Sample records for digital simulation

  1. Survey of student attitudes towards digital simulation technologies at a dental school in China.

    PubMed

    Ren, Q; Wang, Y; Zheng, Q; Ye, L; Zhou, X D; Zhang, L L

    2017-08-01

    Digital simulation technologies have become widespread in healthcare education, especially in dentistry; these technologies include digital X-ray images, digital microscopes, virtual pathology slides and other types of simulation. This study aimed to assess students' attitudes towards digital simulation technologies at a large, top-ranked dental school in China, as well as find out how students compare the digital technologies with traditional training methods. In April 2015, a custom-designed questionnaire was distributed to a total of 389 students who had received digital technology and simulation-based training in West China Dental School during 2012-2014. Results of a cross-sectional survey show that most students accept digital simulation technology; they report that the technology is stimulating and facilitates self-directed and self-paced learning. These findings, together with the objective advantages of digital technology, suggest that digital simulation training offers significant potential for dental education, highlighting the need for further research and more widespread implementation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Real-time simulation of the TF30-P-3 turbofan engine using a hybrid computer

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Bruton, W. M.

    1974-01-01

    A real-time, hybrid-computer simulation of the TF30-P-3 turbofan engine was developed. The simulation was primarily analog in nature but used the digital portion of the hybrid computer to perform bivariate function generation associated with the performance of the engine's rotating components. FORTRAN listings and analog patching diagrams are provided. The hybrid simulation was controlled by a digital computer programmed to simulate the engine's standard hydromechanical control. Both steady-state and dynamic data obtained from the digitally controlled engine simulation are presented. Hybrid simulation data are compared with data obtained from a digital simulation provided by the engine manufacturer. The comparisons indicate that the real-time hybrid simulation adequately matches the baseline digital simulation.

  3. G and C boost and abort study summary, exhibit B

    NASA Technical Reports Server (NTRS)

    Backman, H. D.

    1972-01-01

    A six degree of freedom simulation of rigid vehicles was developed to study space shuttle vehicle boost-abort guidance and control techniques. The simulation was described in detail as an all digital program and as a hybrid program. Only the digital simulation was implemented. The equations verified in the digital simulation were adapted for use in the hybrid simulation. Study results were obtained from four abort cases using the digital program.

  4. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  5. Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    NASA Technical Reports Server (NTRS)

    Tranter, W. H.; Turner, M. D.

    1977-01-01

    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation.

  6. Comparison of digital controllers used in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, William A.

    1990-01-01

    Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.

  7. Comparative hybrid and digital simulation studies of the behaviour of a wind generator equipped with a static frequency converter

    NASA Astrophysics Data System (ADS)

    Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.

    1988-01-01

    This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.

  8. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lamata, Lucas

    2017-03-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.

  9. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    PubMed Central

    Lamata, Lucas

    2017-01-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559

  10. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.; Vallely, D. P.

    1978-01-01

    This paper considers digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. A quantization error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. The program can be integrated into existing digital simulations of a system.

  11. Computer Simulation and Digital Resources for Plastic Surgery Psychomotor Education.

    PubMed

    Diaz-Siso, J Rodrigo; Plana, Natalie M; Stranix, John T; Cutting, Court B; McCarthy, Joseph G; Flores, Roberto L

    2016-10-01

    Contemporary plastic surgery residents are increasingly challenged to learn a greater number of complex surgical techniques within a limited period. Surgical simulation and digital education resources have the potential to address some limitations of the traditional training model, and have been shown to accelerate knowledge and skills acquisition. Although animal, cadaver, and bench models are widely used for skills and procedure-specific training, digital simulation has not been fully embraced within plastic surgery. Digital educational resources may play a future role in a multistage strategy for skills and procedures training. The authors present two virtual surgical simulators addressing procedural cognition for cleft repair and craniofacial surgery. Furthermore, the authors describe how partnerships among surgical educators, industry, and philanthropy can be a successful strategy for the development and maintenance of digital simulators and educational resources relevant to plastic surgery training. It is our responsibility as surgical educators not only to create these resources, but to demonstrate their utility for enhanced trainee knowledge and technical skills development. Currently available digital resources should be evaluated in partnership with plastic surgery educational societies to guide trainees and practitioners toward effective digital content.

  12. Simulated Laboratory in Digital Logic.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    Design of computer circuits used to be a pencil and paper task followed by laboratory tests, but logic circuit design can now be done in half the time as the engineer accesses a program which simulates the behavior of real digital circuits, and does all the wiring and testing on his computer screen. A simulated laboratory in digital logic has been…

  13. Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Shan, Rui

    2016-06-01

    Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.

  14. Computer considerations for real time simulation of a generalized rotor model

    NASA Technical Reports Server (NTRS)

    Howe, R. M.; Fogarty, L. E.

    1977-01-01

    Scaled equations were developed to meet requirements for real time computer simulation of the rotor system research aircraft. These equations form the basis for consideration of both digital and hybrid mechanization for real time simulation. For all digital simulation estimates of the required speed in terms of equivalent operations per second are developed based on the complexity of the equations and the required intergration frame rates. For both conventional hybrid simulation and hybrid simulation using time-shared analog elements the amount of required equipment is estimated along with a consideration of the dynamic errors. Conventional hybrid mechanization using analog simulation of those rotor equations which involve rotor-spin frequencies (this consititutes the bulk of the equations) requires too much analog equipment. Hybrid simulation using time-sharing techniques for the analog elements appears possible with a reasonable amount of analog equipment. All-digital simulation with affordable general-purpose computers is not possible because of speed limitations, but specially configured digital computers do have the required speed and consitute the recommended approach.

  15. Digital Rock Simulation of Flow in Carbonate Samples

    NASA Astrophysics Data System (ADS)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three ranges of wetting properties. The wetting variation affected phase mobility and residual phase saturations for primary oil flood and floods with varying ratios of oil and water.

  16. Comparison of flight results with digital simulation for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1983-01-01

    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.

  17. VHDL Modeling and Simulation of a Digital Image Synthesizer for Countering ISAR

    DTIC Science & Technology

    2003-06-01

    This thesis discusses VHDL modeling and simulation of a full custom Application Specific Integrated Circuit (ASIC) for a Digital Image Synthesizer...necessary for a given application . With such a digital method, it is possible for a small ship to appear as large as an aircraft carrier or any high...INTRODUCTION TO DIGITAL IMAGE SYNTHESIZER (DIS) A. BACKGROUND The Digital Image Synthesizer (DIS) is an Application Specific Integrated Circuit

  18. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lamata, Lucas

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi-Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. The author wishes to acknowledge discussions with I. Arrazola, A. Mezzacapo, J. S. Pedernales, and E. Solano, and support from Ramon y Cajal Grant RYC-2012-11391, Spanish MINECO/FEDER FIS2015-69983-P, UPV/EHU UFI 11/55 and Project EHUA14/04.

  19. Tailpulse signal generator

    DOEpatents

    Baker, John [Walnut Creek, CA; Archer, Daniel E [Knoxville, TN; Luke, Stanley John [Pleasanton, CA; Decman, Daniel J [Livermore, CA; White, Gregory K [Livermore, CA

    2009-06-23

    A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.

  20. Digital Simulation and Modelling.

    ERIC Educational Resources Information Center

    Hawthorne, G. B., Jr.

    A basically tutorial point of view is taken in this general discussion. The author examines the basic concepts and principles of simulation and modelling and the application of digital computers to these tasks. Examples of existing simulations, a discussion of the applicability and feasibility of simulation studies, a review of simulation…

  1. Real time flight simulation methodology

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Cook, G.; Mcvey, E. S.

    1977-01-01

    Substitutional methods for digitization, input signal-dependent integrator approximations, and digital autopilot design were developed. The software framework of a simulator design package is described. Included are subroutines for iterative designs of simulation models and a rudimentary graphics package.

  2. Formal hardware verification of digital circuits

    NASA Technical Reports Server (NTRS)

    Joyce, J.; Seger, C.-J.

    1991-01-01

    The use of formal methods to verify the correctness of digital circuits is less constrained by the growing complexity of digital circuits than conventional methods based on exhaustive simulation. This paper briefly outlines three main approaches to formal hardware verification: symbolic simulation, state machine analysis, and theorem-proving.

  3. Wind Energy System Time-domain (WEST) analyzers using hybrid simulation techniques

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1979-01-01

    Two stand-alone analyzers constructed for real time simulation of the complex dynamic characteristics of horizontal-axis wind energy systems are described. Mathematical models for an aeroelastic rotor, including nonlinear aerodynamic and elastic loads, are implemented with high speed digital and analog circuitry. Models for elastic supports, a power train, a control system, and a rotor gimbal system are also included. Limited correlation efforts show good comparisons between results produced by the analyzers and results produced by a large digital simulation. The digital simulation results correlate well with test data.

  4. Digital Simulations: Facilitating Transition for Students with Disabilities

    ERIC Educational Resources Information Center

    Zionch, Allenda

    2011-01-01

    Today's students are digital natives. From computers to MP3 players, the everyday use of technology in society underscores the necessity of using technology in education. The use of digital simulations especially has had positive outcomes for students with disabilities in generalizing various life skills necessary for transition beyond high…

  5. [Development of a digital chest phantom for studies on energy subtraction techniques].

    PubMed

    Hayashi, Norio; Taniguchi, Anna; Noto, Kimiya; Shimosegawa, Masayuki; Ogura, Toshihiro; Doi, Kunio

    2014-03-01

    Digital chest phantoms continue to play a significant role in optimizing imaging parameters for chest X-ray examinations. The purpose of this study was to develop a digital chest phantom for studies on energy subtraction techniques under ideal conditions without image noise. Computed tomography (CT) images from the LIDC (Lung Image Database Consortium) were employed to develop a digital chest phantom. The method consisted of the following four steps: 1) segmentation of the lung and bone regions on CT images; 2) creation of simulated nodules; 3) transformation to attenuation coefficient maps from the segmented images; and 4) projection from attenuation coefficient maps. To evaluate the usefulness of digital chest phantoms, we determined the contrast of the simulated nodules in projection images of the digital chest phantom using high and low X-ray energies, soft tissue images obtained by energy subtraction, and "gold standard" images of the soft tissues. Using our method, the lung and bone regions were segmented on the original CT images. The contrast of simulated nodules in soft tissue images obtained by energy subtraction closely matched that obtained using the gold standard images. We thus conclude that it is possible to carry out simulation studies based on energy subtraction techniques using the created digital chest phantoms. Our method is potentially useful for performing simulation studies for optimizing the imaging parameters in chest X-ray examinations.

  6. A method to incorporate the effect of beam quality on image noise in a digitally reconstructed radiograph (DRR) based computer simulation for optimisation of digital radiography

    NASA Astrophysics Data System (ADS)

    Moore, Craig S.; Wood, Tim J.; Saunderson, John R.; Beavis, Andrew W.

    2017-09-01

    The use of computer simulated digital x-radiographs for optimisation purposes has become widespread in recent years. To make these optimisation investigations effective, it is vital simulated radiographs contain accurate anatomical and system noise. Computer algorithms that simulate radiographs based solely on the incident detector x-ray intensity (‘dose’) have been reported extensively in the literature. However, while it has been established for digital mammography that x-ray beam quality is an important factor when modelling noise in simulated images there are no such studies for diagnostic imaging of the chest, abdomen and pelvis. This study investigates the influence of beam quality on image noise in a digital radiography (DR) imaging system, and incorporates these effects into a digitally reconstructed radiograph (DRR) computer simulator. Image noise was measured on a real DR imaging system as a function of dose (absorbed energy) over a range of clinically relevant beam qualities. Simulated ‘absorbed energy’ and ‘beam quality’ DRRs were then created for each patient and tube voltage under investigation. Simulated noise images, corrected for dose and beam quality, were subsequently produced from the absorbed energy and beam quality DRRs, using the measured noise, absorbed energy and beam quality relationships. The noise images were superimposed onto the noiseless absorbed energy DRRs to create the final images. Signal-to-noise measurements in simulated chest, abdomen and spine images were within 10% of the corresponding measurements in real images. This compares favourably to our previous algorithm where images corrected for dose only were all within 20%.

  7. Simulation of digital mammography images

    NASA Astrophysics Data System (ADS)

    Workman, Adam

    2005-04-01

    A number of different technologies are available for digital mammography. However, it is not clear how differences in the physical performance aspects of the different imaging technologies affect clinical performance. Randomised controlled trials provide a means of gaining information on clinical performance however do not provide direct comparison of the different digital imaging technologies. This work describes a method of simulating the performance of different digital mammography systems. The method involves modifying the imaging performance parameters of images from a small field of view (SFDM), high resolution digital imaging system used for spot imaging. Under normal operating conditions this system produces images with higher signal-to-noise ratio (SNR) over a wide spatial frequency range than current full field digital mammography (FFDM) systems. The SFDM images can be 'degraded" by computer processing to simulate the characteristics of a FFDM system. Initial work characterised the physical performance (MTF, NPS) of the SFDM detector and developed a model and method for simulating signal transfer and noise properties of a FFDM system. It was found that the SNR properties of the simulated FFDM images were very similar to those measured from an actual FFDM system verifying the methodology used. The application of this technique to clinical images from the small field system will allow the clinical performance of different FFDM systems to be simulated and directly compared using the same clinical image datasets.

  8. A Feedback Intervention to Increase Digital and Paper Checklist Performance in Technically Advanced Aircraft Simulation

    ERIC Educational Resources Information Center

    Rantz, William G.; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists…

  9. Hierarchical CAD Tools for Radiation Hardened Mixed Signal Electronic Circuits

    DTIC Science & Technology

    2005-01-28

    11 Figure 3: Schematic of Analog and Digital Components 12 Figure 4: Dose Rate Syntax 14 Figure 5: Single Event Effects (SEE) Syntax 15 Figure 6...Harmony-AMS simulation of a Digital Phase Locked Loop 19 Figure 10: SEE results from DPLL Simulation 20 Figure 11: Published results used for validation...analog and digital circuitry. Combining the analog and digital elements onto a single chip has several advantages, but also creates unique challenges

  10. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  11. Multiple-access phased array antenna simulator for a digital beam-forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  12. Multiple-access phased array antenna simulator for a digital beam forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design, and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  13. Effects of a cochlear implant simulation on immediate memory in normal-hearing adults

    PubMed Central

    Burkholder, Rose A.; Pisoni, David B.; Svirsky, Mario A.

    2012-01-01

    This study assessed the effects of stimulus misidentification and memory processing errors on immediate memory span in 25 normal-hearing adults exposed to degraded auditory input simulating signals provided by a cochlear implant. The identification accuracy of degraded digits in isolation was measured before digit span testing. Forward and backward digit spans were shorter when digits were degraded than when they were normal. Participants’ normal digit spans and their accuracy in identifying isolated digits were used to predict digit spans in the degraded speech condition. The observed digit spans in degraded conditions did not differ significantly from predicted digit spans. This suggests that the decrease in memory span is related primarily to misidentification of digits rather than memory processing errors related to cognitive load. These findings provide complementary information to earlier research on auditory memory span of listeners exposed to degraded speech either experimentally or as a consequence of a hearing-impairment. PMID:16317807

  14. [Constructing 3-dimensional colorized digital dental model assisted by digital photography].

    PubMed

    Ye, Hong-qiang; Liu, Yu-shu; Liu, Yun-song; Ning, Jing; Zhao, Yi-jiao; Zhou, Yong-sheng

    2016-02-18

    To explore a method of constructing universal 3-dimensional (3D) colorized digital dental model which can be displayed and edited in common 3D software (such as Geomagic series), in order to improve the visual effect of digital dental model in 3D software. The morphological data of teeth and gingivae were obtained by intra-oral scanning system (3Shape TRIOS), constructing 3D digital dental models. The 3D digital dental models were exported as STL files. Meanwhile, referring to the accredited photography guide of American Academy of Cosmetic Dentistry (AACD), five selected digital photographs of patients'teeth and gingivae were taken by digital single lens reflex camera (DSLR) with the same exposure parameters (except occlusal views) to capture the color data. In Geomagic Studio 2013, after STL file of 3D digital dental model being imported, digital photographs were projected on 3D digital dental model with corresponding position and angle. The junctions of different photos were carefully trimmed to get continuous and natural color transitions. Then the 3D colorized digital dental model was constructed, which was exported as OBJ file or WRP file which was a special file for software of Geomagic series. For the purpose of evaluating the visual effect of the 3D colorized digital model, a rating scale on color simulation effect in views of patients'evaluation was used. Sixteen patients were recruited and their scores on colored and non-colored digital dental models were recorded. The data were analyzed using McNemar-Bowker test in SPSS 20. Universal 3D colorized digital dental model with better color simulation was constructed based on intra-oral scanning and digital photography. For clinical application, the 3D colorized digital dental models, combined with 3D face images, were introduced into 3D smile design of aesthetic rehabilitation, which could improve the patients' cognition for the esthetic digital design and virtual prosthetic effect. Universal 3D colorized digital dental model with better color simulation can be constructed assisted by 3D dental scanning system and digital photography. In clinical practice, the communication between dentist and patients could be improved assisted by the better visual perception since the colorized 3D digital dental models with better color simulation effect.

  15. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK

    PubMed Central

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, You-Ting

    2016-01-01

    This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs) for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM) by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs. PMID:27509507

  16. Lewis hybrid computing system, users manual

    NASA Technical Reports Server (NTRS)

    Bruton, W. M.; Cwynar, D. S.

    1979-01-01

    The Lewis Research Center's Hybrid Simulation Lab contains a collection of analog, digital, and hybrid (combined analog and digital) computing equipment suitable for the dynamic simulation and analysis of complex systems. This report is intended as a guide to users of these computing systems. The report describes the available equipment' and outlines procedures for its use. Particular is given to the operation of the PACER 100 digital processor. System software to accomplish the usual digital tasks such as compiling, editing, etc. and Lewis-developed special purpose software are described.

  17. Six-degree-of-freedom aircraft simulation with mixed-data structure using the applied dynamics simulation language, ADSIM

    NASA Technical Reports Server (NTRS)

    Savaglio, Clare

    1989-01-01

    A realistic simulation of an aircraft in the flight using the AD 100 digital computer is presented. The implementation of three model features is specifically discussed: (1) a large aerodynamic data base (130,00 function values) which is evaluated using function interpolation to obtain the aerodynamic coefficients; (2) an option to trim the aircraft in longitudinal flight; and (3) a flight control system which includes a digital controller. Since the model includes a digital controller the simulation implements not only continuous time equations but also discrete time equations, thus the model has a mixed-data structure.

  18. Optimizing of a high-order digital filter using PSO algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Fuchun

    2018-04-01

    A self-adaptive high-order digital filter, which offers opportunity to simplify the process of tuning parameters and further improve the noise performance, is presented in this paper. The parameters of traditional digital filter are mainly tuned by complex calculation, whereas this paper presents a 5th order digital filter to obtain outstanding performance and the parameters of the proposed filter are optimized by swarm intelligent algorithm. Simulation results with respect to the proposed 5th order digital filter, SNR>122dB and the noise floor under -170dB are obtained in frequency range of [5-150Hz]. In further simulation, the robustness of the proposed 5th order digital is analyzed.

  19. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1973-01-01

    The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.

  20. Optimal generalized multistep integration formulae for real-time digital simulation

    NASA Technical Reports Server (NTRS)

    Moerder, D. D.; Halyo, N.

    1985-01-01

    The problem of discretizing a dynamical system for real-time digital simulation is considered. Treating the system and its simulation as stochastic processes leads to a statistical characterization of simulator fidelity. A plant discretization procedure based on an efficient matrix generalization of explicit linear multistep discrete integration formulae is introduced, which minimizes a weighted sum of the mean squared steady-state and transient error between the system and simulator outputs.

  1. Using subject-specific three-dimensional (3D) anthropometry data in digital human modelling: case study in hand motion simulation.

    PubMed

    Tsao, Liuxing; Ma, Liang

    2016-11-01

    Digital human modelling enables ergonomists and designers to consider ergonomic concerns and design alternatives in a timely and cost-efficient manner in the early stages of design. However, the reliability of the simulation could be limited due to the percentile-based approach used in constructing the digital human model. To enhance the accuracy of the size and shape of the models, we proposed a framework to generate digital human models using three-dimensional (3D) anthropometric data. The 3D scan data from specific subjects' hands were segmented based on the estimated centres of rotation. The segments were then driven in forward kinematics to perform several functional postures. The constructed hand models were then verified, thereby validating the feasibility of the framework. The proposed framework helps generate accurate subject-specific digital human models, which can be utilised to guide product design and workspace arrangement. Practitioner Summary: Subject-specific digital human models can be constructed under the proposed framework based on three-dimensional (3D) anthropometry. This approach enables more reliable digital human simulation to guide product design and workspace arrangement.

  2. Enhanced TCAS 2/CDTI traffic Sensor digital simulation model and program description

    NASA Technical Reports Server (NTRS)

    Goka, T.

    1984-01-01

    Digital simulation models of enhanced TCAS 2/CDTI traffic sensors are developed, based on actual or projected operational and performance characteristics. Two enhanced Traffic (or Threat) Alert and Collision Avoidance Systems are considered. A digital simulation program is developed in FORTRAN. The program contains an executive with a semireal time batch processing capability. The simulation program can be interfaced with other modules with a minimum requirement. Both the traffic sensor and CAS logic modules are validated by means of extensive simulation runs. Selected validation cases are discussed in detail, and capabilities and limitations of the actual and simulated systems are noted. The TCAS systems are not specifically intended for Cockpit Display of Traffic Information (CDTI) applications. These systems are sufficiently general to allow implementation of CDTI functions within the real systems' constraints.

  3. Radiometry simulation within the end-to-end simulation tool SENSOR

    NASA Astrophysics Data System (ADS)

    Wiest, Lorenz; Boerner, Anko

    2001-02-01

    12 An end-to-end simulation is a valuable tool for sensor system design, development, optimization, testing, and calibration. This contribution describes the radiometry module of the end-to-end simulation tool SENSOR. It features MODTRAN 4.0-based look up tables in conjunction with a cache-based multilinear interpolation algorithm to speed up radiometry calculations. It employs a linear reflectance parameterization to reduce look up table size, considers effects due to the topology of a digital elevation model (surface slope, sky view factor) and uses a reflectance class feature map to assign Lambertian and BRDF reflectance properties to the digital elevation model. The overall consistency of the radiometry part is demonstrated by good agreement between ATCOR 4-retrieved reflectance spectra of a simulated digital image cube and the original reflectance spectra used to simulate this image data cube.

  4. A behavioral-level HDL description of SFQ logic circuits for quantitative performance analysis of large-scale SFQ digital systems

    NASA Astrophysics Data System (ADS)

    Matsuzaki, F.; Yoshikawa, N.; Tanaka, M.; Fujimaki, A.; Takai, Y.

    2003-10-01

    Recently many single flux quantum (SFQ) logic circuits containing several thousands of Josephson junctions have been designed successfully by using digital domain simulation based on the hard ware description language (HDL). In the present HDL-based design of SFQ circuits, a structure-level HDL description has been used, where circuits are made up of basic gate cells. However, in order to analyze large-scale SFQ digital systems, such as a microprocessor, more higher-level circuit abstraction is necessary to reduce the circuit simulation time. In this paper we have investigated the way to describe functionality of the large-scale SFQ digital circuits by a behavior-level HDL description. In this method, the functionality and the timing of the circuit block is defined directly by describing their behavior by the HDL. Using this method, we can dramatically reduce the simulation time of large-scale SFQ digital circuits.

  5. Closed loop models for analyzing the effects of simulator characteristics. [digital simulation of human operators

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Kleinman, D. L.

    1978-01-01

    The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.

  6. A Digital Simulation Program for Health Science Students to Follow Drug Levels in the Body

    ERIC Educational Resources Information Center

    Stavchansky, Salomon; And Others

    1977-01-01

    The Rayetheon Scientific Simulation Language (RSSL) program, an easily-used simulation on the CDC/6600 computer at the University of Texas at Austin, offers a simple method of solving differential equations on a digital computer. It is used by undergraduate biopharmaceutics-pharmacokinetics students and graduate students in all areas. (Author/LBH)

  7. Generalized dynamic engine simulation techniques for the digital computer

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1974-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.

  8. Generalized dynamic engine simulation techniques for the digital computer

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1974-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.

  9. Generalized dynamic engine simulation techniques for the digital computers

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1975-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar digital programs on future engine simulation philosophy is also discussed.

  10. Abstracts of ARI Research Publications, FY 1974 and 1975

    DTIC Science & Technology

    1979-10-01

    may obtain these documents from the National Technical Information Service (NTIS), Department of Commerce, Springfield, Va., 22151. The six- digit AD...Siegel, A. I., Wolf, J. J., & Leahy, W. R. (Applied Psycho- logical Services, Inc.). A digital simulation model of message handling in the Tactical...inherent in the mission of interest, (b) incorporate these 28 into a logic for a digital simulation model, and (c) develop a computer program reflecting

  11. F-8 Iron Bird Cockpit

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The F-8 DFBW (Digital-Fly-By-Wire) simulator used an 'Iron-Bird' for its cockpit. It was used from 1971 to 1986. The F-8 DFBW simulator was used in the development, testing, and validation of an all digital flight-control system installed in the F-8 aircraft that replaced the normal mechanical/hydraulic controls. Many military and commercial aircraft have digital flight control systems based on the technologies developed at NASA Dryden.

  12. Computational methods to predict railcar response to track cross-level variations

    DOT National Transportation Integrated Search

    1976-09-01

    The rocking response of railroad freight cars to track cross-level variations is studied using: (1) a reduced complexity digital simulation model, and (2) a quasi-linear describing function analysis. The reduced complexity digital simulation model em...

  13. [Precision of digital impressions with TRIOS under simulated intraoral impression taking conditions].

    PubMed

    Yang, Xin; Sun, Yi-fei; Tian, Lei; Si, Wen-jie; Feng, Hai-lan; Liu, Yi-hong

    2015-02-18

    To evaluate the precision of digital impressions taken under simulated clinical impression taking conditions with TRIOS and to compare with the precision of extraoral digitalizations. Six #14-#17 epoxy resin dentitions with extracted #16 tooth preparations embedded were made. For each artificial dentition, (1)a silicone rubber impression was taken with individual tray, poured with type IV plaster,and digitalized with 3Shape D700 model scanner for 10 times; (2) fastened to a dental simulator, 10 digital impressions for each were taken with 3Shape TRIOS intraoral scanner. To assess the precision, best-fit algorithm and 3D comparison were conducted between repeated scan models pairwise by Geomagic Qualify 12.0, exported as averaged errors (AE) and color-coded diagrams. Non-parametric analysis was performed to compare the precisions of digital impressions and model images. The color-coded diagrams were used to show the deviations distributions. The mean of AE for digital impressions was 7.058 281 μm, which was greater than that of 4.092 363 μm for the model images (P<0.05). However, the means and medians of AE for digital impressions were no more than 10 μm, which meant that the consistency between the digital impressions was good. The deviations distribution was uniform in the model images,while nonuniform in the digital impressions with greater deviations lay mainly around the shoulders and interproximal surfaces. Digital impressions with TRIOS are of good precision and up to the clinical standard. Shoulders and interproximal surfaces scanning are more difficult.

  14. Imaging and computational considerations for image computed permeability: Operating envelope of Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias

    2018-06-01

    This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.

  15. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    NASA Astrophysics Data System (ADS)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  16. Color visual simulation applications at the Defense Mapping Agency

    NASA Astrophysics Data System (ADS)

    Simley, J. D.

    1984-09-01

    The Defense Mapping Agency (DMA) produces the Digital Landmass System data base to provide culture and terrain data in support of numerous aircraft simulators. In order to conduct data base and simulation quality control and requirements analysis, DMA has developed the Sensor Image Simulator which can rapidly generate visual and radar static scene digital simulations. The use of color in visual simulation allows the clear portrayal of both landcover and terrain data, whereas the initial black and white capabilities were restricted in this role and thus found limited use. Color visual simulation has many uses in analysis to help determine the applicability of current and prototype data structures to better meet user requirements. Color visual simulation is also significant in quality control since anomalies can be more easily detected in natural appearing forms of the data. The realism and efficiency possible with advanced processing and display technology, along with accurate data, make color visual simulation a highly effective medium in the presentation of geographic information. As a result, digital visual simulation is finding increased potential as a special purpose cartographic product. These applications are discussed and related simulation examples are presented.

  17. Modeling of carbonate reservoir variable secondary pore space based on CT images

    NASA Astrophysics Data System (ADS)

    Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.

    2017-12-01

    Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.

  18. Electronic simulation of a barometric pressure sensor for the meteorological monitor assembly

    NASA Technical Reports Server (NTRS)

    Guiar, C. N.; Duff, L. W.

    1982-01-01

    An analysis of the electronic simulation of barometric pressure used to self-test the counter electronics of the digital barometer is presented. The barometer is part of the Meteorological Monitor Assembly that supports navigation in deep space communication. The theory of operation of the digital barometer, the design details, and the verification procedure used with the barometric pressure simulator are presented.

  19. A real-time digital computer program for the simulation of a single rotor helicopter

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Gibson, L. H.; Steinmetz, G. G.

    1974-01-01

    A computer program was developed for the study of a single-rotor helicopter on the Langley Research Center real-time digital simulation system. Descriptions of helicopter equations and data, program subroutines (including flow charts and listings), real-time simulation system routines, and program operation are included. Program usage is illustrated by standard check cases and a representative flight case.

  20. Integrated dynamic analysis simulation of space stations with controllable solar arrays (supplemental data and analyses)

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    Space station and solar array data and the analyses which were performed in support of the integrated dynamic analysis study. The analysis methods and the formulated digital simulation were developed. Control systems for space station altitude control and solar array orientation control include generic type control systems. These systems have been digitally coded and included in the simulation.

  1. A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Rao, Hariprasad Nannapaneni

    1989-01-01

    The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.

  2. Wind energy system time-domain (WEST) analyzers

    NASA Technical Reports Server (NTRS)

    Dreier, M. E.; Hoffman, J. A.

    1981-01-01

    A portable analyzer which simulates in real time the complex nonlinear dynamics of horizontal axis wind energy systems was constructed. Math models for an aeroelastic rotor featuring nonlinear aerodynamic and inertial terms were implemented with high speed digital controllers and analog calculation. This model was combined with other math models of elastic supports, control systems, a power train and gimballed rotor kinematics. A stroboscopic display system graphically depicting distributed blade loads, motion, and other aerodynamic functions on a cathode ray tube is included. Limited correlation efforts showed good comparison between the results of this analyzer and other sophisticated digital simulations. The digital simulation results were successfully correlated with test data.

  3. Common modeling system for digital simulation

    NASA Technical Reports Server (NTRS)

    Painter, Rick

    1994-01-01

    The Joint Modeling and Simulation System is a tri-service investigation into a common modeling framework for the development digital models. The basis for the success of this framework is an X-window-based, open systems architecture, object-based/oriented methodology, standard interface approach to digital model construction, configuration, execution, and post processing. For years Department of Defense (DOD) agencies have produced various weapon systems/technologies and typically digital representations of the systems/technologies. These digital representations (models) have also been developed for other reasons such as studies and analysis, Cost Effectiveness Analysis (COEA) tradeoffs, etc. Unfortunately, there have been no Modeling and Simulation (M&S) standards, guidelines, or efforts towards commonality in DOD M&S. The typical scenario is an organization hires a contractor to build hardware and in doing so an digital model may be constructed. Until recently, this model was not even obtained by the organization. Even if it was procured, it was on a unique platform, in a unique language, with unique interfaces, and, with the result being UNIQUE maintenance required. Additionally, the constructors of the model expended more effort in writing the 'infrastructure' of the model/simulation (e.g. user interface, database/database management system, data journalizing/archiving, graphical presentations, environment characteristics, other components in the simulation, etc.) than in producing the model of the desired system. Other side effects include: duplication of efforts; varying assumptions; lack of credibility/validation; and decentralization in policy and execution. J-MASS provides the infrastructure, standards, toolset, and architecture to permit M&S developers and analysts to concentrate on the their area of interest.

  4. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  5. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.

    PubMed

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio

    2017-02-17

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

  6. Calculation for simulation of archery goal value using a web camera and ultrasonic sensor

    NASA Astrophysics Data System (ADS)

    Rusjdi, Darma; Abdurrasyid, Wulandari, Dewi Arianti

    2017-08-01

    Development of the device simulator digital indoor archery-based embedded systems as a solution to the limitations of the field or open space is adequate, especially in big cities. Development of the device requires simulations to calculate the value of achieving the target based on the approach defined by the parabolic motion variable initial velocity and direction of motion of the arrow reaches the target. The simulator device should be complemented with an initial velocity measuring device using ultrasonic sensors and measuring direction of the target using a digital camera. The methodology uses research and development of application software from modeling and simulation approach. The research objective to create simulation applications calculating the value of the achievement of the target arrows. Benefits as a preliminary stage for the development of the simulator device of archery. Implementation of calculating the value of the target arrows into the application program generates a simulation game of archery that can be used as a reference development of the digital archery simulator in a room with embedded systems using ultrasonic sensors and web cameras. Applications developed with the simulation calculation comparing the outer radius of the circle produced a camera from a distance of three meters.

  7. Analog Design for Digital Deployment of a Serious Leadership Game

    NASA Technical Reports Server (NTRS)

    Maxwell, Nicholas; Lang, Tristan; Herman, Jeffrey L.; Phares, Richard

    2012-01-01

    This paper presents the design, development, and user testing of a leadership development simulation. The authors share lessons learned from using a design process for a board game to allow for quick and inexpensive revision cycles during the development of a serious leadership development game. The goal of this leadership simulation is to accelerate the development of leadership capacity in high-potential mid-level managers (GS-15 level) in a federal government agency. Simulation design included a mixed-method needs analysis, using both quantitative and qualitative approaches to determine organizational leadership needs. Eight design iterations were conducted, including three user testing phases. Three re-design iterations followed initial development, enabling game testing as part of comprehensive instructional events. Subsequent design, development and testing processes targeted digital application to a computer- and tablet-based environment. Recommendations include pros and cons of development and learner testing of an initial analog simulation prior to full digital simulation development.

  8. Extraction of topography from side-looking satellite systems - A case study with SPOT simulation data

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen G.; Merry, Carolyn J.; Mckim, Harlan L.; Irish, Richard; Miller, Michael S.

    1988-01-01

    A simulated data set was used to evaluate techniques for extracting topography from side-looking satellite systems for an area of northwest Washington state. A negative transparency orthophotoquad was digitized at a spacing of 85 microns, resulting in an equivalent ground distance of 9.86 m between pixels and a radiometric resolution of 256 levels. A bilinear interpolation was performed on digital elevation model data to generate elevation data at a 9.86-m resolution. The nominal orbital characteristics and geometry of the SPOT satellite were convoluted with the data to produce simulated panchromatic HRV digital stereo imagery for three different orbital paths and techniques for reconstructing topographic data were developed. Analyses with the simulated HRV data and other data sets show that the method is effective.

  9. Digital simulation of hybrid loop operation in RFI backgrounds.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.

    1972-01-01

    A digital computer model for Monte-Carlo simulation of an imperfect second-order hybrid phase-locked loop (PLL) operating in radio-frequency interference (RFI) and Gaussian noise backgrounds has been developed. Characterization of hybrid loop performance in terms of cycle slipping statistics and phase error variance, through computer simulation, indicates that the hybrid loop has desirable performance characteristics in RFI backgrounds over the conventional PLL or the costas loop.

  10. Development of flood routing simulation system of digital Qingjiang based on integrated spatial information technology

    NASA Astrophysics Data System (ADS)

    Yuan, Yanbin; Zhou, You; Zhu, Yaqiong; Yuan, Xiaohui; Sælthun, N. R.

    2007-11-01

    Based on digital technology, flood routing simulation system development is an important component of "digital catchment". Taking QingJiang catchment as a pilot case, in-depth analysis on informatization of Qingjiang catchment management being the basis, aiming at catchment data's multi-source, - dimension, -element, -subject, -layer and -class feature, the study brings the design thought and method of "subject-point-source database" (SPSD) to design system structure in order to realize the unified management of catchments data in great quantity. Using the thought of integrated spatial information technology for reference, integrating hierarchical structure development model of digital catchment is established. The model is general framework of the flood routing simulation system analysis, design and realization. In order to satisfy the demands of flood routing three-dimensional simulation system, the object-oriented spatial data model are designed. We can analyze space-time self-adapting relation between flood routing and catchments topography, express grid data of terrain by using non-directed graph, apply breadth first search arithmetic, set up search method for the purpose of dynamically searching stream channel on the basis of simulated three-dimensional terrain. The system prototype is therefore realized. Simulation results have demonstrated that the proposed approach is feasible and effective in the application.

  11. Digital Simulation Games for Social Studies Classrooms

    ERIC Educational Resources Information Center

    Devlin-Scherer, Roberta; Sardone, Nancy B.

