Sample records for digital terrain analysis

  1. Hydrographic Basins Analysis Using Digital Terrain Modelling

    NASA Astrophysics Data System (ADS)

    Mihaela, Pişleagă; -Minda Codruţa, Bădăluţă; Gabriel, Eleş; Daniela, Popescu

    2017-10-01

    The paper, emphasis the link between digital terrain modelling and studies of hydrographic basins, concerning the hydrological processes analysis. Given the evolution of computing techniques but also of the software digital terrain modelling made its presence felt increasingly, and established itself as a basic concept in many areas, due to many advantages. At present, most digital terrain modelling is derived from three alternative sources such as ground surveys, photogrammetric data capture or from digitized cartographic sources. A wide range of features may be extracted from digital terrain models, such as surface, specific points and landmarks, linear features but also areal futures like drainage basins, hills or hydrological basins. The paper highlights how the use appropriate software for the preparation of a digital terrain model, a model which is subsequently used to study hydrographic basins according to various geomorphological parameters. As a final goal, it shows the link between digital terrain modelling and hydrographic basins study that can be used to optimize the correlation between digital model terrain and hydrological processes in order to obtain results as close to the real field processes.

  2. Automated basin delineation from digital terrain data

    NASA Technical Reports Server (NTRS)

    Marks, D.; Dozier, J.; Frew, J.

    1983-01-01

    While digital terrain grids are now in wide use, accurate delineation of drainage basins from these data is difficult to efficiently automate. A recursive order N solution to this problem is presented. The algorithm is fast because no point in the basin is checked more than once, and no points outside the basin are considered. Two applications for terrain analysis and one for remote sensing are given to illustrate the method, on a basin with high relief in the Sierra Nevada. This technique for automated basin delineation will enhance the utility of digital terrain analysis for hydrologic modeling and remote sensing.

  3. Interim Terrain Data (ITD) and Vector Product Interim Terrain Data (VITD) user's guide

    DOT National Transportation Integrated Search

    1996-09-01

    This guide is intended to be a convenient reference for users of these types of terrain analysis data. ITD is a digitized version of the standard 1:50,000-scale tactical terrain analysis data base (TTADB) product produced by the Defense Mapping Agenc...

  4. Modelling prehistoric terrain Models using LiDAR-data: a geomorphological approach

    NASA Astrophysics Data System (ADS)

    Höfler, Veit; Wessollek, Christine; Karrasch, Pierre

    2015-10-01

    Terrain surfaces conserve human activities in terms of textures and structures. With reference to archaeological questions, the geological archive is investigated by means of models regarding anthropogenic traces. In doing so, the high-resolution digital terrain model is of inestimable value for the decoding of the archive. The evaluation of these terrain models and the reconstruction of historical surfaces is still a challenging issue. Due to the data collection by means of LiDAR systems (light detection and ranging) and despite their subsequent pre-processing and filtering, recently anthropogenic artefacts are still present in the digital terrain model. Analysis have shown that elements, such as contour lines and channels, can well be extracted from a high-resolution digital terrain model. This way, channels in settlement areas show a clear anthropogenic character. This fact can also be observed for contour lines. Some contour lines representing a possibly natural ground surface and avoid anthropogenic artefacts. Comparable to channels, noticeable patterns of contour lines become visible in areas with anthropogenic artefacts. The presented workflow uses functionalities of ArcGIS and the programming language R.1 The method starts with the extraction of contour lines from the digital terrain model. Through macroscopic analyses based on geomorphological expert knowledge, contour lines are selected representing the natural geomorphological character of the surface. In a first step, points are determined along each contour line in regular intervals. This points and the corresponding height information which is taken from an original digital terrain model is saved as a point cloud. Using the programme library gstat, a variographic analysis and the use of a Kriging-procedure based on this follow.2-4 The result is a digital terrain model filtered considering geomorphological expert knowledge showing no human degradation in terms of artefacts, preserving the landscape-genetic character and can be called a prehistoric terrain model.

  5. Incorporating scale into digital terrain analysis

    NASA Astrophysics Data System (ADS)

    Dragut, L. D.; Eisank, C.; Strasser, T.

    2009-04-01

    Digital Elevation Models (DEMs) and their derived terrain attributes are commonly used in soil-landscape modeling. Process-based terrain attributes meaningful to the soil properties of interest are sought to be produced through digital terrain analysis. Typically, the standard 3 X 3 window-based algorithms are used for this purpose, thus tying the scale of resulting layers to the spatial resolution of the available DEM. But this is likely to induce mismatches between scale domains of terrain information and soil properties of interest, which further propagate biases in soil-landscape modeling. We have started developing a procedure to incorporate scale into digital terrain analysis for terrain-based environmental modeling (Drăguţ et al., in press). The workflow was exemplified on crop yield data. Terrain information was generalized into successive scale levels with focal statistics on increasing neighborhood size. The degree of association between each terrain derivative and crop yield values was established iteratively for all scale levels through correlation analysis. The first peak of correlation indicated the scale level to be further retained. While in a standard 3 X 3 window-based analysis mean curvature was one of the poorest correlated terrain attribute, after generalization it turned into the best correlated variable. To illustrate the importance of scale, we compared the regression results of unfiltered and filtered mean curvature vs. crop yield. The comparison shows an improvement of R squared from a value of 0.01 when the curvature was not filtered, to 0.16 when the curvature was filtered within 55 X 55 m neighborhood size. This indicates the optimum size of curvature information (scale) that influences soil fertility. We further used these results in an object-based image analysis environment to create terrain objects containing aggregated values of both terrain derivatives and crop yield. Hence, we introduce terrain segmentation as an alternative method for generating scale levels in terrain-based environmental modeling. Based on segments, R squared improved up to a value of 0.47. Before integrating the procedure described above into a software application, thorough comparison between the results of different generalization techniques, on different datasets and terrain conditions is necessary. This is the subject of our ongoing research as part of the SCALA project (Scales and Hierarchies in Landform Classification). References: Drăguţ, L., Schauppenlehner, T., Muhar, A., Strobl, J. and Blaschke, T., in press. Optimization of scale and parametrization for terrain segmentation: an application to soil-landscape modeling, Computers & Geosciences.

  6. The MAP program: building the digital terrain model.

    Treesearch

    R.H. Twito; R.W. Mifflin; R.J. McGaughey

    1987-01-01

    PLANS, a software package for integrated timber-harvest planning, uses digital terrain models to provide the topographic data needed to fit harvest and transportation designs to specific terrain. MAP, an integral program in the PLANS package, is used to construct the digital terrain models required by PLANS. MAP establishes digital terrain models using digitizer-traced...

  7. Solution of the problem of superposing image and digital map for detection of new objects

    NASA Astrophysics Data System (ADS)

    Rizaev, I. S.; Miftakhutdinov, D. I.; Takhavova, E. G.

    2018-01-01

    The problem of superposing the map of the terrain with the image of the terrain is considered. The image of the terrain may be represented in different frequency bands. Further analysis of the results of collation the digital map with the image of the appropriate terrain is described. Also the approach to detection of differences between information represented on the digital map and information of the image of the appropriate area is offered. The algorithm for calculating the values of brightness of the converted image area on the original picture is offered. The calculation is based on using information about the navigation parameters and information according to arranged bench marks. For solving the posed problem the experiments were performed. The results of the experiments are shown in this paper. The presented algorithms are applicable to the ground complex of remote sensing data to assess differences between resulting images and accurate geopositional data. They are also suitable for detecting new objects in the image, based on the analysis of the matching the digital map and the image of corresponding locality.

  8. The prediction of shallow landslide location and size using a multidimensional landslide analysis in a digital terrain model

    Treesearch

    W. E. Dietrich; J. McKean; D. Bellugi; T. Perron

    2007-01-01

    Shallow landslides on steep slopes often mobilize as debris flows. The size of the landslide controls the initial size of the debris flows, defines the sediment discharge to the channel network, affects rates and scales of landform development, and influences the relative hazard potential. Currently the common practice in digital terrain-based models is to set the...

  9. Integrated terrain mapping with digital Landsat images in Queensland, Australia

    USGS Publications Warehouse

    Robinove, Charles Joseph

    1979-01-01

    Mapping with Landsat images usually is done by selecting single types of features, such as soils, vegetation, or rocks, and creating visually interpreted or digitally classified maps of each feature. Individual maps can then be overlaid on or combined with other maps to characterize the terrain. Integrated terrain mapping combines several terrain features into each map unit which, in many cases, is more directly related to uses of the land and to methods of land management than the single features alone. Terrain brightness, as measured by the multispectral scanners in Landsat 1 and 2, represents an integration of reflectance from the terrain features within the scanner's instantaneous field of view and is therefore more correlatable with integrated terrain units than with differentiated ones, such as rocks, soils, and vegetation. A test of the feasibilty of the technique of mapping integrated terrain units was conducted in a part of southwestern Queensland, Australia, in cooperation with scientists of the Queensland Department of Primary Industries. The primary purpose was to test the use of digital classification techniques to create a 'land systems map' usable for grazing land management. A recently published map of 'land systems' in the area (made by aerial photograph interpretation and ground surveys), which are integrated terrain units composed of vegetation, soil, topography, and geomorphic features, was used as a basis for comparison with digitally classified Landsat multispectral images. The land systems, in turn, each have a specific grazing capacity for cattle (expressed in beasts per km 2 ) which is estimated following analysis of both research results and property carrying capacities. Landsat images, in computer-compatible tape form, were first contrast-stretched to increase their visual interpretability, and digitally classified by the parallelepiped method into distinct spectral classes to determine their correspondence to the land systems classes and to areally smaller, but readily recognizable, 'land units.' Many land systems appeared as distinct spectral classes or as acceptably homogeneous combinations of several spectral classes. The digitally classified map corresponded to the general geographic patterns of many of the land systems. Statistical correlation of the digitally classified map and the published map was not possible because the published map showed only land systems whereas the digitally classified map showed some land units as well as systems. The general correspondence of spectral classes to the integrated terrain units means that the digital mapping of the units may precede fieldwork and act as a guide to field sampling and detailed terrain unit description as well as measuring of the location, area, and extent of each unit. Extension of the Landsat mapping and classification technique to other arid and semi-arid regions of the world may be feasible.

  10. Tetlin National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1987-01-01

    The U. S. Fish & Wildlife Service (USFWS) has the responsibility for collecting the resource information to address the research, management, development and planning requirements identified in Section 304. Because of the brief period provided by the Act for data collection, habitat mapping, and habitat assessment, the USFWS in cooperation with the U.S. Geological Survey's EROS Field Office, used digital Landsat multispectral scanner data (MSS) and digital terrain data to produce land cover and terrain maps. A computer assisted digital analysis of Landsat MSS data was used because coverage by aerial photographs was incomplete for much of the refuge and because the level of detail, obtained from the analysis of Landsat data, is adequate to meet most USFWS research, management and planning needs. Relative cost and time requirements were also factors in the decision to use the digital analysis approach.

  11. The U.S. Combat and Tactical Wheeled Vehicle Fleets: Issues and Suggestions for Congress

    DTIC Science & Technology

    2011-01-01

    nonlinear, irregular distribution of brigade and battalion formations means that there is no longer a relatively more secure rear area, an...enhancement package, according to civilian sources, included depleted- uranium armor, digital command- and-control architecture, digital color terrain maps...system robustness and flexibility, and (3) more often than not, the preparation of the analysis (e.g., terrain formatting , laydown of forces, timing of

  12. Multi-Scale and Object-Oriented Analysis for Mountain Terrain Segmentation and Geomorphological Assessment

    NASA Astrophysics Data System (ADS)

    Marston, B. K.; Bishop, M. P.; Shroder, J. F.

    2009-12-01

    Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.

  13. Selawik National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1988-01-01

    The U.S. Fish & Wildlife Service (USFWS) has the responsibility for collecting the resource information to address the research, management, development and planning requirements identified in Section 304. Because of the brief period provided by the Act for data collection, habitat mapping, and habitat assessment, the USFWS in cooperation with the U.S. Geological Survey's EROS Field Office, used digital Landsat multispectral scanner (MSS) data and digital terrain data to produce land cover and terrain maps. A computer assisted digital analysis of Landsat MSS data was used because coverage by aerial photographs was incomplete for the refuge and because the level of detail obtained from Landsat data was adequate to meet most USFWS research, management and planning needs. Relative cost and time requirements were also factors in the decision to use the digital analysis approach.

  14. Yukon Flats National Wildlife Refuge land cover mapping project users guide

    USGS Publications Warehouse

    Markon, Carl J.

    1987-01-01

    The U. S. Fish & Wildlife Service (USFWS) has the responsibility for collecting the resource information to address the research, management, development and planning requirements identified in Section 304. Because of the brief period provided by the Act for data collection, habitat mapping, and habitat assessment, the USFWS in cooperation with the U.S. Geological Survey's EROS Field Office, used digital Landsat multispectral scanner (MSS) data and digital terrain data to produce land cover and terrain maps. A computer assisted digital analysis of Landsat MSS data was used because coverage by aerial photographs was incomplete for much of the refuge and because the level of detail obtained from Landsat data was adequate to meet most USFWS research, management and planning needs. Relative cost and time requirements were also factors in the decision to use the digital analysis approach.

  15. American Society of Photogrammetry and American Congress on Surveying and Mapping, Fall Technical Meeting, ASP Technical Papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Various topics in the field of photogrammetry are addressed. Among the subjects discussed are: remote sensing of Gulf Stream dynamics using VHRR satellite imagery an interactive rectification system for remote sensing imagery use of a single photo and digital terrain matrix for point positioning crop type analysis using Landsat digital data use of a fisheye lens in solar energy assessment remote sensing inventory of Rocky Mountain elk habitat Washington state's large scale ortho program educational image processing. Also discussed are: operational advantages of on-line photogrammetric triangulation analysis of fracturation field photogrammetry as a tool for measuring glacier movement double modelmore » orthophotos used for forest inventory mapping map revisioning module for the Kern PG2 stereoplotter assessing accuracy of digital land-use and terrain data accuracy of earthwork calculations from digital elevation data.« less

  16. Modeling of the "PLAN DA MATTUN" Archaeological Site Using a Combination of Different Sensors

    NASA Astrophysics Data System (ADS)

    Novák, D.; Tokarczyk, P.; Theiler, P. W.

    2012-07-01

    Plan da Mattun is located at ~2200 metre above sea level in the Tasna valley in alpine south-eastern Switzerland. In this remote location, finds dating back to the time of Ötzi (3000 B.C.) were discovered by archaeologists from the University of Zurich. For detailed investigations of the site as well as for documentation and visualization purposes the archaeologists were interested in digital models of the terrain and of certain boulders. In the presented project a digital terrain model of the rock stream located at the beginning of the valley was created, as well as detailed models of four larger boulders. These boulders average to 15 metre in height and width. The roughness of terrain makes it difficult to access certain areas and requires using multiple surveying techniques in order to cover all objects of interest. Therefore the digital terrain model was acquired using a combination of terrestrial laser scanning (TLS) and photogrammetric recording from an unmanned aerial vehicle (UAV). The larger boulders were reconstructed with a combination of TLS, terrestrial and UAV-based photogrammetry. With this approach it was possible to acquire a highaccuracy dataset over an area of 0.12 km2 under difficult conditions. The dataset includes a digital terrain model with a ground sampling distance of 10 cm and a relative accuracy of 2 cm in moderately sloped terrain. The larger boulders feature a resolution of 1 cm and a relative accuracy of 0.5 cm. The 3D data is to be used both for archaeological visualization purposes and for geological analysis of the rock stream.

  17. A simple landslide susceptibility analysis for hazard and risk assessment in developing countries

    NASA Astrophysics Data System (ADS)

    Guinau, M.; Vilaplana, J. M.

    2003-04-01

    In recent years, a number of techniques and methodologies have been developed for mitigating natural disasters. The complexity of these methodologies and the scarcity of material and data series justify the need for simple methodologies to obtain the necessary information for minimising the effects of catastrophic natural phenomena. The work with polygonal maps using a GIS allowed us to develop a simple methodology, which was developed in an area of 473 Km2 in the Departamento de Chinandega (NW Nicaragua). This area was severely affected by a large number of landslides (mainly debris flows), triggered by the Hurricane Mitch rainfalls in October 1998. With the aid of aerial photography interpretation at 1:40.000 scale, amplified to 1:20.000, and detailed field work, a landslide map at 1:10.000 scale was constructed. The failure zones of landslides were digitized in order to obtain a failure zone digital map. A terrain unit digital map, in which a series of physical-environmental terrain factors are represented, was also used. Dividing the studied area into two zones (A and B) with homogeneous physical and environmental characteristics, allows us to develop the proposed methodology and to validate it. In zone A, the failure zone digital map is superimposed onto the terrain unit digital map to establish the relationship between the different terrain factors and the failure zones. The numerical expression of this relationship enables us to classify the terrain by its landslide susceptibility. In zone B, this numerical relationship was employed to obtain a landslide susceptibility map, obviating the need for a failure zone map. The validity of the methodology can be tested in this area by using the degree of superposition of the susceptibility map and the failure zone map. The implementation of the methodology in tropical countries with physical and environmental characteristics similar to those of the study area allows us to carry out a landslide susceptibility analysis in areas where landslide records do not exist. This analysis is essential to landslide hazard and risk assessment, which is necessary to determine the actions for mitigating landslide effects, e.g. land planning, emergency aid actions, etc.

  18. Uncertainty modelling and analysis of volume calculations based on a regular grid digital elevation model (DEM)

    NASA Astrophysics Data System (ADS)

    Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi

    2018-05-01

    The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.

  19. Terrain-based Predictive Modeling of a Functional Riparian Corridor in a Coastal Northern California Watershed

    NASA Astrophysics Data System (ADS)

    Robinson, T.; Davis, J. D.

    2016-12-01

    Riparian corridors and their associated geomorphic landforms (e.g., channels, floodplains, and terraces) and vegetation communities (e.g., forests and wetlands) have been significantly degraded in California, prompting an expansion of efforts to delineate riparian corridors and identify priorities for conservation via deed restrictions and easements. Current techniques to delineate riparian corridors for these purposes include fixed-width buffers based on stream centerlines and digitization of woody vegetation from aerial photos. Although efficient, these delineation methods do not accurately capture the extent of ecologically functional riparian corridors and result in riparian habitat being excluded from conservation efforts while non-riparian is included. From a physical perspective, ecologically functional riparian corridors have widths that vary with topography and ample space for dynamic fluvial geomorphic processes that create and maintain river morphology and vegetation and sustain ecological interactions that extend from the stream channel laterally into upland ecosystems and up- and downstream ecosystems in longitudinal directions. New terrain-based spatial analysis techniques and high-resolution digital terrain data show promise in delineating ecologically functional riparian corridors. In this study, we compare the efficacy of three terrain-based predictors of riparian corridors that have emerged in the literature—elevation above channel, flow accumulation, and distance from channel. The results of each terrain predictor are compared with field-based indicators of the riparian corridor of an alluvial reach of Mark West Creek in Sonoma County, California (a mediterranean climate). Indicators include soil type, fluvial geomorphic landforms, and vegetation. A one-meter digital terrain model from LiDAR (Light Detection and Ranging) supplied by a NASA ROSES grant is used as the base terrain data for spatial analysis. We discuss in detail the use of regional curves of hydraulic geometry in the calculation of the elevation above channel predictor because it offers the advantage of efficiency while carrying significant potential for error.

