content data at about 300 Mbps between Chicago and Los Angeles, a distance of more than 3000 km.
Cheng, Calvin K Y; Ip, Dennis K M; Cowling, Benjamin J; Ho, Lai Ming; Leung, Gabriel M; Lau, Eric H Y
2011-10-14
Great strides have been made exploring and exploiting new and different sources of disease surveillance data and developing robust statistical methods for analyzing the collected data. However, there has been less research in the area of dissemination. Proper dissemination of surveillance data can facilitate the end user's taking of appropriate actions, thus maximizing the utility of effort taken from upstream of the surveillance-to-action loop. The aims of the study were to develop a generic framework for a digital dashboard incorporating features of efficient dashboard design and to demonstrate this framework by specific application to influenza surveillance in Hong Kong. Based on the merits of the national websites and principles of efficient dashboard design, we designed an automated influenza surveillance digital dashboard as a demonstration of efficient dissemination of surveillance data. We developed the system to synthesize and display multiple sources of influenza surveillance data streams in the dashboard. Different algorithms can be implemented in the dashboard for incorporating all surveillance data streams to describe the overall influenza activity. We designed and implemented an influenza surveillance dashboard that utilized self-explanatory figures to display multiple surveillance data streams in panels. Indicators for individual data streams as well as for overall influenza activity were summarized in the main page, which can be read at a glance. Data retrieval function was also incorporated to allow data sharing in standard format. The influenza surveillance dashboard serves as a template to illustrate the efficient synthesization and dissemination of multiple-source surveillance data, which may also be applied to other diseases. Surveillance data from multiple sources can be disseminated efficiently using a dashboard design that facilitates the translation of surveillance information to public health actions.
Cheng, Calvin KY; Ip, Dennis KM; Cowling, Benjamin J; Ho, Lai Ming; Leung, Gabriel M
2011-01-01
Background Great strides have been made exploring and exploiting new and different sources of disease surveillance data and developing robust statistical methods for analyzing the collected data. However, there has been less research in the area of dissemination. Proper dissemination of surveillance data can facilitate the end user's taking of appropriate actions, thus maximizing the utility of effort taken from upstream of the surveillance-to-action loop. Objective The aims of the study were to develop a generic framework for a digital dashboard incorporating features of efficient dashboard design and to demonstrate this framework by specific application to influenza surveillance in Hong Kong. Methods Based on the merits of the national websites and principles of efficient dashboard design, we designed an automated influenza surveillance digital dashboard as a demonstration of efficient dissemination of surveillance data. We developed the system to synthesize and display multiple sources of influenza surveillance data streams in the dashboard. Different algorithms can be implemented in the dashboard for incorporating all surveillance data streams to describe the overall influenza activity. Results We designed and implemented an influenza surveillance dashboard that utilized self-explanatory figures to display multiple surveillance data streams in panels. Indicators for individual data streams as well as for overall influenza activity were summarized in the main page, which can be read at a glance. Data retrieval function was also incorporated to allow data sharing in standard format. Conclusions The influenza surveillance dashboard serves as a template to illustrate the efficient synthesization and dissemination of multiple-source surveillance data, which may also be applied to other diseases. Surveillance data from multiple sources can be disseminated efficiently using a dashboard design that facilitates the translation of surveillance information to public health actions. PMID:22001082
Symbol processing in the left angular gyrus: evidence from passive perception of digits.
Price, Gavin R; Ansari, Daniel
2011-08-01
Arabic digits are one of the most ubiquitous symbol sets in the world. While there have been many investigations into the neural processing of the semantic information digits represent (e.g. through numerical comparison tasks), little is known about the neural mechanisms which support the processing of digits as visual symbols. To characterise the component neurocognitive mechanisms which underlie numerical cognition, it is essential to understand the processing of digits as a visual category, independent of numerical magnitude processing. The 'Triple Code Model' (Dehaene, 1992; Dehaene and Cohen, 1995) posits an asemantic visual code for processing Arabic digits in the ventral visual stream, yet there is currently little empirical evidence in support of this code. This outstanding question was addressed in the current functional Magnetic Resonance (fMRI) study by contrasting brain responses during the passive viewing of digits versus letters and novel symbols at short (50 ms) and long (500 ms) presentation times. The results of this study reveal increased activation for familiar symbols (digits and letters) relative to unfamiliar symbols (scrambled digits and letters) at long presentation durations in the left dorsal Angular gyrus (dAG). Furthermore, increased activation for Arabic digits was observed in the left ventral Angular gyrus (vAG) in comparison to letters, scrambled digits and scrambled letters at long presentation durations, but no digit specific activation in any region at short presentation durations. These results suggest an absence of a digit specific 'Visual Number Form Area' (VNFA) in the ventral visual cortex, and provide evidence for the role of the left ventral AG during the processing of digits in the absence of any explicit processing demands. We conclude that Arabic digit processing depends specifically on the left AG rather than a ventral visual stream VNFA. Copyright © 2011 Elsevier Inc. All rights reserved.
THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janesh, William; Morrison, Heather L.; Ma, Zhibo
2016-01-10
We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earliermore » work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.« less
VizieR Online Data Catalog: The SEGUE K giant survey. III. Galactic halo (Janesh+, 2016)
NASA Astrophysics Data System (ADS)
Janesh, W.; Morrison, H. L.; Ma, Z.; Rockosi, C.; Starkenburg, E.; Xue, X. X.; Rix, H.-W.; Harding, P.; Beers, T. C.; Johnson, J.; Lee, Y. S.; Schneider, D. P.
2016-03-01
We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity. (2 data files).
Hageman, Philip L.; Todd, Andrew S.; Smith, Kathleen S.; DeWitt, Ed; Zeigler, Mathew P.
2013-01-01
Scientists from the U.S. Geological Survey are studying the relationship between watershed lithology and stream-water chemistry. As part of this effort, 60 stream-water samples and 43 corresponding stream-sediment samples were collected in 2010 and 2011 from locations in Colorado and New Mexico. Sample sites were selected from small to midsize watersheds composed of a high percentage of one rock type or geologic unit. Stream-water and stream-sediment samples were collected, processed, preserved, and analyzed in a consistent manner. This report releases geochemical data for this phase of the study.
This EnviroAtlas dataset shows the percentages of stream and water body shoreline lengths within 30 meters of impervious cover by 12-digit Hydrologic Unit (HUC) subwatershed in the contiguous U.S. Impervious cover alters the hydrologic behavior of streams and water bodies, promoting increased storm water runoff and lower stream flow during periods in between rainfall events. Impervious cover also promotes increased pollutant loads in receiving waters and degraded streamside habitat. This dataset shows were impervious cover occurs close to streams and water bodies, where it is likely to have a greater adverse impact on receiving waters. This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
A streaming-based solution for remote visualization of 3D graphics on mobile devices.
Lamberti, Fabrizio; Sanna, Andrea
2007-01-01
Mobile devices such as Personal Digital Assistants, Tablet PCs, and cellular phones have greatly enhanced user capability to connect to remote resources. Although a large set of applications are now available bridging the gap between desktop and mobile devices, visualization of complex 3D models is still a task hard to accomplish without specialized hardware. This paper proposes a system where a cluster of PCs, equipped with accelerated graphics cards managed by the Chromium software, is able to handle remote visualization sessions based on MPEG video streaming involving complex 3D models. The proposed framework allows mobile devices such as smart phones, Personal Digital Assistants (PDAs), and Tablet PCs to visualize objects consisting of millions of textured polygons and voxels at a frame rate of 30 fps or more depending on hardware resources at the server side and on multimedia capabilities at the client side. The server is able to concurrently manage multiple clients computing a video stream for each one; resolution and quality of each stream is tailored according to screen resolution and bandwidth of the client. The paper investigates in depth issues related to latency time, bit rate and quality of the generated stream, screen resolutions, as well as frames per second displayed.
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen; ...
2016-05-06
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A
2014-02-01
Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.
Wavelet-enabled progressive data Access and Storage Protocol (WASP)
NASA Astrophysics Data System (ADS)
Clyne, J.; Frank, L.; Lesperance, T.; Norton, A.
2015-12-01
Current practices for storing numerical simulation outputs hail from an era when the disparity between compute and I/O performance was not as great as it is today. The memory contents for every sample, computed at every grid point location, are simply saved at some prescribed temporal frequency. Though straightforward, this approach fails to take advantage of the coherency in neighboring grid points that invariably exists in numerical solutions to mathematical models. Exploiting such coherence is essential to digital multimedia; DVD-Video, digital cameras, streaming movies and audio are all possible today because of transform-based compression schemes that make substantial reductions in data possible by taking advantage of the strong correlation between adjacent samples in both space and time. Such methods can also be exploited to enable progressive data refinement in a manner akin to that used in ubiquitous digital mapping applications: views from far away are shown in coarsened detail to provide context, and can be progressively refined as the user zooms in on a localized region of interest. The NSF funded WASP project aims to provide a common, NetCDF-compatible software framework for supporting wavelet-based, multi-scale, progressive data, enabling interactive exploration of large data sets for the geoscience communities. This presentation will provide an overview of this work in progress to develop community cyber-infrastructure for the efficient analysis of very large data sets.
Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska
Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.
1999-01-01
Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations.
Ken Vance-Borland; Kelly Burnett; Sharon Clarke
2009-01-01
1. Digital hydrographic data are commonly employed in research, planning, and monitoring for freshwater conservation, but hydrographic data sets differ in spatial resolution and accuracy of spatial representation, possibly leading to inaccurate conclusions or unsuitable policies for streams and streamside areas. 2. To examine and illustrate the potential for...
A Near-Reality Approach to Improve the e-Learning Open Courseware
ERIC Educational Resources Information Center
Yu, Pao-Ta; Liao, Yuan-Hsun; Su, Ming-Hsiang
2013-01-01
The open courseware proposed by MIT with single streaming video has been widely accepted by most of the universities as their supplementary learning contents. In this streaming video, a digital video camera is used to capture the speaker's gesture and his/her PowerPoint presentation at the same time. However, the blurry content of PowerPoint…
Eckels, David E.; Hass, William J.
1989-05-30
A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.
37 CFR 386.2 - Royalty fee for secondary transmission by satellite carriers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES ADJUSTMENT OF ROYALTY FEES FOR... a given month. (2) In the case of a station engaged in digital multicasting, the rates set forth in paragraph (b) of this section shall apply to each digital stream that a satellite carrier or distributor...
37 CFR 386.2 - Royalty fee for secondary transmission by satellite carriers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES ADJUSTMENT OF ROYALTY FEES FOR... a given month. (2) In the case of a station engaged in digital multicasting, the rates set forth in paragraph (b) of this section shall apply to each digital stream that a satellite carrier or distributor...
37 CFR 386.2 - Royalty fee for secondary transmission by satellite carriers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES ADJUSTMENT OF ROYALTY FEES FOR... a given month. (2) In the case of a station engaged in digital multicasting, the rates set forth in paragraph (b) of this section shall apply to each digital stream that a satellite carrier or distributor...
37 CFR 386.2 - Royalty fee for secondary transmission by satellite carriers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES ADJUSTMENT OF ROYALTY FEES FOR... a given month. (2) In the case of a station engaged in digital multicasting, the rates set forth in paragraph (b) of this section shall apply to each digital stream that a satellite carrier or distributor...
Fact or Fiction? Libraries Can Thrive in the Digital Age
ERIC Educational Resources Information Center
Harris, Christopher
2014-01-01
Today's school library uses an increasing number of digital resources to supplement a print collection that is moving more toward fiction and literary non-fiction. Supplemental resources, including streaming video, online resources, subscription databases, audiobooks, e-books, and even games, round out the new collections. Despite the best…
Shuttle radar DEM hydrological correction for erosion modelling in small catchments
NASA Astrophysics Data System (ADS)
Jarihani, Ben; Sidle, Roy; Bartley, Rebecca
2016-04-01
Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Catchment and hillslope scale runoff and sediment processes (i.e., patterns of overland flow, infiltration, subsurface stormflow and erosion) are all topographically mediated. In remote and data-scarce regions, high resolution DEMs (LiDAR) are often not available, and moderate to course resolution digital elevation models (e.g., SRTM) have difficulty replicating detailed hydrological patterns, especially in relatively flat landscapes. Several surface reconditioning algorithms (e.g., Smoothing) and "Stream burning" techniques (e.g., Agree or ANUDEM), in conjunction with representation of the known stream networks, have been used to improve DEM performance in replicating known hydrology. Detailed stream network data are not available at regional and national scales, but can be derived at local scales from remotely-sensed data. This research explores the implication of high resolution stream network data derived from Google Earth images for DEM hydrological correction, instead of using course resolution stream networks derived from topographic maps. The accuracy of implemented method in producing hydrological-efficient DEMs were assessed by comparing the hydrological parameters derived from modified DEMs and limited high-resolution airborne LiDAR DEMs. The degree of modification is dominated by the method used and availability of the stream network data. Although stream burning techniques improve DEMs hydrologically, these techniques alter DEM characteristics that may affect catchment boundaries, stream position and length, as well as secondary terrain derivatives (e.g., slope, aspect). Modification of a DEM to better reflect known hydrology can be useful, however, knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.
A battery-free multichannel digital neural/EMG telemetry system for flying insects.
Thomas, Stewart J; Harrison, Reid R; Leonardo, Anthony; Reynolds, Matthew S
2012-10-01
This paper presents a digital neural/EMG telemetry system small enough and lightweight enough to permit recording from insects in flight. It has a measured flight package mass of only 38 mg. This system includes a single-chip telemetry integrated circuit (IC) employing RF power harvesting for battery-free operation, with communication via modulated backscatter in the UHF (902-928 MHz) band. An on-chip 11-bit ADC digitizes 10 neural channels with a sampling rate of 26.1 kSps and 4 EMG channels at 1.63 kSps, and telemeters this data wirelessly to a base station. The companion base station transceiver includes an RF transmitter of +36 dBm (4 W) output power to wirelessly power the telemetry IC, and a digital receiver with a sensitivity of -70 dBm for 10⁻⁵ BER at 5.0 Mbps to receive the data stream from the telemetry IC. The telemetry chip was fabricated in a commercial 0.35 μ m 4M1P (4 metal, 1 poly) CMOS process. The die measures 2.36 × 1.88 mm, is 250 μm thick, and is wire bonded into a flex circuit assembly measuring 4.6 × 6.8 mm.
AN/TAC-1 demultiplexer circuit card assembly
NASA Astrophysics Data System (ADS)
Krueger, Paul J.
1989-01-01
This report describes the design, operation, and testing of the AN/TAC-1 demultiplexer subassembly. It demultiplexes the 6144 kb/s digital data stream received over fiber optic cable or tropo satellite support radio, and converts it into 2 digital groups and 16 digital channels. Timing recovery is accomplished by generating a 18432 kHz master clock synchronized to the incoming data. This master clock is divided modulo two to generate the proper group and loop timing.
Adapting Digital Libraries to Continual Evolution
NASA Technical Reports Server (NTRS)
Barkstrom, Bruce R.; Finch, Melinda; Ferebee, Michelle; Mackey, Calvin
2002-01-01
In this paper, we describe five investment streams (data storage infrastructure, knowledge management, data production control, data transport and security, and personnel skill mix) that need to be balanced against short-term operating demands in order to maximize the probability of long-term viability of a digital library. Because of the rapid pace of information technology change, a digital library cannot be a static institution. Rather, it has to become a flexible organization adapted to continuous evolution of its infrastructure.
The Role of the Magnocellular Visual Pathway in the Attentional Blink
ERIC Educational Resources Information Center
Stuart, Geoffrey W.; Lambeth, Sandra E.; Day, Ross H.; Gould, Ian C.; Castles, Anne E.
2012-01-01
Visual attention has temporal limitations. In the attentional blink (AB) a stream of stimuli such as letters or digits are presented to a participant on a computer monitor at a rapid rate. Embedded in the stream are two targets that the participant must try to identify. Identification of the second target is severely impaired if it is presented…
NASA Astrophysics Data System (ADS)
Brenden, T. O.; Clark, R. D.; Wiley, M. J.; Seelbach, P. W.; Wang, L.
2005-05-01
Remote sensing and geographic information systems have made it possible to attribute variables for streams at increasingly detailed resolutions (e.g., individual river reaches). Nevertheless, management decisions still must be made at large scales because land and stream managers typically lack sufficient resources to manage on an individual reach basis. Managers thus require a method for identifying stream management units that are ecologically similar and that can be expected to respond similarly to management decisions. We have developed a spatially-constrained clustering algorithm that can merge neighboring river reaches with similar ecological characteristics into larger management units. The clustering algorithm is based on the Cluster Affinity Search Technique (CAST), which was developed for clustering gene expression data. Inputs to the clustering algorithm are the neighbor relationships of the reaches that comprise the digital river network, the ecological attributes of the reaches, and an affinity value, which identifies the minimum similarity for merging river reaches. In this presentation, we describe the clustering algorithm in greater detail and contrast its use with other methods (expert opinion, classification approach, regular clustering) for identifying management units using several Michigan watersheds as a backdrop.
Audio Spectrogram Representations for Processing with Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Wyse, L.
2017-05-01
One of the decisions that arise when designing a neural network for any application is how the data should be represented in order to be presented to, and possibly generated by, a neural network. For audio, the choice is less obvious than it seems to be for visual images, and a variety of representations have been used for different applications including the raw digitized sample stream, hand-crafted features, machine discovered features, MFCCs and variants that include deltas, and a variety of spectral representations. This paper reviews some of these representations and issues that arise, focusing particularly on spectrograms for generating audio using neural networks for style transfer.
State Digital Learning Exemplars: Highlights from States Leading Change through Policies and Funding
ERIC Educational Resources Information Center
Acree, Lauren; Fox, Christine
2015-01-01
States are striving to support the expansion of technology tools and resources in K-12 education through state policies, programs, and funding in order to provide digital learning opportunities for all students. This paper highlights examples of states with policies in support of five key areas: (1) innovative funding streams and policy; (2)…
Wilson, M.W.
1979-01-01
Drainage areas were determined for 61 basins in the Twelvepole Creek basin, West Virginia; 11 basins of the Big Sandy River Basin, West Virginia; and 210 basins in the Tug Fork basin of Virginia, Kentucky, and West Virginia. Most basins with areas greater than 5 square miles were included. Drainage areas were measured with electronic digitizing equipment, and supplementary measurements were made with a hand planimeter. Stream mileages were determined by measuring, with a graduated plastic strip, distances from the mouth of each stream to the measuring point on that stream. Mileages were reported to the nearest one-hundredth of a mile in all cases. The latitude and longitude of each measuring point was determined with electronic digitizing equipment and is reported to the nearest second. The information is listed in tabular form in downstream order. Measuring points for the basins are located in the tables by intersecting tributaries, by counties, by map quadrangles, or by latitude and longitude. (Woodard-USGS)
Liu, Wei; Kulin, Merima; Kazaz, Tarik; Shahid, Adnan; Moerman, Ingrid; De Poorter, Eli
2017-09-12
Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals' modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI's probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access.
Liu, Wei; Kulin, Merima; Kazaz, Tarik; De Poorter, Eli
2017-01-01
Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals’ modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI’s probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access. PMID:28895879
NASA Astrophysics Data System (ADS)
Caruso, B. S.
2012-12-01
Rivers and streams are becoming increasingly stressed and degraded, and wetlands lost, due to human development and associated management policies and actions that are generally ineffective for aquatic resources protection and restoration. In the semi-arid western U.S., these issues are more severe due to the limited quantity of water and aquatic resources, the magnified role of their ecological services in drier landscapes, and increasing impacts from urbanization and energy development. However, a significant disconnect between policy and science exists that leads to continued degradation of surface waters. Supreme Court decisions and joint Federal agency guidance for determining jurisdiction as 'waters of the US' that can be protected under Clean Water Act Section 404 (permitting discharge of dredged and fill materials into wetlands and other waters) are good examples of this disconnect. The hydrological and ecological connectivity of intermittent and ephemeral streams and wetlands with downstream navigable waters is a critical issue that must be evaluated to determine jurisdiction, but this can be a complex endeavour in semi-arid regions. The hydrological connectivity and key science and policy integration issues for stream and wetland jurisdictional determinations (JDs) were evaluated for a semi-arid region of the western U.S. (Environmental Protection Agency [EPA] Region 8), including much of the Rocky Mountains, Great Plains and Colorado Plateau. The key scientific approaches recommended in the agency guidance were analyzed in detail. An evaluation was performed of a sample of JDs reviewed by EPA Region 8 and their outcomes in terms of aquatic resources that were considered non-jurisdictional. An analysis of stream types and characteristics across the region using available digital spatial analysis tools was performed. A subset of finalized JDs issued by COE was reviewed to analyze the scientific information used to evaluate connectivity to downstream waters and to develop the JDs. During 2007-2008, >1,200 JDs were evaluated by EPA Region 8 resulting in 793 wetlands considered non-jurisdictional due to isolation. Significant nexus evaluation was required for 441 waters, of which 49 wetlands, 66 streams and 14 other water bodies were considered non-jurisdictional. Intermittent streams that could non-jurisdictional due to isolation or inadequate hydrological connection comprise >3/4, and first order streams constitute >1/2 of the total stream length in the region, with the greatest proportion in the Dakotas and plains and desert ecoregions based on medium-resolution NHDPlus data. Many JDs don't contain or apply a range of important information that could be useful or needed. There are significant data gaps and inconsistencies in the types and quantification of scientific information and methods used across JDs. The primary science and policy integration issues include identification and evaluation of navigable waters, hydrologic permanence of perennial and intermittent/ ephemeral streams, stream order, significant nexus, aggregation of waters and effects, human impacts and changes, resource inventories and tools, and analysis of JD outcomes. One key recommendation to help address these issues is the continued development and application of digital spatial analysis tools.
Digital Video (DV): A Primer for Developing an Enterprise Video Strategy
NASA Astrophysics Data System (ADS)
Talovich, Thomas L.
2002-09-01
The purpose of this thesis is to provide an overview of digital video production and delivery. The thesis presents independent research demonstrating the educational value of incorporating video and multimedia content in training and education programs. The thesis explains the fundamental concepts associated with the process of planning, preparing, and publishing video content and assists in the development of follow-on strategies for incorporation of video content into distance training and education programs. The thesis provides an overview of the following technologies: Digital Video, Digital Video Editors, Video Compression, Streaming Video, and Optical Storage Media.
Digital intermediate frequency QAM modulator using parallel processing
Pao, Hsueh-Yuan [Livermore, CA; Tran, Binh-Nien [San Ramon, CA
2008-05-27
The digital Intermediate Frequency (IF) modulator applies to various modulation types and offers a simple and low cost method to implement a high-speed digital IF modulator using field programmable gate arrays (FPGAs). The architecture eliminates multipliers and sequential processing by storing the pre-computed modulated cosine and sine carriers in ROM look-up-tables (LUTs). The high-speed input data stream is parallel processed using the corresponding LUTs, which reduces the main processing speed, allowing the use of low cost FPGAs.
Rice, Karen C.; Bricker, Owen P.
1991-01-01
The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streams in these counties are sensitive to acidification by acidic deposition.
Li, Kejia; Warren, Steve
2012-06-01
Pulse oximeters are central to the move toward wearable health monitoring devices and medical electronics either hosted by, e.g., smart phones or physically embedded in their design. This paper presents a small, low-cost pulse oximeter design appropriate for wearable and surface-based applications that also produces quality, unfiltered photo-plethysmograms (PPGs) ideal for emerging diagnostic algorithms. The design's "filter-free" embodiment, which employs only digital baseline subtraction as a signal compensation mechanism, distinguishes it from conventional pulse oximeters that incorporate filters for signal extraction and noise reduction. This results in high-fidelity PPGs with thousands of peak-to-peak digitization levels that are sampled at 240 Hz to avoid noise aliasing. Electronic feedback controls make these PPGs more resilient in the face of environmental changes (e.g., the device can operate in full room light), and data stream in real time across either a ZigBee wireless link or a wired USB connection to a host. On-board flash memory is available for store-and-forward applications. This sensor has demonstrated an ability to gather high-integrity data at fingertip, wrist, earlobe, palm, and temple locations from a group of 48 subjects (20 to 64 years old).
The engineering design integration (EDIN) system. [digital computer program complex
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Reiners, S. J.
1974-01-01
A digital computer program complex for the evaluation of aerospace vehicle preliminary designs is described. The system consists of a Univac 1100 series computer and peripherals using the Exec 8 operating system, a set of demand access terminals of the alphanumeric and graphics types, and a library of independent computer programs. Modification of the partial run streams, data base maintenance and construction, and control of program sequencing are provided by a data manipulation program called the DLG processor. The executive control of library program execution is performed by the Univac Exec 8 operating system through a user established run stream. A combination of demand and batch operations is employed in the evaluation of preliminary designs. Applications accomplished with the EDIN system are described.
A GIS tool to analyze forest road sediment production and stream impacts
Ajay Prasad; David G. Tarboton; Charles H. Luce; Thomas A. Black
2005-01-01
A set of GIS tools to analyze the impacts of forest roads on streams considering sediment production, mass wasting risk, and fish passage barriers, has been developed. Sediment production for each road segment is calculated from slope, length, road surface condition and road-side drain vegetation gathered by a GPS inventory and by overlaying the road path on a Digital...
Life history dependent morphometric variation in stream-dwelling Atlantic salmon
Letcher, B.H.
2003-01-01
The time course of morphometric variation among life histories for stream-dwelling Atlantic salmon (Salmo salar L.) parr (age-0+ to age-2+) was analyzed. Possible life histories were combinations of parr maturity status in the autumn (mature or immature) and age at outmigration (smolt at age-2+ or later age). Actual life histories expressed with enough fish for analysis in the 1997 cohort were immature/age-2+ smolt, mature/age-2 +smolt, and mature/age-2+ non-smolt. Tagged fish were assigned to one of the three life histories and digital pictures from the field were analyzed using landmark-based geometric morphometrics. Results indicated that successful grouping of fish according to life history varied with fish age, but that fish could be grouped before the actual expression of the life histories. By March (age-1+), fish were successfully grouped using a descriptive discriminant function and successful assignment ranged from 84 to 97% for the remainder of stream residence. A jackknife of the discriminant function revealed an average life history prediction success of 67% from age-1+ summer to smolting. Low sample numbers for one of the life histories may have limited prediction success. A MANOVA on the shape descriptors (relative warps) also indicated significant differences in shape among life histories from age-1+ summer through to smolting. Across all samples, shape varied significantly with size. Within samples, shape did not vary significantly with size for samples from December (age-0+) to May (age-1+). During the age-1+ summer however, shape varied significantly with size, but the relationship between shape and size was not different among life histories. In the autumn (age-1+) and winter (age-2+), life history differences explained a significant portion of the change in shape with size. Life history dependent morphometric variation may be useful to indicate the timing of early expressions of life history variation and as a tool to explore temporal and spatial variation in life history expression.
Digital Multicasting of Multiple Audio Streams
NASA Technical Reports Server (NTRS)
Macha, Mitchell; Bullock, John
2007-01-01
The Mission Control Center Voice Over Internet Protocol (MCC VOIP) system (see figure) comprises hardware and software that effect simultaneous, nearly real-time transmission of as many as 14 different audio streams to authorized listeners via the MCC intranet and/or the Internet. The original version of the MCC VOIP system was conceived to enable flight-support personnel located in offices outside a spacecraft mission control center to monitor audio loops within the mission control center. Different versions of the MCC VOIP system could be used for a variety of public and commercial purposes - for example, to enable members of the general public to monitor one or more NASA audio streams through their home computers, to enable air-traffic supervisors to monitor communication between airline pilots and air-traffic controllers in training, and to monitor conferences among brokers in a stock exchange. At the transmitting end, the audio-distribution process begins with feeding the audio signals to analog-to-digital converters. The resulting digital streams are sent through the MCC intranet, using a user datagram protocol (UDP), to a server that converts them to encrypted data packets. The encrypted data packets are then routed to the personal computers of authorized users by use of multicasting techniques. The total data-processing load on the portion of the system upstream of and including the encryption server is the total load imposed by all of the audio streams being encoded, regardless of the number of the listeners or the number of streams being monitored concurrently by the listeners. The personal computer of a user authorized to listen is equipped with special- purpose MCC audio-player software. When the user launches the program, the user is prompted to provide identification and a password. In one of two access- control provisions, the program is hard-coded to validate the user s identity and password against a list maintained on a domain-controller computer at the MCC. In the other access-control provision, the program verifies that the user is authorized to have access to the audio streams. Once both access-control checks are completed, the audio software presents a graphical display that includes audiostream-selection buttons and volume-control sliders. The user can select all or any subset of the available audio streams and can adjust the volume of each stream independently of that of the other streams. The audio-player program spawns a "read" process for the selected stream(s). The spawned process sends, to the router(s), a "multicast-join" request for the selected streams. The router(s) responds to the request by sending the encrypted multicast packets to the spawned process. The spawned process receives the encrypted multicast packets and sends a decryption packet to audio-driver software. As the volume or muting features are changed by the user, interrupts are sent to the spawned process to change the corresponding attributes sent to the audio-driver software. The total latency of this system - that is, the total time from the origination of the audio signals to generation of sound at a listener s computer - lies between four and six seconds.
F. Pan; M. Stieglitz; R.B. McKane
2012-01-01
Digital elevation model (DEM) data are essential to hydrological applications and have been widely used to calculate a variety of useful topographic characteristics, e.g., slope, flow direction, flow accumulation area, stream channel network, topographic index, and others. Except for slope, none of the other topographic characteristics can be calculated until the flow...
NASA Technical Reports Server (NTRS)
Boriakoff, Valentin
1994-01-01
The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).
Method and apparatus for continuously referenced analysis of reactive components in solution
Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.
1979-07-31
A continuously referenced apparatus for measuring the concentration of a reactive chemical species in solution comprises in combination conduit means for introducing a sample solution, means for introducing one or more reactants into a sample solution, and a stream separator disposed within the conduit means for separating the sample solution into a first sample stream and a second sample stream. A reactor is disposed in fluid communication with the first sample stream. A reaction takes place between the reactants introduced and the reactive chemical species of interest, causing the consumption or production of an indicator species in the first sample stream. Measurement means such as a photometric system are disposed in communication with the first and second sample streams, and the outputs of the measurement means are compared to provide a blanked measurement of the concentration of indicator species. The apparatus is particularly suitable for measurement of isoenzymes in body tissues or fluids.
Multi-channel imaging cytometry with a single detector
NASA Astrophysics Data System (ADS)
Locknar, Sarah; Barton, John; Entwistle, Mark; Carver, Gary; Johnson, Robert
2018-02-01
Multi-channel microscopy and multi-channel flow cytometry generate high bit data streams. Multiple channels (both spectral and spatial) are important in diagnosing diseased tissue and identifying individual cells. Omega Optical has developed techniques for mapping multiple channels into the time domain for detection by a single high gain, high bandwidth detector. This approach is based on pulsed laser excitation and a serial array of optical fibers coated with spectral reflectors such that up to 15 wavelength bins are sequentially detected by a single-element detector within 2.5 μs. Our multichannel microscopy system uses firmware running on dedicated DSP and FPGA chips to synchronize the laser, scanning mirrors, and sampling clock. The signals are digitized by an NI board into 14 bits at 60MHz - allowing for 232 by 174 pixel fields in up to 15 channels with 10x over sampling. Our multi-channel imaging cytometry design adds channels for forward scattering and back scattering to the fluorescence spectral channels. All channels are detected within the 2.5 μs - which is compatible with fast cytometry. Going forward, we plan to digitize at 16 bits with an A-toD chip attached to a custom board. Processing these digital signals in custom firmware would allow an on-board graphics processing unit to display imaging flow cytometry data over configurable scanning line lengths. The scatter channels can be used to trigger data buffering when a cell is present in the beam. This approach enables a low cost mechanically robust imaging cytometer.
Effect of Tundra Fires on Stream Chemistry in Alaska's Yukon-Kuskokwim Delta
NASA Astrophysics Data System (ADS)
Jimmie, J. A.; Mann, P. J.; Schade, J. D.; Natali, S.; Fiske, G.; Holmes, R. M.
2017-12-01
Surface air temperatures in the Arctic have been increasing at approximately twice the global average, contributing to myriad changes including shifting vegetation, thawing permafrost, and altered surface and groundwater hydrology. Wildfire frequency and intensity has also been increasing, and in summer 2015, more area burned in the Yukon-Kuskowkwim Delta than in the previous 64 years combined. We investigated the impact of tundra fire on stream water chemistry, and by extension, on the movement of nutrients and organic matter between terrestrial and aquatic ecosystems. Using a high-resolution Digital Elevation Model, we characterized the contributing sub-watershed area at each of our stream water sampling locations and calculated the percent of each sub-watershed that was burned in summer 2015. We found that nitrate, ammonium, and phosphate concentrations increased with burn area in a watershed, indicating that terrestrial inputs of these constituents to aquatic systems increased following fire. Patterns were less striking for dissolved organic carbon and dissolved organic nitrogen, but there was a positive relationship between burn area and the concentration of these constituents as well. These results highlight the significant impact of tundra fires on terrestrial-aquatic linkages in the Arctic, and suggest that these impacts may increase in the future if fire in Arctic and boreal regions continues to become more common.
Chaffee, Maurice A.
1986-01-01
Map A shows the locations of all sites where rock samples were collected for this report and the distributions of anomalous concentrations for 12 elements in the 127 rock samples collected. In a similar manner, map B shows the collection sites for 59 samples of minus-60-mesh stream sediment, and 59 samples of nonmagnetic heavy-mineral concentrate derived from stream sediment and also shows the distributions of anomalous concentrations for 13 elements in the stream-sediment samples and 17 elements in the concentrate samples. Map C shows outlines of those drainage basins containing samples of stream sediment and concentrate with anomalous element concentrations and also shows weighted values for each outlined basin based on the number of elements with anomalous concentrations in each stream-sediment and concentrate sample and on the degree to which these concentrations are anomalous in each sample.
Valve For Extracting Samples From A Process Stream
NASA Technical Reports Server (NTRS)
Callahan, Dave
1995-01-01
Valve for extracting samples from process stream includes cylindrical body bolted to pipe that contains stream. Opening in valve body matched and sealed against opening in pipe. Used to sample process streams in variety of facilities, including cement plants, plants that manufacture and reprocess plastics, oil refineries, and pipelines.
Miller, Michael A; Colby, Alison C C; Kanehl, Paul D; Blocksom, Karen
2009-03-01
The Wisconsin Department of Natural Resources (WDNR), with support from the U.S. EPA, conducted an assessment of wadeable streams in the Driftless Area ecoregion in western Wisconsin using a probabilistic sampling design. This ecoregion encompasses 20% of Wisconsin's land area and contains 8,800 miles of perennial streams. Randomly-selected stream sites (n = 60) equally distributed among stream orders 1-4 were sampled. Watershed land use, riparian and in-stream habitat, water chemistry, macroinvertebrate, and fish assemblage data were collected at each true random site and an associated "modified-random" site on each stream that was accessed via a road crossing nearest to the true random site. Targeted least-disturbed reference sites (n = 22) were also sampled to develop reference conditions for various physical, chemical, and biological measures. Cumulative distribution function plots of various measures collected at the true random sites evaluated with reference condition thresholds, indicate that high proportions of the random sites (and by inference the entire Driftless Area wadeable stream population) show some level of degradation. Study results show no statistically significant differences between the true random and modified-random sample sites for any of the nine physical habitat, 11 water chemistry, seven macroinvertebrate, or eight fish metrics analyzed. In Wisconsin's Driftless Area, 79% of wadeable stream lengths were accessible via road crossings. While further evaluation of the statistical rigor of using a modified-random sampling design is warranted, sampling randomly-selected stream sites accessed via the nearest road crossing may provide a more economical way to apply probabilistic sampling in stream monitoring programs.
Evaluating adequacy of the representative stream reach used in invertebrate monitoring programs
Rabeni, C.F.; Wang, N.; Sarver, R.J.
1999-01-01
Selection of a representative stream reach is implicitly or explicitly recommended in many biomonitoring protocols using benthic invertebrates. We evaluated the adequacy of sampling a single stream reach selected on the basis of its appearance. We 1st demonstrated the precision of our within-reach sampling. Then we sampled 3 or 4 reaches (each ~20x mean width) within an 8-16 km segment on each of 8 streams in 3 ecoregions and calculated 4 common metrics: 1) total taxa; 2) Ephemeroptera, Plecoptera, and Trichoptera taxa; 3) biotic index; and 4) Sharmon's diversity index. In only 6% of possible cases was the coefficient of variation for any of the metrics reduced >10% by sampling additional reaches. Sampling a 2nd reach on a stream improved the ability to detect impairment by an average of only 9.3%. Sampling a 3rd reach on a stream additionally improved ability to detect impairment by only 4.5%. We concluded that a single well-chosen reach, if adequately sampled, can be representative of an entire stream segment, and sampling additional reaches within a segment may not be cost effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, K.; Bricker, O.
The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streamsmore » in these counties are sensitive to acidification by acidic deposition.« less
14 CFR 1215.102 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NASA communication circuits to unify the above into a functioning system. It specifically excludes the user ground system/TDRSS interface. (c) Bit stream. The digital electronic signals acquired by TDRSS...
14 CFR 1215.102 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NASA communication circuits to unify the above into a functioning system. It specifically excludes the user ground system/TDRSS interface. (c) Bit stream. The digital electronic signals acquired by TDRSS...
Episodic acidification and changes in fish diversity in Pennsylvania headwater streams
Heard, R.M.; Sharpe, W.E.; Carline, R.F.; Kimmel, William G.