    2010-01-01

    Data from ten teacher candidates studying teaching methods were analyzed to determine perceptions toward digital simulation games in the area of social studies. This research can be used as a conceptual model of how current teacher candidates react to new methods of instruction and determine how education programs might change existing curricula…

  12. Physical and digital simulations for IVA robotics

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine; Workman, Gary L.

    1992-01-01

    Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

  13. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits

    PubMed Central

    Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A.; Carretta, Stefano

    2015-01-01

    Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence. PMID:26563516

  14. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.

    PubMed

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies.

  15. A feedback intervention to increase digital and paper checklist performance in technically advanced aircraft simulation.

    PubMed

    Rantz, William G; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes.

  16. The Design of the Digital Multiplexer based on Power Carrier Communication on Sports Venues

    NASA Astrophysics Data System (ADS)

    Lu, Ming-jing; Liang, Li; Yu, Xiao-yan

    In this paper, one kind of double CPU, the low power loss, the low cost digital multiplexer has been designed in conducted the full research to this communicated way, which is satisfied the need of the electric power correspondence transmission system, especially in sports venues. This article is elaborated the digital multiplexer's hardware and the software principle of design in detail, carries on the simulation using the monolithic integrated circuit simulator, has achieved the satisfactory effect through the debug.

  17. Quadruplex digital flight control system assessment

    NASA Technical Reports Server (NTRS)

    Mulcare, D. B.; Downing, L. E.; Smith, M. K.

    1988-01-01

    Described are the development and validation of a double fail-operational digital flight control system architecture for critical pitch axis functions. Architectural tradeoffs are assessed, system simulator modifications are described, and demonstration testing results are critiqued. Assessment tools and their application are also illustrated. Ultimately, the vital role of system simulation, tailored to digital mechanization attributes, is shown to be essential to validating the airworthiness of full-time critical functions such as augmented fly-by-wire systems for relaxed static stability airplanes.

  18. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 1: Experimental design and initial test

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.; Christensen, D. G.

    1981-01-01

    A Flight Data Console simulation of a digital communication link to replace the current voice communication system used in air traffic control (ATC) was developed. The study determined how a digital communications system reduces cockpit workload, improve, flight proficiency, and is acceptable to general aviation pilots. It is shown that instrument flight, including approach and landing, can be accomplished by using a digital data link system for ATC communication.

  19. A high fidelity real-time simulation of a small turboshaft engine

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.

    1988-01-01

    A high-fidelity component-type model and real-time digital simulation of the General Electric T700-GE-700 turboshaft engine were developed for use with current generation real-time blade-element rotor helicopter simulations. A control system model based on the specification fuel control system used in the UH-60A Black Hawk helicopter is also presented. The modeling assumptions and real-time digital implementation methods particular to the simulation of small turboshaft engines are described. The validity of the simulation is demonstrated by comparison with analysis-oriented simulations developed by the manufacturer, available test data, and flight-test time histories.

  20. BacNet and Analog/Digital Interfaces of the Building Controls Virtual Testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouidui, Thierry Stephane; Wetter, Michael; Li, Zhengwei

    2011-11-01

    This paper gives an overview of recent developments in the Building Controls Virtual Test Bed (BCVTB), a framework for co-simulation and hardware-in-the-loop. First, a general overview of the BCVTB is presented. Second, we describe the BACnet interface, a link which has been implemented to couple BACnet devices to the BCVTB. We present a case study where the interface was used to couple a whole building simulation program to a building control system to assess in real-time the performance of a real building. Third, we present the ADInterfaceMCC, an analog/digital interface that allows a USB-based analog/digital converter to be linked tomore » the BCVTB. In a case study, we show how the link was used to couple the analog/digital converter to a building simulation model for local loop control.« less

  1. Digital autopilots: Design considerations and simulator evaluations

    NASA Technical Reports Server (NTRS)

    Osder, S.; Neuman, F.; Foster, J.

    1971-01-01

    The development of a digital autopilot program for a transport aircraft and the evaluation of that system's performance on a transport aircraft simulator is discussed. The digital autopilot includes three axis attitude stabilization, automatic throttle control and flight path guidance functions with emphasis on the mode progression from descent into the terminal area through automatic landing. The study effort involved a sequence of tasks starting with the definition of detailed system block diagrams of control laws followed by a flow charting and programming phase and concluding with performance verification using the transport aircraft simulation. The autopilot control laws were programmed in FORTRAN 4 in order to isolate the design process from requirements peculiar to an individual computer.

  2. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    PubMed Central

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-01-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293

  3. Recovery from simulated sawn logs with sweep.

    Treesearch

    Robert A. Monserud; Dean L. Parry; Christine L. Todoroki

    2004-01-01

    A sawing simulator, AUTOSAW, was used to examine the effect of increasing sweep on lumber recovery. Sample material consisted of 51 logs from 22 western hemlock (Tsuga heterophylla (Raf.) Sarg. ) trees in western Oregon, United States. All knots on the 4.9-m logs were measured, mapped, and converted into 3-dimensional digital formats. The digital...

  4. A Digital Computer Simulation of Cardiovascular and Renal Physiology.

    ERIC Educational Resources Information Center

    Tidball, Charles S.

    1979-01-01

    Presents the physiological MACPEE, one of a family of digital computer simulations used in Canada and Great Britain. A general description of the model is provided, along with a sample of computer output format, options for making interventions, advanced capabilities, an evaluation, and technical information for running a MAC model. (MA)

  5. Analysis of an all-digital maximum likelihood carrier phase and clock timing synchronizer for eight phase-shift keying modulation

    NASA Astrophysics Data System (ADS)

    Degaudenzi, Riccardo; Vanghi, Vieri

    1994-02-01

    In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.

  6. Digital flight control research

    NASA Technical Reports Server (NTRS)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  7. MAGIC Computer Simulation. Volume 1: User Manual

    DTIC Science & Technology

    1970-07-01

    vulnerability and MAGIC programs. A three-digit code is assigned to each component of the target, such as armor, gun tube; and a two-digit code is assigned to...A review of the subject Magic Computer Simulation User and Analyst Manuals has been conducted based upon a request received from the US Army...1970 4. TITLE AND SUBTITLE MAGIC Computer Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  8. Turbofan Engine Post-Instability Behavior - Computer Simulations, Test Validation, and Application of Simulations,

    DTIC Science & Technology

    COMPRESSORS, *AIR FLOW, TURBOFAN ENGINES , TRANSIENTS, SURGES, STABILITY, COMPUTERIZED SIMULATION, EXPERIMENTAL DATA, VALIDATION, DIGITAL SIMULATION, INLET GUIDE VANES , ROTATION, STALLING, RECOVERY, HYSTERESIS

  9. A FEEDBACK INTERVENTION TO INCREASE DIGITAL AND PAPER CHECKLIST PERFORMANCE IN TECHNICALLY ADVANCED AIRCRAFT SIMULATION

    PubMed Central

    Rantz, William G; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes. PMID:21541133

  10. Digital Quantum Simulation of Minimal AdS/CFT.

    PubMed

    García-Álvarez, L; Egusquiza, I L; Lamata, L; Del Campo, A; Sonner, J; Solano, E

    2017-07-28

    We propose the digital quantum simulation of a minimal AdS/CFT model in controllable quantum platforms. We consider the Sachdev-Ye-Kitaev model describing interacting Majorana fermions with randomly distributed all-to-all couplings, encoding nonlocal fermionic operators onto qubits to efficiently implement their dynamics via digital techniques. Moreover, we also give a method for probing nonequilibrium dynamics and the scrambling of information. Finally, our approach serves as a protocol for reproducing a simplified low-dimensional model of quantum gravity in advanced quantum platforms as trapped ions and superconducting circuits.

  11. Digital Quantum Simulation of Minimal AdS /CFT

    NASA Astrophysics Data System (ADS)

    García-Álvarez, L.; Egusquiza, I. L.; Lamata, L.; del Campo, A.; Sonner, J.; Solano, E.

    2017-07-01

    We propose the digital quantum simulation of a minimal AdS /CFT model in controllable quantum platforms. We consider the Sachdev-Ye-Kitaev model describing interacting Majorana fermions with randomly distributed all-to-all couplings, encoding nonlocal fermionic operators onto qubits to efficiently implement their dynamics via digital techniques. Moreover, we also give a method for probing nonequilibrium dynamics and the scrambling of information. Finally, our approach serves as a protocol for reproducing a simplified low-dimensional model of quantum gravity in advanced quantum platforms as trapped ions and superconducting circuits.

  12. Tree-Structured Digital Organisms Model

    NASA Astrophysics Data System (ADS)

    Suzuki, Teruhiko; Nobesawa, Shiho; Tahara, Ikuo

    Tierra and Avida are well-known models of digital organisms. They describe a life process as a sequence of computation codes. A linear sequence model may not be the only way to describe a digital organism, though it is very simple for a computer-based model. Thus we propose a new digital organism model based on a tree structure, which is rather similar to the generic programming. With our model, a life process is a combination of various functions, as if life in the real world is. This implies that our model can easily describe the hierarchical structure of life, and it can simulate evolutionary computation through mutual interaction of functions. We verified our model by simulations that our model can be regarded as a digital organism model according to its definitions. Our model even succeeded in creating species such as viruses and parasites.

  13. Design and application of BIM based digital sand table for construction management

    NASA Astrophysics Data System (ADS)

    Fuquan, JI; Jianqiang, LI; Weijia, LIU

    2018-05-01

    This paper explores the design and application of BIM based digital sand table for construction management. Aiming at the demands and features of construction management plan for bridge and tunnel engineering, the key functional features of digital sand table should include three-dimensional GIS, model navigation, virtual simulation, information layers, and data exchange, etc. That involving the technology of 3D visualization and 4D virtual simulation of BIM, breakdown structure of BIM model and project data, multi-dimensional information layers, and multi-source data acquisition and interaction. Totally, the digital sand table is a visual and virtual engineering information integrated terminal, under the unified data standard system. Also, the applications shall contain visual constructing scheme, virtual constructing schedule, and monitoring of construction, etc. Finally, the applicability of several basic software to the digital sand table is analyzed.

  14. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  15. Flexible Simulation E-Learning Environment for Studying Digital Circuits and Possibilities for It Deployment as Semantic Web Service

    ERIC Educational Resources Information Center

    Radoyska, P.; Ivanova, T.; Spasova, N.

    2011-01-01

    In this article we present a partially realized project for building a distributed learning environment for studying digital circuits Test and Diagnostics at TU-Sofia. We describe the main requirements for this environment, substantiate the developer platform choice, and present our simulation and circuit parameter calculation tools.…

  16. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  17. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    PubMed Central

    Cengiz, Kubra

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468

  18. Digital systems design language. Design synthesis of digital systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    The Digital Systems Design Language (DDL) is implemented on the SEL-32 computer systems. The details of the language, translator and simulator programs are included. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  19. Digital computer simulation of inductor-energy-storage dc-to-dc converters with closed-loop regulators

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Owen, H. A.; Wilson, T. G.; Rodriguez, G. E.

    1974-01-01

    The simulation of converter-controller combinations by means of a flexible digital computer program which produces output to a graphic display is discussed. The procedure is an alternative to mathematical analysis of converter systems. The types of computer programming involved in the simulation are described. Schematic diagrams, state equations, and output equations are displayed for four basic forms of inductor-energy-storage dc to dc converters. Mathematical models are developed to show the relationship of the parameters.

  20. Characterization of the faulted behavior of digital computers and fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Miner, Paul S.

    1989-01-01

    A development status evaluation is presented for efforts conducted at NASA-Langley since 1977, toward the characterization of the latent fault in digital fault-tolerant systems. Attention is given to the practical, high speed, generalized gate-level logic system simulator developed, as well as to the validation methodology used for the simulator, on the basis of faultable software and hardware simulations employing a prototype MIL-STD-1750A processor. After validation, latency tests will be performed.

  1. Analytical stability and simulation response study for a coupled two-body system

    NASA Technical Reports Server (NTRS)

    Tao, K. M.; Roberts, J. R.

    1975-01-01

    An analytical stability study and a digital simulation response study of two connected rigid bodies are documented. Relative rotation of the bodies at the connection is allowed, thereby providing a model suitable for studying system stability and response during a soft-dock regime. Provisions are made of a docking port axes alignment torque and a despin torque capability for encountering spinning payloads. Although the stability analysis is based on linearized equations, the digital simulation is based on nonlinear models.

  2. A TREETOPS simulation of the Hubble Space Telescope-High Gain Antenna interaction

    NASA Technical Reports Server (NTRS)

    Sharkey, John P.

    1987-01-01

    Virtually any project dealing with the control of a Large Space Structure (LSS) will involve some level of verification by digital computer simulation. While the Hubble Space Telescope might not normally be included in a discussion of LSS, it is presented to highlight a recently developed simulation and analysis program named TREETOPS. TREETOPS provides digital simulation, linearization, and control system interaction of flexible, multibody spacecraft which admit to a point-connected tree topology. The HST application of TREETOPS is intended to familiarize the LSS community with TREETOPS by presenting a user perspective of its key features.

  3. Digital accumulators in phase and frequency tracking loops

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami; Statman, Joseph I.

    1990-01-01

    Results on the effects of digital accumulators in phase and frequency tracking loops are presented. Digital accumulators or summers are used extensively in digital signal processing to perform averaging or to reduce processing rates to acceptable levels. For tracking the Doppler of high-dynamic targets at low carrier-to-noise ratios, it is shown through simulation and experiment that digital accumulators can contribute an additional loss in operating threshold. This loss was not considered in any previous study and needs to be accounted for in performance prediction analysis. Simulation and measurement results are used to characterize the loss due to the digital summers for three different tracking loops: a digital phase-locked loop, a cross-product automatic frequency tracking loop, and an extended Kalman filter. The tracking algorithms are compared with respect to their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. It is shown that failure to account for the effect of accumulators can result in an inaccurate performance prediction, the extent of which depends highly on the algorithm used.

  4. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  5. Exploration of malingering indices in the Wechsler Adult Intelligence Scale-Fourth Edition Digit Span subtest.

    PubMed

    Reese, Caitlin S; Suhr, Julie A; Riddle, Tara L

    2012-03-01

    Prior research shows that Digit Span is a useful embedded measure of malingering. However, the Wechsler Adult Intelligence Scale-IV (Wechsler, 2008) altered Digit Span in meaningful ways, necessitating another look at Digit Span as an embedded measure of malingering. Using a simulated malingerer design, we examined the predictive accuracy of existing Digit Span validity indices and explored whether patterns of performance utilizing the new version would provide additional evidence for malingering. Undergraduates with a history of mild head injury performed with best effort or simulated impaired cognition and were also compared with a large sample of non-head-injured controls. Previously established cutoffs for the age-corrected scaled score and Reliable Digit Span (RDS) performed similarly in the present samples. Patterns of RDS length using all three subscales of the new scale were different in malingerers when compared with both head-injured and non-head-injured controls. Two potential alternative RDS scores were introduced, which showed better sensitivity than the traditional RDS, while retaining specificity to malingering.

  6. Discrete-time modelling of musical instruments

    NASA Astrophysics Data System (ADS)

    Välimäki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti

    2006-01-01

    This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed.

  7. Optical system design of dynamic infrared scene projector based on DMD

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Fu, Yuegang; Liu, Zhiying; Li, Yandong

    2014-09-01

    Infrared scene simulator is now widely used to simulate infrared scene practicality in the laboratory, which can greatly reduce the research cost of the optical electrical system and offer economical experiment environment. With the advantage of large dynamic range and high spatial resolution, dynamic infrared projection technology, which is the key part of the infrared scene simulator, based on digital micro-mirror device (DMD) has been rapidly developed and widely applied in recent years. In this paper, the principle of the digital micro-mirror device is briefly introduced and the characteristics of the DLP (Digital Light Procession) system based on digital micromirror device (DMD) are analyzed. The projection system worked at 8~12μm with 1024×768 pixel DMD is designed by ZEMAX. The MTF curve is close to the diffraction limited curve and the radius of the spot diagram is smaller than that of the airy disk. The result indicates that the system meets the design requirements.

  8. Characteristic of a Digital Correlation Radiometer Back End with Finite Wordlength

    NASA Technical Reports Server (NTRS)

    Biswas, Sayak K.; Hyde, David W.; James, Mark W.; Cecil, Daniel J.

    2017-01-01

    The performance characteristic of a digital correlation radiometer signal processing back end (DBE) is analyzed using a simulator. The particular design studied here corresponds to the airborne Hurricane Imaging radiometer which was jointly developed by the NASA Marshall Space Flight Center, University of Michigan, University of Central Florida and NOAA. Laboratory and flight test data is found to be in accord with the simulation results. Overall design seems to be optimum for the typical input signal dynamic range. It was found that the performance of the digital kurtosis could be improved by lowering the DBE input power level. An unusual scaling between digital correlation channels observed in the instrument data is confirmed to be a DBE characteristic.

  9. "Get Up and Play!" From Simulation to Imitation in Digital Games

    ERIC Educational Resources Information Center

    Jenson, Jennifer; De Castell, Suzanne

    2008-01-01

    As professors working in faculties of education for the past ten years researching digital gameplay and the design and development of games for education, the authors have often been asked whether digital games are good or bad for children. The discourse of good/bad is a slippery one and the authors believe that digital games, like television,…

  10. Enhancing Tele-robotics with Immersive Virtual Reality

    DTIC Science & Technology

    2017-11-03

    graduate and undergraduate students within the Digital Gaming and Simulation, Computer Science, and psychology programs have actively collaborated...investigates the use of artificial intelligence and visual computing. Numerous fields across the human-computer interaction and gaming research areas...invested in digital gaming and simulation to cognitively stimulate humans by computers, forming a $10.5B industry [1]. On the other hand, cognitive

  11. The Siren Song of Digital Simulation: Games, Procedural Rhetoric, and the Process of Historical Education

    ERIC Educational Resources Information Center

    Clyde, Jerremie; Wilkinson, Glenn

    2011-01-01

    This paper contrasts the importance of procedural rhetoric for the use of games in university and college level historical education with the use of history themed digital simulations. This paper starts by examining how history functions as a form of disciplinary knowledge and how this disciplinary way of knowing things is taught in the post…

  12. Using Software Simulators to Enhance the Learning of Digital Logic Design for the Information Technology Students

    ERIC Educational Resources Information Center

    Alsadoon, Abeer; Prasad, P. W. C.; Beg, Azam

    2017-01-01

    Making the students understand the theoretical concepts of digital logic design concepts is one of the major issues faced by the academics, therefore the teachers have tried different techniques to link the theoretical information to the practical knowledge. Use of software simulations is a technique for learning and practice that can be applied…

  13. Digital compensation techniques for the effects of time lag in closed-loop simulation using the 6 DOF motion system

    NASA Technical Reports Server (NTRS)

    Brown, R.

    1982-01-01

    Efforts are continued to develop digital filter compensation schemes for the correction of momentum gains observed in the closed loop simulation of the docking of two satellites using the 6 DOF motion system. Several filters that work well for small delays ( .100ms) and a non-preloaded probe are discussed.

  14. A Automated Tool for Supporting FMEAs of Digital Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue,M.; Chu, T.-L.; Martinez-Guridi, G.

    2008-09-07

    Although designs of digital systems can be very different from each other, they typically use many of the same types of generic digital components. Determining the impacts of the failure modes of these generic components on a digital system can be used to support development of a reliability model of the system. A novel approach was proposed for such a purpose by decomposing the system into a level of the generic digital components and propagating failure modes to the system level, which generally is time-consuming and difficult to implement. To overcome the associated issues of implementing the proposed FMEA approach,more » an automated tool for a digital feedwater control system (DFWCS) has been developed in this study. The automated FMEA tool is in nature a simulation platform developed by using or recreating the original source code of the different module software interfaced by input and output variables that represent physical signals exchanged between modules, the system, and the controlled process. For any given failure mode, its impacts on associated signals are determined first and the variables that correspond to these signals are modified accordingly by the simulation. Criteria are also developed, as part of the simulation platform, to determine whether the system has lost its automatic control function, which is defined as a system failure in this study. The conceptual development of the automated FMEA support tool can be generalized and applied to support FMEAs for reliability assessment of complex digital systems.« less

  15. A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions

    PubMed Central

    Taylor, Richard L.; Bentley, Christopher D. B.; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique; Carvalho, André R. R.; Hope, Joseph J.

    2017-01-01

    Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10−5 in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period. PMID:28401945

  16. A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions.

    PubMed

    Taylor, Richard L; Bentley, Christopher D B; Pedernales, Julen S; Lamata, Lucas; Solano, Enrique; Carvalho, André R R; Hope, Joseph J

    2017-04-12

    Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10 -5 in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period.

  17. Digital video timing analyzer for the evaluation of PC-based real-time simulation systems

    NASA Astrophysics Data System (ADS)

    Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.

    2009-05-01

    Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.

  18. All-optical analog-to-digital converter based on Kerr effect in photonic crystal

    NASA Astrophysics Data System (ADS)

    Jafari, Dariush; Nurmohammadi, Tofiq; Asadi, Mohammad Javad; Abbasian, Karim

    2018-05-01

    In this paper, a novel all-optical analog-to-digital converter (AOADC) is proposed and simulated for proof of principle. This AOADC is designed to operate in the range of telecom wavelength (1550 nm). A cavity made of nonlinear Kerr material in photonic crystal (PhC), is designed to achieve an optical analog-to-digital conversion with 1 Tera sample per second (TS/s) and the total footprint of 42 μm2 . The simulation is done using finite-difference time domain (FDTD) method.

  19. Digital Timing Recovery for High Speed Optical Drives

    NASA Astrophysics Data System (ADS)

    Ko, Seok Jun; Kim, Pan Soo; Choi, Hyung Jin; Lee, Jae-Wook

    2002-03-01

    A new digital timing recovery scheme for the optical drive system is presented. By comparative simulations using digital versatile disc (DVD) patterns with marginal input conditions, the proposed algorithm shows enhanced performances in jitter variance and signal-to-noise ratio (SNR) margin by four times and 3 [dB], respectively.

  20. Design Principles of Next-Generation Digital Gaming for Education.

    ERIC Educational Resources Information Center

    Squire, Kurt; Jenkins, Henry; Holland, Walter; Miller, Heather; O'Driscoll, Alice; Tan, Katie Philip; Todd, Katie.

    2003-01-01

    Discusses the rapid growth of digital games, describes research at MIT that is exploring the potential of digital games for supporting learning, and offers hypotheses about the design of next-generation educational video and computer games. Highlights include simulations and games; and design principles, including context and using information to…

  1. Periscopic Spine Surgery

    DTIC Science & Technology

    2005-03-01

    Guided Technologies, Boulder, CO; motion path built from three orthogonal sinusoidal paths is Optotrak , Northern Digital, Waterloo, ON) optical tracking...Hopkins University using an Optotrak to evaluate the simulated motions. The Optotrak (Northern Digital, Inc.) is an optical high- precision 3-D motion...verify the accuracy of the RMS, tests were carried out using the Optotrak , which was placed about 2 m from the simulator. For each test, two sets of data

  2. Plans for wind energy system simulation

    NASA Technical Reports Server (NTRS)

    Dreier, M. E.

    1978-01-01

    A digital computer code and a special purpose hybrid computer, were introduced. The digital computer program, the Root Perturbation Method or RPM, is an implementation of the classic floquet procedure which circumvents numerical problems associated with the extraction of Floquet roots. The hybrid computer, the Wind Energy System Time domain simulator (WEST), yields real time loads and deformation information essential to design and system stability investigations.

  3. High-Fidelity Simulation in Biomedical and Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.

  4. Six-degree-of-freedom missile simulation using the ADI AD 100 digital computer and ADSIM simulation language

    NASA Technical Reports Server (NTRS)

    Zwaanenburg, Koos

    1989-01-01

    The use of an AD 100 computer and the ADSIM language in the six-degree-of-freedom digital simulation of an air-to-ground missile is illustrated. The missile is launched from a moving platform, typically a helicopter, and is capable of striking a mobile target up to 10 kilometers away. The missile could be any tactical missile. The performance numbers of the AD 100 show that it is possible to implement a high performance missile model in a real-time simulation without the problems associated with an implementation on a general purpose computer using FORTRAN.

  5. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  6. Dual-energy contrast-enhanced digital mammography (DE-CEDM): optimization on digital subtraction with practical x-ray low/high-energy spectra

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew P.; Parikh, Samir; Parisky, Yuri

    2006-03-01

    Dual-energy contrast enhanced digital mammography (DE-CEDM), which is based upon the digital subtraction of low/high-energy image pairs acquired before/after the administration of contrast agents, may provide physicians physiologic and morphologic information of breast lesions and help characterize their probability of malignancy. This paper proposes to use only one pair of post-contrast low / high-energy images to obtain digitally subtracted dual-energy contrast-enhanced images with an optimal weighting factor deduced from simulated characteristics of the imaging chain. Based upon our previous CEDM framework, quantitative characteristics of the materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filters, breast tissues / lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systemically modeled. Using the base-material (polyethylene-PMMA) decomposition method based on entrance low / high-energy x-ray spectra and breast thickness, the optimal weighting factor was calculated to cancel the contrast between fatty and glandular tissues while enhancing the contrast of iodized lesions. By contrast, previous work determined the optimal weighting factor through either a calibration step or through acquisition of a pre-contrast low/high-energy image pair. Computer simulations were conducted to determine weighting factors, lesions' contrast signal values, and dose levels as functions of x-ray techniques and breast thicknesses. Phantom and clinical feasibility studies were performed on a modified Selenia full field digital mammography system to verify the proposed method and computer-simulated results. The resultant conclusions from the computer simulations and phantom/clinical feasibility studies will be used in the upcoming clinical study.

  7. The contributions of digital technologies in the teaching of nursing skills: an integrative review.

    PubMed

    Silveira, Maurício de Souza; Cogo, Ana Luísa Petersen

    2017-07-13

    To analyze the contributions of digital educational technologies used in teaching nursing skills. Integrative literature review, search in five databases, from 2006 to 2015 combining the descriptors 'education, nursing', 'educational technology', 'computer-assisted instruction' or related terms in English. Sample of 30 articles grouped in the thematic categories 'technology in the simulation with manikin', 'incentive to learning' and 'teaching of nursing skills'. It was identified different formats of digital educational technologies used in teaching Nursing skills such as videos, learning management system, applications, hypertext, games, virtual reality simulators. These digital materials collaborated in the acquisition of theoretical references that subsidize the practices, enhancing the teaching and enable the use of active learning methods, breaking with the traditional teaching of demonstrating and repeating procedures.

  8. The Digital Landmass Simulation Production Overview,

    DTIC Science & Technology

    1987-01-01

    L 187 978 THE DIGITAL LANDMASS SIMULATION PRODUCTION OVERVIEV (U) 1/1 DEFENSE MAPPING AGENCY AEROSPACE CENTER ST LOUIS AFS NO UNCLAS5SIFIED R ABR 97F...ADDRLS , (Ciry, Stile, ind, ZIP C4cJ) 10. SOURCE OF FUNDING NuMuERS ’ PROGRAM PROAtCT TASK VVCRK U’I ELEMENT NO. NO. NO ,-CCE5S GN NO. 1 1 TITLE...transformation program is run for each visual and radar simulation. The purpose of the transformation software is to convert the "raw" DTED and DFAD

  9. The analysis of delays in simulator digital computing systems. Volume 1: Formulation of an analysis approach using a central example simulator model

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Jewell, W. F.; Whitbeck, R. F.; Schulman, T. M.

    1980-01-01

    The effects of spurious delays in real time digital computing systems are examined. Various sources of spurious delays are defined and analyzed using an extant simulator system as an example. A specific analysis procedure is set forth and four cases are viewed in terms of their time and frequency domain characteristics. Numerical solutions are obtained for three single rate one- and two-computer examples, and the analysis problem is formulated for a two-rate, two-computer example.

  10. Design of DSP-based high-power digital solar array simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  11. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  12. CAD and CAE Analysis for Siphon Jet Toilet

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Xiu, Guoji; Tan, Haishu

    The high precision 3D laser scanner with the dual CCD technology was used to measure the original design sample of a siphon jet toilet. The digital toilet model was constructed from the cloud data measured with the curve and surface fitting technology and the CAD/CAE systems. The Realizable k - ɛ double equation model of the turbulence viscosity coefficient method and the VOF multiphase flow model were used to simulate the flushing flow in the toilet digital model. Through simulating and analyzing the distribution of the flushing flow's total pressure, the flow speed at the toilet-basin surface and the siphoning bent tube, the toilet performance can be evaluated efficiently and conveniently. The method of "establishing digital model, flushing flow simulating, performances evaluating, function shape modifying" would provide a high efficiency approach to develop new water-saving toilets.

  13. A novel proposal of GPON-oriented fiber grating sensing data digitalization system for remote sensing network

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Zhu, Zhaohui; Wang, Lu; Bai, Jian

    2016-05-01

    A novel GPON-oriented sensing data digitalization system is proposed to achieve remote monitoring of fiber grating sensing networks utilizing existing optical communication networks in some harsh environments. In which, Quick digitalization of sensing information obtained from the reflected lightwaves by fiber Bragg grating (FBG) sensor is realized, and a novel frame format of sensor signal is designed to suit for public transport so as to facilitate sensor monitoring center to receive and analyze the sensor data. The delay effect, identification method of the sensor data, and various interference factors which influence the sensor data to be correctly received are analyzed. The system simulation is carried out with OptiSystem/Matlab co-simulation approach. The theoretical analysis and simulation results verify the feasibility of the integration of the sensor network and communication network.

  14. Upset susceptibility study employing circuit analysis and digital simulation. [digital systems and electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Carreno, V. A.

    1984-01-01

    An approach to predict the susceptibility of digital systems to signal disturbances is described. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, electromagnetic interference (EMI), and electromagnetic pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload brings the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The super-sceptre (system for circuit evaluation of transient radiation effects) programs was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  15. Microdome-gooved Gd(2)O(2)S:Tb scintillator for flexible and high resolution digital radiography.

    PubMed

    Jung, Phill Gu; Lee, Chi Hoon; Bae, Kong Myeong; Lee, Jae Min; Lee, Sang Min; Lim, Chang Hwy; Yun, Seungman; Kim, Ho Kyung; Ko, Jong Soo

    2010-07-05

    A flexible microdome-grooved Gd(2)O(2)S:Tb scintillator is simulated, fabricated, and characterized for digital radiography applications. According to Monte Carlo simulation results, the dome-grooved structure has a high spatial resolution, which is verified by X-ray image performance of the scintillator. The proposed scintillator has lower X-ray sensitivity than a nonstructured scintillator but almost two times higher spatial resolution at high spatial frequency. Through evaluation of the X-ray performance of the fabricated scintillators, we confirm that the microdome-grooved scintillator can be applied to next-generation flexible digital radiography systems requiring high spatial resolution.

  16. Learning in Stochastic Bit Stream Neural Networks.

    PubMed

    van Daalen, Max; Shawe-Taylor, John; Zhao, Jieyu

    1996-08-01

    This paper presents learning techniques for a novel feedforward stochastic neural network. The model uses stochastic weights and the "bit stream" data representation. It has a clean analysable functionality and is very attractive with its great potential to be implemented in hardware using standard digital VLSI technology. The design allows simulation at three different levels and learning techniques are described for each level. The lowest level corresponds to on-chip learning. Simulation results on three benchmark MONK's problems and handwritten digit recognition with a clean set of 500 16 x 16 pixel digits demonstrate that the new model is powerful enough for the real world applications. Copyright 1996 Elsevier Science Ltd

  17. Investigation of a nozzle instability on an F100 engine equipped with a digital electronic engine control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Zeller, J. R.

    1984-01-01

    An instability in the nozzle of the F100 engine, equipped with a digital electronic engine control (DEEC), was observed during a flight evaluation on an F-15 aircraft. The instability occurred in the upper left hand corner (ULMC) of the flight envelope during augmentation. The instability was not predicted by stability analysis, closed-loop simulations of the the engine, or altitude testing of the engine. The instability caused stalls and augmentor blowouts. The nozzle instability and the altitude testing are described. Linear analysis and nonlinear digital simulation test results are presented. Software modifications on further flight test are discussed.

  18. Advanced distributed simulation technology: Digital Voice Gateway Reference Guide

    NASA Astrophysics Data System (ADS)

    Vanhook, Dan; Stadler, Ed

    1994-01-01

    The Digital Voice Gateway (referred to as the 'DVG' in this document) transmits and receives four full duplex encoded speech channels over the Ethernet. The information in this document applies only to DVG's running firmware of the version listed on the title page. This document, previously named Digital Voice Gateway Reference Guide, BBN Systems and Technologies Corporation, Cambridge, MA 02138, was revised for revision 2.00. This new revision changes the network protocol used by the DVG, to comply with the SINCGARS radio simulation (For SIMNET 6.6.1). Because of the extensive changes to revision 2.00 a separate document was created rather than supplying change pages.

  19. Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods

    DTIC Science & Technology

    2007-04-01

    physical measurements of impulse response analysis, modulation transfer function (MTF) and noise power spectrum (NPS). (Months 5- 12). 1.2.1. Simulate...added: projection images with simulated impulse and the 1/r2 shading difference. Other system blur and noise issues were not addressed in this paper...spectrum (NPS), Noise -equivalent quanta (NEQ), impulse response, Back Projection (BP) 1. INTRODUCTION Digital breast tomosynthesis is a new

  20. Architecture of a mixed-mode electrophysiological signal acquisition interface.

    PubMed

    Shen, Ding-Lan; Chen, Jyun-Min

    2012-01-01

    This paper proposes mixed-mode architecture for the acquisition interface of electrophysiological signals. The architecture advances the analog-to-digital converter (ADC) from the second chopper signal in the conventional approach and performs the second chopper operation in the digital domain. The demanded low-pass filter (LPF) is realized with a digital type. The analog LPF in feedback path is substituted with a digital one accompanying with a digital-to-analog converter (DAC). The analog variation is decreased due to the digitization of these operations. The entire architecture is simulated with the ECG input in a behavior model of Simulink.

  1. Digital Hadron Calorimetry

    NASA Astrophysics Data System (ADS)

    Bilki, Burak

    2018-03-01

    The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.

  2. Digital Inject Book v. 1.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldridge, Bryce

    2016-10-05

    Digital Inject Book is a software program designed to generate and managed simulated data for radiation detectors, used to increase the realism of training where real radiation sources are impractical, expensive, or simply not available.

  3. Novel Digital Driving Method Using Dual Scan for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Jung, Myoung Hoon; Choi, Inho; Chung, Hoon-Ju; Kim, Ohyun

    2008-11-01

    A new digital driving method has been developed for low-temperature polycrystalline silicon, transistor-driven, active-matrix organic light-emitting diode (AM-OLED) displays by time-ratio gray-scale expression. This driving method effectively increases the emission ratio and the number of subfields by inserting another subfield set into nondisplay periods in the conventional digital driving method. By employing the proposed modified gravity center coding, this method can be used to effectively compensate for dynamic false contour noise. The operation and performance were verified by current measurement and image simulation. The simulation results using eight test images show that the proposed approach improves the average peak signal-to-noise ratio by 2.61 dB, and the emission ratio by 20.5%, compared with the conventional digital driving method.

  4. Power in the loop real time simulation platform for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  5. YF-12 cooperative airframe/propulsion control system program, volume 1

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Connolly, G. F.; Mauro, F. M.; Reukauf, P. J.; Marks, R. (Editor)

    1980-01-01

    Several YF-12C airplane analog control systems were converted to a digital system. Included were the air data computer, autopilot, inlet control system, and autothrottle systems. This conversion was performed to allow assessment of digital technology applications to supersonic cruise aircraft. The digital system was composed of a digital computer and specialized interface unit. A large scale mathematical simulation of the airplane was used for integration testing and software checkout.

  6. Improved importance sampling technique for efficient simulation of digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, Dingqing; Yao, Kung

    1988-01-01

    A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.

  7. The digital phase-locked loop as a near-optimum FM demodulator.

    NASA Technical Reports Server (NTRS)

    Kelly, C. N.; Gupta, S. C.

    1972-01-01

    This paper presents an approach to the optimum digital demodulation of a continuous-time FM signal using stochastic estimation theory. The primary result is a digital phase-locked loop realization possessing performance characteristics that approach those of the analog counterpart. Some practical considerations are presented and simulation results for a first-order message model are presented.

  8. SDLDS--System for Digital Logic Design and Simulation

    ERIC Educational Resources Information Center

    Stanisavljevic, Z.; Pavlovic, V.; Nikolic, B.; Djordjevic, J.

    2013-01-01

    This paper presents the basic features of a software system developed to support the teaching of digital logic, as well as the experience of using it in the Digital Logic course taught at the School of Electrical Engineering, University of Belgrade, Serbia. The system has been used for several years, both by students for self-learning and…

  9. A performance evaluation postprocessor for computer-aided design and analysis of communication systems

    NASA Technical Reports Server (NTRS)

    Tranter, W. H.