  20. Digital terrain modeling and industrial surface metrology: Converging realms

    USGS Publications Warehouse

    Pike, R.J.

    2001-01-01

    Digital terrain modeling has a micro-and nanoscale counterpart in surface metrology, the numerical characterization of industrial surfaces. Instrumentation in semiconductor manufacturing and other high-technology fields can now contour surface irregularities down to the atomic scale. Surface metrology has been revolutionized by its ability to manipulate square-grid height matrices that are analogous to the digital elevation models (DEMs) used in physical geography. Because the shaping of industrial surfaces is a spatial process, the same concepts of analytical cartography that represent ground-surface form in geography evolved independently in metrology: The surface topography of manufactured components, exemplified here by automobile-engine cylinders, is routinely modeled by variogram analysis, relief shading, and most other techniques of parameterization and visualization familiar to geography. This article introduces industrial surface-metrology, examines the field in the context of terrain modeling and geomorphology and notes their similarities and differences, and raises theoretical issues to be addressed in progressing toward a unified practice of surface morphometry.

  1. VISUAL and SLOPE: perspective and quantitative representation of digital terrain models.

    Treesearch

    R.J. McGaughey; R.H. Twito

    1988-01-01

    Two computer programs to help timber-harvest planners evaluate terrain for logging operations are presented. The first program, VISUAL, produces three-dimensional perspectives of a digital terrain model. The second, SLOPE, produces map-scaled overlays delineating areas of equal slope, aspect, or elevation. Both programs help planners familiarize themselves with new...

  2. Accuracy of an IFSAR-derived digital terrain model under a conifer forest canopy.

    Treesearch

    Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey

    2005-01-01

    Accurate digital terrain models (DTMs) are necessary for a variety of forest resource management applications, including watershed management, timber harvest planning, and fire management. Traditional methods for acquiring topographic data typically rely on aerial photogrammetry, where measurement of the terrain surface below forest canopy is difficult and error prone...

  3. Digital terrain tapes: user guide

    USGS Publications Warehouse

    ,

    1980-01-01

    DMATC's digital terrain tapes are a by-product of the agency's efforts to streamline the production of raised-relief maps. In the early 1960's DMATC developed the Digital Graphics Recorder (DGR) system that introduced new digitizing techniques and processing methods into the field of three-dimensional mapping. The DGR system consisted of an automatic digitizing table and a computer system that recorded a grid of terrain elevations from traces of the contour lines on standard topographic maps. A sequence of computer accuracy checks was performed and then the elevations of grid points not intersected by contour lines were interpolated. The DGR system produced computer magnetic tapes which controlled the carving of plaster forms used to mold raised-relief maps. It was realized almost immediately that this relatively simple tool for carving plaster molds had enormous potential for storing, manipulating, and selectively displaying (either graphically or numerically) a vast number of terrain elevations. As the demand for the digital terrain tapes increased, DMATC began developing increasingly advanced digitizing systems and now operates the Digital Topographic Data Collection System (DTDCS). With DTDCS, two types of data elevations as contour lines and points, and stream and ridge lines are sorted, matched, and resorted to obtain a grid of elevation values for every 0.01 inch on each map (approximately 200 feet on the ground). Undefined points on the grid are found by either linear or or planar interpolation.

  4. Quantitative analysis of terrain units mapped in the northern quarter of Venus from Venera 15/16 data

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.

    1991-01-01

    The contacts between 34 geological/geomorphic terrain units in the northern quarter of Venus mapped from Venera 15/16 data were digitized and converted to a Sinusoidal Equal-Area projection. The result was then registered with a merged Pioneer Venus/Venera 15/16 altimetric database, root mean square (rms) slope values, and radar reflectivity values derived from Pioneer Venus. The resulting information includes comparisons among individual terrain units and terrain groups to which they are assigned in regard to percentage of map area covered, elevation, rms slopes, distribution of suspected craters greater than 10 km in diameter.

  5. Information measures for terrain visualization

    NASA Astrophysics Data System (ADS)

    Bonaventura, Xavier; Sima, Aleksandra A.; Feixas, Miquel; Buckley, Simon J.; Sbert, Mateu; Howell, John A.

    2017-02-01

    Many quantitative and qualitative studies in geoscience research are based on digital elevation models (DEMs) and 3D surfaces to aid understanding of natural and anthropogenically-influenced topography. As well as their quantitative uses, the visual representation of DEMs can add valuable information for identifying and interpreting topographic features. However, choice of viewpoints and rendering styles may not always be intuitive, especially when terrain data are augmented with digital image texture. In this paper, an information-theoretic framework for object understanding is applied to terrain visualization and terrain view selection. From a visibility channel between a set of viewpoints and the component polygons of a 3D terrain model, we obtain three polygonal information measures. These measures are used to visualize the information associated with each polygon of the terrain model. In order to enhance the perception of the terrain's shape, we explore the effect of combining the calculated information measures with the supplementary digital image texture. From polygonal information, we also introduce a method to select a set of representative views of the terrain model. Finally, we evaluate the behaviour of the proposed techniques using example datasets. A publicly available framework for both the visualization and the view selection of a terrain has been created in order to provide the possibility to analyse any terrain model.

  6. Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)

    1982-01-01

    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.

  7. Furrow Topography and the Elastic Thickness of Ganymede's Dark Terrain Lithosphere

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert T.; Nimmo, Francis; Giese, Bernd; Bader, Christina E.; DeRemer, Lindsay C.; Prockter, Louise M.

    2003-01-01

    The effective elastic thickness of Ganymede's lithosphere tell of the satellite's thermal evolution through time. Generally it has been inferred that dark terrain, which is less tectonically deformed than grooved terrain, represents regions of cooler and thicker lithosphere [1]. The ancient dark terrain is cut by furrows, tectonic troughs about 5 to 20 km in width, which may have formed in response to large ancient impacts [1, 2]. We have applied the methods of [3] to estimate effective elastic thickness based on topographic profiles across tectonic furrows, extracted from a stereo-derived digital elevation model (DEM) of dark terrain in Galileo Regio [4]. Asymmetry in furrow topography and inferred flexure suggests asymmetric furrow fault geometry. We find effective elastic thicknesses 0.4 km, similar to analyzed areas alongside bright grooved terrain. Data and Analysis: A broken-plate elastic model.

  8. Refining Landsat classification results using digital terrain data

    USGS Publications Warehouse

    Miller, Wayne A.; Shasby, Mark

    1982-01-01

     Scientists at the U.S. Geological Survey's Earth Resources Observation systems (EROS) Data Center have recently completed two land-cover mapping projects in which digital terrain data were used to refine Landsat classification results. Digital ter rain data were incorporated into the Landsat classification process using two different procedures that required developing decision criteria either subjectively or quantitatively. The subjective procedure was used in a vegetation mapping project in Arizona, and the quantitative procedure was used in a forest-fuels mapping project in Montana. By incorporating digital terrain data into the Landsat classification process, more spatially accurate landcover maps were produced for both projects.

  9. Digital terrain modelling and industrial surface metrology - Converging crafts

    USGS Publications Warehouse

    Pike, R.J.

    2001-01-01

    Quantitative characterisation of surface form, increasingly from digital 3-D height data, is cross-disciplinary and can be applied at any scale. Thus, separation of industrial-surface metrology from its Earth-science counterpart, (digital) terrain modelling, is artificial. Their growing convergence presents an opportunity to develop in surface morphometry a unified approach to surface representation. This paper introduces terrain modelling and compares it with metrology, noting their differences and similarities. Examples of potential redundancy among parameters illustrate one of the many issues common to both disciplines. ?? 2001 Elsevier Science Ltd. All rights reserved.

  10. DEVELOPMENT OF LAND COVER AND TERRAIN DATA BASES FOR THE INNOKO NATIONAL WILDLIFE REFUGE, ALASKA, USING LANDSAT AND DIGITAL TERRAIN DATA.

    USGS Publications Warehouse

    Markon, Carl J.; Talbot, Stephen

    1986-01-01

    Landsat-derived land cover maps and associated elevation, slope, and aspect class maps were produced for the Innoko National Wildlife Refuge (3,850,000 acres; 1,555,095 hectares) in northwestern Alaska. These maps and associated digital data products are being used by the U. S. Fish and Wildlife Service for wildlife management, research, and comprehensive conservation planning. Portions of two Landsat Multispectral Scanner (MSS) scenes and digital terrain data were used to produce 1:250,000 scale land cover and terrain maps. Prints of summer and winter Landsat MSS scenes were used to manually interpret broad physiographic strata. These strata were transferred to U. S. Geological Survey 1:250,000-scale topographic maps and digitized. Seven major land cover classes and 23 subclasses were identified. The major land cover classes include: forest, scrub, dwarf scrub and related types, herbaceous, scarcely vegetated areas, water, and shadow.

  11. The HIGHLEAD program: locating and designing highlead harvest units by using digital terrain models.

    Treesearch

    R.H. Twito; S.E. Reutebuch; R.J. McGaughey

    1988-01-01

    PLANS, a software package for integrated timber-harvest planning, uses digital terrain models to provide the topographic data needed to fit harvest and transportation designs to specific terrain. HIGHLEAD, an integral program in the PLANS package, is used to design the timber-harvest units to be yarded by highlead systems. It solves for the yarding limits of direct...

  12. Interdisciplinary applications and interpretations of EREP data within the Susquehanna River Basin

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Photography from the S190A and S190B sensors was compared, for terrain analysis. The S190B photographs were used for terrain mapping of three test areas selected as being representative of major physiographic regions in Pennsylvania. Skylab photography was superior to both LANDSAT imagery and high altitude aircraft photography for purposes of accurate location of lineaments. Analysis of Skylab imagery has shown that long lineaments originally plotted on LANDSAT images are actually made up of shorter segments. Correlation of lineaments with ore deposits was determined following the preparation of a Pennsylvania mineral deposit map. Digital wave number analysis (spatial filtering) was attempted to determine if it can be used to enhance certain subtle features, and in particular, to locate and verify lineaments. Various spectral bands and channels of the MSS digital data were evaluated for their value in the classification and thematic mapping.

  13. Terrain Extraction by Integrating Terrestrial Laser Scanner Data and Spectral Information

    NASA Astrophysics Data System (ADS)

    Lau, C. L.; Halim, S.; Zulkepli, M.; Azwan, A. M.; Tang, W. L.; Chong, A. K.

    2015-10-01

    The extraction of true terrain points from unstructured laser point cloud data is an important process in order to produce an accurate digital terrain model (DTM). However, most of these spatial filtering methods just utilizing the geometrical data to discriminate the terrain points from nonterrain points. The point cloud filtering method also can be improved by using the spectral information available with some scanners. Therefore, the objective of this study is to investigate the effectiveness of using the three-channel (red, green and blue) of the colour image captured from built-in digital camera which is available in some Terrestrial Laser Scanner (TLS) for terrain extraction. In this study, the data acquisition was conducted at a mini replica landscape in Universiti Teknologi Malaysia (UTM), Skudai campus using Leica ScanStation C10. The spectral information of the coloured point clouds from selected sample classes are extracted for spectral analysis. The coloured point clouds which within the corresponding preset spectral threshold are identified as that specific feature point from the dataset. This process of terrain extraction is done through using developed Matlab coding. Result demonstrates that a higher spectral resolution passive image is required in order to improve the output. This is because low quality of the colour images captured by the sensor contributes to the low separability in spectral reflectance. In conclusion, this study shows that, spectral information is capable to be used as a parameter for terrain extraction.

  14. NASA/BLM APT, phase 2. Volume 2: Technology demonstration. [Arizona

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Techniques described include: (1) steps in the preprocessing of LANDSAT data; (2) the training of a classifier; (3) maximum likelihood classification and precision; (4) geometric correction; (5) class description; (6) digitizing; (7) digital terrain data; (8) an overview of sample design; (9) allocation and selection of primary sample units; (10) interpretation of secondary sample units; (11) data collection ground plots; (12) data reductions; (13) analysis for productivity estimation and map verification; (14) cost analysis; and (150) LANDSAT digital products. The evaluation of the pre-inventory planning for P.J. is included.

  15. Generation of topographic terrain models utilizing synthetic aperture radar and surface level data

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L. (Inventor)

    1991-01-01

    Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.

  16. TouchTerrain: A simple web-tool for creating 3D-printable topographic models

    NASA Astrophysics Data System (ADS)

    Hasiuk, Franciszek J.; Harding, Chris; Renner, Alex Raymond; Winer, Eliot

    2017-12-01

    An open-source web-application, TouchTerrain, was developed to simplify the production of 3D-printable terrain models. Direct Digital Manufacturing (DDM) using 3D Printers can change how geoscientists, students, and stakeholders interact with 3D data, with the potential to improve geoscience communication and environmental literacy. No other manufacturing technology can convert digital data into tangible objects quickly at relatively low cost; however, the expertise necessary to produce a 3D-printed terrain model can be a substantial burden: knowledge of geographical information systems, computer aided design (CAD) software, and 3D printers may all be required. Furthermore, printing models larger than the build volume of a 3D printer can pose further technical hurdles. The TouchTerrain web-application simplifies DDM for elevation data by generating digital 3D models customized for a specific 3D printer's capabilities. The only required user input is the selection of a region-of-interest using the provided web-application with a Google Maps-style interface. Publically available digital elevation data is processed via the Google Earth Engine API. To allow the manufacture of 3D terrain models larger than a 3D printer's build volume the selected area can be split into multiple tiles without third-party software. This application significantly reduces the time and effort required for a non-expert like an educator to obtain 3D terrain models for use in class. The web application is deployed at http://touchterrain.geol.iastate.edu/.

  17. A comprehensive study on urban true orthorectification

    USGS Publications Warehouse

    Zhou, G.; Chen, W.; Kelmelis, J.A.; Zhang, Dongxiao

    2005-01-01

    To provide some advanced technical bases (algorithms and procedures) and experience needed for national large-scale digital orthophoto generation and revision of the Standards for National Large-Scale City Digital Orthophoto in the National Digital Orthophoto Program (NDOP), this paper presents a comprehensive study on theories, algorithms, and methods of large-scale urban orthoimage generation. The procedures of orthorectification for digital terrain model (DTM)-based and digital building model (DBM)-based orthoimage generation and their mergence for true orthoimage generation are discussed in detail. A method of compensating for building occlusions using photogrammetric geometry is developed. The data structure needed to model urban buildings for accurately generating urban orthoimages is presented. Shadow detection and removal, the optimization of seamline for automatic mosaic, and the radiometric balance of neighbor images are discussed. Street visibility analysis, including the relationship between flight height, building height, street width, and relative location of the street to the imaging center, is analyzed for complete true orthoimage generation. The experimental results demonstrated that our method can effectively and correctly orthorectify the displacements caused by terrain and buildings in urban large-scale aerial images. ?? 2005 IEEE.

  18. Integration of radar altimeter, precision navigation, and digital terrain data for low-altitude flight

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.

    1992-01-01

    Avionic systems that depend on digitized terrain elevation data for guidance generation or navigational reference require accurate absolute and relative distance measurements to the terrain, especially as they approach lower altitudes. This is particularly exacting in low-altitude helicopter missions, where aggressive terrain hugging maneuvers create minimal horizontal and vertical clearances and demand precise terrain positioning. Sole reliance on airborne precision navigation and stored terrain elevation data for above-ground-level (AGL) positioning severely limits the operational altitude of such systems. A Kalman filter is presented which blends radar altimeter returns, precision navigation, and stored terrain elevation data for AGL positioning. The filter is evaluated using low-altitude helicopter flight test data acquired over moderately rugged terrain. The proposed Kalman filter is found to remove large disparities in predicted AGL altitude (i.e., from airborne navigation and terrain elevation data) in the presence of measurement anomalies and dropouts. Previous work suggested a minimum clearance altitude of 220 ft AGL for a near-terrain guidance system; integration of a radar altimeter allows for operation of that system below 50 ft, subject to obstacle-avoidance limitations.

  19. Accuracy assessment of TanDEM-X IDEM using airborne LiDAR on the area of Poland

    NASA Astrophysics Data System (ADS)

    Woroszkiewicz, Małgorzata; Ewiak, Ireneusz; Lulkowska, Paulina

    2017-06-01

    The TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) mission launched in 2010 is another programme - after the Shuttle Radar Topography Mission (SRTM) in 2000 - that uses space-borne radar interferometry to build a global digital surface model. This article presents the accuracy assessment of the TanDEM-X intermediate Digital Elevation Model (IDEM) provided by the German Aerospace Center (DLR) under the project "Accuracy assessment of a Digital Elevation Model based on TanDEM-X data" for the southwestern territory of Poland. The study area included: open terrain, urban terrain and forested terrain. Based on a set of 17,498 reference points acquired by airborne laser scanning, the mean errors of average heights and standard deviations were calculated for areas with a terrain slope below 2 degrees, between 2 and 6 degrees and above 6 degrees. The absolute accuracy of the IDEM data for the analysed area, expressed as a root mean square error (Total RMSE), was 0.77 m.

  20. Terrain matching image pre-process and its format transform in autonomous underwater navigation

    NASA Astrophysics Data System (ADS)

    Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang

    2007-06-01

    Underwater passive navigation technology is one of the important development orientations in the field of modern navigation. With the advantage of high self-determination, stealth at sea, anti-jamming and high precision, passive navigation is completely meet with actual navigation requirements. Therefore passive navigation has become a specific navigating method for underwater vehicles. The scientists and researchers in the navigating field paid more attention to it. The underwater passive navigation can provide accurate navigation information with main Inertial Navigation System (INS) for a long period, such as location and speed. Along with the development of micro-electronics technology, the navigation of AUV is given priority to INS assisted with other navigation methods, such as terrain matching navigation. It can provide navigation ability for a long period, correct the errors of INS and make AUV not emerge from the seabed termly. With terrain matching navigation technique, in the assistance of digital charts and ocean geographical characteristics sensors, we carry through underwater image matching assistant navigation to obtain the higher location precision, therefore it is content with the requirement of underwater, long-term, high precision and all-weather of the navigation system for Autonomous Underwater Vehicles. Tertian-assistant navigation (TAN) is directly dependent on the image information (map information) in the navigating field to assist the primary navigation system according to the path appointed in advance. In TAN, a factor coordinative important with the system operation is precision and practicability of the storable images and the database which produce the image data. If the data used for characteristics are not suitable, the system navigation precision will be low. Comparing with terrain matching assistant navigation system, image matching navigation system is a kind of high precision and low cost assistant navigation system, and its matching precision directly influences the final precision of integrated navigation system. Image matching assistant navigation is spatially matching and aiming at two underwater scenery images coming from two different sensors matriculating of the same scenery in order to confirm the relative displacement of the two images. In this way, we can obtain the vehicle's location in fiducial image known geographical relation, and the precise location information given from image matching location is transmitted to INS to eliminate its location error and greatly enhance the navigation precision of vehicle. Digital image data analysis and processing of image matching in underwater passive navigation is important. In regard to underwater geographic data analysis, we focus on the acquirement, disposal, analysis, expression and measurement of database information. These analysis items structure one of the important contents of underwater terrain matching and are propitious to know the seabed terrain configuration of navigation areas so that the best advantageous seabed terrain district and dependable navigation algorithm can be selected. In this way, we can improve the precision and reliability of terrain assistant navigation system. The pre-process and format transformation of digital image during underwater image matching are expatiated in this paper. The information of the terrain status in navigation areas need further study to provide the reliable data terrain characteristic and underwater overcast for navigation. Through realizing the choice of sea route, danger district prediction and navigating algorithm analysis, TAN can obtain more high location precision and probability, hence provide technological support for image matching of underwater passive navigation.