1997-01-01
Current water chemistry and fish communities in 70 Pennsylvania streams were compared with historical records to determine whether fish species richness had declined and, if so, the possible role of acidification. First-, second-, and third-order streams were selected, and stream sites sampled during the 1961-1971 survey were resampled during May and June 1994 in the Appalachian Plateaus province and during June 1995 in the Valley and Ridge province. Stream-flow was measured and a habitat assessment was completed at each site. Dominant bedrock types influencing the stream sampling site were determined for the Appalachian Plateaus streams. Episodic water chemistry was collected for 39 of the 50 Appalachian Plateaus streams and 14 of the 20 Valley and Ridge streams during the winter and spring of 1996. Thirty-eight (76%) streams of the Appalachian Plateaus province and 13 (65%) streams in the Valley and Ridge province had a loss of fish species since the 1961-1971 sampling period. Habitat scores were not related to losses of fish species. Of the 53 streams sampled during runoff episodes 22 (42%) increased in total dissolved aluminum by more than 50 ??g/L, and 31 (58%) streams decreased in pH by 0.5 units or more. Minnows (Cyprinidae) and darters (Percidae) are sensitive to acidity and were the species most often lost. Streams draining watersheds of the Appalachian Plateaus province dominated by Pottsville bedrock had more acidic water quality during base flow and storm flow sampling periods than streams dominated by Pocono bedrock. The results of this study indicate that many Pennsylvania streams have undergone an alarming reduction in fish diversity during the past 25-34 years. In many of these streams the loss in fish diversity may be attributed to episodic acidification.
Digitizing Sound: How Can Sound Waves Be Turned into Ones and Zeros?
ERIC Educational Resources Information Center
Vick, Matthew
2010-01-01
From MP3 players to cell phones to computer games, we're surrounded by a constant stream of ones and zeros. Do we really need to know how this technology works? While nobody can understand everything, digital technology is increasingly making our lives a collection of "black boxes" that we can use but have no idea how they work. Pursuing…
Optimizing larval assessment to support sea lamprey control in the Great Lakes
Hansen, Michael J.; Adams, Jean V.; Cuddy, Douglas W.; Richards, Jessica M.; Fodale, Michael F.; Larson, Geraldine L.; Ollila, Dale J.; Slade, Jeffrey W.; Steeves, Todd B.; Young, Robert J.; Zerrenner, Adam
2003-01-01
Elements of the larval sea lamprey (Petromyzon marinus) assessment program that most strongly influence the chemical treatment program were analyzed, including selection of streams for larval surveys, allocation of sampling effort among stream reaches, allocation of sampling effort among habitat types, estimation of daily growth rates, and estimation of metamorphosis rates, to determine how uncertainty in each element influenced the stream selection program. First, the stream selection model based on current larval assessment sampling protocol significantly underestimated transforming sea lam-prey abundance, transforming sea lampreys killed, and marginal costs per sea lamprey killed, compared to a protocol that included more years of data (especially for large streams). Second, larval density in streams varied significantly with Type-I habitat area, but not with total area or reach length. Third, the ratio of larval density between Type-I and Type-II habitat varied significantly among streams, and that the optimal allocation of sampling effort varied with the proportion of habitat types and variability of larval density within each habitat. Fourth, mean length varied significantly among streams and years. Last, size at metamorphosis varied more among years than within or among regions and that metamorphosis varied significantly among streams within regions. Study results indicate that: (1) the stream selection model should be used to identify streams with potentially high residual populations of larval sea lampreys; (2) larval sampling in Type-II habitat should be initiated in all streams by increasing sampling in Type-II habitat to 50% of the sampling effort in Type-I habitat; and (3) methods should be investigated to reduce uncertainty in estimates of sea lamprey production, with emphasis on those that reduce the uncertainty associated with larval length at the end of the growing season and those used to predict metamorphosis.
Communication system analysis for manned space flight
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1978-01-01
The development of adaptive delta modulators capable of digitizing a video signal is summarized. The delta modulator encoder accepts a 4 MHz black and white composite video signal or a color video signal and encodes it into a stream of binary digits at a rate which can be adjusted from 8 Mb/s to 24 Mb/s. The output bit rate is determined by the user and alters the quality of the video picture. The digital signal is decoded using the adaptive delta modulator decoder to reconstruct the picture.
A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1WS
Brakebill, J.W.; Terziotti, S.E.
2011-01-01
A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.
A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1
Brakebill, J.W.; Terziotti, S.E.
2011-01-01
A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.
Ruggles, Dorea; Shinn-Cunningham, Barbara
2011-06-01
Listeners can selectively attend to a desired target by directing attention to known target source features, such as location or pitch. Reverberation, however, reduces the reliability of the cues that allow a target source to be segregated and selected from a sound mixture. Given this, it is likely that reverberant energy interferes with selective auditory attention. Anecdotal reports suggest that the ability to focus spatial auditory attention degrades even with early aging, yet there is little evidence that middle-aged listeners have behavioral deficits on tasks requiring selective auditory attention. The current study was designed to look for individual differences in selective attention ability and to see if any such differences correlate with age. Normal-hearing adults, ranging in age from 18 to 55 years, were asked to report a stream of digits located directly ahead in a simulated rectangular room. Simultaneous, competing masker digit streams were simulated at locations 15° left and right of center. The level of reverberation was varied to alter task difficulty by interfering with localization cues (increasing localization blur). Overall, performance was best in the anechoic condition and worst in the high-reverberation condition. Listeners nearly always reported a digit from one of the three competing streams, showing that reverberation did not render the digits unintelligible. Importantly, inter-subject differences were extremely large. These differences, however, were not significantly correlated with age, memory span, or hearing status. These results show that listeners with audiometrically normal pure tone thresholds differ in their ability to selectively attend to a desired source, a task important in everyday communication. Further work is necessary to determine if these differences arise from differences in peripheral auditory function or in more central function.
NASA Astrophysics Data System (ADS)
Davis, Cabell S.; Wiebe, Peter H.
1985-01-01
Macrozooplankton size structure and taxonomic composition in warm-core ring 82B was examined from a time series (March, April, June) of ring center MOCNESS (1 m) samples. Size distributions of 15 major taxonomic groups were determined from length measurements digitized from silhouette photographs of the samples. Silhouette digitization allows rapid quantification of Zooplankton size structure and taxonomic composition. Length/weight regressions, determined for each taxon, were used to partition the biomass (displacement volumes) of each sample among the major taxonomic groups. Zooplankton taxonomic composition and size structure varied with depth and appeared to coincide with the hydrographic structure of the ring. In March and April, within the thermostad region of the ring, smaller herbivorous/omnivorous Zooplankton, including copepods, crustacean larvae, and euphausiids, were dominant, whereas below this region, larger carnivores, such as medusae, ctenophores, fish, and decapods, dominated. Copepods were generally dominant in most samples above 500 m. Total macrozooplankton abundance and biomass increased between March and April, primarily because of increases in herbivorous taxa, including copepods, crustacean larvae, and larvaceans. A marked increase in total macrozooplankton abundance and biomass between April and June was characterized by an equally dramatic shift from smaller herbivores (1.0-3.0 mm) in April to large herbivores (5.0-6.0 mm) and carnivores (>15 mm) in June. Species identifications made directly from the samples suggest that changes in trophic structure resulted from seeding type immigration and subsequent in situ population growth of Slope Water zooplankton species.
A special planning technique for stream-aquifer systems
Jenkins, C.T.; Taylor, O. James
1974-01-01
The potential effects of water-management plans on stream-aquifer systems in several countries have been simulated using electric-analog or digital-computer models. Many of the electric-analog models require large amounts of hardware preparation for each problem to be solved and some become so bulky that they present serious space and access problems. Digital-computer models require no special hardware preparation but often they require so many repetitive solutions of equations that they result in calculations that are unduly unwieldy and expensive, even on the latest generation of computers. Further, the more detailed digital models require a vast amount of core storage, leaving insufficient storage for evaluation of the many possible schemes of water-management. A concept introduced in 1968 by the senior author of this report offers a solution to these problems. The concept is that the effects on streamflow of ground-water withdrawal or recharge (stress) at any point in such a system can be approximated using two classical equations and a value of time that reflects the integrated effect of the following: irregular impermeable boundaries; stream meanders; aquifer properties and their areal variations; distance of the point from the stream; and imperfect hydraulic connection between the stream and the aquifer. The value of time is called the stream depletion factor (sdf). Results of a relatively few tests on detailed models can be summarized on maps showing lines through points of equal sdf. Sensitivity analyses of models of two large stream-aquifer systems in the State of Colorado show that the sdf technique described in this report provides results within tolerable ranges of error. The sdf technique is extremely versatile, allowing water managers to choose the degree of detail that best suits their needs and available computational hardware. Simple arithmetic, using, for example, only a slide rule and charts or tables of dimensionless values, will be sufficient for many calculations. If a large digital computer is available, detailed description of the system and its stresses will require only a fraction of the core storage, leaving the greater part of the storage available for sophisticated analyses, such as optimization. Once these analyses have been made, the model then is ready to perform its principal task--prediction of streamflow and changes in ground-water storage. In the two systems described in this report, direct diversion from the streams is the principal source of irrigation water, but it is supplemented by numerous wells. The streamflow depends largely on snowmelt. Estimates of both the amount and timing of runoff from snowmelt during the irrigation season are available on a monthly basis during the spring and early summer. These estimates become increasingly accurate as the season progresses, hence frequent changes of stress on the predictive model are necessary. The sdf technique is especially well suited to this purpose, because it is very easy to make such changes, resulting in more up-todate estimates of the availability of streamflow and ground-water storage. These estimates can be made for any time and any location in the system.
NASA Astrophysics Data System (ADS)
Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.
2017-12-01
We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.
NASA Technical Reports Server (NTRS)
Thomas, Jr., Jess Brooks (Inventor)
1999-01-01
The front end in GPS receivers has the functions of amplifying, down-converting, filtering and sampling the received signals. In the preferred embodiment, only two operations, A/D conversion and a sum, bring the signal from RF to filtered quadrature baseband samples. After amplification and filtering at RF, the L1 and L2 signals are each sampled at RF at a high selected subharmonic rate. The subharmonic sample rates are approximately 900 MHz for L1 and 982 MHz for L2. With the selected subharmonic sampling, the A/D conversion effectively down-converts the signal from RF to quadrature components at baseband. The resulting sample streams for L1 and L2 are each reduced to a lower rate with a digital filter, which becomes a straight sum in the simplest embodiment. The frequency subsystem can be very simple, only requiring the generation of a single reference frequency (e.g. 20.46 MHz minus a small offset) and the simple multiplication of this reference up to the subharmonic sample rates for L1 and L2. The small offset in the reference frequency serves the dual purpose of providing an advantageous offset in the down-converted carrier frequency and in the final baseband sample rate.
The US EPA’s National River and Stream Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the conterminous US (CONUS) that deviate from least-disturbed biological condition (BC). These assessments do not infer BC at un-sampled streams,...
Creating a standardized watersheds database for the Lower Rio Grande/Río Bravo, Texas
Brown, J.R.; Ulery, Randy L.; Parcher, Jean W.
2000-01-01
This report describes the creation of a large-scale watershed database for the lower Rio Grande/Río Bravo Basin in Texas. The watershed database includes watersheds delineated to all 1:24,000-scale mapped stream confluences and other hydrologically significant points, selected watershed characteristics, and hydrologic derivative datasets.Computer technology allows generation of preliminary watershed boundaries in a fraction of the time needed for manual methods. This automated process reduces development time and results in quality improvements in watershed boundaries and characteristics. These data can then be compiled in a permanent database, eliminating the time-consuming step of data creation at the beginning of a project and providing a stable base dataset that can give users greater confidence when further subdividing watersheds.A standardized dataset of watershed characteristics is a valuable contribution to the understanding and management of natural resources. Vertical integration of the input datasets used to automatically generate watershed boundaries is crucial to the success of such an effort. The optimum situation would be to use the digital orthophoto quadrangles as the source of all the input datasets. While the hydrographic data from the digital line graphs can be revised to match the digital orthophoto quadrangles, hypsography data cannot be revised to match the digital orthophoto quadrangles. Revised hydrography from the digital orthophoto quadrangle should be used to create an updated digital elevation model that incorporates the stream channels as revised from the digital orthophoto quadrangle. Computer-generated, standardized watersheds that are vertically integrated with existing digital line graph hydrographic data will continue to be difficult to create until revisions can be made to existing source datasets. Until such time, manual editing will be necessary to make adjustments for man-made features and changes in the natural landscape that are not reflected in the digital elevation model data.
Creating a standardized watersheds database for the lower Rio Grande/Rio Bravo, Texas
Brown, Julie R.; Ulery, Randy L.; Parcher, Jean W.
2000-01-01
This report describes the creation of a large-scale watershed database for the lower Rio Grande/Rio Bravo Basin in Texas. The watershed database includes watersheds delineated to all 1:24,000-scale mapped stream confluences and other hydrologically significant points, selected watershed characteristics, and hydrologic derivative datasets. Computer technology allows generation of preliminary watershed boundaries in a fraction of the time needed for manual methods. This automated process reduces development time and results in quality improvements in watershed boundaries and characteristics. These data can then be compiled in a permanent database, eliminating the time-consuming step of data creation at the beginning of a project and providing a stable base dataset that can give users greater confidence when further subdividing watersheds. A standardized dataset of watershed characteristics is a valuable contribution to the understanding and management of natural resources. Vertical integration of the input datasets used to automatically generate watershed boundaries is crucial to the success of such an effort. The optimum situation would be to use the digital orthophoto quadrangles as the source of all the input datasets. While the hydrographic data from the digital line graphs can be revised to match the digital orthophoto quadrangles, hypsography data cannot be revised to match the digital orthophoto quadrangles. Revised hydrography from the digital orthophoto quadrangle should be used to create an updated digital elevation model that incorporates the stream channels as revised from the digital orthophoto quadrangle. Computer-generated, standardized watersheds that are vertically integrated with existing digital line graph hydrographic data will continue to be difficult to create until revisions can be made to existing source datasets. Until such time, manual editing will be necessary to make adjustments for man-made features and changes in the natural landscape that are not reflected in the digital elevation model data.
Data compression/error correction digital test system. Appendix 2: Theory of operation
NASA Technical Reports Server (NTRS)
1972-01-01
An overall block diagram of the DC/EC digital system test is shown. The system is divided into two major units: the transmitter and the receiver. In operation, the transmitter and receiver are connected only by a real or simulated transmission link. The system inputs consist of: (1) standard format TV video, (2) two channels of analog voice, and (3) one serial PCM bit stream.
Multimedia and Some of Its Technical Issues.
ERIC Educational Resources Information Center
Wang, Shousan
2000-01-01
Discusses multimedia and its use in classroom teaching. Describes integrated services digital networks (ISDN); video-on-demand, that uses streaming technology via the Internet; and computer-assisted instruction. (Contains 19 references.) (LRW)
Method and apparatus for data sampling
Odell, Daniel M. C.
1994-01-01
A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium.
NASA Astrophysics Data System (ADS)
Kasprak, A.; Wheaton, J. M.; Bouwes, N.; Weber, N. P.; Trahan, N. C.; Jordan, C. E.
2012-12-01
River managers often seek to understand habitat availability and quality for riverine organisms within the physical template provided by their landscape. Yet the large amount of natural heterogeneity in landscapes gives rise to stream systems which are highly variable over small spatial scales, potentially complicating site selection for surveying aquatic habitat while simultaneously making a simple, wide-reaching management strategy elusive. This is particularly true in the rugged John Day River Basin of northern Oregon, where efforts as part of the Columbia Habitat Monitoring Program to conduct site-based surveys of physical habitat for endangered steelhead salmon (Oncorhynchus mykiss) are underway. As a complete understanding of the type and distribution of habitat available to these fish would require visits to all streams in the basin (impractical due to its large size), here we develop an approach for classifying channel types which combines remote desktop GIS analyses with rapid field-based stream and landscape surveys. At the core of this method, we build off of the River Styles Framework, an open-ended and process-based approach for classifying streams and informing management decisions. This framework is combined with on-the-ground fluvial audits, which aim to quickly and continuously map sediment dynamics and channel behavior along selected channels. Validation of this classification method is completed by on-the-ground stream surveys using a digital iPad platform and by rapid small aircraft overflights to confirm or refine predictions. We further compare this method with existing channel classification approaches for the region (e.g. Beechie, Montgomery and Buffington). The results of this study will help guide both the refinement of site stratification and selection for salmonid habitat monitoring within the basin, and will be vital in designing and prioritizing restoration and management strategies tailored to the distribution of river styles found across the region.
COMPARISON OF MACROINVERTEBRATE SAMPLING METHODS FOR NONWADEABLE STREAMS
The bioassessment of nonwadeable streams in the United States is increasing, but methods for these systems are not as well developed as for wadeable streams. In this study, we compared six benthic macroinvertebrate field sampling methods for nonwadeable streams based on those us...
Note: optical receiver system for 152-channel magnetoencephalography.
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2014-11-01
An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.
Regional medicine use in the Rhine basin and its implication on water quality
NASA Astrophysics Data System (ADS)
Hut, R. W.; Houtman, C. J.; van de Giesen, N. C.; de Jong, S. A. P.
2012-04-01
Do Germans use more painkillers than the French? Pharmaceuticals used in our Western society form an important group of contaminants found in the river Rhine. As this river is the drinking water source for millions of Europeans, methods to investigate relations between drug use and their penetration in the watercycle are of great importance. An analysis is presented relating medicine residue in the river Rhine to the number of people living in its watershed. An extensive measuring campaign was carried out, sampling river Rhine at 42 locations from its source to the start of its delta (Dutch-German border). The samples were analyzed for 40 common pharmaceuticals. Using discharge data, digital elevation models and demographic data from Eurostat, the relation between total load of drug residue and population was analyzed. Results show regional differences in drug use as well as implications for (down)stream water quality concerning contamination with pharmaceuticals.
Geologic and tributary influences on the chemistry of a headwater stream
Alexander C. Wooten; James Preer; Pamela J. Edwards
1999-01-01
Water samples were collected weekly from June 12 to August 14, 1995, from Big Spring Run (BSR) in West Virginia. BSR originates in Big Spring Cave, where three stream samples were collected. In addition, 18 BSR sites were sampled downstream from the cave, three from its tributaries, and one above and below the stream?s confluence with Elklick Run. Along its length (653...
ALMA Correlator Real-Time Data Processor
NASA Astrophysics Data System (ADS)
Pisano, J.; Amestica, R.; Perez, J.
2005-10-01
The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem with the correlator hardware which presents software engineering challenges as the hardware evolves. The current status of this project and future goals are also presented.
LIBS data analysis using a predictor-corrector based digital signal processor algorithm
NASA Astrophysics Data System (ADS)
Sanders, Alex; Griffin, Steven T.; Robinson, Aaron
2012-06-01
There are many accepted sensor technologies for generating spectra for material classification. Once the spectra are generated, communication bandwidth limitations favor local material classification with its attendant reduction in data transfer rates and power consumption. Transferring sensor technologies such as Cavity Ring-Down Spectroscopy (CRDS) and Laser Induced Breakdown Spectroscopy (LIBS) require effective material classifiers. A result of recent efforts has been emphasis on Partial Least Squares - Discriminant Analysis (PLS-DA) and Principle Component Analysis (PCA). Implementation of these via general purpose computers is difficult in small portable sensor configurations. This paper addresses the creation of a low mass, low power, robust hardware spectra classifier for a limited set of predetermined materials in an atmospheric matrix. Crucial to this is the incorporation of PCA or PLS-DA classifiers into a predictor-corrector style implementation. The system configuration guarantees rapid convergence. Software running on multi-core Digital Signal Processor (DSPs) simulates a stream-lined plasma physics model estimator, reducing Analog-to-Digital (ADC) power requirements. This paper presents the results of a predictorcorrector model implemented on a low power multi-core DSP to perform substance classification. This configuration emphasizes the hardware system and software design via a predictor corrector model that simultaneously decreases the sample rate while performing the classification.
NASA Astrophysics Data System (ADS)
Wang, Juan; Wang, Jian; Li, Lijuan; Zhou, Kun
2014-08-01
In order to solve the information fusion, process integration, collaborative design and manufacturing for ultra-precision optical elements within life-cycle management, this paper presents a digital management platform which is based on product data and business processes by adopting the modern manufacturing technique, information technique and modern management technique. The architecture and system integration of the digital management platform are discussed in this paper. The digital management platform can realize information sharing and interaction for information-flow, control-flow and value-stream from user's needs to offline in life-cycle, and it can also enhance process control, collaborative research and service ability of ultra-precision optical elements.
37 CFR 385.16 - Reproduction and distribution rights covered.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming and...
Method and apparatus for data sampling
Odell, D.M.C.
1994-04-19
A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples is described. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium. 6 figures.
J. Hwang; S.W. Oak; S.N. Jeffers
2011-01-01
To evaluate the number of stream sample sites needed to effectively survey a given stream network for species of Phytophthora, two stream networks, Davidson River and Cathey's Creek, in western North Carolina (USA) were studied. One-litre water samples were collected from the terminal drainage points and most of the tributaries in each stream...
Virtual Sensors in a Web 2.0 Digital Watershed
NASA Astrophysics Data System (ADS)
Liu, Y.; Hill, D. J.; Marini, L.; Kooper, R.; Rodriguez, A.; Myers, J. D.
2008-12-01
The lack of rainfall data in many watersheds is one of the major barriers for modeling and studying many environmental and hydrological processes and supporting decision making. There are just not enough rain gages on the ground. To overcome this data scarcity issue, a Web 2.0 digital watershed is developed at NCSA(National Center for Supercomputing Applications), where users can point-and-click on a web-based google map interface and create new precipitation virtual sensors at any location within the same coverage region as a NEXRAD station. A set of scientific workflows are implemented to perform spatial, temporal and thematic transformations to the near-real-time NEXRAD Level II data. Such workflows can be triggered by the users' actions and generate either rainfall rate or rainfall accumulation streaming data at a user-specified time interval. We will discuss some underlying components of this digital watershed, which consists of a semantic content management middleware, a semantically enhanced streaming data toolkit, virtual sensor management functionality, and RESTful (REpresentational State Transfer) web service that can trigger the workflow execution. Such loosely coupled architecture presents a generic framework for constructing a Web 2.0 style digital watershed. An implementation of this architecture at the Upper Illinois Rive Basin will be presented. We will also discuss the implications of the virtual sensor concept for the broad environmental observatory community and how such concept will help us move towards a participatory digital watershed.
Merkes, Christopher; Turnquist, Keith N.; Rees, Christopher B.; Amberg, Jon J.
2015-01-01
The duplex assay was chosen as the most efficient assay and was used at the Upper Midwest Environmental Sciences Center to analyze triplicate samples from 29 streams in Wisconsin, 8 streams in Illinois, and 8 streams in Iowa. In order to verify results, additional triplicate samples were collected from two of the streams in Iowa and two of the streams in Wisconsin for analysis at the Molecular Conservation Genetics Laboratory. All samples at all sites were negative for NZMS DNA.
Sampling methods for amphibians in streams in the Pacific Northwest.
R. Bruce Bury; Paul Stephen Corn
1991-01-01
Methods describing how to sample aquatic and semiaquatic amphibians in small streams and headwater habitats in the Pacific Northwest are presented. We developed a technique that samples 10-meter stretches of selected streams, which was adequate to detect presence or absence of amphibian species and provided sample sizes statistically sufficient to compare abundance of...
Apparatus for continuously referenced analysis of reactive components in solution
Bostick, William D.; Denton, Mark S.; Dinsmore, Stanley R.
1981-01-01
A continuously referenced apparatus for measuring the concentration of a reactive chemical species in solution comprises in combination conduit means for introducing a sample solution, means for introducing one or more reactants into a sample solution, a reaction zone in fluid communication with said conduit means wherein a first chemical reaction occurs between said species and reactants, and a stream separator disposed within the conduit means for separating the sample solution into a sample stream and a reference stream. An enzymatic reactor is disposed in fluid communication with only the sample stream wherein a second reaction takes place between the said reactants, species, and reactor enzymes causing the consumption or production of an indicator species in just the sample stream. Measurement means such as a photometric system are disposed in communication with the sample and reference streams, and the outputs of the measurement means are compared to provide a blanked measurement of the concentration of indicator species. A peristaltic pump is provided to equalize flow through the apparatus by evacuation. The apparatus is particularly suitable for measurement of isoenzymes in body tissues or fluids.
Benthic macroinvertebrates are one of the primary biological indicators of condition used in the U.S. Environmental Protection Agency’s National Rivers and Streams Assessment. Following EPA’s Wadeable Streams Assessment, States recommended that a different yet compara...
Results of Macroinvertebrate Sampling Conducted at 33 SRS Stream Locations, July--August 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
1994-12-01
In order to assess the health of the macroinvertebrate communities of SRS streams, the macroinvertebrate communities at 30 stream locations on SRS were sampled during the summer of 1993, using Hester-Dendy multiplate samplers. In addition, three off-site locations in the Upper Three Runs drainage were sampled in order to assess the potential for impact from off-site activities. In interpreting the data, it is important to recognize that these data were from a single set of collections. Macroinvertebrate communities often undergo considerable temporal variation, and are also greatly influenced by such factors as water depth, water velocity, and available habitat. Thesemore » stations were selected with the intent of developing an on-going sampling program at a smaller number of stations, with the selection of the stations to be based largely upon the results of this preliminary sampling program. When stations within a given stream showed similar results, fewer stations would be sampled in the future. Similarly, if a stream appeared to be perturbed, additional stations or chemical analyses might be added so that the source of the perturbation could be identified. In general, unperturbed streams will contain more taxa than perturbed streams, and the distribution of taxa among orders or families will differ. Some groups of macroinvertebrates, such as Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), which are collectively called EPT taxa, are considered to be relatively sensitive to most kinds of stream perturbation; therefore a reduced number of EPT taxa generally indicates that the stream has been subject to chemical or physical stressors. In coastal plain streams, EPT taxa are generally less dominant than in streams with rocky substrates, while Chironomidae (midges) are more abundant. (Abstract Truncated)« less
Stream water quality in the coal region of West Virginia and Maryland
Kenneth L. Dyer
1982-01-01
This report is a compilation of water quality data for 118 small streams sampled in 27 counties of West Virginia and nine streams in two counties of western Maryland. Forty-eight of these streams drain unmined watersheds; 79 drain areas where coal has been surface mined. Most of these streams were sampled at approximate monthly intervals. The water quality data from...
37 CFR 385.12 - Calculation of royalty payments in general.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming and...
Method and apparatus for digitally based high speed x-ray spectrometer
Warburton, W.K.; Hubbard, B.
1997-11-04
A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ``hardwired`` processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs.
Method and apparatus for digitally based high speed x-ray spectrometer
Warburton, William K.; Hubbard, Bradley
1997-01-01
A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a "hardwired" processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer.
Hopkins, Kristina G.; Bain, Daniel J.
2018-01-01
Identifying areas where deteriorating sewer infrastructure is in close proximity to surface waterways is needed to map likely connections between sewers and streams. We present a method to estimate sewer installation year and deterioration status using historical maps of the sewer network, parcel-scale property assessment data, and pipe material. Areas where streams were likely buried into the sewer system were mapped by intersecting the historical stream network derived from a 10-m resolution digital elevation model with sewer pipe locations. Potential sewer leakage hotspots were mapped by identifying where aging sewer pipes are in close proximity (50-m) to surface waterways. Results from Pittsburgh, Pennsylvania (USA), indicated 41% of the historical stream length was lost or buried and the potential interface between sewers and streams is great. The co-location of aging sewer infrastructure (>75 years old) near stream channels suggests that 42% of existing streams are located in areas with a high potential for sewer leakage if sewer infrastructure fails. Mapping the sewer-stream interface provides an approach to better understand areas were failing sewers may contribute a disproportional amount of nutrients and other pathogens to surface waterways.
Waite, Ian R.; Brown, Larry R.; Kennen, Jonathan G.; May, Jason T.; Cuffney, Thomas F.; Orlando, James L.; Jones, Kimberly A.
2010-01-01
The successful use of macroinvertebrates as indicators of stream condition in bioassessments has led to heightened interest throughout the scientific community in the prediction of stream condition. For example, predictive models are increasingly being developed that use measures of watershed disturbance, including urban and agricultural land-use, as explanatory variables to predict various metrics of biological condition such as richness, tolerance, percent predators, index of biotic integrity, functional species traits, or even ordination axes scores. Our primary intent was to determine if effective models could be developed using watershed characteristics of disturbance to predict macroinvertebrate metrics among disparate and widely separated ecoregions. We aggregated macroinvertebrate data from universities and state and federal agencies in order to assemble stream data sets of high enough density appropriate for modeling in three distinct ecoregions in Oregon and California. Extensive review and quality assurance of macroinvertebrate sampling protocols, laboratory subsample counts and taxonomic resolution was completed to assure data comparability. We used widely available digital coverages of land-use and land-cover data summarized at the watershed and riparian scale as explanatory variables to predict macroinvertebrate metrics commonly used by state resource managers to assess stream condition. The “best” multiple linear regression models from each region required only two or three explanatory variables to model macroinvertebrate metrics and explained 41–74% of the variation. In each region the best model contained some measure of urban and/or agricultural land-use, yet often the model was improved by including a natural explanatory variable such as mean annual precipitation or mean watershed slope. Two macroinvertebrate metrics were common among all three regions, the metric that summarizes the richness of tolerant macroinvertebrates (RICHTOL) and some form of EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness. Best models were developed for the same two invertebrate metrics even though the geographic regions reflect distinct differences in precipitation, geology, elevation, slope, population density, and land-use. With further development, models like these can be used to elicit better causal linkages to stream biological attributes or condition and can be used by researchers or managers to predict biological indicators of stream condition at unsampled sites.
Shelton, Larry R.
1997-01-01
For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.
Nicholls, Colin I.
1992-07-14
An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.
Bravo-Zanoguera, Miguel E; Laris, Casey A; Nguyen, Lam K; Oliva, Mike; Price, Jeffrey H
2007-01-01
Efficient image cytometry of a conventional microscope slide means rapid acquisition and analysis of 20 gigapixels of image data (at 0.3-microm sampling). The voluminous data motivate increased acquisition speed to enable many biomedical applications. Continuous-motion time-delay-and-integrate (TDI) scanning has the potential to speed image acquisition while retaining sensitivity, but the challenge of implementing high-resolution autofocus operating simultaneously with acquisition has limited its adoption. We develop a dynamic autofocus system for this need using: 1. a "volume camera," consisting of nine fiber optic imaging conduits to charge-coupled device (CCD) sensors, that acquires images in parallel from different focal planes, 2. an array of mixed analog-digital processing circuits that measure the high spatial frequencies of the multiple image streams to create focus indices, and 3. a software system that reads and analyzes the focus data streams and calculates best focus for closed feedback loop control. Our system updates autofocus at 56 Hz (or once every 21 microm of stage travel) to collect sharply focused images sampled at 0.3x0.3 microm(2)/pixel at a stage speed of 2.3 mms. The system, tested by focusing in phase contrast and imaging long fluorescence strips, achieves high-performance closed-loop image-content-based autofocus in continuous scanning for the first time.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES... PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming and Limited Downloads § 385.13 Minimum royalty...
14 CFR 1215.105 - Delivery of user data.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SATELLITE SYSTEM (TDRSS) Use and Reimbursement Policy for Non-U.S. Government Users § 1215.105 Delivery of... determined by NASA in the form of one or more digital or analog bit streams synchronized to associated clock...
Optical fiber repeatered transmission systems utilizing SAW filters
NASA Astrophysics Data System (ADS)
Rosenberg, R. L.; Ross, D. G.; Trischitta, P. R.; Fishman, D. A.; Armitage, C. B.
1983-05-01
Baseband digital transmission-line systems capable of signaling rates of several hundred to several thousand Mbit/s are presently being developed around the world. The pulse regeneration process is gated by a timing wave which is synchronous with the symbol rate of the arriving pulse stream. Synchronization is achieved by extracting a timing wave from the arriving pulse stream, itself. To date, surface acoustic-wave (SAW) filters have been widely adopted for timing recovery in the in-line regenerators of high-bit-rate systems. The present investigation has the objective to acquaint the SAW community in general, and SAW filter suppliers in particular, with the requirements for timing recovery filters in repeatered digital transmission systems. Attention is given to the system structure, the timing loop function, the system requirements affecting the timing-recovery filter, the decision process, timing jitter accumulation, the filter 'ringing' requirement, and aspects of reliability.
NASA Astrophysics Data System (ADS)
Nakanishi, Hideya; Imazu, Setsuo; Ohsuna, Masaki; Kojima, Mamoru; Nonomura, Miki; Shoji, Mamoru; Emoto, Masahiko; Yoshida, Masanobu; Iwata, Chie; Miyake, Hitoshi; Nagayama, Yoshio; Kawahata, Kazuo
To deal with endless data streams acquired in LHD steady-state experiments, the LHD data acquisition system was designed with a simple concept that divides a long pulse into a consecutive series of 10-s “subshots”. Latest digitizers applying high-speed PCI-Express technology, however, output nonstop gigabyte per second data streams whose subshot intervals would be extremely long if 10-s rule was applied. These digitizers need shorter subshot intervals, less than 10-s long. In contrast, steady-state fusion plants need uninterrupted monitoring of the environment and device soundness. They adopt longer subshot lengths of either 10 min or 1 day. To cope with both uninterrupted monitoring and ultra-fast diagnostics, the ability to vary the subshot length according to the type of operation is required. In this study, a design modification that enables variable subshot lengths was implemented and its practical effectiveness in LHD was verified.
A multigear protocol for sampling crayfish assemblages in Gulf of Mexico coastal streams
William R. Budnick; William E. Kelso; Susan B. Adams; Michael D. Kaller
2018-01-01
Identifying an effective protocol for sampling crayfish in streams that vary in habitat and physical/chemical characteristics has proven problematic. We evaluated an active, combined-gear (backpack electrofishing and dipnetting) sampling protocol in 20 Coastal Plain streams in Louisiana. Using generalized linear models and rarefaction curves, we evaluated environmental...
State-wide monitoring based on probability survey designs requires a spatially explicit representation of all streams and rivers of interest within a state, i.e., a sample frame. The sample frame should be the best available map representation of the resource. Many stream progr...
Lerch, R.N.; Blanchard, P.E.; Thurman, E.M.
1998-01-01
The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites)in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites) in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.
Evaluation of USEPA method 1622 for detection of Cryptosporidium oocysts in stream waters
Simmons, O. D.; Sobsey, M.D.; Schaefer, F. W.; Francy, D.S.; Nally, R.A.; Heaney, C.D.
2001-01-01
To improve surveillance for Cryptosporidium oocysts in water, the US Environmental Protection Agency developed method 1622, which consists of filtration, concentration, immunomagnetic separation, fluorescent antibody and 4, 6-diamidino-2-phenylindole (DAPI) counter-staining, and microscopic evaluation. Two filters were compared for analysis of 11 stream water samples collected throughout the United States. Replicate 10-L stream water samples (unspiked and spiked with 100-250 oocysts) were tested to evaluate matrix effects. Oocyst recoveries from the stream water samples averaged 22% (standard deviation [SD] = ??17%) with a membrane disk and 12% (SD = ??6%) with a capsule filter. Oocyst recoveries from reagent water precision and recovery samples averaged 39% (SD = ??13%) with a membrane disk and 47% (SD = ??19%) with a capsule filter. These results demonstrate that Cryptosporidium oocysts can be recovered from stream waters using method 1622, but recoveries are lower than those from reagent-grade water. This research also evaluated concentrations of indicator bacteria in the stream water samples. Because few samples were oocyst-positive, relationships between detections of oocysts and concentrations of indicator organisms could not be determined.
Ghani, Wan Mohd Hafezul Wan Abdul; Rawi, Che Salmah Md; Hamid, Suhaila Abd; Al-Shami, Salman Abdo
2016-01-01
This study analyses the sampling performance of three benthic sampling tools commonly used to collect freshwater macroinvertebrates. Efficiency of qualitative D-frame and square aquatic nets were compared to a quantitative Surber sampler in tropical Malaysian streams. The abundance and diversity of macroinvertebrates collected using each tool evaluated along with their relative variations (RVs). Each tool was used to sample macroinvertebrates from three streams draining different areas: a vegetable farm, a tea plantation and a forest reserve. High macroinvertebrate diversities were recorded using the square net and Surber sampler at the forested stream site; however, very low species abundance was recorded by the Surber sampler. Relatively large variations in the Surber sampler collections (RVs of 36% and 28%) were observed for the vegetable farm and tea plantation streams, respectively. Of the three sampling methods, the square net was the most efficient, collecting a greater diversity of macroinvertebrate taxa and a greater number of specimens (i.e., abundance) overall, particularly from the vegetable farm and the tea plantation streams (RV<25%). Fewer square net sample passes (<8 samples) were sufficient to perform a biological assessment of water quality, but each sample required a slightly longer processing time (±20 min) compared with those gathered via the other samplers. In conclusion, all three apparatuses were suitable for macroinvertebrate collection in Malaysian streams and gathered assemblages that resulted in the determination of similar biological water quality classes using the Family Biotic Index (FBI) and the Biological Monitoring Working Party (BMWP). However, despite a slightly longer processing time, the square net was more efficient (lowest RV) at collecting samples and more suitable for the collection of macroinvertebrates from deep, fast flowing, wadeable streams with coarse substrates. PMID:27019685
Tarte, Stephen R.; Schmidt, A.R.; Sullivan, Daniel J.