    1979-01-01

    A technique for estimating the signal-to-noise ratio at a point in a digital simulation of a communication system is described; the technique is essentially a digital realization of a technique proposed by Shepertycki (1964) for the evaluation of analog communication systems. Signals having lowpass or bandpass spectra may be used. Simulation results show the technique to be accurate over a wide range of signal-to-noise ratios.

  10. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1974-01-01

    A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.

  11. Determination of the implementation of the 3-axis attitude motion simulator digital position controller

    NASA Technical Reports Server (NTRS)

    Magana, Mario E.

    1989-01-01

    The digital position controller implemented in the control computer of the 3-axis attitude motion simulator is mathematically reconstructed and documented, since the information supplied with the executable code of this controller was insufficient to make substantial modifications to it. Also developed were methodologies to introduce changes in the controller which do not require rewriting the software. Finally, recommendations are made on possible improvement to the control system performance.

  12. Validation of the CALSPAN gross-motion-simulation code with actually occurring injury patterns in aircraft accidents.

    PubMed

    Ballo, J M; Dunne, M J; McMeekin, R R

    1978-01-01

    Digital simulation of aircraft-accident kinematics has heretofore been used almost exclusively as a design tool to explore structural load limits, precalculate decelerative forces at various cabin stations, and describe the effect of protective devices in the crash environment. In an effort to determine the value of digital computer simulation of fatal aircraft accidents, a fatality involving an ejection-system failure (out-of-envelope ejection) was modeled, and the injuries actually incurred were compared to those predicted; good agreement was found. The simulation of fatal aircraft accidents is advantageous because of a well-defined endpoint (death), lack of therapeutic intervention, and a static anatomic situation that can be minutely investigated. Such simulation techniques are a useful tool in the study of experimental trauma.

  13. Dataflow computing approach in high-speed digital simulation

    NASA Technical Reports Server (NTRS)

    Ercegovac, M. D.; Karplus, W. J.

    1984-01-01

    New computational tools and methodologies for the digital simulation of continuous systems were explored. Programmability, and cost effective performance in multiprocessor organizations for real time simulation was investigated. Approach is based on functional style languages and data flow computing principles, which allow for the natural representation of parallelism in algorithms and provides a suitable basis for the design of cost effective high performance distributed systems. The objectives of this research are to: (1) perform comparative evaluation of several existing data flow languages and develop an experimental data flow language suitable for real time simulation using multiprocessor systems; (2) investigate the main issues that arise in the architecture and organization of data flow multiprocessors for real time simulation; and (3) develop and apply performance evaluation models in typical applications.

  14. Simulation supported POD for RT test case-concept and modeling

    NASA Astrophysics Data System (ADS)

    Gollwitzer, C.; Bellon, C.; Deresch, A.; Ewert, U.; Jaenisch, G.-R.; Zscherpel, U.; Mistral, Q.

    2012-05-01

    Within the framework of the European project PICASSO, the radiographic simulator aRTist (analytical Radiographic Testing inspection simulation tool) developed by BAM has been extended for reliability assessment of film and digital radiography. NDT of safety relevant components of aerospace industry requires the proof of probability of detection (POD) of the inspection. Modeling tools can reduce the expense of such extended, time consuming NDT trials, if the result of simulation fits to the experiment. Our analytic simulation tool consists of three modules for the description of the radiation source, the interaction of radiation with test pieces and flaws, and the detection process with special focus on film and digital industrial radiography. It features high processing speed with near-interactive frame rates and a high level of realism. A concept has been developed as well as a software extension for reliability investigations, completed by a user interface for planning automatic simulations with varying parameters and defects. Furthermore, an automatic image analysis procedure is included to evaluate the defect visibility. The radiographic modeling from 3D CAD of aero engine components and quality test samples are compared as a precondition for real trials. This enables the evaluation and optimization of film replacement for application of modern digital equipment for economical NDT and defined POD.

  15. The application of virtual reality systems as a support of digital manufacturing and logistics

    NASA Astrophysics Data System (ADS)

    Golda, G.; Kampa, A.; Paprocka, I.

    2016-08-01

    Modern trends in development of computer aided techniques are heading toward the integration of design competitive products and so-called "digital manufacturing and logistics", supported by computer simulation software. All phases of product lifecycle: starting from design of a new product, through planning and control of manufacturing, assembly, internal logistics and repairs, quality control, distribution to customers and after-sale service, up to its recycling or utilization should be aided and managed by advanced packages of product lifecycle management software. Important problems for providing the efficient flow of materials in supply chain management of whole product lifecycle, using computer simulation will be described on that paper. Authors will pay attention to the processes of acquiring relevant information and correct data, necessary for virtual modeling and computer simulation of integrated manufacturing and logistics systems. The article describes possibilities of use an applications of virtual reality software for modeling and simulation the production and logistics processes in enterprise in different aspects of product lifecycle management. The authors demonstrate effective method of creating computer simulations for digital manufacturing and logistics and show modeled and programmed examples and solutions. They pay attention to development trends and show options of the applications that go beyond enterprise.

  16. Fabrication and test of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.

  17. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  18. Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems.

    PubMed

    Kikuchi, Kazuro

    2014-01-27

    We propose a novel configuration of optical receivers for intensity-modulation direct-detection (IM · DD) systems, which can cope with dual-polarization (DP) optical signals electrically. Using a Stokes analyzer and a newly-developed digital signal-processing (DSP) algorithm, we can achieve polarization tracking and demultiplexing in the digital domain after direct detection. Simulation results show that the power penalty stemming from digital polarization manipulations is negligibly small.

  19. Digital hardware implementation of a stochastic two-dimensional neuron model.

    PubMed

    Grassia, F; Kohno, T; Levi, T

    2016-11-01

    This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein-Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model's computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Engineering studies related to Skylab program. [assessment of automatic gain control data

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.

    1973-01-01

    The relationship between the S-193 Automatic Gain Control data and the magnitude of received signal power was studied in order to characterize performance parameters for Skylab equipment. The r-factor was used for the assessment and is defined to be less than unity, and a function of off-nadir angle, ocean surface roughness, and receiver signal to noise ratio. A digital computer simulation was also used to assess to additive receiver, or white noise. The system model for the digital simulation is described, along with intermediate frequency and video impulse response functions used, details of the input waveforms, and results to date. Specific discussion of the digital computer programs used is also provided.

  1. Real time flight simulation methodology

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Cook, G.; Mcvey, E. S.

    1976-01-01

    An example sensitivity study is presented to demonstrate how a digital autopilot designer could make a decision on minimum sampling rate for computer specification. It consists of comparing the simulated step response of an existing analog autopilot and its associated aircraft dynamics to the digital version operating at various sampling frequencies and specifying a sampling frequency that results in an acceptable change in relative stability. In general, the zero order hold introduces phase lag which will increase overshoot and settling time. It should be noted that this solution is for substituting a digital autopilot for a continuous autopilot. A complete redesign could result in results which more closely resemble the continuous results or which conform better to original design goals.

  2. Universe creation on a computer

    NASA Astrophysics Data System (ADS)

    McCabe, Gordon

    The purpose of this paper is to provide an account of the epistemology and metaphysics of universe creation on a computer. The paper begins with F.J. Tipler's argument that our experience is indistinguishable from the experience of someone embedded in a perfect computer simulation of our own universe, hence we cannot know whether or not we are part of such a computer program ourselves. Tipler's argument is treated as a special case of epistemological scepticism, in a similar vein to 'brain-in-a-vat' arguments. It is argued that Tipler's hypothesis that our universe is a program running on a digital computer in another universe, generates empirical predictions, and is therefore a falsifiable hypothesis. The computer program hypothesis is also treated as a hypothesis about what exists beyond the physical world, and is compared with Kant's metaphysics of noumena. It is argued that if our universe is a program running on a digital computer, then our universe must have compact spatial topology, and the possibilities of observationally testing this prediction are considered. The possibility of testing the computer program hypothesis with the value of the density parameter Ω0 is also analysed. The informational requirements for a computer to represent a universe exactly and completely are considered. Consequent doubt is thrown upon Tipler's claim that if a hierarchy of computer universes exists, we would not be able to know which 'level of implementation' our universe exists at. It is then argued that a digital computer simulation of a universe, or any other physical system, does not provide a realisation of that universe or system. It is argued that a digital computer simulation of a physical system is not objectively related to that physical system, and therefore cannot exist as anything else other than a physical process occurring upon the components of the computer. It is concluded that Tipler's sceptical hypothesis, and a related hypothesis from Bostrom, cannot be true: it is impossible that our own experience is indistinguishable from the experience of somebody embedded in a digital computer simulation because it is impossible for anybody to be embedded in a digital computer simulation.

  3. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.

  4. Digital tanlock loop architecture with no delay

    NASA Astrophysics Data System (ADS)

    Al-Kharji AL-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud; Ponnapalli, Prasad

    2012-02-01

    This article proposes a new architecture for a digital tanlock loop which eliminates the time-delay block. The ? (rad) phase shift relationship between the two channels, which is generated by the delay block in the conventional time-delay digital tanlock loop (TDTL), is preserved using two quadrature sampling signals for the loop channels. The proposed system outperformed the original TDTL architecture, when both systems were tested with frequency shift keying input signal. The new system demonstrated better linearity and acquisition speed as well as improved noise performance compared with the original TDTL architecture. Furthermore, the removal of the time-delay block enables all processing to be digitally performed, which reduces the implementation complexity. Both the original TDTL and the new architecture without the delay block were modelled and simulated using MATLAB/Simulink. Implementation issues, including complexity and relation to simulation of both architectures, are also addressed.

  5. Digital test assembly of truck parts with the IMMA-tool--an illustrative case.

    PubMed

    Hanson, L; Högberg, D; Söderholm, M

    2012-01-01

    Several digital human modelling (DHM) tools have been developed for simulation and visualisation of human postures and motions. In 2010 the DHM tool IMMA (Intelligently Moving Manikins) was introduced as a DHM tool that uses advanced path planning techniques to generate collision free and biomechanically acceptable motions for digital human models (as well as parts) in complex assembly situations. The aim of the paper is to illustrate how the IPS/IMMA tool is used at Scania CV AB in a digital test assembly process, and to compare the tool with other DHM tools on the market. The illustrated case of using the IMMA tool, here combined with the path planner tool IPS, indicates that the tool is promising. The major strengths of the tool are its user friendly interface, the motion generation algorithms, the batch simulation of manikins and the ergonomics assessment methods that consider time.

  6. Simulation of Neural Firing Dynamics: A Student Project.

    ERIC Educational Resources Information Center

    Kletsky, E. J.

    This paper describes a student project in digital simulation techniques that is part of a graduate systems analysis course entitled Biosimulation. The students chose different simulation techniques to solve a problem related to the neuron model. (MLH)

  7. A Computer Program to Model Passive Acoustic Antisubmarine Search Using Monte Carlo Simulation Techniques.

    DTIC Science & Technology

    1983-09-01

    duplicate a continuous function on a digital computer, and thus the machine representatic- of the GMA is only a close approximation of the continuous...error process. Thus, the manner in which the GMA process is digitally replicated has an effect on the results of the simulation. The parameterization of...Information Center 2 Cameron Station Alexandria, Virginia 22314 2. Libary , Code 0142 2 Naval Postgraduate School Monterey, California 93943 3. Professor

  8. Using software simulators to enhance the learning of digital logic design for the information technology students

    NASA Astrophysics Data System (ADS)

    Alsadoon, Abeer; Prasad, P. W. C.; Beg, Azam

    2017-09-01

    Making the students understand the theoretical concepts of digital logic design concepts is one of the major issues faced by the academics, therefore the teachers have tried different techniques to link the theoretical information to the practical knowledge. Use of software simulations is a technique for learning and practice that can be applied to many different disciplines. Experimentation of different computer hardware components/integrated circuits with the use of the simulators enhances the student learning. The simulators can be rather simplistic or quite complex. This paper reports our evaluation of different simulators available for use in the higher education institutions. We also provide the experience of incorporating some selected tools in teaching introductory courses in computer systems. We justified the effectiveness of incorporating the simulators into the computer system courses by use of student survey and final grade results.

  9. Model based design introduction: modeling game controllers to microprocessor architectures

    NASA Astrophysics Data System (ADS)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  10. Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry

    PubMed Central

    Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.

    2010-01-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will both allow better dissemination of this technology and better exploit the traditionally underutilized parameter of fluorescence lifetime. PMID:20662090

  11. Digital data processing system dynamic loading analysis

    NASA Technical Reports Server (NTRS)

    Lagas, J. J.; Peterka, J. J.; Tucker, A. E.

    1976-01-01

    Simulation and analysis of the Space Shuttle Orbiter Digital Data Processing System (DDPS) are reported. The mated flight and postseparation flight phases of the space shuttle's approach and landing test configuration were modeled utilizing the Information Management System Interpretative Model (IMSIM) in a computerized simulation modeling of the ALT hardware, software, and workload. System requirements simulated for the ALT configuration were defined. Sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and the sensitivity analyses, a test design is described for adapting, parameterizing, and executing the IMSIM. Varying load and stress conditions for the model execution are given. The analyses of the computer simulation runs were documented as results, conclusions, and recommendations for DDPS improvements.

  12. Space shuttle orbiter digital data processing system timing sensitivity analysis OFT ascent phase

    NASA Technical Reports Server (NTRS)

    Lagas, J. J.; Peterka, J. J.; Becker, D. A.

    1977-01-01

    Dynamic loads were investigated to provide simulation and analysis of the space shuttle orbiter digital data processing system (DDPS). Segments of the ascent test (OFT) configuration were modeled utilizing the information management system interpretive model (IMSIM) in a computerized simulation modeling of the OFT hardware and software workload. System requirements for simulation of the OFT configuration were defined, and sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and these sensitivity analyses, a test design was developed for adapting, parameterizing, and executing IMSIM, using varying load and stress conditions for model execution. Analyses of the computer simulation runs are documented, including results, conclusions, and recommendations for DDPS improvements.

  13. A real-time digital computer program for the simulation of automatic spacecraft reentries

    NASA Technical Reports Server (NTRS)

    Kaylor, J. T.; Powell, L. F.; Powell, R. W.

    1977-01-01

    The automatic reentry flight dynamics simulator, a nonlinear, six-degree-of-freedom simulation, digital computer program, has been developed. The program includes a rotating, oblate earth model for accurate navigation calculations and contains adjustable gains on the aerodynamic stability and control parameters. This program uses a real-time simulation system and is designed to examine entries of vehicles which have constant mass properties whose attitudes are controlled by both aerodynamic surfaces and reaction control thrusters, and which have automatic guidance and control systems. The program has been used to study the space shuttle orbiter entry. This report includes descriptions of the equations of motion used, the control and guidance schemes that were implemented, the program flow and operation, and the hardware involved.

  14. Synthetic aperture radar target simulator

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Held, D. N.; Goldstein, R. M.; Bickler, T. C.

    1984-01-01

    A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal.

  15. Simulation of the High Performance Time to Digital Converter for the ATLAS Muon Spectrometer trigger upgrade

    NASA Astrophysics Data System (ADS)

    Meng, X. T.; Levin, D. S.; Chapman, J. W.; Zhou, B.

    2016-09-01

    The ATLAS Muon Spectrometer endcap thin-Resistive Plate Chamber trigger project compliments the New Small Wheel endcap Phase-1 upgrade for higher luminosity LHC operation. These new trigger chambers, located in a high rate region of ATLAS, will improve overall trigger acceptance and reduce the fake muon trigger incidence. These chambers must generate a low level muon trigger to be delivered to a remote high level processor within a stringent latency requirement of 43 bunch crossings (1075 ns). To help meet this requirement the High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by CERN Microelectronics group, has been proposed for the digitization of the fast front end detector signals. This paper investigates the HPTDC performance in the context of the overall muon trigger latency, employing detailed behavioral Verilog simulations in which the latency in triggerless mode is measured for a range of configurations and under realistic hit rate conditions. The simulation results show that various HPTDC operational configurations, including leading edge and pair measurement modes can provide high efficiency (>98%) to capture and digitize hits within a time interval satisfying the Phase-1 latency tolerance.

  16. A TDM link with channel coding and digital voice.

    NASA Technical Reports Server (NTRS)

    Jones, M. W.; Tu, K.; Harton, P. L.

    1972-01-01

    The features of a TDM (time-division multiplexed) link model are described. A PCM telemetry sequence was coded for error correction and multiplexed with a digitized voice channel. An all-digital implementation of a variable-slope delta modulation algorithm was used to digitize the voice channel. The results of extensive testing are reported. The measured coding gain and the system performance over a Gaussian channel are compared with theoretical predictions and computer simulations. Word intelligibility scores are reported as a measure of voice channel performance.

  17. Digital Simulation in Education.

    ERIC Educational Resources Information Center

    Braun, Ludwig

    Simulation as a mode of computer use in instruction has been neglected by educators. This paper briefly explores the circumstances in which simulations are useful and presents several examples of simulation programs currently being used in high-school biology, chemistry, physics, and social studies classes. One program, STERIL, which simulates…

  18. Geological terrain models

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1981-01-01

    The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.

  19. Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images

    NASA Astrophysics Data System (ADS)

    Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.

    2017-12-01

    Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.

  20. Kinematical simulation of robotic complex operation for implementing full-scale additive technologies of high-end materials, composites, structures, and buildings

    NASA Astrophysics Data System (ADS)

    Antsiferov, S. I.; Eltsov, M. Iu; Khakhalev, P. A.

    2018-03-01

    This paper considers a newly designed electronic digital model of a robotic complex for implementing full-scale additive technologies, funded under a Federal Target Program. The electronic and digital model was used to solve the problem of simulating the movement of a robotic complex using the NX CAD/CAM/CAE system. The virtual mechanism was built and the main assemblies, joints, and drives were identified as part of solving the problem. In addition, the maximum allowed printable area size was identified for the robotic complex, and a simulation of printing a rectangular-shaped article was carried out.

  1. Finite element simulation of cracks formation in parabolic flume above fixed service live

    NASA Astrophysics Data System (ADS)

    Bandurin, M. A.; Volosukhin, V. A.; Mikheev, A. V.; Volosukhin, Y. V.; Bandurina, I. P.

    2018-03-01

    In the article, digital simulation data on influence of defect different characteristics on cracks formation in a parabolic flume are presented. The finite element method is based on general hypotheses of the theory of elasticity. The studies showed that the values of absolute movements satisfy the standards of design. The results of the digital simulation of stresses and strains for cracks formation in concrete parabolic flumes after long-term service above the fixed service life are described. Stressed and strained state of reinforced concrete bearing elements under different load combinations is considered. Intensive threshold of danger to form longitudinal cracks in reinforced concrete elements is determined.

  2. Practical algorithms for simulation and reconstruction of digital in-line holograms.

    PubMed

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2015-03-20

    Here we present practical methods for simulation and reconstruction of in-line digital holograms recorded with plane and spherical waves. The algorithms described here are applicable to holographic imaging of an object exhibiting absorption as well as phase-shifting properties. Optimal parameters, related to distances, sampling rate, and other factors for successful simulation and reconstruction of holograms are evaluated and criteria for the achievable resolution are worked out. Moreover, we show that the numerical procedures for the reconstruction of holograms recorded with plane and spherical waves are identical under certain conditions. Experimental examples of holograms and their reconstructions are also discussed.

  3. A class of all digital phase locked loops - Modeling and analysis

    NASA Technical Reports Server (NTRS)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming signal once per carrier cycle is proposed. The different elements and their functions, and the phase lock operation are explained in detail. The general digital loop operation is governed by a nonlinear difference equation from which a suitable model is developed. The lock range for the general model is derived. The performance of the digital loop for phase step and frequency step inputs for different levels of quantization without loop filter are studied. The analytical results are checked by simulating the actual system on the digital computer.

  4. Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform.

    PubMed

    Restrepo, John F; Garcia-Sucerquia, Jorge

    2010-11-20

    A method for numerical reconstruction of digitally recorded holograms with variable magnification is presented. The proposed strategy allows for smaller, equal, or larger magnification than that achieved with Fresnel transform by introducing the Bluestein substitution into the Fresnel kernel. The magnification is obtained independent of distance, wavelength, and number of pixels, which enables the method to be applied in color digital holography and metrological applications. The approach is supported by experimental and simulation results in digital holography of objects of comparable dimensions with the recording device and in the reconstruction of holograms from digital in-line holographic microscopy.

  5. Upset susceptibility study employing circuit analysis and digital simulation

    NASA Technical Reports Server (NTRS)

    Carreno, V. A.

    1984-01-01

    This paper describes an approach to predicting the susceptibility of digital systems to signal disturbances. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, Electromagnetic Interference (EMI) and Electromagnetic Pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload will bring the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The Super-Sceptre (system for circuit evaluation of transient radiation effects) Program was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  6. Thermophysical Properties of Energetic Ionic Liquids/Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations

    DTIC Science & Technology

    2013-01-01

    W L. Physical properties of concentrated nitric acid . UNT Digital Library. http://digital.library.unt.edu/ark:/67531/metadc56640/.) 23 M. Engelmann... Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations 5a. CONTRACT NUMBER FA9300-11-C-3012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Rev. 8-98) Prescribed by ANSI Std. 239.18 1     Thermophysical  Properties  of  Energetic  Ionic  Liquids/ Nitric   Acid

  7. Near optimum digital phase locked loops.

    NASA Technical Reports Server (NTRS)

    Polk, D. R.; Gupta, S. C.

    1972-01-01

    Near optimum digital phase locked loops are derived utilizing nonlinear estimation theory. Nonlinear approximations are employed to yield realizable loop structures. Baseband equivalent loop gains are derived which under high signal to noise ratio conditions may be calculated off-line. Additional simplifications are made which permit the application of the Kalman filter algorithms to determine the optimum loop filter. Performance is evaluated by a theoretical analysis and by simulation. Theoretical and simulated results are discussed and a comparison to analog results is made.

  8. Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.; Choi, G.; Iyer, R. K.

    1990-01-01

    A simulation study is described which predicts the susceptibility of an advanced control system to electrical transients resulting in logic errors, latched errors, error propagation, and digital upset. The system is based on a custom-designed microprocessor and it incorporates fault-tolerant techniques. The system under test and the method to perform the transient injection experiment are described. Results for 2100 transient injections are analyzed and classified according to charge level, type of error, and location of injection.

  9. CSM digital autopilot testing in support of ASTP experiments control requirements

    NASA Technical Reports Server (NTRS)

    Rue, D. L.

    1975-01-01

    Results are presented of CSM digital autopilot (DAP) testing. The testing was performed to demonstrate and evaluate control modes which are currently planned or could be considered for use in support of experiments on the ASTP mission. The testing was performed on the Lockheed Guidance, Navigation, and Control System Functional Simulator (GNCFS). This simulator, which was designed to test the Apollo and Skylab DAP control system, has been used extensively and is a proven tool for CSM DAP analysis.

  10. Performance simulation in high altitude platforms (HAPs) communications systems

    NASA Astrophysics Data System (ADS)

    Ulloa-Vásquez, Fernando; Delgado-Penin, J. A.

    2002-07-01

    This paper considers the analysis by simulation of a digital narrowband communication system for an scenario which consists of a High-Altitude aeronautical Platform (HAP) and fixed/mobile terrestrial transceivers. The aeronautical channel is modelled considering geometrical (angle of elevation vs. horizontal distance of the terrestrial reflectors) and statistical arguments and under these circumstances a serial concatenated coded digital transmission is analysed for several hypothesis related to radio-electric coverage areas. The results indicate a good feasibility for the communication system proposed and analysed.

  11. A comparison of hardware description languages. [describing digital systems structure and behavior to a computer

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1978-01-01

    Several high level languages which evolved over the past few years for describing and simulating the structure and behavior of digital systems, on digital computers are assessed. The characteristics of the four prominent languages (CDL, DDL, AHPL, ISP) are summarized. A criterion for selecting a suitable hardware description language for use in an automatic integrated circuit design environment is provided.

  12. More than a Game...Teaching in the Gamic Mode: Disciplinary Knowledge, Digital Literacy, and Collaboration

    ERIC Educational Resources Information Center

    Clyde, Jerremie; Wilkinson, Glenn R.

    2012-01-01

    The gamic mode is an innovative way of authoring scholarly history that goes beyond the printed text or digital simulations by using digital game technologies to allow the reader to interact with a scholarly argument through meaningful choice and trial and error. The gamic mode makes the way in which the past is constructed as history explicit by…

  13. Air Force Human Resources Laboratory Annual Report - Fiscal Year 1983.

    DTIC Science & Technology

    1984-08-01

    were performed - digital image-generation visual system and three in the Advanced Simulator for Pilot Training at associated wide-angle windows. The...inputs by the trainee. This arrangement, and survivability in high-threat environments are , with its corresponding analog-to- digital interface... digitized models of various military vehicles and aircraft for continual update/expansion. Utilization: An interactive modeling system will be user

  14. Comparison of simulator fidelity model predictions with in-simulator evaluation data

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Mckissick, B. T.; Ashworth, B. R.

    1983-01-01

    A full factorial in simulator experiment of a single axis, multiloop, compensatory pitch tracking task is described. The experiment was conducted to provide data to validate extensions to an analytic, closed loop model of a real time digital simulation facility. The results of the experiment encompassing various simulation fidelity factors, such as visual delay, digital integration algorithms, computer iteration rates, control loading bandwidths and proprioceptive cues, and g-seat kinesthetic cues, are compared with predictions obtained from the analytic model incorporating an optimal control model of the human pilot. The in-simulator results demonstrate more sensitivity to the g-seat and to the control loader conditions than were predicted by the model. However, the model predictions are generally upheld, although the predicted magnitudes of the states and of the error terms are sometimes off considerably. Of particular concern is the large sensitivity difference for one control loader condition, as well as the model/in-simulator mismatch in the magnitude of the plant states when the other states match.

  15. Digital Sound Encryption with Logistic Map and Number Theoretic Transform

    NASA Astrophysics Data System (ADS)

    Satria, Yudi; Gabe Rizky, P. H.; Suryadi, MT

    2018-03-01

    Digital sound security has limits on encrypting in Frequency Domain. Number Theoretic Transform based on field (GF 2521 – 1) improve and solve that problem. The algorithm for this sound encryption is based on combination of Chaos function and Number Theoretic Transform. The Chaos function that used in this paper is Logistic Map. The trials and the simulations are conducted by using 5 different digital sound files data tester in Wave File Extension Format and simulated at least 100 times each. The key stream resulted is random with verified by 15 NIST’s randomness test. The key space formed is very big which more than 10469. The processing speed of algorithm for encryption is slightly affected by Number Theoretic Transform.

  16. Analysis of a digital RF memory in a signal-delay application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinek, D.A.

    1992-03-01

    Laboratory simulation of the approach of a radar fuze towards a target is an important factor in our ability to accurately measure the radar's performance. This simulation is achieved, in part, by dynamically delaying and attenuating the radar's transmitted pulse and sending the result back to the radar's receiver. Historically, the device used to perform the dynamic delay has been a limiting factor in the evaluation of a radar's performance and characteristics. A new device has been proposed that appears to have more capability than previous dynamic delay devices. This device is the digital RF memory. This report presents themore » results of an analysis of a digital RF memory used in a signal-delay application. 2 refs.« less

  17. Digital systems design language

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    Digital Systems Design Language (DDL) is implemented on the SEL-32 Computer Systems. The detaileds of the language, the translator, and the simulator, and the smulator programs are given. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  18. Geographically distributed real-time digital simulations using linear prediction

    DOE PAGES

    Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank; ...

    2016-07-04

    Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less

  19. Geographically distributed real-time digital simulations using linear prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank

    Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less

  20. Digital control of the Kuiper Airborne Observatory telescope

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann C.; Snyder, Philip K.

    1989-01-01

    The feasibility of using a digital controller to stabilize a telescope mounted in an airplane is investigated. The telescope is a 30 in. infrared telescope mounted aboard a NASA C-141 aircraft known as the Kuiper Airborne Observatory. Current efforts to refurbish the 14-year-old compensation system have led to considering a digital controller. A typical digital controller is modeled and added into the telescope system model. This model is simulated on a computer to generate the Bode plots and time responses which determine system stability and performance parameters. Important aspects of digital control system hardware are discussed. A summary of the findings shows that a digital control system would result in satisfactory telescope performance.

  1. Digital Signal Processing and Control for the Study of Gene Networks

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun

    2016-04-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  2. Digital Signal Processing and Control for the Study of Gene Networks.

    PubMed

    Shin, Yong-Jun

    2016-04-22

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  3. Digital Signal Processing and Control for the Study of Gene Networks

    PubMed Central

    Shin, Yong-Jun

    2016-01-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828

  4. Mathematical modeling and SAR simulation multifunction SAR technology efforts

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    The orbital SAR (synthetic aperture radar) simulation data was used in several simulation efforts directed toward advanced SAR development. Efforts toward simulating an operational radar, simulation of antenna polarization effects, and simulation of SAR images at serveral different wavelengths are discussed. Avenues for improvements in the orbital SAR simulation and its application to the development of advanced digital radar data processing schemes are indicated.

  5. Using Modern Design Tools for Digital Avionics Development

    NASA Technical Reports Server (NTRS)

    Hyde, David W.; Lakin, David R., II; Asquith, Thomas E.

    2000-01-01

    Using Modem Design Tools for Digital Avionics Development Shrinking development time and increased complexity of new avionics forces the designer to use modem tools and methods during hardware development. Engineers at the Marshall Space Flight Center have successfully upgraded their design flow and used it to develop a Mongoose V based radiation tolerant processor board for the International Space Station's Water Recovery System. The design flow, based on hardware description languages, simulation, synthesis, hardware models, and full functional software model libraries, allowed designers to fully simulate the processor board from reset, through initialization before any boards were built. The fidelity of a digital simulation is limited to the accuracy of the models used and how realistically the designer drives the circuit's inputs during simulation. By using the actual silicon during simulation, device modeling errors are reduced. Numerous design flaws were discovered early in the design phase when they could be easily fixed. The use of hardware models and actual MIPS software loaded into full functional memory models also provided checkout of the software development environment. This paper will describe the design flow used to develop the processor board and give examples of errors that were found using the tools. An overview of the processor board firmware will also be covered.

  6. In vitro attenuation of impact shock in equine digits.

    PubMed

    Lanovaz, J L; Clayton, H M; Watson, L G

    1998-09-01

    This study was designed to test the impact characteristics of the equine digit in vitro with the objective of providing a better understanding of the role of the digital structures in the attenuation of impact shock. Uni-axial accelerometers were mounted on cadaver digits on the distolateral hoof wall, the proximolateral hoof wall, the dorsal surface of the second phalanx, and the mid-lateral first phalanx. The hoof-mounted accelerometers were aligned with the hoof tubules while the bone-mounted accelerometers were oriented along the longitudinal axis of the bone. Each digit was mounted in a test apparatus designed to simulate impact of the hoof with the ground during locomotion. The digits were subjected to 3 impact trials against a barrier at each of 3 vertical impact velocities that simulated a forward trotting velocity in the range of 2.67 to 4.46 m/s. The impact deceleration tended to increase with impact velocity. Attenuation of the impact shock by the digital tissues resulted in a reduction in impact decleration in the more proximal measuring locations. The interphalangeal joints appeared to play a larger role in amplitude attenuation than the hoof wall or the soft tissue structures within the hoof wall. The signal frequency data showed that the soft tissues within the hoof acted as a 'lowpass' filter, attenuating the higher deceleration frequencies. The hoof wall and the interphalangeal joints showed little frequency attenuation.

  7. Holographic interferometric and correlation-based laser speckle metrology for 3D deformations in dentistry

    NASA Astrophysics Data System (ADS)

    Dekiff, Markus; Kemper, Björn; Kröger, Elke; Denz, Cornelia; Dirksen, Dieter

    2017-03-01

    The mechanical loading of dental restorations and hard tissue is often investigated numerically. For validation and optimization of such simulations, comparisons with measured deformations are essential. We combine digital holographic interferometry and digital speckle photography for the determination of microscopic deformations with a photogrammetric method that is based on digital image correlation of a projected laser speckle pattern. This multimodal workstation allows the simultaneous acquisition of the specimen's macroscopic 3D shape and thus a quantitative comparison of measured deformations with simulation data. In order to demonstrate the feasibility of our system, two applications are presented: the quantitative determination of (1) the deformation of a mandible model due to mechanical loading of an inserted dental implant and of (2) the deformation of a (dental) bridge model under mechanical loading. The results were compared with data from finite element analyses of the investigated applications. The experimental results showed close agreement with those of the simulations.

  8. The development of learning material using learning goal orientation approach in digital electronics

    NASA Astrophysics Data System (ADS)

    Puspitaningayu, P.; Anifah, L.; Kholis, N.

    2018-01-01

    Mastery of digital electronics principles is essential for future engineers in the digital era. This article describes the use of simulations in an undergraduate electrical engineering course to promote the adoption of a learning-goal orientation. This study used experimental method. This was done by providing students with a simulation environment which students freely use to experiment with various circuit models. Students were then invited to reflect on how the simulation results compare with results from lab experiments. The module got 82% of positive rating from 28 students and all of them passed in the examination with 81.8 as the average score. Those majority students were motivated by the combination of two learning goals written in the module. Moreover, they also gain the ability to design more complex systems because of their combined experience. Additionally, the module also has been validated and got 83% of reliability. The final product of this research hereafter can be recommended to be used as teaching material.

  9. Validation of a novel technique for creating simulated radiographs using computed tomography datasets.

    PubMed

    Mendoza, Patricia; d'Anjou, Marc-André; Carmel, Eric N; Fournier, Eric; Mai, Wilfried; Alexander, Kate; Winter, Matthew D; Zwingenberger, Allison L; Thrall, Donald E; Theoret, Christine

    2014-01-01

    Understanding radiographic anatomy and the effects of varying patient and radiographic tube positioning on image quality can be a challenge for students. The purposes of this study were to develop and validate a novel technique for creating simulated radiographs using computed tomography (CT) datasets. A DICOM viewer (ORS Visual) plug-in was developed with the ability to move and deform cuboidal volumetric CT datasets, and to produce images simulating the effects of tube-patient-detector distance and angulation. Computed tomographic datasets were acquired from two dogs, one cat, and one horse. Simulated radiographs of different body parts (n = 9) were produced using different angles to mimic conventional projections, before actual digital radiographs were obtained using the same projections. These studies (n = 18) were then submitted to 10 board-certified radiologists who were asked to score visualization of anatomical landmarks, depiction of patient positioning, realism of distortion/magnification, and image quality. No significant differences between simulated and actual radiographs were found for anatomic structure visualization and patient positioning in the majority of body parts. For the assessment of radiographic realism, no significant differences were found between simulated and digital radiographs for canine pelvis, equine tarsus, and feline abdomen body parts. Overall, image quality and contrast resolution of simulated radiographs were considered satisfactory. Findings from the current study indicated that radiographs simulated using this new technique are comparable to actual digital radiographs. Further studies are needed to apply this technique in developing interactive tools for teaching radiographic anatomy and the effects of varying patient and tube positioning. © 2013 American College of Veterinary Radiology.

  10. A high precision dual feedback discrete control system designed for satellite trajectory simulator

    NASA Astrophysics Data System (ADS)

    Liu, Ximin; Liu, Liren; Sun, Jianfeng; Xu, Nan

    2005-08-01

    Cooperating with the free-space laser communication terminals, the satellite trajectory simulator is used to test the acquisition, pointing, tracking and communicating performances of the terminals. So the satellite trajectory simulator plays an important role in terminal ground test and verification. Using the double-prism, Sun etc in our group designed a satellite trajectory simulator. In this paper, a high precision dual feedback discrete control system designed for the simulator is given and a digital fabrication of the simulator is made correspondingly. In the dual feedback discrete control system, Proportional- Integral controller is used in velocity feedback loop and Proportional- Integral- Derivative controller is used in position feedback loop. In the controller design, simplex method is introduced and an improvement to the method is made. According to the transfer function of the control system in Z domain, the digital fabrication of the simulator is given when it is exposed to mechanism error and moment disturbance. Typically, when the mechanism error is 100urad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.49urad, 6.12urad, 4.56urad, 4.09urad respectively. When the moment disturbance is 0.1rad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.26urad, 0.22urad, 0.16urad, 0.15urad respectively. The digital fabrication results demonstrate that the dual feedback discrete control system designed for the simulator can achieve the anticipated high precision performance.

  11. Quantum Simulation of Tunneling in Small Systems

    PubMed Central

    Sornborger, Andrew T.