  1. A method for the processing and analysis of digital terrain elevation data. [Shiprock and Gallup Quadrangles, Arizona and New Mexico

    NASA Technical Reports Server (NTRS)

    Junkin, B. G. (Principal Investigator)

    1979-01-01

    A method is presented for the processing and analysis of digital topography data that can subsequently be entered in an interactive data base in the form of slope, slope length, elevation, and aspect angle. A discussion of the data source and specific descriptions of the data processing software programs are included. In addition, the mathematical considerations involved in the registration of raw digitized coordinate points to the UTM coordinate system are presented. Scale factor considerations are also included. Results of the processing and analysis are illustrated using the Shiprock and Gallup Quadrangle test data.

  2. Digital elevation modeling via curvature interpolation for lidar data

    USDA-ARS?s Scientific Manuscript database

    Digital elevation model (DEM) is a three-dimensional (3D) representation of a terrain's surface - for a planet (including Earth), moon, or asteroid - created from point cloud data which measure terrain elevation. Its modeling requires surface reconstruction for the scattered data, which is an ill-p...

  3. Vegetation and terrain mapping in Alaska using Landsat MSS and digital terrain data

    USGS Publications Warehouse

    Shasby, Mark; Carneggie, David M.

    1986-01-01

    During the past 5 years, the U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center Field Office in Anchorage, Alaska has worked cooperatively with Federal and State resource management agencies to produce land-cover and terrain maps for 245 million acres of Alaska. The need for current land-cover information in Alaska comes principally from the mandates of the Alaska National Interest Lands Conservation Act (ANILCA), December 1980, which requires major land management agencies to prepare comprehensive management plans. The land-cover mapping projects integrate digital Landsat data, terrain data, aerial photographs, and field data. The resultant land-cover and terrain maps and associated data bases are used for resource assessment, management, and planning by many Alaskan agencies including the U.S. Fish and Wildlife Service, U.S. Forest Service, Bureau of Land Management, and Alaska Department of Natural Resources. Applications addressed through use of the digital land-cover and terrain data bases range from comprehensive refuge planning to multiphased sampling procedures designed to inventory vegetation statewide. The land-cover mapping programs in Alaska demonstrate the operational utility of digital Landsat data and have resulted in a new land-cover mapping program by the USGS National Mapping Division to compile 1:250,000-scale land-cover maps in Alaska using a common statewide land-cover map legend.

  4. Influence of Elevation Data Source on 2D Hydraulic Modelling

    NASA Astrophysics Data System (ADS)

    Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław

    2016-08-01

    The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.

  5. Spatial Resolution Effects of Digital Terrain Models on Landslide Susceptibility Analysis

    NASA Astrophysics Data System (ADS)

    Chang, K. T.; Dou, J.; Chang, Y.; Kuo, C. P.; Xu, K. M.; Liu, J. K.

    2016-06-01

    The purposes of this study are to identify the maximum number of correlated factors for landslide susceptibility mapping and to evaluate landslide susceptibility at Sihjhong river catchment in the southern Taiwan, integrating two techniques, namely certainty factor (CF) and artificial neural network (ANN). The landslide inventory data of the Central Geological Survey (CGS, MOEA) in 2004-2014 and two digital elevation model (DEM) datasets including a 5-meter LiDAR DEM and a 30-meter Aster DEM were prepared. We collected thirteen possible landslide-conditioning factors. Considering the multi-collinearity and factor redundancy, we applied the CF approach to optimize these thirteen conditioning factors. We hypothesize that if the CF values of the thematic factor layers are positive, it implies that these conditioning factors have a positive relationship with the landslide occurrence. Therefore, based on this assumption and positive CF values, seven conditioning factors including slope angle, slope aspect, elevation, terrain roughness index (TRI), terrain position index (TPI), total curvature, and lithology have been selected for further analysis. The results showed that the optimized-factors model provides a better accuracy for predicting landslide susceptibility in the study area. In conclusion, the optimized-factors model is suggested for selecting relative factors of landslide occurrence.

  6. Application of digital terrain data to quantify and reduce the topographic effect on LANDSAT data

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Wharton, S. W.; Holben, B. N. (Principal Investigator)

    1980-01-01

    Integration of LANDSAT multispectral scanner (MSS) data with 30 m U.S. Geological Survey (USGS) digital terrain data was undertaken to quantify and reduce the topographic effect on imagery of a forested mountain ridge test site in central Pennsylvania. High Sun angle imagery revealed variation of as much as 21 pixel values in data for slopes of different angles and aspects with uniform surface cover. Large topographic effects were apparent in MSS 4 and 5 was due to a combination of high absorption by the forest cover and the MSS quantization. Four methods for reducing the topographic effect were compared. Band ratioing of MSS 6/5 and MSS 7/5 did not eliminate the topographic effect because of the lack of variation in MSS 4 and 5 radiances. The three radiance models examined to reduce the topographic effect required integration of the digital terrain data. Two Lambertian models increased the variation in the LANDSAT radiances. The nonLambertian model considerably reduced (86 per cent) the topographic effect in the LANDSAT data. The study demonstrates that high quality digital terrain data, as provided by the USGS digital elevation model data, can be used to enhance the utility of multispectral satellite data.

  7. 47 CFR 24.53 - Calculation of height above average terrain (HAAT).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...

  8. 47 CFR 24.53 - Calculation of height above average terrain (HAAT).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...

  9. 47 CFR 24.53 - Calculation of height above average terrain (HAAT).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...

  10. 47 CFR 24.53 - Calculation of height above average terrain (HAAT).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...

  11. 47 CFR 24.53 - Calculation of height above average terrain (HAAT).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...

  12. Predicting Southern Appalachian overstory vegetation with digital terrain data

    Treesearch

    Paul V. Bolstad; Wayne Swank; James Vose

    1998-01-01

    Vegetation in mountainous regions responds to small-scale variation in terrain, largely due to effects on both temperature and soil moisture. However, there are few studies of quantitative, terrain-based methods for predicting vegetation composition. This study investigated relationships between forest composition, elevation, and a derived index of terrain shape, and...

  13. Improved TDEM formation using fused ladar/digital imagery from a low-cost small UAV

    NASA Astrophysics Data System (ADS)

    Khatiwada, Bikalpa; Budge, Scott E.

    2017-05-01

    Formation of a Textured Digital Elevation Model (TDEM) has been useful in many applications in the fields of agriculture, disaster response, terrain analysis and more. Use of a low-cost small UAV system with a texel camera (fused lidar/digital imagery) can significantly reduce the cost compared to conventional aircraft-based methods. This paper reports continued work on this problem reported in a previous paper by Bybee and Budge, and reports improvements in performance. A UAV fitted with a texel camera is flown at a fixed height above the terrain and swaths of texel image data of the terrain below is taken continuously. Each texel swath has one or more lines of lidar data surrounded by a narrow strip of EO data. Texel swaths are taken such that there is some overlap from one swath to its adjacent swath. The GPS/IMU fitted on the camera also give coarse knowledge of attitude and position. Using this coarse knowledge and the information from the texel image, the error in the camera position and attitude is reduced which helps in producing an accurate TDEM. This paper reports improvements in the original work by using multiple lines of lidar data per swath. The final results are shown and analyzed for numerical accuracy.

  14. Development of flood routing simulation system of digital Qingjiang based on integrated spatial information technology

    NASA Astrophysics Data System (ADS)

    Yuan, Yanbin; Zhou, You; Zhu, Yaqiong; Yuan, Xiaohui; Sælthun, N. R.

    2007-11-01

    Based on digital technology, flood routing simulation system development is an important component of "digital catchment". Taking QingJiang catchment as a pilot case, in-depth analysis on informatization of Qingjiang catchment management being the basis, aiming at catchment data's multi-source, - dimension, -element, -subject, -layer and -class feature, the study brings the design thought and method of "subject-point-source database" (SPSD) to design system structure in order to realize the unified management of catchments data in great quantity. Using the thought of integrated spatial information technology for reference, integrating hierarchical structure development model of digital catchment is established. The model is general framework of the flood routing simulation system analysis, design and realization. In order to satisfy the demands of flood routing three-dimensional simulation system, the object-oriented spatial data model are designed. We can analyze space-time self-adapting relation between flood routing and catchments topography, express grid data of terrain by using non-directed graph, apply breadth first search arithmetic, set up search method for the purpose of dynamically searching stream channel on the basis of simulated three-dimensional terrain. The system prototype is therefore realized. Simulation results have demonstrated that the proposed approach is feasible and effective in the application.

  15. Computer planning tools applied to a cable logging research study

    Treesearch

    Chris B. LeDoux; Penn A. Peters

    1985-01-01

    Contemporary harvest planning software was used in planning the layout of cable logging units for a production study of the Clearwater Yarder in upstate New York. Planning software, including payload analysis and digital terrain models, allowed researchers to identify layout and yarding problems before the experiment. Analysis of proposed ground profiles pinpointed the...

  16. Geological terrain models

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1981-01-01

    The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.

  17. Determining the Suitability of Different Digital Elevation Models and Satellite Images for Fancy Maps. An Example of Cyprus

    NASA Astrophysics Data System (ADS)

    Drachal, J.; Kawel, A. K.

    2016-06-01

    The article describes the possibility of developing an overall map of the selected area on the basis of publicly available data. Such a map would take the form designed by the author with the colors that meets his expectations and a content, which he considers to be appropriate. Among the data available it was considered the use of satellite images of the terrain in real colors and, in the form of shaded relief, digital terrain models with different resolutions of the terrain mesh. Specifically the considered data were: MODIS, Landsat 8, GTOPO-30, SRTM-30, SRTM-1, SRTM-3, ASTER. For the test area the island of Cyprus was chosen because of the importance in tourism, a relatively small area and a clearly defined boundary. In the paper there are shown and discussed various options of the Cyprus terrain image obtained synthetically from variants of Modis, Landsat and digital elevation models of different resolutions.

  18. Landslide Detection in the Carlyon Beach, WA Peninsula: Analysis Of High Resolution DEMs

    NASA Astrophysics Data System (ADS)

    Fayne, J.; Tran, C.; Mora, O. E.

    2017-12-01

    Landslides are geological events caused by slope instability and degradation, leading to the sliding of large masses of rock and soil down a mountain or hillside. These events are influenced by topography, geology, weather and human activity, and can cause extensive damage to the environment and infrastructure, such as the destruction of transportation networks, homes, and businesses. It is therefore imperative to detect early-warning signs of landslide hazards as a means of mitigation and disaster prevention. Traditional landslide surveillance consists of field mapping, but the process is expensive and time consuming. This study uses Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) and k-means clustering and Gaussian Mixture Model (GMM) to analyze surface roughness and extract spatial features and patterns of landslides and landslide-prone areas. The methodology based on several feature extractors employs an unsupervised classifier on the Carlyon Beach Peninsula in the state of Washington to attempt to identify slide potential terrain. When compared with the independently compiled landslide inventory map, the proposed algorithm correctly classifies up to 87% of the terrain. These results suggest that the proposed methods and LiDAR-derived DEMs can provide important surface information and be used as efficient tools for digital terrain analysis to create accurate landslide maps.

  19. Color visual simulation applications at the Defense Mapping Agency

    NASA Astrophysics Data System (ADS)

    Simley, J. D.

    1984-09-01

    The Defense Mapping Agency (DMA) produces the Digital Landmass System data base to provide culture and terrain data in support of numerous aircraft simulators. In order to conduct data base and simulation quality control and requirements analysis, DMA has developed the Sensor Image Simulator which can rapidly generate visual and radar static scene digital simulations. The use of color in visual simulation allows the clear portrayal of both landcover and terrain data, whereas the initial black and white capabilities were restricted in this role and thus found limited use. Color visual simulation has many uses in analysis to help determine the applicability of current and prototype data structures to better meet user requirements. Color visual simulation is also significant in quality control since anomalies can be more easily detected in natural appearing forms of the data. The realism and efficiency possible with advanced processing and display technology, along with accurate data, make color visual simulation a highly effective medium in the presentation of geographic information. As a result, digital visual simulation is finding increased potential as a special purpose cartographic product. These applications are discussed and related simulation examples are presented.

  20. A project optimization for small watercourses restoration in the northern part of the Volga-Akhtuba floodplain by the geoinformation and hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Voronin, Alexander; Vasilchenko, Ann; Khoperskov, Alexander

    2018-03-01

    The project of small watercourses restoration in the northern part of the Volga-Akhtuba floodplain is considered together with the aim of increasing the watering of the territory during small and medium floods. The topography irregularity, the complex structure of the floodplain valley consisting of large number of small watercourses, the presence of urbanized and agricultural areas require careful preliminary analysis of the hydrological safety and efficiency of geographically distributed project activities. Using the digital terrain and watercourses structure models of the floodplain, the hydrodynamic flood model, the analysis of the hydrological safety and efficiency of several project implementation strategies has been conducted. The objective function values have been obtained from the hydrodynamic calculations of the floodplain territory flooding for virtual digital terrain models simulating alternatives for the geographically distributed project activities. The comparative efficiency of several empirical strategies for the geographically distributed project activities, as well as a two-stage exact solution method for the optimization problem has been studied.

  1. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    USGS Publications Warehouse

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  2. FOCIS: A forest classification and inventory system using LANDSAT and digital terrain data

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Franklin, J.; Woodcook, C. E.; Logan, T. L.

    1981-01-01

    Accurate, cost-effective stratification of forest vegetation and timber inventory is the primary goal of a Forest Classification and Inventory System (FOCIS). Conventional timber stratification using photointerpretation can be time-consuming, costly, and inconsistent from analyst to analyst. FOCIS was designed to overcome these problems by using machine processing techniques to extract and process tonal, textural, and terrain information from registered LANDSAT multispectral and digital terrain data. Comparison of samples from timber strata identified by conventional procedures showed that both have about the same potential to reduce the variance of timber volume estimates over simple random sampling.

  3. Evaluation of lidar-derived DEMs through terrain analysis and field comparison

    Treesearch

    Cody P. Gillin; Scott W. Bailey; Kevin J. McGuire; Stephen P. Prisley

    2015-01-01

    Topographic analysis of watershed-scale soil and hydrological processes using digital elevation models (DEMs) is commonplace, but most studies have used DEMs of 10 m resolution or coarser. Availability of higher-resolution DEMs created from light detection and ranging (lidar) data is increasing but their suitability for such applications has received little critical...

  4. Assessment of HRSC Digital Terrain Models Produced for the South Polar Residual Cap

    NASA Astrophysics Data System (ADS)

    Putri, Alfiah Rizky Diana; Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2017-04-01

    The current Digital Terrain Models available for Mars consist of NASA MOLA (Mars Orbital Laser Altimeter) Digital Terrain Models with an average resolution of 112 m/ pixel (512 pixels/degree) for the polar region. The ESA/DLR High Resolution Stereo Camera is currently orbiting Mars and mapping its surface, 98% with resolution of ≤100 m/pixel and better and 100% at lower resolution [1]. It is possible to produce Digital Terrain Models from HRSC images using various methods. In this study, the method developed on Kim and Muller [2] which uses the VICAR open source program together with photogrammetry sofrware from DLR (Deutschen Zentrums für Luft- und Raumfahrt) with image matching based on the GOTCHA (Gruen-Otto-Chau) algorithm [3]. Digital Terrain Models have been processed over the South Pole with emphasis on areas around South Polar Residual Cap from High Resolution Stereo Camera images [4]. Digital Terrain Models have been produced for 31 orbits out of 149 polar orbits available. This study analyses the quality of the DTMs including an assessment of accuracy of elevations using the MOLA MEGDR (Mission Experiment Gridded Data Records) which has roughly 42 million MOLA PEDR (Precision Experiment Data Records) points between latitudes of 78 o -90 o S. The issues encountered in the production of Digital Terrain Models will be described and the statistical results and assessment method will be presented. The resultant DTMs will be accessible via http://i-Mars.eu/web-GIS References: [1] Neukum, G. et. al, 2004. Mars Express: The Scientific Payload pp. 17-35. [2] Kim, J.-R. and J.-P. Muller. 2009. PSS vol. 57, pp. 2095-2112. [3] Shin, D. and J.-P. Muller. 2012. Pattern Recognition, 45(10), 3795 -3809. [4] Putri, A.R. D., et al., Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 463-469 Acknowledgements: The research leading to these results has received partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n ˚ 607379. The first author would like to acknowledge support for her studies from Indonesia Endowment Fund for Education (LPDP), Ministry of Finance, Republic of Indonesia. The authors would also like to thank Alexander Dumke (Freie Universitaet Berlin) for providing the EXTORI exterior orientation elements which were critical in the production of accuracy geolocations.

  5. A computer analysis of ERTS data of the Lake Gregory area of South Australia with particular emphasis on its role in terrain classification for engineering. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lodwick, G. D. (Principal Investigator)

    1976-01-01

    A digital computer and multivariate statistical techniques were used to analyze 4-band multispectral data. A representation of the original data for each of the four bands allows a certain degree of terrain interpretation; however, variations in appearance of sites within and between bands, without additional criteria for deciding which representation should be preferred, create difficulties for classification. Investigation of the video data groups produced by principal components analysis and cluster analysis techniques shows that effective correlations with classifications of terrain produced by conventional methods could be carried out. The analyses also highlighted underlying relationships between the various elements. The approach used allows large areas (185 cm by 185 cm) to be classified into fundamental units within a matter of hours and can be applied to those parts of the Earth where facilities for conventional studies are poor or lacking.

  6. International Digital Elevation Model Service (IDEMS): A Revived IAG Service

    NASA Astrophysics Data System (ADS)

    Kelly, K. M.; Hirt, C., , Dr; Kuhn, M.; Barzaghi, R.