1992-01-01
A floating sample-collection platform is described for stream sites where the vertical or horizontal distance between the stream-sampling point and a safe location for the sampler exceed the suction head of the sampler. The platform allows continuous water sampling over the entire storm-runoff hydrogrpah. The platform was developed for a site in southern Illinois.
Low-head hydropower assessment of the Brazilian State of São Paulo
Artan, Guleid A.; Cushing, W. Matthew; Mathis, Melissa L.; Tieszen, Larry L.
2014-01-01
This study produced a comprehensive estimate of the magnitude of hydropower potential available in the streams that drain watersheds entirely within the State of São Paulo, Brazil. Because a large part of the contributing area is outside of São Paulo, the main stem of the Paraná River was excluded from the assessment. Potential head drops were calculated from the Digital Terrain Elevation Data,which has a 1-arc-second resolution (approximately 30-meter resolution at the equator). For the conditioning and validation of synthetic stream channels derived from the Digital Elevation Model datasets, hydrography data (in digital format) supplied by the São Paulo State Department of Energy and the Agência Nacional de Águas were used. Within the study area there were 1,424 rain gages and 123 streamgages with long-term data records. To estimate average yearly streamflow, a hydrologic regionalization system that divides the State into 21 homogeneous basins was used. Stream segments, upstream areas, and mean annual rainfall were estimated using geographic information systems techniques. The accuracy of the flows estimated with the regionalization models was validated. Overall, simulated streamflows were significantly correlated with the observed flows but with a consistent underestimation bias. When the annual mean flows from the regionalization models were adjusted upward by 10 percent, average streamflow estimation bias was reduced from -13 percent to -4 percent. The sum of all the validated stream reach mean annual hydropower potentials in the 21 basins is 7,000 megawatts (MW). Hydropower potential is mainly concentrated near the Serra do Mar mountain range and along the Tietê River. The power potential along the Tietê River is mainly at sites with medium and high potentials, sites where hydropower has already been harnessed. In addition to the annual mean hydropower estimates, potential hydropower estimates with flow rates with exceedance probabilities of 40 percent, 60 percent, and 90 percent were made.
A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams
Flynn, Robert H.
2003-01-01
The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.
Berthier, Marcelo L.; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia
2013-01-01
Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and18FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The CA patient showed a greater activation of these cortical areas than the TCMA patient, but these changes did not result in normal performance. Repetition of word triplet lists activated bilateral perisylvian cortices in both patients, but activation in the CA patient with very poor performance was restricted to small frontal and posterior temporal foci bilaterally. These findings suggest that dissociated repetition deficits in our cases are probably reliant on flexible interactions between left dorsal stream (spared segments, short tracts remains) and left ventral stream and on gender-dimorphic architecture of the right dorsal stream. PMID:24391569
Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia
2013-01-01
Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The CA patient showed a greater activation of these cortical areas than the TCMA patient, but these changes did not result in normal performance. Repetition of word triplet lists activated bilateral perisylvian cortices in both patients, but activation in the CA patient with very poor performance was restricted to small frontal and posterior temporal foci bilaterally. These findings suggest that dissociated repetition deficits in our cases are probably reliant on flexible interactions between left dorsal stream (spared segments, short tracts remains) and left ventral stream and on gender-dimorphic architecture of the right dorsal stream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, S.; Bartoshesky, J.; Heimbuch, D.
1987-06-01
Contents include: data quality assurance and stream, precipitation, and meteorological data; Granny Finley Branch stream chemistry (routine sampling, storm-event chemistry, longitudinal sampling, groundwater chemistry).
Tripp, Richard B.; Curtin, Gary C.; Nokleberg, Warren J.; Huston, David L.; Hampton, James R.
1993-01-01
Exploratory geochemical sampling was done in 1979, 1980, and 1981. The collection of composite samples of stream sediment or glacial debris was emphasized the first 2 years; the last year was spent collecting mineralized stream pebbles, float, and outcrop samples. The stream-sediment and heavy- mineral-concentrate samples were collected at 795 sites on tributary streams having drainage basins ranging from 1 to 5 mi 2 in area. The glacial debris samples were collected at 116 sites on tributary glaciers also having drainage basins ranging from 1 to 5 mi2 in area. All of these samples were analyzed for 31 elements by six-step semiquantitative emission spectrography (Grimes and Marranzino, 1968). In addition, all samples were analyzed for zinc by an atomic absorption method (Ward and others, 1969). The spectrographic and chemical results are available in O'Leary and others (1982).
Digital cinema system using JPEG2000 movie of 8-million pixel resolution
NASA Astrophysics Data System (ADS)
Fujii, Tatsuya; Nomura, Mitsuru; Shirai, Daisuke; Yamaguchi, Takahiro; Fujii, Tetsuro; Ono, Sadayasu
2003-05-01
We have developed a prototype digital cinema system that can store, transmit and display extra high quality movies of 8-million pixel resolution, using JPEG2000 coding algorithm. The image quality is 4 times better than HDTV in resolution, and enables us to replace conventional films with digital cinema archives. Using wide-area optical gigabit IP networks, cinema contents are distributed and played back as a video-on-demand (VoD) system. The system consists of three main devices, a video server, a real-time JPEG2000 decoder, and a large-venue LCD projector. All digital movie data are compressed by JPEG2000 and stored in advance. The coded streams of 300~500 Mbps can be continuously transmitted from the PC server using TCP/IP. The decoder can perform the real-time decompression at 24/48 frames per second, using 120 parallel JPEG2000 processing elements. The received streams are expanded into 4.5Gbps raw video signals. The prototype LCD projector uses 3 pieces of 3840×2048 pixel reflective LCD panels (D-ILA) to show RGB 30-bit color movies fed by the decoder. The brightness exceeds 3000 ANSI lumens for a 300-inch screen. The refresh rate is chosen to 96Hz to thoroughly eliminate flickers, while preserving compatibility to cinema movies of 24 frames per second.
Investigation of watercourses by comparison of successive historical map surveys of Western Hungary
NASA Astrophysics Data System (ADS)
Kovács, Gábor
2010-05-01
The Second (Timár et al., 2006) and Third Military Survey (Biszak et al., 2007) of the Habsburg Empire, completed in the 19th century (1806-69 and 1869-87), can be very useful in different scientific investigations because of their accuracy and data content. The mapmakers used geodetic projections and survey technologies provided high accuracy. Therefore, scientists can use these maps and the represented objects in retrospective studies. The streams were drawn with very thin lines that also ascertain the high accuracy of their location. Previous study used the Second Military Survey to examine the neotectonic evaluation of the western part of the Pannonian Basin, bordered by Pinka, Rába and Répce Rivers (Kovács, 2010). The watercourses, especially alluvial ones, react very sensitively to tectonic forcing (Schumm & Khan, 1972; Ouchi, 1985). However, the present-day course of the creeks and rivers are mostly regulated, therefore they are unsuitable for such studies. The watercourses have reconstructed from maps surveyed prior to the main water control measures. The Second Military Survey was a perfect source for such studies. The investigated streams were free meandering ones. They could flood their banks, and only natural levees were present. After georeferencing the maps of the area, the streams were digitized, and their sinuosity values were computed. Where significant sinuosity changes have been detected along the streams, it can be considered as indicators of differential uplift or subsidence of the bedrock/alluvium. The goal of this study is to decide the character of several stream sections: were they free meandering ones or not? Some of the sections are antecedent ones, especially at the Vas Mountain at the present Austrian-Hungarian border. If the shapes of the watercourses on the different surveys are almost the same, the sinuosity refers to a prior, forced state of the stream. After digitizing the watercourses on the Third Military Survey sheets, some newly regulated sections are recognized as well as forced and free meandering ones. Thus, the neotectonic evaluation of the study area can be made more accurate. References - Biszak, S., Timár, G., Molnár, G., Jankó, A. (2007): Digitized maps of the Habsburg Empire - The third military survey, Ungarn, Siebenbürgen, Kroatien-Slawonien, 1867-1887, 1:25000. Arcanum, Budapest, DVD-issue. - Kovács, G. (2010): The advantages of using the Second Military Survey maps in fluvial studies. Acta Geodaetica et Geophysica Hungarica 45(1): 64-70. - Ouchi, S. (1985): Response of alluvial rivers to slow active tectonic movement. Geol. Soc. Am. Bull. 96: 504-515. - Schumm, S. A., Khan, H. R. (1972): Experimental study of channel patterns. Geol. Soc. Am. Bull. 83: 1755-1770. - Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A. (2006): Digitized maps of the Habsburg Empire - The map sheets of the second military survey and their georeferenced version. Arcanum, Budapest, 59 p.
Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng
2015-03-01
Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.
Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas
Lee, C.J.; Rasmussen, T.J.
2006-01-01
Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.
Ulibarri, Roy M.; Bonar, Scott A.; Rees, Christopher B.; Amberg, Jon J.; Ladell, Bridget; Jackson, Craig
2017-01-01
Analysis of environmental DNA (eDNA) is an emerging technique used to detect aquatic species through water sampling and the extraction of biological material for amplification. Our study compared the efficacy of eDNA methodology to American Fisheries Society (AFS) standard snorkeling surveys with regard to detecting the presence of rare fish species. Knowing which method is more efficient at detecting target species will help managers to determine the best way to sample when both traditional sampling methods and eDNA sampling are available. Our study site included three Navajo Nation streams that contained Navajo Nation Genetic Subunit Bluehead Suckers Catostomus discobolus and Zuni Bluehead Suckers C. discobolus yarrowi. We first divided the entire wetted area of streams into consecutive 100-m reaches and then systematically selected 10 reaches/stream for snorkel and eDNA surveys. Surface water samples were taken in 10-m sections within each 100-m reach, while fish presence was noted via snorkeling in each 10-m section. Quantitative PCR was run on each individual water sample in quadruplicate to test for the presence or absence of the target species. With eDNA sampling techniques, we were able to positively detect both species in two out of the three streams. Snorkeling resulted in positive detection of both species in all three streams. In streams where the target species were detected with eDNA sampling, snorkeling detected fish at 11–29 sites/stream, whereas eDNA detected fish at 3–12 sites/stream. Our results suggest that AFS standard snorkeling is more effective than eDNA for detecting target fish species. To improve our eDNA procedures, the amount of water collected and tested should be increased. Additionally, filtering water on-site may improve eDNA techniques for detecting fish. Future research should focus on standardization of eDNA sampling to provide a widely operational sampling tool.
NASA Astrophysics Data System (ADS)
Höfler, Sarah; Pichler-Scheder, Christian; Gumpinger, Clemens
2017-04-01
In the current scientific discussion high loads of fine sediments are considered one of the most important causes of river ecosystem degradation worldwide. Especially in intensively used catchment areas changes in the sediment household must be regarded as a reason, which prevents the achievement of the objectives of the European Water Framework Directive (WFD). Therefore, the Upper Austrian Water Authorities have launched two comprehensive studies on the topic. The first one was a survey on the current siltation status of river courses in Upper Austria. The second study deals with two selected catchments in detail, in order to get a clear picture of the impacts of the fines on the aquatic fauna (trout eggs, benthic invertebrates), the chemical composition of these fractions, the crucial hydrogeological processes and to develop possible role models for measures both in the catchments and in the streams. At eight sites within the two catchments sediment and water samples were collected at two dates for detailed chemical analysis. On one date additionally the benthic invertebrate fauna was investigated on the microhabitat level. Thereby it was possible to enhance the understanding of the range of ecological impacts caused by silting-up in different hydro-morphological circumstances and with different fine sediment loads. The water samples as well as the sediment fraction samples <0.063 mm were examined for different metals, organochlorine pesticides, PAHs (Polycyclic Aromatic Hydrocarbons), PCBs (Polychlorinated biphenyls), BTEX (benzene, toluene, ethylbenzene, and xylenes), AOX (adsorbable organohalogens) and various nutrients. Additionally, the basic parameters dry residue, loss on ignition, TC (total carbon), TOC (total organic carbon) and nutrients were analysed. From the sediment eluates and the filtered water decomposition products of pesticides, remains of medical drugs, sweeteners, hormonally active substances and water-soluble elements were analysed. Furthermore, a GIS-based analysis was carried out for the two examined catchments. The model included data gained from a digital elevation model, land use data and digital soil classification maps. This led to findings concerning the main sources and processes, which are responsible for anthropogenically induced high fine sediment loads in the streams. According to these results a GIS-based risk assessment tool for all Upper Austrian watercourses is developed, which will be used as instrument for the planning and measure implementation of the water management authorities. Due to the necessity of highly integrative improvement measures covering whole catchments, fine sediments must be expected to be one of the most challenging future topics in aquatic ecology. Erosion, loss of soil, economical and social disadvantages due to that processes as well as ecological degradation of riverine systems and related flood risk issues, urgently have to be discussed and solved on a highly comprehensive basis.
Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry
Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer
2009-01-01
We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...
Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the U.S. Environmental Protection Agency’s National Aquatic Resource Surveys. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for di...
Comparison of water-quality samples collected by siphon samplers and automatic samplers in Wisconsin
Graczyk, David J.; Robertson, Dale M.; Rose, William J.; Steur, Jeffrey J.
2000-01-01
In small streams, flow and water-quality concentrations often change quickly in response to meteorological events. Hydrologists, field technicians, or locally hired stream ob- servers involved in water-data collection are often unable to reach streams quickly enough to observe or measure these rapid changes. Therefore, in hydrologic studies designed to describe changes in water quality, a combination of manual and automated sampling methods have commonly been used manual methods when flow is relatively stable and automated methods when flow is rapidly changing. Auto- mated sampling, which makes use of equipment programmed to collect samples in response to changes in stage and flow of a stream, has been shown to be an effective method of sampling to describe the rapid changes in water quality (Graczyk and others, 1993). Because of the high cost of automated sampling, however, especially for studies examining a large number of sites, alternative methods have been considered for collecting samples during rapidly changing stream conditions. One such method employs the siphon sampler (fig. 1). also referred to as the "single-stage sampler." Siphon samplers are inexpensive to build (about $25- $50 per sampler), operate, and maintain, so they are cost effective to use at a large number of sites. Their ability to collect samples representing the average quality of water passing though the entire cross section of a stream, however, has not been fully demonstrated for many types of stream sites.
Map Classification In Image Data
2015-09-25
showing the signicant portion of image and video data transfers via Youtube , Facebook, and Flickr as primary platforms from Infographic (2015) digital...reserves • hydrography: lakes, rivers, streams, swamps, coastal flats • relief: mountains, valleys, slopes, depressions • vegetation: wooded and cleared
Upper Washita River Experimental Watersheds: Physiography Data
USDA-ARS?s Scientific Manuscript database
Physiographic data such as digital elevation models (DEMs), soils, geology, stream channel network characteristics, and channel stability data are essential for understanding the complex hydrologic cycle and chemical transport processes of any given study area. This paper describes physiographic dat...
Resource Purpose:The National Hydrography Dataset (NHD) is a comprehensive set of digital spatial data that contains information about surface water features such as lakes, ponds, streams, rivers, springs and wells. Within the NHD, surface water features are combined to fo...
Loper, Connie A.; Crawford, J. Kent; Otto, Kim L.; Manning, Rhonda L.; Meyer, Michael T.; Furlong, Edward T.
2007-01-01
This report presents environmental and quality-control data from analyses of 15 pharmaceutical and 31 antibiotic compounds in water samples from streams and wells in south-central Pennsylvania. The analyses are part of a study by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP) to define concentrations of selected emerging contaminants in streams and well water in Pennsylvania. Sampling was conducted at 11 stream sites and at 6 wells in 9 counties of south-central Pennsylvania. Five of the streams received municipal wastewater and 6 of the streams received runoff from agricultural areas dominated by animal-feeding operations. For all 11 streams, samples were collected at locations upstream and downstream of the municipal effluents or animal-feeding operations. All six wells were in agricultural settings. A total of 120 environmental samples and 21 quality-control samples were analyzed for the study. Samples were collected at each site in March/April, May, July, and September 2006 to obtain information on changes in concentration that could be related to seasonal use of compounds.For streams, 13 pharmaceuticals and 11 antibiotics were detected at least 1 time. Detections included analytical results that were estimated or above the minimum reporting limits. Seventy-eight percent of all detections were analyzed in samples collected downstream from municipal-wastewater effluents. For streams receiving wastewater effluents, the pharmaceuticals caffeine and para-xanthine (a degradation product of caffeine) had the greatest concentrations, 4.75 μg/L (micrograms per liter) and 0.853 μg/L, respectively. Other pharmaceuticals and their respective maximum concentrations were carbamazepine (0.516 μg/L) and ibuprofen (0.277 μg/L). For streams receiving wastewater effluents, the antibiotic azithromycin had the greatest concentration (1.65 μg/L), followed by sulfamethoxazole (1.34 μg/L), ofloxacin (0.329 μg/L), and trimethoprim (0.256 μg/L).For streams receiving runoff from animal-feeding operations, the only pharmaceuticals detected were acetaminophen, caffeine, cotinine, diphenhydramine, and carbamazepine. The maximum concentration for pharmaceuticals was 0.053 μg/L. Three streams receiving runoff from animal-feeding operations had detections of one or more antibiotic compound--oxytetracycline, sulfadimethoxine, sulfamethoxazole, and tylosin. The maximum concentration for antibiotics was 0.157 μg/L. The average number of compounds (pharmaceuticals and antibiotics) detected in sites downstream from animal-feeding operations was three. The average number of compounds detected downstream from municipal-wastewater effluents was 13.For wells used to supply livestock, four compounds were detected--two pharmaceuticals (cotinine and diphenhydramine) and two antibiotics (tylosin and sulfamethoxazole). There were five detections in all the well samples. The maximum concentration detected in well water was for cotinine, estimated to be 0.024 μg/L.Seasonal occurrence of pharmaceutical and antibiotic compounds in stream water varied by compound and site type. At four stream sites, the same compounds were detected in all four seasonal samples. At other sites, pharmaceutical or antibiotic compounds were detected only one time in seasonal samples. Winter samples collected in streams receiving municipalwastewater effluent had the greatest number of compounds detected (21). Research analytical methods were used to determine concentrations for pharmaceuticals and antibiotics. To assist in evaluating the quality of the analyses, detailed information is presented on laboratory methodology and results from qualitycontrol samples. Quality-control data include results for nine blanks, nine duplicate environmental sample pairs, and three laboratory-spiked environmental samples as well as the recoveries of compounds in laboratory surrogates and laboratory reagent spikes.
Hydrologic and Hydraulic Analyses of Selected Streams in Lorain County, Ohio, 2003
Jackson, K. Scott; Ostheimer, Chad J.; Whitehead, Matthew T.
2003-01-01
Hydrologic and hydraulic analyses were done for selected reaches of nine streams in Lorain County Ohio. To assess the alternatives for flood-damage mitigation, the Lorain County Engineer and the U.S. Geological Survey (USGS) initiated a cooperative study to investigate aspects of the hydrology and hydraulics of the nine streams. Historical streamflow data and regional regression equations were used to estimate instantaneous peak discharges for floods having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Drainage areas of the nine stream reaches studied ranged from 1.80 to 19.3 square miles. The step-backwater model HEC-RAS was used to determine water-surface-elevation profiles for the 10-year-recurrence-interval (10-year) flood along a selected reach of each stream. The water-surface pro-file information was used then to generate digital mapping of flood-plain boundaries. The analyses indicate that at the 10-year flood elevation, road overflow results at numerous hydraulic structures along the nine streams.
Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006
Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.
2008-01-01
Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily-mean loads were computed at the two Waiakea Stream sampling sites for the analyzed constituents, during the period October 1, 2003 to September 30, 2005. No record of daily-mean load was computed for the Alenaio Stream sampling site due to the problems with computing a discharge record. The maximum daily-mean loads for the upper site on Waiakea Stream for suspended sediment was 79 tons per day, and the maximum daily-mean loads for total nitrogen, dissolved nitrite plus nitrate, and total phosphorus were 1,350, 13, and 300 pounds per day, respectively. The maximum daily-mean loads for the lower site on Waiakea Stream for suspended sediment was 468 tons per day, and the maximum daily-mean loads for total nitrogen, nitrite plus nitrate, and total phosphorus were 913, 8.5, and 176 pounds per day, respectively. From the estimated continuous daily-mean load record, all of the maximum daily-mean loads occurred during October 2003 and September 2004, except for suspended sediment load for the lower site, which occurred on September 15, 2005. Maximum values were not all caused by a single storm event. Overall, the record of daily-mean loads showed lower loads during storm events for suspended sediments and nutrients at the downstream site of Waiakea Stream during 2004 than at the upstream site. During 2005, however, the suspended sediment loads were higher at the downstream site than the upstream site. Construction of a flood control channel between the two sites in 2005 may have contributed to the change in relative suspended-sediment loads.
Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.
2018-01-01
Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most complex pesticide mixtures yet reported in discrete water samples in the U.S. and, using multiple lines of evidence, predicts that pesticides were potentially toxic to nontarget aquatic life in about half of the sampled streams.
Waller, John S.; Doctor, Daniel H.; Terziotti, Silvia
2015-01-01
Closed depressions on the land surface can be identified by ‘filling’ a digital elevation model (DEM) and subtracting the filled model from the original DEM. However, automated methods suffer from artificial ‘dams’ where surface streams cross under bridges and through culverts. Removal of these false depressions from an elevation model is difficult due to the lack of bridge and culvert inventories; thus, another method is needed to breach these artificial dams. Here, we present a semi-automated workflow and toolbox to remove falsely detected closed depressions created by artificial dams in a DEM. The approach finds the intersections between transportation routes (e.g., roads) and streams, and then lowers the elevation surface across the roads to stream level allowing flow to be routed under the road. Once the surface is corrected to match the approximate location of the National Hydrologic Dataset stream lines, the procedure is repeated with sequentially smaller flow accumulation thresholds in order to generate stream lines with less contributing area within the watershed. Through multiple iterations, artificial depressions that may arise due to ephemeral flow paths can also be removed. Preliminary results reveal that this new technique provides significant improvements for flow routing across a DEM and minimizes artifacts within the elevation surface. Slight changes in the stream flow lines generally improve the quality of flow routes; however some artificial dams may persist. Problematic areas include extensive road ditches, particularly along divided highways, and where surface flow crosses beneath road intersections. Limitations do exist, and the results partially depend on the quality of data being input. Of 166 manually identified culverts from a previous study by Doctor and Young in 2013, 125 are within 25 m of culverts identified by this tool. After three iterations, 1,735 culverts were identified and cataloged. The result is a reconditioned elevation dataset, which retains the karst topography for further analysis, and a culvert catalog.
Photogrammetric Method and Software for Stream Planform Identification
NASA Astrophysics Data System (ADS)
Stonedahl, S. H.; Stonedahl, F.; Lohberg, M. M.; Lusk, K.; Miller, D.
2013-12-01
Accurately characterizing the planform of a stream is important for many purposes, including recording measurement and sampling locations, monitoring change due to erosion or volumetric discharge, and spatial modeling of stream processes. While expensive surveying equipment or high resolution aerial photography can be used to obtain planform data, our research focused on developing a close-range photogrammetric method (and accompanying free/open-source software) to serve as a cost-effective alternative. This method involves securing and floating a wooden square frame on the stream surface at several locations, taking photographs from numerous angles at each location, and then post-processing and merging data from these photos using the corners of the square for reference points, unit scale, and perspective correction. For our test field site we chose a ~35m reach along Black Hawk Creek in Sunderbruch Park (Davenport, IA), a small, slow-moving stream with overhanging trees. To quantify error we measured 88 distances between 30 marked control points along the reach. We calculated error by comparing these 'ground truth' distances to the corresponding distances extracted from our photogrammetric method. We placed the square at three locations along our reach and photographed it from multiple angles. The square corners, visible control points, and visible stream outline were hand-marked in these photos using the GIMP (open-source image editor). We wrote an open-source GUI in Java (hosted on GitHub), which allows the user to load marked-up photos, designate square corners and label control points. The GUI also extracts the marked pixel coordinates from the images. We also wrote several scripts (currently in MATLAB) that correct the pixel coordinates for radial distortion using Brown's lens distortion model, correct for perspective by forcing the four square corner pixels to form a parallelogram in 3-space, and rotate the points in order to correctly orient all photos of the same square location. Planform data from multiple photos (and multiple square locations) are combined using weighting functions that mitigate the error stemming from the markup-process, imperfect camera calibration, etc. We have used our (beta) software to mark and process over 100 photos, yielding an average error of only 1.5% relative to our 88 measured lengths. Next we plan to translate the MATLAB scripts into Python and release their source code, at which point only free software, consumer-grade digital cameras, and inexpensive building materials will be needed for others to replicate this method at new field sites. Three sample photographs of the square with the created planform and control points
Hyer, Kenneth
2007-01-01
Although fecal contamination of streams is a problem of national scope, few investigations have been directed at relatively pristine streams in forested basins in national parks. With approximately 1.8 million visitors annually, Shenandoah National Park in Virginia is subject to extensive recreational use. The effects of these visitors and their recreational activities on fecal indicator bacteria levels in the streams are poorly understood and of concern for Shenandoah National Park managers. During 2005 and 2006, streams and springs in Shenandoah National Park were sampled for Escherichia coli (E. coli) concentrations. The first study objective was to evaluate the effects of recreational activities on E. coli concentrations in selected streams. Of the 20 streams that were selected, 14 were in basins with extensive recreational activity, and 6 were in control basins where minimal recreational activities occurred. Water-quality sampling was conducted during low-flow conditions during the relatively warm months, as this is when outdoor recreation and bacterial survivorship are greatest. Although most sampling was conducted during low-flow conditions, approximately three stormflow samples were collected from each stream. The second study objective was to evaluate E. coli levels in backcountry drinking-water supplies throughout Shenandoah National Park. Nineteen drinking-water supplies (springs and streams) were sampled two to six times each by Shenandoah National Park staff and analyzed by the U.S. Geological Survey for this purpose. The water-quality sampling results indicated relatively low E. coli concentrations during low-flow conditions, and no statistically significant increase in E. coli concentrations was observed in the recreational streams relative to the control streams. These results indicate that during low-flow conditions, recreational activities had no significant effect on E. coli concentrations. During stormflow conditions, E. coli concentrations increased by nearly a factor of 10 in both basin types, and the Virginia instantaneous water-quality standard for E. coli (235 colonies per 100 milliliters) frequently was exceeded. The sampling results from drinking-water supplies throughout Shenandoah National Park indicated relatively low E. coli concentrations in all springs that were sampled. Several of the streams that were sampled had slightly higher E. coli concentrations relative to the springs, but no E. coli concentrations exceeded the instantaneous water-quality standard. Although E. coli concentrations in all the drinking-water supplies were relatively low, Shenandoah National Park management continues to stress that all hikers must treat drinking water from all streams and springs prior to consumption. After determining that recreational activities in Shenandoah National Park did not have a statistically significant effect on low-flow E. coli concentrations, an additional concern was addressed regarding the quality of the water releases from the wastewater-treatment plants in the park. Sampling of three wastewater-treatment plant outfalls was conducted in 2006 to evaluate their effects on water quality. Samples were analyzed for E. coli and a collection of wastewater organic compounds that may be endocrine disruptors. Relatively elevated E. coli concentrations were observed in 2 of the 3 samples, and between 9 and 13 wastewater organic compounds were detected in the samples, including 3 known and 5 suspected endocrine-disrupting compounds.
Lance R. Williams; Melvin L. Warren; Susan B. Adams; Joseph L. Arvai; Christopher M. Taylor
2004-01-01
Basin Visual Estimation Techniques (BVET) are used to estimate abundance for fish populations in small streams. With BVET, independent samples are drawn from natural habitat units in the stream rather than sampling "representative reaches." This sampling protocol provides an alternative to traditional reach-level surveys, which are criticized for their lack...
Urban contributions of glyphosate and its degradate AMPA to streams in the United States
Kolpin, D.W.; Thurman, E.M.; Lee, E.A.; Meyer, M.T.; Furlong, E.T.; Glassmeyer, S.T.
2006-01-01
Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and water-solubility of glyphosate and AMPA has, until recently, made their analysis in water samples problematic. Thus, compared to other herbicides (e.g. atrazine) there are relatively few studies on the environmental occurrence of glyphosate and AMPA. In 2002, treated effluent samples were collected from 10 wastewater treatment plants (WWTPs) to study the occurrence of glyphosate and AMPA. Stream samples were collected upstream and downstream of the 10 WWTPs. Two reference streams were also sampled. The results document the apparent contribution of WWTP effluent to stream concentrations of glyphosate and AMPA, with roughly a two-fold increase in their frequencies of detection between stream samples collected upstream and those collected downstream of the WWTPs. Thus, urban use of glyphosate contributes to glyphosate and AMPA concentrations in streams in the United States. Overall, AMPA was detected much more frequently (67.5%) compared to glyphosate (17.5%).
Evaluation of Elevation, Slope and Stream Network Quality of SPOT Dems
NASA Astrophysics Data System (ADS)
El Hage, M.; Simonetto, E.; Faour, G.; Polidori, L.
2012-07-01
Digital elevation models are considered the most useful data for dealing with geomorphology. The quality of these models is an important issue for users. This quality concerns position and shape. Vertical accuracy is the most assessed in many studies and shape quality is often neglected. However, both of them have an impact on the quality of the final results for a particular application. For instance, the elevation accuracy is required for orthorectification and the shape quality for geomorphology and hydrology. In this study, we deal with photogrammetric DEMs and show the importance of the quality assessment of both elevation and shape. For this purpose, we produce several SPOT HRV DEMs with the same dataset but with different template size, that is one of the production parameters from optical images. Then, we evaluate both elevation and shape quality. The shape quality is assessed with in situ measurements and analysis of slopes as an elementary shape and stream networks as a complex shape. We use the fractal dimension and sinuosity to evaluate the stream network shape. The results show that the elevation accuracy as well as the slope accuracy are affected by the template size. Indeed, an improvement of 1 m in the elevation accuracy and of 5 degrees in the slope accuracy has been obtained while changing this parameter. The elevation RMSE ranges from 7.6 to 8.6 m, which is smaller than the pixel size (10 m). For slope, the RMSE depends on the sampling distance. With a distance of 10 m, the minimum slope RMSE is 11.4 degrees. The stream networks extracted from these DEMs present a higher fractal dimension than the reference river. Moreover, the fractal dimension of the extracted networks has a negligible change according to the template size. Finally, the sinuosity of the stream networks is slightly affected by the change of the template size.
Hydrograph separation techniques in snowmelt-dominated watersheds
NASA Astrophysics Data System (ADS)
Miller, S.; Miller, S. N.
2017-12-01
This study integrates hydrological, geochemical, and isotopic data for a better understanding of different streamflow generation pathways and residence times in a snowmelt-dominated region. A nested watershed design with ten stream gauging sites recording sub-hourly stream stage has been deployed in a snowmelt-dominated region in southeastern Wyoming, heavily impacted by the recent bark beetle epidemic. LiDAR-derived digital elevation models help elucidate effects from topography and watershed metrics. At each stream gauging site, sub-hourly stream water conductivity and temperature data are also recorded. Hydrograph separation is a useful technique for determining different sources of runoff and how volumes from each source vary over time. Following previous methods, diurnal cycles from sub-hourly recorded streamflow and specific conductance data are analyzed and used to separate hydrographs into overland flow and baseflow components, respectively. A final component, vadose-zone flow, is assumed to be the remaining water from the total hydrograph. With access to snowmelt and precipitation data from nearby instruments, runoff coefficients are calculated for the different mechanisms, providing information on watershed response. Catchments are compared to understand how different watershed characteristics translate snowmelt or precipitation events into runoff. Portable autosamplers were deployed at two of the gauging sites for high-frequency analysis of stream water isotopic composition during peak flow to compare methods of hydrograph separation. Sampling rates of one or two hours can detect the diurnal streamflow cycle common during peak snowmelt. Prior research suggests the bark beetle epidemic has had little effect on annual streamflow patterns; however, several results show an earlier shift in the day of year in which peak annual streamflow is observed. The diurnal cycle is likely to comprise a larger percentage of daily streamflow during snowmelt in post-epidemic forests, as more solar radiation is available to penetrate to the ground surface and induce snowmelt, contributing to the effect of an earlier observed peak annual streamflow.
NASA Astrophysics Data System (ADS)
Bradshaw, J. K.; Molina, M.; Sidle, R. C.; Sullivan, K.; Oakley, B.; Berrang, M.; Meinersmann, R.
2013-12-01
Fecal indicator bacteria (FIB) and pathogens stored in the bed sediments of streams and rivers may be mobilized into the water column affecting overall water quality. Furthermore, land management may play an important role in the concentrations of FIB and the occurrence of pathogens in stream water and sediments. The purpose of this study was to determine the relationship between FIB and pathogens in stream water and sediment based on three land management-affected categories: agricultural, forest, and waters receiving treated municipal wastewater. Two synoptic sampling events were conducted under baseflow conditions (<0.64 cm of rain within 24h) between October-November, 2012 and May-June, 2013. Counts of the E. coli and E. faecalis and occurrences of the enteric pathogens Campylobacter and Listeria spp. were measured in stream water and sediment samples collected at 15 locations (six agricultural (AG); six forested (FORS); and three receiving discharge from water pollution control plants (WPCP)) in the S. Fork Broad River watershed located in northeast Georgia, USA. Mean E. coli and E. faecalis concentrations were highest in the AG stream water samples (3.08 log MPN 100 mL -1 for E. coli and 3.07 log CFU 100 mL -1 for E. faecalis ) and lowest in the FORS water samples for E. coli (2.37 log MPN 100 mL -1 ) and WPCP water samples for E. faecalis (2.53 log CFU 100 mL -1 ). E. coli concentrations (2.74 log MPN 100 mL -1 ) in the WPCP streams were intermediate. Similar to water samples, E. coli concentrations were highest in the AG sediments (4.31 log MPN g -1 ), intermediate in the WPCP sediments (4.06 log MPN g -1 ), and lowest in the FORS sediments (3.46 log MPN g -1 ). In contrast to E. coli, E. faecalis concentrations were lower (1.10 to 1.31 log CFU g -1 ) and relatively more constant than E. coli in sediments over the three land management categories. Campylobacter was detected in 27% of the water samples and 8% of the sediment samples. The highest occurrence of Campylobacter detection was in the AG streams (15% of the water samples; 5% of the sediment samples). Listeria was detected in 76% of the water samples and 65% of the sediment samples. The FORS and AG streams had the highest occurrence of Listeria in water and sediment (32% and 29% of the water samples, respectively; 24% and 29% of sediment samples, respectively) suggesting Listeria is fairly ubiquitous in these streams. Based on the high concentrations of E. faecalis in water and E. coli in water and sediment, and higher frequency of Campylobacter detection in the AG streams, this study indicates that E. coli and Campylobacter may occur in high concentrations in stream sediments in land management areas where fecal material is deposited directly by livestock into the stream or adjacent land in large doses.
NASA Astrophysics Data System (ADS)
Jiménez Jaramillo, M. A.; Camacho Botero, L. A.; Vélez Upegui, J. I.
2010-12-01
Variation in stream morphology along a basin drainage network leads to different hydraulic patterns and sediment transport processes. Moreover, solute transport processes along streams, and stream habitats for fisheries and microorganisms, rely on stream corridor structure, including elements such as bed forms, channel patterns, riparian vegetation, and the floodplain. In this work solute transport processes simulation and stream habitat identification are carried out at the basin scale. A reach-scale morphological classification system based on channel slope and specific stream power was implemented by using digital elevation models and hydraulic geometry relationships. Although the morphological framework allows identification of cascade, step-pool, plane bed and pool-riffle morphologies along the drainage network, it still does not account for floodplain configuration and bed-forms identification of those channel types. Hence, as a first application case in order to obtain parsimonious three-dimensional characterizations of drainage channels, the morphological framework has been updated by including topographical floodplain delimitation through a Multi-resolution Valley Bottom Flatness Index assessing, and a stochastic bed form representation of the step-pool morphology. Model outcomes were tested in relation to in-stream water storage for different flow conditions and representative travel times according to the Aggregated Dead Zone -ADZ- model conceptualization of solute transport processes.
Dating base flow in streams using dissolved gases and diurnal temperature changes
Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.
2015-01-01
A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.
Apparatus for focusing flowing gas streams
Nogar, N.S.; Keller, R.A.
1985-05-20
Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.
Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.
2004-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total phosphorus model include discharges for municipal wastewater-treatment facilities and pulp and paper facilities, developed land area, agricultural area, and forested area. For total phosphorus, loss rates were significant for reservoirs with surface areas of 10 square kilometers or less, and in streams with flows less than or equal to 2.83 cubic meters per second. Applications of SPARROW for evaluating nutrient loading in New England waters include estimates of the spatial distributions of total nitrogen and phosphorus yields, sources of the nutrients, and the potential for delivery of those yields to receiving waters. This information can be used to (1) predict ranges in nutrient levels in surface waters, (2) identify the environmental variables that are statistically significant predictors of nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Mackin, R. O.; Jarrah, Z.; Boston, A. J.; Nolan, P. J.; Peyton, A. J.; Hawkes, N. P.