    2012-01-01

    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution, eliminating at least half of the quantum gates required for the algorithm and more than that in the general case. Such simulations are within reach of current quantum computer architectures. PMID:22916333

  12. Real-time Simulation of Turboprop Engine Control System

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  13. Disorder in Complex Human System

    NASA Astrophysics Data System (ADS)

    Akdeniz, K. Gediz

    2011-11-01

    Since the world of human and whose life becomes more and more complex every day because of the digital technology and under the storm of knowledge (media, internet, governmental and non-governmental organizations, etc...) the simulation is rapidly growing in the social systems and in human behaviors. The formation of the body and mutual interactions are left to digital technological, communication mechanisms and coding the techno genetics of the body. Deconstruction begins everywhere. The linear simulation mechanism with modern realities are replaced by the disorder simulation of human behaviors with awareness realities. In this paper I would like to introduce simulation theory of "Disorder Sensitive Human Behaviors". I recently proposed this theory to critique the role of disorder human behaviors in social systems. In this theory the principle of realty is the chaotic awareness of the complexity of human systems inside of principle of modern thinking in Baudrillard's simulation theory. Proper examples will be also considered to investigate the theory.

  14. Process simulation in digital camera system

    NASA Astrophysics Data System (ADS)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  15. Digitally-bypassed transducers: interfacing digital mockups to real-time medical equipment.

    PubMed

    Sirowy, Scott; Givargis, Tony; Vahid, Frank

    2009-01-01

    Medical device software is sometimes initially developed by using a PC simulation environment that executes models of both the device and a physiological system, and then later by connecting the actual medical device to a physical mockup of the physiological system. An alternative is to connect the medical device to a digital mockup of the physiological system, such that the device believes it is interacting with a physiological system, but in fact all interaction is entirely digital. Developing medical device software by interfacing with a digital mockup enables development without costly or dangerous physical mockups, and enables execution that is faster or slower than real time. We introduce digitally-bypassed transducers, which involve a small amount of hardware and software additions, and which enable interfacing with digital mockups.

  16. Space shuttle pilot-induced-oscillation research testing

    NASA Technical Reports Server (NTRS)

    Powers, B. G.

    1984-01-01

    The simulation requirements for investigation of pilot-induced-oscillation (PIO) characteristics during the landing phase are discussed. Orbiters simulations and F-8 digital fly-by-wire aircraft tests are addressed.

  17. Simulation Comparisons of Three Different Meander Line Dipoles

    DTIC Science & Technology

    2015-01-01

    Paez C I. Design formulas for a meandered dipole. IEEE Xplore Digital Library, 2014: n. pag. Web. 2 September 2014. 2. Nguyen, VH, Phan, HP, Hoang...MH. Improving radiation characteristics of UHF RFID antennas by zigzag structures. IEEE Xplore Digital Library, 2014: n. pag. Web. 2 September 2014...geometry-based, frequency-independent lumped element model. IEEE Xplore Digital Library, 2014: n. pag. Web. 2 September 2014. 5. Olaode OO, Palmer WD

  18. Adaptive Two Dimensional RLS (Recursive Least Squares) Algorithms

    DTIC Science & Technology

    1989-03-01

    in Monterey wonderful. IX I. INTRODUCTION Adaptive algorithms have been used successfully for many years in a wide range of digital signal...SIMULATION RESULTS The 2-D FRLS algorithm was tested both on computer-generated data and on digitized images. For a baseline reference the 2-D L:rv1S...Alexander, S. T. Adaptivt Signal Processing: Theory and Applications. Springer- Verlag, New York. 1986. 7. Bellanger, Maurice G. Adaptive Digital

  19. Feasibility Study of Compressive Sensing Underwater Imaging Lidar

    DTIC Science & Technology

    2014-03-28

    Texas Instruments Digital Micromirror Devices development system. In addition, through these studies, the deficiencies and/or areas of lack...device, such as the Digital Micromirror Device (DMD), to spatially modulate the laser source that illuminates the target plane. The same binary patterns...Digital Micromirror Device (DMD) Applications," Proc. of SPIE, 2003, 4985, 14-25. [8] T. E. Giddings and J. J. Shirron, "Numerical Simulation of the

  20. Modem design for a MOBILESAT terminal

    NASA Technical Reports Server (NTRS)

    Rice, M.; Miller, M. J.; Cowley, W. G.; Rowe, D.

    1990-01-01

    The implementation is described of a programmable digital signal processor based system, designed for use as a test bed in the development of a digital modem, codec, and channel simulator. Code was written to configure the system as a 5600 bps or 6600 bps QPSK modem. The test bed is currently being used in an experiment to evaluate the performance of digital speech over shadowed channels in the Australian mobile satellite (MOBILESAT) project.

  1. Digital model of a vacuum circuit breaker for the analysis of switching waveforms in electrical circuits

    NASA Astrophysics Data System (ADS)

    Budzisz, Joanna; Wróblewski, Zbigniew

    2016-03-01

    The article presents a method of modelling a vaccum circuit breaker in the ATP/EMTP package, the results of the verification of the correctness of the developed digital circuit breaker model operation and its practical usefulness for analysis of overvoltages and overcurrents occurring in commutated capacitive electrical circuits and also examples of digital simulations of overvoltages and overcurrents in selected electrical circuits.

  2. Digital analysis of wind tunnel imagery to measure fluid thickness

    NASA Technical Reports Server (NTRS)

    Easton, Roger L., Jr.; Enge, James

    1992-01-01

    Documented here are the procedure and results obtained from the application of digital image processing techniques to the problem of measuring the thickness of a deicing fluid on a model airfoil during simulated takeoffs. The fluid contained a fluorescent dye and the images were recorded under flash illumination on photographic film. The films were digitized and analyzed on a personal computer to obtain maps of the fluid thickness.

  3. A class of all digital phase locked loops - Modelling and analysis.

    NASA Technical Reports Server (NTRS)

    Reddy, C. P.; Gupta, S. C.

    1972-01-01

    An all digital phase locked loop which tracks the phase of the incoming signal once per carrier cycle is proposed. The different elements and their functions, and the phase lock operation are explained in detail. The general digital loop operation is governed by a non-linear difference equation from which a suitable model is developed. The lock range for the general model is derived. The performance of the digital loop for phase step, and frequency step inputs for different levels of quantization without loop filter, are studied. The analytical results are checked by simulating the actual system on the digital computer.

  4. Budget impact analysis of switching to digital mammography in a population-based breast cancer screening program: a discrete event simulation model.

    PubMed

    Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier

    2014-01-01

    To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs.

  5. Budget Impact Analysis of Switching to Digital Mammography in a Population-Based Breast Cancer Screening Program: A Discrete Event Simulation Model

    PubMed Central

    Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier

    2014-01-01

    Objective To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. Methods A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Results Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Conclusions Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs. PMID:24832200

  6. A Digitally Programmable Cytomorphic Chip for Simulation of Arbitrary Biochemical Reaction Networks.

    PubMed

    Woo, Sung Sik; Kim, Jaewook; Sarpeshkar, Rahul

    2018-04-01

    Prior work has shown that compact analog circuits can faithfully represent and model fundamental biomolecular circuits via efficient log-domain cytomorphic transistor equivalents. Such circuits have emphasized basis functions that are dominant in genetic transcription and translation networks and deoxyribonucleic acid (DNA)-protein binding. Here, we report a system featuring digitally programmable 0.35 μm BiCMOS analog cytomorphic chips that enable arbitrary biochemical reaction networks to be exactly represented thus enabling compact and easy composition of protein networks as well. Since all biomolecular networks can be represented as chemical reaction networks, our protein networks also include the former genetic network circuits as a special case. The cytomorphic analog protein circuits use one fundamental association-dissociation-degradation building-block circuit that can be configured digitally to exactly represent any zeroth-, first-, and second-order reaction including loading, dynamics, nonlinearity, and interactions with other building-block circuits. To address a divergence issue caused by random variations in chip fabrication processes, we propose a unique way of performing computation based on total variables and conservation laws, which we instantiate at both the circuit and network levels. Thus, scalable systems that operate with finite error over infinite time can be built. We show how the building-block circuits can be composed to form various network topologies, such as cascade, fan-out, fan-in, loop, dimerization, or arbitrary networks using total variables. We demonstrate results from a system that combines interacting cytomorphic chips to simulate a cancer pathway and a glycolysis pathway. Both simulations are consistent with conventional software simulations. Our highly parallel digitally programmable analog cytomorphic systems can lead to a useful design, analysis, and simulation tool for studying arbitrary large-scale biological networks in systems and synthetic biology.

  7. Art for the Ages.

    ERIC Educational Resources Information Center

    Casazza, Ornella; Franchi, Paolo

    1985-01-01

    Description of encoding of art works and digitization of paintings to preserve and restore them reviews experiments which used chromatic selection and abstraction as a painting restoration method. This method utilizes the numeric processing resulting from digitization to restore a painting and computer simulation to shorten the restoration…

  8. Image data processing system requirements study. Volume 1: Analysis. [for Earth Resources Survey Program

    NASA Technical Reports Server (NTRS)

    Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.

    1973-01-01

    Digital image processing, image recorders, high-density digital data recorders, and data system element processing for use in an Earth Resources Survey image data processing system are studied. Loading to various ERS systems is also estimated by simulation.

  9. Feasibility of a GNSS-Probe for Creating Digital Maps of High Accuracy and Integrity

    NASA Astrophysics Data System (ADS)

    Vartziotis, Dimitris; Poulis, Alkis; Minogiannis, Alexandros; Siozos, Panayiotis; Goudas, Iraklis; Samson, Jaron; Tossaint, Michel

    The “ROADSCANNER” project addresses the need for increased accuracy and integrity Digital Maps (DM) utilizing the latest developments in GNSS, in order to provide the required datasets for novel applications, such as navigation based Safety Applications, Advanced Driver Assistance Systems (ADAS) and Digital Automotive Simulations. The activity covered in the current paper is the feasibility study, preliminary tests, initial product design and development plan for an EGNOS enabled vehicle probe. The vehicle probe will be used for generating high accuracy, high integrity and ADAS compatible digital maps of roads, employing a multiple passes methodology supported by sophisticated refinement algorithms. Furthermore, the vehicle probe will be equipped with pavement scanning and other data fusion equipment, in order to produce 3D road surface models compatible with standards of road-tire simulation applications. The project was assigned to NIKI Ltd under the 1st Call for Ideas in the frame of the ESA - Greece Task Force.

  10. Standardisation of digital human models.

    PubMed

    Paul, Gunther; Wischniewski, Sascha

    2012-01-01

    Digital human models (DHM) have evolved as useful tools for ergonomic workplace design and product development, and found in various industries and education. DHM systems which dominate the market were developed for specific purposes and differ significantly, which is not only reflected in non-compatible results of DHM simulations, but also provoking misunderstanding of how DHM simulations relate to real world problems. While DHM developers are restricted by uncertainty about the user need and lack of model data related standards, users are confined to one specific product and cannot exchange results, or upgrade to another DHM system, as their previous results would be rendered worthless. Furthermore, origin and validity of anthropometric and biomechanical data is not transparent to the user. The lack of standardisation in DHM systems has become a major roadblock in further system development, affecting all stakeholders in the DHM industry. Evidently, a framework for standardising digital human models is necessary to overcome current obstructions. Practitioner Summary: This short communication addresses a standardisation issue for digital human models, which has been addressed at the International Ergonomics Association Technical Committee for Human Simulation and Virtual Environments. It is the outcome of a workshop at the DHM 2011 symposium in Lyon, which concluded steps towards DHM standardisation that need to be taken.

  11. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications

    PubMed Central

    MacKay, Scott; Hermansen, Peter; Wishart, David; Chen, Jie

    2015-01-01

    In this paper, we describe a point-of-care biosensor design. The uniqueness of our design is in its capability for detecting a wide variety of target biomolecules and the simplicity of nanoparticle enhanced electrical detection. The electrical properties of interdigitated electrodes (IDEs) and the mechanism for gold nanoparticle-enhanced impedance-based biosensor systems based on these electrodes are simulated using COMSOL Multiphysics software. Understanding these properties and how they can be affected is vital in designing effective biosensor devices. Simulations were used to show electrical screening develop over time for IDEs in a salt solution, as well as the electric field between individual digits of electrodes. Using these simulations, it was observed that gold nanoparticles bound closely to IDEs can lower the electric field magnitude between the digits of the electrode. The simulations are also shown to be a useful design tool in optimizing sensor function. Various different conditions, such as electrode dimensions and background ion concentrations, are shown to have a significant impact on the simulations. PMID:26364638

  12. Design and implementation of a hybrid digital phase-locked loop with a TMS320C25: An application to a transponder receiver breadboard

    NASA Technical Reports Server (NTRS)

    Yeh, H.-G.; Nguyen, T. M.

    1994-01-01

    Design, modeling, analysis, and simulation of a phase-locked loop (PLL) with a digital loop filter are presented in this article. A TMS320C25 digital signal processor (DSP) is used to implement this digital loop filter. In order to keep the compatibility, the main design goal was to replace the analog PLL (APLL) of the Deep-Space Transponder (DST) receiver breadboard's loop filter with a digital loop filter without changing anything else. This replacement results in a hybrid digital PLL (HDPLL). Both the original APLL and the designed HDPLL are Type I second-order systems. The real-time performance of the HDPLL and the receiver is provided and evaluated.

  13. Analysis of a digital RF memory in a signal-delay application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinek, D.A.

    1992-03-01

    Laboratory simulation of the approach of a radar fuze towards a target is an important factor in our ability to accurately measure the radar`s performance. This simulation is achieved, in part, by dynamically delaying and attenuating the radar`s transmitted pulse and sending the result back to the radar`s receiver. Historically, the device used to perform the dynamic delay has been a limiting factor in the evaluation of a radar`s performance and characteristics. A new device has been proposed that appears to have more capability than previous dynamic delay devices. This device is the digital RF memory. This report presents themore » results of an analysis of a digital RF memory used in a signal-delay application. 2 refs.« less

  14. Flywheel Propulsion Simulation

    DOT National Transportation Integrated Search

    1977-05-01

    This report develops and describes the analytical models and digital computer simulations that can be used for the evaluation of flywheel-electric propulsion systems employed with urban transit vehicles operating over specified routes and with predet...

  15. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    PubMed

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  16. A Case Study: Using Delmia at Kennedy Space Center to Support NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Kickbusch, Tracey; Humeniuk, Bob

    2010-01-01

    The presentation examines the use of Delmia (Digital Enterprise Lean Manufacturing Interactive Application) for digital simulation in NASA's Constellation Program. Topics include an overview of the Kennedy Space Center (KSC) Design Visualization Group tasks, NASA's Constellation Program, Ares 1 ground processing preliminary design review, and challenges and how Delmia is used at KSC, Challenges include dealing with large data sets, creating and maintaining KSC's infrastructure, gathering customer requirements and meeting objectives, creating life-like simulations, and providing quick turn-around on varied products,

  17. A digital simulation of message traffic for natural disaster warning communications satellite

    NASA Technical Reports Server (NTRS)

    Hein, G. F.; Stevenson, S. M.

    1972-01-01

    Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service.

  18. Imaging techniques in digital forensic investigation: a study using neural networks

    NASA Astrophysics Data System (ADS)

    Williams, Godfried

    2006-09-01

    Imaging techniques have been applied to a number of applications, such as translation and classification problems in medicine and defence. This paper examines the application of imaging techniques in digital forensics investigation using neural networks. A review of applications of digital image processing is presented, whiles a Pedagogical analysis of computer forensics is also highlighted. A data set describing selected images in different forms are used in the simulation and experimentation.

  19. Teaching by Simulation with Personal Computers.

    ERIC Educational Resources Information Center

    Randall, James E.

    1978-01-01

    Describes the use of a small digital computer to simulate a peripheral nerve demonstration in which the action potential responses to pairs of stimuli are used to illustrate the properties of excitable membranes. (Author/MA)

  20. Using a Digital Planetarium for Teaching Seasons to Undergraduates

    ERIC Educational Resources Information Center

    Yu, Ka Chun; Sahami, Kamran; Sahami, Victoria; Sessions, Larry C.

    2015-01-01

    Computer-generated simulations and visualizations in digital planetariums have the potential to bridge the comprehension gap in astronomy education. Concepts involving three-dimensional spatial relationships can be difficult for the layperson to understand, since much of the traditional teaching materials used in astronomy education remain…

  1. Digital off-axis holographic interferometry with simulated wavefront.

    PubMed

    Belashov, A V; Petrov, N V; Semenova, I V

    2014-11-17

    The paper presents a novel algorithm based on digital holographic interferometry and being promising for evaluation of phase variations from highly noisy or modulated by speckle-structures digital holograms. The suggested algorithm simulates an interferogram in finite width fringes, by analogy with classical double exposure holographic interferometry. Thus obtained interferogram is then processed as a digital hologram. The advantages of the suggested approach are demonstrated in numerical experiments on calculations of differences in phase distributions of wave fronts modulated by speckle structure, as well as in a physical experiment on the analysis of laser-induced heating dynamics of an aqueous solution of a photosensitizer. It is shown that owing to the inherent capability of the approach to perform adjustable smoothing of compared wave fronts, the resulting difference undergoes noise filtering. This capability of adjustable smoothing may be used to minimize losses in spatial resolution. Since the method allows to vary an observation angle of compared wave fields, an opportunity to compensate misalignment of optical axes of these wave fronts arises. This feature can be required, for example, when using two different setups in comparative digital holography or for compensation of recording system displacements during a set of exposures in studies of dynamic processes.

  2. Questioning and metacognitive thinking: On-line and off-line assessments in understanding the role of prompting/questioning and metacognitive thinking in a digital learning environment

    NASA Astrophysics Data System (ADS)

    Schroeder, Mubina Khan

    In science education, the use of digital technology-based learning can help students struggling with difficult concepts such as the movement of molecules. While digital learning tools hold much promise for science education, the question arises as to whether or not such technology can serve as an adequate surrogate for the teacher-student interactions that theorists like Lev Vygotsky (1978) underscored as being critical to learning. In response to such concerns, designers of digital curricula often utilize scaffolds to help students as they learn from such programs. Using a simulation designed to teach students about the concept of diffusion as an example, I examine the effect of including prompting language in the learning sequence of the simulation. The use of prompting language in digital curriculum appears to be successful because it elicits science students to reflect and metacognise about their learning, lending support to Vygotsky's (1978) ideas of teaching and learning involving outer and inner dialog. However, findings from think aloud data continue to underscore the importance of human linguistic exchange as a preferable learning paradigm.

  3. Flight code validation simulator

    NASA Astrophysics Data System (ADS)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  4. Effects of channel tap spacing on delay-lock tracking

    NASA Astrophysics Data System (ADS)

    Dana, Roger A.; Milner, Brian R.; Bogusch, Robert L.

    1995-12-01

    High fidelity simulations of communication links operating through frequency selective fading channels require both accurate channel models and faithful reproduction of the received signal. In modern radio receivers, processing beyond the analog-to-digital converter (A/D) is done digitally, so a high fidelity simulation is actually an emulation of this digital signal processing. The 'simulation' occurs in constructing the output of the A/D. One approach to constructing the A/D output is to convolve the channel impulse response function with the combined impulse response of the transmitted modulation and the A/D. For both link simulations and hardware channel simulators, the channel impulse response function is then generated with a finite number of samples per chip, and the convolution is implemented in a tapped delay line. In this paper we discuss the effects of the channel model tap spacing on the performance of delay locked loops (DLLs) in both direct sequence and frequency hopped spread spectrum systems. A frequency selective fading channel is considered, and the channel impulse response function is constructed with an integer number of taps per modulation symbol or chip. The tracking loop time delay is computed theoretically for this tapped delay line channel model and is compared to the results of high fidelity simulations of actual DLLs. A surprising result is obtained. The performance of the DLL depends strongly on the number of taps per chip. As this number increases the DLL delay approaches the theoretical limit.

  5. Computer-aided Instructional System for Transmission Line Simulation.

    ERIC Educational Resources Information Center

    Reinhard, Erwin A.; Roth, Charles H., Jr.

    A computer-aided instructional system has been developed which utilizes dynamic computer-controlled graphic displays and which requires student interaction with a computer simulation in an instructional mode. A numerical scheme has been developed for digital simulation of a uniform, distortionless transmission line with resistive terminations and…

  6. Simulation Accelerator

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA SBIR (Small Business Innovative Research) contract, (NAS5-30905), EAI Simulation Associates, Inc., developed a new digital simulation computer, Starlight(tm). With an architecture based on the analog model of computation, Starlight(tm) outperforms all other computers on a wide range of continuous system simulation. This system is used in a variety of applications, including aerospace, automotive, electric power and chemical reactors.

  7. The GOES-R Rebroadcast (GRB) Data Stream Simulator

    NASA Astrophysics Data System (ADS)

    Dittberner, G. J.; Gibbons, K.; Czopkiewicz, E.; Miller, C.; Brown-Bergtold, B.; Haman, B.; Marley, S.

    2013-12-01

    GOES Rebroadcast (GRB) signals in the GOES-R era will replace the current legacy GOES Variable (GVAR) signal and will have substantially different characteristics, including a change in data rate from a single 2.1 Mbps stream to two digital streams of 15.5 Mbps each. Five GRB Simulators were developed as portable systems that output a high-fidelity stream of Consultative Committee for Space Data Systems (CCSDS) formatted GRB packet data equivalent to live GRB data. The data are used for on-site testing of user ingest and data handling systems known as field terminal sites. The GRB Simulator is a fully self-contained system which includes all software and hardware units needed for operation. The operator manages configurations to edit preferences, define individual test scenarios, and manage event logs and reports. Simulations are controlled by test scenarios, which are scripts that specify the test data and provide a series of actions for the GRB Simulator to perform when generating GRB output. Scenarios allow for the insertion of errors or modification of GRB packet headers for testing purposes. The GRB Simulator provides a built-in editor for managing scenarios. The GRB Simulator provides GRB data as either baseband (digital) or Intermediate Frequency (IF) output to the test system. GRB packet data are sent in the same two output streams used in the operational system: one for Left Hand Circular Polarization (LHCP) and one for Right Hand Circular Polarization (RHCP). Use of circular polarization in the operational system allows the transmitting antenna to multiplex the two digital streams into the same signal, thereby doubling the available bandwidth. The GRB Simulator is designed to be used at sites that receive the GRB downlink.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of researchmore » reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)« less

  9. Status of the AIAA Modeling and Simulation Format Standard

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2008-01-01

    The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.

  10. Digital image film generation: from the photoscientist's perspective

    USGS Publications Warehouse

    Boyd, John E.

    1982-01-01

    The technical sophistication of photoelectronic transducers, integrated circuits, and laser-beam film recorders has made digital imagery an alternative to traditional analog imagery for remote sensing. Because a digital image is stored in discrete digital values, image enhancement is possible before the data are converted to a photographic image. To create a special film-reproduction curve - which can simulate any desired gamma, relative film speed, and toe/shoulder response - the digital-to-analog transfer function of the film recorder is uniquely defined and implemented by a lookup table in the film recorder. Because the image data are acquired in spectral bands, false-color composites also can be given special characteristics by selecting a reproduction curve tailored for each band.

  11. Digital-computer normal shock position and restart control of a Mach 2.5 axisymmetric mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Neiner, G. H.; Cole, G. L.; Arpasi, D. J.

    1972-01-01

    Digital computer control of a mixed-compression inlet is discussed. The inlet was terminated with a choked orifice at the compressor face station to dynamically simulate a turbojet engine. Inlet diffuser exit airflow disturbances were used. A digital version of a previously tested analog control system was used for both normal shock and restart control. Digital computer algorithms were derived using z-transform and finite difference methods. Using a sample rate of 1000 samples per second, the digital normal shock and restart controls essentially duplicated the inlet analog computer control results. At a sample rate of 100 samples per second, the control system performed adequately but was less stable.

  12. Digital second-order phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.

    1975-01-01

    Actual tests with second-order digital phase-locked loop at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. Loop thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.

  13. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  14. Macromodels of digital integrated circuits for program packages of circuit engineering design

    NASA Astrophysics Data System (ADS)

    Petrenko, A. I.; Sliusar, P. B.; Timchenko, A. P.

    1984-04-01

    Various aspects of the generation of macromodels of digital integrated circuits are examined, and their effective application in program packages of circuit engineering design is considered. Three levels of macromodels are identified, and the application of such models to the simulation of circuit outputs is discussed.

  15. Simulation of the Effects of Random Measurement Errors

    ERIC Educational Resources Information Center

    Kinsella, I. A.; Hannaidh, P. B. O.

    1978-01-01

    Describes a simulation method for measurement of errors that requires calculators and tables of random digits. Each student simulates the random behaviour of the component variables in the function and by combining the results of all students, the outline of the sampling distribution of the function can be obtained. (GA)

  16. Hardware synthesis from DDL description. [simulating a digital system for computerized design of large scale integrated circuits

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.; Shah, A. M.

    1980-01-01

    The details of digital systems can be conveniently input into the design automation system by means of hardware description language (HDL). The computer aided design and test (CADAT) system at NASA MSFC is used for the LSI design. The digital design language (DDL) was selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. Problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system are addressed.

  17. [Research progress of three-dimensional digital model for repair and reconstruction of knee joint].

    PubMed

    Tong, Lu; Li, Yanlin; Hu, Meng

    2013-01-01

    To review recent advance in the application and research of three-dimensional digital knee model. The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.

  18. High-resolution digital holography with the aid of coherent diffraction imaging.

    PubMed

    Jiang, Zhilong; Veetil, Suhas P; Cheng, Jun; Liu, Cheng; Wang, Ling; Zhu, Jianqiang

    2015-08-10

    The image reconstructed in ordinary digital holography was unable to bring out desired resolution in comparison to photographic materials; thus making it less preferable for many interesting applications. A method is proposed to enhance the resolution of digital holography in all directions by placing a random phase plate between the specimen and the electronic camera and then using an iterative approach to do the reconstruction. With this method, the resolution is improved remarkably in comparison to ordinary digital holography. Theoretical analysis is supported by numerical simulation. The feasibility of the method is also studied experimentally.

  19. Digital quantum simulation of Dirac equation with a trapped ion

    NASA Astrophysics Data System (ADS)

    Shen, Yangchao; Zhang, Xiang; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jingning; Kim, Kihwan; Department Of Physical Chemistry Collaboration

    2014-05-01

    Recently there has been growing interest in simulating relativistic effects in controllable physical system. We digitally simulate the Dirac equation in 3 +1 dimensions with a single trapped ion. We map four internal levels of 171Yb+ ion to the Dirac bispinor. The time evolution of the Dirac equation is implemented by trotter expansion. In the 3 +1 dimension, we can observe a helicoidal motion of a free Dirac particle which reduces to Zitterbewegung in 1 +1 dimension. This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540. KK acknowledge the support from the recruitment program of global youth experts.

  20. Research in digital adaptive flight controllers

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  1. Analog/digital pH meter system I.C.

    NASA Technical Reports Server (NTRS)

    Vincent, Paul; Park, Jea

    1992-01-01

    The project utilizes design automation software tools to design, simulate, and fabricate a pH meter integrated circuit (IC) system including a successive approximation type seven-bit analog to digital converter circuits using a 1.25 micron N-Well CMOS MOSIS process. The input voltage ranges from 0.5 to 1.0 V derived from a special type pH sensor, and the output is a three-digit decimal number display of pH with one decimal point.

  2. A flight investigation of simulated data link communications during single-pilot IFR flight

    NASA Technical Reports Server (NTRS)

    Parker, J. F.; Duffy, J. W.; Christensen, D. G.

    1983-01-01

    A Flight Data Console (FDC) was developed to allow simulation of a digital communications link to replace the current voice communication system used in air traffic control (ATC). The voice system requires manipulation of radio equipment, read-back of clearances, and mental storage of critical information items, all contributing to high workload, particularly during single-pilot operations. This was an inflight study to determine how a digital communications system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. Results show that instrument flight, including approach and landing, can be accomplished quite effectively using a digital data link system for ATC communications. All pilots expressed a need for a back-up voice channel. When included, this channel was used sparingly and principally to confirm any item of information about which there might be uncertainty.

  3. A dynamic model of the human postural control system

    NASA Technical Reports Server (NTRS)

    Hill, J. C.

    1972-01-01

    A digital simulation of the pitch axis dynamics of a stick man of figures is described. Difficulties encountered in linearizing the equations of motion are discussed; the conclusion reached is that a completely linear simulation is of such restricted validity that only a nonlinear simulation is of any practical use. Typical simulation results obtained from the full nonlinear model are presented.

  4. A dynamic model of the human postural control system.

    NASA Technical Reports Server (NTRS)

    Hill, J. C.

    1971-01-01

    Description of a digital simulation of the pitch axis dynamics of a stick man. The difficulties encountered in linearizing the equations of motion are discussed; the conclusion reached is that a completely linear simulation is of such restricted validity that only a nonlinear simulation is of any practical use. Typical simulation results obtained from the full nonlinear model are illustrated.

  5. Diagnostic accuracy of phosphor plate systems and conventional radiography in the detection of simulated internal root resorption.

    PubMed

    Vasconcelos, Karla de Faria; Rovaris, Karla; Nascimento, Eduarda Helena Leandro; Oliveira, Matheus Lima; Távora, Débora de Melo; Bóscolo, Frab Norberto

    2017-11-01

    To evaluate the performance of conventional radiography and photostimulable phosphor (PSP) plate in the detection of simulated internal root resorption (IRR) lesions in early stages. Twenty single-rooted teeth were X-rayed before and after having a simulated IRR early lesion. Three imaging systems were used: Kodak InSight dental film and two PSPs digital systems, Digora Optime and VistaScan. The digital images were displayed on a 20.1″ LCD monitor using the native software of each system, and the conventional radiographs were evaluated on a masked light box. Two radiologists were asked to indicate the presence or absence of IRR and, after two weeks, all images were re-evaluated. Cohen's kappa coefficient was calculated to assess intra- and interobserver agreement. The three imaging systems were compared using the Kruskal-Wallis test. For interexaminer agreement, overall kappa values were 0.70, 0.65 and 0.70 for conventional film, Digora Optima and VistaScan, respectively. Both the conventional and digital radiography presented low sensitivity, specificity, accuracy, positive and negative predictive values with no significant difference between imaging systems (p = .0725). The performance of conventional and PSP was similar in the detection of simulated IRR lesions in early stages with low accuracy.

  6. Ergonomic aspects simulation digital online: an educational game proposal to promote environmental education.

    PubMed

    Arbex, D F; Jappur, R; Selig, P; Varvakis, G

    2012-01-01

    This article addresses the ergonomic criteria that guide the construction of an educational game called Environmental Simulator. The focus is on environment navigation considering aspects of content architecture and its esthetics functionality.

  7. Novel Method to Characterize and Model the Multiaxial Constitutive and Damage Response of Energetic Materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneshige, Michael J.; Rabbi, Md Fazle; Kaneshige, Michael J.

    2017-12-01

    Simulant polymer bonded explosives are widely used to simulate the mechanical response of real energetic materials. In this paper, the fracture resistance of a simulant polymer bo nded explosive (PBX) is experimentally investigated. The simulant is composed of 80 wt.% soda lime glass beads (SLGB) and 20 wt.% high impact Polystyrene 825 (HIPS). Brazilian disk tests are performed to characterize the tensile and compressive properties. Fracture toughness and energy tests are performed in the semi - circular bending (SCB) configuration on 80, 81, 82, and 83 wt % SLGB compositions. Digital image correlation is performed to record the surface displacementsmore » and calculate surface strains during testing. The m icromechanical behavior of ductile and brittle fracture are evaluated using digital microscopy and scanning electron microscopy of the fracture surface. It is determined that (i) the manufacturing process produces a credible simulant of PBX properties, and (ii) the SCB test measures fracture resistance with a reasonable coefficient of variation.« less

  8. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  9. Design of a high-speed digital processing element for parallel simulation

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Cwynar, D. S.

    1983-01-01

    A prototype of a custom designed computer to be used as a processing element in a multiprocessor based jet engine simulator is described. The purpose of the custom design was to give the computer the speed and versatility required to simulate a jet engine in real time. Real time simulations are needed for closed loop testing of digital electronic engine controls. The prototype computer has a microcycle time of 133 nanoseconds. This speed was achieved by: prefetching the next instruction while the current one is executing, transporting data using high speed data busses, and using state of the art components such as a very large scale integration (VLSI) multiplier. Included are discussions of processing element requirements, design philosophy, the architecture of the custom designed processing element, the comprehensive instruction set, the diagnostic support software, and the development status of the custom design.

  10. Development of a realistic, dynamic digital brain phantom for CT perfusion validation

    NASA Astrophysics Data System (ADS)

    Divel, Sarah E.; Segars, W. Paul; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2016-03-01

    Physicians rely on CT Perfusion (CTP) images and quantitative image data, including cerebral blood flow, cerebral blood volume, and bolus arrival delay, to diagnose and treat stroke patients. However, the quantification of these metrics may vary depending on the computational method used. Therefore, we have developed a dynamic and realistic digital brain phantom upon which CTP scans can be simulated based on a set of ground truth scenarios. Building upon the previously developed 4D extended cardiac-torso (XCAT) phantom containing a highly detailed brain model, this work consisted of expanding the intricate vasculature by semi-automatically segmenting existing MRA data and fitting nonuniform rational B-spline surfaces to the new vessels. Using time attenuation curves input by the user as reference, the contrast enhancement in the vessels changes dynamically. At each time point, the iodine concentration in the arteries and veins is calculated from the curves and the material composition of the blood changes to reflect the expected values. CatSim, a CT system simulator, generates simulated data sets of this dynamic digital phantom which can be further analyzed to validate CTP studies and post-processing methods. The development of this dynamic and realistic digital phantom provides a valuable resource with which current uncertainties and controversies surrounding the quantitative computations generated from CTP data can be examined and resolved.

  11. Spatiotemporal Visualization of Time-Series Satellite-Derived CO2 Flux Data Using Volume Rendering and Gpu-Based Interpolation on a Cloud-Driven Digital Earth

    NASA Astrophysics Data System (ADS)

    Wu, S.; Yan, Y.; Du, Z.; Zhang, F.; Liu, R.

    2017-10-01

    The ocean carbon cycle has a significant influence on global climate, and is commonly evaluated using time-series satellite-derived CO2 flux data. Location-aware and globe-based visualization is an important technique for analyzing and presenting the evolution of climate change. To achieve realistic simulation of the spatiotemporal dynamics of ocean carbon, a cloud-driven digital earth platform is developed to support the interactive analysis and display of multi-geospatial data, and an original visualization method based on our digital earth is proposed to demonstrate the spatiotemporal variations of carbon sinks and sources using time-series satellite data. Specifically, a volume rendering technique using half-angle slicing and particle system is implemented to dynamically display the released or absorbed CO2 gas. To enable location-aware visualization within the virtual globe, we present a 3D particlemapping algorithm to render particle-slicing textures onto geospace. In addition, a GPU-based interpolation framework using CUDA during real-time rendering is designed to obtain smooth effects in both spatial and temporal dimensions. To demonstrate the capabilities of the proposed method, a series of satellite data is applied to simulate the air-sea carbon cycle in the China Sea. The results show that the suggested strategies provide realistic simulation effects and acceptable interactive performance on the digital earth.

  12. Evaluating RGB photogrammetry and multi-temporal digital surface models for detecting soil erosion

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2013-04-01

    Photogrammetry is a widely used tool for generating high-resolution digital surface models. Unmanned Aerial Vehicles (UAVs), equipped with a Red Green Blue (RGB) camera, have great potential in quickly acquiring multi-temporal high-resolution orthophotos and surface models. Such datasets would ease the monitoring of geomorphological processes, such as local soil erosion and rill formation after heavy rainfall events. In this study we test a photogrammetric setup to determine data requirements for soil erosion studies with UAVs. We used a rainfall simulator (5 m2) and above a rig with attached a Panasonic GX1 16 megapixel digital camera and 20mm lens. The soil material in the simulator consisted of loamy sand at an angle of 5 degrees. Stereo pair images were taken before and after rainfall simulation with 75-85% overlap. Acquired images were automatically mosaicked to create high-resolution orthorectified images and digital surface models (DSM). We resampled the DSM to different spatial resolutions to analyze the effect of cell size to the accuracy of measured rill depth and soil loss estimations, and determined an optimal cell size (thus flight altitude). Furthermore, the high spatial accuracy of the acquired surface models allows further analysis of rill formation and channel initiation related to e.g. surface roughness. We suggest implementing near-infrared and temperature sensors to combine soil moisture and soil physical properties with surface morphology for future investigations.