    2017-12-01

    A newly developed International Digital Elevation Model Service (IDEMS) is now available under the umbrella of the International Gravity Field Service of the International Association of Geodesy. Hosted and operated by Environmental Systems Research Institute (Esri) (http://www.esri.com/), the new IDEMS website is available at: https://idems.maps.arcgis.com/home/index.html. IDEMS provides a focus for distribution of data and information about various digital elevation models, including spherical-harmonic models of Earth's global topography and lunar and planetary DEM. Related datasets, such as representation of inland water within DEMs, and relevant software which are available in the public domain are also provided. Currently, IDEMS serves as repository of links to providers of global terrain and bathymetry, terrain related Earth models and datasets such as digital elevation data services managed and maintained by Esri (Terrain and TopoBathy), Bedmap2-Ice thickness and subglacial topographic model of Antarctica and Ice, Cloud, and Land Elevation ICESat/GLAS Data, as well as planetary terrain data provided by PDS Geosciences Node at Washington University, St. Louis. These services provide online access to a collection of multi-resolution and multi-source elevation and bathymetry data, including metadata and source information. In addition to IDEMS current holdings of terrestrial and planetary DEMs, some topography related products IDEMS may include in future are: dynamic ocean topography, 3D crustal density models, Earth's dynamic topography, etc. IDEMS may also consider terrain related products such as quality assessments, global terrain corrections, global height anomaly-to-geoid height corrections and other geodesy-relevant studies and products. IDEMS encourages contributions to the site from the geodetic community in any of the product types listed above. Please contact the authors if you would like to contribute or recommend content you think appropriate for IDEMS.

  7. Vegetation Removal from Uav Derived Dsms, Using Combination of RGB and NIR Imagery

    NASA Astrophysics Data System (ADS)

    Skarlatos, D.; Vlachos, M.

    2018-05-01

    Current advancements on photogrammetric software along with affordability and wide spreading of Unmanned Aerial Vehicles (UAV), allow for rapid, timely and accurate 3D modelling and mapping of small to medium sized areas. Although the importance and applications of large format aerial overlaps cameras and photographs in Digital Surface Model (DSM) production and LIDAR data is well documented in literature, this is not the case for UAV photography. Additionally, the main disadvantage of photogrammetry is the inability to map the dead ground (terrain), when we deal with areas that include vegetation. This paper assesses the use of near-infrared imagery captured by small UAV platforms to automatically remove vegetation from Digital Surface Models (DSMs) and obtain a Digital Terrain Model (DTM). Two areas were tested, based on the availability of ground reference points, both under trees and among vegetation, as well as on terrain. In addition, RGB and near-infrared UAV photography was captured and processed using Structure from Motion (SfM) and Multi View Stereo (MVS) algorithms to generate DSMs and corresponding colour and NIR orthoimages with 0.2 m and 0.25 m as pixel size respectively for the two test sites. Moreover, orthophotos were used to eliminate the vegetation from the DSMs using NDVI index, thresholding and masking. Following that, different interpolation algorithms, according to the test sites, were applied to fill in the gaps and created DTMs. Finally, a statistic analysis was made using reference terrain points captured on field, both on dead ground and under vegetation to evaluate the accuracy of the whole process and assess the overall accuracy of the derived DTMs in contrast with the DSMs.

  8. Flight Test Results of a Synthetic Vision Elevation Database Integrity Monitor

    NASA Technical Reports Server (NTRS)

    deHaag, Maarten Uijt; Sayre, Jonathon; Campbell, Jacob; Young, Steve; Gray, Robert

    2001-01-01

    This paper discusses the flight test results of a real-time Digital Elevation Model (DEM) integrity monitor for Civil Aviation applications. Providing pilots with Synthetic Vision (SV) displays containing terrain information has the potential to improve flight safety by improving situational awareness and thereby reducing the likelihood of Controlled Flight Into Terrain (CFIT). Utilization of DEMs, such as the digital terrain elevation data (DTED), requires a DEM integrity check and timely integrity alerts to the pilots when used for flight-critical terrain-displays, otherwise the DEM may provide hazardous misleading terrain information. The discussed integrity monitor checks the consistency between a terrain elevation profile synthesized from sensor information, and the profile given in the DEM. The synthesized profile is derived from DGPS and radar altimeter measurements. DEMs of various spatial resolutions are used to illustrate the dependency of the integrity monitor s performance on the DEMs spatial resolution. The paper will give a description of proposed integrity algorithms, the flight test setup, and the results of a flight test performed at the Ohio University airport and in the vicinity of Asheville, NC.

  9. Local curvature entropy-based 3D terrain representation using a comprehensive Quadtree

    NASA Astrophysics Data System (ADS)

    Chen, Qiyu; Liu, Gang; Ma, Xiaogang; Mariethoz, Gregoire; He, Zhenwen; Tian, Yiping; Weng, Zhengping

    2018-05-01

    Large scale 3D digital terrain modeling is a crucial part of many real-time applications in geoinformatics. In recent years, the improved speed and precision in spatial data collection make the original terrain data more complex and bigger, which poses challenges for data management, visualization and analysis. In this work, we presented an effective and comprehensive 3D terrain representation based on local curvature entropy and a dynamic Quadtree. The Level-of-detail (LOD) models of significant terrain features were employed to generate hierarchical terrain surfaces. In order to reduce the radical changes of grid density between adjacent LODs, local entropy of terrain curvature was regarded as a measure of subdividing terrain grid cells. Then, an efficient approach was presented to eliminate the cracks among the different LODs by directly updating the Quadtree due to an edge-based structure proposed in this work. Furthermore, we utilized a threshold of local entropy stored in each parent node of this Quadtree to flexibly control the depth of the Quadtree and dynamically schedule large-scale LOD terrain. Several experiments were implemented to test the performance of the proposed method. The results demonstrate that our method can be applied to construct LOD 3D terrain models with good performance in terms of computational cost and the maintenance of terrain features. Our method has already been deployed in a geographic information system (GIS) for practical uses, and it is able to support the real-time dynamic scheduling of large scale terrain models more easily and efficiently.

  10. The geometric signature: Quantifying landslide-terrain types from digital elevation models

    USGS Publications Warehouse

    Pike, R.J.

    1988-01-01

    Topography of various types and scales can be fingerprinted by computer analysis of altitude matrices (digital elevation models, or DEMs). The critical analytic tool is the geometric signature, a set of measures that describes topographic form well enough to distinguish among geomorphically disparate landscapes. Different surficial processes create topography with diagnostic forms that are recognizable in the field. The geometric signature abstracts those forms from contour maps or their DEMs and expresses them numerically. This multivariate characterization enables once-in-tractable problems to be addressed. The measures that constitute a geometric signature express different but complementary attributes of topographic form. Most parameters used here are statistical estimates of central tendency and dispersion for five major categories of terrain geometry; altitude, altitude variance spectrum, slope between slope reversals, and slope and its curvature at fixed slope lengths. As an experimental application of geometric signatures, two mapped terrain types associated with different processes of shallow landsliding in Marin County, California, were distinguished consistently by a 17-variable description of topography from 21??21 DEMs (30-m grid spacing). The small matrix is a statistical window that can be used to scan large DEMs by computer, thus potentially automating the mapping of contrasting terrain types. The two types in Marin County host either (1) slow slides: earth flows and slump-earth flows, or (2) rapid flows: debris avalanches and debris flows. The signature approach should adapt to terrain taxonomy and mapping in other areas, where conditions differ from those in Central California. ?? 1988 International Association for Mathematical Geology.

  11. Surface terrain characteristics and monsoon season mass balance of debris-covered glaciers in the Khumbu Himal, Nepal, obtained from high resolution Pléiades imagery.

    NASA Astrophysics Data System (ADS)

    Klug, Christoph; Nicholson, Lindsey; Rieg, Lorenzo; Sailer, Rudolf; Wirbel, Anna

    2016-04-01

    Debris-covered glaciers in the eastern Himalaya have pronounced surface relief consisting of hummocks and hollows, ice cliffs, lakes and former lake beds. This relief and spatially variable surface properties are expected to influence the spatially distributed surface energy balance and related ice mass loss and atmospheric interactions, but only a few studies have so far explicitly examined the nature of the surface terrain and its textures . In this work we present a new high-resolution digital terrain model (DTM) of a portion of the Khumbu Himal in the eastern Nepalese Himalaya, derived from Pléiades satellite imagery sampled in spring 2015. We use this DTM to study the terrain characteristics of five sample glaciers and analyse the inter- and intra- glacier variability of terrain characteristics in the context of glacier flow velocities and surface changes presented in previous studies in the area. In parallel to this analysis we also present the seasonal geodetic mass balance between spring and fall 2015, and relate it to the terrain properties, surface velocity and limited knowledge of the local lapse rates in meteorological conditions during this monsoon season.

  12. DspaceOgreTerrain 3D Terrain Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Pomerantz, Marc I.

    2012-01-01

    DspaceOgreTerrain is an extension to the DspaceOgre 3D visualization tool that supports real-time visualization of various terrain types, including digital elevation maps, planets, and meshes. DspaceOgreTerrain supports creating 3D representations of terrains and placing them in a scene graph. The 3D representations allow for a continuous level of detail, GPU-based rendering, and overlaying graphics like wheel tracks and shadows. It supports reading data from the SimScape terrain- modeling library. DspaceOgreTerrain solves the problem of displaying the results of simulations that involve very large terrains. In the past, it has been used to visualize simulations of vehicle traverses on Lunar and Martian terrains. These terrains were made up of billions of vertices and would not have been renderable in real-time without using a continuous level of detail rendering technique.

  13. Process for structural geologic analysis of topography and point data

    DOEpatents

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  14. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones.

    PubMed

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-06-06

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations.

  15. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    PubMed Central

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-01-01

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations. PMID:27879911

  16. Using Digitized Handheld Space Shuttle Photography for Terrain Visualization

    NASA Technical Reports Server (NTRS)

    Eckardt, F. D.; Wilkinson, M. J.; Lulla, K. P.

    2000-01-01

    Digital terrain models are becoming increasingly available and are readily generated at a whole range of scales. However, the lack of realistic colour and tone in images of terrains remains a problem. Realistic colour and tone are very desirable attributes because they contribute significantly to a powerful visualization of landscapes, both for scientists (Kam's ref) and for the general public. But these attributes are generally still unavailable because few sensors, air- or space-borne, provide true colour, and even fewer do so at a realistic cost. The exception is the growing and accessible archive of US Space Shuttle photography which provides a wealth of potential data suited for more realistic visualization of landscapes.

  17. Use of ALS data for digital terrain extraction and roughness parametrization in floodplain areas

    NASA Astrophysics Data System (ADS)

    Idda, B.; Nardinocchi, C.; Marsella, M.

    2009-04-01

    In order to undertake structural and land planning actions aimed at improving risk thresholds and vulnerability associated to floodplain inundation, the evaluation of the area concerning the channel overflowing from his natural embankments it is of essential importance. Floodplain models requires the analysis of historical floodplains extensions, ground's morphological structure and hydraulic measurements. Within this set of information, a more detailed characterization about the hydraulic roughness, which controls the velocity to the hydraulic flow, is a interesting challenge to achieve a 2D spatial distribution into the model. Remote sensing optical and radar sensors techniques can be applied to generate 2D and 3D map products useful to perimeter floodplains extension during the main event and extrapolate river cross-sections. Among these techniques, it is unquestionable the enhancement that the Airborne Laser Scanner (ALS) have brought for its capability to extract high resolution and accurate Digital Terrain Models. In hydraulic applications, a number of studies investigated the use of ALS for DTM generation and approached the quantitative estimations of the hydraulic roughness. The aim of this work is the generation of a digital terrain model and the estimation of hydraulic parameters useful for floodplains models from Airborne Laser Scanner data collected in a test area, which encloses a portion of a drainage basin of the Mela river (Sicily, Italy). From the Airborne Laser Scanner dataset, a high resolution Digital Elevation Model was first created, then after applying filtering and classification processes, a dedicated procedure was implemented to assess automatically a value for the hydraulic roughness coefficient (in Manning's formulation) per each point interested in the floodplain. The obtained results allowed to generate maps of equal roughness, hydraulic level depending, based on the application of empirical formulas for specific-type vegetation at each classified ALS point.

  18. The terrain signatures of administrative units: a tool for environmental assessment.

    PubMed

    Miliaresis, George Ch

    2009-03-01

    The quantification of knowledge related to the terrain and the landuse/landcover of administrative units in Southern Greece (Peloponnesus) is performed from the CGIAR-CSI SRTM digital elevation model and the CORINE landuse/landcover database. Each administrative unit is parametrically represented by a set of attributes related to its relief. Administrative units are classified on the basis of K-means cluster analysis in an attempt to see how they are organized into groups and cluster derived geometric signatures are defined. Finally each cluster is parametrically represented on the basis of the occurrence of the Corine landuse/landcover classes included and thus, landcover signatures are derived. The geometric and the landuse/landcover signatures revealed a terrain dependent landuse/landcover organization that was used in the assessment of the forest fires impact at moderate resolution scale.

  19. Radiometric Block Adjusment and Digital Radiometric Model Generation

    NASA Astrophysics Data System (ADS)

    Pros, A.; Colomina, I.; Navarro, J. A.; Antequera, R.; Andrinal, P.

    2013-05-01

    In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM) as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF). In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART) models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.

  20. Quantitative analysis of culture using millions of digitized books

    PubMed Central

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva P.; Veres, Adrian; Gray, Matthew K.; Pickett, Joseph P.; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A.; Aiden, Erez Lieberman

    2011-01-01

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics’, focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. ‘Culturomics’ extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities. PMID:21163965

  1. Quantitative analysis of culture using millions of digitized books.

    PubMed

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva Presser; Veres, Adrian; Gray, Matthew K; Pickett, Joseph P; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A; Aiden, Erez Lieberman

    2011-01-14

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of 'culturomics,' focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. Culturomics extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities.

  2. A Digital 3D-Reconstruction of the Younger Dryas Baltic Ice Lake

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Alm, G.; Bjorck, S.; Lindeberg, G.; Svensson, N.

    2005-12-01

    A digital 3D-reconstruction of the final stage of the ice dammed Baltic Ice Lake (BIL), dated to the very end of the Younger Dryas cold period (ca. 11 600 cal. yr BP) has been compiled using a combined bathymetric-topographic Digital Terrain Model (DTM), Scandinavian ice sheet limits, Baltic Sea Holocene bottom sediment thickness information, and a paleoshoreline database maintained at the Lund University. The combined bathymetric-topographic Digital Terrain Model (DTM) model used to reconstruct the ice dammed lake was compiled specifically for this study from publicly available data sets. The final DTM is in the form of a digital grid on Lamberts Equal Area projection with a resolution of 500 x 500 m, which permits a much more detailed reconstruction of the BIL than previously made. The lake was constructed through a series of experiments where mathematical algorithms were applied to fit the paleolake's surface through the shoreline database. The accumulated Holocene bottom sediments in the Baltic Sea were subsequently subtracted from the present bathymetry in our reconstruction. This allows us to estimate the Baltic Ice Lake's paleobathymetry, area, volume, and hypsometry, which will comprise key input data to lake/climate modeling exercises following this study. The Scandinavian ice sheet margin eventually retreated north of Mount Billingen, which was the high point in terrain of Southern central Sweden bordering to lower terrain further to the North. As a consequence, the BIL was catastrophically drained through this area, resulting in a 25 m drop of the lake level. With our digital BIL model we estimate that approximately 7, 800 km3 of water drained during this event and that the ice dammed lake area was reduced with ca 18 percent. The digital BIL reconstruction is analyzed using 3D-visualization techniques that provide new detailed information on the paleogeography in the area, both before and after the lake drainage, with implications for interpretations of geological records concerning the post-glacial environmental development of southern Scandinavia.

  3. Investigation of feet functions of large ruminants with a decoupled model of equivalent mechanism

    PubMed Central

    Zhang, Qun; Ding, Xilun

    2017-01-01

    ABSTRACT Cloven hooves of ruminants adapt to diverse terrain, provide propulsive force and support the whole body during movement in natural environments. To reveal how the feet ensure terrain adaptability by choosing the proper configurations and terrain conditions, we model the feet of ruminants as an equivalent mechanism with flexion-extension and lateral movement decoupled. The upper part of the equivalent mechanism can flex and extend, while the lower part performs the lateral movement. Combination of the two parts can adapt to longitudinal slope (anterior-posterior) and transverse slope (medial-lateral), respectively. When one of two digits closes laterally, the workspace of the other decreases. The distal interdigital ligament between two digits limits their motion by elastic force and stores energy during movement. Differences in elastic energy variation of the ligament on different transverse slopes are characterized based on the configurations of two digits and the elastic energy between them. If the upper one of two symmetric digits is fixed, the foot landing on the grade surface (2°) shows greater capacity for absorbing energy; otherwise, level ground is the best choice for ruminants. As for the asymmetric digits, longer lateral digits enhance the optimal adaptive lateral angle. The asymmetry predisposes the feet to damage on the hard ground, which indicates soft ground is more suitable. PMID:28412713

  4. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy

    Treesearch

    S.E. Reutebuch; R.J. McGaughey; H.-E. Andersen; W.W. Carson

    2003-01-01

    Airborne laser scanning systems can provide terrain elevation data for open areas with a vertical accuracy of 15 cm. In this study, a high-resolution digital terrain model (DTM) was produced from high-density lidar data. Vegetation in the 500-ha mountainous study area varied from bare ground to dense 70-year-old conifer forest. Conventional ground survey methods were...

  5. Coniferous forest classification and inventory using Landsat and digital terrain data

    NASA Technical Reports Server (NTRS)

    Franklin, J.; Logan, T. L.; Woodcock, C. E.; Strahler, A. H.

    1986-01-01

    Machine-processing techniques were used in a Forest Classification and Inventory System (FOCIS) procedure to extract and process tonal, textural, and terrain information from registered Landsat multispectral and digital terrain data. Using FOCIS as a basis for stratified sampling, the softwood timber volumes of the Klamath National Forest and Eldorado National Forest were estimated within standard errors of 4.8 and 4.0 percent, respectively. The accuracy of these large-area inventories is comparable to the accuracy yielded by use of conventional timber inventory methods, but, because of automation, the FOCIS inventories are more rapid (9-12 months compared to 2-3 years for conventional manual photointerpretation, map compilation and drafting, field sampling, and data processing) and are less costly.

  6. Calculating terrain indices along streams: A new method for separating stream sides

    Treesearch

    T. J. Grabs; K. G. Jencso; B. L. McGlynn; J. Seibert

    2010-01-01

    There is increasing interest in assessing riparian zones and their hydrological and biogeochemical buffering capacity with indices derived from hydrologic landscape analysis of digital elevation data. Upslope contributing area is a common surrogate for lateral water flows and can be used to assess the variability of local water inflows to riparian zones and streams....