2009-01-01
A unique, digital time pick-off method, known as sample-interpolation timing (SIT) is described. This method demonstrates the possibility of improved timing resolution for the digital measurement of time of flight compared with digital replica-analogue time pick-off methods for signals sampled at relatively low rates. Three analogue timing methods have been replicated in the digital domain (leading-edge, crossover and constant-fraction timing) for pulse data sampled at 8 GSa s-1. Events arising from the 7Li(p, n)7Be reaction have been detected with an EJ-301 organic liquid scintillator and recorded with a fast digital sampling oscilloscope. Sample-interpolation timing was developed solely for the digital domain and thus performs more efficiently on digital signals compared with analogue time pick-off methods replicated digitally, especially for fast signals that are sampled at rates that current affordable and portable devices can achieve. Sample interpolation can be applied to any analogue timing method replicated digitally and thus also has the potential to exploit the generic capabilities of analogue techniques with the benefits of operating in the digital domain. A threshold in sampling rate with respect to the signal pulse width is observed beyond which further improvements in timing resolution are not attained. This advance is relevant to many applications in which time-of-flight measurement is essential.
14 CFR 1215.102 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM.... The Tracking and Data Relay Satellite System including Tracking and Data Relay Satellites (TDRS), the... user ground system/TDRSS interface. (c) Bit stream. The digital electronic signals acquired by TDRSS...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false [Reserved] 385.15 Section 385.15 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS... AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming and Limited Downloads...
Land, Larry F.; Shipp, Allison A.
1996-01-01
Water samples collected from streams draining an agricultural area in the west-central part of the Trinity River Basin upstream from the Richland-Chambers Reservoir and from streams draining an urban area in the Dallas-Fort Worth metropolitan area during March 1993 - September 1995 were analyzed for nutrients (nitrogen and phosphorus compounds). A comparison of the data for agricultural and urban streams shows the maximum concentration of total nitrogen is from an urban stream and the maximum concentration of total phosphorus is from an agricultural stream. One-half of the samples have total nitrogen concentrations equal to or less than 1.1 and 1.0 milligrams per liter in the agricultural and urban streams, respectively; and one-half of the samples have total phosphorous concentrations equal to or less than 0.04 and 0.05 milligram per liter in the agricultural and urban streams, respectively. The highest concentrations of total nitrogen in both types of streams are in the spring. The minimum concentrations of total nitrogen are during the summer in the agricultural streams and during the winter in the urban streams. Concentrations of total phosphorus in agricultural streams show negligible seasonal variability. The highest concentrations of total phosphorus are in spring and possibly late summer in the urban streams. In the midrange of streamflow in the urban streams and throughout the range of streamflow in the agricultural streams, concentrations of total nitrogen increase. Concentrations of total phosphorus increase with streamflow in the middle and upper ranges of streamflow in both agricultural and urban streams.
A digital audio/video interleaving system. [for Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Richards, R. W.
1978-01-01
A method of interleaving an audio signal with its associated video signal for simultaneous transmission or recording, and the subsequent separation of the two signals, is described. Comparisons are made between the new audio signal interleaving system and the Skylab Pam audio/video interleaving system, pointing out improvements gained by using the digital audio/video interleaving system. It was found that the digital technique is the simplest, most effective and most reliable method for interleaving audio and/or other types of data into the video signal for the Shuttle Orbiter application. Details of the design of a multiplexer capable of accommodating two basic data channels, each consisting of a single 31.5-kb/s digital bit stream are given. An adaptive slope delta modulation system is introduced to digitize audio signals, producing a high immunity of work intelligibility to channel errors, primarily due to the robust nature of the delta-modulation algorithm.
New hydrologic instrumentation in the U.S. Geological Survey
Latkovich, V.J.; Shope, W.G.; ,
1991-01-01
New water-level sensing and recording instrumentation is being used by the U.S. Geological Survey for monitoring water levels, stream velocities, and water-quality characteristics. Several of these instruments are briefly described. The Basic Data Recorder (BDR) is an electronic data logger, that interfaces to sensor systems through a serial-digital interface standard (SDI-12), which was proposed by the data-logger industry; the Incremental Shaft Encoder is an intelligent water-level sensor, which interfaces to the BDR through the SDI-12; the Pressure Sensor is an intelligent, nonsubmersible pressure sensor, which interfaces to the BDR through the SDI-12 and monitors water levels from 0 to 50 feet; the Ultrasonic Velocity Meter is an intelligent, water-velocity sensor, which interfaces to the BDR through the SDI-12 and measures the velocity across a stream up to 500 feet in width; the Collapsible Hand Sampler can be collapsed for insertion through holes in the ice and opened under the ice to collect a water sample; the Lighweight Ice Auger, weighing only 32 pounds, can auger 6- and 8-inch holes through approximately 3.5 feet of ice; and the Ice Chisel has a specially hardened steel blade and 6-foot long, hickory D-handle.
Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.
2012-01-01
Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.
Characterizing Milky Way Tidal Streams and Dark Matter with MilkyWay@home
NASA Astrophysics Data System (ADS)
Newberg, Heidi Jo; Shelton, Siddhartha; Weiss, Jake
2018-01-01
MilkyWay@home is a 0.5 PetaFLOPS volunteer computing platform that is mapping out the density substructure of the Sagittarius Dwarf Tidal Stream, the so-called bifurcated portion of the Sagittarius Stream, and the Virgo Overdensity, using turnoff stars from the Sloan Digital Sky Survey. It is also using the density of stars along tidal streams such as the Orphan Stream to constrain properties of the dwarf galaxy progenitor of this stream, including the dark matter portion. Both of these programs are enabled by a specially-built optimization package that uses differential evolution or particle swarm methods to find the optimal model parameters to fit a set of data. To fit the density of tidal streams, 20 parameters are simultaneously fit to each 2.5-degree-wide stripe of SDSS data. Five parameters describing the stellar and dark matter profile of the Orphan Stream progenitor and the time that the dwarf galaxy has been evolved through the Galactic potential are used in an n-body simulation that is then fit to observations of the Orphan Stream. New results from MilkyWay@home will be presented. This project was supported by NSF grant AST 16-15688, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.
A search for planetary Nebulae with the Sloan digital sky survey: the outer regions of M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniazev, Alexei Y.; Grebel, Eva K.; Martínez-Delgado, David
2014-01-01
We have developed a method to identify planetary nebula (PN) candidates in imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the SDSS's five-band sampling of emission lines in PN spectra, which results in a color signature distinct from that of other sources. Selection criteria based on this signature can be applied to nearby galaxies in which PNe appear as point sources. We applied these criteria to the whole area of M31 as scanned by the SDSS, selecting 167 PN candidates that are located in the outer regions of M31. The spectra of 80 selected candidates weremore » then observed with the 2.2 m telescope at Calar Alto Observatory. These observations and cross-checks with literature data show that our method has a selection rate efficiency of about 90%, but the efficiency is different for the different groups of PN candidates. In the outer regions of M31, PNe trace different well-known morphological features like the Northern Spur, the NGC 205 Loop, the G1 Clump, etc. In general, the distribution of PNe in the outer region 8 < R < 20 kpc along the minor axis shows the {sup e}xtended disk{sup —}a rotationally supported low surface brightness structure with an exponential scale length of 3.21 ± 0.14 kpc and a total mass of ∼10{sup 10} M {sub ☉}, which is equivalent to the mass of M33. We report the discovery of three PN candidates with projected locations in the center of Andromeda NE, a very low surface brightness giant stellar structure in the outer halo of M31. Two of the PNe were spectroscopically confirmed as genuine PNe. These two PNe are located at projected distances along the major axis of ∼48 Kpc and ∼41 Kpc from the center of M31 and are the most distant PNe in M31 found up to now. With the new PN data at hand we see the obvious kinematic connection between the continuation of the Giant Stream and the Northern Spur. We suggest that 20%-30% of the stars in the Northern Spur area may belong to the Giant Stream. In our data we also see a possible kinematic connection between the Giant Stream and PNe in Andromeda NE, suggesting that Andromeda NE could be the core or remnant of the Giant Stream. Using PN data we estimate the total mass of the Giant Stream progenitor to be ≈10{sup 9} M {sub ☉}. About 90% of its stars appear to have been lost during the interaction with M31.« less
Bioassessment in nonperennial streams: Hydrologic stability influences assessment validity
NASA Astrophysics Data System (ADS)
Mazor, R. D.; Stein, E. D.; Schiff, K.; Ode, P.; Rehn, A.
2011-12-01
Nonperennial streams pose a challenge for bioassessment, as assessment tools developed in perennial streams may not work in these systems. For example, indices of biotic integrity (IBIs) developed in perennial streams may give improper indications of impairment in nonperennial streams, or may be unstable. We sampled benthic macroinvertebrates from 12 nonperennial streams in southern California. In addition, we deployed loggers to obtain continuous measures of flow. 3 sites were revisited over 2 years. For each site, we calculated several metrics, IBIs, and O/E scores to determine if assessments were consistent and valid throughout the summer. Hydrology varied widely among the streams, with several streams drying between sampling events. IBIs suggested good ecological health at the beginning of the study, but declined sharply at some sites. Multivariate ordination suggested that, despite differences among sites, changes in community structure were similar, with shifts from Ephemeroptera, Plecoptera, and Trichoptera to Coleoptera and more tolerant organisms. Site revisits revealed a surprising level of variability, as 2 of the 3 revisited sites had perennial or near-perennial flow in the second year of sampling. IBI scores were more consistent in streams with stable hydrographs than in those with strongly intermittent hydrographs. These results suggest that nonperennial streams can be monitored successfully, but they may require short index periods and distinct metrics from those used in perennial streams. In addition, better approaches to mapping nonperennial streams are required.
Baumbaugh, Alan E.; Knickerbocker, Kelly L.
1988-06-04
A method and apparatus for suppressing from transmission, non-informational data words from a source of data words such as a video camera. Data words having values greater than a predetermined threshold are transmitted whereas data words having values less than a predetermined threshold are not transmitted but their occurrences instead are counted. Before being transmitted, the count of occurrences of invalid data words and valid data words are appended with flag digits which a receiving system decodes. The original data stream is fully reconstructable from the stream of valid data words and count of invalid data words.
Lico, Michael S.; Pennington, Nyle
1999-01-01
The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency and the Lahontan Regional Water-Quality Control Board, sampled Lake Tahoe, major tributary streams to Lake Tahoe, and several other lakes in the Lake Tahoe Basin for manmade organic compounds during 1997-99. Gasoline components were found in all samples collected from Lake Tahoe during the summer boating season. Methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (BTEX) were the commonly detected compounds in these samples. Most samples from tributary streams and lakes with no motorized boating had no detectable concentrations of gasoline components. Motorized boating activity appears to be directly linked in space and time to the occurrence of these gasoline components. Other sources of gasoline components to Lake Tahoe, such as the atmosphere, surface runoff, and subsurface flow, are minor compared to the input by motorized boating. Water sampled from Lake Tahoe during mid-winter, when motorized boating activity is low, had no MTBE and only one sample had any detectable BTEX compounds. Soluble pesticides rarely were detected in water samples from the Lake Tahoe Basin. The only detectable concentrations of these compounds were in samples from Blackwood and Taylor Creeks collected during spring runoff. Concentrations found in these samples were low, in the 1 to 4 nanograms per liter range. Organochlorine compounds were detected in samples collected from semipermeable membrane devices (SPMD's) collected from Lake Tahoe, tributary streams, and Upper Angora Lake. In Lake Tahoe, SPMD samples collected offshore from urbanized areas contained the largest number and highest concentrations of organochlorine compounds. The most commonly detected organochlorine compounds were cis- and trans-chlordane, p, p'-DDE, and hexachlorobenzene. In tributary streams, SPMD samples collected during spring runoff generally had higher combined concentrations of organochlorine compounds than those collected during baseflow conditions. Upper Angora Lake had the fewest number of organochlorine compounds detected of all lake samples. Dioxins and furans were not detected in SPMD samples from two sites in Lake Tahoe or from two tributary streams. The number of polycyclic aromatic hydrocarbon (PAH) compounds and their combined concentrations generally were higher in samples from Lake Tahoe than those from tributary streams. Areas of high-motorized boating activity at Lake Tahoe had the largest number and highest concentrations of PAH's. PAH compounds were detected in samples from SPMD's in four of six tributary streams during spring runoff, all tributary streams during baseflow conditions, and at all lake sites. The most commonly detected PAH's in tributary streams during spring runoff were phenanthrene, fluoranthene, pyrene, and chrysene, and during baseflow conditions were phenanthrene, 1-methylphenanthrene, diethylnaphthalene, and pyrene. Upper Truckee River, which has an urban area in its drainage basin, had the largest number and highest combined concentration of PAH's of all stream samples. Bottom-sediment from Lake Tahoe had detectable concentrations of p-cresol, a phenol, in all but one sample. A sample collected near Chambers Lodge contained phenol at an estimated concentration of 4 micrograms per kilogram (?g/kg). Bottom-sediment samples from tributary streams had no detectable concentrations of organochlorine or PAH compounds. Several compounds were detected in bottom sediment from Upper Angora Lake at high concentrations. These compounds and their concentrations were p, p'-DDD (10 ?g/kg), p, p'-DDE (7.4 ?g/kg), 2,6-dimethylnaphthalene (estimated at 190 ?g/kg), pentachlorophenol (3,000 ?g/kg), and p-cresol (4,400 ?g/kg).
Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel
2017-01-01
Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100sâ10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...
Jeffrey R. Waters; Cynthia J. Zabel; Kevin S. McKelvey; Hartwell H. Welsh
2001-01-01
Our goal was to describe and evaluate patterns of association between stream size and abundances of amphibians and small mammals in a northwestern California watershed. We sampled populations at 42 stream sites and eight upland sites within a 100- watershed in 1995 and 1996. Stream reaches sampled ranged from poorly defined channels that rarely flowed to 10-m-wide...
Polychannel Systems for Mass Digital Communication
1988-07-01
years additional systems similar to ours have become operational, including X*Press, Main- stream Data, and Stargate . X*Press Information Services...cities in the United States, and Stargate uses the satellite TV station WTBS to transmit electronic bulletin boards to remote com- puter sites
Vining, Kevin C.; Lundgren, Robert F.
2008-01-01
Sixty-five sampling sites, selected by a statistical design to represent lengths of perennial streams in North Dakota, were chosen to be sampled for fish and aquatic insects (macroinvertebrates) to establish unbiased baseline data. Channel catfish and common carp were the most abundant game and large fish species in the Cultivated Plains and Rangeland Plains, respectively. Blackflies were present in more than 50 percent of stream lengths sampled in the State; mayflies and caddisflies were present in more than 80 percent. Dragonflies were present in a greater percentage of stream lengths in the Rangeland Plains than in the Cultivated Plains.
Heimann, David C.
2009-01-01
This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, to analyze and compare hydrologic and water-quality characteristics of tallgrass prairie and agricultural basins located within the historical distribution of tallgrass prairie in Missouri and Kansas. Streamflow and water-quality data from two remnant, tallgrass prairie basins (East Drywood Creek at Prairie State Park, Missouri, and Kings Creek near Manhattan, Kansas) were compared to similar data from agricultural basins in Missouri and Kansas. Prairie streams, especially Kings Creek in eastern Kansas, received a higher percentage of base flow and a lower percentage of direct runoff than similar-sized agricultural streams in the region. A larger contribution of direct runoff from the agricultural streams made them much flashier than prairie streams. During 22 years of record, the Kings Creek base-flow component averaged 66 percent of total flow, but base flow was only 16 to 26 percent of flows at agricultural sites of various record periods. The large base-flow component likely is the result of greater infiltration of precipitation in prairie soils and the resulting greater contribution of groundwater to streamflow. The 1- and 3-day annual maximum flows were significantly greater at three agricultural sites than at Kings Creek. The effects of flashier agricultural streams on native aquatic biota are unknown, but may be an important factor in the sustainability of some native aquatic species. There were no significant differences in the distribution of dissolved-oxygen concentrations at prairie and agricultural sites, and some samples from most sites fell below the 5 milligrams per liter Missouri and Kansas standard for the protection of aquatic life. More than 10 percent of samples from the East Drywood Creek prairie stream were less than this standard. These data indicate low dissolved-oxygen concentrations during summer low-flow periods may be a natural phenomenon for small prairie streams in the Osage Plains. Nutrient concentrations including total nitrogen, ammonia, nitrate, and total phosphorus were significantly less in base-flow and runoff samples from prairie streams than from agricultural streams. The total nitrogen concentration at all sites other than one of two prairie sampling sites were, on occasion, above the U.S. Environmental Protection Agency recommended criterion for total nitrogen for the prevention of nutrient enrichment, and typically were above this recommended criterion in runoff samples at all sites. Nitrate and total phosphorus concentrations in samples from the prairie streams generally were below the U.S. Environmental Protection Agency recommended nutrient criteria in base-flow and runoff samples, whereas samples from agricultural sites generally were below the criteria in base-flow samples and generally above in runoff samples. The lower concentrations of nutrient species in prairie streams is likely because prairies are not fertilized like agricultural basins and prairie basins are able to retain nutrients better than agricultural basins. This retention is enhanced by increased infiltration of precipitation into the prairie soils, decreased surface runoff, and likely less erosion than in agricultural basins. Streamflow in the small native prairie streams had more days of zero flow and lower streamflow yields than similar-sized agricultural streams. The prairie streams were at zero flow about 50 percent of the time, and the agricultural streams were at zero flow 25 to 35 percent of the time. Characteristics of the prairie basins that could account for the greater periods of zero flow and lower yields when compared to agricultural streams include greater infiltration, greater interception and evapotranspiration, shallower soils, and possible greater seepage losses in the prairie basins. Another difference between the prairie and agricultural strea
Gray, John E.; Lee, G.K.; O'Leary, R. M.; Theodorakos, P.M.
1999-01-01
In the summer of 1991, we conducted a reconnaissance geochemical survey around the Fortyseven Creek Au-As-Sb-W prospect that is located in the southwestern part of the Sleetmute quadrangle. At that time, this project was a small part of a more comprehensive Alaska Mineral Resource Assessment Program (AMRAP) study of the Sleemute quadrangle. AMRAP studies were conducted by the U.S. Geological Survey (USGS) to fulfill requirements of the Alaska National Interests Lands Conservation Act (Public Law 96-487, 1980) to survey certain federal lands to determine their mineral potential. Although AMRAP is no longer in operation, this study represents a small topical study that was conducted during the Sleetmute quadrangle AMRAP study. The objective of the Fortyseven Creek work was to characterize the geochemistry of samples collected downstream from the Fortyseven Creek prospect, as well as mineralized and altered rock samples collected from the prospect. In this report, we describe the samples collected in 1991, the methods used for the analysis of the samples, and the geochemical data for these samples. The data in this report are also available in digital form on computer diskette in Gray and others (1999). An interpretation of these data appears in Gray and others (1998).
Hainly, Robert A.; Zimmerman, Tammy M.; Loper, Connie A.; Lindsey, Bruce D.
2001-01-01
This report presents the detection frequency of 83 analyzed pesticides, describes the concentrations of those pesticides measured in water from streams and shallow wells, and presents conceptual models of the major factors affecting seasonal and areal patterns of pesticide concentrations in water from streams and shallow wells in the Lower Susquehanna River Basin. Seasonal and areal patterns of pesticide concentrations were observed in 577 samples and nearly 40,000 pesticide analyses collected from 155 stream sites and 169 shallow wells from 1993 to 1995. For this study, shallow wells were defined as those generally less than 200 feet deep.The most commonly detected pesticides were agricultural herbicides?atrazine, metolachlor, simazine, prometon, alachlor, and cyanazine. Atrazine and metolachlor are the two most-used agricultural pesticides in the Lower Susquehanna River Basin. Atrazine was detected in 92 percent of all the samples and in 98 percent of the stream samples. Metolachlor was detected in 83 percent of all the samples and in 95 percent of the stream samples. Nearly half of all the analyzed pesticides were not detected in any sample. Of the 45 pesticides that were detected at least once, the median concentrations of 39 of the pesticides were less than the detection limit for the individual compounds, indicating that for at least 50 percent of the samples collected, those pesticides were not detected. Only 10 (less than 0.025 percent) of the measured concentrations exceeded any established drinking-water standards; 25 concentrations exceeded 2 mg/L (micrograms per liter) and 55 concentrations exceeded 1 mg/L. None of the elevated concentrations were measured in samples collected from streams that are used for public drinking-water supplies, and 8 of the 10 were measured in storm-affected samples.The timing and rate of agricultural pesticide applications affect the seasonal and areal concentration patterns of atrazine, simazine, chlorpyrifos, and diazinon observed in water from wells and streams in the Lower Susquehanna River Basin. Average annual pesticide use for agricultural purposes and nonagricultural pesticide use indicators were used to explain seasonal and areal patterns. Elevated concentrations of some pesticides in streams during base-flow and storm-affected conditions were related to the seasonality of agricultural-use applications and local climate conditions. Agricultural-use patterns affected areal concentration patterns for the high-use pesticides, but indicators of nonagricultural use were needed to explain concentration patterns of pesticides with smaller amounts used for agricultural purposes.Bedrock type influences the movement and discharge of ground water, which in turn affects concentration patterns of pesticides. The ratio of atrazine concentrations in stream base flow to concentrations in shallow wells varied among the different general rock types found in the Lower Susquehanna River Basin. Median concentrations of atrazine in well water and stream base flow tended to be similar in individual areas underlain by carbonate bedrock, indicating the connectivity of water in streams and shallow wells in these areas. In areas underlain by noncarbonate bedrock, median concentrations of atrazine tended to be significantly higher in stream base flow than in well water. This suggests a deep ground-water system that delivers water to shallow wells and a near-surficial system that supplies base-flow water to streams. In addition to the presence or absence of carbonate bedrock, pesticide leaching potential and persistence, soil infiltration capacity, and agricultural land use affected areal patterns in detection frequency and concentration differences between samples collected from streams during base-flow conditions and shallow wells.
Shah, Sachin D.; Maltby, David R.
2010-01-01
The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, compiled salinity-related water-quality data and information in a geodatabase containing more than 6,000 sampling sites. The geodatabase was designed as a tool for water-resource management and includes readily available digital data sources from the U.S. Geological Survey, U.S. Environmental Protection Agency, New Mexico Interstate Stream Commission, Sustainability of semi-Arid Hydrology and Riparian Areas, Paso del Norte Watershed Council, numerous other State and local databases, and selected databases maintained by the University of Arizona and New Mexico State University. Salinity information was compiled for an approximately 26,000-square-mile area of the Rio Grande Basin from the Rio Arriba-Sandoval County line, New Mexico, to Presidio, Texas. The geodatabase relates the spatial location of sampling sites with salinity-related water-quality data reported by multiple agencies. The sampling sites are stored in a geodatabase feature class; each site is linked by a relationship class to the corresponding sample and results stored in data tables.
A Multiple-Tracer Approach for Identifying Sewage Sources to an Urban Stream System
Hyer, Kenneth Edward
2007-01-01
The presence of human-derived fecal coliform bacteria (sewage) in streams and rivers is recognized as a human health hazard. The source of these human-derived bacteria, however, is often difficult to identify and eliminate, because sewage can be delivered to streams through a variety of mechanisms, such as leaking sanitary sewers or private lateral lines, cross-connected pipes, straight pipes, sewer-line overflows, illicit dumping of septic waste, and vagrancy. A multiple-tracer study was conducted to identify site-specific sources of sewage in Accotink Creek, an urban stream in Fairfax County, Virginia, that is listed on the Commonwealth's priority list of impaired streams for violations of the fecal coliform bacteria standard. Beyond developing this multiple-tracer approach for locating sources of sewage inputs to Accotink Creek, the second objective of the study was to demonstrate how the multiple-tracer approach can be applied to other streams affected by sewage sources. The tracers used in this study were separated into indicator tracers, which are relatively simple and inexpensive to apply, and confirmatory tracers, which are relatively difficult and expensive to analyze. Indicator tracers include fecal coliform bacteria, surfactants, boron, chloride, chloride/bromide ratio, specific conductance, dissolved oxygen, turbidity, and water temperature. Confirmatory tracers include 13 organic compounds that are associated with human waste, including caffeine, cotinine, triclosan, a number of detergent metabolites, several fragrances, and several plasticizers. To identify sources of sewage to Accotink Creek, a detailed investigation of the Accotink Creek main channel, tributaries, and flowing storm drains was undertaken from 2001 to 2004. Sampling was conducted in a series of eight synoptic sampling events, each of which began at the most downstream site and extended upstream through the watershed and into the headwaters of each tributary. Using the synoptic sampling approach, 149 sites were sampled at least one time for indicator tracers; 52 of these sites also were sampled for confirmatory tracers at least one time. Through the analysis of multiple-tracer levels in the synoptic samples, three major sewage sources to the Accotink Creek stream network were identified, and several other minor sewage sources to the Accotink Creek system likely deserve additional investigation. Near the end of the synoptic sampling activities, three additional sampling methods were used to gain better understanding of the potential for sewage sources to the watershed. These additional sampling methods included optical brightener monitoring, intensive stream sampling using automated samplers, and additional sampling of several storm-drain networks. The samples obtained by these methods provided further understanding of possible sewage sources to the streams and a better understanding of the variability in the tracer concentrations at a given sampling site. Collectively, these additional sampling methods were a valuable complement to the synoptic sampling approach that was used for the bulk of this study. The study results provide an approach for local authorities to use in applying a relatively simple and inexpensive collection of tracers to locate sewage sources to streams. Although this multiple-tracer approach is effective in detecting sewage sources to streams, additional research is needed to better detect extremely low-volume sewage sources and better enable local authorities to identify the specific sources of the sewage once it is detected in a stream reach.
Parallel Processing of Broad-Band PPM Signals
NASA Technical Reports Server (NTRS)
Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement
2010-01-01
A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).
Sears, C.M.; Foose, M.P.; Day, G.W.; Ericksen, M.S.
1983-01-01
Semi-quantitative spectrographic analyses for 31 elements on rock, soil, fine-grained stream sediment, bulk stream sediment, and panned stream sediment samples collected in the Rich Mountain Roadless Area, Fannin and Gilmer Counties, Georgia, are reported here. Atomic absorption analyses for gold and fluorometric analyses for uranium are also reported. Brief descriptions of all rock samples analyzed are included.
William R. Meehan
1996-01-01
The community composition of macroinvertebrates and the feeding habits of juvenile salmonids were studied in eight Oregon streams. Benthic, drift, sticky trap, and water trap samples were taken over a 3-year period, along with stomach samples of the fish. Samples were taken in stream reaches with and without riparian canopy. Both main effectsâfish diet versus...
Teichmann, A Lina; Nieuwenstein, Mark R; Rich, Anina N
2015-01-01
Digit-color synesthetes report experiencing colors when perceiving letters and digits. The conscious experience is typically unidirectional (e.g., digits elicit colors but not vice versa) but recent evidence shows subtle bidirectional effects. We examined whether short-term memory for colors could be affected by the order of presentation reflecting more or less structure in the associated digits. We presented a stream of colored squares and asked participants to report the colors in order. The colors matched each synesthete's colors for digits 1-9 and the order of the colors corresponded either to a sequence of numbers (e.g., [red, green, blue] if 1 = red, 2 = green, 3 = blue) or no systematic sequence. The results showed that synesthetes recalled sequential color sequences more accurately than pseudo-randomized colors, whereas no such effect was found for the non-synesthetic controls. Synesthetes did not differ from non-synesthetic controls in recall of color sequences overall, providing no evidence of a general advantage in memory for serial recall of colors.
Analyzing Hydraulic Conductivity Sampling Schemes in an Idealized Meandering Stream Model
NASA Astrophysics Data System (ADS)
Stonedahl, S. H.; Stonedahl, F.
2017-12-01
Hydraulic conductivity (K) is an important parameter affecting the flow of water through sediments under streams, which can vary by orders of magnitude within a stream reach. Measuring heterogeneous K distributions in the field is limited by time and resources. This study investigates hypothetical sampling practices within a modeling framework on a highly idealized meandering stream. We generated three sets of 100 hydraulic conductivity grids containing two sands with connectivity values of 0.02, 0.08, and 0.32. We investigated systems with twice as much fast (K=0.1 cm/s) sand as slow sand (K=0.01 cm/s) and the reverse ratio on the same grids. The K values did not vary with depth. For these 600 cases, we calculated the homogenous K value, Keq, that would yield the same flux into the sediments as the corresponding heterogeneous grid. We then investigated sampling schemes with six weighted probability distributions derived from the homogenous case: uniform, flow-paths, velocity, in-stream, flux-in, and flux-out. For each grid, we selected locations from these distributions and compared the arithmetic, geometric, and harmonic means of these lists to the corresponding Keq using the root-mean-square deviation. We found that arithmetic averaging of samples outperformed geometric or harmonic means for all sampling schemes. Of the sampling schemes, flux-in (sampling inside the stream in an inward flux-weighted manner) yielded the least error and flux-out yielded the most error. All three sampling schemes outside of the stream yielded very similar results. Grids with lower connectivity values (fewer and larger clusters) showed the most sensitivity to the choice of sampling scheme, and thus improved the most with the flux-insampling. We also explored the relationship between the number of samples taken and the resulting error. Increasing the number of sampling points reduced error for the arithmetic mean with diminishing returns, but did not substantially reduce error associated with geometric and harmonic means.
Drivers and Spatio-Temporal Extent of Hyporheic Patch Variation: Implications for Sampling
Braun, Alexander; Auerswald, Karl; Geist, Juergen
2012-01-01
The hyporheic zone in stream ecosystems is a heterogeneous key habitat for species across many taxa. Consequently, it attracts high attention among freshwater scientists, but generally applicable guidelines on sampling strategies are lacking. Thus, the objective of this study was to develop and validate such sampling guidelines. Applying geostatistical analysis, we quantified the spatio-temporal variability of parameters, which characterize the physico-chemical substratum conditions in the hyporheic zone. We investigated eight stream reaches in six small streams that are typical for the majority of temperate areas. Data was collected on two occasions in six stream reaches (development data), and once in two additional reaches, after one year (validation data). In this study, the term spatial variability refers to patch contrast (patch to patch variance) and patch size (spatial extent of a patch). Patch contrast of hyporheic parameters (specific conductance, pH and dissolved oxygen) increased with macrophyte cover (r2 = 0.95, p<0.001), while patch size of hyporheic parameters decreased from 6 to 2 m with increasing sinuosity of the stream course (r2 = 0.91, p<0.001), irrespective of the time of year. Since the spatial variability of hyporheic parameters varied between stream reaches, our results suggest that sampling design should be adapted to suit specific stream reaches. The distance between sampling sites should be inversely related to the sinuosity, while the number of samples should be related to macrophyte cover. PMID:22860053
Arsenic in stream sediments of northern Alabama
Goldhaber, M.B.; Irwin, Elise; Atkins, Brian; Lee, Lopaka; Black, D.D.; Zappia, Humbert; Hatch, Joe; Pashin, Jack; Barwick, L.H.; Cartwright, W.E.; Sanzolone, Rick; Rupert, Leslie; Kolker, Allan; Finkelman, Robert
2001-01-01
OVERVIEW OF ARSENIC IN STREAM SEDIMENTS The overall range of arsenic in the NURE stream sediments was from 0.3 to 44 mg/kg sediment (ppm) As in the sample data set. The mean value was 4.3 ppm with a standard deviation of 4.1 ppm. For comparison, the crustal abundance of arsenic is 1.8 ppm (Taylor, 1964). Shale is higher, with average values of 15 ppm. Coal samples from the entire USGS National Coal Resource Data System coal database (Finkelman, 1994) average 24 ppm arsenic. A study of stream sediments from throughout the U.S. by the USGS NAWQA program reported that the 75th percentile for arsenic in 541 stream sediments was 9.5 ppm (Rice, 1999). Given the relatively low crustal abundance of arsenic, a number of stream-sediment samples in this study may be considered geochemically anomalous in this element.
Sedimentation in mountain streams: A review of methods of measurement
Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart A.; Lin, Lian-Shin
2013-01-01
The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.
NASA Astrophysics Data System (ADS)
Bunte, Kristin; Swingle, Kurt W.; Turowski, Jens M.; Abt, Steven R.; Cenderelli, Daniel A.
2016-08-01
Coarse particulate organic matter (CPOM) provides a food source for benthic organisms, and the fluvial transport of CPOM is one of the forms in which carbon is exported from a forested basin. However, little is known about transport dynamics of CPOM, its relation to discharge, and its annual exports from mountain streams. Much of this knowledge gap is due to sampling difficulties. In this study, CPOM was sampled over one-month snowmelt high flow seasons in two high-elevation, subalpine, streams in the Rocky Mountains. Bedload traps developed for sampling gravel bedload were found to be suitable samplers for CPOM transport. CPOM transport rates were well related to flow in consecutive samples but showed pronounced hysteresis over the diurnal fluctuations of flow, between consecutive days, and over the rising and falling limbs of the high-flow season. In order to compute annual CPOM load, hysteresis effects require intensive sampling and establishing separate rating curves for all rising and falling limbs. Hysteresis patterns of CPOM transport relations identified in the well-sampled study streams may aid with estimates of CPOM transport and export in less well-sampled Rocky Mountain streams. Transport relations for CPOM were similar among three high elevation mountain stream with mainly coniferous watersheds. Differences among streams can be qualitatively attributed to differences in CPOM contributions from litter fall, from the presence of large woody debris, its grinding into CPOM sized particles by gravel-cobble bedload transport, hillslope connectivity, drainage density, and biological consumption. CPOM loads were 3.6 and 3.2 t/yr for the two Rocky Mountain streams. Adjusted to reflect decadal averages, values increased to 11.3 and 10.2 t/yr. CPOM yields related to the entire watershed were 2.7 and 4 kg/ha/yr for the years studied, but both streams exported similar amounts of 6.5 and 6.6 kg/ha/yr when taking the forested portion of the watershed into account. To reflect decadal averages, CPOM yields per basin area were adjusted to 8.6 and 12.6 kg/ha/yr and to 21 kg/ha/yr for the forested watershed parts. CPOM yield may be more meaningfully characterized if annual CPOM loads are normalized by the area of a seam along the stream banks together with the stream surface area rather than by the forested or total watershed area.
Phillips, P.; Chalmers, A.
2009-01-01
Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.
Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.
2011-01-01
This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005 samplings, Boulder Creek downstream from the wastewater treatment plant was 40 percent effluent, and Fourmile Creek downstream from that wastewater treatment plant was 28 percent effluent. At each site, 300 individual constituents were determined to characterize the water. Most of the inorganic constituents were detected in all of the stream and treatment-plant effluent samples, whereas detection of synthetic organic compounds was more limited and contaminants typically occurred only in wastewater treatment-plant effluents and at downstream sites. Concentrations ranged from nanograms per liter to milligrams per liter.
Research methods of plasma stream interaction with heat-resistant materials
NASA Astrophysics Data System (ADS)
Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Chinnov, V. F.; Demirov, N. A.; Kavyrshin, D. I.; Ageev, A. G.; Khromov, M. A.
2016-11-01
An experimental automated system was designed and constructed for studying the parameters and characteristics of non-stationary interacting system high-enthalpy-plasma stream-investigated sample: enthalpy of plasma in the incident stream; speed and temperature of plasma stream; temperature of electrons and heavy particles, ionic composition and their spatial distribution; heat flux incident on the sample (kW/cm2); surface temperature of the sample; ablation of the sample material, and others. Measurements of achievable plasma heat flux levels are carried out by calorimetry of plasma streams incident on the surface of multisection copper calorimeter. Determination of acceleration characteristics for profiled plasma torch nozzle, as well as the gas flow rate is produced by measuring the total pressure using the Pitot tube. Video visualization of interacting system is carried out using synchronized high-speed cameras. Micropyrometry of the selected zone on the sample surface is carried out by high-speed, three-wavelength pyrometer. To measure the rate of mass loss of the sample, in addition to the weighing method of evaluation the methods of laser knife and two-position stereoscopy are used. Plasma and sample emission characteristics are performed with two separate spectrometers.
DOT National Transportation Integrated Search
2001-01-01
ADVANCE is an integration of state of the practice, off-the-shelf technologies which include video, speed measurement, distance measurement, and digital imaging that detects UDAs in the traffic stream and subsequently notifies violators by ma...
47 CFR 73.1201 - Station identification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... offerings. Television and Class A television broadcast stations may make these announcements visually or... multicast audio programming streams, in a manner that appropriately alerts its audience to the fact that it is listening to a digital audio broadcast. No other insertion between the station's call letters and...
37 CFR 385.17 - Effect of rates.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Effect of rates. 385.17 Section 385.17 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND... MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Interactive Streaming and Limited Downloads...
Long term trends of fish after liming of Swedish streams and lakes
NASA Astrophysics Data System (ADS)
Holmgren, Kerstin; Degerman, Erik; Petersson, Erik; Bergquist, Björn
2016-12-01
Thousands of Swedish acidified lakes and streams have been regularly limed for about 30 years. Standard sampling of fish assemblages in lakes and streams was an important part of monitoring the trends after liming, i.e. sampling with multi-mesh gillnets in lakes (EN 14757) and electrofishing in streams (EN 14011). Monitoring data are nationally managed, in the National Register of Survey test-fishing and the Swedish Electrofishing Register. We evaluated long-term data from 1029 electrofishing sites in limed streams and gillnet sampling in 750 limed lakes, along with reference data from 195 stream sites and 101 lakes with no upstream liming in their catchments. The median year of first liming was 1986 for both streams and lakes. The proportion of limed stream sites with no fish clearly decreased with time, mean species richness and proportion of sites with brown trout (Salmo trutta) recruits increased. There were no consistent trends in fish occurrence or species richness at non-limed sites, but occurrence of brown trout recruits also increased in acid as well as neutral reference streams. Abundance of brown trout, perch (Perca fluviatilis) and roach (Rutilus rutilus) increased significantly more at limed sites than at non-limed reference sites sampled before and after 1986. The mean species richness did not change consistently in limed lakes, but decreased in low alkalinity reference lakes, and fish abundance decreased significantly in limed as well as in non-limed lakes.