  13. Evaluation of the Accuracy of Conventional and Digital Impression Techniques for Implant Restorations.

    PubMed

    Moura, Renata Vasconcellos; Kojima, Alberto Noriyuki; Saraceni, Cintia Helena Coury; Bassolli, Lucas; Balducci, Ivan; Özcan, Mutlu; Mesquita, Alfredo Mikail Melo

    2018-05-01

    The increased use of CAD systems can generate doubt about the accuracy of digital impressions for angulated implants. The aim of this study was to evaluate the accuracy of different impression techniques, two conventional and one digital, for implants with and without angulation. We used a polyurethane cast that simulates the human maxilla according to ASTM F1839, and 6 tapered implants were installed with external hexagonal connections to simulate tooth positions 17, 15, 12, 23, 25, and 27. Implants 17 and 23 were placed with 15° of mesial angulation and distal angulation, respectively. Mini cone abutments were installed on these implants with a metal strap 1 mm in height. Conventional and digital impression procedures were performed on the maxillary master cast, and the implants were separated into 6 groups based on the technique used and measurement type: G1 - control, G2 - digital impression, G3 - conventional impression with an open tray, G4 - conventional impression with a closed tray, G5 - conventional impression with an open tray and a digital impression, and G6 - conventional impression with a closed tray and a digital impression. A statistical analysis was performed using two-way repeated measures ANOVA to compare the groups, and a Kruskal-Wallis test was conducted to analyze the accuracy of the techniques. No significant difference in the accuracy of the techniques was observed between the groups. Therefore, no differences were found among the conventional impression and the combination of conventional and digital impressions, and the angulation of the implants did not affect the accuracy of the techniques. All of the techniques exhibited trueness and had acceptable precision. The variation of the angle of the implants did not affect the accuracy of the techniques. © 2018 by the American College of Prosthodontists.

  14. 3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties

    NASA Astrophysics Data System (ADS)

    Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao

    2018-02-01

    Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.

  15. Compensation based on linearized analysis for a six degree of freedom motion simulator

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Dieudonne, J. E.; Martin, D. J., Jr.; Copeland, J. L.

    1973-01-01

    The inertial response characteristics of a synergistic, six-degree-of-freedom motion base are presented in terms of amplitude ratio and phase lag as functions of frequency data for the frequency range of interest (0 to 2 Hz) in real time, digital, flight simulators. The notch filters which smooth the digital-drive signals to continuous drive signals are presented, and appropriate compensation, based on the inertial response data, is suggested. The existence of an inverse transformation that converts actuator extensions into inertial positions makes it possible to gather the response data in the inertial axis system.

  16. Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Wu, Fan; Kim, Myung K.; Wang, Dayong

    2016-11-01

    We present a new self-interference digital holographic approach that allows single-shot capturing three-dimensional intensity distribution of the spatially incoherent objects. The Fresnel incoherent correlation holographic microscopy is combined with parallel phase-shifting technique to instantaneously obtain spatially multiplexed phase-shifting holograms. The compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed holograms. The scheme is verified with simulations. The validity of the proposed method is experimentally demonstrated in an indirectly way by simulating the use of specific parallel phase-shifting recording device.

  17. Design of a real-time wind turbine simulator using a custom parallel architecture

    NASA Technical Reports Server (NTRS)

    Hoffman, John A.; Gluck, R.; Sridhar, S.

    1995-01-01

    The design of a new parallel-processing digital simulator is described. The new simulator has been developed specifically for analysis of wind energy systems in real time. The new processor has been named: the Wind Energy System Time-domain simulator, version 3 (WEST-3). Like previous WEST versions, WEST-3 performs many computations in parallel. The modules in WEST-3 are pure digital processors, however. These digital processors can be programmed individually and operated in concert to achieve real-time simulation of wind turbine systems. Because of this programmability, WEST-3 is very much more flexible and general than its two predecessors. The design features of WEST-3 are described to show how the system produces high-speed solutions of nonlinear time-domain equations. WEST-3 has two very fast Computational Units (CU's) that use minicomputer technology plus special architectural features that make them many times faster than a microcomputer. These CU's are needed to perform the complex computations associated with the wind turbine rotor system in real time. The parallel architecture of the CU causes several tasks to be done in each cycle, including an IO operation and the combination of a multiply, add, and store. The WEST-3 simulator can be expanded at any time for additional computational power. This is possible because the CU's interfaced to each other and to other portions of the simulation using special serial buses. These buses can be 'patched' together in essentially any configuration (in a manner very similar to the programming methods used in analog computation) to balance the input/ output requirements. CU's can be added in any number to share a given computational load. This flexible bus feature is very different from many other parallel processors which usually have a throughput limit because of rigid bus architecture.

  18. Project ITCH: Interactive Digital Simulation in Electrical Engineering Education.

    ERIC Educational Resources Information Center

    Bailey, F. N.; Kain, R. Y.

    A two-stage project is investigating the educational potential of a low-cost time-sharing system used as a simulation tool in Electrical Engineering (EE) education. Phase I involves a pilot study and Phase II a full integration. The system employs interactive computer simulation to teach engineering concepts which are not well handled by…

  19. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  20. Design and Evaluation of Simulations for the Development of Complex Decision-Making Skills.

    ERIC Educational Resources Information Center

    Hartley, Roger; Varley, Glen

    2002-01-01

    Command and Control Training Using Simulation (CACTUS) is a computer digital mapping system used by police to manage large-scale public events. Audio and video records of adaptive training scenarios using CACTUS show how the simulation develops decision-making skills for strategic and tactical event management. (SK)

  1. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

    ERIC Educational Resources Information Center

    Weiss, Charles J.

    2017-01-01

    An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

  2. Development of a LiDAR derived digital elevation model (DEM) as Input to a METRANS geographic information system (GIS).

    DOT National Transportation Integrated Search

    2011-05-01

    This report describes an assessment of digital elevation models (DEMs) derived from : LiDAR data for a subset of the Ports of Los Angeles and Long Beach. A methodology : based on Monte Carlo simulation was applied to investigate the accuracy of DEMs ...

  3. Computerized Experiments Using an A/D Converter.

    ERIC Educational Resources Information Center

    Karl, John H.

    The indroduction of on-line data collection and data processing techniques into an intermediate physics laboratory is described. Using a minimum configuration PDP-8L and a Digital Equipment AD01 analog to digital converter, an interface is developed with two existing experiments. These are a microwave apparatus used to simulate Bragg diffraction…

  4. Video signal processing system uses gated current mode switches to perform high speed multiplication and digital-to-analog conversion

    NASA Technical Reports Server (NTRS)

    Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.

    1966-01-01

    Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.

  5. A Literature Review of Gaming in Education. Research Report

    ERIC Educational Resources Information Center

    McClarty, Katie Larsen; Orr, Aline; Frey, Peter M.; Dolan, Robert P.; Vassileva, Victoria; McVay, Aaron

    2012-01-01

    The use of simulations and digital games in learning and assessment is expected to increase over the next several years. Although there is much theoretical support for the benefits of digital games in learning and education, there is mixed empirical support. This research report provides an overview of the theoretical and empirical evidence behind…

  6. Using Computer Simulations and Games to Prevent Student Plagiarism

    ERIC Educational Resources Information Center

    Bradley, Elizabeth G.

    2015-01-01

    In this increasingly digital age, student plagiarism is rampant. Roughly half of college students admit to plagiarizing using content found online, directly copying and pasting the work of others. Digital technology and social media have greatly changed the landscape of how knowledge is acquired and disseminated; thus, students must be explicitly…

  7. Digital evaluation of sitting posture comfort in human-vehicle system under Industry 4.0 framework

    NASA Astrophysics Data System (ADS)

    Tao, Qing; Kang, Jinsheng; Sun, Wenlei; Li, Zhaobo; Huo, Xiao

    2016-09-01

    Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.

  8. Direct-phase and amplitude digitalization based on free-space interferometry

    NASA Astrophysics Data System (ADS)

    Kleiner, Vladimir; Rudnitsky, Arkady; Zalevsky, Zeev

    2017-12-01

    A novel ADC configuration that can be characterized as a photonic-domain flash analog-to-digital convertor operating based upon free-space interferometry is proposed and analysed. The structure can be used as the front-end of a coherent receiver as well as for other applications. Two configurations are considered: the first, ‘direct free-space interference’, allows simultaneous measuring of the optical phase and amplitude; the second, ‘extraction of the ac component of interference by means of pixel-by-pixel balanced photodetection’, allows only phase digitization but with significantly higher sensitivity. For both proposed configurations, we present Monte Carlo estimations of the performance limitations, due to optical noise and photo-current noise, at sampling rates of 60 giga-samples per second. In terms of bit resolution, we simulated multiple cases with growing complexity of up to 4 bits for the amplitude and up to 6 bits for the phase. The simulations show that the digitization errors in the optical domain can be reduced to levels close to the quantization noise limits. Preliminary experimental results validate the fundamentals of the proposed idea.

  9. Digital fabrication of multi-material biomedical objects.

    PubMed

    Cheung, H H; Choi, S H

    2009-12-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  10. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance.

    PubMed

    Bautista, Pinky A; Yagi, Yukako

    2012-05-01

    Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M < N principal component (PC) vectors. The pixel's enhanced spectrum is transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.

  11. Application of digital human modeling and simulation for vision analysis of pilots in a jet aircraft: a case study.

    PubMed

    Karmakar, Sougata; Pal, Madhu Sudan; Majumdar, Deepti; Majumdar, Dhurjati

    2012-01-01

    Ergonomic evaluation of visual demands becomes crucial for the operators/users when rapid decision making is needed under extreme time constraint like navigation task of jet aircraft. Research reported here comprises ergonomic evaluation of pilot's vision in a jet aircraft in virtual environment to demonstrate how vision analysis tools of digital human modeling software can be used effectively for such study. Three (03) dynamic digital pilot models, representative of smallest, average and largest Indian pilot population were generated from anthropometric database and interfaced with digital prototype of the cockpit in Jack software for analysis of vision within and outside the cockpit. Vision analysis tools like view cones, eye view windows, blind spot area, obscuration zone, reflection zone etc. were employed during evaluation of visual fields. Vision analysis tool was also used for studying kinematic changes of pilot's body joints during simulated gazing activity. From present study, it can be concluded that vision analysis tool of digital human modeling software was found very effective in evaluation of position and alignment of different displays and controls in the workstation based upon their priorities within the visual fields and anthropometry of the targeted users, long before the development of its physical prototype.

  12. Design of a digital phantom population for myocardial perfusion SPECT imaging research.

    PubMed

    Ghaly, Michael; Du, Yong; Fung, George S K; Tsui, Benjamin M W; Links, Jonathan M; Frey, Eric

    2014-06-21

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in the context of single and dual isotope MPS.

  13. Design of a digital phantom population for myocardial perfusion SPECT imaging research

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Fung, George S. K.; Tsui, Benjamin M. W.; Links, Jonathan M.; Frey, Eric

    2014-06-01

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in the context of single and dual isotope MPS.

  14. The use of digital games and simulators in veterinary education: an overview with examples.

    PubMed

    de Bie, M H; Lipman, L J A

    2012-01-01

    In view of current technological possibilities and the popularity of games, the interest in games for educational purposes is remarkably on the rise. This article outlines the (future) use of (digital) games and simulators in several disciplines, especially in the veterinary curriculum. The different types of game-based learning (GBL)-varying from simple interactive computer board games to more complex virtual simulation strategies-will be discussed as well as the benefits, possibilities, and limitations of the educational use of games. The real breakthrough seems to be a few years away. Technological developments in the future might diminish the limitations and stumbling blocks that currently exist. Consequently, educational games will play a new and increasingly important role in the future veterinary curriculum, providing an attractive and useful way of learning.

  15. Integrating hinge axis approximation and the virtual facial simulation of prosthetic outcomes for treatment with CAD-CAM immediate dentures: A clinical report of a patient with microstomia.

    PubMed

    Kuric, Katelyn M; Harris, Bryan T; Morton, Dean; Azevedo, Bruno; Lin, Wei-Shao

    2017-09-29

    This clinical report describes a digital workflow using extraoral digital photographs and volumetric datasets from cone beam computed tomography (CBCT) imaging to create a 3-dimensional (3D), virtual patient with photorealistic appearance. In a patient with microstomia, hinge axis approximation, diagnostic casts simulating postextraction alveolar ridge profile, and facial simulation of prosthetic treatment outcome were completed in a 3D, virtual environment. The approach facilitated the diagnosis, communication, and patient acceptance of the treatment of maxillary and mandibular computer-aided design and computer-aided manufacturing (CAD-CAM) of immediate dentures at increased occlusal vertical dimension. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    NASA Astrophysics Data System (ADS)

    Won, Y. J.; Kim, J. G.; Kim, A. R.; Kim, G. H.; Park, M.; Yu, I. K.; Sim, K. D.; Cho, J.; Lee, S.; Jeong, K. W.; Watanabe, K.

    2011-11-01

    Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  17. An Integrated Modeling and Simulation Methodology for Intelligent Systems Design and Testing

    DTIC Science & Technology

    2002-08-01

    simulation and actual execution. KEYWORDS: Model Continuity, Modeling, Simulation, Experimental Frame, Real Time Systems , Intelligent Systems...the methodology for a stand-alone real time system. Then it will scale up to distributed real time systems . For both systems, step-wise simulation...MODEL CONTINUITY Intelligent real time systems monitor, respond to, or control, an external environment. This environment is connected to the digital

  18. Preliminary development of digital signal processing in microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.

  19. Digital system upset. The effects of simulated lightning-induced transients on a general-purpose microprocessor

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.

    1983-01-01

    Flight critical computer based control systems designed for advanced aircraft must exhibit ultrareliable performance in lightning charged environments. Digital system upset can occur as a result of lightning induced electrical transients, and a methodology was developed to test specific digital systems for upset susceptibility. Initial upset data indicates that there are several distinct upset modes and that the occurrence of upset is related to the relative synchronization of the transient input with the processing sate of the digital system. A large upset test data base will aid in the formulation and verification of analytical upset reliability modeling techniques which are being developed.

  20. Flight test of a full authority Digital Electronic Engine Control system in an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, W. J.; Rembold, J. P.; Burcham, F. W.; Myers, L.

    1981-01-01

    The Digital Electronic Engine Control (DEEC) system considered is a relatively low cost digital full authority control system containing selectively redundant components and fault detection logic with capability for accommodating faults to various levels of operational capability. The DEEC digital control system is built around a 16-bit, 1.2 microsecond cycle time, CMOS microprocessor, microcomputer system with approximately 14 K of available memory. Attention is given to the control mode, component bench testing, closed loop bench testing, a failure mode and effects analysis, sea-level engine testing, simulated altitude engine testing, flight testing, the data system, cockpit, and real time display.

  1. Third-Order Elliptic Lowpass Filter for Multi-Standard Baseband Chain Using Highly Linear Digitally Programmable OTA

    NASA Astrophysics Data System (ADS)

    Elamien, Mohamed B.; Mahmoud, Soliman A.

    2018-03-01

    In this paper, a third-order elliptic lowpass filter is designed using highly linear digital programmable balanced OTA. The filter exhibits a cutoff frequency tuning range from 2.2 MHz to 7.1 MHz, thus, it covers W-CDMA, UMTS, and DVB-H standards. The programmability concept in the filter is achieved by using digitally programmable operational transconductors amplifier (DPOTA). The DPOTA employs three linearization techniques which are the source degeneration, double differential pair and the adaptive biasing. Two current division networks (CDNs) are used to control the value of the transconductance. For the DPOTA, the third-order harmonic distortion (HD3) remains below -65 dB up to 0.4 V differential input voltage at 1.2 V supply voltage. The DPOTA and the filter are designed and simulated in 90 nm CMOS technology with LTspice simulator.

  2. 3D printing of intracranial aneurysm based on intracranial digital subtraction angiography and its clinical application.

    PubMed

    Wang, Jian-Li; Yuan, Zi-Gang; Qian, Guo-Liang; Bao, Wu-Qiao; Jin, Guo-Liang

    2018-06-01

    The study aimed to develop simulation models including intracranial aneurysmal and parent vessel geometries, as well as vascular branches, through 3D printing technology. The simulation models focused on the benefits of aneurysmal treatments and clinical education. This prospective study included 13 consecutive patients who suffered from intracranial aneurysms confirmed by digital subtraction angiography (DSA) in the Neurosurgery Department of Shaoxing People's Hospital. The original 3D-DSA image data were extracted through the picture archiving and communication system and imported into Mimics. After reconstructing and transforming to Binary STL format, the simulation models of the hollow vascular tree were printed using 3D devices. The intracranial aneurysm 3D printing simulation model was developed based on DSA to assist neurosurgeons in aneurysmal treatments and residency training. Seven neurosurgical residents and 15 standardization training residents received their simulation model training and gave high assessments for the educational course with the follow-up qualitative questionnaire. 3D printed simulation models based on DSA can perfectly reveal target aneurysms and help neurosurgeons select therapeutic strategies precisely. As an educational tool, the 3D aneurysm vascular simulation model is useful for training residents.

  3. 3D-information fusion from very high resolution satellite sensors

    NASA Astrophysics Data System (ADS)

    Krauss, T.; d'Angelo, P.; Kuschk, G.; Tian, J.; Partovi, T.

    2015-04-01

    In this paper we show the pre-processing and potential for environmental applications of very high resolution (VHR) satellite stereo imagery like these from WorldView-2 or Pl'eiades with ground sampling distances (GSD) of half a metre to a metre. To process such data first a dense digital surface model (DSM) has to be generated. Afterwards from this a digital terrain model (DTM) representing the ground and a so called normalized digital elevation model (nDEM) representing off-ground objects are derived. Combining these elevation based data with a spectral classification allows detection and extraction of objects from the satellite scenes. Beside the object extraction also the DSM and DTM can directly be used for simulation and monitoring of environmental issues. Examples are the simulation of floodings, building-volume and people estimation, simulation of noise from roads, wave-propagation for cellphones, wind and light for estimating renewable energy sources, 3D change detection, earthquake preparedness and crisis relief, urban development and sprawl of informal settlements and much more. Also outside of urban areas volume information brings literally a new dimension to earth oberservation tasks like the volume estimations of forests and illegal logging, volume of (illegal) open pit mining activities, estimation of flooding or tsunami risks, dike planning, etc. In this paper we present the preprocessing from the original level-1 satellite data to digital surface models (DSMs), corresponding VHR ortho images and derived digital terrain models (DTMs). From these components we present how a monitoring and decision fusion based 3D change detection can be realized by using different acquisitions. The results are analyzed and assessed to derive quality parameters for the presented method. Finally the usability of 3D information fusion from VHR satellite imagery is discussed and evaluated.

  4. Computational approach to integrate 3D X-ray microtomography and NMR data

    NASA Astrophysics Data System (ADS)

    Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Trevizan, Willian A.; Fortulan, Carlos A.; Bonagamba, Tito J.

    2018-07-01

    Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T1 and T2, respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials.

  5. North Atlantic (NAT) aided inertial navigation system simulation volume I. : technical results

    DOT National Transportation Integrated Search

    1973-07-01

    Current air traffic operations over the North ATlantic (NAT) and the application of hybrid navigation systems to obtain more accurate performance on these NAT routes are reviewed. A digital computer simulation program (NATNAV - North ATlantic NAVigat...

  6. Digital PCR Modeling for Maximal Sensitivity, Dynamic Range and Measurement Precision

    PubMed Central

    Majumdar, Nivedita; Wessel, Thomas; Marks, Jeffrey

    2015-01-01

    The great promise of digital PCR is the potential for unparalleled precision enabling accurate measurements for genetic quantification. A challenge associated with digital PCR experiments, when testing unknown samples, is to perform experiments at dilutions allowing the detection of one or more targets of interest at a desired level of precision. While theory states that optimal precision (Po) is achieved by targeting ~1.59 mean copies per partition (λ), and that dynamic range (R) includes the space spanning one positive (λL) to one negative (λU) result from the total number of partitions (n), these results are tempered for the practitioner seeking to construct digital PCR experiments in the laboratory. A mathematical framework is presented elucidating the relationships between precision, dynamic range, number of partitions, interrogated volume, and sensitivity in digital PCR. The impact that false reaction calls and volumetric variation have on sensitivity and precision is next considered. The resultant effects on sensitivity and precision are established via Monte Carlo simulations reflecting the real-world likelihood of encountering such scenarios in the laboratory. The simulations provide insight to the practitioner on how to adapt experimental loading concentrations to counteract any one of these conditions. The framework is augmented with a method of extending the dynamic range of digital PCR, with and without increasing n, via the use of dilutions. An example experiment demonstrating the capabilities of the framework is presented enabling detection across 3.33 logs of starting copy concentration. PMID:25806524

  7. Introducing Molecular Life Science Students to Model Building Using Computer Simulations

    ERIC Educational Resources Information Center

    Aegerter-Wilmsen, Tinri; Kettenis, Dik; Sessink, Olivier; Hartog, Rob; Bisseling, Ton; Janssen, Fred

    2006-01-01

    Computer simulations can facilitate the building of models of natural phenomena in research, such as in the molecular life sciences. In order to introduce molecular life science students to the use of computer simulations for model building, a digital case was developed in which students build a model of a pattern formation process in…

  8. Application of the ANNA neural network chip to high-speed character recognition.

    PubMed

    Sackinger, E; Boser, B E; Bromley, J; Lecun, Y; Jackel, L D

    1992-01-01

    A neural network with 136000 connections for recognition of handwritten digits has been implemented using a mixed analog/digital neural network chip. The neural network chip is capable of processing 1000 characters/s. The recognition system has essentially the same rate (5%) as a simulation of the network with 32-b floating-point precision.

  9. Acoustic Tomographic Estimate of Ocean Advective Heat Flux: A Numerical Assessment in the Norwegian Sea

    DTIC Science & Technology

    1990-06-01

    of transceivers used and the characteristics of the sound channel. In the assessment we use the General Digital Environmental Model ( GDEM ), a...sound channel. In the assessment we use the General Digital Environmental Model ( GDEM ), a climatological data base, to simulate an ocean area 550 x 550...34 3. GDEM Data Base

  10. The influence of lumber grade on machine productivity in the rough mill

    Treesearch

    Philip H. Steele; Jan Wiedenbeck; Rubin Shmulsky; Anura Perera; Anura Perera

    1999-01-01

    Lumber grade effect on hardwood-part processing time was investigated with a digitally described lumber database in conjunction with a crosscut-first rough mill yield optimization simulator. In this study, the digital lumber sample was subdivided into five hardwood lumber grades. Three cutting bills with varying degrees of difficulty were Cut." The three cutting...

  11. Internet-Based Digital Simulation for Cleft Surgery Education: A 5-Year Assessment of Demographics, Usage, and Global Effect.

    PubMed

    Kantar, Rami S; Plana, Natalie M; Cutting, Court B; Diaz-Siso, Jesus Rodrigo; Flores, Roberto L

    2018-01-29

    In October 2012, a freely available, internet-based cleft simulator was created in partnership between academic, nonprofit, and industry sectors. The purpose of this educational resource was to address global disparities in cleft surgery education. This report assesses demographics, usage, and global effect of our simulator, in its fifth year since inception. Evaluate the global effect, usage, and demographics of an internet-based educational digital simulation cleft surgery software. Simulator modules, available in five languages demonstrate surgical anatomy, markings, detailed procedures, and intraoperative footage to supplement digital animation. Available data regarding number of users, sessions, countries reached, and content access were recorded. Surveys evaluating the demographic characteristics of registered users and simulator use were collected by direct e-mail. The total number of simulator new and active users reached 2865 and 4086 in June 2017, respectively. By June 2017, users from 136 countries had accessed the simulator. From 2015 to 2017, the number of sessions was 11,176 with a monthly average of 399.0 ± 190.0. Developing countries accounted for 35% of sessions and the average session duration was 9.0 ± 7.3 minutes. This yields a total simulator screen time of 100,584 minutes (1676 hours). Most survey respondents were surgeons or trainees (87%) specializing in plastic, maxillofacial, or general surgery (89%). Most users found the simulator to be useful (88%), at least equivalent or more useful than other resources (83%), and used it for teaching (58%). Our internet-based interactive cleft surgery platform reaches its intended target audience, is not restricted by socioeconomic barriers to access, and is judged to be useful by surgeons. More than 4000 active users have been reached since inception. The total screen time over approximately 2 years exceeded 1600 hours. This suggests that future surgical simulators of this kind may be sustainable by stakeholders interested in reaching this target audience. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  12. Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients.

    PubMed

    Raspopovic, J; Marcon, L; Russo, L; Sharpe, J

    2014-08-01

    During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation. Copyright © 2014, American Association for the Advancement of Science.

  13. Nonlinear machine learning and design of reconfigurable digital colloids.

    PubMed

    Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L

    2016-09-14

    Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.

  14. Aircraft Survivability. Spring 2011

    DTIC Science & Technology

    2011-01-01

    test Figure 4 Mixed Lagrangian and SPH Simulation of the Bullet Impacting the Floor Section Figure 5 Predictions of Damage to Penetrator, CMC Layer...aircraft and regulating the flow of liquid to simulate both the intrinsic change in plume intensity and the apparent change in intensity of a simulated ...the development of a digital simulation to conduct end game studies of the Eagle missile warhead- fuze combination. This was one of the first

  15. Method and Process for the Creation of Modeling and Simulation Tools for Human Crowd Behavior

    DTIC Science & Technology

    2014-07-23

    Support• Program Executive Office Ground Combat Systems • Program Executive Office Soldier TACOM LCMC MG Michael J. Terry Assigned/Direct Support...environmental technologies and explosive ordnance disposal Fire Control: Battlefield digitization; embedded system software; aero ballistics and...MRAD – Handheld stand-off NLW operated by Control Force • Simulated Projectile Weapon • Simulated Handheld Directed Energy NLW ( VDE ) – Simulated

  16. Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm using Probabilistic Boolean Logic applied to CMOS Components

    DTIC Science & Technology

    2015-12-24

    Signal to Noise Ratio SPICE Simulation Program with Integrated Circuit Emphasis TIFF Tagged Image File Format USC University of Southern California xvii...sources can create errors in digital circuits. These effects can be simulated using Simulation Program with Integrated Circuit Emphasis ( SPICE ) or...compute summary statistics. 4.1 Circuit Simulations Noisy analog circuits can be simulated in SPICE or Cadence SpectreTM software via noisy voltage

  17. Performance of the all-digital data-transition tracking loop in the advanced receiver

    NASA Astrophysics Data System (ADS)

    Cheng, U.; Hinedi, S.

    1989-11-01

    The performance of the all-digital data-transition tracking loop (DTTL) with coherent or noncoherent sampling is described. The effects of few samples per symbol and of noncommensurate sampling rates and symbol rates are addressed and analyzed. Their impacts on the loop phase-error variance and the mean time to lose lock (MTLL) are quantified through computer simulations. The analysis and preliminary simulations indicate that with three to four samples per symbol, the DTTL can track with negligible jitter because of the presence of earth Doppler rate. Furthermore, the MTLL is also expected to be large engough to maintain lock over a Deep Space Network track.

  18. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1975-01-01

    An investigation of the behavior of the power-conditioning system as a whole is a necessity to ensure the integrity of the aggregate system in the case of space applications. An approach for conducting such an investigation is considered. A description is given of the application of a general digital analog simulator program to the study of an aggregate power-conditioning system which is being developed for use on the International Ultraviolet Explorer spacecraft. The function of the direct energy transfer system studied involves a coupling of a solar array through a main distribution bus to the spacecraft electrical loads.

  19. Modeling and Simulation of Upset-Inducing Disturbances for Digital Systems in an Electromagnetic Reverberation Chamber

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    This report describes a modeling and simulation approach for disturbance patterns representative of the environment experienced by a digital system in an electromagnetic reverberation chamber. The disturbance is modeled by a multi-variate statistical distribution based on empirical observations. Extended versions of the Rejection Samping and Inverse Transform Sampling techniques are developed to generate multi-variate random samples of the disturbance. The results show that Inverse Transform Sampling returns samples with higher fidelity relative to the empirical distribution. This work is part of an ongoing effort to develop a resilience assessment methodology for complex safety-critical distributed systems.

  20. Compressive self-interference Fresnel digital holography with faithful reconstruction

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Han, Ying; Zhou, Hongqiang; Wang, Dayong

    2017-05-01

    We developed compressive self-interference digital holographic approach that allows retrieving three-dimensional information of the spatially incoherent objects from single-shot captured hologram. The Fresnel incoherent correlation holography is combined with parallel phase-shifting technique to instantaneously obtain spatial-multiplexed phase-shifting holograms. The recording scheme is regarded as compressive forward sensing model, thus the compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed sub-holograms. The concept was verified by simulations and experiments with simulating use of the polarizer array. The proposed technique has great potential to be applied in 3D tracking of spatially incoherent samples.

  1. A Simulation of the Front End Signal Digitization for the ATLAS Muon Spectrometer thin RPC trigger upgrade project

    NASA Astrophysics Data System (ADS)

    Meng, Xiangting; Chapman, John; Levin, Daniel; Dai, Tiesheng; Zhu, Junjie; Zhou, Bing; Um Atlas Group Team

    2016-03-01

    The ATLAS Muon Spectrometer Phase-I (and Phase-II) upgrade includes the BIS78 muon trigger detector project: two sets of eight very thin Resistive Place Chambers (tRPCs) combined with small Monitored Drift Tube (MDT) chambers in the pseudorapidity region 1<| η|<1.3. The tRPCs will be comprised of triplet readout layer in each of the eta and azimuthal phi coordinates, with about 400 readout strips per layer. The anticipated hit rate is 100-200 kHz per strip. Digitization of the strip signals will be done by 32-channel CERN HPTDC chips. The HPTDC is a highly configurable ASIC designed by the CERN Microelectronics group. It can work in both trigger and trigger-less modes, be readout in parallel or serially. For Phase-I operation, a stringent latency requirement of 43 bunch crossings (1075 ns) is imposed. The latency budget for the front end digitization must be kept to a minimal value, ideally less than 350 ns. We conducted detailed HPTDC latency simulations using the Behavioral Verilog code from the CERN group. We will report the results of these simulations run for the anticipated detector operating environment and for various HPTDC configurations.

  2. Contrast-enhanced digital mammography (CEDM): imaging modeling, computer simulations, and phantom study

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew

    2005-04-01

    Contrast enhanced digital mammography (CEDM), which is based upon the analysis of a series of x-ray projection images acquired before/after the administration of contrast agents, may provide physicians critical physiologic and morphologic information of breast lesions to determine the malignancy of lesions. This paper proposes to combine the kinetic analysis (KA) of contrast agent uptake/washout process and the dual-energy (DE) contrast enhancement together to formulate a hybrid contrast enhanced breast-imaging framework. The quantitative characteristics of materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filter, breast tissues/lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systematically modeled. The contrast-noise-ration (CNR) of iodinated lesions and mean absorbed glandular dose were estimated mathematically. The x-ray techniques optimization was conducted through a series of computer simulations to find the optimal tube voltage, filter thickness, and exposure levels for various breast thicknesses, breast density, and detectable contrast agent concentration levels in terms of detection efficiency (CNR2/dose). A phantom study was performed on a modified Selenia full field digital mammography system to verify the simulated results. The dose level was comparable to the dose in diagnostic mode (less than 4 mGy for an average 4.2 cm compressed breast). The results from the computer simulations and phantom study are being used to optimize an ongoing clinical study.

  3. Hybrid network modeling and the effect of image resolution on digitally-obtained petrophysical and two-phase flow properties

    NASA Astrophysics Data System (ADS)

    Aghaei, A.

    2017-12-01

    Digital imaging and modeling of rocks and subsequent simulation of physical phenomena in digitally-constructed rock models are becoming an integral part of core analysis workflows. One of the inherent limitations of image-based analysis, at any given scale, is image resolution. This limitation becomes more evident when the rock has multiple scales of porosity such as in carbonates and tight sandstones. Multi-scale imaging and constructions of hybrid models that encompass images acquired at multiple scales and resolutions are proposed as a solution to this problem. In this study, we investigate the effect of image resolution and unresolved porosity on petrophysical and two-phase flow properties calculated based on images. A helical X-ray micro-CT scanner with a high cone-angle is used to acquire digital rock images that are free of geometric distortion. To remove subjectivity from the analyses, a semi-automated image processing technique is used to process and segment the acquired data into multiple phases. Direct and pore network based models are used to simulate physical phenomena and obtain absolute permeability, formation factor and two-phase flow properties such as relative permeability and capillary pressure. The effect of image resolution on each property is investigated. Finally a hybrid network model incorporating images at multiple resolutions is built and used for simulations. The results from the hybrid model are compared against results from the model built at the highest resolution and those from laboratory tests.

  4. Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom.

    PubMed

    Onishi, Hideo; Matsutake, Yuki; Kawashima, Hiroki; Matsutomo, Norikazu; Amijima, Hizuru

    2011-01-01

    In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25° or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means.

  5. Method for simulating dose reduction in digital mammography using the Anscombe transformation.

    PubMed

    Borges, Lucas R; Oliveira, Helder C R de; Nunes, Polyana F; Bakic, Predrag R; Maidment, Andrew D A; Vieira, Marcelo A C

    2016-06-01

    This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.

  6. Human System Simulation in Support of Human Performance Technical Basis at NPPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Gertman; Katya Le Blanc; alan mecham

    2010-06-01

    This paper focuses on strategies and progress toward establishing the Idaho National Laboratory’s (INL’s) Human Systems Simulator Laboratory at the Center for Advanced Energy Studies (CAES), a consortium of Idaho State Universities. The INL is one of the National Laboratories of the US Department of Energy. One of the first planned applications for the Human Systems Simulator Laboratory is implementation of a dynamic nuclear power plant simulation (NPP) where studies of operator workload, situation awareness, performance and preference will be carried out in simulated control rooms including nuclear power plant control rooms. Simulation offers a means by which to reviewmore » operational concepts, improve design practices and provide a technical basis for licensing decisions. In preparation for the next generation power plant and current government and industry efforts in support of light water reactor sustainability, human operators will be attached to a suite of physiological measurement instruments and, in combination with traditional Human Factors Measurement techniques, carry out control room tasks in simulated advanced digital and hybrid analog/digital control rooms. The current focus of the Human Systems Simulator Laboratory is building core competence in quantitative and qualitative measurements of situation awareness and workload. Of particular interest is whether introduction of digital systems including automated procedures has the potential to reduce workload and enhance safety while improving situation awareness or whether workload is merely shifted and situation awareness is modified in yet to be determined ways. Data analysis is carried out by engineers and scientists and includes measures of the physical and neurological correlates of human performance. The current approach supports a user-centered design philosophy (see ISO 13407 “Human Centered Design Process for Interactive Systems, 1999) wherein the context for task performance along with the requirements of the end-user are taken into account during the design process and the validity of design is determined through testing of real end users« less

  7. Optical design of cipher block chaining (CBC) encryption mode by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam

    2016-03-01

    We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.

  8. A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer

    PubMed Central

    Tao, Dongxing; Jia, Guorui; Yuan, Yan; Zhao, Huijie

    2014-01-01

    Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid. PMID:25615727

  9. Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2018-01-01

    This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.

  10. Simulation of a photo-solar generator for an optimal output by a parabolic photovoltaic concentrator of Stirling engine type

    NASA Astrophysics Data System (ADS)

    Kaddour, A.; Benyoucef, B.

    Solar energy is the source of the most promising energy and the powerful one among renewable energies. Photovoltaic electricity (statement) is obtained by direct transformation of the sunlight into electricity, by means of cells statement. Then, we study the operation of cells statement by the digital simulation with an aim of optimizing the output of the parabolic concentrator of Stirling engine type. The Greenius software makes it possible to carry out the digital simulation in 2D and 3D and to study the influence of the various parameters on the characteristic voltage under illumination of the cell. The results obtained enabled us to determine the extrinsic factors which depend on the environment and the intrinsic factors which result from the properties of materials used.

  11. Electromechanical quantum simulators

    NASA Astrophysics Data System (ADS)

    Tacchino, F.; Chiesa, A.; LaHaye, M. D.; Carretta, S.; Gerace, D.

    2018-06-01

    Digital quantum simulators are among the most appealing applications of a quantum computer. Here we propose a universal, scalable, and integrated quantum computing platform based on tunable nonlinear electromechanical nano-oscillators. It is shown that very high operational fidelities for single- and two-qubits gates can be achieved in a minimal architecture, where qubits are encoded in the anharmonic vibrational modes of mechanical nanoresonators, whose effective coupling is mediated by virtual fluctuations of an intermediate superconducting artificial atom. An effective scheme to induce large single-phonon nonlinearities in nanoelectromechanical devices is explicitly discussed, thus opening the route to experimental investigation in this direction. Finally, we explicitly show the very high fidelities that can be reached for the digital quantum simulation of model Hamiltonians, by using realistic experimental parameters in state-of-the-art devices, and considering the transverse field Ising model as a paradigmatic example.

  12. Computer program CORDET. [computerized simulation of digital phase-lock loop for Omega navigation receiver

    NASA Technical Reports Server (NTRS)

    Palkovic, R. A.

    1974-01-01

    A FORTRAN 4 computer program provides convenient simulation of an all-digital phase-lock loop (DPLL). The DPLL forms the heart of the Omega navigation receiver prototype. Through the DPLL, the phase of the 10.2 KHz Omega signal is estimated when the true signal phase is contaminated with noise. This investigation has provided a convenient means of evaluating loop performance in a variety of noise environments, and has proved to be a useful tool for evaluating design changes. The goals of the simulation are to: (1) analyze the circuit on a bit-by-bit level in order to evaluate the overall design; (2) see easily the effects of proposed design changes prior to actual breadboarding; and (3) determine the optimum integration time for the DPLL in an environment typical of general aviation conditions.