  7. Using game engine for 3D terrain visualisation of GIS data: A review

    NASA Astrophysics Data System (ADS)

    Che Mat, Ruzinoor; Shariff, Abdul Rashid Mohammed; Nasir Zulkifli, Abdul; Shafry Mohd Rahim, Mohd; Hafiz Mahayudin, Mohd

    2014-06-01

    This paper reviews on the 3D terrain visualisation of GIS data using game engines that are available in the market as well as open source. 3D terrain visualisation is a technique used to visualise terrain information from GIS data such as a digital elevation model (DEM), triangular irregular network (TIN) and contour. Much research has been conducted to transform the 2D view of map to 3D. There are several terrain visualisation softwares that are available for free, which include Cesium, Hftool and Landserf. This review paper will help interested users to better understand the current state of art in 3D terrain visualisation of GIS data using game engines.

  8. Comparison of manually produced and automated cross country movement maps using digital image processing techniques

    NASA Technical Reports Server (NTRS)

    Wynn, L. K.

    1985-01-01

    The Image-Based Information System (IBIS) was used to automate the cross country movement (CCM) mapping model developed by the Defense Mapping Agency (DMA). Existing terrain factor overlays and a CCM map, produced by DMA for the Fort Lewis, Washington area, were digitized and reformatted into geometrically registered images. Terrain factor data from Slope, Soils, and Vegetation overlays were entered into IBIS, and were then combined utilizing IBIS-programmed equations to implement the DMA CCM model. The resulting IBIS-generated CCM map was then compared with the digitized manually produced map to test similarity. The numbers of pixels comprising each CCM region were compared between the two map images, and percent agreement between each two regional counts was computed. The mean percent agreement equalled 86.21%, with an areally weighted standard deviation of 11.11%. Calculation of Pearson's correlation coefficient yielded +9.997. In some cases, the IBIS-calculated map code differed from the DMA codes: analysis revealed that IBIS had calculated the codes correctly. These highly positive results demonstrate the power and accuracy of IBIS in automating models which synthesize a variety of thematic geographic data.

  9. Automation in photogrammetry: Recent developments and applications (1972-1976)

    USGS Publications Warehouse

    Thompson, M.M.; Mikhail, E.M.

    1976-01-01

    An overview of recent developments in the automation of photogrammetry in various countries is presented. Conclusions regarding automated photogrammetry reached at the 1972 Congress in Ottawa are reviewed first as a background for examining the developments of 1972-1976. Applications are described for each country reporting significant developments. Among fifteen conclusions listed are statements concerning: the widespread practice of equipping existing stereoplotters with simple digitizers; the growing tendency to use minicomputers on-line with stereoplotters; the optimization of production of digital terrain models by progressive sampling in stereomodels; the potential of digitization of a photogrammetric model by density correlation on epipolar lines; the capabilities and economic aspects of advanced systems which permit simultaneous production of orthophotos, contours, and digital terrain models; the economy of off-line orthophoto systems; applications of digital image processing; automation by optical techniques; applications of sensors other than photographic imagery, and the role of photogrammetric phases in a completely automated cartographic system. ?? 1976.

  10. Regional Stratigraphy from Stereo Imaging near the Hypanis Fan Deposit: Marking the Extent of the Largest Delta on Mars?

    NASA Astrophysics Data System (ADS)

    Adler, J.; Harrison, T. N.; Bell, J. F., III; Mayer, D. P.

    2017-12-01

    The layered fan-shaped sedimentary deposit at the terminus of Hypanis Valles has been classified by some as an ancient delta marking the presence of a sea in Chryse Planitia, Mars. The deposit's age is estimated to be 3.6 Ga based on crater counts in the upstream catchment. We further our research on the Hypanis deposit and its relative age by analyzing digital terrain models and high-resolution orbital images of two key study areas: Lederberg crater rim and the distal island deposits. We constructed a 2 m/pix digital terrain model from our requested HiRISE stereo images (0.5 m/pix) of the Lederberg rim northwest of Hypanis, as well as a 24 m/pix digital terrain model from CTX stereo images (6 m/pix) of the island structures northeast of Hypanis. Both terrain models were controlled to MOLA shot data. We added these elevation models to a regional elevation mosaic in order to assess stratigraphy. We found that the Lederberg crater rim has polygonally fractured units, consistent with those in the plains near Hypanis, as well as an example of a distinct mildly sinuous ridge with smooth cones along its profile. We hypothesize that the formation of rounded cones in this region of Xanthe Terra near Hypanis is related to the presence of wrinkle ridges and degraded crater rims. Furthermore, we investigate whether these cones are the youngest geologic formations in the region, postdating the aqueous periods in which the delta and hydrovolcanic cones were formed. We also analyzed the elevation profiles of potential deltaic distal island deposits, and found that some islands are likely part of the main lobe of Hypanis, while others more closely match the chaos units to the east. From our analysis, it is unlikely that the large northern island was once part of the Hypanis deposit. Rather, a larger laterally continuous unit likely once draped the region post-Hypanis formation and has subsequently been eroded.

  11. Pose and motion recovery from feature correspondences and a digital terrain map.

    PubMed

    Lerner, Ronen; Rivlin, Ehud; Rotstein, Héctor P

    2006-09-01

    A novel algorithm for pose and motion estimation using corresponding features and a Digital Terrain Map is proposed. Using a Digital Terrain (or Digital Elevation) Map (DTM/DEM) as a global reference enables the elimination of the ambiguity present in vision-based algorithms for motion recovery. As a consequence, the absolute position and orientation of a camera can be recovered with respect to the external reference frame. In order to do this, the DTM is used to formulate a constraint between corresponding features in two consecutive frames. Explicit reconstruction of the 3D world is not required. When considering a number of feature points, the resulting constraints can be solved using nonlinear optimization in terms of position, orientation, and motion. Such a procedure requires an initial guess of these parameters, which can be obtained from dead-reckoning or any other source. The feasibility of the algorithm is established through extensive experimentation. Performance is compared with a state-of-the-art alternative algorithm, which intermediately reconstructs the 3D structure and then registers it to the DTM. A clear advantage for the novel algorithm is demonstrated in variety of scenarios.

  12. Multiresolution analysis of characteristic length scales with high-resolution topographic data

    NASA Astrophysics Data System (ADS)

    Sangireddy, Harish; Stark, Colin P.; Passalacqua, Paola

    2017-07-01

    Characteristic length scales (CLS) define landscape structure and delimit geomorphic processes. Here we use multiresolution analysis (MRA) to estimate such scales from high-resolution topographic data. MRA employs progressive terrain defocusing, via convolution of the terrain data with Gaussian kernels of increasing standard deviation, and calculation at each smoothing resolution of (i) the probability distributions of curvature and topographic index (defined as the ratio of slope to area in log scale) and (ii) characteristic spatial patterns of divergent and convergent topography identified by analyzing the curvature of the terrain. The MRA is first explored using synthetic 1-D and 2-D signals whose CLS are known. It is then validated against a set of MARSSIM (a landscape evolution model) steady state landscapes whose CLS were tuned by varying hillslope diffusivity and simulated noise amplitude. The known CLS match the scales at which the distributions of topographic index and curvature show scaling breaks, indicating that the MRA can identify CLS in landscapes based on the scaling behavior of topographic attributes. Finally, the MRA is deployed to measure the CLS of five natural landscapes using meter resolution digital terrain model data. CLS are inferred from the scaling breaks of the topographic index and curvature distributions and equated with (i) small-scale roughness features and (ii) the hillslope length scale.

  13. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4

    NASA Astrophysics Data System (ADS)

    Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J.

    2015-02-01

    The System for Automated Geoscientific Analyses (SAGA) is an open-source Geographic Information System (GIS), mainly licensed under the GNU General Public License. Since its first release in 2004, SAGA has rapidly developed from a specialized tool for digital terrain analysis to a comprehensive and globally established GIS platform for scientific analysis and modeling. SAGA is coded in C++ in an object oriented design and runs under several operating systems including Windows and Linux. Key functional features of the modular organized software architecture comprise an application programming interface for the development and implementation of new geoscientific methods, an easily approachable graphical user interface with many visualization options, a command line interpreter, and interfaces to scripting and low level programming languages like R and Python. The current version 2.1.4 offers more than 700 tools, which are implemented in dynamically loadable libraries or shared objects and represent the broad scopes of SAGA in numerous fields of geoscientific endeavor and beyond. In this paper, we inform about the system's architecture, functionality, and its current state of development and implementation. Further, we highlight the wide spectrum of scientific applications of SAGA in a review of published studies with special emphasis on the core application areas digital terrain analysis, geomorphology, soil science, climatology and meteorology, as well as remote sensing.

  14. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4

    NASA Astrophysics Data System (ADS)

    Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J.

    2015-07-01

    The System for Automated Geoscientific Analyses (SAGA) is an open source geographic information system (GIS), mainly licensed under the GNU General Public License. Since its first release in 2004, SAGA has rapidly developed from a specialized tool for digital terrain analysis to a comprehensive and globally established GIS platform for scientific analysis and modeling. SAGA is coded in C++ in an object oriented design and runs under several operating systems including Windows and Linux. Key functional features of the modular software architecture comprise an application programming interface for the development and implementation of new geoscientific methods, a user friendly graphical user interface with many visualization options, a command line interpreter, and interfaces to interpreted languages like R and Python. The current version 2.1.4 offers more than 600 tools, which are implemented in dynamically loadable libraries or shared objects and represent the broad scopes of SAGA in numerous fields of geoscientific endeavor and beyond. In this paper, we inform about the system's architecture, functionality, and its current state of development and implementation. Furthermore, we highlight the wide spectrum of scientific applications of SAGA in a review of published studies, with special emphasis on the core application areas digital terrain analysis, geomorphology, soil science, climatology and meteorology, as well as remote sensing.

  15. Map-Reading Skill Development with 3D Technologies

    ERIC Educational Resources Information Center

    Carbonell Carrera, Carlos; Avarvarei, Bogdan Vlad; Chelariu, Elena Liliana; Draghia, Lucia; Avarvarei, Simona Catrinel

    2017-01-01

    Landforms often are represented on maps using abstract cartographic techniques that the reader must interpret for successful three-dimensional terrain visualization. New technologies in 3D landscape representation, both digital and tangible, offer the opportunity to visualize terrain in new ways. The results of a university student workshop, in…

  16. Terrain Portrayal for Synthetic Vision Systems Head-Down Displays Evaluation Results

    NASA Technical Reports Server (NTRS)

    Hughes, Monica F.; Glaab, Louis J.

    2007-01-01

    A critical component of SVS displays is the appropriate presentation of terrain to the pilot. At the time of this study, the relationship between the complexity of the terrain presentation and resulting enhancements of pilot SA and pilot performance had been largely undefined. The terrain portrayal for SVS head-down displays (TP-HDD) simulation examined the effects of two primary elements of terrain portrayal on the primary flight display (PFD): variations of digital elevation model (DEM) resolution and terrain texturing. Variations in DEM resolution ranged from sparsely spaced (30 arc-sec) to very closely spaced data (1 arc-sec). Variations in texture involved three primary methods: constant color, elevation-based generic, and photo-realistic, along with a secondary depth cue enhancer in the form of a fishnet grid overlay.

  17. An Efficient Method to Create Digital Terrain Models from Point Clouds Collected by Mobile LiDAR Systems

    NASA Astrophysics Data System (ADS)

    Gézero, L.; Antunes, C.

    2017-05-01

    The digital terrain models (DTM) assume an essential role in all types of road maintenance, water supply and sanitation projects. The demand of such information is more significant in developing countries, where the lack of infrastructures is higher. In recent years, the use of Mobile LiDAR Systems (MLS) proved to be a very efficient technique in the acquisition of precise and dense point clouds. These point clouds can be a solution to obtain the data for the production of DTM in remote areas, due mainly to the safety, precision, speed of acquisition and the detail of the information gathered. However, the point clouds filtering and algorithms to separate "terrain points" from "no terrain points", quickly and consistently, remain a challenge that has caught the interest of researchers. This work presents a method to create the DTM from point clouds collected by MLS. The method is based in two interactive steps. The first step of the process allows reducing the cloud point to a set of points that represent the terrain's shape, being the distance between points inversely proportional to the terrain variation. The second step is based on the Delaunay triangulation of the points resulting from the first step. The achieved results encourage a wider use of this technology as a solution for large scale DTM production in remote areas.

  18. Automatic landslide detection from LiDAR DTM derivatives by geographic-object-based image analysis based on open-source software

    NASA Astrophysics Data System (ADS)

    Knevels, Raphael; Leopold, Philip; Petschko, Helene

    2017-04-01

    With high-resolution airborne Light Detection and Ranging (LiDAR) data more commonly available, many studies have been performed to facilitate the detailed information on the earth surface and to analyse its limitation. Specifically in the field of natural hazards, digital terrain models (DTM) have been used to map hazardous processes such as landslides mainly by visual interpretation of LiDAR DTM derivatives. However, new approaches are striving towards automatic detection of landslides to speed up the process of generating landslide inventories. These studies usually use a combination of optical imagery and terrain data, and are designed in commercial software packages such as ESRI ArcGIS, Definiens eCognition, or MathWorks MATLAB. The objective of this study was to investigate the potential of open-source software for automatic landslide detection based only on high-resolution LiDAR DTM derivatives in a study area within the federal state of Burgenland, Austria. The study area is very prone to landslides which have been mapped with different methodologies in recent years. The free development environment R was used to integrate open-source geographic information system (GIS) software, such as SAGA (System for Automated Geoscientific Analyses), GRASS (Geographic Resources Analysis Support System), or TauDEM (Terrain Analysis Using Digital Elevation Models). The implemented geographic-object-based image analysis (GEOBIA) consisted of (1) derivation of land surface parameters, such as slope, surface roughness, curvature, or flow direction, (2) finding optimal scale parameter by the use of an objective function, (3) multi-scale segmentation, (4) classification of landslide parts (main scarp, body, flanks) by k-mean thresholding, (5) assessment of the classification performance using a pre-existing landslide inventory, and (6) post-processing analysis for the further use in landslide inventories. The results of the developed open-source approach demonstrated good success rates to objectively detect landslides in high-resolution topography data by GEOBIA.

  19. Landforms of the conterminous United States: a digital shaded-relief portrayal

    USGS Publications Warehouse

    Thelin, Gail P.; Pike, Richard J.

    1991-01-01

    Our map was made by digital image-processing, a technical specialty related to the broader fields of computer graphics and machine vision (Dawson, 1987; Kennie and McLaren, 1988). The technology includes the many spacially based operations first brought together and developed systematically to manipulate Ranger, Mariner, Landsat, and other images that are reassembled from spacecraft telemetry in a raster or scan-line arrangement of square-grid elements (Nathan, 1966; Castleman, 1979; Sheldon, 1987). These computer procedures have been successfully transferred to landform analysis from remote-sensing applications by substituting terrain heights or sea-floor depths for the customary values of electromagnetic radiation obtained from satellites an stored in digital arrays of pixels (Batson and others, 1975).

  20. Virtual Field Reconnaissance to enable multi-site collaboration in geoscience fieldwork in Chile.

    NASA Astrophysics Data System (ADS)

    Hughes, Leanne; Bateson, Luke; Ford, Jonathan; Napier, Bruce; Creixell, Christian; Contreras, Juan-Pablo; Vallette, Jane

    2017-04-01

    The unique challenges of geological mapping in remote terrains can make cross-organisation collaboration challenging. Cooperation between the British and Chilean Geological Surveys and the Chilean national mining company used the BGS digital Mapping Workflow and virtual field reconnaissance software (GeoVisionary) to undertake geological mapping in a complex area of Andean Geology. The international team undertook a pre-field evaluation using GeoVisionary to integrate massive volumes of data and interpret high resolution satellite imagery, terrain models and existing geological information to capture, manipulate and understand geological features and re-interpret existing maps. This digital interpretation was then taken into the field and verified using the BGS digital data capture system (SIGMA.mobile). This allowed the production of final geological interpretation and creation of a geological map. This presentation describes the digital mapping workflow used in Chile and highlights the key advantages of increased efficiency and communication to colleagues, stakeholders and funding bodies.

  1. Extraction of drainage networks from large terrain datasets using high throughput computing

    NASA Astrophysics Data System (ADS)

    Gong, Jianya; Xie, Jibo

    2009-02-01

    Advanced digital photogrammetry and remote sensing technology produces large terrain datasets (LTD). How to process and use these LTD has become a big challenge for GIS users. Extracting drainage networks, which are basic for hydrological applications, from LTD is one of the typical applications of digital terrain analysis (DTA) in geographical information applications. Existing serial drainage algorithms cannot deal with large data volumes in a timely fashion, and few GIS platforms can process LTD beyond the GB size. High throughput computing (HTC), a distributed parallel computing mode, is proposed to improve the efficiency of drainage networks extraction from LTD. Drainage network extraction using HTC involves two key issues: (1) how to decompose the large DEM datasets into independent computing units and (2) how to merge the separate outputs into a final result. A new decomposition method is presented in which the large datasets are partitioned into independent computing units using natural watershed boundaries instead of using regular 1-dimensional (strip-wise) and 2-dimensional (block-wise) decomposition. Because the distribution of drainage networks is strongly related to watershed boundaries, the new decomposition method is more effective and natural. The method to extract natural watershed boundaries was improved by using multi-scale DEMs instead of single-scale DEMs. A HTC environment is employed to test the proposed methods with real datasets.

  2. Errors in terrain-based model preditions caused by altered forest inventory plot locations in the Southern Appalachian Mountains, USA.

    Treesearch

    Huei-Jin Wang; Stephen Prisley; Philip Radtke; John Coulston

    2012-01-01

    Forest modeling applications that cover large geographic area can benefit from the use of widely-held knowledge about relationships between forest attributes and topographic variables. A noteworthy example involved the coupling of field survey data from the Forest Inventory Analysis (FIA) program of USDA Forest Service with digital elevation model (DEM) data in...

  3. Integrating depth functions and hyper-scale terrain analysis for 3D soil organic carbon modeling in agricultural fields at regional scale

    NASA Astrophysics Data System (ADS)

    Ramirez-Lopez, L.; van Wesemael, B.; Stevens, A.; Doetterl, S.; Van Oost, K.; Behrens, T.; Schmidt, K.