NASA Astrophysics Data System (ADS)
Konana, Prabhudev; Gupta, Alok; Whinston, Andrew B.
1997-01-01
A pure 'technological' solution to network quality problems is incomplete since any benefits from new technologies are offset by the demand from exponentially growing electronic commerce ad data-intensive applications. SInce an economic paradigm is implicit in electronic commerce, we propose a 'market-system' approach to improve quality of service. Quality of service for digital products takes on a different meaning since users view quality of service differently and value information differently. We propose a framework for electronic commerce that is based on an economic paradigm and mass-customization, and works as a wide-area distributed management system. In our framework, surrogate-servers act as intermediaries between information provides and end- users, and arrange for consistent and predictable information delivery through 'digital contracts.' These contracts are negotiated and priced based on economic principles. Surrogate servers pre-fetched, through replication, information from many different servers and consolidate based on demand expectations. In order to recognize users' requirements and process requests accordingly, real-time databases are central to our framework. We also propose that multimedia information be separated into slowly changing and rapidly changing data streams to improve response time requirements. Surrogate- servers perform the tasks of integration of these data streams that is transparent to end-users.
Simeoni, Ricardo
2015-06-11
This paper presents the configuration and digital signal processing details of a tablet-based hearing aid transmitting wirelessly to standard earphones, whereby the tablet performs full sound processing rather than solely providing a means of setting adjustment by streaming to conventional digital hearing aids. The presented device confirms the recognized advantages of this tablet-based approach (e.g., in relation to cost, frequency domain processing, amplification range, versatility of functionality, component battery rechargeability), and flags the future wider-spread availability of such hearing solutions within mainstream healthcare. The use of a relatively high sampling frequency was found to be beneficial for device performance, while the use of optional off-the-shelf add-on components (e.g., data acquisition device, high fidelity microphone, compact wireless transmitter/receiver, wired headphones) are also discussed in relation to performance optimization. The easy-to-follow configuration utilized is well suited to student learning/research instrumentation projects within the health and biomedical sciences. In this latter regard, the presented device was pedagogically integrated into a flipped classroom approach for the teaching of bioinstrumentation within an Allied Health Sciences School, with the subsequent establishment of positive student engagement outcomes.
Recommendations for constructing forest stream crossings to control soil losses
Pamela J. Edwards; Jingxin Wang; Joshua T. Stedman
2009-01-01
Stream water samples were collected once daily and throughout storms from a small forested watershed in north central West Virginia for approximately 8 years. The turbidities of the samples were measured to determine how water quality changed in response to the construction of three associated stream crossings. The influence of the...
In order to investigate the relationship between stream chemistry and watershed land cover at the regional scale, we analyzed data from 368 wadeable streams sampled in the mid-Atlantic region of the U.S. during spring 1993-1994. Study sites were selected using a probability sampl...
The US EPA’s National River and Stream Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the conterminous US (CONUS) that deviate from least-disturbed biological condition (BC). These assessments do not infer BC at un-sampled st...
PREDICTION OF FUNDAMENTAL ASSEMBLAGES OF MID-ATLANTIC HIGHLAND STREAM FISHES
A statistical software tool, the Stream Fish Assemblage Predictor (SFAP), based on stream sampling data collected by the EPA in the mid-Atlantic Highlands, was developed to predict potential stream fish communities using characteristics of the stream and its watershed.
Step o...
Impact of landsliding on chemical weathering in the volcanic island of Reunion
NASA Astrophysics Data System (ADS)
Gayer, E.; Lucas, A.; Bouchez, J.; Sy, A.; Louvat, P.; Gaillardet, J.; Dosseto, A.; Kuessner, M.; Michon, L.; Yokochi, R.
2017-12-01
Tropical precipitation regimes allow for strong erosion that creates dramatic landscapes. Understanding and quantifying erosion processes in tropical volcanic islands is important for both scientific challenges (e.g. regarding their implications for global biogeochemical cycles and their links with climate) and societal matters (e.g. socio-economic and ecosystem damages in highly populated areas). Despite the fact that the link between chemical weathering and physical erosion has long been studied, most research has focused on active mountain ranges. Here we use Reunion Island as a natural laboratory to explore this link in a tectonically inactive environment.In Reunion, estimates show that intense erosion rates are mainly due to stochastic bedrock landsliding. Although landslides affect only a small portion of the landscape they supply rivers with huge amounts of fresh broken rocks and organic matter, which are then available for chemical alteration and for transport. In this study, we measured water chemistry of several streams in Reunion and of landslide seepage water sampled on 2 majors landslides ("Grand Éboulis" and "Mahavel", both > 50 yrs old). Seepage samples from Grand Éboulis show high Total Dissolved Solids (TDS) compared to local streams, in agreement with previous observations showing that landslides promote chemical weathering [1]. However, the low TDS of the Mahavel seep water samples compared to local streams, suggest that the impact of landslides on weathering fluxes may strongly depend on the rate at which landslide debris are transferred downstream and their subsequent residence time in the catchment. In order to calculate such sediment transfer rates in Mahavel, we developed an automated photogrammetric workflow allowing for deriving Digital Elevation Models from historical aerial photos. Using the 30 years of images archived at the Institut Geographique National (5 campaigns), we will be able to delineate the extent of landslide debris, to estimate volumes of the released mass, and to calculate rates of displacement downstream the Mahavel landslide. This tool will allow us to address the potential kinetic limitation of landslide-promoted weathering. [1] Emberson et al. Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding, Nat. Geo. 2015
Interpolation of Water Quality Along Stream Networks from Synoptic Data
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Seibert, J.; Lembo, A. J.; Walter, M. T.; Gburek, W. J.; Thongs, D.; Schneiderman, E.; Steenhuis, T. S.
2005-12-01
Effective catchment management requires water quality monitoring that identifies major pollutant sources and transport and transformation processes. While traditional monitoring schemes involve regular sampling at fixed locations in the stream, there is an interest synoptic or `snapshot' sampling to quantify water quality throughout a catchment. This type of sampling enables insights to biogeochemical behavior throughout a stream network at low flow conditions. Since baseflow concentrations are temporally persistence, they are indicative of the health of the ecosystems. A major problem with snapshot sampling is the lack of analytical techniques to represent the spatially distributed data in a manner that is 1) easily understood, 2) representative of the stream network, and 3) capable of being used to develop land management scenarios. This study presents a kriging application using the landscape composition of the contributing area along a stream network to define a new distance metric. This allows for locations that are more `similar' to stay spatially close together while less similar locations `move' further apart. We analyze a snapshot sampling campaign consisting of 125 manually collected grab samples during a summer recession flow period in the Townbrook Research Watershed. The watershed is located in the Catskill region of New York State and represents the mixed forest-agriculture land uses of the region. Our initial analysis indicated that stream nutrients (nitrogen and phosphorus) and chemical (major cations and anions) concentrations are controlled by the composition of landscape characteristics (landuse classes and soil types) surrounding the stream. Based on these relationships, an intuitively defined distance metric is developed by combining the traditional distance between observations and the relative difference in composition of contributing area. This metric is used to interpolate between the sampling locations with traditional geostatistic techniques (semivariograms and ordinary kriging). The resulting interpolations provide continuous stream nutrient and chemical concentrations with reduced kriging RMSE (i.e., the interpolation fits the actual data better) performed without path restriction to the stream channel (i.e., the current default for most geostatistical packages) or performed with an in-channel, Euclidean distance metric (i.e., `as the fish swims' distance). In addition to being quantifiably better, the new metric also produces maps of stream concentrations that match expected continuous stream concentrations based on expert knowledge of the watershed. This analysis and its resulting stream concentration maps provide a representation of spatially distributed synoptic data that can be used to quantify water quality for more effective catchment management that focuses on pollutant sources and transport and transformation processes.
Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.
2014-01-01
The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.
New Algorithm Identifies Tidal Streams Oriented Along our Line-of-Sight
NASA Astrophysics Data System (ADS)
Lin, Ziyi; Newberg, Heidi; Amy, Paul; Martin, Charles Harold; Rockcliffe, Keighley E.
2018-01-01
The known dwarf galaxy tidal streams in the Milky Way are primarily oriented perpendicular to our line-of-sight. That is because they are concentrated into an observable higher-surface-brightness feature at a particular distance, or because they tightly cluster in line-of-sight velocity in a particular direction. Streams that are oriented along our line-of-sight are spread over a large range of distances and velocities. However, these distances and velocities are correlated in predicable ways. We used a set of randomly oriented Milky Way orbits to develop a technique that bins stars in combinations of distance and velocity that are likely for tidal streams. We applied this technique to identify previously unknown tidal streams in a set of blue horizontal branch stars in the first quadrant from Data Release 10 of the Sloan Digital Sky Survey (SDSS). This project was supported by NSF grant AST 16-15688, a Rensselaer Presidential Fellowship, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.
Effects of urbanization on stream water quality in the city of Atlanta, Georgia, USA
Peters, N.E.
2009-01-01
A long-term stream water quality monitoring network was established in the city of Atlanta, Georgia during 2003 to assess baseline water quality conditions and the effects of urbanization on stream water quality. Routine hydrologically based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted ???12 times annually at 21 stations, with drainage areas ranging from 3.7 to 232 km2. Eleven of the stations are real-time (RT) stations having continuous measures of stream stage/ discharge, pH, dissolved oxygen, specific conductance, water temperature and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water quality and sediment-related constituents. Field parameters and concentrations of major ions, metals, nutrient species and coliform bacteria among stations were evaluated and with respect to watershed characteristics and plausible sources from 2003 through September 2007. Most constituent concentrations are much higher than nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. Routine manual sampling, automatic sampling during stormflows and RT water quality monitoring provided sufficient information about urban stream water quality variability to evaluate causes of water quality differences among streams. Fecal coliform bacteria concentrations of most samples exceeded Georgia's water quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s) and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. One stream was affected by dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum-manufacturing plant; streamwater has low pH (<5), low alkalinity and high metals concentrations. Several trace metals exceed acute and chronic water quality standards and high concentrations are attributed to washoff from impervious surfaces.
Davenport, M.S.
1993-01-01
Water and bottom-sediment samples were collected at 26 sites in the 65-square-mile High Point Lake watershed area of Guilford County, North Carolina, from December 1988 through December 1989. Sampling locations included 10 stream sites, 8 lake sites, and 8 ground-water sites. Generally, six steady-flow samples were collected at each stream site and three storm samples were collected at five sites. Four lake samples and eight ground-water samples also were collected. Chemical analyses of stream and lake sediments and particle-size analyses of lake sediments were performed once during the study. Most stream and lake samples were analyzed for field characteristics, nutrients, major ions, trace elements, total organic carbon, and chemical-oxygen demand. Analyses were performed to detect concentrations of 149 selected organic compounds, including acid and base/neutral extractable and volatile constituents and carbamate, chlorophenoxy acid, triazine, organochlorine, and organophosphorus pesticides and herbicides. Selected lake samples were analyzed for all constituents listed in the Safe Drinking Water Act of 1986, including Giardia, Legionella, radiochemicals, asbestos, and viruses. Various chromatograms from organic analyses were submitted to computerized library searches. The results of these and all other analyses presented in this report are in tabular form.
NASA Technical Reports Server (NTRS)
Jackson, Deborah J. (Inventor)
1998-01-01
An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.
Vanderhoof, Melanie; Distler, Hayley; Lang, Megan W.; Alexander, Laurie C.
2018-01-01
The dependence of downstream waters on upstream ecosystems necessitates an improved understanding of watershed-scale hydrological interactions including connections between wetlands and streams. An evaluation of such connections is challenging when, (1) accurate and complete datasets of wetland and stream locations are often not available and (2) natural variability in surface-water extent influences the frequency and duration of wetland/stream connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern Maryland and Delaware is dominated by a high density of small, forested wetlands. In this analysis, wetland/stream surface water connections were quantified using multiple wetland and stream datasets, including headwater streams and depressions mapped from a lidar-derived digital elevation model. Surface-water extent was mapped across the watershed for spring 2015 using Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections increased as a more complete and accurate stream dataset was used and surface-water extent was included, in particular when the spatial resolution of the imagery was finer (i.e., <10 m). Depending on the datasets used, 12–60% of wetlands by count (21–93% of wetlands by area) experienced surface-water interactions with streams during spring 2015. This translated into a range of 50–94% of the watershed contributing direct surface water runoff to streamflow. This finding suggests that our interpretation of the frequency and duration of wetland/stream connections will be influenced not only by the spatial and temporal characteristics of wetlands, streams and potential flowpaths, but also by the completeness, accuracy and resolution of input datasets.
Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers
ERIC Educational Resources Information Center
Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.
2015-01-01
The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…
Coiner, R.L.; Pope, L.M.; Mehl, H.E.
2010-01-01
An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in stream water at Fort Riley is difficult. The only SVOCs detected in stream-water samples were bis(2-ethylhexyl) phthalate and di-n-butyl phthalate but at concentrations substantially less than the most stringent aquatic-life criteria established by the Kansas Department of Health and Environment. All trace element concentrations in stream-water samples were less than the most stringent aquatic-life criteria. The implication of these stream-water results is that contamination arising from firing-range activities, if it exists, is so small as to be nondetectable with current analytical methods or is not distinguishable from background concentrations for constituents that also are naturally occurring. Overall, the munitions-related constituents analyzed in streambed sediment and stream water, when detected, were at concentrations that were less than regulatory criteria
Stream On: Video Servers in the Real World.
ERIC Educational Resources Information Center
Tristram, Claire
1995-01-01
Despite plans for corporate training networks, digital ad-insertion systems, hotel video-on-demand, and interactive television, only small scale video networks presently work. Four case studies examine the design and implementation decisions for different markets: corporate; advertising; hotel; and commercial video via cable, satellite or…
EXAMINATION OF THE ROLE OF PHYSICAL RESOLUTION AND SCALE ON SEDIMENT AND NUTRIENT YIELDS
Currently, watershed delineation and extraction of stream networks are accomplished with GIS databases of digital elevation maps (DEMs). The most common method for extracting channel networks requires the a-priori specification of a critical source area that is required for chann...
Fast Clock Recovery for Digital Communications
NASA Technical Reports Server (NTRS)
Tell, R. G.
1985-01-01
Circuit extracts clock signal from random non-return-to-zero data stream, locking onto clock within one bit period at 1-gigabitper-second data rate. Circuit used for synchronization in opticalfiber communications. Derives speed from very short response time of gallium arsenide metal/semiconductor field-effect transistors (MESFET's).
Opsahl, Stephen P.
2012-01-01
During 1997–2012, the U.S. Geological Survey, in cooperation with the San Antonio Water System, collected and analyzed water-quality constituents in surface-water runoff from five ephemeral stream sites near San Antonio in northern Bexar County, Texas. The data were collected to assess the quality of surface water that recharges the Edwards aquifer. Samples were collected from four stream basins that had small amounts of developed land at the onset of the study but were predicted to undergo substantial development over a period of several decades. Water-quality samples also were collected from a fifth stream basin located on land protected from development to provide reference data by representing undeveloped land cover. Water-quality data included pH, specific conductance, chemical oxygen demand, dissolved solids (filtered residue on evaporation in milligrams per liter, dried at 180 degrees Celsius), suspended solids, major ions, nutrients, trace metals, and pesticides. Trace metal concentration data were compared to the Texas Commission on Environmental Quality established surface water quality standards for human health protection (water and fish). Among all constituents in all samples for which criteria were available for comparison, only one sample had one constituent which exceeded the surface water criteria on one occasion. A single lead concentration (2.76 micrograms per liter) measured in a filtered water sample exceeded the surface water criteria of 1.15 micrograms per liter. The average number of pesticide detections per sample in stream basins undergoing development ranged from 1.8 to 6.0. In contrast, the average number of pesticide detections per sample in the reference stream basin was 0.6. Among all constituents examined in this study, pesticides, dissolved orthophosphate phosphorus, and dissolved total phosphorus demonstrated the largest differences between the four stream basins undergoing development and the reference stream basin with undeveloped land cover.
Experimental study of streaming flows associated with ultrasonic levitators
NASA Astrophysics Data System (ADS)
Trinh, E. H.; Robey, J. L.
1994-11-01
Steady-state acoustic streaming flow patterns have been observed during the operation of a variety of resonant single-axis ultrasonic levitators in a gaseous environment and in the 20-37 kHz frequency range. Light sheet illumination and scattering from smoke particles have revealed primary streaming flows which display different characteristics at low and high sound pressure levels. Secondary macroscopic streaming cells around levitated samples are superimposed on the primary streaming flow pattern generated by the standing wave. These recorded flows are quite reproducible, and are qualitatively the same for a variety of levitator physical geometries. An onset of flow instability can also be recorded in nonisothermal systems, such as levitated spot-heated samples when the resonance conditions are not exactly satisfied. A preliminary qualitative interpretation of these experimental results is presented in terms of the superposition of three discrete sets of circulation cells operating on different spatial scales. These relevant length scales are the acoustic wavelength, the levitated sample size, and finally the acoustic boundary layer thickness. This approach fails, however, to explain the streaming flow-field morphology around liquid drops levitated on Earth. Observation of the interaction between the flows cells and the levitated samples also suggests the existence of a steady-state torque induced by the streaming flows.
Rodríguez Castro, M C; Marcó P, L; Ranieri, M C; Vázquez, C; Giorgi, A
2017-10-07
A survey of arsenic and phosphorus in Pampean streams of Buenos Aires province was performed. Nitrates and ammonia were also determined. Stream water was sampled as well as stream sediment and filamentous algae. Results show that 32 streams exceeded the arsenic recommended guidelines for human consumption of 10 μg L -1 and six exceeded recommended values for aquatic organisms' protection of 50 μg L -1 . The average concentration found was 36.54 μg L -1 and areas with more concentration of As are located in the southern region of the province, in streams that are tributaries of the Atlantic Ocean. Other regions with high As concentration are the Matanza River tributaries and the Arrecifes River tributaries. No differences of As concentration was found between stream sediments. Also, no seasonal pattern of As concentration was observed in one stream sampled during a year, but a positive correlation between As and the conductivity (p = 0.0002) and pH (p = 0.01) of the streams was found. Also, As bioaccumulation was detected for all the algae sampled, but no correlation between As accumulated and As in the stream water was found. Ammonia levels exceeded recommended guidelines for human consumption in the Argentinean law in 30 streams. The characterization performed in this study provides relevant information on the distribution of arsenic and its origin and mobility.
Martin, Jeffrey D.; Eberle, Michael; Nakagaki, Naomi
2011-01-01
This report updates a previously published water-quality dataset of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through September 2010 at stream-water sites of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program and the National Stream Quality Accounting Network (NASQAN) were compiled, reviewed, selected, and prepared for trend analysis. The principal steps in data review for trend analysis were to (1) identify analytical schedule, (2) verify sample-level coding, (3) exclude inappropriate samples or results, (4) review pesticide detections per sample, (5) review high pesticide concentrations, and (6) review the spatial and temporal extent of NAWQA pesticide data and selection of analytical methods for trend analysis. The principal steps in data preparation for trend analysis were to (1) select stream-water sites for trend analysis, (2) round concentrations to a consistent level of precision for the concentration range, (3) identify routine reporting levels used to report nondetections unaffected by matrix interference, (4) reassign the concentration value for routine nondetections to the maximum value of the long-term method detection level (maxLT-MDL), (5) adjust concentrations to compensate for temporal changes in bias of recovery of the gas chromatography/mass spectrometry (GCMS) analytical method, and (6) identify samples considered inappropriate for trend analysis. Samples analyzed at the USGS National Water Quality Laboratory (NWQL) by the GCMS analytical method were the most extensive in time and space and, consequently, were selected for trend analysis. Stream-water sites with 3 or more water years of data with six or more samples per year were selected for pesticide trend analysis. The selection criteria described in the report produced a dataset of 21,988 pesticide samples at 212 stream-water sites. Only 21,144 pesticide samples, however, are considered appropriate for trend analysis.
Seifert, Anne-Gret; Roth, Vanessa-Nina; Dittmar, Thorsten; Gleixner, Gerd; Breuer, Lutz; Houska, Tobias; Marxsen, Jürgen
2016-11-15
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) was used to examine the molecular composition of dissolved organic matter (DOM) from soils under different land use regimes and how the DOM composition in the catchment is reflected in adjacent streams. The study was carried out in a small area of the Schwingbach catchment, an anthropogenic-influenced landscape in central Germany. We investigated 30 different soil water samples from 4 sites and different depths (managed meadow (0-5cm, 40-50cm), deciduous forest (0-5cm), mixed-coniferous forest (0-5cm) and agricultural land (0-5cm, 40-50cm)) and 8 stream samples. 6194 molecular formulae and their magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (AI-mod)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w) were used to describe the molecular composition of the samples. The samples can be roughly divided in three groups. Group 1 contains samples from managed meadow 40-50cm and stream water, which are characterized by high saturation compared to samples from group 2 including agricultural samples and samples from the surface meadow (0-5cm), which held more nitrogen containing and aromatic compounds. Samples from both forested sites (group 3) are characterized by higher molecular weight and O/C ratio. Environmental parameters vary between sites and among these parameters pH and nitrate significantly affect chemical composition of DOM. Results indicate that most DOM in streams is of terrestrial origin. However, 120 molecular formulae were detected only in streams and not in any of the soil samples. These compounds share molecular formulae with peptides, unsaturated aliphatics and saturated FA-CHO/FA-CHOX. Compounds only found in soil samples are much more aromatic, have more double bonds and a much lower H/C ratio but higher oxygen content, which indicates the availability of fresh plant material and less microbial processed material compared to stream samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.
1985-01-01
Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle.
Whittington, Charles L.; Leinz, Reinhard W.; Grimes, David J.
1985-01-01
Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle.
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1998-01-01
Various issues associated with satellite/terrestrial end-to-end communication interoperability are presented in viewgraph form. Specific topics include: 1) Quality of service; 2) ATM performance characteristics; 3) MPEG-2 transport stream mapping to AAL-5; 4) Observation and discussion of compressed video tests over ATM; 5) Digital video over satellites status; 6) Satellite link configurations; 7) MPEG-2 over ATM with binomial errors; 8) MPEG-2 over ATM channel characteristics; 8) MPEG-2 over ATM over emulated satellites; 9) MPEG-2 transport stream with errors; and a 10) Dual decoder test.
Time-of-travel data for Nebraska streams, 1968 to 1977
Petri, L.R.
1984-01-01
This report documents the results of 10 time-of-travel studies, using ' dye-tracer ' methods, conducted on five streams in Nebraska during the period 1968 to 1977. Streams involved in the studies were the North Platte, North Loup, Elkhorn, and Big Blue Rivers and Salt Creek. Rhodamine WT dye in a 20 percent solution was used as the tracer for all 10 time-of-travel studies. Water samples were collected at several points below each injection site. Concentrations of dye in the samples were measured by determining fluorescence of the sample and comparing that value to fluorescence-concentration curves. Stream discharges were measured before and during each study. Results of each time-by-travel study are shown on two tables and on graph. The first table shows water discharge at injection and sampling sites, distance between sites, and time and rate of travel of the dye between sites. The second table provides descriptions of study sites, amounts of dye injected in the streams, actual sampling times, and actual concentrations of dye detected. The graphs for each time-of-travel study provide indications of changing travel rates between sampling sites, information on length of dye clouds, and times for dye passage past given points. (USGS)
Streaming Potential In Rocks Saturated With Water And Oil
NASA Astrophysics Data System (ADS)
Tarvin, J. A.; Caston, A.
2011-12-01
Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).
Wang, L.; Weigel, B.W.; Kanehl, P.; Lohman, K.
2006-01-01
Stream macroinvertebrate communities vary naturally among types of habitats where they are sampled, which affects the results of environmental assessment. We analyzed macroinvertebrates collected from riffle and snag habitats to evaluate influences of habitat-specific sampling on taxon occurrence, assemblage measures, and biotic indices. We found considerably more macroinvertebrate taxa unique to snags (143 taxa) than to riffles (75 taxa), and the numbers of taxa found in both riffles and snags (149 taxa) were similar to that found in snags. About 64% of the 47 macroinvertebrate measures we tested differed significantly between riffles and snags. Eighty percent intercepts of regressions between biotic indices and urban or agricultural land uses differed significantly between riffles and snags. The Hilsenhoff biotic index calculated from snag samples explained 69% of the variance of riffle samples and classified 66% of the sites into the same stream health group as the riffle samples. However, four multimetric indices for snag samples explained less than 50% of the variance of riffle samples and classified less than 50% of the sites into the same health group as the riffle samples. We concluded that macroinvertebrate indices developed for riffle/run habitat should not be used for snag samples to assess stream impairment. We recommend developing an index of biotic integrity specifically for snags and using snags as an alternate sampling substrate for streams that naturally lack riffles. ?? Springer Science+Business Media, Inc. 2006.
Digital Sound Encryption with Logistic Map and Number Theoretic Transform
NASA Astrophysics Data System (ADS)
Satria, Yudi; Gabe Rizky, P. H.; Suryadi, MT
2018-03-01
Digital sound security has limits on encrypting in Frequency Domain. Number Theoretic Transform based on field (GF 2521 – 1) improve and solve that problem. The algorithm for this sound encryption is based on combination of Chaos function and Number Theoretic Transform. The Chaos function that used in this paper is Logistic Map. The trials and the simulations are conducted by using 5 different digital sound files data tester in Wave File Extension Format and simulated at least 100 times each. The key stream resulted is random with verified by 15 NIST’s randomness test. The key space formed is very big which more than 10469. The processing speed of algorithm for encryption is slightly affected by Number Theoretic Transform.
The UW digital ozonesonde: Characteristics and flow rate calibration
NASA Technical Reports Server (NTRS)
Harder, J. W.; Hofmann, D. J.; Rosen, J. M.; Kjome, N. T.
1988-01-01
During the austral springs of 1986 and 1987, a series of balloon soundings were conducted to characterize the temporal and vertical development of Antarctic ozone depletion using the electrochemical concentration cell method (ECC). An important part of this study was to perform correlative studies between ozone and aerosol particles. In order to facilitate these simultaneous measurements, a digital ozonesonde system was developed to interface with aerosol counters. The ozone measurements will be described herein. The ozonesonde modification was accomplished by converting the current output of the sonde to a frequency and adding this digital signal to the serial data stream of a Vaisala Corporation RS-80 radiosonde under microprocessor control. A number of advantages over the standard ozonesonde system currently in use are noted.
Parallel digital modem using multirate digital filter banks
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Vaidyanathan, P. P.; Raphaeli, Dan; Hinedi, Sami
1994-01-01
A new class of architectures for an all-digital modem is presented in this report. This architecture, referred to as the parallel receiver (PRX), is based on employing multirate digital filter banks (DFB's) to demodulate, track, and detect the received symbol stream. The resulting architecture is derived, and specifications are outlined for designing the DFB for the PRX. The key feature of this approach is a lower processing rate then either the Nyquist rate or the symbol rate, without any degradation in the symbol error rate. Due to the freedom in choosing the processing rate, the designer is able to arbitrarily select and use digital components, independent of the speed of the integrated circuit technology. PRX architecture is particularly suited for high data rate applications, and due to the modular structure of the parallel signal path, expansion to even higher data rates is accommodated with each. Applications of the PRX would include gigabit satellite channels, multiple spacecraft, optical links, interactive cable-TV, telemedicine, code division multiple access (CDMA) communications, and others.
Self-balanced real-time photonic scheme for ultrafast random number generation
NASA Astrophysics Data System (ADS)
Li, Pu; Guo, Ya; Guo, Yanqiang; Fan, Yuanlong; Guo, Xiaomin; Liu, Xianglian; Shore, K. Alan; Dubrova, Elena; Xu, Bingjie; Wang, Yuncai; Wang, Anbang
2018-06-01
We propose a real-time self-balanced photonic method for extracting ultrafast random numbers from broadband randomness sources. In place of electronic analog-to-digital converters (ADCs), the balanced photo-detection technology is used to directly quantize optically sampled chaotic pulses into a continuous random number stream. Benefitting from ultrafast photo-detection, our method can efficiently eliminate the generation rate bottleneck from electronic ADCs which are required in nearly all the available fast physical random number generators. A proof-of-principle experiment demonstrates that using our approach 10 Gb/s real-time and statistically unbiased random numbers are successfully extracted from a bandwidth-enhanced chaotic source. The generation rate achieved experimentally here is being limited by the bandwidth of the chaotic source. The method described has the potential to attain a real-time rate of 100 Gb/s.
Le Pichon, Céline; Tales, Évelyne; Belliard, Jérôme; Torgersen, Christian E.
2017-01-01
Spatially intensive sampling by electrofishing is proposed as a method for quantifying spatial variation in fish assemblages at multiple scales along extensive stream sections in headwater catchments. We used this method to sample fish species at 10-m2 points spaced every 20 m throughout 5 km of a headwater stream in France. The spatially intensive sampling design provided information at a spatial resolution and extent that enabled exploration of spatial heterogeneity in fish assemblage structure and aquatic habitat at multiple scales with empirical variograms and wavelet analysis. These analyses were effective for detecting scales of periodicity, trends, and discontinuities in the distribution of species in relation to tributary junctions and obstacles to fish movement. This approach to sampling riverine fishes may be useful in fisheries research and management for evaluating stream fish responses to natural and altered habitats and for identifying sites for potential restoration.
NASA Astrophysics Data System (ADS)
Lischeid, G.; Kolb, A.; Alewell, C.; Paul, S.
2007-01-01
Biologically mediated redox processes in the riparian zone, like denitrification, can have substantially beneficial impacts on stream water quality. The extent of these effects, however, depends greatly on the hydrological boundary conditions. The impact of hydrological processes on a wetland's nitrogen sink capacity was investigated in a forested riparian fen which is drained by a first-order perennial stream. Here, we analysed the frequency distributions and time-series of pH and nitrogen, silica, organic carbon and oxygen concentrations in throughfall, soil solution, groundwater and stream water, and the groundwater levels and stream discharges from a 3-year period. During baseflow conditions, the stream was fed by discharging shallow, anoxic groundwater and by deep, oxic groundwater. Whereas the latter delivered considerable amounts of nitrogen (0.37 mg l-1) to the stream, the former was almost entirely depleted of nitrogen. During stormflow, near-surface runoff in the upper 30 cm soil layer bypassed the denitrifying zone and added significant amounts to the nitrogen load of the stream. Nitrate-nitrogen was close to 100% of deep groundwater and stream-water nitrogen concentration. Stream-water baseflow concentrations of nitrate, dissolved carbon and silica were about 1.6 mg l-1, 4 mg l-1 and 7.5 mg l-1 respectively, and >3 mg l-1, >10 mg l-1 and <4 mg l-1 respectively during discharge peaks. In addition to that macroscale bypassing effect, there was evidence for a corresponding microscale effect: Shallow groundwater sampled by soil suction cups indicated complete denitrification and lacked any seasonal signal of solute concentration, which was in contrast to piezometer samples from the same depth. Moreover, mean solute concentration in the piezometer samples resembled more that of suction-cup samples from shallower depth than that of the same depth. We conclude that the soil solution cups sampled to a large extent the immobile soil-water fraction. In contrast, the mobile fraction that was sampled by the piezometers exhibited substantially shorter residence time, thus being less exposed to denitrification, but predominating discharge of that layer to the stream. Consequently, assessing the nitrogen budget based on suction-cup data tended to overestimate the nitrogen consumption in the riparian wetland. These effects are likely to become more important with the increased frequency and intensity of rainstorms that are expected due to climate change. Copyright
A geochemical atlas of North Carolina, USA
Reid, J.C.
1993-01-01
A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only very general indication of geochemical distribution patterns and should not be used for site specific studies. The atlas maps for each element were computer-generated at the state's geographic information system (Center for Geographic Information and Analysis [CGIA]). The Division of Statistics and Information Services provided input files. The maps in the atlas are point maps. Each sample is represented by a symbol generally corresponding to a quartile class. Other reports will transmit sample and analytical data for state regions. Data are tentatively planned to be available on disks in spreadsheet format for personal computers. During the second phase of this project, stream-sediment samples are being assigned to state geologic map unit names using a GIS system to determine background and anomaly values. Subsequent publications will make this geochemical data and accompanying interpretations available to a wide spectrum of interdisciplinary users. ?? 1993.
Woodward, Emily; Hladik, Michelle; Kolpin, Dana W.
2016-01-01
Nitrapyrin is a bactericide that is co-applied with fertilizer to prevent nitrification and enhance corn yields. While there have been studies of the environmental fate of nitrapyrin, there is no documentation of its off-field transport to streams. In 2016, 59 water samples from 11 streams across Iowa were analyzed for nitrapyrin and its degradate, 6-chloropicolinic acid (6-CPA), along with three widely used herbicides, acetochlor, atrazine, and metolachlor. Nitrapyrin was detected in seven streams (39% of water samples) with concentrations ranging from 12 to 240 ng/L; 6-CPA was never detected. The herbicides were ubiquitously detected (100% of samples, 28–16000 ng/L). Higher nitrapyrin concentrations in streams were associated with rainfall events following spring fertilizer applications. Nitrapyrin persisted in streams for up to 5 weeks. These results highlight the need for more research focused on the environmental fate and transport of nitrapyrin and the potential toxicity this compound could have on nontarget organisms.
Clutch sizes and nests of tailed frogs from the Olympic Peninsula, Washington
Bury, R. Bruce; Loafman, P.; Rofkar, D.; Mike, K.
2001-01-01
In the summers 1995-1998, we sampled 168 streams (1,714 in of randomly selected 1-m bands) to determine distribution and abundance of stream amphibians in Olympic National Park, Washington. We found six nests (two in one stream) of the tailed frog, compared to only two nests with clutch sizes reported earlier for coastal regions. This represents only one nest per 286 in searched and one nest per 34 streams sampled. Tailed frogs occurred only in 94 (60%) of the streams and, for these waters, we found one nest per 171 in searched or one nest per 20 streams sampled. The numbers of eggs for four masses ((x) over bar = 48.3, range 40-55) were low but one single strand in a fifth nest had 96 eggs. One nest with 185 eggs likely represented communal egg deposition. Current evidence indicates a geographic trend with yearly clutches of relatively few eggs in coastal tailed frogs compared to biennial nesting with larger clutches for inland populations in the Rocky Mountains.
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.
2003-01-01
Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to the simple equations and therefore are recommended for use.
Hydrological landscape analysis based on digital elevation data
NASA Astrophysics Data System (ADS)
Seibert, J.; McGlynn, B.; Grabs, T.; Jensco, K.
2008-12-01
Topography is a major factor controlling both hydrological and soil processes at the landscape scale. While this is well-accepted qualitatively, quantifying relationships between topography and spatial variations of hydrologically relevant variables at the landscape scale still remains a challenging research topic. In this presentation, we describe hydrological landscape analysis HLA) as a way to derive relevant topographic indicies to describe the spatial variations of hydrological variables at the landscape scale. We demonstrate our HLA approach with four high-resolution digital elevation models (DEMs) from Sweden, Switzerland and Montana (USA). To investigate scale effects HLA metrics, we compared DEMs of different resolutions. These LiDAR-derived DEMs of 3m, 10m, and 30m, resolution represent catchments of ~ 5 km2 ranging from low to high relief. A central feature of HLA is the flowpath-based analysis of topography and the separation of hillslopes, riparian areas, and the stream network. We included the following metrics: riparian area delineation, riparian buffer potential, separation of stream inflows into right and left bank components, travel time proxies based on flowpath distances and gradients to the channel, and as a hydrologic similarity to the hypsometric curve we suggest the distribution of elevations above the stream network (computed based on the location where a certain flow pathway enters the stream). Several of these indices depended clearly on DEM resolution, whereas this effect was minor for others. While the hypsometric curves all were S-shaped the 'hillslope-hypsometric curves' had the shape of a power function with exponents less than 1. In a similar way we separated flow pathway lengths and gradients between hillslopes and streams and compared a topographic travel time proxy, which was based on the integration of gradients along the flow pathways. Besides the comparison of HLA-metrics for different catchments and DEM resolutions we present examples from experimental catchments to illustrate how these metrics can be used to describe catchment scale hydrological processes and provide context for plot scale observations.
EnviroAtlas - 303(d) Impairments by 12-digit HUC for the Conterminous United States
This EnviroAtlas dataset depicts the total length of stream or river flowlines that have impairments submitted to the EPA by states under section 303(d) of the Clean Water Act. It also contains the total lengths of streams, rivers, and canals, total waterbody area, and stream density (stream length per area) from the US Geological Survey's high-resolution National Hydrography Dataset (NHD).This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
75 FR 2511 - Manual for Courts-Martial; Proposed Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-15
... persons of the same or opposite sex; (b) Bestiality; (c) Masturbation; (d) Sadistic or masochistic abuse...'' includes any developed or undeveloped photograph, picture, film or video; any digital or computer image, picture, film or video made by any means, including those transmitted by any means including streaming...
Riparian Zone Analysis for Forest Land Cover for the Conterminous US
One data layer describing the amount of forest land cover contained within a buffer area extending 30 meters to each side of all streams contained within the basin (Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit Code (HUC)) and from the edge of water bodies such as la...
ERIC Educational Resources Information Center
Slack, Amy
2014-01-01
In our increasingly digital world, students are often disconnected from the natural environment and may not understand how human actions affect it. One of the most significant human impacts on ecosystems is water pollution. Measuring the water quality of a local stream, river, or lake can be a valuable learning experience but is often impractical.…
Mapping Milky Way Halo Structure with Blue Horizontal Branch Stars
NASA Astrophysics Data System (ADS)
Martin, Charles; Newberg, Heidi Jo; Carlin, Jeffrey L.