  13. Digital simulation of a communication link for Pioneer Saturn Uranus atmospheric entry probe, part 1

    NASA Technical Reports Server (NTRS)

    Hinrichs, C. A.

    1975-01-01

    A digital simulation study is presented for a candidate modulator/demodulator design in an atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the conditions of an outer planet atmospheric probe. The simulation results indicate that the mean channel error rate with and without scintillation are similar to theoretical characterizations of the link. The simulation gives information for calculating other channel statistics and generates a quantized symbol stream on magnetic tape from which error correction decoding is analyzed. Results from the magnetic tape data analyses are also included. The receiver and bit synchronizer are modeled in the simulation at the level of hardware component parameters rather than at the loop equation level and individual hardware parameters are identified. The atmospheric scintillation amplitude and phase are modeled independently. Normal and log normal amplitude processes are studied. In each case the scintillations are low pass filtered. The receiver performance is given for a range of signal to noise ratios with and without the effects of scintillation. The performance is reviewed for critical reciever parameter variations.

  14. Design of transient light signal simulator based on FPGA

    NASA Astrophysics Data System (ADS)

    Kang, Jing; Chen, Rong-li; Wang, Hong

    2014-11-01

    A design scheme of transient light signal simulator based on Field Programmable gate Array (FPGA) was proposed in this paper. Based on the characteristics of transient light signals and measured feature points of optical intensity signals, a fitted curve was created in MATLAB. And then the wave data was stored in a programmed memory chip AT29C1024 by using SUPERPRO programmer. The control logic was realized inside one EP3C16 FPGA chip. Data readout, data stream cache and a constant current buck regulator for powering high-brightness LEDs were all controlled by FPGA. A 12-Bit multiplying CMOS digital-to-analog converter (DAC) DAC7545 and an amplifier OPA277 were used to convert digital signals to voltage signals. A voltage-controlled current source constituted by a NPN transistor and an operational amplifier controlled LED array diming to achieve simulation of transient light signal. LM3405A, 1A Constant Current Buck Regulator for Powering LEDs, was used to simulate strong background signal in space. Experimental results showed that the scheme as a transient light signal simulator can satisfy the requests of the design stably.

  15. The Effects of Virtual Weather on Presence

    NASA Astrophysics Data System (ADS)

    Wissmath, Bartholomäus; Weibel, David; Mast, Fred W.

    In modern societies people tend to spend more time in front of computer screens than outdoors. Along with an increasing degree of realism displayed in digital environments, simulated weather appears more and more realistic and more often implemented in digital environments. Research has found that the actual weather influences behavior and mood. In this paper we experimentally examine the effects of virtual weather on the sense of presence. Thereby we found individuals (N=30) to immerse deeper in digital environments displaying fair weather conditions than in environments displaying bad weather. We also investigate whether virtual weather can influence behavior. The possible implications of theses findings for presence theory as well as digital environment designers will be discussed.

  16. Teaching Simulation and Modelling at Royal Military College.

    ERIC Educational Resources Information Center

    Bonin, Hugues W.; Weir, Ronald D.

    1984-01-01

    Describes a course designed to assist students in writing differential equations to represent chemical processes and to solve these problems on digital computers. Course outline and discussion of computer projects and the simulation and optimization of a continuously stirred tank reactor process are included. (JN)

  17. Simulation Exercises for an Undergraduate Digital Process Control Course.

    ERIC Educational Resources Information Center

    Reeves, Deborah E.; Schork, F. Joseph

    1988-01-01

    Presents six problems from an alternative approach to homework traditionally given to follow-up lectures. Stresses the advantage of longer term exercises which allow for creativity and independence on the part of the student. Problems include: "System Model,""Open-Loop Simulation,""PID Control,""Dahlin…

  18. Verification test results of Apollo stabilization and control systems during undocked operations

    NASA Technical Reports Server (NTRS)

    Copeland, E. L.; Haken, R. L.

    1974-01-01

    The results are presented of analysis and simulation testing of both the Skylark 1 reaction control system digital autopilot (RCS DAP) and the thrust vector control (TVC) autopilot for use during the undocked portions of the Apollo/Soyuz Test Project Mission. The RCS DAP testing was performed using the Skylab Functional Simulator (SLFS), a digital computer program capable of simulating the Apollo and Skylab autopilots along with vehicle dynamics including bending and sloshing. The model is used to simulate three-axis automatic maneuvers along with pilot controlled manual maneuvers using the RCS DAP. The TVC autopilot was tested in two parts. A classical stability analysis was performed on the vehicle considering the effects of structural bending and sloshing when under control of the TVC autopilot. The time response of the TVC autopilot was tested using the SLFS. Results indicate that adequate performance stability margins can be expected for the CSM/DM configuration when under the control of the Apollo control systems tested.

  19. Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot; Thomas, George; Culley, Dennis; Kratz, Jonathan

    2017-01-01

    Distributed engine control (DEC) systems alter aircraft engine design constraints because of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.

  20. Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity.

    PubMed

    Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen

    2012-05-07

    The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.

  1. Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Thomas, George Lindsey; Culley, Dennis E.; Kratz, Jonathan L.

    2017-01-01

    Distributed engine control (DEC) systems alter aircraft engine design constraints be- cause of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.

  2. Digital-model simulation of the glacial-outwash aquifer, Otter Creek-Dry Creek basin, Cortland County, New York

    USGS Publications Warehouse

    Cosner, O.J.; Harsh, J.F.

    1978-01-01

    The city of Cortland, New York, and surrounding areas obtain water from the highly productive glacial-outwash aquifer underlying the Otter Creek-Dry Creek basin. Pumpage from the aquifer in 1976 was approximately 6.3 million gallons per day and is expected to increase as a result of population growth and urbanization. A digital ground-water model that uses a finite-difference approximation technique to solve partial differential equations of flow through a porous medium was used to simulate the movement of water within the aquifer. The model was calibrated to equilibrium conditions by comparing water levels measured in the aquifer in March 1976 with those computed by the model. Then, from the simulated water-level surface for March, a transient-condition run was made to simulate the surface as measured in September 1976. Computed water levels presented as contours are generally in close agreement with potentiometric-surface maps prepared from field measurements of March and September 1976. (Woodard-USGS)

  3. Exploration of Digital Circuits and Transistor-Level Testing in the DARPA TRUST Program

    DTIC Science & Technology

    2015-03-01

    Transmission lines will be simulated by placing long metal wiring between two inverters . The metal wiring will be changed with each simulation to detect (if...though this could potentially cause a fabricated device to fail. Transmission lines were simulated by creating metal wiring between two inverters ...34 4.1 Initial Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.1 Inverter

  4. Initialization of high resolution surface wind simulations using NWS gridded data

    Treesearch

    J. Forthofer; K. Shannon; Bret Butler

    2010-01-01

    WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...

  5. Digital imaging and remote sensing image generator (DIRSIG) as applied to NVESD sensor performance modeling

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.

    2016-05-01

    The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.

  6. Response of an all digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Garodnick, J.; Greco, J.; Schilling, D. L.

    1974-01-01

    An all digital phase-locked loop (DPLL) is designed, analyzed, and tested. Three specific configurations are considered, generating first, second, and third order DPLL's; and it is found, using a computer simulation of a noise spike, and verified experimentally, that of these configurations the second-order system is optimum from the standpoint of threshold extension. This substantiates results obtained for analog PLL's.

  7. A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring

    NASA Technical Reports Server (NTRS)

    Stoughton, J. W.

    1978-01-01

    Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.

  8. Components Qualification for a Possible use in the Mu2e Calorimeter Waveform Digitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Falco, S.; Donati, S.; Morescalchi, L.

    2017-03-30

    The Mu2e experiment at Fermilab searches for the charged flavor violating conversion of a muon into an electron in the Coulomb field of a nucleus. The detector consists of a straw tube tracker and a CSI crystal electromagnetic calorimeter, both housed in a superconducting solenoid. Both the front-end and the digital electronics, located inside the cryostat, will be operated in vacuum under a 1 T magnetic field, having to sustain the high flux of neutrons and ionizing particles coming from the muons stopping target. These harsh experimental conditions make the design of the calorimeter waveform digitizer quite challenging. All themore » selected commercial devices must be tested individually and qualified for radiation hardness and operation in high magnetic field. At the moment the expected particles flux and spectra at the digitizers location are not completely simulated and we are using initial rough estimates to select the components for the first prototype. We are gaining experience in the qualification procedures using the selected components but the choice will be frozen only when dose and neutron flux simulations will be completed. The experimental results of the first qualification campaign are presented.« less

  9. An engineering methodology for implementing and testing VLSI (Very Large Scale Integrated) circuits

    NASA Astrophysics Data System (ADS)

    Corliss, Walter F., II

    1989-03-01

    The engineering methodology for producing a fully tested VLSI chip from a design layout is presented. A 16-bit correlator, NPS CORN88, that was previously designed, was used as a vehicle to demonstrate this methodology. The study of the design and simulation tools, MAGIC and MOSSIM II, was the focus of the design and validation process. The design was then implemented and the chip was fabricated by MOSIS. This fabricated chip was then used to develop a testing methodology for using the digital test facilities at NPS. NPS CORN88 was the first full custom VLSI chip, designed at NPS, to be tested with the NPS digital analysis system, Tektronix DAS 9100 series tester. The capabilities and limitations of these test facilities are examined. NPS CORN88 test results are included to demonstrate the capabilities of the digital test system. A translator, MOS2DAS, was developed to convert the MOSSIM II simulation program to the input files required by the DAS 9100 device verification software, 91DVS. Finally, a tutorial for using the digital test facilities, including the DAS 9100 and associated support equipments, is included as an appendix.

  10. Digital prototyping technique applied for redesigning plastic products

    NASA Astrophysics Data System (ADS)

    Pop, A.; Andrei, A.

    2015-11-01

    After products are on the market for some time, they often need to be redesigned to meet new market requirements. New products are generally derived from similar but outdated products. Redesigning a product is an important part of the production and development process. The purpose of this paper is to show that using modern technology, like Digital Prototyping in industry is an effective way to produce new products. This paper tries to demonstrate and highlight the effectiveness of the concept of Digital Prototyping, both to reduce the design time of a new product, but also the costs required for implementing this step. The results of this paper show that using Digital Prototyping techniques in designing a new product from an existing one available on the market mould offers a significantly manufacturing time and cost reduction. The ability to simulate and test a new product with modern CAD-CAM programs in all aspects of production (designing of the 3D model, simulation of the structural resistance, analysis of the injection process and beautification) offers a helpful tool for engineers. The whole process can be realised by one skilled engineer very fast and effective.

  11. A Subsystem Test Bed for Chinese Spectral Radioheliograph

    NASA Astrophysics Data System (ADS)

    Zhao, An; Yan, Yihua; Wang, Wei

    2014-11-01

    The Chinese Spectral Radioheliograph is a solar dedicated radio interferometric array that will produce high spatial resolution, high temporal resolution, and high spectral resolution images of the Sun simultaneously in decimetre and centimetre wave range. Digital processing of intermediate frequency signal is an important part in a radio telescope. This paper describes a flexible and high-speed digital down conversion system for the CSRH by applying complex mixing, parallel filtering, and extracting algorithms to process IF signal at the time of being designed and incorporates canonic-signed digit coding and bit-plane method to improve program efficiency. The DDC system is intended to be a subsystem test bed for simulation and testing for CSRH. Software algorithms for simulation and hardware language algorithms based on FPGA are written which use less hardware resources and at the same time achieve high performances such as processing high-speed data flow (1 GHz) with 10 MHz spectral resolution. An experiment with the test bed is illustrated by using geostationary satellite data observed on March 20, 2014. Due to the easy alterability of the algorithms on FPGA, the data can be recomputed with different digital signal processing algorithms for selecting optimum algorithm.

  12. [Study on the application of value of digital medical technology in the operation on primary liver cancer].

    PubMed

    Fang, Chi-hua; Lu, Chao-min; Huang, Yan-peng; Li, Xiao-feng; Fan, Ying-fang; Yang, Jian; Xiang, Nan; Pan, Jia-hui

    2009-04-01

    To study the clinical application of digital medical in the operation on primary liver cancer. The patients (n=11) with primary hepatic carcinoma treated between February and July 2008, including 9 cases of hepatocellular carcinoma, 2 cases of cholangiocellular carcinoma, were scanned using 64 slices helicon computerized tomography (CT) and the datasets was collected. Segment and three-dimensional (3D) reconstruction of the CT image was carried out by the medical image processing system which was developed. And the 3D moulds were imported to the FreeForm Modeling System for smoothing. Then the hepatectomy in treatment of hepatoma and implanting of catheter were simulated with the force-feedback equipment (PHANToM). Finally, 3D models and results of simulation surgery were used for choosing mode of operation and comparing with the findings during the operation. The reconstructed models were true to life, and their spatial disposition and correlation were shown clearly; Blood supply of primary liver cancer could be seen easily. In the simulation surgery system, the process of virtual partial hepatectomy and implanting of catheter using simulation scalpel and catheter on 3D moulds with PHANToM was consistent with the clinical course of surgery. Life-like could be felt and power feeling can be touched during simulation operation. Digital medical benefited knowing the relationship between primary liver cancer and the intrahepatic pipe. It gave an advantage to complete primary liver cancer resection with more liver volume remained. It can improve the surgical effect and decrease the surgical risk and reduce the complication through demonstrating visualized operation before surgery.

  13. Integration of airborne Thematic Mapper Simulator (TMS) data and digitized aerial photography via an ISH transformation. [Intensity Saturation Hue

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Myers, Jeffrey S.; Ekstrand, Robert E.; Fitzgerald, Michael T.

    1991-01-01

    A simple method for enhancing the spatial and spectral resolution of disparate data sets is presented. Two data sets, digitized aerial photography at a nominal spatial resolution 3,7 meters and TMS digital data at 24.6 meters, were coregistered through a bilinear interpolation to solve the problem of blocky pixel groups resulting from rectification expansion. The two data sets were then subjected to intensity-saturation-hue (ISH) transformations in order to 'blend' the high-spatial-resolution (3.7 m) digitized RC-10 photography with the high spectral (12-bands) and lower spatial (24.6 m) resolution TMS digital data. The resultant merged products make it possible to perform large-scale mapping, ease photointerpretation, and can be derived for any of the 12 available TMS spectral bands.

  14. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long.more » A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.« less

  16. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways

    NASA Technical Reports Server (NTRS)

    Kibbee, G. W.

    1978-01-01

    The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.

  17. Amplitude image processing by diffractive optics.

    PubMed

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  18. Digital Simulation Of Precise Sensor Degradations Including Non-Linearities And Shift Variance

    NASA Astrophysics Data System (ADS)

    Kornfeld, Gertrude H.

    1987-09-01

    Realistic atmospheric and Forward Looking Infrared Radiometer (FLIR) degradations were digitally simulated. Inputs to the routine are environmental observables and the FLIR specifications. It was possible to achieve realism in the thermal domain within acceptable computer time and random access memory (RAM) requirements because a shift variant recursive convolution algorithm that well describes thermal properties was invented and because each picture element (pixel) has radiative temperature, a materials parameter and range and altitude information. The computer generation steps start with the image synthesis of an undegraded scene. Atmospheric and sensor degradation follow. The final result is a realistic representation of an image seen on the display of a specific FLIR.

  19. Advanced power analysis methodology targeted to the optimization of a digital pixel readout chip design and its critical serial powering system

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Orfanelli, S.; Karagounis, M.; Hemperek, T.; Christiansen, J.; Placidi, P.

    2017-02-01

    A dedicated power analysis methodology, based on modern digital design tools and integrated with the VEPIX53 simulation framework developed within RD53 collaboration, is being used to guide vital choices for the design and optimization of the next generation ATLAS and CMS pixel chips and their critical serial powering circuit (shunt-LDO). Power consumption is studied at different stages of the design flow under different operating conditions. Significant effort is put into extensive investigations of dynamic power variations in relation with the decoupling seen by the powering network. Shunt-LDO simulations are also reported to prove the reliability at the system level.

  20. Design Of Combined Stochastic Feedforward/Feedback Control

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1989-01-01

    Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.

  1. A digital computer program for the dynamic interaction simulation of controls and structure (DISCOS), volume 1

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.

    1978-01-01

    A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.

  2. Direct-coupled microcomputer-based building emulator for building energy management and control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, H.N.

    1999-07-01

    In this paper, the development and implementation of a direct-coupled building emulator for a building energy management and control system (EMCS) is presented. The building emulator consists of a microcomputer and a computer model of an air-conditioning system implemented in a modular dynamic simulation software package for direct-coupling to an EMCS, without using analog-to-digital and digital-to-analog converters. The building emulator can be used to simulate in real time the behavior of the air-conditioning system under a given operating environment and subject to a given usage pattern. Software modules for data communication, graphical display, dynamic data exchange, and synchronization of simulationmore » outputs with real time have been developed to achieve direct digital data transfer between the building emulator and a commercial EMCS. Based on the tests conducted, the validity of the building emulator has been established and the proportional-plus-integral control function of the EMCS assessed.« less

  3. Flight deck benefits of integrated data link communication

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.

    1992-01-01

    A fixed-base, piloted simulation study was conducted to determine the operational benefits that result when air traffic control (ATC) instructions are transmitted to the deck of a transport aircraft over a digital data link. The ATC instructions include altitude, airspeed, heading, radio frequency, and route assignment data. The interface between the flight deck and the data link was integrated with other subsystems of the airplane to facilitate data management. Data from the ATC instructions were distributed to the flight guidance and control system, the navigation system, and an automatically tuned communication radio. The co-pilot initiated the automation-assisted data distribution process. Digital communications and automated data distribution were compared with conventional voice radio communication and manual input of data into other subsystems of the simulated aircraft. Less time was required in the combined communication and data management process when data link ATC communication was integrated with the other subsystems. The test subjects, commercial airline pilots, provided favorable evaluations of both the digital communication and data management processes.

  4. Fault detection and accommodation testing on an F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.

    1985-01-01

    The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures.

  5. Real-time interactive simulation: using touch panels, graphics tablets, and video-terminal keyboards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venhuizen, J.R.

    1983-01-01

    A Simulation Laboratory utilizing only digital computers for interactive computing must rely on CRT based graphics devices for output devices, and keyboards, graphics tablets, and touch panels, etc., for input devices. The devices all work well, with the combination of a CRT with a touch panel mounted on it as the most flexible combination of input/output devices for interactive simulation.

  6. Digital multishaker modal testing

    NASA Technical Reports Server (NTRS)

    Blair, M.; Craig, R. R., Jr.

    1983-01-01

    A review of several modal testing techniques is made, along with brief discussions of their advantages and limitations. A new technique is presented which overcomes many of the previous limitations. Several simulated experiments are included to verify the validity and accuracy of the new method. Conclusions are drawn from the simulation studies and recommendations for further work are presented. The complete computer code configured for the simulation study is presented.

  7. Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Hybrid computer simulations of the under-the-wing engine were constructed to develop the dynamic design of the controls. The engine and control system includes a variable pitch fan and a digital electronic control. Simulation results for throttle bursts from 62 to 100 percent net thrust predict that the engine will accelerate 62 to 95 percent net thrust in one second.

  8. Simulation system architecture design for generic communications link

    NASA Technical Reports Server (NTRS)

    Tsang, Chit-Sang; Ratliff, Jim

    1986-01-01

    This paper addresses a computer simulation system architecture design for generic digital communications systems. It addresses the issues of an overall system architecture in order to achieve a user-friendly, efficient, and yet easily implementable simulation system. The system block diagram and its individual functional components are described in detail. Software implementation is discussed with the VAX/VMS operating system used as a target environment.

  9. Simulation of a complete X-ray digital radiographic system for industrial applications.

    PubMed

    Nazemi, E; Rokrok, B; Movafeghi, A; Choopan Dastjerdi, M H

    2018-05-19

    Simulating X-ray images is of great importance in industry and medicine. Using such simulation permits us to optimize parameters which affect image's quality without the limitations of an experimental procedure. This study revolves around a novel methodology to simulate a complete industrial X-ray digital radiographic system composed of an X-ray tube and a computed radiography (CR) image plate using Monte Carlo N Particle eXtended (MCNPX) code. In the process of our research, an industrial X-ray tube with maximum voltage of 300 kV and current of 5 mA was simulated. A 3-layer uniform plate including a polymer overcoat layer, a phosphor layer and a polycarbonate backing layer was also defined and simulated as the CR imaging plate. To model the image formation in the image plate, at first the absorbed dose was calculated in each pixel inside the phosphor layer of CR imaging plate using the mesh tally in MCNPX code and then was converted to gray value using a mathematical relationship determined in a separate procedure. To validate the simulation results, an experimental setup was designed and the images of two step wedges created out of aluminum and steel were captured by the experiments and compared with the simulations. The results show that the simulated images are in good agreement with the experimental ones demonstrating the ability of the proposed methodology for simulating an industrial X-ray imaging system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A description of the thruster attitude control simulation and its application to the HEAO-C study

    NASA Technical Reports Server (NTRS)

    Brandon, L. B.

    1971-01-01

    During the design and evaluation of a reaction control system (RCS), it is desirable to have a digital computer program simulating vehicle dynamics, disturbance torques, control torques, and RCS logic. The thruster attitude control simulation (TACS) is just such a computer program. The TACS is a relatively sophisticated digital computer program that includes all the major parameters involved in the attitude control of a vehicle using an RCS for control. It includes the effects of gravity gradient torques and HEAO-C aerodynamic torques so that realistic runs can be made in the areas of fuel consumption and engine actuation rates. Also, the program is general enough that any engine configuration and logic scheme can be implemented in a reasonable amount of time. The results of the application of the TACS in the HEAO-C study are included.

  11. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  12. Turbulence simulation mechanization for Space Shuttle Orbiter dynamics and control studies

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; King, R. L.

    1977-01-01

    The current version of the NASA turbulent simulation model in the form of a digital computer program, TBMOD, is described. The logic of the program is discussed and all inputs and outputs are defined. An alternate method of shear simulation suitable for incorporation into the model is presented. The simulation is based on a von Karman spectrum and the assumption of isotropy. The resulting spectral density functions for the shear model are included.

  13. Evaluation of effective dose with chest digital tomosynthesis system using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kim, Dohyeon; Jo, Byungdu; Lee, Youngjin; Park, Su-Jin; Lee, Dong-Hoon; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) system has recently been introduced and studied. This system offers the potential to be a substantial improvement over conventional chest radiography for the lung nodule detection and reduces the radiation dose with limited angles. PC-based Monte Carlo program (PCXMC) simulation toolkit (STUK, Helsinki, Finland) is widely used to evaluate radiation dose in CDT system. However, this toolkit has two significant limits. Although PCXMC is not possible to describe a model for every individual patient and does not describe the accurate X-ray beam spectrum, Geant4 Application for Tomographic Emission (GATE) simulation describes the various size of phantom for individual patient and proper X-ray spectrum. However, few studies have been conducted to evaluate effective dose in CDT system with the Monte Carlo simulation toolkit using GATE. The purpose of this study was to evaluate effective dose in virtual infant chest phantom of posterior-anterior (PA) view in CDT system using GATE simulation. We obtained the effective dose at different tube angles by applying dose actor function in GATE simulation which was commonly used to obtain the medical radiation dosimetry. The results indicated that GATE simulation was useful to estimate distribution of absorbed dose. Consequently, we obtained the acceptable distribution of effective dose at each projection. These results indicated that GATE simulation can be alternative method of calculating effective dose in CDT applications.

  14. Data Challenges of Leveraging a Simulation to Assess Learning

    ERIC Educational Resources Information Center

    Gibson, David; Jakl, Peter

    2013-01-01

    Among the unique affordances of digital simulations are changes in the possibilities for targets as well as the methods of assessment, most significantly, toward integration of thinking with action, embedding of tasks-as-performance of knowledge-in-action, and unobtrusive observational methods. This paper raises and briefly defines key data…

  15. Stabilizing a spinning Skylab

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Patel, J. S.; Justice, D. W.; Schweitzer, G. E.

    1972-01-01

    The results are presented of a study of the dynamics of a spinning Skylab space station. The stability of motion of several simplified models with flexible appendages was investigated. A digital simulation model that more accurately portrays the complex Skylab vehicle is described, and simulation results are compared with analytically derived results.

  16. An Unofficial Guide to Web-Based Instructional Gaming and Simulation Resources.

    ERIC Educational Resources Information Center

    Kirk, James J.

    Games and digital-based games and simulations are slowly becoming an accepted learning strategy. Public school teachers, college professors, corporate trainers, and military trainers are embracing games as an effective means of motivating learners and teaching complex concepts. Popular games include action games, adventure games,arcade games,…

  17. Usability Assessment of E-Café Operational Management Simulation Game

    ERIC Educational Resources Information Center

    Chang, Chiung-sui; Huang, Ya-Ping

    2013-01-01

    To ensure the quality of digital simulation game, we utilized the usability evaluation heuristic in the design and development processes of e-café operational management game-based learning material for students. The application of usability evaluations during this study is described. Additionally, participant selection, data collection and…

  18. Quake Final Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Critical infrastructures of the world are at constant risks for earthquakes. Most of these critical structures are designed using archaic, seismic, simulation methods that were built from early digital computers from the 1970s. Idaho National Laboratory’s Seismic Research Group are working to modernize the simulation methods through computational research and large-scale laboratory experiments.

  19. Single-shot digital holography by use of the fractional Talbot effect.

    PubMed

    Martínez-León, Lluís; Araiza-E, María; Javidi, Bahram; Andrés, Pedro; Climent, Vicent; Lancis, Jesús; Tajahuerce, Enrique

    2009-07-20

    We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally reconstructed from the digital hologram. Both computer simulations and experimental results are presented.

  20. Concept Development of the Eindhoven Diabetes Education Simulator Project.

    PubMed

    Maas, Anne H; van der Molen, Pieta; van de Vijver, Reinier; Chen, Wei; van Pul, Carola; Cottaar, Eduardus J E; van Riel, Natal A W; Hilbers, Peter A J; Haak, Harm R

    2016-04-01

    This study was designed to define the concept of an educational diabetes game following a user-centered design approach. The concept development of the Eindhoven Diabetes Education Simulator (E-DES) project can be divided in two phases: concept generation and concept evaluation. Four concepts were designed by the multidisciplinary development team based on the outcomes of user interviews. Four other concepts resulted from the Diabetes Game Jam. Several users and experts evaluated the concepts. These user evaluations and a feasibility analysis served as input for an overall evaluation and discussion by the development team resulting in the final concept choice. The four concepts of the development team are a digital board game, a quiz platform, a lifestyle simulator, and a puzzle game. The Diabetes Game Jam resulted in another digital board game, two mobile swipe games, and a fairy tale-themed adventure game. The combined user evaluations and feasibility analysis ranked the quiz platform and the digital board game equally high. Each of these games fits one specific subgroup of users best: the quiz platform best fits an eager-to-learn, more individualistic patient, whereas the board game best fits a less-eager-to-learn, family-oriented patient. The choice for a specific concept is therefore highly dependent on the choice of our specific target audience. The user-centered design approach with multiple evaluations has enabled us to choose the most promising concept from eight different options. A digital board game is chosen for further development because the target audience for E-DES is the less-motivated, family-oriented patients.

  1. BPSK Demodulation Using Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Garcia, Thomas R.

    1996-01-01

    A digital communications signal is a sinusoidal waveform that is modified by a binary (digital) information signal. The sinusoidal waveform is called the carrier. The carrier may be modified in amplitude, frequency, phase, or a combination of these. In this project a binary phase shift keyed (BPSK) signal is the communication signal. In a BPSK signal the phase of the carrier is set to one of two states, 180 degrees apart, by a binary (i.e., 1 or 0) information signal. A digital signal is a sampled version of a "real world" time continuous signal. The digital signal is generated by sampling the continuous signal at discrete points in time. The rate at which the signal is sampled is called the sampling rate (f(s)). The device that performs this operation is called an analog-to-digital (A/D) converter or a digitizer. The digital signal is composed of the sequence of individual values of the sampled BPSK signal. Digital signal processing (DSP) is the modification of the digital signal by mathematical operations. A device that performs this processing is called a digital signal processor. After processing, the digital signal may then be converted back to an analog signal using a digital-to-analog (D/A) converter. The goal of this project is to develop a system that will recover the digital information from a BPSK signal using DSP techniques. The project is broken down into the following steps: (1) Development of the algorithms required to demodulate the BPSK signal; (2) Simulation of the system; and (3) Implementation a BPSK receiver using digital signal processing hardware.

  2. Irdis: A Digital Scene Storage And Processing System For Hardware-In-The-Loop Missile Testing

    NASA Astrophysics Data System (ADS)

    Sedlar, Michael F.; Griffith, Jerry A.

    1988-07-01

    This paper describes the implementation of a Seeker Evaluation and Test Simulation (SETS) Facility at Eglin Air Force Base. This facility will be used to evaluate imaging infrared (IIR) guided weapon systems by performing various types of laboratory tests. One such test is termed Hardware-in-the-Loop (HIL) simulation (Figure 1) in which the actual flight of a weapon system is simulated as closely as possible in the laboratory. As shown in the figure, there are four major elements in the HIL test environment; the weapon/sensor combination, an aerodynamic simulator, an imagery controller, and an infrared imagery system. The paper concentrates on the approaches and methodologies used in the imagery controller and infrared imaging system elements for generating scene information. For procurement purposes, these two elements have been combined into an Infrared Digital Injection System (IRDIS) which provides scene storage, processing, and output interface to drive a radiometric display device or to directly inject digital video into the weapon system (bypassing the sensor). The paper describes in detail how standard and custom image processing functions have been combined with off-the-shelf mass storage and computing devices to produce a system which provides high sample rates (greater than 90 Hz), a large terrain database, high weapon rates of change, and multiple independent targets. A photo based approach has been used to maximize terrain and target fidelity, thus providing a rich and complex scene for weapon/tracker evaluation.

  3. First-Order-hold interpolation digital-to-analog converter with application to aircraft simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, W. B.

    1976-01-01

    Those who design piloted aircraft simulations must contend with the finite size and speed of the available digital computer and the requirement for simulation reality. With a fixed computational plant, the more complex the model, the more computing cycle time is required. While increasing the cycle time may not degrade the fidelity of the simulated aircraft dynamics, the larger steps in the pilot cue feedback variables (such as the visual scene cues), may be disconcerting to the pilot. The first-order-hold interpolation (FOHI) digital-to-analog converter (DAC) is presented as a device which offers smooth output, regardless of cycle time. The Laplace transforms of these three conversion types are developed and their frequency response characteristics and output smoothness are compared. The FOHI DAC exhibits a pure one-cycle delay. Whenever the FOHI DAC input comes from a second-order (or higher) system, a simple computer software technique can be used to compensate for the DAC phase lag. When so compensated, the FOHI DAC has (1) an output signal that is very smooth, (2) a flat frequency response in frequency ranges of interest, and (3) no phase error. When the input comes from a first-order system, software compensation may cause the FOHI DAC to perform as an FOHE DAC, which, although its output is not as smooth as that of the FOHI DAC, has a smoother output than that of the ZOH DAC.

  4. Construction of digital core by adaptive porosity method

    NASA Astrophysics Data System (ADS)

    Xia, Huifen; Liu, Ting; Zhao, Ling; Sun, Yanyu; Pan, Junliang

    2017-05-01

    The construction of digital core has its unique advantages in the study of water flooding or polymer flooding oil displacement efficiency. The frequency distribution of pore size is measured by mercury injection experiment, the coordination number by CT scanning method, and the wettability data by imbibition displacement was measured, on the basis of considering the ratio of pore throat ratio and wettability, the principle of adaptive porosity is used to construct the digital core. The results show that the water flooding recovery, the degree of polymer flooding and the results of the Physical simulation experiment are in good agreement.

  5. Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2018-04-01

    Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.

  6. [The present status and future prospects of application of digital medical technology in general surgery in China].

    PubMed

    Fang, C H; LauWan, Y Y; Cai, W

    2017-01-01

    It has been almost 10 years since digital medical technology has started to becommonly used in general surgery in China.Led by advances in three dimensional(3D) visualization technology, virtual reality, simulation surgery, and 3D printing, digital medical technology have played important roles in changing the current practice of general surgery in China to become more effective by improving diagnostic accuracy and a better choice of therapeutic procedure with a resultant increased surgical success rate and a decreased surgical risks.Furthermore, education of medical students and young doctors become better and easier.

  7. Research challenges in digital education.

    PubMed

    Norman, Geoff

    2014-09-01

    Simulation and other forms of digital learning will occupy a place of increasing prominence in medical education in the future. However, to maximally use the potential of these media, we must go beyond a research agenda dictated by a 'Does it work?' question to one driven by careful analysis of the nature of the task to be learned and its relation to the characteristics of the technology. Secondly, we must change the focus from the characteristics of individual devices to a broader approach to design of a digital curriculum based on current understanding of the nature of human learning.

  8. Cellular automaton supercomputing

    NASA Technical Reports Server (NTRS)

    Wolfram, Stephen

    1987-01-01

    Many of the models now used in science and engineering are over a century old. And most of them can be implemented on modern digital computers only with considerable difficulty. Some new basic models are discussed which are much more directly suitable for digital computer simulation. The fundamental principle is that the models considered herein are as suitable as possible for implementation on digital computers. It is then a matter of scientific analysis to determine whether such models can reproduce the behavior seen in physical and other systems. Such analysis was carried out in several cases, and the results are very encouraging.

  9. Hybrid receiver study

    NASA Technical Reports Server (NTRS)

    Stone, M. S.; Mcadam, P. L.; Saunders, O. W.

    1977-01-01

    The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions.

  10. Modeling of digital information optical encryption system with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bondareva, Alyona P.; Cheremkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.; Starikov, Sergey N.

    2015-10-01

    State of the art micromirror DMD spatial light modulators (SLM) offer unprecedented framerate up to 30000 frames per second. This, in conjunction with high speed digital camera, should allow to build high speed optical encryption system. Results of modeling of digital information optical encryption system with spatially incoherent illumination are presented. Input information is displayed with first SLM, encryption element - with second SLM. Factors taken into account are: resolution of SLMs and camera, holograms reconstruction noise, camera noise and signal sampling. Results of numerical simulation demonstrate high speed (several gigabytes per second), low bit error rate and high crypto-strength.

  11. Modified signed-digit trinary addition using synthetic wavelet filter

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, K. M.; Razzaque, M. A.

    2000-09-01

    The modified signed-digit (MSD) number system has been a topic of interest as it allows for parallel carry-free addition of two numbers for digital optical computing. In this paper, harmonic wavelet joint transform (HWJT)-based correlation technique is introduced for optical implementation of MSD trinary adder implementation. The realization of the carry-propagation-free addition of MSD trinary numerals is demonstrated using synthetic HWJT correlator model. It is also shown that the proposed synthetic wavelet filter-based correlator shows high performance in logic processing. Simulation results are presented to validate the performance of the proposed technique.

  12. Digital control analysis and design of a field-sensed magnetic suspension system.

    PubMed

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-03-13

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.

  13. Unique digital imagery interface between a silicon graphics computer and the kinetic kill vehicle hardware-in-the-loop simulator (KHILS) wideband infrared scene projector (WISP)

    NASA Astrophysics Data System (ADS)

    Erickson, Ricky A.; Moren, Stephen E.; Skalka, Marion S.

    1998-07-01

    Providing a flexible and reliable source of IR target imagery is absolutely essential for operation of an IR Scene Projector in a hardware-in-the-loop simulation environment. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) at Eglin AFB provides the capability, and requisite interfaces, to supply target IR imagery to its Wideband IR Scene Projector (WISP) from three separate sources at frame rates ranging from 30 - 120 Hz. Video can be input from a VCR source at the conventional 30 Hz frame rate. Pre-canned digital imagery and test patterns can be downloaded into stored memory from the host processor and played back as individual still frames or movie sequences up to a 120 Hz frame rate. Dynamic real-time imagery to the KHILS WISP projector system, at a 120 Hz frame rate, can be provided from a Silicon Graphics Onyx computer system normally used for generation of digital IR imagery through a custom CSA-built interface which is available for either the SGI/DVP or SGI/DD02 interface port. The primary focus of this paper is to describe our technical approach and experience in the development of this unique SGI computer and WISP projector interface.

  14. Research and development of a digital design system for hull structures

    NASA Astrophysics Data System (ADS)

    Zhan, Yi-Ting; Ji, Zhuo-Shang; Liu, Yin-Dong

    2007-06-01

    Methods used for digital ship design were studied and formed the basis of a proposed frame model suitable for ship construction modeling. Based on 3-D modeling software, a digital design system for hull structures was developed. Basic software systems for modeling, modifying, and assembly simulation were developed. The system has good compatibility, and models created by it can be saved in different 3-D file formats, and 2D engineering drawings can be output directly. The model can be modified dynamically, overcoming the necessity of repeated modifications during hull structural design. Through operations such as model construction, intervention inspection, and collision detection, problems can be identified and modified during the hull structural design stage. Technologies for centralized control of the system, database management, and 3-D digital design are integrated into this digital model in the preliminary design stage of shipbuilding.