    2012-04-01

    Soil Organic Carbon (SOC) represents a key component in the global C cycle and has an important influence on the global CO2 fluxes between terrestrial biosphere and atmosphere. In the context of agricultural landscapes, SOC inventories are important since soil management practices have a strong influence on CO2 fluxes and SOC stocks. However, there is lack of accurate and cost-effective methods for producing high spatial resolution of SOC information. In this respect, our work is focused on the development of a three dimensional modeling approach for SOC monitoring in agricultural fields. The study area comprises ~420 km2 and includes 4 of the 5 agro-geological regions of the Grand-Duchy of Luxembourg. The soil dataset consist of 172 profiles (1033 samples) which were not sampled specifically for this study. This dataset is a combination of profile samples collected in previous soil surveys and soil profiles sampled for other research purposes. The proposed strategy comprises two main steps. In the first step the SOC distribution within each profile (vertical distribution) is modeled. Depth functions for are fitted in order to summarize the information content in the profile. By using these functions the SOC can be interpolated at any depth within the profiles. The second step involves the use of contextual terrain (ConMap) features (Behrens et al., 2010). These features are based on the differences in elevation between a given point location in the landscape and its circular neighbourhoods at a given set of different radius. One of the main advantages of this approach is that it allows the integration of several spatial scales (eg. local and regional) for soil spatial analysis. In this work the ConMap features are derived from a digital elevation model of the area and are used as predictors for spatial modeling of the parameters of the depth functions fitted in the previous step. In this poster we present some preliminary results in which we analyze: i. The use of different depth functions, ii. The use of different machine learning approaches for modeling the parameters of the fitted depth functions using the ConMap features and iii. The influence of different spatial scales on the SOC profile distribution variability. Keywords: 3D modeling, Digital soil mapping, Depth functions, Terrain analysis. Reference Behrens, T., K. Schmidt, K., Zhu, A.X. Scholten, T. 2010. The ConMap approach for terrain-based digital soil mapping. European Journal of Soil Science, v. 61, p.133-143.

  4. Automated thematic mapping and change detection of ERTS-A images. [digital interpretation of Arizona imagery

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.

  5. Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Knocke, Philip C.

    2007-01-01

    In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.

  6. Satellite remote sensing of landscape freeze/thaw state dynamics for complex Topography and Fire Disturbance Areas Using multi-sensor radar and SRTM digital elevation models

    NASA Technical Reports Server (NTRS)

    Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James

    2003-01-01

    We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.

  7. A Voronoi interior adjacency-based approach for generating a contour tree

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Qiao, Chaofei; Zhao, Renliang

    2004-05-01

    A contour tree is a good graphical tool for representing the spatial relations of contour lines and has found many applications in map generalization, map annotation, terrain analysis, etc. A new approach for generating contour trees by introducing a Voronoi-based interior adjacency set concept is proposed in this paper. The immediate interior adjacency set is employed to identify all of the children contours of each contour without contour elevations. It has advantages over existing methods such as the point-in-polygon method and the region growing-based method. This new approach can be used for spatial data mining and knowledge discovering, such as the automatic extraction of terrain features and construction of multi-resolution digital elevation model.

  8. Path Loss Prediction Over the Lunar Surface Utilizing a Modified Longley-Rice Irregular Terrain Model

    NASA Technical Reports Server (NTRS)

    Foore, Larry; Ida, Nathan

    2007-01-01

    This study introduces the use of a modified Longley-Rice irregular terrain model and digital elevation data representative of an analogue lunar site for the prediction of RF path loss over the lunar surface. The results are validated by theoretical models and past Apollo studies. The model is used to approximate the path loss deviation from theoretical attenuation over a reflecting sphere. Analysis of the simulation results provides statistics on the fade depths for frequencies of interest, and correspondingly a method for determining the maximum range of communications for various coverage confidence intervals. Communication system engineers and mission planners are provided a link margin and path loss policy for communication frequencies of interest.

  9. Scoping of Flood Hazard Mapping Needs for Merrimack County, New Hampshire

    DTIC Science & Technology

    2006-01-01

    DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle DTM Digital Terrain Model FBFM Flood Boundary and Floodway Map FEMA Federal...discussed available data and coverages within New Hampshire (for example, 2003 National Agriculture Imag- ery Program (NAIP) color Digital Orthophoto ... orthophotos providing improved base map accuracy. NH GRANIT is presently converting the standard, paper FIRMs and Flood Boundary and Floodway maps (FBFMs

  10. A portfolio of products from the rapid terrain visualization interferometric SAR

    NASA Astrophysics Data System (ADS)

    Bickel, Douglas L.; Doerry, Armin W.

    2007-04-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor was built by Sandia National Laboratories for the Joint Programs Sustainment and Development (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieved better than HRTe Level IV position accuracy in near real-time. The system was flown on a deHavilland DHC-7 Army aircraft. This paper presents a collection of images and data products from the Rapid Terrain Visualization interferometric synthetic aperture radar. The imagery includes orthorectified images and DEMs from the RTV interferometric SAR radar.

  11. Integration of radar altimeter, precision navigation, and digital terrain data for low-altitude flight

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.

    1992-01-01

    A Kalman filter for the integration of a radar altimeter into a terrain database-dependent guidance system was developed. Results obtained from a low-altitude helicopter flight test data acquired over moderately rugged terrain showed that the proposed Kalman filter removes large disparities in predicted above-ground-level (AGL) altitude in the presence of measurement anomalies and dropouts. Integration of a radar altimeter makes it possible to operate a near-terrain guidance system at or below 50 ft (subject to obstacle-avoidance limitations), whereas without radar altimeter integration, a minimum clearance altitude of 220 AGL is needed, as is suggested by previous work.

  12. Topographic controls on overland flow generation in a forest - An ensemble tree approach

    NASA Astrophysics Data System (ADS)

    Loos, Martin; Elsenbeer, Helmut

    2011-10-01

    SummaryOverland flow is an important hydrological pathway in many forests of the humid tropics. Its generation is subject to topographic controls at differing spatial scales. Our objective was to identify such controls on the occurrence of overland flow in a lowland tropical rainforest. To this end, we installed 95 overland flow detectors (OFDs) in four nested subcatchments of the Lutzito catchment on Barro Colorado Island, Panama, and monitored the frequency of overland flow occurrence during 18 rainfall events at each OFD location temporal frequency. For each such location, we derived three non-digital terrain attributes and 17 digital ones, of which 15 were based on Digital Elevation Models (DEMs) of three different resolutions. These attributes then served as input into a Random Forest ensemble tree model to elucidate the importance and partial and joint dependencies of topographic controls for overland flow occurrence. Lutzito features a high median temporal frequency in overland flow occurrence of 0.421 among OFD locations. However, spatial temporal frequencies of overland flow occurrence vary strongly among these locations and the subcatchments of Lutzito catchment. This variability is best explained by (1) microtopography, (2) coarse terrain sloping and (3) various measures of distance-to-channel, with the contribution of all other terrain attributes being small. Microtopographic features such as concentrated flowlines and wash areas produce highest temporal frequencies, whereas the occurrence of overland flow drops sharply for flow distances and terrain sloping beyond certain threshold values. Our study contributes to understanding both the spatial controls on overland flow generation and the limitations of terrain attributes for the spatially explicit prediction of overland flow frequencies.

  13. Digital Storytelling Revisited: An Educator's Use of an Innovative Literacy Practice

    ERIC Educational Resources Information Center

    Shelby-Caffey, Crystal; Úbéda, Edwin; Jenkins, Bethany

    2014-01-01

    Digital storytelling has emerged as an innovative practice that allows students deeper engagement with content while encouraging the use of critical thinking and technological skills needed to navigate the ever changing digital terrain of the 21st century. The integration of traditional and new literacy practices is evident throughout the process…

  14. Incremental terrain processing for large digital elevation models

    NASA Astrophysics Data System (ADS)

    Ye, Z.

    2012-12-01

    Incremental terrain processing for large digital elevation models Zichuan Ye, Dean Djokic, Lori Armstrong Esri, 380 New York Street, Redlands, CA 92373, USA (E-mail: zye@esri.com, ddjokic@esri.com , larmstrong@esri.com) Efficient analyses of large digital elevation models (DEM) require generation of additional DEM artifacts such as flow direction, flow accumulation and other DEM derivatives. When the DEMs to analyze have a large number of grid cells (usually > 1,000,000,000) the generation of these DEM derivatives is either impractical (it takes too long) or impossible (software is incapable of processing such a large number of cells). Different strategies and algorithms can be put in place to alleviate this situation. This paper describes an approach where the overall DEM is partitioned in smaller processing units that can be efficiently processed. The processed DEM derivatives for each partition can then be either mosaicked back into a single large entity or managed on partition level. For dendritic terrain morphologies, the way in which partitions are to be derived and the order in which they are to be processed depend on the river and catchment patterns. These patterns are not available until flow pattern of the whole region is created, which in turn cannot be established upfront due to the size issues. This paper describes a procedure that solves this problem: (1) Resample the original large DEM grid so that the total number of cells is reduced to a level for which the drainage pattern can be established. (2) Run standard terrain preprocessing operations on the resampled DEM to generate the river and catchment system. (3) Define the processing units and their processing order based on the river and catchment system created in step (2). (4) Based on the processing order, apply the analysis, i.e., flow accumulation operation to each of the processing units, at the full resolution DEM. (5) As each processing unit is processed based on the processing order defined in (3), compare the resulting drainage pattern with the drainage pattern established at the coarser scale and adjust the drainage boundaries and rivers if necessary.

  15. The SKYTOWER and SKYMOBILE programs for locating and designing skyline harvest units.

    Treesearch

    R.H. Twito; R.J. McGaughey; S.E. Reutebuch

    1988-01-01

    PLANS, a software package for integrated timber-harvest planning, uses digital terrain models to provide the topographic data needed to fit harvest and transportation designs to specific terrain. SKYTOWER and SKYMOBILE are integral programs in the PLANS package and are used to design the timber-harvest units for skyline systems. SKYTOWER determines skyline payloads and...

  16. Glaciated valleys in Europe and western Asia

    PubMed Central

    Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar

    2015-01-01

    In recent years, remote sensing, morphometric analysis, and other computational concepts and tools have invigorated the field of geomorphological mapping. Automated interpretation of digital terrain data based on impartial rules holds substantial promise for large dataset processing and objective landscape classification. However, the geomorphological realm presents tremendous complexity and challenges in the translation of qualitative descriptions into geomorphometric semantics. Here, the simple, conventional distinction of V-shaped fluvial and U-shaped glacial valleys was analyzed quantitatively using multi-scale curvature and a novel morphometric variable termed Difference of Minimum Curvature (DMC). We used this automated terrain analysis approach to produce a raster map at a scale of 1:6,000,000 showing the distribution of glaciated valleys across Europe and western Asia. The data set has a cell size of 3 arc seconds and consists of more than 40 billion grid cells. Glaciated U-shaped valleys commonly associated with erosion by warm-based glaciers are abundant in the alpine regions of mid Europe and western Asia but also occur at the margins of mountain ice sheets in Scandinavia. The high-level correspondence with field mapping and the fully transferable semantics validate this approach for automated analysis of yet unexplored terrain around the globe and qualify for potential applications on other planetary bodies like Mars. PMID:27019665

  17. Digital image transformation and rectification of spacecraft and radar images

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  18. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  19. Evaluating planetary digital terrain models-The HRSC DTM test

    USGS Publications Warehouse

    Heipke, C.; Oberst, J.; Albertz, J.; Attwenger, M.; Dorninger, P.; Dorrer, E.; Ewe, M.; Gehrke, S.; Gwinner, K.; Hirschmuller, H.; Kim, J.R.; Kirk, R.L.; Mayer, H.; Muller, Jan-Peter; Rengarajan, R.; Rentsch, M.; Schmidt, R.; Scholten, F.; Shan, J.; Spiegel, M.; Wahlisch, M.; Neukum, G.

    2007-01-01

    The High Resolution Stereo Camera (HRSC) has been orbiting the planet Mars since January 2004 onboard the European Space Agency (ESA) Mars Express mission and delivers imagery which is being used for topographic mapping of the planet. The HRSC team has conducted a systematic inter-comparison of different alternatives for the production of high resolution digital terrain models (DTMs) from the multi look HRSC push broom imagery. Based on carefully chosen test sites the test participants have produced DTMs which have been subsequently analysed in a quantitative and a qualitative manner. This paper reports on the results obtained in this test. ?? 2007 Elsevier Ltd. All rights reserved.

  20. Identifying opportune landing sites in degraded visual environments with terrain and cultural databases

    NASA Astrophysics Data System (ADS)

    Moody, Marc; Fisher, Robert; Little, J. Kristin

    2014-06-01

    Boeing has developed a degraded visual environment navigational aid that is flying on the Boeing AH-6 light attack helicopter. The navigational aid is a two dimensional software digital map underlay generated by the Boeing™ Geospatial Embedded Mapping Software (GEMS) and fully integrated with the operational flight program. The page format on the aircraft's multi function displays (MFD) is termed the Approach page. The existing work utilizes Digital Terrain Elevation Data (DTED) and OpenGL ES 2.0 graphics capabilities to compute the pertinent graphics underlay entirely on the graphics processor unit (GPU) within the AH-6 mission computer. The next release will incorporate cultural databases containing Digital Vertical Obstructions (DVO) to warn the crew of towers, buildings, and power lines when choosing an opportune landing site. Future IRAD will include Light Detection and Ranging (LIDAR) point cloud generating sensors to provide 2D and 3D synthetic vision on the final approach to the landing zone. Collision detection with respect to terrain, cultural, and point cloud datasets may be used to further augment the crew warning system. The techniques for creating the digital map underlay leverage the GPU almost entirely, making this solution viable on most embedded mission computing systems with an OpenGL ES 2.0 capable GPU. This paper focuses on the AH-6 crew interface process for determining a landing zone and flying the aircraft to it.

  1. Self-position estimation using terrain shadows for precise planetary landing

    NASA Astrophysics Data System (ADS)

    Kuga, Tomoki; Kojima, Hirohisa

    2018-07-01

    In recent years, the investigation of moons and planets has attracted increasing attention in several countries. Furthermore, recently developed landing systems are now expected to reach more scientifically interesting areas close to hazardous terrain, requiring precise landing capabilities within a 100 m range of the target point. To achieve this, terrain-relative navigation (capable of estimating the position of a lander relative to the target point on the ground surface is actively being studied as an effective method for achieving highly accurate landings. This paper proposes a self-position estimation method using shadows on the terrain based on edge extraction from image processing algorithms. The effectiveness of the proposed method is validated through numerical simulations using images generated from a digital elevation model of simulated terrains.

  2. Terrain type recognition using ERTS-1 MSS images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N.

    1973-01-01

    For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.

  3. A terrain based simulation system to predict the interference caused by networks of spread spectrum systems

    NASA Astrophysics Data System (ADS)

    Hagen, William E.; Holtzman, Julian C.

    The Army Terrain Integrated Interference Prediction System (ATIIPS), a CAD terrain based simulation tool for determining the degradation effects on a network on nonspread spectrum radios caused by a network of spread spectrum radios is presented. A brief overview of the program is given, with typical graphics displays shown. Typical results for both a link simulation of interference and for a network simulation, using a slow hopped FM/FSK spread spectrum interfering radio network on a narrow band FM/FSK fixed frequency digital radio are presented.

  4. Mars digital terrain model

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Howington, Annie-Elpis

    1987-01-01

    The Mars Digital Terrain Model (DTM) is the result of a new project to: (1) digitize the series of 1:2,000,000-scale topographic maps of Mars, which are being derived photogrammetically under a separate project, and (2) reformat the digital contour information into rasters of elevation that can be readily registered with the Digital Image Model (DIM) of Mars. Derivation of DTM's involves interpolation of elevation values into 1/64-degree resolution and transformation of them to a sinusoidal equal-area projection. Digital data are produced in blocks corresponding with the coordinates of the original 1:2,000,000-scale maps, i.e., the dimensions of each block in the equatorial belt are 22.5 deg of longitude and 15 deg of latitude. This DTM is not only compatible with the DIM, but it can also be registered with other data such as geologic units or gravity. It will be the most comprehensive record of topographic information yet compiled for the Martian surface. Once the DTM's are established, any enhancement of Mars topographic information made with updated data, such as data from the planned Mars Observer Mission, will be by mathematical transformation of the DTM's, eliminating the need for recompilation.

  5. Ground-Level Digital Terrain Model (DTM) Construction from Tandem-X InSAR Data and Worldview Stereo-Photogrammetric Images

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo, Temilola; Lagomasino, David; Osmanoglu, Batuhan; Feliciano, Emanuelle

    2016-01-01

    The ground-level digital elevation model (DEM) or digital terrain model (DTM) information are invaluable for environmental modeling, such as water dynamics in forests, canopy height, forest biomass, carbon estimation, etc. We propose to extract the DTM over forested areas from the combination of interferometric complex coherence from single-pass TanDEM-X (TDX) data at HH polarization and Digital Surface Model (DSM) derived from high-resolution WorldView (WV) image pair by means of random volume over ground (RVoG) model. The RVoG model is a widely and successfully used model for polarimetric SAR interferometry (Pol-InSAR) technique for vertical forest structure parameter retrieval [1][2][3][4]. The ground-level DEM have been obtained by complex volume decorrelation in the RVoG model with the DSM using stereo-photogrammetric technique. Finally, the airborne lidar data were used to validate the ground-level DEM and forest canopy height results.

  6. A Content Standard for Computational Models; Digital Rights Management (DRM) Architectures; A Digital Object Approach to Interoperable Rights Management: Finely-Grained Policy Enforcement Enabled by a Digital Object Infrastructure; LOCKSS: A Permanent Web Publishing and Access System; Tapestry of Time and Terrain.

    ERIC Educational Resources Information Center

    Hill, Linda L.; Crosier, Scott J.; Smith, Terrence R.; Goodchild, Michael; Iannella, Renato; Erickson, John S.; Reich, Vicky; Rosenthal, David S. H.

    2001-01-01

    Includes five articles. Topics include requirements for a content standard to describe computational models; architectures for digital rights management systems; access control for digital information objects; LOCKSS (Lots of Copies Keep Stuff Safe) that allows libraries to run Web caches for specific journals; and a Web site from the U.S.…

  7. Accuracy Assessment of Lidar-Derived Digital Terrain Model (dtm) with Different Slope and Canopy Cover in Tropical Forest Region

    NASA Astrophysics Data System (ADS)

    Salleh, M. R. M.; Ismail, Z.; Rahman, M. Z. A.

    2015-10-01

    Airborne Light Detection and Ranging (LiDAR) technology has been widely used recent years especially in generating high accuracy of Digital Terrain Model (DTM). High density and good quality of airborne LiDAR data promises a high quality of DTM. This study focussing on the analysing the error associated with the density of vegetation cover (canopy cover) and terrain slope in a LiDAR derived-DTM value in a tropical forest environment in Bentong, State of Pahang, Malaysia. Airborne LiDAR data were collected can be consider as low density captured by Reigl system mounted on an aircraft. The ground filtering procedure use adaptive triangulation irregular network (ATIN) algorithm technique in producing ground points. Next, the ground control points (GCPs) used in generating the reference DTM and these DTM was used for slope classification and the point clouds belong to non-ground are then used in determining the relative percentage of canopy cover. The results show that terrain slope has high correlation for both study area (0.993 and 0.870) with the RMSE of the LiDAR-derived DTM. This is similar to canopy cover where high value of correlation (0.989 and 0.924) obtained. This indicates that the accuracy of airborne LiDAR-derived DTM is significantly affected by terrain slope and canopy caver of study area.