2017-01-01
The use of blue horizontal brach (BHB) and red giant branch stars as tracers of stellar debris streams is a common practice and has been useful in the confirmation of kinematic properties of previously identified streams. This work explores less common ways of untangling the velocity signatures of streams traveling radially to our line of sight, and to peer toward the higher density region of the Galactic Center using data from the Sloan Digital Sky Survey (SDSS). Using spectra of BHB stars, we are able to kinematically distinguish moving groups in the Milky Way halo. The results of this thesis advance our knowledge of the following stellar halo substructures: the Pisces Stellar Stream, the Hercules-Aquila Cloud, the Hercules Halo Stream, and the Hermus Stream. A study of red giant stars led to the kinematic discovery of the Pisces Stellar Stream. Red giant stars were also examined to determine that the previously identified velocity signature that was suggested for the Hercules-Aquila Cloud was due to disk star contamination and errors in preliminary SDSS velocities. The Hercules Halo Stream is a previously unidentified structure that could be related to the Hercules-Aquila Cloud, and was discovered as a velocity excess of SDSS BHB stars. We identify a group of 10 stars with similar velocities that are spatially coincident with the Hermus Stream. An orbit is fit to the Hermus Stream that rules out a connection with the Phoenix Stream.This work was supported by NSF grants AST 09-37523, 14-09421, 16-15688, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.
Woodson, Kristina E; Sable, Craig A; Cross, Russell R; Pearson, Gail D; Martin, Gerard R
2004-11-01
Live transmission of echocardiograms over integrated services digital network lines is accurate and has led to improvements in the delivery of pediatric cardiology care. Permanent archiving of the live studies has not previously been reported. Specific obstacles to permanent storage of telemedicine files have included the ability to produce accurate images without a significant increase in storage requirements. We evaluated the accuracy of Motion Pictures Expert Group (MPEG) digitization of incoming video streams and assessed the storage requirements of these files for infants in a real-time pediatric tele-echocardiography program. All major cardiac diagnoses were correctly diagnosed by review of MPEG images. MPEG file size ranged from 11.1 to 182 MB (56.5 +/- 29.9 MB). MPEG digitization during live neonatal telemedicine is accurate and provides an efficient method for storage. This modality has acceptable storage requirements; file sizes are comparable to other digital modalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
Various topics in the field of photogrammetry are addressed. Among the subjects discussed are: remote sensing of Gulf Stream dynamics using VHRR satellite imagery an interactive rectification system for remote sensing imagery use of a single photo and digital terrain matrix for point positioning crop type analysis using Landsat digital data use of a fisheye lens in solar energy assessment remote sensing inventory of Rocky Mountain elk habitat Washington state's large scale ortho program educational image processing. Also discussed are: operational advantages of on-line photogrammetric triangulation analysis of fracturation field photogrammetry as a tool for measuring glacier movement double modelmore » orthophotos used for forest inventory mapping map revisioning module for the Kern PG2 stereoplotter assessing accuracy of digital land-use and terrain data accuracy of earthwork calculations from digital elevation data.« less
Realization and optimization of AES algorithm on the TMS320DM6446 based on DaVinci technology
NASA Astrophysics Data System (ADS)
Jia, Wen-bin; Xiao, Fu-hai
2013-03-01
The application of AES algorithm in the digital cinema system avoids video data to be illegal theft or malicious tampering, and solves its security problems. At the same time, in order to meet the requirements of the real-time, scene and transparent encryption of high-speed data streams of audio and video in the information security field, through the in-depth analysis of AES algorithm principle, based on the hardware platform of TMS320DM6446, with the software framework structure of DaVinci, this paper proposes the specific realization methods of AES algorithm in digital video system and its optimization solutions. The test results show digital movies encrypted by AES128 can not play normally, which ensures the security of digital movies. Through the comparison of the performance of AES128 algorithm before optimization and after, the correctness and validity of improved algorithm is verified.
Digitizing Sound: How Can Sound Waves be Turned into Ones and Zeros?
NASA Astrophysics Data System (ADS)
Vick, Matthew
2010-10-01
From MP3 players to cell phones to computer games, we're surrounded by a constant stream of ones and zeros. Do we really need to know how this technology works? While nobody can understand everything, digital technology is increasingly making our lives a collection of "black boxes" that we can use but have no idea how they work. Pursuing scientific literacy should propel us to open up a few of these metaphorical boxes. High school physics offers opportunities to connect the curriculum to sports, art, music, and electricity, but it also offers connections to computers and digital music. Learning activities about digitizing sounds offer wonderful opportunities for technology integration and student problem solving. I used this series of lessons in high school physics after teaching about waves and sound but before optics and total internal reflection so that the concepts could be further extended when learning about fiber optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koller, G.R.
1979-08-01
Stream sediment and stream water samples were collected from small streams at 1328 sites. Ground water samples were collected at 664 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water and surface water.
Hambrook Berkman, Julie A.; Scudder, Barbara C.; Lutz, Michelle A.; Harris, Mitchell A.
2010-01-01
This study evaluated the relations between algal, invertebrate, and fish assemblages and physical environmental characteristics of streams at the reach, segment, and watershed scale in agricultural settings in the Midwest. The 86 stream sites selected for study were in predominantly agricultural watersheds sampled as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Species abundance and over 130 biological metrics were used to determine which aspects of the assemblages were most sensitive to change at the three spatial scales. Digital orthophotograph-based riparian land use/land cover was used for analyses of riparian conditions at the reach and segment scales. The percentage area of different land-use/land-cover types was also determined for each watershed. Out of over 230 environmental characteristics examined, those that best explained variation in the biotic assemblages at each spatial scale include the following: 1) reach: bank vegetative cover, fine silty substrate, and open canopy angle; 2) segment: woody vegetation and cropland in the 250-m riparian buffer, and average length of undisturbed buffer; and 3) watershed: land use/land cover (both total forested and row crop), low-permeability soils, slope, drainage area, and latitude. All three biological assemblages, especially fish, correlated more with land use/land cover and other physical characteristics at the watershed scale than at the reach or segment scales. This study identifies biotic measures that can be used to evaluate potential improvements resulting from agricultural best-management practices and other conservation efforts, as well as evaluate potential impairment from urban development or other disturbances.
Slonecker, Terry E.; Milheim, Lesley E.
2015-01-01
The spatial footprint of unconventional (hydraulic fracturing) and conventional oil and gas development in the Marcellus Shale region of the State of Pennsylvania was digitized from high-resolution, ortho-rectified, digital aerial photography, from 2004 to 2010. We used these data to measure the spatial extent of oil and gas development and to assess the exposure of the extant natural resources across the landscape of the watersheds in the study area. We found that either form of development: (1) occurred in ~50% of the 930 watersheds that defined the study area; (2) was closer to streams than the recommended safe distance in ~50% of the watersheds; (3) was in some places closer to impaired streams and state-defined wildland trout streams than the recommended safe distance; (4) was within 10 upstream kilometers of surface drinking water intakes in ~45% of the watersheds that had surface drinking water intakes; (5) occurred in ~10% of state-defined exceptional value watersheds; (6) occurred in ~30% of the watersheds with resident populations defined as disproportionately exposed to pollutants; (7) tended to occur at interior forest locations; and (8) had >100 residents within 3 km for ~30% of the unconventional oil and gas development sites. Further, we found that exposure to the potential effects of landscape disturbance attributable to conventional oil and gas development was more prevalent than its unconventional counterpart.
Reif, Andrew G.
2004-01-01
Biological, chemical, and habitat data have been collected from a network of sites in Chester County, Pa., from 1970 to 2003 to assess stream quality. Forty sites in 6 major stream basins were sampled between 1998 and 2000. Biological data were used to determine levels of impairment in the benthic-macroinvertebrate community in Chester County streams and relate the impairment, in conjunction with chemical and habitat data, to overall stream quality. Biological data consisted of benthic-macroinvertebrate samples that were collected annually in the fall. Water-chemistry samples were collected and instream habitat was assessed in support of the biological sampling.Most sites in the network were designated as nonimpacted or slightly impacted by human activities or extreme climatic conditions on the basis of biological-metric analysis of benthic-macroinvertebrate data. Impacted sites were affected by factors, such as nutrient enrichment, erosion and sedimentation, point discharges, and droughts and floods. Streams in the Schuylkill River, Delaware River, and East Branch Brandywine Creek Basins in Chester County generally had low nutrient concentrations, except in areas affected by wastewater-treatment discharges, and stream habitat that was affected by erosion. Streams in the West Branch Brandywine, Christina, Big Elk, and Octoraro Creek Basins in Chester County generally had elevated nutrient concentrations and streambottom habitat that was affected by sediment deposition.Macroinvertebrate communities identified in samples from French Creek, Pigeon Creek (Schuylkill River Basin), and East Branch Brandywine Creek at Glenmoore consistently indicate good stream conditions and were the best conditions measured in the network. Macroinvertebrate communities identified in samples from Trout Creek (site 61), West Branch Red Clay Creek (site 55) (Christina River Basin), and Valley Creek near Atglen (site 34) (Octoraro Creek Basin) indicated fair to poor stream conditions and were the worst conditions measured in the network. Trout Creek is heavily impacted due to erosion, and Valley Creek near Atglen and West Branch Red Clay Creek are influenced by wastewater discharges. Hydrologic conditions in 1999, including a prolonged drought and a flood, influenced chemical concentrations and macroinvertebrate community structure throughout the county. Concentrations of nutrients and ions were lower in 1999 when compared to 1998 and 2000 concentrations. Macroinvertebrate communities identified in samples from 1999 contained lower numbers of individuals when compared to 1998 and 2000 but had similar community structure. Results from chemical and biological sampling in 2000 indicated that the benthic-macroinvertebrate community structure and the concentrations of nutrients and ions recovered to pre-1999 levels.
Digital LAMP in a sample self-digitization (SD) chip
Herrick, Alison M.; Dimov, Ivan K.; Lee, Luke P.; Chiu, Daniel T.
2012-01-01
This paper describes the realization of digital loop-mediated DNA amplification (dLAMP) in a sample self-digitization (SD) chip. Digital DNA amplification has become an attractive technique to quantify absolute concentrations of DNA in a sample. While digital polymerase chain reaction is still the most widespread implementation, its use in resource—limited settings is impeded by the need for thermal cycling and robust temperature control. In such situations, isothermal protocols that can amplify DNA or RNA without thermal cycling are of great interest. Here, we showed the successful amplification of single DNA molecules in a stationary droplet array using isothermal digital loop-mediated DNA amplification. Unlike most (if not all) existing methods for sample discretization, our design allows for automated, loss-less digitization of sample volumes on-chip. We demonstrated accurate quantification of relative and absolute DNA concentrations with sample volumes of less than 2 μl. We assessed the homogeneity of droplet size during sample self-digitization in our device, and verified that the size variation was small enough such that straightforward counting of LAMP-active droplets sufficed for data analysis. We anticipate that the simplicity and robustness of our SD chip make it attractive as an inexpensive and easy-to-operate device for DNA amplification, for example in point-of-care settings. PMID:22399016
The Midwest Stream Quality Assessment
,
2012-01-01
In 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) and USGS Columbia Environmental Research Center (CERC) will be collaborating with the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA) to assess stream quality across the Midwestern United States. The sites selected for this study are a subset of the larger NRSA, implemented by the EPA, States and Tribes to sample flowing waters across the United States (http://water.epa.gov/type/rsl/monitoring/riverssurvey/index.cfm). The goals are to characterize water-quality stressors—contaminants, nutrients, and sediment—and ecological conditions in streams throughout the Midwest and to determine the relative effects of these stressors on aquatic organisms in the streams. Findings will contribute useful information for communities and policymakers by identifying which human and environmental factors are the most critical in controlling stream quality. This collaborative study enhances information provided to the public and policymakers and minimizes costs by leveraging and sharing data gathered under existing programs. In the spring and early summer, NAWQA will sample streams weekly for contaminants, nutrients, and sediment. During the same time period, CERC will test sediment and water samples for toxicity, deploy time-integrating samplers, and measure reproductive effects and biomarkers of contaminant exposure in fish or amphibians. NRSA will sample sites once during the summer to assess ecological and habitat conditions in the streams by collecting data on algal, macroinvertebrate, and fish communities and collecting detailed physical-habitat measurements. Study-team members from all three programs will work in collaboration with USGS Water Science Centers and State agencies on study design, execution of sampling and analysis, and reporting.
Geostatistical modeling of riparian forest microclimate and its implications for sampling
Eskelson, B.N.I.; Anderson, P.D.; Hagar, J.C.; Temesgen, H.
2011-01-01
Predictive models of microclimate under various site conditions in forested headwater stream - riparian areas are poorly developed, and sampling designs for characterizing underlying riparian microclimate gradients are sparse. We used riparian microclimate data collected at eight headwater streams in the Oregon Coast Range to compare ordinary kriging (OK), universal kriging (UK), and kriging with external drift (KED) for point prediction of mean maximum air temperature (Tair). Several topographic and forest structure characteristics were considered as site-specific parameters. Height above stream and distance to stream were the most important covariates in the KED models, which outperformed OK and UK in terms of root mean square error. Sample patterns were optimized based on the kriging variance and the weighted means of shortest distance criterion using the simulated annealing algorithm. The optimized sample patterns outperformed systematic sample patterns in terms of mean kriging variance mainly for small sample sizes. These findings suggest methods for increasing efficiency of microclimate monitoring in riparian areas.
Ogle, K.M.; Lee, R.W.
1994-01-01
Radon-222 activity was measured for 27 water samples from streams, an alluvial aquifer, bedrock aquifers, and a geothermal system, in and near the 510-square mile area of Owl Creek Basin, north- central Wyoming. Summary statistics of the radon- 222 activities are compiled. For 16 stream-water samples, the arithmetic mean radon-222 activity was 20 pCi/L (picocuries per liter), geometric mean activity was 7 pCi/L, harmonic mean activity was 2 pCi/L and median activity was 8 pCi/L. The standard deviation of the arithmetic mean is 29 pCi/L. The activities in the stream-water samples ranged from 0.4 to 97 pCi/L. The histogram of stream-water samples is left-skewed when compared to a normal distribution. For 11 ground-water samples, the arithmetic mean radon- 222 activity was 486 pCi/L, geometric mean activity was 280 pCi/L, harmonic mean activity was 130 pCi/L and median activity was 373 pCi/L. The standard deviation of the arithmetic mean is 500 pCi/L. The activity in the ground-water samples ranged from 25 to 1,704 pCi/L. The histogram of ground-water samples is left-skewed when compared to a normal distribution. (USGS)
Application of a multipurpose unequal probability stream survey in the Mid-Atlantic Coastal Plain
Ator, S.W.; Olsen, A.R.; Pitchford, A.M.; Denver, J.M.
2003-01-01
A stratified, spatially balanced sample with unequal probability selection was used to design a multipurpose survey of headwater streams in the Mid-Atlantic Coastal Plain. Objectives for the survey include unbiased estimates of regional stream conditions, and adequate coverage of unusual but significant environmental settings to support empirical modeling of the factors affecting those conditions. The design and field application of the survey are discussed in light of these multiple objectives. A probability (random) sample of 175 first-order nontidal streams was selected for synoptic sampling of water chemistry and benthic and riparian ecology during late winter and spring 2000. Twenty-five streams were selected within each of seven hydrogeologic subregions (strata) that were delineated on the basis of physiography and surficial geology. In each subregion, unequal inclusion probabilities were used to provide an approximately even distribution of streams along a gradient of forested to developed (agricultural or urban) land in the contributing watershed. Alternate streams were also selected. Alternates were included in groups of five in each subregion when field reconnaissance demonstrated that primary streams were inaccessible or otherwise unusable. Despite the rejection and replacement of a considerable number of primary streams during reconnaissance (up to 40 percent in one subregion), the desired land use distribution was maintained within each hydrogeologic subregion without sacrificing the probabilistic design.
Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Dodd, H.R.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.
2003-01-01
Four sampling designs for quantifying the effect of low-head sea lamprey (Petromyzon marinus) barriers on fish communities were evaluated, and the contribution of process-oriented research to the overall confidence of results obtained was discussed. The designs include: (1) sample barrier streams post-construction; (2) sample barrier and reference streams post-construction; (3) sample barrier streams pre- and post-construction; and (4) sample barrier and reference streams pre- and post-construction. In the statistical literature, the principal basis for comparison of sampling designs is generally the precision achieved by each design. In addition to precision, designs should be compared based on the interpretability of results and on the scale to which the results apply. Using data collected in a broad survey of streams with and without sea lamprey barriers, some of the tradeoffs that occur among precision, scale, and interpretability are illustrated. Although circumstances such as funding and availability of pre-construction data may limit which design can be implemented, a pre/post-construction design including barrier and reference streams provides the most meaningful information for use in barrier management decisions. Where it is not feasible to obtain pre-construction data, a design including reference streams is important to maintain the interpretability of results. Regardless of the design used, process-oriented research provides a framework for interpreting results obtained in broad surveys. As such, information from both extensive surveys and intensive process-oriented research provides the best basis for fishery management actions, and gives researchers and managers the most confidence in the conclusions reached regarding the effects of sea lamprey barriers.
Innocent Bystanders: Carbon Stars from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Green, Paul
2013-03-01
Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, ~5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while ~7% are giants. The dCs likely span absolute magnitudes Mi from ~6.5 to 10.5. "G-type" dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C2 bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be "N"-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.
LEVEL AND EXTENT OF MERCURY CONTAMINATION IN OREGON, USA, LOTIC FISH
Because of growing concern with widespread mercury contamination of fish tissue, we sampled 154 streams and rivers throughout Oregon using a probability design. To maximize the sample size we took samples of small and large fish, where possible, from wadeable streams and boatable...
Jung, R.E.; Royle, J. Andrew; Sauer, J.R.; Addison, C.; Rau, R.D.; Shirk, J.L.; Whissel, J.C.
2005-01-01
Stream salamanders in the family Plethodontidae constitute a large biomass in and near headwater streams in the eastern United States and are promising indicators of stream ecosystem health. Many studies of stream salamanders have relied on population indices based on counts rather than population estimates based on techniques such as capture-recapture and removal. Application of estimation procedures allows the calculation of detection probabilities (the proportion of total animals present that are detected during a survey) and their associated sampling error, and may be essential for determining salamander population sizes and trends. In 1999, we conducted capture-recapture and removal population estimation methods for Desmognathus salamanders at six streams in Shenandoah National Park, Virginia, USA. Removal sampling appeared more efficient and detection probabilities from removal data were higher than those from capture-recapture. During 2001-2004, we used removal estimation at eight streams in the park to assess the usefulness of this technique for long-term monitoring of stream salamanders. Removal detection probabilities ranged from 0.39 to 0.96 for Desmognathus, 0.27 to 0.89 for Eurycea and 0.27 to 0.75 for northern spring (Gyrinophilus porphyriticus) and northern red (Pseudotriton ruber) salamanders across stream transects. Detection probabilities did not differ across years for Desmognathus and Eurycea, but did differ among streams for Desmognathus. Population estimates of Desmognathus decreased between 2001-2002 and 2003-2004 which may be related to changes in stream flow conditions. Removal-based procedures may be a feasible approach for population estimation of salamanders, but field methods should be designed to meet the assumptions of the sampling procedures. New approaches to estimating stream salamander populations are discussed.
Nyhan, J W; White, G C; Trujillo, G
1982-10-01
Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238Pu, 239,240Pu and 137Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven yr after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams.
Final Report: Sampling-Based Algorithms for Estimating Structure in Big Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matulef, Kevin Michael
The purpose of this project was to develop sampling-based algorithms to discover hidden struc- ture in massive data sets. Inferring structure in large data sets is an increasingly common task in many critical national security applications. These data sets come from myriad sources, such as network traffic, sensor data, and data generated by large-scale simulations. They are often so large that traditional data mining techniques are time consuming or even infeasible. To address this problem, we focus on a class of algorithms that do not compute an exact answer, but instead use sampling to compute an approximate answer using fewermore » resources. The particular class of algorithms that we focus on are streaming algorithms , so called because they are designed to handle high-throughput streams of data. Streaming algorithms have only a small amount of working storage - much less than the size of the full data stream - so they must necessarily use sampling to approximate the correct answer. We present two results: * A streaming algorithm called HyperHeadTail , that estimates the degree distribution of a graph (i.e., the distribution of the number of connections for each node in a network). The degree distribution is a fundamental graph property, but prior work on estimating the degree distribution in a streaming setting was impractical for many real-world application. We improve upon prior work by developing an algorithm that can handle streams with repeated edges, and graph structures that evolve over time. * An algorithm for the task of maintaining a weighted subsample of items in a stream, when the items must be sampled according to their weight, and the weights are dynamically changing. To our knowledge, this is the first such algorithm designed for dynamically evolving weights. We expect it may be useful as a building block for other streaming algorithms on dynamic data sets.« less
Martin, Jeffrey D.
2009-01-01
This report provides a water-quality data set of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through August 2006 at stream-water sites of the U.S. Geological Survey National Water-Quality Assessment Program and the National Stream Quality Accounting Network Program were compiled, reviewed, selected, and prepared for trend analysis as described in this report. Samples analyzed at the U.S. Geological Survey National Water Quality Laboratory by a gas chromatography/mass spectrometry analytical method were the most extensive in time and space and were selected for national trend analysis. The selection criteria described in the report produced a trend data set of 16,869 pesticide samples at 201 stream and river sites.
Gray, J.E.; Theodorakos, P.M.; Bailey, E.A.; Turner, R.R.
2000-01-01
Concentrations of total Hg, Hg (II), and methylmercury were measured in stream-sediment, stream-water, and fish collected downstream from abandoned mercury mines in south-western Alaska to evaluate environmental effects to surrounding ecosystems. These mines are found in a broad belt covering several tens of thousands of square kilometers, primarily in the Kuskokwim River basin. Mercury ore is dominantly cinnabar (HgS), but elemental mercury (Hg(o)) is present in ore at one mine and near retorts and in streams at several mine sites. Approximately 1400 t of mercury have been produced from the region, which is approximately 99% of all mercury produced from Alaska. These mines are not presently operating because of low prices and low demand for mercury. Stream-sediment samples collected downstream from the mines contain as much as 5500 ??g/g Hg. Such high Hg concentrations are related to the abundance of cinnabar, which is highly resistant to physical and chemical weathering, and is visible in streams below mine sites. Although total Hg concentrations in the stream-sediment samples collected near mines are high, Hg speciation data indicate that concentrations of Hg (II) are generally less than 5%, and methylmercury concentrations are less than 1% of the total Hg. Stream waters below the mines are neutral to slightly alkaline (pH 6.8-8.4), which is a result of the insolubility of cinnabar and the lack of acid- generating minerals such as pyrite in the deposits. Unfiltered stream-water samples collected below the mines generally contain 500-2500 ng/l Hg; whereas, corresponding stream-water samples filtered through a 0.45-??m membrane contain less than 50 ng/l Hg. These stream-water results indicate that most of the Hg transported downstream from the mines is as finely- suspended material rather than dissolved Hg. Mercury speciation data show that concentrations of Hg (II) and methylmercury in stream-water samples are typically less than 22 ng/l, and generally less than 5% of the total Hg. Muscle samples of fish collected downstream from mines contain as much as 620 ng/g Hg (wet wt.), of which 90-100% is methylmercury. Although these Hg concentrations are several times higher than that in fish collected from regional baseline sites, the concentration of Hg in fish is below the 1000 ng/g action level for edible fish established by the US Food and Drug Administration (FDA). Salmon contain less than 100 ng/g Hg, which are among the lowest Hg contents observed for fish in the study, and well below the FDA action level. (C) 2000 Elsevier Science B.V.
Kristin Bunte; Steven R. Abt
2001-01-01
This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...
The use of coliform plate count data to assess stream sanitary and ecological condition is limited by the need to store samples at 4oC and analyze them within a 24-hour period. We are testing LH-PCR as an alternative tool to assess the bacterial load of streams, offering a cost ...
Regional patterns of total nitrogen concentrations in the National Rivers and Streams Assessment
Patterns of nitrogen concentrations in streams sampled by the National Rivers and Streams Assessment (NRSA) were examined semi-quantitatively to identify regional differences in stream nitrogen levels. The data were categorized and analyzed by watershed size classes to reveal pat...
Digital Audio Sampling for Film and Video.
ERIC Educational Resources Information Center
Stanton, Michael J.
Digital audio sampling is explained, and some of its implications in digital sound applications are discussed. Digital sound equipment is rapidly replacing analog recording devices as the state-of-the-art in audio technology. The philosophy of digital recording involves doing away with the continuously variable analog waveforms and turning the…
Disc valve for sampling erosive process streams
Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.
1984-08-16
This is a patent for a disc-type, four-port sampling valve for service with erosive high temperature process streams. Inserts and liners of ..cap alpha..-silicon carbide respectively, in the faceplates and in the sampling cavities, limit erosion while providing lubricity for a smooth and precise operation. 1 fig.
BPSK Demodulation Using Digital Signal Processing
NASA Technical Reports Server (NTRS)
Garcia, Thomas R.
1996-01-01
A digital communications signal is a sinusoidal waveform that is modified by a binary (digital) information signal. The sinusoidal waveform is called the carrier. The carrier may be modified in amplitude, frequency, phase, or a combination of these. In this project a binary phase shift keyed (BPSK) signal is the communication signal. In a BPSK signal the phase of the carrier is set to one of two states, 180 degrees apart, by a binary (i.e., 1 or 0) information signal. A digital signal is a sampled version of a "real world" time continuous signal. The digital signal is generated by sampling the continuous signal at discrete points in time. The rate at which the signal is sampled is called the sampling rate (f(s)). The device that performs this operation is called an analog-to-digital (A/D) converter or a digitizer. The digital signal is composed of the sequence of individual values of the sampled BPSK signal. Digital signal processing (DSP) is the modification of the digital signal by mathematical operations. A device that performs this processing is called a digital signal processor. After processing, the digital signal may then be converted back to an analog signal using a digital-to-analog (D/A) converter. The goal of this project is to develop a system that will recover the digital information from a BPSK signal using DSP techniques. The project is broken down into the following steps: (1) Development of the algorithms required to demodulate the BPSK signal; (2) Simulation of the system; and (3) Implementation a BPSK receiver using digital signal processing hardware.
Content Preserving Watermarking for Medical Images Using Shearlet Transform and SVD
NASA Astrophysics Data System (ADS)
Favorskaya, M. N.; Savchina, E. I.
2017-05-01
Medical Image Watermarking (MIW) is a special field of a watermarking due to the requirements of the Digital Imaging and COmmunications in Medicine (DICOM) standard since 1993. All 20 parts of the DICOM standard are revised periodically. The main idea of the MIW is to embed various types of information including the doctor's digital signature, fragile watermark, electronic patient record, and main watermark in a view of region of interest for the doctor into the host medical image. These four types of information are represented in different forms; some of them are encrypted according to the DICOM requirements. However, all types of information ought to be resulted into the generalized binary stream for embedding. The generalized binary stream may have a huge volume. Therefore, not all watermarking methods can be applied successfully. Recently, the digital shearlet transform had been introduced as a rigorous mathematical framework for the geometric representation of multi-dimensional data. Some modifications of the shearlet transform, particularly the non-subsampled shearlet transform, can be associated to a multi-resolution analysis that provides a fully shift-invariant, multi-scale, and multi-directional expansion. During experiments, a quality of the extracted watermarks under the JPEG compression and typical internet attacks was estimated using several metrics, including the peak signal to noise ratio, structural similarity index measure, and bit error rate.
Natural resources research and development in Lesotho using LANDSAT imagery
NASA Technical Reports Server (NTRS)
Jackson, A. A. (Principal Investigator)
1976-01-01
The author has identified the following significant results. A map of the drainage of the whole country to include at least third order streams was constructed from LANDSAT imagery. This was digitized and can be plotted at any required scale to provide base maps for other cartographic projects. A suite of programs for the interpretation of digital LANDSAT data is under development for a low cost programmable calculator. Initial output from these programs has proved to have better resolution and detail than the standard photographic products, and was to update the standard topographic map of a particular region.
Overview of the H.264/AVC video coding standard
NASA Astrophysics Data System (ADS)
Luthra, Ajay; Topiwala, Pankaj N.
2003-11-01
H.264/MPEG-4 AVC is the latest coding standard jointly developed by the Video Coding Experts Group (VCEG) of ITU-T and Moving Picture Experts Group (MPEG) of ISO/IEC. It uses state of the art coding tools and provides enhanced coding efficiency for a wide range of applications including video telephony, video conferencing, TV, storage (DVD and/or hard disk based), streaming video, digital video creation, digital cinema and others. In this paper an overview of this standard is provided. Some comparisons with the existing standards, MPEG-2 and MPEG-4 Part 2, are also provided.
2017-01-01
Identification of early warning signals previous to the occurrence of population decline or extinction is a major challenge for the conservation of animal species. Prevalence of morphological abnormalities in a population can be one of these signals. We registered morphological abnormalities in the salamander Ambystoma ordinarium. We also evaluated the relation between habitat quality and the prevalence of abnormalities in this species. We used scores from rapid bioassessment protocols (RBPs) to assess the habitat quality of streams inhabited by A. ordinarium. A preliminary survey indicated that of 29 streams where this species has been historically registered, 13 might have few or no A. ordinarium. The association between habitat quality and the incidence of morphological abnormalities was evaluated in these 16 streams. Of 502 sampled individuals, 224 (44.62%) had at least one body abnormality. Of the 224 individuals with body abnormalities, 84 (37.5%) presented more than one abnormality. Of a total of 5,522 evaluated morphological characters, 344 (6.74%) were abnormal. Partial loss of gills and missing digits were the most frequent abnormalities. Results of a binomial logistic regression indicated that the probability of a character of an individual to be abnormal was significantly associated with habitat quality; as the levels of the quality of the habitat increased, the prevalence of morphological abnormalities decreased. These results suggest that RBPs are a quick and useful method for assessing the habitat quality of streams inhabited by A. ordinarium. Given that RBPs provide rapid and cost-effective assessments of the ecological health of aquatic ecosystems, it will be important to test if the RBPs protocols can be used to rapidly assess habitat quality for other species of stream amphibians. The negative association between habitat quality and the prevalence of morpohological abnormalities that we found indicates that habitat condition plays an important role in the high number of abnormalities registered in A. ordinarium. Therefore, our results suggest that one of the several negative effects of habitat degradation on amphibians is an increase in the frequency of morphological abnormalities with marked consequences for the survival and general fitness of aquatic amphibians. PMID:28846723
Method for monitoring stack gases for uranium activity
Beverly, C.R.; Ernstberger, E.G.
1985-07-03
A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.
Method for monitoring stack gases for uranium activity
Beverly, Claude R.; Ernstberger, Harold G.
1988-01-01
A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.
Effects of Urbanization on Stream Water Quality in the City of Atlanta, Georgia, USA
NASA Astrophysics Data System (ADS)
Peters, N. E.
2009-05-01
A long-term stream water-quality monitoring network was established in the City of Atlanta (COA) during 2003 to assess baseline water-quality conditions and the effects of urbanization on stream water quality. Routine hydrologically-based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted approximately 12 times per year at 21 stations, with drainage areas ranging from 3.7 to 232 km2. Eleven of the stations are real-time (RT) water-quality stations having continuous measures of stream stage/discharge, pH, dissolved oxygen, specific conductance, water temperature, and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water-quality and sediment-related constituents. This paper summarizes an evaluation of field parameters and concentrations of major ions, minor and trace metals, nutrient species (nitrogen and phosphorus), and coliform bacteria among stations and with respect to watershed characteristics and plausible sources from 2003 through September 2007. The concentrations of most constituents in the COA streams are statistically higher than those of two nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. The combination of routine manual sampling, automatic sampling during stormflows, and real-time water-quality monitoring provided sufficient information about the variability of urban stream water quality to develop hypotheses for causes of water-quality differences among COA streams. Fecal coliform bacteria concentrations of most individual samples at each station exceeded Georgia's water-quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s), and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. Water quality of one stream was highly affected by the dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum manufacturing plant in the watershed; streamwater has low pH (<5), low alkalinity and high concentrations of minor and trace metals. Several trace metals (Cu, Pb and Zn) exceed acute and chronic water-quality standards and the high concentrations are attributed to washoff from impervious surfaces.
Design and methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015
Sheibley, Rich W.; Morace, Jennifer L.; Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Nakagaki, Naomi; Button, Daniel T.; Qi, Sharon L.
2017-08-25
In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project conducted the Pacific Northwest Stream Quality Assessment (PNSQA) to investigate stream quality across the western part of the Pacific Northwest. The goal of the PNSQA was to assess the health of streams in the region by characterizing multiple water-quality factors that are stressors to in-stream aquatic life and by evaluating the relation between these stressors and the condition of biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowland and Willamette Valley Level III Ecoregions were the focus of this regional study. Findings will help inform the public and policymakers about human and environmental factors that are the most critical in affecting stream quality and, thus, provide insights into possible strategies to protect or improve the health of streams in the region.Land-use data were used in the study to identify and select sites within the region that ranged in levels of urban and agricultural development. A total of 88 sites were selected across the region—69 were on streams that explicitly spanned a range of urban land use in their watersheds, 8 were on streams in agricultural watersheds, and 11 were reference sites with little or no development in their watersheds. Depending on the type of land use, sites were sampled for contaminants, nutrients, and sediment for either a 4- or 10-week period during April, May, and June 2015. This water-quality “index period” was immediately followed with an ecological survey of all sites that included stream habitat, benthic algae, benthic macroinvertebrates, and fish. Additionally, streambed sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing.This report provides a detailed description of the specific study components and methods of the PNSQA, including (1) surveys of stream habitat and aquatic biota, (2) discrete water sampling, (3) deployment of passive polar organic chemical integrative samplers for pesticides and pharmaceuticals, and (4) sampling of streambed sediment. At selected study sites, toxicity testing of streambed sediment, continuous water-quality monitoring, and daily pesticide sampling also were conducted and are described.
NASA Astrophysics Data System (ADS)
Sandstrom, M. W.; Battaglin, W. A.
2007-05-01
Concentrations of 11 fungicides were measured in stream samples during 2 years in agricultural areas in the United States that grow predominantly corn and soybean. The fungicides are registered for control of Asian Soybean Rust (ASR), which entered the United States in 2004. Many of these fungicides were registered under an emergency exemption because evaluation of environmental risks related to their widespread use on soybeans had not been completed. Some of these fungicides are considered moderately to highly toxic to fish and aquatic invertebrates. We developed a solid-phase extraction and gas chromatography/mass spectrometry method for determining the fungicides at low concentrations (ng/L). Stream samples were collected 2 to 4 times at study areas during the late spring through fall season when fungicides are applied. Six fungicides registered for control of ASR (Phakospora pachyrhizi) in 2005 were measured in streams in Alabama, Georgia, North Carolina, South Carolina, and Mississippi during August-November, 2005. One or more fungicides were detected in 8 of the 12 streams sampled. Azoxystrobin, pyraclostrobin, propiconazole, tebuconazole, and myclobutanil were found in at least one of the 40 samples collected, while chlorothalonil was not found. Azoxystrobin was detected most frequently, in 35 percent of the samples. In 2006, five additional fungicides registered for use in control of ASR were included in the analytical method. One or more of the fungicides (azoxystrobin, pyraclostrobin, trifloxystrobin, metconazole, propiconazole, tebuconazole, tetraconazole, myclobutanil) were detected in 12 of the 16 streams sampled from areas in the South and Midwest during May-September, 2006. Azoxystrobin was detected most frequently (40 percent of the samples) and the highest concentration was 1.1 μg/L in a small predominantly cotton and soybean watershed. The highest concentrations of azoxystrobin were measured prior to the spread of ASR in 2006, and the detections in streams might be related to use on other crops. Concentrations of the fungicides measured were about 100 times lower than aquatic toxicity levels. These results show that ASR fungicides were found in streams before extensive spread of ASR in the United States.
Short-term disturbance effects of outdoor education stream classes on aquatic macroinvertebrates
USDA-ARS?s Scientific Manuscript database
Outdoor education stream classes provide students with an opportunity to gain hands-on experience with sampling methods for evaluating stream water quality. Student trampling as a result of stream classes may disrupt the substrate and negatively impact aquatic macroinvertebrates. The impact of stude...
Perchlorate Data for Streams and Groundwater in Selected Areas of the United States, 2004
Kalkhoff, Stephen J.; Stetson, Sarah J.; Lund, Kris D.; Wanty, Richard B.; Linder, Gregory L.
2010-01-01
This report presents data collected as part of a reconnaissance study to evaluate the occurrence of perchlorate in rivers and streams and in shallow aquifers in selected areas of the United States. Perchlorate, a component in rocket fuels, fireworks, and some explosives is soluble in water and persists in soils and water for long periods. It is biologically active at relatively low-levels in the environment, and has been identified as an endocrine-disrupting chemical. The purpose of this reconnaissance was to determine the occurrence of perchlorate in agricultural areas of the Midwestern and North-Central United States and in arid Central and Western parts of the United States. Samples were collected from 171 sites on rivers and streams and 146 sites from wells during the summer and early fall of 2004. Samples were collected from surface-water sites in 19 states and from wells in 5 states. Perchlorate was detected in samples collected in 15 states and was detected in 34 of 182 samples from rivers and streams and in 64 of 148 groundwater samples at concentrations equal to or greater than 0.4 micrograms per liter. Perchlorate concentrations were 1.0 micrograms per liter or greater in surface-water samples from seven states and in groundwater samples in four states. Only one surface-water and one groundwater sample had concentrations greater than 5.0 micrograms per liter. Perchlorate concentrations in followup samples collected from 1 to 3 months after the initial sample were unchanged at four of five stream sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maassen, L.W.; Bolivar, S.L.