  15. Direct digital conversion detector technology

    NASA Astrophysics Data System (ADS)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  16. Analog to digital workflow improvement: a quantitative study.

    PubMed

    Wideman, Catherine; Gallet, Jacqueline

    2006-01-01

    This study tracked a radiology department's conversion from utilization of a Kodak Amber analog system to a Kodak DirectView DR 5100 digital system. Through the use of ProModel Optimization Suite, a workflow simulation software package, significant quantitative information was derived from workflow process data measured before and after the change to a digital system. Once the digital room was fully operational and the radiology staff comfortable with the new system, average patient examination time was reduced from 9.24 to 5.28 min, indicating that a higher patient throughput could be achieved. Compared to the analog system, chest examination time for modality specific activities was reduced by 43%. The percentage of repeat examinations experienced with the digital system also decreased to 8% vs. the level of 9.5% experienced with the analog system. The study indicated that it is possible to quantitatively study clinical workflow and productivity by using commercially available software.

  17. Development of an Integrated Hydrologic Modeling System for Rainfall-Runoff Simulation

    NASA Astrophysics Data System (ADS)

    Lu, B.; Piasecki, M.

    2008-12-01

    This paper aims to present the development of an integrated hydrological model which involves functionalities of digital watershed processing, online data retrieval, hydrologic simulation and post-event analysis. The proposed system is intended to work as a back end to the CUAHSI HIS cyberinfrastructure developments. As a first step into developing this system, a physics-based distributed hydrologic model PIHM (Penn State Integrated Hydrologic Model) is wrapped into OpenMI(Open Modeling Interface and Environment ) environment so as to seamlessly interact with OpenMI compliant meteorological models. The graphical user interface is being developed from the openGIS application called MapWindows which permits functionality expansion through the addition of plug-ins. . Modules required to set up through the GUI workboard include those for retrieving meteorological data from existing database or meteorological prediction models, obtaining geospatial data from the output of digital watershed processing, and importing initial condition and boundary condition. They are connected to the OpenMI compliant PIHM to simulate rainfall-runoff processes and includes a module for automatically displaying output after the simulation. Online databases are accessed through the WaterOneFlow web services, and the retrieved data are either stored in an observation database(OD) following the schema of Observation Data Model(ODM) in case for time series support, or a grid based storage facility which may be a format like netCDF or a grid-based-data database schema . Specific development steps include the creation of a bridge to overcome interoperability issue between PIHM and the ODM, as well as the embedding of TauDEM (Terrain Analysis Using Digital Elevation Models) into the model. This module is responsible for developing watershed and stream network using digital elevation models. Visualizing and editing geospatial data is achieved by the usage of MapWinGIS, an ActiveX control developed by MapWindow team. After applying to the practical watershed, the performance of the model can be tested by the post-event analysis module.

  18. High-Voltage, Low-Power BNC Feedthrough Terminator

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas

    2012-01-01

    This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.

  19. Computational approach to integrate 3D X-ray microtomography and NMR data.

    PubMed

    Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G; Trevizan, Willian A; Fortulan, Carlos A; Bonagamba, Tito J

    2018-05-04

    Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T 1 and T 2 , respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Owen, Jeffrey E.

    1988-01-01

    A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture.

  1. Simulation 󈨔 Symposium.

    DTIC Science & Technology

    1980-11-21

    defensive , and both the question and the answer seemed to generate supporting reactions from the audience. Discrete Event Simulation The session on...R. Toscano / A. Maceri / F. Maceri (Italy) Analyse numerique de quelques problemes de contact en theorie des membranes 3:40 - 4:00 p.m. COFFEE BREAK...Switzerland Stockage de chaleur faible profondeur : Simulation par elements finis 3:40 - 4:00 p.m. A. Rizk Abu El-Wafa / M. Tawfik / M.S. Mansour (Egypt) Digital

  2. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    NASA Astrophysics Data System (ADS)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  3. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  4. Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators

    DTIC Science & Technology

    2017-07-07

    AFRL-RH-FS-TR-2017-0026 Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators Thomas K. Kuyk Peter A. Smith Solangia...34Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators" (AFRL-RH-FS-TR- 2017 - 0026 SHORTER.PATRI CK.D.1023156390 Digitally...SUBTITLE Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators 5a. CONTRACT NUMBER FA8650-14-D-6519 5b. GRANT NUMBER 5c

  5. The development of an interim generalized gate logic software simulator

    NASA Technical Reports Server (NTRS)

    Mcgough, J. G.; Nemeroff, S.

    1985-01-01

    A proof-of-concept computer program called IGGLOSS (Interim Generalized Gate Logic Software Simulator) was developed and is discussed. The simulator engine was designed to perform stochastic estimation of self test coverage (fault-detection latency times) of digital computers or systems. A major attribute of the IGGLOSS is its high-speed simulation: 9.5 x 1,000,000 gates/cpu sec for nonfaulted circuits and 4.4 x 1,000,000 gates/cpu sec for faulted circuits on a VAX 11/780 host computer.

  6. A real-time, dual processor simulation of the rotor system research aircraft

    NASA Technical Reports Server (NTRS)

    Mackie, D. B.; Alderete, T. S.

    1977-01-01

    A real-time, man-in-the loop, simulation of the rotor system research aircraft (RSRA) was conducted. The unique feature of this simulation was that two digital computers were used in parallel to solve the equations of the RSRA mathematical model. The design, development, and implementation of the simulation are documented. Program validation was discussed, and examples of data recordings are given. This simulation provided an important research tool for the RSRA project in terms of safe and cost-effective design analysis. In addition, valuable knowledge concerning parallel processing and a powerful simulation hardware and software system was gained.

  7. Provably unbounded memory advantage in stochastic simulation using quantum mechanics

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.; Liu, Qing; Thompson, Jayne; Vedral, Vlatko; Gu, mile

    2017-10-01

    Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off between the precision to which these quantities are approximated, and the memory required to store them. The statistical accuracy of the simulation is thus generally limited by the internal memory available to the simulator. Here, using tools from computational mechanics, we show that quantum processors with a fixed finite memory can simulate stochastic processes of real variables to arbitrarily high precision. This demonstrates a provable, unbounded memory advantage that a quantum simulator can exhibit over its best possible classical counterpart.

  8. Shade matching assisted by digital photography and computer software.

    PubMed

    Schropp, Lars

    2009-04-01

    To evaluate the efficacy of digital photographs and graphic computer software for color matching compared to conventional visual matching. The shade of a tab from a shade guide (Vita 3D-Master Guide) placed in a phantom head was matched to a second guide of the same type by nine observers. This was done for twelve selected shade tabs (tests). The shade-matching procedure was performed visually in a simulated clinic environment and with digital photographs, and the time spent for both procedures was recorded. An alternative arrangement of the shade tabs was used in the digital photographs. In addition, a graphic software program was used for color analysis. Hue, chroma, and lightness values of the test tab and all tabs of the second guide were derived from the digital photographs. According to the CIE L*C*h* color system, the color differences between the test tab and tabs of the second guide were calculated. The shade guide tab that deviated least from the test tab was determined to be the match. Shade matching performance by means of graphic software was compared with the two visual methods and tested by Chi-square tests (alpha= 0.05). Eight of twelve test tabs (67%) were matched correctly by the computer software method. This was significantly better (p < 0.02) than the performance of the visual shade matching methods conducted in the simulated clinic (32% correct match) and with photographs (28% correct match). No correlation between time consumption for the visual shade matching methods and frequency of correct match was observed. Shade matching assisted by digital photographs and computer software was significantly more reliable than by conventional visual methods.

  9. Stereotaxic 18F-FDG PET and MRI templates with three-dimensional digital atlas for statistical parametric mapping analysis of tree shrew brain.

    PubMed

    Huang, Qi; Nie, Binbin; Ma, Chen; Wang, Jing; Zhang, Tianhao; Duan, Shaofeng; Wu, Shang; Liang, Shengxiang; Li, Panlong; Liu, Hua; Sun, Hua; Zhou, Jiangning; Xu, Lin; Shan, Baoci

    2018-01-01

    Tree shrews are proposed as an alternative animal model to nonhuman primates due to their close affinity to primates. Neuroimaging techniques are widely used to study brain functions and structures of humans and animals. However, tree shrews are rarely applied in neuroimaging field partly due to the lack of available species specific analysis methods. In this study, 10 PET/CT and 10 MRI images of tree shrew brain were used to construct PET and MRI templates; based on histological atlas we reconstructed a three-dimensional digital atlas with 628 structures delineated; then the digital atlas and templates were aligned into a stereotaxic space. Finally, we integrated the digital atlas and templates into a toolbox for tree shrew brain spatial normalization, statistical analysis and results localization. We validated the feasibility of the toolbox by simulated data with lesions in laterodorsal thalamic nucleus (LD). The lesion volumes of simulated PET and MRI images were (12.97±3.91)mm 3 and (7.04±0.84)mm 3 . Statistical results at p<0.005 showed the lesion volumes of PET and MRI were 13.18mm 3 and 8.06mm 3 in LD. To our knowledge, we report the first PET template and digital atlas of tree shrew brain. Compared to the existing MRI templates, our MRI template was aligned into stereotaxic space. And the toolbox is the first software dedicated for tree shrew brain analysis. The templates and digital atlas of tree shrew brain, as well as the toolbox, facilitate the use of tree shrews in neuroimaging field. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn

    2017-11-01

    We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense of longer computation time.

  11. Mapping debris-flow hazard in Honolulu using a DEM

    USGS Publications Warehouse

    Ellen, Stephen D.; Mark, Robert K.; ,

    1993-01-01

    A method for mapping hazard posed by debris flows has been developed and applied to an area near Honolulu, Hawaii. The method uses studies of past debris flows to characterize sites of initiation, volume at initiation, and volume-change behavior during flow. Digital simulations of debris flows based on these characteristics are then routed through a digital elevation model (DEM) to estimate degree of hazard over the area.

  12. Data compression/error correction digital test system. Appendix 2: Theory of operation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall block diagram of the DC/EC digital system test is shown. The system is divided into two major units: the transmitter and the receiver. In operation, the transmitter and receiver are connected only by a real or simulated transmission link. The system inputs consist of: (1) standard format TV video, (2) two channels of analog voice, and (3) one serial PCM bit stream.

  13. A Simulation Model for Setting Terms for Performance Based Contract Terms

    DTIC Science & Technology

    2010-05-01

    torpedo self-noise and the use of ruggedized, embedded, digital micro - processors . The latter capability made it possible for digitally controlled...inventories are: System Reliability, Product Reliability, Operational Availability, Mean Time to Repair (MTTR), Mean Time to Failure ( MTTF ...Failure ( MTTF ) Mean Logistics Delay Time (MLDT) Mean Supply Response Time (MSRT) D ep en de nt M et ric s Mean Accumulated Down Time (MADT

  14. Robust and real-time rotor control with magnetic bearings

    NASA Technical Reports Server (NTRS)

    Sinha, A.; Wang, K. W.; Mease, K. L.

    1991-01-01

    This paper deals with the sliding mode control of a rigid rotor via radial magnetic bearings. The digital control algorithm and the results from numerical simulations are presented for an experimental rig. The experimental system which has been set up to digitally implement and validate the sliding mode control algorithm is described. Two methods for the development of control softwares are presented. Experimental results for individual rotor axis are discussed.

  15. Digital Holographic Interferometry and Speckle Correlation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Ichirou

    2010-04-01

    Relations and combinations between holographic interferometry and speckle correlation in contouring by phase-shifting digital holography are discussed. Three-dimensional distributions of correlations of the complex amplitudes and intensities before and after the laser wavelength shift are calculated in numerical simulations where a rough surface is modeled with random numbers. Fringe localization related to speckle displacement as well as speckle suppression in phase analysis are demonstrated for general surface shape and recording conditions.

  16. Microcomputer Control of a Hydraulically Actuated Piston.

    DTIC Science & Technology

    1987-06-01

    EhhhohEohEmhhE EhhmhhhohhhhhI M1l *2 112.2 Ll 6 111111.258 MICROCOPY RESOLUfION TEST CHART NATIONAL BUREAUJ nF SIANDARDS 1963 A W* %i r f U V ~ S i V...SYSTE.M............................I( E. I REQUENCY RESPONSE TEST ........................... F. MODEL V.ALIDATION ................................. 2...O RITH M (BA SIC) ................................. 43 APPENDIX D: DIGITAL SYSTEM SIMULATION CODE (DSL) ........... 44 APPENDIX E: DIGITAL LOGIC TEST

  17. Using Digital Earth to create online scientific reality tourist guides to tourist attractions in Taiwan, China

    NASA Astrophysics Data System (ADS)

    Ding, Yea-Chung

    2010-11-01

    In recent years national parks worldwide have introduced online virtual tourism, through which potential visitors can search for tourist information. Most virtual tourism websites are a simulation of an existing location, usually composed of panoramic images, a sequence of hyperlinked still or video images, and/or virtual models of the actual location. As opposed to actual tourism, a virtual tour is typically accessed on a personal computer or an interactive kiosk. Using modern Digital Earth techniques such as high resolution satellite images, precise GPS coordinates and powerful 3D WebGIS, however, it's possible to create more realistic scenic models to present natural terrain and man-made constructions in greater detail. This article explains how to create an online scientific reality tourist guide for the Jinguashi Gold Ecological Park at Jinguashi in northern Taiwan, China. This project uses high-resolution Formosat 2 satellite images and digital aerial images in conjunction with DTM to create a highly realistic simulation of terrain, with the addition of 3DMAX to add man-made constructions and vegetation. Using this 3D Geodatabase model in conjunction with INET 3D WebGIS software, we have found Digital Earth concept can greatly improve and expand the presentation of traditional online virtual tours on the websites.

  18. Validation of a modified PENELOPE Monte Carlo code for applications in digital and dual-energy mammography

    NASA Astrophysics Data System (ADS)

    Del Lama, L. S.; Cunha, D. M.; Poletti, M. E.

    2017-08-01

    The presence and morphology of microcalcification clusters are the main point to provide early indications of breast carcinomas. However, the visualization of those structures may be jeopardized due to overlapping tissues even for digital mammography systems. Although digital mammography is the current standard for breast cancer diagnosis, further improvements should be achieved in order to address some of those physical limitations. One possible solution for such issues is the application of the dual-energy technique (DE), which is able to highlight specific lesions or cancel out the tissue background. In this sense, this work aimed to evaluate several quantities of interest in radiation applications and compare those values with works present in the literature to validate a modified PENELOPE code for digital mammography applications. For instance, the scatter-to-primary ratio (SPR), the scatter fraction (SF) and the normalized mean glandular dose (DgN) were evaluated by simulations and the resulting values were compared to those found in earlier studies. Our results present a good correlation for the evaluated quantities, showing agreement equal or better than 5% for the scatter and dosimetric-related quantities when compared to the literature. Finally, a DE imaging chain was simulated and the visualization of microcalcifications was investigated.

  19. Dose assessment in contrast enhanced digital mammography using simple phantoms simulating standard model breasts.

    PubMed

    Bouwman, R W; van Engen, R E; Young, K C; Veldkamp, W J H; Dance, D R

    2015-01-07

    Slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE) slabs are used to simulate standard model breasts for the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT). These phantoms are optimized for the energy spectra used in DM and DBT, which normally have a lower average energy than used in contrast enhanced digital mammography (CEDM). In this study we have investigated whether these phantoms can be used for the evaluation of AGD with the high energy x-ray spectra used in CEDM. For this purpose the calculated values of the incident air kerma for dosimetry phantoms and standard model breasts were compared in a zero degree projection with the use of an anti scatter grid. It was found that the difference in incident air kerma compared to standard model breasts ranges between -10% to +4% for PMMA slabs and between 6% and 15% for PMMA-PE slabs. The estimated systematic error in the measured AGD for both sets of phantoms were considered to be sufficiently small for the evaluation of AGD in quality control procedures for CEDM. However, the systematic error can be substantial if AGD values from different phantoms are compared.

  20. A digital model for planning water management at Benton Lake National Wildlife Refuge, west-central Montana

    USGS Publications Warehouse

    Nimick, David A.; McCarthy, Peter M.; Fields, Vanessa

    2011-01-01

    Benton Lake National Wildlife Refuge is an important area for waterfowl production and migratory stopover in west-central Montana. Eight wetland units covering about 5,600 acres are the essential features of the refuge. Water availability for the wetland units can be uncertain owing to the large natural variations in precipitation and runoff and the high cost of pumping supplemental water. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, has developed a digital model for planning water management. The model can simulate strategies for water transfers among the eight wetland units and account for variability in runoff and pumped water. This report describes this digital model, which uses a water-accounting spreadsheet to track inputs and outputs to each of the wetland units of Benton Lake National Wildlife Refuge. Inputs to the model include (1) monthly values for precipitation, pumped water, runoff, and evaporation; (2) water-level/capacity data for each wetland unit; and (3) the pan-evaporation coefficient. Outputs include monthly water volume and flooded surface area for each unit for as many as 5 consecutive years. The digital model was calibrated by comparing simulated and historical measured water volumes for specific test years.

  1. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator ismore » also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.« less

  2. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borges, Lucas R., E-mail: lucas.rodrigues.borges@usp.br; Oliveira, Helder C. R. de; Nunes, Polyana F.

    2016-06-15

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtainedmore » by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.« less

  3. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    PubMed Central

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions. PMID:27277017

  4. Phase II, improved work zone design guidelines and enhanced model of traffic delays in work zones : final report, March 2009.

    DOT National Transportation Integrated Search

    2009-03-01

    This project contains three major parts. In the first part a digital computer simulation model was developed with the aim to model the traffic through a freeway work zone situation. The model was based on the Arena simulation software and used cumula...

  5. A 100 kW experimental wind turbine: Simulation of starting, overspeed, and shutdown characteristics

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.

    1976-01-01

    The ERDA/NASA 100 kW experimental wind turbine is modeled on a digital computer in order to study the performance of a wind turbine under operating conditions. Simulation studies of starting, overspeed, and shutdown performance were made. From these studies operating procedures, precautions, and limitations are prescribed.

  6. Electronic Warfare M-on-N Digital Simulation Logging Requirements and HDF5: A Preliminary Analysis

    DTIC Science & Technology

    2017-04-12

    LOGGING STREAM The goal of this report is to investigate logging of EW simulations not at the level of implementation in a database management ...differences of the logging stream and relational models.  A hierarchical navigation query style appears very natural for our application. Yet the

  7. Phase II, improved work zone design guidelines and enhanced model of traffic delays in work zones : executive summary report.

    DOT National Transportation Integrated Search

    2009-03-01

    This project contains three major parts. In the first part a digital computer simulation model was developed with the aim to model the traffic through a freeway work zone situation. The model was based on the Arena simulation software and used cumula...

  8. Going glass to digital: virtual microscopy as a simulation-based revolution in pathology and laboratory science.

    PubMed

    Nelson, Danielle; Ziv, Amitai; Bandali, Karim S

    2012-10-01

    The recent technological advance of digital high resolution imaging has allowed the field of pathology and medical laboratory science to undergo a dramatic transformation with the incorporation of virtual microscopy as a simulation-based educational and diagnostic tool. This transformation has correlated with an overall increase in the use of simulation in medicine in an effort to address dwindling clinical resource availability and patient safety issues currently facing the modern healthcare system. Virtual microscopy represents one such simulation-based technology that has the potential to enhance student learning and readiness to practice while revolutionising the ability to clinically diagnose pathology collaboratively across the world. While understanding that a substantial amount of literature already exists on virtual microscopy, much more research is still required to elucidate the full capabilities of this technology. This review explores the use of virtual microscopy in medical education and disease diagnosis with a unique focus on key requirements needed to take this technology to the next level in its use in medical education and clinical practice.

  9. Republished: going glass to digital: virtual microscopy as a simulation-based revolution in pathology and laboratory science.

    PubMed

    Nelson, Danielle; Ziv, Amitai; Bandali, Karim S

    2013-10-01

    The recent technological advance of digital high resolution imaging has allowed the field of pathology and medical laboratory science to undergo a dramatic transformation with the incorporation of virtual microscopy as a simulation-based educational and diagnostic tool. This transformation has correlated with an overall increase in the use of simulation in medicine in an effort to address dwindling clinical resource availability and patient safety issues currently facing the modern healthcare system. Virtual microscopy represents one such simulation-based technology that has the potential to enhance student learning and readiness to practice while revolutionising the ability to clinically diagnose pathology collaboratively across the world. While understanding that a substantial amount of literature already exists on virtual microscopy, much more research is still required to elucidate the full capabilities of this technology. This review explores the use of virtual microscopy in medical education and disease diagnosis with a unique focus on key requirements needed to take this technology to the next level in its use in medical education and clinical practice.

  10. Hardware-efficient fermionic simulation with a cavity-QED system

    NASA Astrophysics Data System (ADS)

    Zhu, Guanyu; Subaşı, Yiǧit; Whitfield, James D.; Hafezi, Mohammad

    2018-03-01

    In digital quantum simulation of fermionic models with qubits, non-local maps for encoding are often encountered. Such maps require linear or logarithmic overhead in circuit depth which could render the simulation useless, for a given decoherence time. Here we show how one can use a cavity-QED system to perform digital quantum simulation of fermionic models. In particular, we show that highly nonlocal Jordan-Wigner or Bravyi-Kitaev transformations can be efficiently implemented through a hardware approach. The key idea is using ancilla cavity modes, which are dispersively coupled to a qubit string, to collectively manipulate and measure qubit states. Our scheme reduces the circuit depth in each Trotter step of the Jordan-Wigner encoding by a factor of N2, comparing to the scheme for a device with only local connectivity, where N is the number of orbitals for a generic two-body Hamiltonian. Additional analysis for the Fermi-Hubbard model on an N × N square lattice results in a similar reduction. We also discuss a detailed implementation of our scheme with superconducting qubits and cavities.

  11. Preparation, applications, and digital simulation of carbon interdigitated array electrodes.

    PubMed

    Liu, Fei; Kolesov, Grigory; Parkinson, B A

    2014-08-05

    Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltammetry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10(-5) molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow.

  12. Evaluation of the artificial membrane permeability of drugs by digital simulation.

    PubMed

    Nakamura, Mayumi; Osakai, Toshiyuki

    2016-08-25

    A digital simulation method has been developed for evaluating the membrane permeability of drugs in the parallel artificial membrane permeation assay (PAMPA). The simulation results have shown that the permeability coefficient (log Ppampa) of drugs is linearly increased with increasing their distribution coefficient (log KD,M) to the lipid membrane, i.e., the hydrophobicity of the drug molecules. However, log Ppampa shows signs of leveling off for highly hydrophobic drugs. Such a dependence of log Ppampa is in harmony with the reported experimental data, and has been well explained in terms of the change in the rate-determining step from the diffusion in the membrane to that in the unstirred water layer (UWL) on both sides of the membrane. Additionally, the effects of several factors, including lag time, diffusion coefficient, pH, and pKa, on the permeability coefficient have been well simulated. It has thus been suggested that the proposed method should be promising for in silico evaluation of the membrane permeability of drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    NASA Astrophysics Data System (ADS)

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.

    1997-05-01

    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  14. Research on hyperspectral dynamic scene and image sequence simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei

    2016-10-01

    This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.

  15. Hardware-in-the-loop tow missile system simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldman, G.S.; Wootton, J.R.; Hobson, G.L.

    1993-07-06

    A missile system simulator is described for use in training people for target acquisition, missile launch, and missile guidance under simulated battlefield conditions comprising: simulating means for producing a digital signal representing a simulated battlefield environment including at least one target movable therewithin, the simulating means generating an infrared map representing the field-of-view and the target; interface means for converting said digital signals to an infrared image; missile system hardware including the missile acquisition, tracking, and guidance portions thereof, said hardware sensing the infrared image to determine the location of the target in a field-of-view; and, image means for generatingmore » an infrared image of a missile launched at the target and guided thereto, the image means imposing the missile image onto the field-of-view for the missile hardware to acquire the image of the missile in addition to that of the target, and to generate guidance signals to guide the missile image to the target image, wherein the interfacing means is responsive to a guidance signal from the hardware to simulate, in real-time, the response of the missile to the guidance signal, the image means including a blackbody, laser means for irradiating the blackbody to heat it to a temperature at which it emits infrared radiation, and optic means for integrating the radiant image produced by heating the blackbody into the infrared map.« less

  16. Dual function seal: visualized digital signature for electronic medical record systems.

    PubMed

    Yu, Yao-Chang; Hou, Ting-Wei; Chiang, Tzu-Chiang

    2012-10-01

    Digital signature is an important cryptography technology to be used to provide integrity and non-repudiation in electronic medical record systems (EMRS) and it is required by law. However, digital signatures normally appear in forms unrecognizable to medical staff, this may reduce the trust from medical staff that is used to the handwritten signatures or seals. Therefore, in this paper we propose a dual function seal to extend user trust from a traditional seal to a digital signature. The proposed dual function seal is a prototype that combines the traditional seal and digital seal. With this prototype, medical personnel are not just can put a seal on paper but also generate a visualized digital signature for electronic medical records. Medical Personnel can then look at the visualized digital signature and directly know which medical personnel generated it, just like with a traditional seal. Discrete wavelet transform (DWT) is used as an image processing method to generate a visualized digital signature, and the peak signal to noise ratio (PSNR) is calculated to verify that distortions of all converted images are beyond human recognition, and the results of our converted images are from 70 dB to 80 dB. The signature recoverability is also tested in this proposed paper to ensure that the visualized digital signature is verifiable. A simulated EMRS is implemented to show how the visualized digital signature can be integrity into EMRS.

  17. Automation of extrusion of porous cable products based on a digital controller

    NASA Astrophysics Data System (ADS)

    Chostkovskii, B. K.; Mitroshin, V. N.

    2017-07-01

    This paper presents a new approach to designing an automated system for monitoring and controlling the process of applying porous insulation material on a conductive cable core, which is based on using structurally and parametrically optimized digital controllers of an arbitrary order instead of calculating typical PID controllers using known methods. The digital controller is clocked by signals from the clock length sensor of a measuring wheel, instead of a timer signal, and this provides the robust properties of the system with respect to the changing insulation speed. Digital controller parameters are tuned to provide the operating parameters of the manufactured cable using a simulation model of stochastic extrusion and are minimized by moving a regular simplex in the parameter space of the tuned controller.

  18. Reconstruction of electrocardiogram using ionic current models for heart muscles.

    PubMed

    Yamanaka, A; Okazaki, K; Urushibara, S; Kawato, M; Suzuki, R

    1986-11-01

    A digital computer model is presented for the simulation of the electrocardiogram during ventricular activation and repolarization (QRS-T waves). The part of the ventricular septum and the left ventricular free wall of the heart are represented by a two dimensional array of 730 homogeneous functional units. Ionic currents models are used to determine the spatial distribution of the electrical activities of these units at each instant of time during simulated cardiac cycle. In order to reconstruct the electrocardiogram, the model is expanded three-dimensionally with equipotential assumption along the third axis and then the surface potentials are calculated using solid angle method. Our digital computer model can be used to improve the understanding of the relationship between body surface potentials and intracellular electrical events.

  19. Method and apparatus for transfer function simulator for testing complex systems

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1985-01-01

    A method and apparatus for testing the operation of a complex stabilization circuit in a closed loop system is presented. The method is comprised of a programmed analog or digital computing system for implementing the transfer function of a load thereby providing a predictable load. The digital computing system employs a table stored in a microprocessor in which precomputed values of the load transfer function are stored for values of input signal from the stabilization circuit over the range of interest. This technique may be used not only for isolating faults in the stabilization circuit, but also for analyzing a fault in a faulty load by so varying parameters of the computing system as to simulate operation of the actual load with the fault.

  20. Application of digital analysis of MSS data to agro-environmental studies

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Goward, S. N. (Principal Investigator)

    1981-01-01

    Progress in the application of digital analysis of multispectral scanner data to agro-environmental studies is described. Simulation of LANDSAT D thematic mapper (TM) observations from aircraft multispectral scanner data and field spectrometer data collected over a corn-soybean agricultural region in Webster County, Iowa during the 1979 growing season in support of the NASA/AgRISTARS program is described. The simulations were analyzed to evaluate the potential utility of the TM (1.55-1.75 micron) mid-infrared observations in corn-soybean discrimination. Current LANDSAT data was analyzed to study snow cover in northern New England and wetlands in Nebraska and Vermont. The application of satellite remote sensor data in additional environmental research areas is described.

  1. Image Transmission through OFDM System under the Influence of AWGN Channel

    NASA Astrophysics Data System (ADS)

    Krishna, Dharavathu; Anuradha, M. S., Dr.

    2017-08-01

    OFDM system is one among the modern techniques which is most abundantly used in next generation wireless communication networks for transmitting many forms of digital data in efficient manner than compared with other existing traditional techniques. In this paper, one such kind of a digital data corresponding to a two dimensional (2D) gray-scale image is used to evaluate the functionality and overall performance of an OFDM system under the influence of modeled AWGN channel in MATLAB simulation environment. Within the OFDM system, different configurations of notable modulation techniques such as M-PSK and M-QAM are considered for evaluation of the system and necessary valid conclusions are made from the comparison of several observed MATLAB simulation results.

  2. CSM docked DAP/orbital assembly bending interaction-axial case

    NASA Technical Reports Server (NTRS)

    Turnbull, J. F.; Jones, J. E.

    1972-01-01

    A digital autopilot which can provide attitude control for the entire Skylab orbital assembly using the service module reaction control jets is described. An important consideration is the potential interaction of the control system with the bending modes of the orbital assembly. Two aspects of this potential interaction were considered. The first was the possibility that bending induced rotations feeding back through the attitude sensor into the control system could produce an instability or self-sustained oscillation. The second was whether the jet activity commanded by the control system could produce excessive loads at any of the critical load points of the orbital assembly. Both aspects were studied by using analytic techniques and by running simulations on the all-digital simulator.

  3. A Comparative Study of Random Patterns for Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Stoilov, G.; Kavardzhikov, V.; Pashkouleva, D.

    2012-06-01

    Digital Image Correlation (DIC) is a computer based image analysis technique utilizing random patterns, which finds applications in experimental mechanics of solids and structures. In this paper a comparative study of three simulated random patterns is done. One of them is generated according to a new algorithm, introduced by the authors. A criterion for quantitative evaluation of random patterns after the calculation of their autocorrelation functions is introduced. The patterns' deformations are simulated numerically and realized experimentally. The displacements are measured by using the DIC method. Tensile tests are performed after printing the generated random patterns on surfaces of standard iron sheet specimens. It is found that the new designed random pattern keeps relatively good quality until reaching 20% deformation.

  4. On-chip temperature-based digital signal processing for customized wireless microcontroller

    NASA Astrophysics Data System (ADS)

    Farhah Razanah Faezal, Siti; Isa, Mohd Nazrin Md; Harun, Azizi; Nizam Mohyar, Shaiful; Bahari Jambek, Asral

    2017-11-01

    Increases in die size and power density inside system-on-chip (SoC) design have brought thermal issue inside the system. Uneven heat-up and increasing in temperature offset on-chip has become a major factor that can limits the system performance. This paper presents the design and simulation of a temperature-based digital signal processing for modern system-on-chip design using the Verilog HDL. This design yields continuous monitoring of temperature and reacts to specified conditions. The simulation of the system has been done on Altera Quartus Software v. 14. With system above, microcontroller can achieve nominal power dissipation and operation is within the temperature range due to the incorporate of an interrupt-based system.

  5. A real-time digital program for estimating aircraft stability and control parameters from flight test data by using the maximum likelihood method

    NASA Technical Reports Server (NTRS)

    Grove, R. D.; Mayhew, S. C.

    1973-01-01

    A computer program (Langley program C1123) has been developed for estimating aircraft stability and control parameters from flight test data. These parameters are estimated by the maximum likelihood estimation procedure implemented on a real-time digital simulation system, which uses the Control Data 6600 computer. This system allows the investigator to interact with the program in order to obtain satisfactory results. Part of this system, the control and display capabilities, is described for this program. This report also describes the computer program by presenting the program variables, subroutines, flow charts, listings, and operational features. Program usage is demonstrated with a test case using pseudo or simulated flight data.

  6. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: A simulation study with an anthropomorphic breast phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xinming; Lai Chaojen; Whitman, Gary J.

    Purpose: The scan equalization digital mammography (SEDM) technique combines slot scanning and exposure equalization to improve low-contrast performance of digital mammography in dense tissue areas. In this study, full-field digital mammography (FFDM) images of an anthropomorphic breast phantom acquired with an anti-scatter grid at various exposure levels were superimposed to simulate SEDM images and investigate the improvement of low-contrast performance as quantified by primary signal-to-noise ratios (PSNRs). Methods: We imaged an anthropomorphic breast phantom (Gammex 169 ''Rachel,'' Gammex RMI, Middleton, WI) at various exposure levels using a FFDM system (Senographe 2000D, GE Medical Systems, Milwaukee, WI). The exposure equalization factorsmore » were computed based on a standard FFDM image acquired in the automatic exposure control (AEC) mode. The equalized image was simulated and constructed by superimposing a selected set of FFDM images acquired at 2, 1, 1/2, 1/4, 1/8, 1/16, and 1/32 times of exposure levels to the standard AEC timed technique (125 mAs) using the equalization factors computed for each region. Finally, the equalized image was renormalized regionally with the exposure equalization factors to result in an appearance similar to that with standard digital mammography. Two sets of FFDM images were acquired to allow for two identically, but independently, formed equalized images to be subtracted from each other to estimate the noise levels. Similarly, two identically but independently acquired standard FFDM images were subtracted to estimate the noise levels. Corrections were applied to remove the excess system noise accumulated during image superimposition in forming the equalized image. PSNRs over the compressed area of breast phantom were computed and used to quantitatively study the effects of exposure equalization on low-contrast performance in digital mammography. Results: We found that the highest achievable PSNR improvement factor was 1.89 for the anthropomorphic breast phantom used in this study. The overall PSNRs were measured to be 79.6 for the FFDM imaging and 107.6 for the simulated SEDM imaging on average in the compressed area of breast phantom, resulting in an average improvement of PSNR by {approx}35% with exposure equalization. We also found that the PSNRs appeared to be largely uniform with exposure equalization, and the standard deviations of PSNRs were estimated to be 10.3 and 7.9 for the FFDM imaging and the simulated SEDM imaging, respectively. The average glandular dose for SEDM was estimated to be 212.5 mrad, {approx}34% lower than that of standard AEC-timed FFDM (323.8 mrad) as a result of exposure equalization for the entire breast phantom. Conclusions: Exposure equalization was found to substantially improve image PSNRs in dense tissue regions and result in more uniform image PSNRs. This improvement may lead to better low-contrast performance in detecting and visualizing soft tissue masses and micro-calcifications in dense tissue areas for breast imaging tasks.« less

  7. Fluid-line math model

    NASA Technical Reports Server (NTRS)

    Kandelman, A.; Nelson, D. J.

    1977-01-01

    Simplified mathematical model simulates large hydraulic systems on either analog or digital computers. Models of pumps, servoactuators, reservoirs, accumulators, and valves are connected generating systems containing six hundred elements.

  8. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    PubMed

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution.

  9. Analysis of off-axis incoherent digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-05-01

    Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.

  10. Digital Modeling and Testing Research on Digging Mechanism of Deep Rootstalk Crops

    NASA Astrophysics Data System (ADS)

    Yang, Chuanhua; Xu, Ma; Wang, Zhoufei; Yang, Wenwu; Liao, Xinglong

    The digital model of the laboratory bench parts of digging deep rootstalk crops were established through adopting the parametric model technology based on feature. The virtual assembly of the laboratory bench of digging deep rootstalk crops was done and the digital model of the laboratory bench parts of digging deep rootstalk crops was gained. The vibrospade, which is the key part of the laboratory bench of digging deep rootstalk crops was simulated and the movement parametric curves of spear on the vibrospade were obtained. The results show that the spear was accorded with design requirements. It is propitious to the deep rootstalk.

  11. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    NASA Technical Reports Server (NTRS)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  12. Simulation of Controller Pilot Data Link Communications over VHF Digital Link Mode 3

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Murawski, Robert; Nguyen, Thanh C.; Raghavan, Rajesh S.