  8. Algorithms and methodology used in constructing high-resolution terrain databases

    NASA Astrophysics Data System (ADS)

    Williams, Bryan L.; Wilkosz, Aaron

    1998-07-01

    This paper presents a top-level description of methods used to generate high-resolution 3D IR digital terrain databases using soft photogrammetry. The 3D IR database is derived from aerial photography and is made up of digital ground plane elevation map, vegetation height elevation map, material classification map, object data (tanks, buildings, etc.), and temperature radiance map. Steps required to generate some of these elements are outlined. The use of metric photogrammetry is discussed in the context of elevation map development; and methods employed to generate the material classification maps are given. The developed databases are used by the US Army Aviation and Missile Command to evaluate the performance of various missile systems. A discussion is also presented on database certification which consists of validation, verification, and accreditation procedures followed to certify that the developed databases give a true representation of the area of interest, and are fully compatible with the targeted digital simulators.

  9. Modelling topographic potential for erosion and deposition using GIS

    Treesearch

    Helena Mitasova; Louis R. Iverson

    1996-01-01

    Modelling of erosion and deposition in complex terrain within a geographical information system (GIS) requires a high resolution digital elevation model (DEM), reliable estimation of topographic parameters, and formulation of erosion models adequate for digital representation of spatially distributed parameters. Regularized spline with tension was integrated within a...

  10. Building a functional, integrated GIS/remote sensing resource analysis and planning system. [Utah

    NASA Technical Reports Server (NTRS)

    Ridd, M. K.; Wheeler, D. J.

    1985-01-01

    To be an effective tool for resource analysis and planning, a geographic information system (GIS) needs to be integrated with a digital remote sensing capability. To be truly functional, the paired system must be driven by grass roots local needs. A case study couched in a Soil Conservation District in northern Utah is presented. Agency representatives determined that the most fundamental data sets to be entered into the GIS system analysis system in the first round were: land use/land cover; geomorphic/soil unit data; hydrologic unit data; and digital terrain. The least expensive and best ways to obtain these data were determined. Data were acquired and formatted to enter the state's PRIME/ARC-INFO GIS, and are being interrogated for resource management decisions related to such issues as agricultural preservation, urban expansion, soil erosion control, and dam siting.

  11. Three-dimensional visualization of geographical terrain data using temporal parallax difference induction

    NASA Astrophysics Data System (ADS)

    Mayhew, Christopher A.; Mayhew, Craig M.

    2009-02-01

    Vision III Imaging, Inc. (the Company) has developed Parallax Image Display (PIDTM) software tools to critically align and display aerial images with parallax differences. Terrain features are rendered obvious to the viewer when critically aligned images are presented alternately at 4.3 Hz. The recent inclusion of digital elevation models in geographic data browsers now allows true three-dimensional parallax to be acquired from virtual globe programs like Google Earth. The authors have successfully developed PID methods and code that allow three-dimensional geographical terrain data to be visualized using temporal parallax differences.

  12. State-of-the-Art: DTM Generation Using Airborne LIDAR Data

    PubMed Central

    Chen, Ziyue; Gao, Bingbo; Devereux, Bernard

    2017-01-01

    Digital terrain model (DTM) generation is the fundamental application of airborne Lidar data. In past decades, a large body of studies has been conducted to present and experiment a variety of DTM generation methods. Although great progress has been made, DTM generation, especially DTM generation in specific terrain situations, remains challenging. This research introduces the general principles of DTM generation and reviews diverse mainstream DTM generation methods. In accordance with the filtering strategy, these methods are classified into six categories: surface-based adjustment; morphology-based filtering, triangulated irregular network (TIN)-based refinement, segmentation and classification, statistical analysis and multi-scale comparison. Typical methods for each category are briefly introduced and the merits and limitations of each category are discussed accordingly. Despite different categories of filtering strategies, these DTM generation methods present similar difficulties when implemented in sharply changing terrain, areas with dense non-ground features and complicated landscapes. This paper suggests that the fusion of multi-sources and integration of different methods can be effective ways for improving the performance of DTM generation. PMID:28098810

  13. Energetically optimal travel across terrain: visualizations and a new metric of geographic distance with anthropological applications

    NASA Astrophysics Data System (ADS)

    Wood, Brian M.; Wood, Zoë J.

    2006-01-01

    We present a visualization and computation tool for modeling the caloric cost of pedestrian travel across three dimensional terrains. This tool is being used in ongoing archaeological research that analyzes how costs of locomotion affect the spatial distribution of trails and artifacts across archaeological landscapes. Throughout human history, traveling by foot has been the most common form of transportation, and therefore analyses of pedestrian travel costs are important for understanding prehistoric patterns of resource acquisition, migration, trade, and political interaction. Traditionally, archaeologists have measured geographic proximity based on "as the crow flies" distance. We propose new methods for terrain visualization and analysis based on measuring paths of least caloric expense, calculated using well established metabolic equations. Our approach provides a human centered metric of geographic closeness, and overcomes significant limitations of available Geographic Information System (GIS) software. We demonstrate such path computations and visualizations applied to archaeological research questions. Our system includes tools to visualize: energetic cost surfaces, comparisons of the elevation profiles of shortest paths versus least cost paths, and the display of paths of least caloric effort on Digital Elevation Models (DEMs). These analysis tools can be applied to calculate and visualize 1) likely locations of prehistoric trails and 2) expected ratios of raw material types to be recovered at archaeological sites.

  14. Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas.

    PubMed

    Schenk, P M; McKinnon, W B; Gwynn, D; Moore, J M

    2001-03-01

    Large regions of the jovian moon Ganymede have been resurfaced, but the means has been unclear. Suggestions have ranged from volcanic eruptions of liquid water or solid ice to tectonic deformation, but definitive high-resolution morphological evidence has been lacking. Here we report digital elevation models of parts of the surface of Ganymede, derived from stereo pairs combining data from the Voyager and Galileo spacecraft, which reveal bright, smooth terrains that lie at roughly constant elevations 100 to 1,000 metres below the surrounding rougher terrains. These topographic data, together with new images that show fine-scale embayment and burial of older features, indicate that the smooth terrains were formed by flooding of shallow structural troughs by low-viscosity water-ice lavas. The oldest and most deformed areas (the 'reticulate' terrains) in general have the highest relative elevations, whereas units of the most common resurfaced type--the grooved terrain--lie at elevations between those of the smooth and reticulate terrains. Bright terrain, which accounts for some two-thirds of the surface, probably results from a continuum of processes, including crustal rifting, shallow flooding and groove formation. Volcanism plays an integral role in these processes, and is consistent with partial melting of Ganymede's interior.

  15. Point-based and model-based geolocation analysis of airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Sefercik, Umut Gunes; Buyuksalih, Gurcan; Jacobsen, Karsten; Alkan, Mehmet

    2017-01-01

    Airborne laser scanning (ALS) is one of the most effective remote sensing technologies providing precise three-dimensional (3-D) dense point clouds. A large-size ALS digital surface model (DSM) covering the whole Istanbul province was analyzed by point-based and model-based comprehensive statistical approaches. Point-based analysis was performed using checkpoints on flat areas. Model-based approaches were implemented in two steps as strip to strip comparing overlapping ALS DSMs individually in three subareas and comparing the merged ALS DSMs with terrestrial laser scanning (TLS) DSMs in four other subareas. In the model-based approach, the standard deviation of height and normalized median absolute deviation were used as the accuracy indicators combined with the dependency of terrain inclination. The results demonstrate that terrain roughness has a strong impact on the vertical accuracy of ALS DSMs. From the relative horizontal shifts determined and partially improved by merging the overlapping strips and comparison of the ALS, and the TLS, data were found not to be negligible. The analysis of ALS DSM in relation to TLS DSM allowed us to determine the characteristics of the DSM in detail.

  16. Evaluation Digital Elevation Model Generated by Synthetic Aperture Radar Data

    NASA Astrophysics Data System (ADS)

    Makineci, H. B.; Karabörk, H.

    2016-06-01

    Digital elevation model, showing the physical and topographical situation of the earth, is defined a tree-dimensional digital model obtained from the elevation of the surface by using of selected an appropriate interpolation method. DEMs are used in many areas such as management of natural resources, engineering and infrastructure projects, disaster and risk analysis, archaeology, security, aviation, forestry, energy, topographic mapping, landslide and flood analysis, Geographic Information Systems (GIS). Digital elevation models, which are the fundamental components of cartography, is calculated by many methods. Digital elevation models can be obtained terrestrial methods or data obtained by digitization of maps by processing the digital platform in general. Today, Digital elevation model data is generated by the processing of stereo optical satellite images, radar images (radargrammetry, interferometry) and lidar data using remote sensing and photogrammetric techniques with the help of improving technology. One of the fundamental components of remote sensing radar technology is very advanced nowadays. In response to this progress it began to be used more frequently in various fields. Determining the shape of topography and creating digital elevation model comes the beginning topics of these areas. It is aimed in this work , the differences of evaluation of quality between Sentinel-1A SAR image ,which is sent by European Space Agency ESA and Interferometry Wide Swath imaging mode and C band type , and DTED-2 (Digital Terrain Elevation Data) and application between them. The application includes RMS static method for detecting precision of data. Results show us to variance of points make a high decrease from mountain area to plane area.

  17. Development of an Automatic Ground Collision Avoidance System Using a Digital Terrain Database

    DTIC Science & Technology

    1989-12-01

    release; distribution unlimited I I I I The purpose of this study was to develop a working control system that would perform automatic ground... control system analysis. I also wish to extend a hand of appreciation to my sponsor Mr. I Finley Barfield of the Flight Dynamics Laboratory for the use of...facilities, as- sistance in deciphering control law diagrams, and his expert knowledge of the F-16. Under the area of morale, I wish to thank all of my

  18. Bathymetric Terrain Model of the Puerto Rico Trench and the Northeastern Caribbean Region for Marine Geological Investigations

    USGS Publications Warehouse

    Andrews, Brian D.; ten Brink, Uri S.; Danforth, William W.; Chaytor, Jason D.; Granja-Bruna, J; Carbo-Gorosabel, A

    2014-01-01

    Multibeam bathymetry data collected in the Puerto Rico Trench and Northeast Caribbean region are compiled into a seamless bathymetric terrain model for broad-scale geological investigations of the trench system. These data, collected during eight separate surveys between 2002 and 2013, covering almost 180,000 square kilometers are published here in large format map sheet and digital spatial data. This report describes the common multibeam data collection, and processing methods used to produce the bathymetric terrain model and corresponding data source polygon. Details documenting the complete provenance of the data are also provided in the metadata in the Data Catalog section.

  19. A Refinement of the McMillen (1988) Recursive Digital Filter for the Analysis of Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Falocchi, Marco; Giovannini, Lorenzo; Franceschi, Massimiliano de; Zardi, Dino

    2018-05-01

    We present a refinement of the recursive digital filter proposed by McMillen (Boundary-Layer Meteorol 43:231-245, 1988), for separating surface-layer turbulence from low-frequency fluctuations affecting the mean flow, especially over complex terrain. In fact, a straightforward application of the filter causes both an amplitude attenuation and a forward phase shift in the filtered signal. As a consequence turbulence fluctuations, evaluated as the difference between the original series and the filtered one, as well as higher-order moments calculated from them, may be affected by serious inaccuracies. The new algorithm (i) produces a rigorous zero-phase filter, (ii) restores the amplitude of the low-frequency signal, and (iii) corrects all filter-induced signal distortions.

  20. The "Vernacularization" of Global Education Policy: Media and Digital Literacy as Twenty-First Century Skills in Singapore

    ERIC Educational Resources Information Center

    Weninger, Csilla

    2017-01-01

    Technological changes have reshaped communication, social life as well as the conditions of work, challenging schools to foster skills and capacities that help youth to competently and confidently navigate these new socio-technological terrains as workers, citizens and private individuals. Responding to these changes, media and digital literacy…

  1. Three-dimensional information extraction from GaoFen-1 satellite images for landslide monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Shixin; Yang, Baolin; Zhou, Yi; Wang, Futao; Zhang, Rui; Zhao, Qing

    2018-05-01

    To more efficiently use GaoFen-1 (GF-1) satellite images for landslide emergency monitoring, a Digital Surface Model (DSM) can be generated from GF-1 across-track stereo image pairs to build a terrain dataset. This study proposes a landslide 3D information extraction method based on the terrain changes of slope objects. The slope objects are mergences of segmented image objects which have similar aspects; and the terrain changes are calculated from the post-disaster Digital Elevation Model (DEM) from GF-1 and the pre-disaster DEM from GDEM V2. A high mountain landslide that occurred in Wenchuan County, Sichuan Province is used to conduct a 3D information extraction test. The extracted total area of the landslide is 22.58 ha; the displaced earth volume is 652,100 m3; and the average sliding direction is 263.83°. The accuracies of them are 0.89, 0.87 and 0.95, respectively. Thus, the proposed method expands the application of GF-1 satellite images to the field of landslide emergency monitoring.

  2. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    PubMed

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.

  3. A compressed sensing method with analytical results for lidar feature classification

    NASA Astrophysics Data System (ADS)

    Allen, Josef D.; Yuan, Jiangbo; Liu, Xiuwen; Rahmes, Mark

    2011-04-01

    We present an innovative way to autonomously classify LiDAR points into bare earth, building, vegetation, and other categories. One desirable product of LiDAR data is the automatic classification of the points in the scene. Our algorithm automatically classifies scene points using Compressed Sensing Methods via Orthogonal Matching Pursuit algorithms utilizing a generalized K-Means clustering algorithm to extract buildings and foliage from a Digital Surface Models (DSM). This technology reduces manual editing while being cost effective for large scale automated global scene modeling. Quantitative analyses are provided using Receiver Operating Characteristics (ROC) curves to show Probability of Detection and False Alarm of buildings vs. vegetation classification. Histograms are shown with sample size metrics. Our inpainting algorithms then fill the voids where buildings and vegetation were removed, utilizing Computational Fluid Dynamics (CFD) techniques and Partial Differential Equations (PDE) to create an accurate Digital Terrain Model (DTM) [6]. Inpainting preserves building height contour consistency and edge sharpness of identified inpainted regions. Qualitative results illustrate other benefits such as Terrain Inpainting's unique ability to minimize or eliminate undesirable terrain data artifacts.

  4. Assessing land leveling needs and performance with unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Enciso, Juan; Jung, Jinha; Chang, Anjin; Chavez, Jose Carlos; Yeom, Junho; Landivar, Juan; Cavazos, Gabriel

    2018-01-01

    Land leveling is the initial step for increasing irrigation efficiencies in surface irrigation systems. The objective of this paper was to evaluate potential utilization of an unmanned aerial system (UAS) equipped with a digital camera to map ground elevations of a grower's field and compare them with field measurements. A secondary objective was to use UAS data to obtain a digital terrain model before and after land leveling. UAS data were used to generate orthomosaic images and three-dimensional (3-D) point cloud data by applying the structure for motion algorithm to the images. Ground control points (GCPs) were established around the study area, and they were surveyed using a survey grade dual-frequency GPS unit for accurate georeferencing of the geospatial data products. A digital surface model (DSM) was then generated from the 3-D point cloud data before and after laser leveling to determine the topography before and after the leveling. The UAS-derived DSM was compared with terrain elevation measurements acquired from land surveying equipment for validation. Although 0.3% error or root mean square error of 0.11 m was observed between UAS derived and ground measured ground elevation data, the results indicated that UAS could be an efficient method for determining terrain elevation with an acceptable accuracy when there are no plants on the ground, and it can be used to assess the performance of a land leveling project.

  5. Digital Terrain from a Two-Step Segmentation and Outlier-Based Algorithm

    NASA Astrophysics Data System (ADS)

    Hingee, Kassel; Caccetta, Peter; Caccetta, Louis; Wu, Xiaoliang; Devereaux, Drew

    2016-06-01

    We present a novel ground filter for remotely sensed height data. Our filter has two phases: the first phase segments the DSM with a slope threshold and uses gradient direction to identify candidate ground segments; the second phase fits surfaces to the candidate ground points and removes outliers. Digital terrain is obtained by a surface fit to the final set of ground points. We tested the new algorithm on digital surface models (DSMs) for a 9600km2 region around Perth, Australia. This region contains a large mix of land uses (urban, grassland, native forest and plantation forest) and includes both a sandy coastal plain and a hillier region (elevations up to 0.5km). The DSMs are captured annually at 0.2m resolution using aerial stereo photography, resulting in 1.2TB of input data per annum. Overall accuracy of the filter was estimated to be 89.6% and on a small semi-rural subset our algorithm was found to have 40% fewer errors compared to Inpho's Match-T algorithm.

  6. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature

    NASA Astrophysics Data System (ADS)

    Iwahashi, Junko; Pike, Richard J.

    2007-05-01

    An iterative procedure that implements the classification of continuous topography as a problem in digital image-processing automatically divides an area into categories of surface form; three taxonomic criteria-slope gradient, local convexity, and surface texture-are calculated from a square-grid digital elevation model (DEM). The sequence of programmed operations combines twofold-partitioned maps of the three variables converted to greyscale images, using the mean of each variable as the dividing threshold. To subdivide increasingly subtle topography, grid cells sloping at less than mean gradient of the input DEM are classified by designating mean values of successively lower-sloping subsets of the study area (nested means) as taxonomic thresholds, thereby increasing the number of output categories from the minimum 8 to 12 or 16. Program output is exemplified by 16 topographic types for the world at 1-km spatial resolution (SRTM30 data), the Japanese Islands at 270 m, and part of Hokkaido at 55 m. Because the procedure is unsupervised and reflects frequency distributions of the input variables rather than pre-set criteria, the resulting classes are undefined and must be calibrated empirically by subsequent analysis. Maps of the example classifications reflect physiographic regions, geological structure, and landform as well as slope materials and processes; fine-textured terrain categories tend to correlate with erosional topography or older surfaces, coarse-textured classes with areas of little dissection. In Japan the resulting classes approximate landform types mapped from airphoto analysis, while in the Americas they create map patterns resembling Hammond's terrain types or surface-form classes; SRTM30 output for the United States compares favorably with Fenneman's physical divisions. Experiments are suggested for further developing the method; the Arc/Info AML and the map of terrain classes for the world are available as online downloads.

  7. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature

    USGS Publications Warehouse

    Iwahashi, J.; Pike, R.J.