1979-06-01
The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less
Quality of Streams in Johnson County, Kansas, and Relations to Environmental Variables, 2003-07
Rasmussen, Teresa J.; Poulton, Barry C.; Graham, Jennifer L.
2009-01-01
The quality of streams and relations to environmental variables in Johnson County, northeastern Kansas, were evaluated using water, streambed sediment, land use, streamflow, habitat, algal periphyton (benthic algae), and benthic macroinvertebrate data. Water, streambed sediment, and macroinvertebrate samples were collected in March 2007 during base flow at 20 stream sites that represent 11 different watersheds in the county. In addition, algal periphyton samples were collected twice (spring and summer 2007) at one-half of the sites. Environmental data including water and streambed-sediment chemistry data (primarily nutrients, fecal-indicator bacteria, and organic wastewater compounds), land use, streamflow, and habitat data were used in statistical analyses to evaluate relations between biological conditions and variables that may affect them. This report includes an evaluation of water and streambed-sediment chemistry, assessment of habitat conditions, comparison of biological community attributes (such as composition, diversity, and abundance) among sampling sites, placement of sampling sites into impairment categories, evaluation of biological data relative to environmental variables, and evaluation of changes in biological communities and effects of urbanization. This evaluation is useful for understanding factors that affect stream quality, for improving water-quality management programs, and for documenting changing conditions over time. The information will become increasingly important for protecting streams in the future as urbanization continues. Results of this study indicate that the biological quality at nearly all biological sampling sites in Johnson County has some level of impairment. Periphyton taxa generally were indicative of somewhat degraded conditions with small to moderate amounts of organic enrichment. Camp Branch in the Blue River watershed was the only site that met State criteria for full support of aquatic life in 2007. Since 2003, biological quality improved at one rural sampling site, possibly because of changes in wastewater affecting the site, and declined at three urban sites possibly because of the combined effects of ongoing development. Rural streams in the western and southern parts of the county, with land-use conditions similar to those found at the State reference site (Captain Creek), continue to support some organisms normally associated with healthy streams. Several environmental factors contribute to biological indicators of stream quality. The primary factor explaining biological quality at sites in Johnson County was the amount of urbanization upstream in the watershed. Specific conductance of stream water, which is a measure of dissolved solids in water and is determined primarily by the amount of groundwater contributing to streamflow, the amount of urbanization, and discharges from wastewater and industrial sites, was strongly negatively correlated with biological stream quality as indicated by macroinvertebrate metrics. Concentration of polycyclic aromatic hydrocarbons (PAHs) in streambed sediment also was negatively correlated with biological stream quality. Individual habitat variables that most commonly were positively correlated with biological indicators included stream sinuosity, buffer length, and substrate cover diversity. Riffle substrate embeddedness and sediment deposition commonly were negatively correlated with favorable metric scores. Statistical analysis indicated that specific conductance, impervious surface area (a measure of urbanization), and stream sinuosity explained 85 percent of the variance in macroinvertebrate communities. Management practices affecting environmental variables that appear to be most important for Johnson County streams include protection of stream corridors, measures that reduce the effects of impervious surfaces associated with urbanization, reduction of dissolved solids in stream water, reduction of PAHs entering streams and
MAP-Motivated Carrier Synchronization of GMSK Based on the Laurent AMP Representation
NASA Technical Reports Server (NTRS)
Simon, M. K.
1998-01-01
Using the MAP estimation approach to carrier synchronization of digital modulations containing ISI together with a two pulse stream AMP representation of GMSK, it is possible to obtain an optimum closed loop configuration in the same manner as has been previously proposed for other conventional modulations with ISI.
How Will We Write? A Report from the National College Media Convention
ERIC Educational Resources Information Center
Jeske, Jeff
2004-01-01
It is the avalanche precipitated by the Internet, streaming media, and new generations of readers/writers whose consciousness is being progressively reshaped by the digital revolution and its promise of infinite speed and multimodal discourse. One can see the results in the current splintering, diminishing, and reshaping of journalistic prose. In…
NASA Technical Reports Server (NTRS)
Rodriguez, R. M.
1975-01-01
The Balloon-Borne Ultraviolet Stellar Spectrometer (BUSS) Science Data Docummutation Program (BAPS48) is a pulse code modulation docummutation program that will format the BUSS science data contained on a one inch PCM tracking tape into a seven track serial bit stream formatted digital tape.
76 FR 46313 - Notice of Issuance of Final Determination Concerning Iridium Satellite Telephones
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... modulates them into radio streams that communicate with the Iridium gateway network infrastructure using a... (DSP) cores, made in China, and two radio frequency (RF) backend chips, made in Taiwan. The bill of... marking of a cellular phone. CBP found that a digital mobile telephone was substantially transformed in...
A perioperative echocardiographic reporting and recording system.
Pybus, David A
2004-11-01
Advances in video capture, compression, and streaming technology, coupled with improvements in central processing unit design and the inclusion of a database engine in the Windows operating system, have simplified the task of implementing a digital echocardiographic recording system. I describe an application that uses these technologies and runs on a notebook computer.
Johnson, Gordon R.
1983-01-01
Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.
Teaching health assessment in the virtual classroom.
Lashley, Mary
2005-08-01
Health assessment skills are vital to professional nursing practice. Health assessment has traditionally been taught using lecture, teacher-developed tests, practice and live demonstration, and interactive and computer-based learning materials. Rapid advances in information technology during the past decade have greatly expanded distance learning options in higher education. Although much nursing education now uses the Internet, there has been limited use of the Web to teach psychomotor and clinical skills. This article describes how online instruction can be integrated into a health assessment course to teach physical examination skills. The development of instructional videos that can be digitally streamed onto the Web for ready and repeated access can also enhance online learning of technical and clinical skills. Student evaluation of this Web-enhanced course revealed that online assignments enabled them to pace their learning, thereby promoting greater flexibility and independence. Students were able to master the technical skills of working online with minimal difficulty and reported that working online was no more stressful than attending class. The most helpful aspect of the online course was the instructor-developed video that was digitally streamed online.
Aerosol mobility size spectrometer
Wang, Jian; Kulkarni, Pramod
2007-11-20
A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.
Wayland, Karen G.; Long, David T.; Hyndman, David W.; Pijanowski, Bryan C.; Woodhams, Sarah M.; Haak, Sheridan K.
2003-01-01
The relationship between land use and stream chemistry is often explored through synoptic sampling rivers at baseflow condition. However, base flow chemistry is likely to vary temporally and spatially with land use. The purpose of our study is to examine the usefulness of the synoptic sampling approach for identifying the relationship between complex land use configurations and stream water quality. This study compares biogeochemical data from three synoptic sampling events representing the temporal variability of baseflow chemistry and land use using R-mode factor analysis. Separate R-mode factor analyses of the data from individual sampling events yielded only two consistent factors. Agricultural activity was associated with elevated levels of Ca2+, Mg2+, alkalinity, and frequently K+, SO42-, and NO3-. Urban areas were associated with higher concentrations of Na+, K+, and Cl-. Other retained factors were not consistent among sampling events, and some factors were difficult to interpret in the context of biogeochemical sources and processes. When all data were combined, further associations were revealed such as an inverse relationship between the proportion of wetlands and stream nitrate concentrations. We also found that barren lands were associated with elevated sulfate levels. This research suggests that an individual sampling event is unlikely to characterize adequately the complex processes controlling interactions between land uses and stream chemistry. Combining data collected over two years during three synoptic sampling events appears to enhance our ability to understand processes linking stream chemistry and land use.
Development and evaluation of a water level proportional water sampler
NASA Astrophysics Data System (ADS)
Schneider, P.; Lange, A.; Doppler, T.
2013-12-01
We developed and adapted a new type of sampler for time-integrated, water level proportional water quality sampling (e.g. nutrients, contaminants and stable isotopes). Our samplers are designed for sampling small to mid-size streams based on the law of Hagen-Poiseuille, where a capillary (or a valve) limits the sampling aliquot by reducing the air flux out of a submersed plastic (HDPE) sampling container. They are good alternatives to battery-operated automated water samplers when working in remote areas, or at streams that are characterized by pronounced daily discharge variations such as glacier streams. We evaluated our samplers against standard automated water samplers (ISCO 2900 and ISCO 6712) during the snowmelt in the Black Forest and the Alps and tested them in remote glacial catchments in Iceland, Switzerland and Kyrgyzstan. The results clearly showed that our samplers are an adequate tool for time-integrated, water level proportional water sampling at remote test sites, as they do not need batteries, are relatively inexpensive, lightweight, and compact. They are well suited for headwater streams - especially when sampling for stable isotopes - as the sampled water is perfectly protected against evaporation. Moreover, our samplers have a reduced risk of icing in cold environments, as they are installed submersed in water, whereas automated samplers (typically installed outside the stream) may get clogged due to icing of hoses. Based on this study, we find these samplers to be an adequate replacement for automated samplers when time-integrated sampling or solute load estimates are the main monitoring tasks.
Enhanced Data Authentication System v. 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Maikael A.; Tolsch, Brandon Jeffrey; Schwartz, Steven Robert
EDAS is a system, comprised on hardware and software, that plugs in to an existing data stream, and branches all data for transmission to a secondary observer computer. The EDAS Junction box, which inserts into the data stream, has Java software that forms these data into packets, digitally signs, encrypts, and sends these packets to a safeguards inspector computer. Further, there is a second Java program running on the secondary observer computer that receives data from the EDAS Junction Box to decrypt, authenticate, and store incoming packets. Also, there is a stand-alone Java program that is used to configure themore » EDAS Junction Box.« less
NASA Astrophysics Data System (ADS)
Corrigan, A.; Silins, U.; Stone, M.
2016-12-01
Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.
A statistical software tool, Stream Fish Community Predictor (SFCP), based on EMAP stream sampling in the mid-Atlantic Highlands, was developed to predict stream fish communities using stream and watershed characteristics. Step one in the tool development was a cluster analysis t...
Probability surveys of stream and river resources (hereafter referred to as streams) provide reliable estimates of stream condition when the areas for the estimates have sufficient number of sample sites. Monitoring programs are frequently asked to provide estimates for areas th...
Campbell Grant, Evan H.; Bailey, Larissa L.; Ware, Joy L.; Duncan, Karen L.
2008-01-01
The amphibian chytrid fungus Batrachochytrium dendrobatidis, responsible for the potentially fatal amphibian disease chytridiomycosis, is known to occur in a large and ever increasing number of amphibian populations around the world. However, sampling has been biased towards stream- and wetland-breeding anurans, with little attention paid to stream-associated salamanders. We sampled three frog and three salamander species in the Chesapeake and Ohio Canal National Historic Park, Maryland, by swabbing animals for PCR analysis to detect DNA of B. dendrobatidis. Using PCR, we detected B. dendrobatidis DNA in both stream and wetland amphibians, and report here the first occurrence of the pathogen in two species of stream-associated salamanders. Future research should focus on mechanisms within habitats that may affect persistence and dissemination of B. dendrobatidis among stream-associated salamanders
Heilweil, Victor M.; Risser, Dennis W.; Conger, Randall W.; Grieve, Paul L.; Hynek, Scott A.
2014-01-01
A stream-sampling study was conducted to estimate methane concentrations and loads in groundwater discharge to a small stream in an active shale-gas development area of northeastern Pennsylvania. Grab samples collected from 15 streams in Bradford, Lycoming, Susquehanna, and Tioga Counties, Pa., during a reconnaissance survey in May and June 2013 contained dissolved methane concentrations ranging from less than the minimum reporting limit (1.0) to 68.5 micrograms per liter (µg/L). The stream-reach mass-balance method of estimating concentrations and loads of methane in groundwater discharge was applied to a 4-kilometer (km) reach of Sugar Run in Lycoming County, one of the four streams with methane concentrations greater than or equal to 5 µg/L. Three synoptic surveys of stream discharge and methane concentrations were conducted during base-flow periods in May, June, and November 2013. Stream discharge at the lower end of the reach was about 0.10, 0.04, and 0.02 cubic meters per second, respectively, and peak stream methane concentrations were about 20, 67, and 29 µg/L. In order to refine estimated amounts of groundwater discharge and locations where groundwater with methane discharges to the stream, the lower part of the study reach was targeted more precisely during the successive studies, with approximate spacing between stream sampling sites of 800 meters (m), 400 m, and 200 m, in May, June, and November, respectively. Samples collected from shallow piezometers and a seep near the location of the peak methane concentration measured in streamwater had groundwater methane concentrations of 2,300 to 4,600 µg/L. These field data, combined with one-dimensional stream-methane transport modeling, indicate groundwater methane loads of 1.8 ±0.8, 0.7 ±0.3, and 0.7 ±0.2 kilograms per day, respectively, discharging to Sugar Run. Estimated groundwater methane concentrations, based on the transport modeling, ranged from 100 to 3,200 µg/L. Although total methane load and the uncertainty in calculated loads both decreased with lower streamflow conditions and finer-resolution sampling in June and November, the higher loads during May could indicate seasonal variability in base flow. This is consistent with flowmeter measurements indicating that there was less inflow occurring at lower streamflow conditions during June and November.
Mosad and Stream Vision For A Telerobotic, Flying Camera System
NASA Technical Reports Server (NTRS)
Mandl, William
2002-01-01
Two full custom camera systems using the Multiplexed OverSample Analog to Digital (MOSAD) conversion technology for visible light sensing were built and demonstrated. They include a photo gate sensor and a photo diode sensor. The system includes the camera assembly, driver interface assembly, a frame stabler board with integrated decimeter and Windows 2000 compatible software for real time image display. An array size of 320X240 with 16 micron pixel pitch was developed for compatibility with 0.3 inch CCTV optics. With 1.2 micron technology, a 73% fill factor was achieved. Noise measurements indicated 9 to 11 bits operating with 13.7 bits best case. Power measured under 10 milliwatts at 400 samples per second. Nonuniformity variation was below noise floor. Pictures were taken with different cameras during the characterization study to demonstrate the operable range. The successful conclusion of this program demonstrates the utility of the MOSAD for NASA missions, providing superior performance over CMOS and lower cost and power consumption over CCD. The MOSAD approach also provides a path to radiation hardening for space based applications.
Compact FPGA-based beamformer using oversampled 1-bit A/D converters.
Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt
2005-05-01
A compact medical ultrasound beamformer architecture that uses oversampled 1-bit analog-to-digital (A/D) converters is presented. Sparse sample processing is used, as the echo signal for the image lines is reconstructed in 512 equidistant focal points along the line through its in-phase and quadrature components. That information is sufficient for presenting a B-mode image and creating a color flow map. The high sampling rate provides the necessary delay resolution for the focusing. The low channel data width (1-bit) makes it possible to construct a compact beamformer logic. The signal reconstruction is done using finite impulse reponse (FIR) filters, applied on selected bit sequences of the delta-sigma modulator output stream. The approach allows for a multichannel beamformer to fit in a single field programmable gate array (FPGA) device. A 32-channel beamformer is estimated to occupy 50% of the available logic resources in a commercially available mid-range FPGA, and to be able to operate at 129 MHz. Simulation of the architecture at 140 MHz provides images with a dynamic range approaching 60 dB for an excitation frequency of 3 MHz.
NASA Astrophysics Data System (ADS)
Leidi, Tiziano; Scocchi, Giulio; Grossi, Loris; Pusterla, Simone; D'Angelo, Claudio; Thiran, Jean-Philippe; Ortona, Alberto
2012-11-01
In recent decades, finite element (FE) techniques have been extensively used for predicting effective properties of random heterogeneous materials. In the case of very complex microstructures, the choice of numerical methods for the solution of this problem can offer some advantages over classical analytical approaches, and it allows the use of digital images obtained from real material samples (e.g., using computed tomography). On the other hand, having a large number of elements is often necessary for properly describing complex microstructures, ultimately leading to extremely time-consuming computations and high memory requirements. With the final objective of reducing these limitations, we improved an existing freely available FE code for the computation of effective conductivity (electrical and thermal) of microstructure digital models. To allow execution on hardware combining multi-core CPUs and a GPU, we first translated the original algorithm from Fortran to C, and we subdivided it into software components. Then, we enhanced the C version of the algorithm for parallel processing with heterogeneous processors. With the goal of maximizing the obtained performances and limiting resource consumption, we utilized a software architecture based on stream processing, event-driven scheduling, and dynamic load balancing. The parallel processing version of the algorithm has been validated using a simple microstructure consisting of a single sphere located at the centre of a cubic box, yielding consistent results. Finally, the code was used for the calculation of the effective thermal conductivity of a digital model of a real sample (a ceramic foam obtained using X-ray computed tomography). On a computer equipped with dual hexa-core Intel Xeon X5670 processors and an NVIDIA Tesla C2050, the parallel application version features near to linear speed-up progression when using only the CPU cores. It executes more than 20 times faster when additionally using the GPU.
Testing common stream sampling methods for broad-scale, long-term monitoring
Eric K. Archer; Brett B. Roper; Richard C. Henderson; Nick Bouwes; S. Chad Mellison; Jeffrey L. Kershner
2004-01-01
We evaluated sampling variability of stream habitat sampling methods used by the USDA Forest Service and the USDI Bureau of Land Management monitoring program for the upper Columbia River Basin. Three separate studies were conducted to describe the variability of individual measurement techniques, variability between crews, and temporal variation throughout the summer...
Seasonal species composition of invertebrates in several Oregon streams.
Pamela E. Porter; William R. Meehan
1987-01-01
The invertebrate communities ofeight Oregon streams were sampled seasonally from 1974 to 1976. Benthic, drift, and two types of aerial-trap samples were collected. Occurrence and percentage composition are summarized by sample type, season, and geographic area (coastal, Cascade, central, and eastern Oregon). Within 276 families, 426 taxa were identified; the 20...
Microbiological quality of Puget Sound Basin streams and identification of contaminant sources
Embrey, S.S.
2001-01-01
Fecal coliforms, Escherichia coli, enterococci, and somatic coliphages were detected in samples from 31 sites on streams draining urban and agricultural regions of the Puget Sound Basin Lowlands. Densities of bacteria in 48 and 71 percent of the samples exceeded U.S. Environmental Protection Agency's freshwater recreation criteria for Escherichia coli and enterococci, respectively, and 81 percent exceeded Washington State fecal coliform standards. Male-specific coliphages were detected in samples from 15 sites. Male-specific F+RNA coliphages isolated from samples taken at South Fork Thornton and Longfellow Creeks were serotyped as Group II, implicating humans as potential contaminant sources. These two sites are located in residential, urban areas. F+RNA coliphages in samples from 10 other sites, mostly in agricultural or rural areas, were serotyped as Group I, implicating non-human animals as likely sources. Chemicals common to wastewater, including fecal sterols, were detected in samples from several urban streams, and also implicate humans, at least in part, as possible sources of fecal bacteria and viruses to the streams.
The Stream-Catchment (StreamCat) and Lake-Catchment ...
Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate
Quantization noise in digital speech. M.S. Thesis- Houston Univ.
NASA Technical Reports Server (NTRS)
Schmidt, O. L.
1972-01-01
The amount of quantization noise generated in a digital-to-analog converter is dependent on the number of bits or quantization levels used to digitize the analog signal in the analog-to-digital converter. The minimum number of quantization levels and the minimum sample rate were derived for a digital voice channel. A sample rate of 6000 samples per second and lowpass filters with a 3 db cutoff of 2400 Hz are required for 100 percent sentence intelligibility. Consonant sounds are the first speech components to be degraded by quantization noise. A compression amplifier can be used to increase the weighting of the consonant sound amplitudes in the analog-to-digital converter. An expansion network must be installed at the output of the digital-to-analog converter to restore the original weighting of the consonant sounds. This technique results in 100 percent sentence intelligibility for a sample rate of 5000 samples per second, eight quantization levels, and lowpass filters with a 3 db cutoff of 2000 Hz.
Using regression methods to estimate stream phosphorus loads at the Illinois River, Arkansas
Haggard, B.E.; Soerens, T.S.; Green, W.R.; Richards, R.P.
2003-01-01
The development of total maximum daily loads (TMDLs) requires evaluating existing constituent loads in streams. Accurate estimates of constituent loads are needed to calibrate watershed and reservoir models for TMDL development. The best approach to estimate constituent loads is high frequency sampling, particularly during storm events, and mass integration of constituents passing a point in a stream. Most often, resources are limited and discrete water quality samples are collected on fixed intervals and sometimes supplemented with directed sampling during storm events. When resources are limited, mass integration is not an accurate means to determine constituent loads and other load estimation techniques such as regression models are used. The objective of this work was to determine a minimum number of water-quality samples needed to provide constituent concentration data adequate to estimate constituent loads at a large stream. Twenty sets of water quality samples with and without supplemental storm samples were randomly selected at various fixed intervals from a database at the Illinois River, northwest Arkansas. The random sets were used to estimate total phosphorus (TP) loads using regression models. The regression-based annual TP loads were compared to the integrated annual TP load estimated using all the data. At a minimum, monthly sampling plus supplemental storm samples (six samples per year) was needed to produce a root mean square error of less than 15%. Water quality samples should be collected at least semi-monthly (every 15 days) in studies less than two years if seasonal time factors are to be used in the regression models. Annual TP loads estimated from independently collected discrete water quality samples further demonstrated the utility of using regression models to estimate annual TP loads in this stream system.
Mahler, Barbara J.; Van Metre, Peter C.; Burley, Thomas E.; Loftin, Keith A.; Meyer, Michael T.; Nowell, Lisa H.
2017-01-01
Glyphosate and atrazine are the most intensively used herbicides in the United States. Although there is abundant spatial and temporal information on atrazine occurrence at regional scales, there are far fewer data for glyphosate, and studies that compare the two herbicides are rare. We investigated temporal patterns in glyphosate and atrazine concentrations measured weekly during the 2013 growing season in 100 small streams in the Midwestern United States. Glyphosate was detected in 44% of samples (method reporting level 0.2 μg/L); atrazine was detected above a threshold of 0.2 μg/L in 54% of samples. Glyphosate was detected more frequently in 12 urban streams than in 88 agricultural streams, and at concentrations similar to those in streams with high agricultural land use (> 40% row crop) in the watershed. In contrast, atrazine was detected more frequently and at higher concentrations in agricultural streams than in urban streams. The maximum concentration of glyphosate measured at most urban sites exceeded the maximum atrazine concentration, whereas at agricultural sites the reverse was true. Measurement at a 2-day interval at 8 sites in northern Missouri revealed that transport of both herbicide compounds appeared to be controlled by spring flush, that peak concentration duration was brief, but that peaks in atrazine concentrations were of longer duration than those of glyphosate. The 2-day sampling also indicated that weekly sampling is unlikely to capture peak concentrations of glyphosate and atrazine.
NASA Astrophysics Data System (ADS)
Jarihani, B.
2015-12-01
Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modeling of environmental processes. Pre-processing analysis of DEMs and extracting characteristics of the watershed (e.g., stream networks, catchment delineation, surface and subsurface flow paths) is essential for hydrological and geomorphic analysis and sediment transport. This study investigates the status of the current remotely-sensed DEMs in providing advanced morphometric information of drainage basins particularly in data sparse regions. Here we assess the accuracy of three available DEMs: (i) hydrologically corrected "H-DEM" of Geoscience Australia derived from the Shuttle Radar Topography Mission (SRTM) data; (ii) the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) version2 1-arc-second (~30 m) data; and (iii) the 9-arc-second national GEODATA DEM-9S ver3 from Geoscience Australia and the Australian National University. We used ESRI's geospatial data model, Arc Hydro and HEC-GeoHMS, designed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. A coastal catchment in northeast Australia was selected as the study site where very high resolution LiDAR data are available for parts of the area as reference data to assess the accuracy of other lower resolution datasets. This study provides morphometric information for drainage basins as part of the broad research on sediment flux from coastal basins to Great Barrier Reef, Australia. After applying geo-referencing and elevation corrections, stream and sub basins were delineated for each DEM. Then physical characteristics for streams (i.e., length, upstream and downstream elevation, and slope) and sub-basins (i.e., longest flow lengths, area, relief and slopes) were extracted and compared with reference datasets from LiDAR. Results showed that, in the absence of high-precision and high resolution DEM data, ASTER GDEM or SRTM DEM can be used to extract common morphometric relationship which are widely used for hydrological and geomorphological modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualheim, B.
1979-04-01
This report represents the results of the reconnaissance sampling of the Deep Creek Mountains of western Utah. The Deep Creek range is located in the northwest corner of the Delta NTMS 1:250,000 and the southwestern corner of the Tooele NTMS 1:250,000 sheets and covers an area of 1750 km/sup 2/. Samples collected in this study include dry and wet stream sediments and water from available streams, wells, and springs. The samples were analyzed for uranium, as well as 15 to 20 trace elements, using neutron activation techniques. In addition, field and laboratory measurements were made on the water samples. Analyticalmore » data and field measurements are presented in tabular hard copy and fiche format. Water-sample site locations, water-sample uranium concentrations, sediment-sample site locations, and sediment-sample uranium concentrations are shown on separate overlays.« less
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Pinto, S. D. A. F.
1983-01-01
Within randomly sampled squares of a 1 km x 1 km grid, rill/gullies frequency, land cover/land use type and shape of the slopes were extracted from aerial photographs of the Ribeirao Anhumas drainage basin. Mean slope gradient, stream frequency and slope length were calculated on topographic maps. Ground truth data on fine sand/coarse sand ratio and vegetation cover densities were obtained. The MSS-LANDSAT-2 data (CCTs) were analyzed using single-cell, cluster synthesis and slicer algorithms. Graphical and statistical analyses of the data indicate that different slope gradients and land cover/land use types are the most significant factors related to the soil erosion process. The digital analysis of MSS data allowed the association among gray level classes and vegetation cover classes, which defined seven classes. These gray level classes and slope gradient classes were used to rank erosion risk.
Holographic 3D imaging through diffuse media by compressive sampling of the mutual intensity
NASA Astrophysics Data System (ADS)
Falldorf, Claas; Klein, Thorsten; Agour, Mostafa; Bergmann, Ralf B.
2017-05-01
We present a method for holographic imaging through a volume scattering material, which is based on selfreference and light with good spatial but limited temporal coherence. In contrast to existing techniques, we do not require a separate reference wave, thus our approach provides great advantages towards the flexibility of the measurement system. The main applications are remote sensing and investigation of moving objects through gaseous streams, bubbles or foggy water for example. Furthermore, due to the common path nature, the system is also insensitive to mechanical disturbances. The measurement result is a complex amplitude which is comparable to a phase shifted digital hologramm and therefore allows 3D imaging, numerical refocusing and quantitative phase contrast imaging. As an example of application, we present measurements of the quantitative phase contrast of the epidermis of an onion through a volume scattering material.
Micro-environment measurement along a climatic gradient
NASA Astrophysics Data System (ADS)
Szita, Renáta; Ambrus, András
2017-04-01
Aquatic macroinvertebrates are heavily influenced by the climatic changes even in temperate, forested habitats. The potential impacts of global climate change may be an increase in water temperatures, changes in seasonal patterns (including intensity) of precipitation and runoff which can alter hydrologic characteristics of aquatic systems. Rapid changes in hydrology caused by extreme heavy rainfalls - especially if there are clearcuts within the catchment area - may cause changes in the hydromorphology, restructure the stream bed or alter the path of the stream itself. All these affect the species composition, that is why the investigated aquatic ecosystems, the streams in forested area have limited ability to adapt to climate change. In recent study, the samples were taken from three streams which are located in similar, forested areas. The sampling sites were chosen along a climatic gradient. The first sampling site is in Mecsek mountains (South Hungary), the second one is in Kőszeg mountains (West Hungary) and the third one is in Sopron mountains (Northwest Hungary). The biological samples were taken with a specific cross-section transect arrangement, applying a new, microhabitat-based quadrat sampling method in all selected areas. Parallel with the macroinvertebrate sampling, there were taken hydraulic measures too. The velocity profile, shear velocity, shear stress, drag force and the Reynold's and Froude numbers were estimated to define the near-bed hydraulic conditions, which influence the community structure of aquatic macroinvertebrates. The main aims of the study were recognize differences along the climatic gradient in a similar habitat types of small streams in forested area if there are any, check up the ability of detection fine differences between similar communities of the new sampling methode which focuses on the microhabitat-structure of certain stream sections instead of taking and analyzing composit samples from the whole section. One more additional important aim was to investigate the microhabitat preference of the Habitats Directive Annex II. Dragonfly species, the Cordulegaster heros which inhabits each sampling sites. This project was partly supported by VKSZ_12-1-2013-0034 project.
Adjustable shear stress erosion and transport flume
Roberts, Jesse D.; Jepsen, Richard A.
2002-01-01
A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.
Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy.
Collins, Liam; Belianinov, Alex; Somnath, Suhas; Rodriguez, Brian J; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen
2016-03-11
Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General mode (G-Mode) KPFM works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction-required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C') channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.
Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy
Collins, Liam F.; Jesse, Stephen; Belianinov, Alex; ...
2016-02-11
Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General Mode (G-Mode) KPFM, works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction required for quantitative CPD mapping. The KPFM approach outlinedmore » in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc.), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C') channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. As a result, G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.« less
Sheth, Bhavin R; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams-ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/ focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal.
Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M
2013-01-01
Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Next-generation digital camera integration and software development issues
NASA Astrophysics Data System (ADS)
Venkataraman, Shyam; Peters, Ken; Hecht, Richard
1998-04-01
This paper investigates the complexities associated with the development of next generation digital cameras due to requirements in connectivity and interoperability. Each successive generation of digital camera improves drastically in cost, performance, resolution, image quality and interoperability features. This is being accomplished by advancements in a number of areas: research, silicon, standards, etc. As the capabilities of these cameras increase, so do the requirements for both hardware and software. Today, there are two single chip camera solutions in the market including the Motorola MPC 823 and LSI DCAM- 101. Real time constraints for a digital camera may be defined by the maximum time allowable between capture of images. Constraints in the design of an embedded digital camera include processor architecture, memory, processing speed and the real-time operating systems. This paper will present the LSI DCAM-101, a single-chip digital camera solution. It will present an overview of the architecture and the challenges in hardware and software for supporting streaming video in such a complex device. Issues presented include the development of the data flow software architecture, testing and integration on this complex silicon device. The strategy for optimizing performance on the architecture will also be presented.
Identifying Source Water and Flow Paths in a Semi-Arid Watershed
NASA Astrophysics Data System (ADS)
Gulvin, C. J.; Miller, S. N.
2016-12-01
Processes controlling water delivery to perennial streams in the semi-arid mountain west are poorly understood, yet necessary to characterize water distribution across the landscape and better protect and manage diminishing water resources. Stream water chemistry profiling and hydrograph separation using stable isotopes can help identify source waters. Weekly stream water samples tested for stable water isotope fractionations, and major cations and anions at seven sites collocated with continuously recording stream depth gauges within a small watershed in southeastern Wyoming is a necessary first-step to identifying seasonally changing source water and flow paths. Sample results will help establish appropriate end members for a mixing analysis, as well as, characterize flow path heterogeneity, transit time distributions, and landscape selectively features. Hourly stream sampling during late-summer thunderstorms and rapid spring melt will help demonstrate if and how stream discharge change is affected by the two different events. Soil water and water extracted from tree xylem will help resolve how water is partitioned in the first 10m of the subsurface. In the face of land use change and a growing demand for water in the area, understanding how the water in small mountain streams is sustained is crucial for the future of agriculture, municipal water supplies, and countless ecosystem services.
Johnson, P E; Deromedi, A J; Lebaron, P; Catala, P; Havens, C; Pougnard, C
2007-09-01
To test Fountain Flow Cytometry (FFC) for the rapid and sensitive detection of Naegleria lovaniensis amoebae (an analogue for Naegleria fowleri) in natural river waters. Samples were incubated with one of two fluorescent labels to facilitate detection: ChemChrome V6, a viability indicator, and an R-phycoerytherin (RPE) immunolabel to detect N. lovaniensis specifically. The resulting aqueous sample was passed as a stream in front of a light-emitting diode, which excited the fluorescent labels. The fluorescence was detected with a digital camera as the sample flowed toward the imager. Detections of N. lovaniensis were made in inoculated samples of natural water from eight rivers in France and the United States. FFC enumeration yielded results that are consistent with other counting methods: solid-phase cytometry, flow cytometry, and hemocytometry, down to concentrations of 0.06 amoebae ml(-1), using a flow rate of 15 ml min(-1). This study supports the efficacy of using FFC for the detection of viable protozoa in natural waters and indicates that use of RPE illuminated at 530 nm and detected at 585 nm provides a satisfactory means of attenuating background. Because of the severe global public health issues with drinking water and sanitation, there is an urgent need to develop a technique for the real-time detection of viable pathogens in environmental samples at low concentrations. FFC addresses this need.
Lara A. Martin; Patrick J. Mulholland; Jackson R. Webster; H. Maurice Vallett
2001-01-01
We investigated variations in resource availability (NOa-N and labile organic C [LOCJ] as determinants of potential denitrification in stream sediments in the southern Appalachian Mountains, USA. stream-water and sediments were sampled seasonally in 2 streams of contrasting NO3,-N availability, Noland Creek (high NO
Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams
Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.
2014-01-01
Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488
Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.
Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B
2014-01-01
Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.
Using isotopes to investigate hydrological flow pathways and sources in a remote Arctic catchment
NASA Astrophysics Data System (ADS)
Lessels, Jason; Tetzlaff, Doerthe; Dinsmore, Kerry; Street, Lorna; Billet, Mike; Baxter, Robert; Subke, Jens-Arne; Wookey, Phillip
2014-05-01
Stable water isotopes allow for the identification of flow paths and stream water sources. This ability is beneficial in improving the understanding in catchments with dynamic spatial and temporal sources. Arctic catchments are characterised with strong seasonality where the dominant flow paths change throughout the short summer season. Therefore, the identification of stream water sources through time and space is necessary in order to accurately quantify these dynamics. Stable isotope tracers are incredibly useful tools which integrate processes of time and space and therefore, particularly useful in identifying flow pathways and runoff sources at remote sites. This work presents stable isotope data collected from a small (1km2) catchment in Northwest Canada. The aims of this study are to 1) identify sources of stream water through time and space, 2) provide information which will be incorporated into hydrological and transit time models Sampling of snowmelt, surface runoff, ice-wedge polygons, stream and soil water was undertaken throughout the 2013 summer. The results of this sampling reveal the dominant flow paths in the catchment and the strong influence of aspect in controlling these processes. After the spring freshet, late lying snow packs on north facing slopes and thawing permafrost on south facing slopes are the dominant sources of stream water. Progressively through the season the thawing permafrost and precipitation become the largest contributing sources. The depth of the thawing aspect layer and consequently the contribution to the stream is heavily dependent on aspect. The collection of precipitation, soil and stream isotope samples throughout the summer period provide valuable information for transit time estimates. The combination of spatial and temporal sampling of stable isotopes has revealed clear differences between the main stream sources in the studied catchment and reinforced the importance of slope aspect in these catchments.
Low-head sea lamprey barrier effects on stream habitat and fish communities in the Great Lakes basin
Dodd, H.R.; Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.; Jones, M.L.
2003-01-01
Low-head barriers are used to block adult sea lamprey (Petromyzon marinus) from upstream spawning habitat. However, these barriers may impact stream fish communities through restriction of fish movement and habitat alteration. During the summer of 1996, the fish community and habitat conditions in twenty-four stream pairs were sampled across the Great Lakes basin. Seven of these stream pairs were re-sampled in 1997. Each pair consisted of a barrier stream with a low-head barrier and a reference stream without a low-head barrier. On average, barrier streams were significantly deeper (df = 179, P = 0.0018) and wider (df = 179, P = 0.0236) than reference streams, but temperature and substrate were similar (df = 183, P = 0.9027; df = 179, P = 0.999). Barrier streams contained approximately four more fish species on average than reference streams. However, streams with low-head barriers showed a greater upstream decline in species richness compared to reference streams with a net loss of 2.4 species. Barrier streams also showed a peak in richness directly downstream of the barriers, indicating that these barriers block fish movement upstream. Using S??renson's similarity index (based on presence/absence), a comparison of fish community assemblages above and below low-head barriers was not significantly different than upstream and downstream sites on reference streams (n = 96, P > 0.05), implying they have relatively little effect on overall fish assemblage composition. Differences in the frequency of occurrence and abundance between barrier and reference streams was apparent for some species, suggesting their sensitivity to barriers.
Natural organic matter properties in Swedish agricultural streams
NASA Astrophysics Data System (ADS)
Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan
2017-04-01
The following paper shows natural organic matter (NOM) properties of stream water samples collected from 8 agricultural streams and 12 agricultural observational fields in Sweden. The catchments and observational fields cover a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients. The insights from the grab sampling are supported by high-frequency turbidity, fulvic-like and tryptophan-like fluorescence measurements with in situ optical sensor.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1980-01-01
The Indiana State Board of Health is developing a State water-quality plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Duck Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The major point-source waste load affecting Duck Creek is the Elwood wastewater-treatment facility. Natural streamflow during the low flow is zero, so no benefit from dilution is provided. Natural reaeration at the low-flow condition (approximately 3 cubic feet per second), also low, is estimated to be less than 1 per day (base e at 20 Celsius). Consequently, the wasteload assimilative capacity of the stream is low. Effluent ammonia-nitrogen concentrations, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State ammonia-nitrogen toxicity standards (2.5 milligrams per liter from April to October and 4.0 milligrams per liter from November through March). The projected effluent ammonia-nitrogen load will also result in the present Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) not being met. Benthic-oxygen demand may also affect stream water quality. During the summer low-flow, a benthic-oxygen demand of only 0.6 gram per square meter per day would utilize all the streams 's available assimilative capacity. (USGS)
NASA Astrophysics Data System (ADS)
Villa, Carlos; Kumavor, Patrick; Donkor, Eric
2008-04-01
Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.