    2004-01-01

    The Federal Aviation Administration (FAA) has established an operational plan for the future Air Traffic Management (ATM) system, in which the Controller Pilot Data Link Communications (CPDLC) is envisioned to evolve into digital messaging that will take on an ever increasing role in controller to pilot communications, significantly changing the way the National Airspace System (NAS) is operating. According to FAA, CPDLC represents the first phase of the transition from the current analog voice system to an International Civil Aviation Organization (ICAO) compliant system in which digital communication becomes the alternate and perhaps primary method of routine communication. The CPDLC application is an Air Traffic Service (ATS) application in which pilots and controllers exchange messages via an addressed data link. CPDLC includes a set of clearance, information, and request message elements that correspond to existing phraseology employed by current Air Traffic Control (ATC) procedures. These message elements encompass altitude assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for information. The pilot is provided with the capability to respond to messages, to request clearances and information, to report information, and to declare/rescind an emergency. A 'free text' capability is also provided to exchange information not conforming to defined formats. This paper presents simulated results of the aeronautical telecommunication application Controller Pilot Data Link Communications over VHF Digital Link Mode 3 (VDL Mode 3). The objective of this simulation study was to determine the impact of CPDLC traffic loads, in terms of timely message delivery and capacity of the VDL Mode 3 subnetwork. The traffic model is based on and is used for generating air/ground messages with different priorities. Communication is modeled for the en route domain of the Cleveland Center air traffic (ZOB ARTCC).

  13. Channel simulation to facilitate mobile-satellite communications research

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1987-01-01

    The mobile-satellite-service channel simulator, which is a facility for an end-to-end hardware simulation of mobile satellite communications links is discussed. Propagation effects, Doppler, interference, band limiting, satellite nonlinearity, and thermal noise have been incorporated into the simulator. The propagation environment in which the simulator needs to operate and the architecture of the simulator are described. The simulator is composed of: a mobile/fixed transmitter, interference transmitters, a propagation path simulator, a spacecraft, and a fixed/mobile receiver. Data from application experiments conducted with the channel simulator are presented; the noise converison technique to evaluate interference effects, the error floor phenomenon of digital multipath fading links, and the fade margin associated with a noncoherent receiver are examined. Diagrams of the simulator are provided.

  14. Optronic System Imaging Simulator (OSIS): imager simulation tool of the ECOMOS project

    NASA Astrophysics Data System (ADS)

    Wegner, D.; Repasi, E.

    2018-04-01

    ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defense and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses two approaches to calculate Target Acquisition (TA) ranges, the analytical TRM4 model and the image-based Triangle Orientation Discrimination model (TOD). In this paper the IR imager simulation tool, Optronic System Imaging Simulator (OSIS), is presented. It produces virtual camera imagery required by the TOD approach. Pristine imagery is degraded by various effects caused by atmospheric attenuation, optics, detector footprint, sampling, fixed pattern noise, temporal noise and digital signal processing. Resulting images might be presented to observers or could be further processed for automatic image quality calculations. For convenience OSIS incorporates camera descriptions and intermediate results provided by TRM4. For input OSIS uses pristine imagery tied with meta information about scene content, its physical dimensions, and gray level interpretation. These images represent planar targets placed at specified distances to the imager. Furthermore, OSIS is extended by a plugin functionality that enables integration of advanced digital signal processing techniques in ECOMOS such as compression, local contrast enhancement, digital turbulence mitiga- tion, to name but a few. By means of this image-based approach image degradations and image enhancements can be investigated, which goes beyond the scope of the analytical TRM4 model.

  15. Digital multimedia instruction enhances teaching oral and maxillofacial suturing.

    PubMed

    Weaver, J M; Lu, Mei; McCloskey, K L; Herndon, E S; Tanaka, W

    2009-12-01

    To develop digital multimedia instruction on intraoral suturing. A DVD was developed to describe instruments, materials, and techniques. Two groups of dental students were asked to close an incision in a simulated model. One used written materials only and another used additional DVD. The performance was evaluated using 10 grading criteria. Students who used the DVD performed better than students who did not. This DVD could be used widely in teaching dental students.

  16. Artillery Engagement Simulation

    DTIC Science & Technology

    1980-05-01

    coordinate* of the burst point to 10 meter accuracy (4 digit number). 7. Press R/S. Calculator will run for approximately one second and display the...northing coordinate* of the burst point to 10 meter accuracy (4 digit number). 8. If it is not desired to send azimuth and distance instructions to the...Now Delhi 1 USA Agey for Aviation Safety, Ft Rucker. ATTN: Educ Advisor I Pars Rsch Ofc, Libary , AKA. Israel Defense Forces I USA Aviation Sch. Ft

  17. Steering of Upper Ocean Currents and Fronts by the Topographically Constrained Abyssal Circulation

    DTIC Science & Technology

    2008-07-06

    a) Mean surface dynamic height relative to 1000 m from version 2.5 of the Generalized Digital Environmental Model ( GDEM ) oceanic climatology, an...NLOM simulations in comparison to the mean surface dynamic height with respect to 1000 m from the Generalized Digital Environmental Model ( GDEM ...the Kuroshio pathway east of Japan, giving much better agreement with the pathway in the GDEM climatology. Dynamics of the topographic impact on

  18. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  19. Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving.

    PubMed

    Large, David R; Clark, Leigh; Quandt, Annie; Burnett, Gary; Skrypchuk, Lee

    2017-09-01

    Given the proliferation of 'intelligent' and 'socially-aware' digital assistants embodying everyday mobile technology - and the undeniable logic that utilising voice-activated controls and interfaces in cars reduces the visual and manual distraction of interacting with in-vehicle devices - it appears inevitable that next generation vehicles will be embodied by digital assistants and utilise spoken language as a method of interaction. From a design perspective, defining the language and interaction style that a digital driving assistant should adopt is contingent on the role that they play within the social fabric and context in which they are situated. We therefore conducted a qualitative, Wizard-of-Oz study to explore how drivers might interact linguistically with a natural language digital driving assistant. Twenty-five participants drove for 10 min in a medium-fidelity driving simulator while interacting with a state-of-the-art, high-functioning, conversational digital driving assistant. All exchanges were transcribed and analysed using recognised linguistic techniques, such as discourse and conversation analysis, normally reserved for interpersonal investigation. Language usage patterns demonstrate that interactions with the digital assistant were fundamentally social in nature, with participants affording the assistant equal social status and high-level cognitive processing capability. For example, participants were polite, actively controlled turn-taking during the conversation, and used back-channelling, fillers and hesitation, as they might in human communication. Furthermore, participants expected the digital assistant to understand and process complex requests mitigated with hedging words and expressions, and peppered with vague language and deictic references requiring shared contextual information and mutual understanding. Findings are presented in six themes which emerged during the analysis - formulating responses; turn-taking; back-channelling, fillers and hesitation; vague language; mitigating requests and politeness and praise. The results can be used to inform the design of future in-vehicle natural language systems, in particular to help manage the tension between designing for an engaging dialogue (important for technology acceptance) and designing for an effective dialogue (important to minimise distraction in a driving context). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 2: Flight evaluations

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.

    1982-01-01

    Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system.

  1. The force synergy of human digits in static and dynamic cylindrical grasps.

    PubMed

    Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin

    2013-01-01

    This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.

  2. The Force Synergy of Human Digits in Static and Dynamic Cylindrical Grasps

    PubMed Central

    Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin

    2013-01-01

    This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions. PMID:23544151

  3. An Overview and Study on the Use of Games, Simulations, and Gamification in Higher Education

    ERIC Educational Resources Information Center

    Wiggins, Bradley E.

    2016-01-01

    This article examines the use of both game-based learning (GBL) and gamification in tertiary education. This study focuses specifically on the use of games and/or simulations as well as familiarity with gamification strategies by communication faculty. Research questions concentrate on the rate, frequency, and usage of digital and non-digital…

  4. Simulation and control engineering studies of NASA-Ames 40 foot by 80 foot/80 foot by 120 foot wind tunnels

    NASA Technical Reports Server (NTRS)

    Bohn, J. G.; Jones, J. E.

    1978-01-01

    The development and use of a digital computer simulation of the proposed wind tunnel facility is described. The feasibility of automatic control of wind tunnel airspeed and other parameters was examined. Specifications and implementation recommendations for a computer based automatic control and monitoring system are presented.

  5. Algodoo: A Tool for Encouraging Creativity in Physics Teaching and Learning

    ERIC Educational Resources Information Center

    Gregorcic, Bor; Bodin, Madelen

    2017-01-01

    Algodoo (http://www.algodoo.com) is a digital sandbox for physics 2D simulations. It allows students and teachers to easily create simulated "scenes" and explore physics through a user-friendly and visually attractive interface. In this paper, we present different ways in which students and teachers can use Algodoo to visualize and solve…

  6. The Library and Human Memory Simulation Studies. Reports on File Organization Studies.

    ERIC Educational Resources Information Center

    Reilly, Kevin D.

    This report describes digital computer simulation efforts in a study of memory systems for two important cases: that of the individual the brain; and that of society, the library. A neural system model is presented in which a complex system is produced by connecting simple hypothetical neurons whose states change under application of a…

  7. Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach.

    PubMed

    Dincel, Emre; Söylemez, Mehmet Turan

    2018-05-02

    In this paper, a digital PI-PD controller design method is proposed for arbitrary order systems with or without time-delay to achieve desired transient response in the closed-loop via dominant pole placement approach. The digital PI-PD controller design problem is solved by converting the original problem to the digital PID controller design problem. Firstly, parametrization of the digital PID controllers which assign dominant poles to desired location is done. After that the subset of digital PID controller parameters in which the remaining poles are located away from the dominant pole pair is found via Chebyshev polynomials. The obtained PID controller parameters are then transformed into the PI-PD controller parameters by considering the closed-loop controller zero and the design is completed. Success of the proposed design method is firstly demonstrated on an example transfer function and compared with the well-known PID controller methods from the literature through simulations. After that the design method is implemented on the fan and plate laboratory system in a real environment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Return on Investment for Digital Behavioral Counseling in Patients With Prediabetes and Cardiovascular Disease.

    PubMed

    Su, Wenqing; Chen, Fang; Dall, Timothy M; Iacobucci, William; Perreault, Leigh

    2016-01-28

    We calculated the health and economic impacts of participation in a digital behavioral counseling service that is designed to promote a healthful diet and physical activity for cardiovascular disease prevention in adults with prediabetes and cardiovascular disease risk factors (Prevent, Omada Health, San Francisco, California). This program enhances the Centers for Disease Control and Prevention's Diabetes Prevention Recognition Program. Participants completed a 16-week core program followed by an ongoing maintenance program. Analysis was conducted for 2 populations meeting criteria for lifestyle intervention: 1) prediabetes (n = 1,663), and 2) high cardiovascular disease risk (n = 2,152). The Markov-based model simulated clinical and economic outcomes related to obesity and diabetes annually over 10 years for the 2 defined populations. Comparisons were made between participants and propensity-matched controls from the community. The return-on-investment break-even point was 3 years in both populations. Simulated return on investment for the population with prediabetes was $9 and $1,565 at years 3 and 5, respectively. Simulated return on investment for the population with cardiovascular disease risk was $96 and $1,512 at years 3 and 5, respectively. Results suggest that program participation reduces diabetes incidence by 30% to 33% and stroke by 11% to 16% over 5 years. Digital Behavioral Counseling provides significant health benefits to patients with prediabetes and cardiovascular disease and a positive return on investment.

  9. Developing Digital Dashboard Management for Learning System Dynamic Cooperative Simulation Behavior of Indonesia. (Study on Cooperative Information Organization in the Ministry of Cooperatives and SME)

    NASA Astrophysics Data System (ADS)

    Eni, Yuli; Aryanto, Rudy

    2014-03-01

    There are problems being experienced by the Ministry of cooperatives and SME (Small and Medium Enterprise) including the length of time in the decision by the Government to establish a policy that should be taken for local cooperatives across the province of Indonesia. The decision-making process is still analyzed manually, so that sometimes the decisions taken are also less appropriate, effective and efficient. The second problem is the lack of monitoring data cooperative process province that is too much, making it difficult for the analysis of dynamic information to be useful. Therefore the authors want to fix the system that runs by using digital dashboard management system supported by the modeling of system dynamics. In addition, the author also did the design of a system that can support the system. Design of this system is aimed to ease the experts, head, and the government to decide (DSS - Decision Support System) accurately effectively and efficiently, because in the system are raised alternative simulation in a description of the decision to be taken and the result from the decision. The system is expected to be designed dan simulated can ease and expedite the decision making. The design of dynamic digital dashboard management conducted by method of OOAD (Objects Oriented Analysis and Design) complete with UML notation.

  10. A Mathematical Model for Vertical Attitude Takeoff and Landing (VATOL) Aircraft Simulation. Volume 1; Model Description Application

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    A mathematical model of a high performance airplane capable of vertical attitude takeoff and landing (VATOL) was developed. An off line digital simulation program incorporating this model was developed to provide trim conditions and dynamic check runs for the piloted simulation studies and support dynamic analyses of proposed VATOL configuration and flight control concepts. Development details for the various simulation component models and the application of the off line simulation program, Vertical Attitude Take-Off and Landing Simulation (VATLAS), to develop a baseline control system for the Vought SF-121 VATOL airplane concept are described.

  11. [The interactive neuroanatomical simulation and practical application of frontotemporal transsylvian exposure in neurosurgery].

    PubMed

    Balogh, Attila; Czigléczki, Gábor; Papal, Zsolt; Preul, Mark C; Banczerowski, Péter

    2014-11-30

    There is an increased need for new digital education tools in neurosurgical training. Illustrated textbooks offer anatomic and technical reference but do not substitute hands-on experience provided by surgery or cadaver dissection. Due to limited availability of cadaver dissections the need for development of simulation tools has been augmented. We explored simulation technology for producing virtual reality-like reconstructions of simulated surgical approaches on cadaver. Practical application of the simulation tool has been presented through frontotemporal transsylvian exposure. The dissections were performed on two cadaveric heads. Arteries and veins were prepared and injected with colorful silicon rubber. The heads were rigidly fixed in Mayfield headholder. A robotic microscope with two digital cameras in inverted cone method of image acquisition was used to capture images around a pivot point in several phases of dissections. Multilayered, high-resolution images have been built into interactive 4D environment by custom developed software. We have developed the simulation module of the frontotemporal transsylvian approach. The virtual specimens can be rotated or tilted to any selected angles and examined from different surgical perspectives at any stage of dissections. Important surgical issues such as appropriate head positioning or surgical maneuvers to expose deep situated neuroanatomic structures can be simulated and studied by using the module. The simulation module of the frontotemporal transsylvian exposure helps to examine effect of head positioning on the visibility of deep situated neuroanatomic structures and study surgical maneuvers required to achieve optimal exposure of deep situated anatomic structures. The simulation program is a powerful tool to study issues of preoperative planning and well suited for neurosurgical training.

  12. Extravehicular mobility unit thermal simulator

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.; Phillips, M. A.

    1973-01-01

    The analytical methods, thermal model, and user's instructions for the SIM bay extravehicular mobility unit (EMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the crewman performing a command module extravehicular activity during transearth coast. It accounts for conductive, convective, and radiative heat transfer as well as fluid flow and associated flow control components. The program is a derivative of the Apollo lunar surface EMU digital simulator. It has the operational flexibility to accept card or magnetic tape for both the input data and program logic. Output can be tabular and/or plotted and the mission simulation can be stopped and restarted at the discretion of the user. The program was developed for the NASA-JSC Univac 1108 computer system and several of the capabilities represent utilization of unique features of that system. Analytical methods used in the computer routine are based on finite difference approximations to differential heat and mass balance equations which account for temperature or time dependent thermo-physical properties.

  13. A Simple Memristor Model for Circuit Simulations

    NASA Astrophysics Data System (ADS)

    Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team

    This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.

  14. A simulation analysis of phase processing circuitry in the Ohio University Omega receiver prototype

    NASA Technical Reports Server (NTRS)

    Palkovic, R. A.

    1975-01-01

    A FORTRAN IV simulation study of the all-digital phase-processing circuitry is described. A digital phase-lock loop (DPLL) forms the heart of the Omega navigation receiver prototype, and through the DPLL, the phase of the 10.2 KHz Omega signal was estimated when the true signal phase is contaminated with noise. The DPLL uses a frequency synthesizer as the reference oscillator. The synthesizer is composed of synchronous rate multipliers (SRM's) driven by a temperature-compensated crystal oscillator, and the use of the SRM's in this application introduces phase jitter which degrades system performance. Simulation of the frequency synthesizer discussed was to analyze the circuits on a bit-by-bit level in order to evaluate the overall design, to see easily the effects of proposed design changes prior to actual breadboarding, to determine the optimum integration time for the DPLL in an environment typical of general aviation conditions, and to quantify the phase error introduced by the SRM synthesizer and examine its effect on the system.

  15. Measuring noise equivalent irradiance of a digital short-wave infrared imaging system using a broadband source to simulate the night spectrum

    NASA Astrophysics Data System (ADS)

    Green, John R.; Robinson, Timothy

    2015-05-01

    There is a growing interest in developing helmet-mounted digital imaging systems (HMDIS) for integration into military aircraft cockpits. This interest stems from the multiple advantages of digital vs. analog imaging such as image fusion from multiple sensors, data processing to enhance the image contrast, superposition of non-imaging data over the image, and sending images to remote location for analysis. There are several properties an HMDIS must have in order to aid the pilot during night operations. In addition to the resolution, image refresh rate, dynamic range, and sensor uniformity over the entire Focal Plane Array (FPA); the imaging system must have the sensitivity to detect the limited night light available filtered through cockpit transparencies. Digital sensor sensitivity is generally measured monochromatically using a laser with a wavelength near the peak detector quantum efficiency, and is generally reported as either the Noise Equivalent Power (NEP) or Noise Equivalent Irradiance (NEI). This paper proposes a test system that measures NEI of Short-Wave Infrared (SWIR) digital imaging systems using a broadband source that simulates the night spectrum. This method has a few advantages over a monochromatic method. Namely, the test conditions provide spectrum closer to what is experienced by the end-user, and the resulting NEI may be compared directly to modeled night glow irradiance calculation. This comparison may be used to assess the Technology Readiness Level of the imaging system for the application. The test system is being developed under a Cooperative Research and Development Agreement (CRADA) with the Air Force Research Laboratory.

  16. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    NASA Astrophysics Data System (ADS)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical soil-erosion control measures induced strong change in overall amount of eroded/deposited material as well as spatial erosion/deposition patterns within the settlement areas. Validation of modeled scenarios and effects on measured data was not possible as no real runoff event was recorded in the target area so the conclusions were made by comparing the different modeled scenarios. Advantages and disadvantages of used approach to simulate technical soil-erosion conservation measures are evaluated and discussed as well as the impact of use of high-resolution elevation data on the intensity and spatial distribution of soil erosion and deposition. Model approved ability to show detailed distribution of damages over target urban area, which is very sensitive for off-site effects of surface runoff, soil erosion and sediment transport and also high sensitivity to input data, especially to DEM, which affects surface runoff pattern and therefore intensity of harmful effects. Acknowledgement: This paper has been supported by projects: Ministry of the interior of the CR VG 20122015092, and project NAZV QI91C008 TPEO.

  17. Real time implementation and control validation of the wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Sattar, Adnan

    The purpose of the thesis is to analyze dynamic and transient characteristics of wind energy conversion systems including the stability issues in real time environment using the Real Time Digital Simulator (RTDS). There are different power system simulation tools available in the market. Real time digital simulator (RTDS) is one of the powerful tools among those. RTDS simulator has a Graphical User Interface called RSCAD which contains detail component model library for both power system and control relevant analysis. The hardware is based upon the digital signal processors mounted in the racks. RTDS simulator has the advantage of interfacing the real world signals from the external devices, hence used to test the protection and control system equipments. Dynamic and transient characteristics of the fixed and variable speed wind turbine generating systems (WTGSs) are analyzed, in this thesis. Static Synchronous Compensator (STATCOM) as a flexible ac transmission system (FACTS) device is used to enhance the fault ride through (FRT) capability of the fixed speed wind farm. Two level voltage source converter based STATCOM is modeled in both VSC small time-step and VSC large time-step of RTDS. The simulation results of the RTDS model system are compared with the off-line EMTP software i.e. PSCAD/EMTDC. A new operational scheme for a MW class grid-connected variable speed wind turbine driven permanent magnet synchronous generator (VSWT-PMSG) is developed. VSWT-PMSG uses fully controlled frequency converters for the grid interfacing and thus have the ability to control the real and reactive powers simultaneously. Frequency converters are modeled in the VSC small time-step of the RTDS and three phase realistic grid is adopted with RSCAD simulation through the use of optical analogue digital converter (OADC) card of the RTDS. Steady state and LVRT characteristics are carried out to validate the proposed operational scheme. Simulation results show good agreement with real time simulation software and thus can be used to validate the controllers for the real time operation. Integration of the Battery Energy Storage System (BESS) with wind farm can smoothen its intermittent power fluctuations. The work also focuses on the real time implementation of the Sodium Sulfur (NaS) type BESS. BESS is integrated with the STATCOM. The main advantage of this system is that it can also provide the reactive power support to the system along with the real power exchange from BESS unit. BESS integrated with STATCOM is modeled in the VSC small time-step of the RTDS. The cascaded vector control scheme is used for the control of the STATCOM and suitable control is developed to control the charging/discharging of the NaS type BESS. Results are compared with Laboratory standard power system software PSCAD/EMTDC and the advantages of using RTDS in dynamic and transient characteristics analyses of wind farm are also demonstrated clearly.

  18. A terrain based simulation system to predict the interference caused by networks of spread spectrum systems

    NASA Astrophysics Data System (ADS)

    Hagen, William E.; Holtzman, Julian C.

    The Army Terrain Integrated Interference Prediction System (ATIIPS), a CAD terrain based simulation tool for determining the degradation effects on a network on nonspread spectrum radios caused by a network of spread spectrum radios is presented. A brief overview of the program is given, with typical graphics displays shown. Typical results for both a link simulation of interference and for a network simulation, using a slow hopped FM/FSK spread spectrum interfering radio network on a narrow band FM/FSK fixed frequency digital radio are presented.

  19. Science beyond fiction. A revolution of knowledge transfer in research, education, and practice is on the horizon.

    PubMed

    Ammann, Alexander

    2016-01-01

    "Digitality" (as opposed to "digitalization"--the conversion from the analog domain to the digital domain) will open up a whole new world that does not originate from the analog world. Contemporary research in the field of neural concepts and neuromorphic computing systems will lead to convergences between the world of digitality and the world of neuronality, giving the theme "Knowledge and Culture" a new meaning. The simulation of virtual multidimensional and contextual spaces will transform the transfer of knowledge from a uni- and bidirectional process into an interactive experience. We will learn to learn in a ubiquitous computing environment and will abandon conventional curriculum organization principles. The adaptation of individualized ontologies will result in the emergence of a new world of knowledge in which knowledge evolves from a cultural heritage into a commodity.

  20. Development of a Turbofan Engine Simulation in a Graphical Simulation Environment

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Heui

    2003-01-01

    This paper presents the development of a generic component level model of a turbofan engine simulation with a digital controller, in an advanced graphical simulation environment. The goal of this effort is to develop and demonstrate a flexible simulation platform for future research in propulsion system control and diagnostic technology. A previously validated FORTRAN-based model of a modern, high-performance, military-type turbofan engine is being used to validate the platform development. The implementation process required the development of various innovative procedures, which are discussed in the paper. Open-loop and closed-loop comparisons are made between the two simulations. Future enhancements that are to be made to the modular engine simulation are summarized.

  1. Operating manual: Fast response solar array simulator

    NASA Technical Reports Server (NTRS)

    Vonhatten, R.; Weimer, A.; Zerbel, D. W.

    1971-01-01

    The fast response solar array simulator (FRSAS) is a universal solar array simulator which features an AC response identical to that of a real array over a large range of DC operating points. In addition, short circuit current (I sub sc) and open circuit voltage (V sub oc) are digitally programmable over a wide range for use not only in simulating a wide range of array sizes, but also to simulate (I sub sc) and (V sub oc) variations with illumination and temperature. A means for simulation of current variations due to spinning is available. Provisions for remote control and monitoring, automatic failure sensing and warning, and a load simulator are also included.

  2. The Combat Vehicle Command and Control System. Combat Performance of Armor Battalions Using Interactive Simulation

    DTIC Science & Technology

    1994-01-31

    ncluded the Commander’s Independent Thermal Viewer and a Command and Control display. Using 1 tank simulators in the Mounted Warfare Test Bed at Fort...CCD), the Commander’s Independent Thermal Viewer (CITV), and digital TOC workstations. Using autoloading tank simulators in the Mounted Warfare Test...identifying ways that the CVCC system might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs. Another area of

  3. The Combat Vehicle Command and Control System. Combat Performance of Armor Battalions Using Distributed Interactive Simulation

    DTIC Science & Technology

    1993-12-15

    and Control disqlay. Using M1 tank simulators in the Mounted Warfare Test Bed at Fort Knox, KY, the evaluation focused on tank battalion oierations...and digital TOC workstations. Using autoloading tank simulators in the Mounted Warfare Test Bed (MWTB) at Fort Knox, Kentucky, eight MOS-qualified...might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs. Another area of interest is the implication for

  4. Integration of time as a factor in ergonomic simulation.

    PubMed

    Walther, Mario; Muñoz, Begoña Toledo

    2012-01-01

    The paper describes the application of a simulation based ergonomic evaluation. Within a pilot project, the algorithms of the screening method of the European Assembly Worksheet were transferred into an existing digital human model. Movement data was recorded with an especially developed hybrid Motion Capturing system. A prototype of the system was built and is currently being tested at the Volkswagen Group. First results showed the feasibility of the simulation based ergonomic evaluation with Motion Capturing.

  5. Development of digital phantoms based on a finite element model to simulate low-attenuation areas in CT imaging for pulmonary emphysema quantification.

    PubMed

    Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo

    2017-09-01

    To develop an innovative finite element (FE) model of lung parenchyma which simulates pulmonary emphysema on CT imaging. The model is aimed to generate a set of digital phantoms of low-attenuation areas (LAA) images with different grades of emphysema severity. Four individual parameter configurations simulating different grades of emphysema severity were utilized to generate 40 FE models using ten randomizations for each setting. We compared two measures of emphysema severity (relative area (RA) and the exponent D of the cumulative distribution function of LAA clusters size) between the simulated LAA images and those computed directly on the models output (considered as reference). The LAA images obtained from our model output can simulate CT-LAA images in subjects with different grades of emphysema severity. Both RA and D computed on simulated LAA images were underestimated as compared to those calculated on the models output, suggesting that measurements in CT imaging may not be accurate in the assessment of real emphysema extent. Our model is able to mimic the cluster size distribution of LAA on CT imaging of subjects with pulmonary emphysema. The model could be useful to generate standard test images and to design physical phantoms of LAA images for the assessment of the accuracy of indexes for the radiologic quantitation of emphysema.

  6. Digital pyramid wavefront sensor with tunable modulation.

    PubMed

    Akondi, Vyas; Castillo, Sara; Vohnsen, Brian

    2013-07-29

    The pyramid wavefront sensor is known for its high sensitivity and dynamic range that can be tuned by mechanically altering its modulation amplitude. Here, a novel modulating digital scheme employing a reflecting phase only spatial light modulator is demonstrated. The use of the modulator allows an easy reconfigurable pyramid with digital control of the apex angle and modulation geometry without the need of any mechanically moving parts. Aberrations introduced by a 140-actuator deformable mirror were simultaneously sensed with the help of a commercial Hartmann-Shack wavefront sensor. The wavefronts reconstructed using the digital pyramid wavefront sensor matched very closely with those sensed by the Hartmann-Shack. It is noted that a tunable modulation is necessary to operate the wavefront sensor in the linear regime and to accurately sense aberrations. Through simulations, it is shown that the wavefront sensor can be extended to astronomical applications as well. This novel digital pyramid wavefront sensor has the potential to become an attractive option in both open and closed loop adaptive optics systems.

  7. The combination of digital surface scanners and cone beam computed tomography technology for guided implant surgery using 3Shape implant studio software: a case history report.

    PubMed

    Lanis, Alejandro; Álvarez Del Canto, Orlando

    2015-01-01

    The incorporation of virtual engineering into dentistry and the digitization of information are providing new perspectives and innovative alternatives for dental treatment modalities. The use of digital surface scanners with surgical planning software allows for the combination of the radiographic, prosthetic, surgical, and laboratory fields under a common virtual scenario, permitting complete digital treatment planning. In this article, the authors present a clinical case in which a guided implant surgery was performed based on a complete digital surgical plan combining the information from a cone beam computed tomography scan and the virtual simulation obtained from the 3Shape TRIOS intraoral surface scanner. The information was imported to and combined in the 3Shape Implant Studio software for guided implant surgery planning. A surgical guide was obtained by a 3D printer, and the surgical procedure was done using the Biohorizons Guided Surgery Kit and its protocol.

  8. Agriscience Teachers' Implementation of Digital Game-based Learning in an Introductory Animal Science Course

    NASA Astrophysics Data System (ADS)

    Webb, Angela W.; Bunch, J. C.; Wallace, Maria F. G.

    2015-12-01

    In today's technological age, visions for technology integration in the classroom continue to be explored and examined. Digital game-based learning is one way to purposefully integrate technology while maintaining a focus on learning objectives. This case study sought to understand agriscience teachers' experiences implementing digital game-based learning in an introductory animal science course. From interviews with agriscience teachers on their experiences with the game, three themes emerged: (1) the constraints of inadequate and inappropriate technologies, and time to game implementation; (2) the shift in teacher and student roles necessitated by implementing the game; and (3) the inherent competitive nature of learning through the game. Based on these findings, we recommend that pre-service and in-service professional development opportunities be developed for teachers to learn how to implement digital game-based learning effectively. Additionally, with the potential for simulations that address cross-cutting concepts in the next generation science standards, digital game-based learning should be explored in various science teaching and learning contexts.

  9. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  10. On Digital Simulation of Multicorrelated Random Processes and Its Applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sinha, A. K.

    1973-01-01

    Two methods are described to simulate, on a digital computer, a set of correlated, stationary, and Gaussian time series with zero mean from the given matrix of power spectral densities and cross spectral densities. The first method is based upon trigonometric series with random amplitudes and deterministic phase angles. The random amplitudes are generated by using a standard random number generator subroutine. An example is given which corresponds to three components of wind velocities at two different spatial locations for a total of six correlated time series. In the second method, the whole process is carried out using the Fast Fourier Transform approach. This method gives more accurate results and works about twenty times faster for a set of six correlated time series.

  11. Design of neurophysiologically motivated structures of time-pulse coded neurons

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lobodzinska, Raisa F.

    2009-04-01

    The common methodology of biologically motivated concept of building of processing sensors systems with parallel input and picture operands processing and time-pulse coding are described in paper. Advantages of such coding for creation of parallel programmed 2D-array structures for the next generation digital computers which require untraditional numerical systems for processing of analog, digital, hybrid and neuro-fuzzy operands are shown. The optoelectronic time-pulse coded intelligent neural elements (OETPCINE) simulation results and implementation results of a wide set of neuro-fuzzy logic operations are considered. The simulation results confirm engineering advantages, intellectuality, circuit flexibility of OETPCINE for creation of advanced 2D-structures. The developed equivalentor-nonequivalentor neural element has power consumption of 10mW and processing time about 10...100us.

  12. Computational Modeling and Treatment Identification in the Myelodysplastic Syndromes.

    PubMed

    Drusbosky, Leylah M; Cogle, Christopher R

    2017-10-01

    This review discusses the need for computational modeling in myelodysplastic syndromes (MDS) and early test results. As our evolving understanding of MDS reveals a molecularly complicated disease, the need for sophisticated computer analytics is required to keep track of the number and complex interplay among the molecular abnormalities. Computational modeling and digital drug simulations using whole exome sequencing data input have produced early results showing high accuracy in predicting treatment response to standard of care drugs. Furthermore, the computational MDS models serve as clinically relevant MDS cell lines for pre-clinical assays of investigational agents. MDS is an ideal disease for computational modeling and digital drug simulations. Current research is focused on establishing the prediction value of computational modeling. Future research will test the clinical advantage of computer-informed therapy in MDS.

  13. A tone-aided dual vestigial sideband system for digital communications on fading channels

    NASA Technical Reports Server (NTRS)

    Hladik, Stephen M.; Saulnier, Gary J.; Rafferty, William

    1989-01-01

    A spectrally efficient tone-aided dual vestigial sideband (TA/DVSB) system for digital data communications on fading channels is presented and described analytically. This PSK (phase-shift-keying) system incorporates a feed-forward, tone-aided demodulation technique to compensate for Doppler frequency shift and channel- induced, multipath fading. In contrast to other tone-in-band-type systems, receiver synchronization is derived from the complete data VSBs. Simulation results for the Rician fading channel are presented. These results demonstrate the receiver's ability to mitigate performance degradation due to fading and to obtain proper data carrier synchronization, suggesting that the proposed TA/DVSB system has promise for this application. Simulated BER (bit-error rate) data indicate that the TA/DVSB system effectively alleviates the channel distortions of the land mobile satellite application.

  14. Simulated Lidar Images of Human Pose using a 3DS Max Virtual Laboratory

    DTIC Science & Technology

    2015-12-01

    developed in Autodesk 3DS Max, with an animated, biofidelic 3D human mesh biped character ( avatar ) as the subject. The biped animation modifies the digital...character ( avatar ) as the subject. The biped animation modifies the digital human model through a time sequence of motion capture data representing an...AFB. Mr. Isiah Davenport from Infoscitex Corp developed the method for creating the biofidelic avatars from laboratory data and 3DS Max code for

  15. Flight Trainer Digital Computer Study

    DTIC Science & Technology

    1951-03-21

    b’e "ä"dö|rtedr rfoS^ hfe "digital airplane simulator is .dependent on the accTuracy demanded for representing airp2ane^mo±i6h---as4 on the method...analogue- quantity such as- a vQ.lt:äfa.:e’ .süit;*.v £jr- äc\\t„ü’at.ing an, inst’riMen’t’.i. Since in gene /paiL " ~ instruments, v^𔃻

  16. Beslisbevoegdheden van de Uitgestegen Soldaat. Deel B: Verbetering van Situational Awareness Met Behulp van de Soldier Digital Assistant in een Gesimuleerde Omgeving (Authority and Responsbility of the Dismounted Soldier. Part B. Improving the Situational Awareness using the Soldier Digital Assistant in a Simulated Environment)

    DTIC Science & Technology

    2007-04-01

    Dergelijke omngevingen zijn tot op heden vrijwel uitsluitend gebruikt voor training en onderwijs , maar slechts zeer sporadisch voor wetenschappelijk...Onderstaande instanties/personen ontvangen een volledig exemplaar van het rapport. 1 DMO/SC-DR&D standaard inclusief digitale versie bijgeleverd op cd

  17. Research on hyperspectral dynamic scene and image sequence simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dandan; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei

    2016-10-01

    This paper presents a simulation method of hyper-spectral dynamic scene and image sequence for hyper-spectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyper-spectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyper-spectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyper-spectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyper-spectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyper-spectral images are consistent with the theoretical analysis results.

  18. Towards Standardization of X-ray Beam Filters in Digital Mammography and Digital Breast Tomosynthesis: Monte Carlo simulations and analytical modelling

    PubMed Central

    Shrestha, Suman; Vedantham, Srinivasan; Karellas, Andrew

    2017-01-01

    In digital breast tomosynthesis and digital mammography, the x-ray beam filter material and thickness vary between systems. Replacing K-edge filters with Al was investigated with the intent to reduce exposure duration and to simplify system design. Tungsten target x-ray spectra were simulated with K-edge filters (50μm Rh; 50μm Ag) and Al filters of varying thickness. Monte Carlo simulations were conducted to quantify the x-ray scatter from various filters alone, scatter-to-primary ratio (SPR) with compressed breasts, and to determine the radiation dose to the breast. These data were used to analytically compute the signal-difference-to-noise ratio (SDNR) at unit (1 mGy) mean glandular dose (MGD) for W/Rh and W/Ag spectra. At SDNR matched between K-edge and Al filtered spectra, the reductions in exposure duration and MGD were quantified for three strategies: (i) fixed Al thickness and matched tube potential in kilovolts (kV); (ii) fixed Al thickness and varying the kV to match the half-value layer (HVL) between Al and K-edge filtered spectra; and, (iii) matched kV and varying the Al thickness to match the HVL between Al and K-edge filtered spectra. Monte Carlo simulations indicate that the SPR with and without the breast were not different between Al and K-edge filters. Modelling for fixed Al thickness (700μm) and kV matched to K-edge filtered spectra, identical SDNR was achieved with 37–57% reduction in exposure duration and with 2–20% reduction in MGD, depending on breast thickness. Modelling for fixed Al thickness (700μm) and HVL matched by increasing the kV over [0,4] range, identical SDNR was achieved with 62–65% decrease in exposure duration and with 2–24% reduction in MGD, depending on breast thickness. For kV and HVL matched to K-edge filtered spectra by varying Al filter thickness over [700,880]μm range, identical SDNR was achieved with 23–56% reduction in exposure duration and 2–20% reduction in MGD, depending on breast thickness. These simulations indicate that increased fluence with Al filter of fixed or variable thickness substantially decreases exposure duration while providing for similar image quality with moderate reduction in MGD. PMID:28075335

  19. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones.

    PubMed

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-06-06

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations.

  20. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    PubMed Central

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-01-01

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations. PMID:27879911

Top