Neotropical Amphibian Declines Affect Stream Ecosystem Properties
NASA Astrophysics Data System (ADS)
Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.
2005-05-01
Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.
To assess the ecological condition of streams and rivers in Oregon, we sampled 146 sites
in summer, 1997 as part of the U.S. EPA's Environmental Monitoring and Assessment Program.
Sample reaches were selected using a systematic, randomized sample design from the blue-line n...
Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling
NASA Astrophysics Data System (ADS)
Saksena, S.; Dey, S.; Merwade, V.
2016-12-01
Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.
Peters, James G.; Wilber, W.G.; Crawford, Charles G.; Girardi, F.P.
1979-01-01
A digital computer model calibrated to observe stream conditions was used to evaluate water quality in West Fork Blue River, Washington County, IN. Instream dissolved-oxygen concentration averaged 96.5% of saturation at selected sites on West Fork Blue River during two 24-hour summer surveys. This high dissolved-oxygen concentration reflects small carbonaceous and nitrogenous waste loads; adequate dilution of waste by the stream; and natural reaeration. Nonpoint source waste loads accounted for an average of 53.2% of the total carbonaceous biochemical-oxygen demand and 90.2% of the nitrogenous biochemical-oxygen demand. Waste-load assimilation was studiedfor critical summer and winter low flows. Natural streamflow for these conditions was zero, so no benefit from dilution was provided. The projected stream reaeration capacity was not sufficient to maintain the minimum daily dissolved-oxygen concentration (5 milligrams per liter) in the stream with current waste-discharge restrictions. During winter low flow, ammonia toxicity, rather than dissolved-oxygen concentration, was the limiting water-quality criterion downstream from the Salem wastewater-treatment facility. (USGS)
Sivirichi, Gwendolyn M; Kaushal, Sujay S; Mayer, Paul M; Welty, Claire; Belt, Kenneth T; Newcomer, Tamara A; Newcomb, Katie D; Grese, Melissa M
2011-02-01
Stream restoration has increasingly been used as a best management practice for improving water quality in urbanizing watersheds, yet few data exist to assess restoration effectiveness. This study examined the longitudinal patterns in carbon and nitrogen concentrations and mass balance in two restored (Minebank Run and Spring Branch) and two unrestored (Powder Mill Run and Dead Run) stream networks in Baltimore, Maryland, USA. Longitudinal synoptic sampling showed that there was considerable reach-scale variability in biogeochemistry (e.g., total dissolved nitrogen (TDN), dissolved organic carbon (DOC), cations, pH, oxidation/reduction potential, dissolved oxygen, and temperature). TDN concentrations were typically higher than DOC in restored streams, but the opposite pattern was observed in unrestored streams. Mass balances in restored stream networks showed net uptake of TDN across subreaches (mean ± standard error net uptake rate of TDN across sampling dates for Minebank Run and Spring Branch was 420.3 ± 312.2 and 821.8 ± 570.3 mg m(-2) d(-1), respectively). There was net release of DOC in the restored streams (1344 ± 1063 and 1017 ± 944.5 mg m(-2) d(-1) for Minebank Run and Spring Branch, respectively). Conversely, degraded streams, Powder Mill Run and Dead Run showed mean net release of TDN across sampling dates (629.2 ± 167.5 and 327.1 ± 134.5 mg m(-2) d(-1), respectively) and net uptake of DOC (1642 ± 505.0 and 233.7 ± 125.1 mg m(-2) d(-1), respectively). There can be substantial C and N transformations in stream networks with hydrologically connected floodplain and pond features. Assessment of restoration effectiveness depends strongly on where monitoring is conducted along the stream network. Monitoring beyond the stream-reach scale is recommended for a complete perspective of evaluation of biogeochemical function in restored and degraded urban streams.
Water-quality data from five Oregon stream basins
Miller, Timothy L.
1979-01-01
The U.S. Geological Survey collected water-quality data in five Oregon stream basins during summer low-flow conditions in 1977 and 1978. During the two sampling periods, a total of 18 different sites were sampled. Several sites were sampled twice in 1977, and some sites were sampled in both 1977 and 1978. Included in the sampling were diel trace of dissolved oxygen, temperature, specific conductance, pH, and solar radiation. In addition, periphyton and benthic invertebrate samples were collected and identified.
GLAST Burst Monitor Signal Processing System
NASA Astrophysics Data System (ADS)
Bhat, P. Narayana; Briggs, Michael; Connaughton, Valerie; Diehl, Roland; Fishman, Gerald; Greiner, Jochen; Kippen, R. Marc; von Kienlin, Andreas; Kouveliotou, Chryssa; Lichti, Giselher; Meegan, Charles; Paciesas, William; Persyn, Steven; Preece, Robert; Steinle, Helmut; Wilson-Hodge, Colleen
2007-07-01
The onboard Data Processing Unit (DPU), designed and built by Southwest Research Institute, performs the high-speed data acquisition for GBM. The analog signals from each of the 14 detectors are digitized by high-speed multichannel analog data acquisition architecture. The streaming digital values resulting from a periodic (period of 104.2 ns) sampling of the analog signal by the individual ADCs are fed to a Field-Programmable Gate Array (FPGA). Real-time Digital Signal Processing (DSP) algorithms within the FPGA implement functions like filtering, thresholding, time delay and pulse height measurement. The spectral data with a 12-bit resolution are formatted according to the commandable look-up-table (LUT) and then sent to the High-Speed Science-Date Bus (HSSDB, speed=1.5 MB/s) to be telemetered to ground. The DSP offers a novel feature of a commandable & constant event deadtime. The ADC non-linearities have been calibrated so that the spectral data can be corrected during analysis. The best temporal resolution is 2 μs for the pre-burst & post-trigger time-tagged events (TTE) data. The time resolution of the binned data types is commandable from 64 msec to 1.024 s for the CTIME data (8 channel spectral resolution) and 1.024 to 32.768 s for the CSPEC data (128 channel spectral resolution). The pulse pile-up effects have been studied by Monte Carlo simulations. For a typical GRB, the possible shift in the Epeak value at high-count rates (~100 kHz) is ~1% while the change in the single power-law index could be up to 5%.
Urine sampling techniques in symptomatic primary-care patients: a diagnostic accuracy review.
Holm, Anne; Aabenhus, Rune
2016-06-08
Choice of urine sampling technique in urinary tract infection may impact diagnostic accuracy and thus lead to possible over- or undertreatment. Currently no evidencebased consensus exists regarding correct sampling technique of urine from women with symptoms of urinary tract infection in primary care. The aim of this study was to determine the accuracy of urine culture from different sampling-techniques in symptomatic non-pregnant women in primary care. A systematic review was conducted by searching Medline and Embase for clinical studies conducted in primary care using a randomized or paired design to compare the result of urine culture obtained with two or more collection techniques in adult, female, non-pregnant patients with symptoms of urinary tract infection. We evaluated quality of the studies and compared accuracy based on dichotomized outcomes. We included seven studies investigating urine sampling technique in 1062 symptomatic patients in primary care. Mid-stream-clean-catch had a positive predictive value of 0.79 to 0.95 and a negative predictive value close to 1 compared to sterile techniques. Two randomized controlled trials found no difference in infection rate between mid-stream-clean-catch, mid-stream-urine and random samples. At present, no evidence suggests that sampling technique affects the accuracy of the microbiological diagnosis in non-pregnant women with symptoms of urinary tract infection in primary care. However, the evidence presented is in-direct and the difference between mid-stream-clean-catch, mid-stream-urine and random samples remains to be investigated in a paired design to verify the present findings.
Campbell Grant, Evan H.; Jung, Robin E.; Rice, Karen C.
2005-01-01
Stream salamanders are sensitive to acid mine drainage and may be sensitive to acidification and low acid neutralizing capacity (ANC) of a watershed. Streams in Shenandoah National Park, Virginia, are subject to episodic acidification from precipitation events. We surveyed 25 m by 2 m transects located on the stream bank adjacent to the water channel in Shenandoah National Park for salamanders using a stratified random sampling design based on elevation, aspect and bedrock geology. We investigated the relationships of four species (Eurycea bislineata, Desmognathus fuscus, D. monticola and Gyrinophilus porphyriticus) to habitat and water quality variables. We did not find overwhelming evidence that stream salamanders are affected by the acid-base status of streams in Shenandoah National Park. Desmognathus fuscus and D. monticola abundance was greater both in streams that had a higher potential to neutralize acidification, and in higher elevation (>700 m) streams. Neither abundance of E. bislineata nor species richness were related to any of the habitat variables. Our sampling method preferentially detected the adult age class of the study species and did not allow us to estimate population sizes. We suggest that continued monitoring of stream salamander populations in SNP will determine the effects of stream acidification on these taxa.
A simple-harmonic model for depicting the annual cycle of seasonal temperatures of streams
Steele, Timothy Doak
1978-01-01
Due to economic or operational constraints, stream-temperature records cannot always be collected at all sites where information is desired or at frequencies dictated by continuous or near-continuous surveillance requirements. For streams where only periodic measurements are made during the year, and that are not appreciably affected by regulation or by thermal loading , a simple harmonic function may adequately depict the annual seasonal cycle of stream temperature at any given site. Resultant harmonic coefficients obtained from available stream-temperature records may be used in the following ways: (1) To interpolate between discrete measurements by solving the harmonic function at specified times, thereby filling in estimates of stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature conditions; and (3) to detect and to assess any significant at a site brought about by streamflow regulation or basin development. Moreover, less-than-daily or sampling frequencies at a given site may give estimates of annual variation of stream temperatures that are statistically comparable to estimates obtained from a daily or continuous sampling scheme. The latter procedure may result in potential savings of resources in network operations, with negligible loss in information on annual stream-temperature variations. (Woodard -USGS)
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1980-01-01
A digital model calibrated to conditions in Little Laughery Creek triutary and Little Laughery Creek, Ripley and Franklin Counties, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero. Headwater flow upstream from the wastewater-treatment facilities consists solely of process cooling water from an industrial discharger. This flow is usually less than 0.5 cubic foot per second. Consequently, benefits from dilution are minimal. As a result, current and projected ammonia-nitrogen concentrations from the municipal discharges will result in in-stream ammonia-nitrogen concentrations that exceed the Indiana ammonia-nitrogen toxicity standards (maximum stream ammonia-nitrogen concentrations of 2.5 and 4.0 milligrams per liter during summer and winter low flows, respectively). Benthic-oxygen demand is probably the most significant factor affecting Little Laughery Creek and is probably responsible for the in-stream dissolved-oxygen concentration being less than the Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) during two water-quality surveys. After municipal dischargers complete advanced waste-treatment facilities, benthic-oxygen demand should be less significant in the stream dissolved-oxygen dynamics. (USGS)
We empirically examined the sampling effort required to adequately represent species richness and proportionate abundance when backpack electrofishing western Oregon streams. When sampling, we separately recorded data for each habitat unit. In data analyses, we repositioned each...
Sheth, Bhavin R.; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams—ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal. PMID:27920670
Channel Classification across Arid West Landscapes in Support of OHW Delineation
2013-01-01
8 Figure 5. National Hydrography Dataset for Chinle Creek, AZ...the OHW boundary is determined by observing recent physical evidence subsequent to flow. Channel morphology and physical features associated with the...data from the National Hydrography Dataset (NHD) (USGS 2010). The NHD digital ERDC/CRREL TR-13-3 9 stream data were downloaded as a line
2011-08-01
5 Figure 4 Architetural diagram of running Blender on Amazon EC2 through Nimbis...classification of streaming data. Example input images (top left). All digit prototypes (cluster centers) found, with size proportional to frequency (top...Figure 4 Architetural diagram of running Blender on Amazon EC2 through Nimbis 1 http
"Deja Vu"? A Decade of Research on Language Laboratories, Television and Video in Language Learning
ERIC Educational Resources Information Center
Vanderplank, Robert
2010-01-01
The developments in the last ten years in the form of DVD, streaming video, video on demand, interactive television and digital language laboratories call for an assessment of the research into language teaching and learning making use of these technologies and the learning paradigms underpinning them. This paper surveys research on language…
ERIC Educational Resources Information Center
Baildon, Mark; Damico, James
2011-01-01
The "elaborate systems of communication" that historian Christopher Lasch observed nearly three decades ago have intensified in complexity and scope. The explosion of the Internet and wireless technologies has resulted in a dizzying proliferation of texts. Teachers and students are but a keystroke or mouse click away from a limitless stream of…
Field trial of interworking between broadband applications and GMPLS/OXC network
NASA Astrophysics Data System (ADS)
Sameshima, Yasunori; Ohara, Takuya; Okano, Yukifusa
2006-09-01
This paper describes the interworking between 4K digital cinema and a GMPLS/OXC network in JGN II. Through three trials in JGN II, we confirmed that 4K real-time streams were successfully transmitted in GMPLS paths and that the GMPLS/OXC technology can be used for transmission in such a broadband application.
The Use of Software in Academic Stream High School Mathematics Teaching
ERIC Educational Resources Information Center
Clay, Simon; Fotou, Nikolaos; Monaghan, John
2017-01-01
This paper reports on classroom observations of senior high school mathematics lessons with a focus on the use of digital technology. The observations were of teachers enrolled in an in-service course, Teaching Advanced Mathematics. The paper reports selected results and comments on: software that was observed to have been used; the use (or not)…
Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua
2016-08-01
In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Apollo Lunar Sample Photograph Digitization Project Update
NASA Technical Reports Server (NTRS)
Todd, N. S.; Lofgren, G. E.
2012-01-01
This is an update of the progress of a 4-year data restoration project effort funded by the LASER program to digitize photographs of the Apollo lunar rock samples and create high resolution digital images and undertaken by the Astromaterials Acquisition and Curation Office at JSC [1]. The project is currently in its last year of funding. We also provide an update on the derived products that make use of the digitized photos including the Lunar Sample Catalog and Photo Database[2], Apollo Sample data files for GoogleMoon[3].
NASA Astrophysics Data System (ADS)
Woodward, Simon James Roy; Wöhling, Thomas; Rode, Michael; Stenger, Roland
2017-09-01
The common practice of infrequent (e.g., monthly) stream water quality sampling for state of the environment monitoring may, when combined with high resolution stream flow data, provide sufficient information to accurately characterise the dominant nutrient transfer pathways and predict annual catchment yields. In the proposed approach, we use the spatially lumped catchment model StreamGEM to predict daily stream flow and nitrate concentration (mg L-1 NO3-N) in four contrasting mesoscale headwater catchments based on four years of daily rainfall, potential evapotranspiration, and stream flow measurements, and monthly or daily nitrate concentrations. Posterior model parameter distributions were estimated using the Markov Chain Monte Carlo sampling code DREAMZS and a log-likelihood function assuming heteroscedastic, t-distributed residuals. Despite high uncertainty in some model parameters, the flow and nitrate calibration data was well reproduced across all catchments (Nash-Sutcliffe efficiency against Log transformed data, NSL, in the range 0.62-0.83 for daily flow and 0.17-0.88 for nitrate concentration). The slight increase in the size of the residuals for a separate validation period was considered acceptable (NSL in the range 0.60-0.89 for daily flow and 0.10-0.74 for nitrate concentration, excluding one data set with limited validation data). Proportions of flow and nitrate discharge attributed to near-surface, fast seasonal groundwater and slow deeper groundwater were consistent with expectations based on catchment geology. The results for the Weida Stream in Thuringia, Germany, using monthly as opposed to daily nitrate data were, for all intents and purposes, identical, suggesting that four years of monthly nitrate sampling provides sufficient information for calibration of the StreamGEM model and prediction of catchment dynamics. This study highlights the remarkable effectiveness of process based, spatially lumped modelling with commonly available monthly stream sample data, to elucidate high resolution catchment function, when appropriate calibration methods are used that correctly handle the inherent uncertainties.
Gray, J.E.; Goldfarb, R.J.; Detra, D.E.; Slaughter, K.E.
1991-01-01
Cinnabar- and stibnite-bearing epithermal vein deposits are found throughout the Kuskokwim River region of southwestern Alaska. A geochemical orientation survey was carried out around several of these epithermal lodes to obtain information for planning regional geochemical surveys and to develop procedures which maximize the anomaly: threshold contrast of the deposits. Stream sediment, heavy-mineral concentrate, stream water, and vegetation samples were collected in drainages surrounding the Red Devil, Cinnabar Creek, White Mountain, Rhyolite, and Mountain Top deposits. Three sediment size fractions; nonmagnetic, paramagnetic and magnetic splits of the concentrate samples; stream waters; and the vegetation samples were analyzed for multi-element suites by a number of different chemical procedures. Nonmagnetic, heavy-mineral concentrates were also examined microscopically to identify their mineralogy. Results confirm Hg, Sb and As concentrations in minus-80-mesh stream sediments as effective pathfinder elements in exploration for epithermal cinnabar and stibnite deposits. Coarser-grained sediments are much less effective in the exploration for these deposits. Concentrations greater than 3 ppm Hg, 1 ppm Sb, and 15 ppm As in the minus-80-mesh stream sediment, regardless of the host lithology, are indicative of upstream cinnabar-stibnite deposits. Gold, Ag and base metals in the stream sediments are ineffective pathfinders for this epithermal deposit type. Collection of heavy-mineral concentrates provides little advantage in the exploration for these mineral deposits. Antimony and As dispersion patterns downstream from mineralized areas are generally more restricted in the concentrates than those in the stream sediments. Anomalous placer cinnabar observed in the concentrates has a similar spatial distribution pattern as anomalous Hg and Sb in corresponding sediments. Stream waters are less effective than the stream sediments or heavy-mineral concentrates, and vegetation is an ineffective geochemical sample medium in exploration for this deposit type. ?? 1991.
NASA Astrophysics Data System (ADS)
Rumph Frederiksen, R.; Rasmussen, K. R.; Christensen, S.
2015-12-01
Qualifying and quantifying water, nutrient and contaminant exchange at the groundwater-surface water interface are becoming increasingly important for water resources management. The objectives of this study are to characterise an alluvial stream using geophysics in addition to traditional geological and geomorphological data and quantify the groundwater seepage to the stream on point-to-reach scale using both hydraulic and tracer methods. We mapped the very shallow subsurface along an alluvial stream using a GCM system (DUALEM421S, an electromagnetic system that can be operated behind a boat or towed behind a motorized vehicle) as well as using geological logs from a large number of old wells. Furthermore we made geomorphological observations through digital maps (old topographical maps and aerial photos) and field observations. We measured stream discharge (quasi-) simultaneously at several positions along the stream using both an Ott-C31 propeller instrument and an Acoustic Doppler Current Profiler instrument. The measurements were made during dry summer periods when baseflow is expected to be the dominating contribution to streamflow. Preliminary findings show that the GCM system reveals small-scale structures not seen with other data types. Furthermore, based on the GCM results and stream discharge results we have identified gaining, losing and zero exchange sections of the stream. During late summer 2015 we will collect additional hydrological data in order to support or modify our preliminary findings. To further investigate the spatial and temporal variations of the groundwater-surface water interactions along the stream we will measure groundwater seepage to the stream using: seepage meter (point-scale) DTS (reach-scale) temperature stick measurements (point-in-space-and-time-scale) temperature loggers installed in the streambed (month-scale) The measurement sites are chosen based on our geophysical, geological, and geomorphological mapping as well as our stream discharge measurements.
NASA Technical Reports Server (NTRS)
Neiner, G. H.; Cole, G. L.; Arpasi, D. J.
1972-01-01
Digital computer control of a mixed-compression inlet is discussed. The inlet was terminated with a choked orifice at the compressor face station to dynamically simulate a turbojet engine. Inlet diffuser exit airflow disturbances were used. A digital version of a previously tested analog control system was used for both normal shock and restart control. Digital computer algorithms were derived using z-transform and finite difference methods. Using a sample rate of 1000 samples per second, the digital normal shock and restart controls essentially duplicated the inlet analog computer control results. At a sample rate of 100 samples per second, the control system performed adequately but was less stable.
Digital terrain tapes: user guide
,
1980-01-01
DMATC's digital terrain tapes are a by-product of the agency's efforts to streamline the production of raised-relief maps. In the early 1960's DMATC developed the Digital Graphics Recorder (DGR) system that introduced new digitizing techniques and processing methods into the field of three-dimensional mapping. The DGR system consisted of an automatic digitizing table and a computer system that recorded a grid of terrain elevations from traces of the contour lines on standard topographic maps. A sequence of computer accuracy checks was performed and then the elevations of grid points not intersected by contour lines were interpolated. The DGR system produced computer magnetic tapes which controlled the carving of plaster forms used to mold raised-relief maps. It was realized almost immediately that this relatively simple tool for carving plaster molds had enormous potential for storing, manipulating, and selectively displaying (either graphically or numerically) a vast number of terrain elevations. As the demand for the digital terrain tapes increased, DMATC began developing increasingly advanced digitizing systems and now operates the Digital Topographic Data Collection System (DTDCS). With DTDCS, two types of data elevations as contour lines and points, and stream and ridge lines are sorted, matched, and resorted to obtain a grid of elevation values for every 0.01 inch on each map (approximately 200 feet on the ground). Undefined points on the grid are found by either linear or or planar interpolation.
John Lyons; Paul Kanehl
1993-01-01
Critically examines four electrofishing methods commonly used to estimate the abundance of smallmouth bass in wadeable streams, and provides guidelines for sampling smallmouth bass in streams of Wisconsin and nearby areas.
Statistical Methods in Ai: Rare Event Learning Using Associative Rules and Higher-Order Statistics
NASA Astrophysics Data System (ADS)
Iyer, V.; Shetty, S.; Iyengar, S. S.
2015-07-01
Rare event learning has not been actively researched since lately due to the unavailability of algorithms which deal with big samples. The research addresses spatio-temporal streams from multi-resolution sensors to find actionable items from a perspective of real-time algorithms. This computing framework is independent of the number of input samples, application domain, labelled or label-less streams. A sampling overlap algorithm such as Brooks-Iyengar is used for dealing with noisy sensor streams. We extend the existing noise pre-processing algorithms using Data-Cleaning trees. Pre-processing using ensemble of trees using bagging and multi-target regression showed robustness to random noise and missing data. As spatio-temporal streams are highly statistically correlated, we prove that a temporal window based sampling from sensor data streams converges after n samples using Hoeffding bounds. Which can be used for fast prediction of new samples in real-time. The Data-cleaning tree model uses a nonparametric node splitting technique, which can be learned in an iterative way which scales linearly in memory consumption for any size input stream. The improved task based ensemble extraction is compared with non-linear computation models using various SVM kernels for speed and accuracy. We show using empirical datasets the explicit rule learning computation is linear in time and is only dependent on the number of leafs present in the tree ensemble. The use of unpruned trees (t) in our proposed ensemble always yields minimum number (m) of leafs keeping pre-processing computation to n × t log m compared to N2 for Gram Matrix. We also show that the task based feature induction yields higher Qualify of Data (QoD) in the feature space compared to kernel methods using Gram Matrix.
McClurg, S.E.; Petty, J.T.; Mazik, P.M.; Clayton, J.L.
2007-01-01
Restoration programs are expanding worldwide, but assessments of restoration effectiveness are rare. The objectives of our study were to assess current acid-precipitation remediation programs in streams of the Allegheny Plateau ecoregion of West Virginia (USA), identify specific attributes that could and could not be fully restored, and quantify temporal trends in ecosystem recovery. We sampled water chemistry, physical habitat, periphyton biomass, and benthic macroinvertebrate and fish community structure in three stream types: acidic (four streams), naturally circumneutral (eight streams), and acidic streams treated with limestone sand (eight streams). We observed no temporal trends in ecosystem recovery in treated streams despite sampling streams that ranged from 2 to 20 years since initial treatment. Our results indicated that the application of limestone sand to acidic streams was effective in fully recovering some characteristics, such as pH, alkalinity, Ca2+, Ca:H ratios, trout biomass and density, and trout reproductive success. However, recovery of many other characteristics was strongly dependent upon spatial proximity to treatment, and still others were never fully recovered. For example, limestone treatment did not restore dissolved aluminum concentrations, macroinvertebrate taxon richness, and total fish biomass to circumneutral reference conditions. Full recovery may not be occurring because treated streams continue to drain acidic watersheds and remain isolated in a network of acidic streams. We propose a revised stream restoration plan for the Allegheny Plateau that includes restoring stream ecosystems as connected networks rather than isolated reaches and recognizes that full recovery of acidified watersheds may not be possible. ?? 2007 by the Ecological Society of America.
Real-Time Earthquake Monitoring with Spatio-Temporal Fields
NASA Astrophysics Data System (ADS)
Whittier, J. C.; Nittel, S.; Subasinghe, I.
2017-10-01
With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.
Indexing method of digital audiovisual medical resources with semantic Web integration.
Cuggia, Marc; Mougin, Fleur; Le Beux, Pierre
2005-03-01
Digitalization of audiovisual resources and network capability offer many possibilities which are the subject of intensive work in scientific and industrial sectors. Indexing such resources is a major challenge. Recently, the Motion Pictures Expert Group (MPEG) has developed MPEG-7, a standard for describing multimedia content. The goal of this standard is to develop a rich set of standardized tools to enable efficient retrieval from digital archives or the filtering of audiovisual broadcasts on the Internet. How could this kind of technology be used in the medical context? In this paper, we propose a simpler indexing system, based on the Dublin Core standard and compliant to MPEG-7. We use MeSH and the UMLS to introduce conceptual navigation. We also present a video-platform which enables encoding and gives access to audiovisual resources in streaming mode.
Digital processing with single electrons for arbitrary waveform generation of current
NASA Astrophysics Data System (ADS)
Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa
2018-03-01
We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.
A wavelet domain adaptive image watermarking method based on chaotic encryption
NASA Astrophysics Data System (ADS)
Wei, Fang; Liu, Jian; Cao, Hanqiang; Yang, Jun
2009-10-01
A digital watermarking technique is a specific branch of steganography, which can be used in various applications, provides a novel way to solve security problems for multimedia information. In this paper, we proposed a kind of wavelet domain adaptive image digital watermarking method using chaotic stream encrypt and human eye visual property. The secret information that can be seen as a watermarking is hidden into a host image, which can be publicly accessed, so the transportation of the secret information will not attract the attention of illegal receiver. The experimental results show that the method is invisible and robust against some image processing.
Spawning bed sedimentation studies in northern California streams
James W. Burns
1970-01-01
Changes in the size composition of spawning bed materials in six coastal streams were monitored for 3 years to determine the effects of logging on the habitat of silver salmon (Oncorhynchus kisutch) and trout (Salmo gairdnerii gairdnerii and S. clarkii clarkii). Four test streams were sampled before, during and after logging. Two streams in unlogged watersheds and...
Spatial and temporal patterns in fish assemblages of upper coastal plain streams, Mississippi, USA
Susan B. Adams; Melvin L. Warren; Wendell R. Haag
2004-01-01
We assessed spatial, seasonal, and annual variation in fish assemblages over 17 months in three small- to medium-sized, incised streams characteristic of northwestern Mississippi streams. We sampled 17 962 fish representing 52 species and compared assemblages within and among streams. Although annual and seasonal variability inassemblage structure was high, fish...
Occurrence and distribution of microbiological indicators in groundwater and stream water
Francy, D.S.; Helsel, D.R.; Nally, R.A.
2000-01-01
A total of 136 stream water and 143 groundwater samples collected in five important hydrologic systems of the United States were analyzed for microbiological indicators to test monitoring concepts in a nationally consistent program. Total coliforms were found in 99%, Escherichia coli in 97%, and Clostridium perfringens in 73% of stream water samples analyzed for each bacterium. Total coliforms were found in 20%, E. coli in less than 1%, and C. perfringens in none of the groundwater samples analyzed for each bacterium. Although coliphage analyses were performed on many of the samples, contamination in the laboratory and problems discerning discrete plaques precluded quantification. Land use was found to have the most significant effect on concentrations of bacterial indicators in stream water. Presence of septic systems on the property near the sampling site and well depth were found to be related to detection of coliforms in groundwater, although these relationships were not statistically significant. A greater diversity of sites, more detailed information about some factors, and a larger dataset may provide further insight to factors that affect microbiological indicators.
Price, A.; Peterson, James T.
2010-01-01
Stream fish managers often use fish sample data to inform management decisions affecting fish populations. Fish sample data, however, can be biased by the same factors affecting fish populations. To minimize the effect of sample biases on decision making, biologists need information on the effectiveness of fish sampling methods. We evaluated single-pass backpack electrofishing and seining combined with electrofishing by following a dual-gear, mark–recapture approach in 61 blocknetted sample units within first- to third-order streams. We also estimated fish movement out of unblocked units during sampling. Capture efficiency and fish abundances were modeled for 50 fish species by use of conditional multinomial capture–recapture models. The best-approximating models indicated that capture efficiencies were generally low and differed among species groups based on family or genus. Efficiencies of single-pass electrofishing and seining combined with electrofishing were greatest for Catostomidae and lowest for Ictaluridae. Fish body length and stream habitat characteristics (mean cross-sectional area, wood density, mean current velocity, and turbidity) also were related to capture efficiency of both methods, but the effects differed among species groups. We estimated that, on average, 23% of fish left the unblocked sample units, but net movement varied among species. Our results suggest that (1) common warmwater stream fish sampling methods have low capture efficiency and (2) failure to adjust for incomplete capture may bias estimates of fish abundance. We suggest that managers minimize bias from incomplete capture by adjusting data for site- and species-specific capture efficiency and by choosing sampling gear that provide estimates with minimal bias and variance. Furthermore, if block nets are not used, we recommend that managers adjust the data based on unconditional capture efficiency.
Rosenberger, Amanda E.; Dunham, Jason B.
2005-01-01
Estimation of fish abundance in streams using the removal model or the Lincoln - Peterson mark - recapture model is a common practice in fisheries. These models produce misleading results if their assumptions are violated. We evaluated the assumptions of these two models via electrofishing of rainbow trout Oncorhynchus mykiss in central Idaho streams. For one-, two-, three-, and four-pass sampling effort in closed sites, we evaluated the influences of fish size and habitat characteristics on sampling efficiency and the accuracy of removal abundance estimates. We also examined the use of models to generate unbiased estimates of fish abundance through adjustment of total catch or biased removal estimates. Our results suggested that the assumptions of the mark - recapture model were satisfied and that abundance estimates based on this approach were unbiased. In contrast, the removal model assumptions were not met. Decreasing sampling efficiencies over removal passes resulted in underestimated population sizes and overestimates of sampling efficiency. This bias decreased, but was not eliminated, with increased sampling effort. Biased removal estimates based on different levels of effort were highly correlated with each other but were less correlated with unbiased mark - recapture estimates. Stream size decreased sampling efficiency, and stream size and instream wood increased the negative bias of removal estimates. We found that reliable estimates of population abundance could be obtained from models of sampling efficiency for different levels of effort. Validation of abundance estimates requires extra attention to routine sampling considerations but can help fisheries biologists avoid pitfalls associated with biased data and facilitate standardized comparisons among studies that employ different sampling methods.
Young, J.A.; Smith, D.R.; Snyder, C.D.; Lemarie, D.P.
2002-01-01
Biodiversity surveys are often hampered by the inability to control extraneous sources of variability introduced into comparisons of populations across a heterogenous landscape. If not specifically accounted for a priori, this noise can weaken comparisons between sites, and can make it difficult to draw inferences about specific ecological processes. We developed a terrain-based, paired-site sampling design to analyze differences in aquatic biodiversity between streams draining eastern hemlock (Tsuga canadensis) forests, and those draining mixed hardwood forests in Delaware Water Gap National Recreation Area (USA). The goal of this design was to minimize variance due to terrain influences on stream communities, while representing the range of hemlock dominated stream environments present in the park. We used geographic information systems (GIS) and cluster analysis to define and partition hemlock dominated streams into terrain types based on topographic variables and stream order. We computed similarity of forest stands within terrain types and used this information to pair hemlock-dominated streams with hardwood counterparts prior to sampling. We evaluated the effectiveness of the design through power analysis and found that power to detect differences in aquatic invertebrate taxa richness was highest when sites were paired and terrain type was included as a factor in the analysis. Precision of the estimated difference in mean richness was nearly doubled using the terrain-based, paired site design in comparison to other evaluated designs. Use of this method allowed us to sample stream communities representative of park-wide forest conditions while effectively controlling for landscape variability.
Sampling device for withdrawing a representative sample from single and multi-phase flows
Apley, Walter J.; Cliff, William C.; Creer, James M.
1984-01-01
A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.
Ibe, K K; Adlegbembo, A O; Mafeni, J O; Danfillo, I S
1999-09-01
The aim of this study was to provide baseline data on the fluoride levels in waters associated with the late Maastrichtian Ajali formation in Ohafia-Arochukwu area of South Eastern Nigeria. Water samples from 14 artesian, perched springs and eight streams from the formation were collected with plastic containers. Fluoride analysis was carried out with inductively coupled plasma Atomic Emission Spectrometry (ICP-AES) equipment at the laboratories of the Department of Earth Science, University of Leeds, United Kingdom. The results showed that fluoride occurred in only one of the 14 spring water samples. Fluoride level in the sample was 0.03 ppm. The spring water, which contained some fluoride, was possibly associated with another rock formation: namely, the limestone bearing Nsukka formation, which overlies the Ajali formation. No fluoride was observed in all the stream water samples. This study reported the absence of fluoride in spring and stream waters associated with the late Maastrichtian formations in Nigeria.
NASA Astrophysics Data System (ADS)
Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro
2016-04-01
Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected as much as collected in flask. Stream water and groundwater samples were collected for 40 L each. All the water samples were filtered through 0.45 μm pore-size membrane. Water samples with less than few L were concentrated by evaporative concentration. Water samples with more than 40 L were concentrated using the ammonium molybdophosphate (AMP)/Cs compound method. The Cs-137 concentration was determined using gamma-ray spectrometry with a germanium semiconductor detector. Spatial distribution of dissolved Cs-137 concentration in the slope was obtained and the source of Cs-137 concentration in stream water was examined. The Cs-137 concentration in groundwater showed low value of 0.0004-0.001 Bq/L. The Cs-137 concentration of soil water showed 0.01-0.1 Bq/L. And Cs-137 concentrations of stream water were 0.007-0.03 Bq/L at steady state condition. Also Cs-137 concentrations in stream water showed temporary increase during rainfall event. The source of dissolved Cs-137 was suggested to be shallow soil water under saturated condition or leaching from the litter might be affecting.
Linking social and ecological systems
Wayne Zipperer; Wayde Morse; Cassandra Gaither
2011-01-01
On 16 November 2005 a water sample was taken from an urban stream in a metropolitan area in the southern United States and tested for the presence of E. coli. Although water samples from this and other streams in the metropolitan area frequently registered over 15,000 colonies/100 ml, this particular sample is unique in that it registered a reading of 70,000 colonies/...
This multi-year pilot study evaluated a proposed field method for its effectiveness in the collection of a benthic macroinvertebrate sample adequate for use in the condition assessment of streams and rivers in the Neuquén Province, Argentina. A total of 13 sites, distribut...
Corsi, S R; Hall, D W; Geis, S W
2001-07-01
Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.
Corsi, Steven; Hall, David W.; Geis, Steven W.
2001-01-01
Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox® were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.
Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.
2014-12-02
The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system mustmore » also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer aerodynamic diameter were injected into the environmental chamber and drawn through the conditioning system, which included a filter to capture droplets that passed through the conditioner. The droplets were tagged with a fluorescent dye which allowed quantification of droplet deposition on each component of the system. The tests demonstrated the required reductions in temperature and moisture, with no condensation forming when heat tracing was added on the upstream end of the sample conditioner. Additionally, tests indicated that the system, operating at several flow rates and in both vertical and horizontal orientations, delivers nearly all of the sampled particles for analysis. Typical aerosol penetration values were between 98 and 99%. PNNL, Bechtel National Inc., and the instrument vendor are working to implement the sample conditioner into the air monitoring systems used for the melter off-gas exhaust streams. Similar technology may be useful for processes in other facilities with air exhaust streams with elevated temperature and/or humidity.« less
NASA Astrophysics Data System (ADS)
Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.
2011-12-01
Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB classification and the in-situ transects indicates that: A. Stream vegetation classification resolution is about 4 cm by the SRGB method compared to about 1 m by HSR. Moreover, this resolution is also higher than of the manual grid transect classification. B. The SRGB method is by far the most cost-efficient. The combination of spectral information (rather than the cognitive color) and high spatial resolution of aerial photography provides noise filtration and better sub-water detection capabilities than the HSR technique. C. Only the SRGB method applies for habitat and section scales; hence, its application together with in-situ grid transects for validation, may be optimal for use in similar scenarios.
The HSR dataset was first degraded to 17 bands with the same spectral range as the RGB dataset and also to a dataset with 3 equivalent bands
How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?
NASA Astrophysics Data System (ADS)
Morgan, J. C.; Gannon, J. P.; Kelleher, C.
2017-12-01
The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.