    2007-01-01

    An iterative procedure that implements the classification of continuous topography as a problem in digital image-processing automatically divides an area into categories of surface form; three taxonomic criteria-slope gradient, local convexity, and surface texture-are calculated from a square-grid digital elevation model (DEM). The sequence of programmed operations combines twofold-partitioned maps of the three variables converted to greyscale images, using the mean of each variable as the dividing threshold. To subdivide increasingly subtle topography, grid cells sloping at less than mean gradient of the input DEM are classified by designating mean values of successively lower-sloping subsets of the study area (nested means) as taxonomic thresholds, thereby increasing the number of output categories from the minimum 8 to 12 or 16. Program output is exemplified by 16 topographic types for the world at 1-km spatial resolution (SRTM30 data), the Japanese Islands at 270??m, and part of Hokkaido at 55??m. Because the procedure is unsupervised and reflects frequency distributions of the input variables rather than pre-set criteria, the resulting classes are undefined and must be calibrated empirically by subsequent analysis. Maps of the example classifications reflect physiographic regions, geological structure, and landform as well as slope materials and processes; fine-textured terrain categories tend to correlate with erosional topography or older surfaces, coarse-textured classes with areas of little dissection. In Japan the resulting classes approximate landform types mapped from airphoto analysis, while in the Americas they create map patterns resembling Hammond's terrain types or surface-form classes; SRTM30 output for the United States compares favorably with Fenneman's physical divisions. Experiments are suggested for further developing the method; the Arc/Info AML and the map of terrain classes for the world are available as online downloads. ?? 2006 Elsevier B.V. All rights reserved.

  8. Analysis of Solar Potential of Roofs Based on Digital Terrain Model

    NASA Astrophysics Data System (ADS)

    Gorički, M.; Poslončec-Petrić, V.; Frangeš, S.; Bačić, Ž.

    2017-09-01

    One of the basic goals of the smart city concept is to create a high-quality environment that is long sustainable and economically justifiable. The priority and concrete goal today is to promote and provide sustainable sources of energy (SSE). Croatia is rich with sun energy and as one of the sunniest European countries, it has a huge insufficiently used solar potential at its disposal. The paper describes the procedure of analysing the solar potential of a pilot area Sveti Križ Začretje by means of digital surface model (DSM) and based on the data available in the Meteorological and Hydrological Service of the Republic of Croatia. Although a more detailed analysis would require some additional factors, it is clear that the installation of 19,6m2 of solar panels in each household could cover annual requirements of the household in the analysed area, the locality Sveti Križ Začretje.

  9. Society of Flight Test Engineers, Annual Symposium, 21st, Garden Grove, CA, Aug. 6-10, 1990, Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The present conference on flight testing encompasses avionics, flight-testing programs, technologies for flight-test predictions and measurements, testing tools, analysis methods, targeting techniques, and flightline testing. Specific issues addressed include flight testing of a digital terrain-following system, a digital Doppler rate-of-descent indicator, a high-technology testbed, a low-altitude air-refueling flight-test program, techniques for in-flight frequency-response testing for helicopters, limit-cycle oscillation and flight-flutter testing, and the research flight test of a scaled unmanned air vehicle. Also addressed are AV-8B V/STOL performance analysis, incorporating pilot-response time in failure-case testing, the development of pitot static flightline testing, targeting techniques for ground-based hover testing, a low-profilemore » microsensor for aerodynamic pressure measurement, and the use of a variable-capacitance accelerometer for flight-test measurements.« less

  10. Fractal Analysis of Drainage Basins on Mars

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.

    2002-01-01

    We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.

  11. Computer processing of Mars Odyssey THEMIS IR imaging, MGS MOLA altimetry and Mars Express stereo imaging to locate Airy-0, the Mars prime meridian reference

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Neukum, Gerhard; Smith, David E.; Christensen, Philip; Neumann, Gregory; Albee, Arden; Caplinger, Michael; Seregina, N. V.; Kirk, Randolph L.

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses were made in year 2000 to tie Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to improve the location accuracy of Airy-0. Based upon this tie and radiometric tracking of landers / rovers from earth, new expressions for the Mars spin axis direction, spin rate and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Now that the Mars Global Surveyor mission and the Mars Orbiter Laser Altimeter global digital terrain model are complete, a more exhaustive study has been performed to determine the location of Airy-0 relative to the global terrain grid. THEMIS IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be within 50 meters of the currently defined IAU prime meridian, with this offset at the limiting absolute accuracy of the global terrain grid. Additional outputs of this study were a controlled multi-band photomosaic of Airy, precision alignment and geometric models of the ten THEMIS IR bands and a controlled multi-band photomosaic of Gale crater used to validate the Mars Surface Laboratory operational map products supporting their successful landing on Mars.

  12. Orthographic Stereo Correlator on the Terrain Model for Apollo Metric Images

    NASA Technical Reports Server (NTRS)

    Kim, Taemin; Husmann, Kyle; Moratto, Zachary; Nefian, Ara V.

    2011-01-01

    A stereo correlation method on the object domain is proposed to generate the accurate and dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce high-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. Given camera parameters of an image pair from bundle adjustment in ASP, a correlation window is defined on the terrain with the predefined surface normal of a post rather than image domain. The squared error of back-projected images on the local terrain is minimized with respect to the post elevation. This single dimensional optimization is solved efficiently and improves the accuracy of the elevation estimate.

  13. An application of the MPP to the interactive manipulation of stereo images of digital terrain models

    NASA Technical Reports Server (NTRS)

    Pol, Sanjay; Mcallister, David; Davis, Edward

    1987-01-01

    Massively Parallel Processor algorithms were developed for the interactive manipulation of flat shaded digital terrain models defined over grids. The emphasis is on real time manipulation of stereo images. Standard graphics transformations are applied to a 128 x 128 grid of elevations followed by shading and a perspective projection to produce the right eye image. The surface is then rendered using a simple painter's algorithm for hidden surface removal. The left eye image is produced by rotating the surface 6 degs about the viewer's y axis followed by a perspective projection and rendering of the image as described above. The left and right eye images are then presented on a graphics device using standard stereo technology. Performance evaluations and comparisons are presented.

  14. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  15. Thermophysical modelling for high-resolution digital terrain models

    NASA Astrophysics Data System (ADS)

    Pelivan, I.

    2018-07-01

    A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavourable illumination conditions such as little-to-no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment, and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disc-integrated and disc-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.

  16. Thermophysical modeling for high-resolution digital terrain models

    NASA Astrophysics Data System (ADS)

    Pelivan, I.

    2018-04-01

    A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavorable illumination conditions such as little to no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disk-integrated and disk-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.

  17. Parallel-Processing Software for Correlating Stereo Images

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Deen, Robert; Mcauley, Michael; DeJong, Eric

    2007-01-01

    A computer program implements parallel- processing algorithms for cor relating images of terrain acquired by stereoscopic pairs of digital stereo cameras on an exploratory robotic vehicle (e.g., a Mars rove r). Such correlations are used to create three-dimensional computatio nal models of the terrain for navigation. In this program, the scene viewed by the cameras is segmented into subimages. Each subimage is assigned to one of a number of central processing units (CPUs) opera ting simultaneously.

  18. Program Merges SAR Data on Terrain and Vegetation Heights

    NASA Technical Reports Server (NTRS)

    Siqueira, Paul; Hensley, Scott; Rodriguez, Ernesto; Simard, Marc

    2007-01-01

    X/P Merge is a computer program that estimates ground-surface elevations and vegetation heights from multiple sets of data acquired by the GeoSAR instrument [a terrain-mapping synthetic-aperture radar (SAR) system that operates in the X and bands]. X/P Merge software combines data from X- and P-band digital elevation models, SAR backscatter magnitudes, and interferometric correlation magnitudes into a simplified set of output topographical maps of ground-surface elevation and tree height.

  19. An Integrated Bathymetric and Topographic Digital Terrain Model of the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Alm, G.; Macnab, R.; Jakobsson, M.; Kleman, J.; McCracken, M.

    2002-12-01

    Currently, the International Bathymetric Chart of the Arctic Ocean (IBCAO) [Jakobsson et al. 2000], contains the most up-to-date digital bathymetric model of the entire Canadian Arctic Archipelago. IBCAO is a seamless bathymetric/topographic Digital Terrain Model (DTM) that incorporates three primary data sets: all available bathymetric data at the time of compilation; the US Geological Survey GTOPO30 topographic data; and the World Vector Shoreline for coastline representation. The horizontal grid cell size is 2.5 x 2.5 km on a Polar Stereographic projection, which is adequate for regional visualization and analysis, but which may not be sufficient for certain geoscientific and oceanographic applications. However, the database that was constructed during the IBCAO project holds bathymetric data of a high quality throughout most of the Canadian Arctic Archipelago, justifying a compilation resolution that is better than 2.5 x 2.5 km. This data is primarily from historical hydrographic surveys that were carried out by the Canadian Hydrographic Survey (CHS). The construction of a higher resolution bathymetry/topography DTM of the Canadian Arctic Archipelago (complete with an error estimation of interpolated grid cells) requires a consideration of historical metadata which contains detailed descriptions of horizontal and vertical datums, positioning systems, and the depth sounding systems that were deployed during individual surveys. A significant portion of this metadata does not exist in digital form; it was not available during the IBCAO compilation, although due to the relatively low resolution of the original DTM (2.5 x 2.5 km), its absence was considered a lesser problem. We have performed "data detective" work and have extracted some of the more crucial metadata from CHS archives and are thus able to present a preliminary version of a seamless Digital Terrain Model of the Canadian Arctic Archipelago. This represents a significant improvement over the original IBCAO DTM in this area. The use of a merged seamless bathymetry/topography model substantially facilitates the overlay and incorporation of other spatially referenced geological and geophysical datasets. For example, one intended use of the model is to merge the results from the mapping of regional glacial morphology features, in order to further address the glacial history of the region. Jakobsson, M., Cherkis, N., Woodward, J., Coakley, B., and Macnab, R., 2000, A new grid of Arctic bathymetry: A significant resource for scientists and mapmakers, EOS Transactions, American Geophysical Union, v. 81, no. 9, p. 89, 93, 96.

  20. Citizen Science in Digital Worlds: The Seduction of a Temporary Escape or a Lifelong Pursuit?

    ERIC Educational Resources Information Center

    Tippins, Deborah J.; Jensen, Lucas John

    2012-01-01

    There is a vast terrain of emerging research that explores recent innovations in digital games, particularly as they relate to questions of teaching and learning science. One such game, "Citizen Science", was developed to teach players about the practice of citizen science as well as lake ecology. Citizen science is a pedagogy that has a long…

  1. A New Era in Geodesy and Cartography: Implications for Landing Site Operations

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.

    2001-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global dataset has ushered in a new era for Mars local and global geodesy and cartography. These data include the global digital terrain model (Digital Terrain Model (DTM) radii), the global digital elevation model (Digital Elevation Model (DEM) elevation with respect to the geoid), and the higher spatial resolution individual MOLA ground tracks. Currently there are about 500,000,000 MOLA points and this number continues to grow as MOLA continues successful operations in orbit about Mars, the combined processing of radiometric X-band Doppler and ranging tracking of MGS together with millions of MOLA orbital crossover points has produced global geodetic and cartographic control having a spatial (latitude/longitude) accuracy of a few meters and a topographic accuracy of less than 1 meter. This means that the position of an individual MOLA point with respect to the center-of-mass of Mars is know to an absolute accuracy of a few meters. The positional accuracy of this point in inertial space over time is controlled by the spin rate uncertainty of Mars which is less than 1 km over 10 years that will be improved significantly with the next landed mission.

  2. Digital image transformation and rectification of spacecraft and radar images

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.

  3. Comparing Digital Flood Insurance Rate Maps (DFIRMs) to Interferometric Synthetic Aperture Radar (IFSAR) Products

    DTIC Science & Technology

    2000-09-01

    specifications and procedures call for the use of Digital Orthophoto Quarter Quadrangles (DOQs) produced by the USGS to be the default base map if...egm96.html (14 September 2000). USGS. “Digital Orthophoto Quadrangles”, http://www-wmc.wr.usgs.gov/doq (7 November 2000). United States Naval...Technologies Inc. Global Terrain Metadata File (DEM) File Creation date: Wednesday, June 02, 1999 Tile Identifier #: GT1N36W075H8V1.bil Project Area

  4. Zero Feet Away: The Digital Geography of Gay Social Media.

    PubMed

    Roth, Yoel

    2016-01-01

    For this contribution to the "Cartographies" section of the special issue on "Mapping Queer Bioethics," the author focuses on the terrains of digital media, geosocial networking, and sexually based social media in LGBT communities. Addressing the communal potentials and ethical complications of geosocial connections made possible by such sexually based social media, the author asks whether digital forms of cartography via applications such as Grindr and Scruff simplify, complicate, or merely expose historically longstanding notions of queer interconnectivity.

  5. Application of terrestrial photogrammetry for the mass balance calculation on Montasio Occidentale Glacier (Julian Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Carturan, Luca; Calligaro, Simone; Blasone, Giacomo; Guarnieri, Alberto; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio

    2014-05-01

    Digital elevation models (DEMs) of glaciated terrain are commonly used to measure changes in geometry and hence infer the mass balance of glaciers. Different tools and methods exist to obtain information about the 3D geometry of terrain. Recent improvements on the quality and performance of digital cameras for close-range photogrammetry, and the development of automatic digital photogrammetric processing makes the 'structure from motion' photogrammetric technique (SfM) competitive for high quality 3D models production, compared to efficient but also expensive and logistically-demanding survey technologies such as airborn and terrestrial laser scanner (TLS). The purpose of this work is to test the SfM approach, using a consumer-grade SLR camera and the low-cost computer vision-based software package Agisoft Photoscan (Agisoft LLC), to monitor the mass balance of Montasio Occidentale glacier, a 0.07km2, low-altitude, debris-covered glacier located in the Eastern Italian Alps. The quality of the 3D models produced by the SfM process has been assessed by comparison with digital terrain models obtained through TLS surveys carried out at the same dates. TLS technique has indeed proved to be very effective in determining the volume change of this glacier in the last years. Our results shows that the photogrammetric approach can produce point cloud densities comparable to those derived from TLS measurements. Furthermore, the horizontal and vertical accuracies are also of the same order of magnitude as for TLS (centimetric to decimetric). The effect of different landscape characteristics (e.g. distance from the camera or terrain gradient) and of different substrata (rock, debris, ice, snow and firn) was also evaluated in terms of SfM reconstruction's accuracy vs. TLS. Given the good results obtained on the Montasio Occidentale glacier, it can be concluded that the terrestrial photogrammetry, with the advantageous features of portability, ease of use and above all low costs, allows to obtain high-resolution DEMs which enable good mass balance estimations on glaciers with similar characteristics.

  6. The topography of Ceres and implications for the formation of linear surface structures

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Otto, K.; Ruesch, O.; Scully, J. E. C.; Williams, D. A.; Mest, S. C.; Schenk, P.; Jaumann, R.; Nathues, A.; Preusker, F.; Park, R. S.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    NASA's Dawn spacecraft began orbiting the dwarf planet Ceres in April 2015. Framing Camera data from the Approach (1.3 km/px) and Survey (415 m/px) orbits include digital terrain models derived from processing stereo images. These models have supported various scientific studies of the surface. The eastern hemisphere of Ceres is topographically higher than the western hemisphere. Some of linear structures on Ceres (which include grooves, pit crater chains, fractures and troughs) appear to be radial to the large basins Urvara and Yalode, and most likely formed due to impact processes. However, set of regional linear structures (RLS) that do not have any obvious relationship to impact craters are found on the eastern hemisphere topographic high region. Many of the longer RLS are comprised of smaller structures that have linked together, suggestive of en echelon fractures. Polygonal craters, theorized to form when pervasive subsurface fracturing affects crater formation [1], are widespread on Ceres [2], and those proximal to the RLS have straight crater rims aligned with the grooves and troughs, suggesting that the RLS are fracture systems. A cross-section of one RLS is displayed in FC images of the Occator crater wall. Comparing these images to the digital terrain models show 1) that the structure dips ~60º and 2) there is downward motion on the hanging wall, implying normal faulting. The digital terrain models also reveal the presence of numerous positive relief features with sub-circular shapes. These dome-like features have been tentatively interpreted as volcanic/magmatic features [3]; other possibilities include salt domes. Analog models of domal uplift in areas of regional extension [4] predict patterns of linear structures similar to those observed in the RLS near Occator. Utilizing topography data provided by the Ceres digital terrain models, we assess the relationship between the RLS and nearby domes and topographic high regions to determine the mechanism by which the RLS may have formed. [1] Thomas, P.C. et al. (1999) Icarus, doi: 10.1006/icar.1999.6121 [2] Otto et al. (2015) EPSC2015-284 [3] Ruesch et al. [this meeting] [4] Sims et al. (2013) AAPG Bulletin, doi: 10.1306/02101209136

  7. Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran.

    PubMed

    Mahmoudabadi, Ebrahim; Karimi, Alireza; Haghnia, Gholam Hosain; Sepehr, Adel

    2017-09-11

    Digital soil mapping has been introduced as a viable alternative to the traditional mapping methods due to being fast and cost-effective. The objective of the present study was to investigate the capability of the vegetation features and spectral indices as auxiliary variables in digital soil mapping models to predict soil properties. A region with an area of 1225 ha located in Bajgiran rangelands, Khorasan Razavi province, northeastern Iran, was chosen. A total of 137 sampling sites, each containing 3-5 plots with 10-m interval distance along a transect established based on randomized-systematic method, were investigated. In each plot, plant species names and numbers as well as vegetation cover percentage (VCP) were recorded, and finally one composite soil sample was taken from each transect at each site (137 soil samples in total). Terrain attributes were derived from a digital elevation model, different bands and spectral indices were obtained from the Landsat7 ETM+ images, and vegetation features were calculated in the plots, all of which were used as auxiliary variables to predict soil properties using artificial neural network, gene expression programming, and multivariate linear regression models. According to R 2 RMSE and MBE values, artificial neutral network was obtained as the most accurate soil properties prediction function used in scorpan model. Vegetation features and indices were more effective than remotely sensed data and terrain attributes in predicting soil properties including calcium carbonate equivalent, clay, bulk density, total nitrogen, carbon, sand, silt, and saturated moisture capacity. It was also shown that vegetation indices including NDVI, SAVI, MSAVI, SARVI, RDVI, and DVI were more effective in estimating the majority of soil properties compared to separate bands and even some soil spectral indices.

  8. The Use of Digital Terrain Model in the Study of Distribution of Cultural Landscape Elements based on the Example of Silesia Beskid

    NASA Astrophysics Data System (ADS)

    Sobala, Michał; Czajka, Barbara

    2012-01-01

    Digital Terrain Model (DTM) and maps based on it, are very valuable tool in investigations of distribution of cultural landscape elements. Connection DTM with a digital land cover maps, clearly illustrate factors determinate location of various landscape elements. The paper presents the applicability of Digital Terrain Model to detect the influence of topographic attributes on landscape elements distribution and to determinate the landscape's structure in the different altitudinal zones. Presented results, are the effect of the first phase of cultural landscape elements distribution research and they are starting point to look for other factors which could effect on structure of the landscape. Numeryczny model terenu i jego mapy pochodne stanowią bardzo cenne narzędzie badania rozmieszczenia elementów krajobrazu kulturowego. W połączeniu z cyfrową mapą pokrycia terenu, pozwalają na czytelne zobrazowanie czynników warunkujących lokalizację poszczególnych elementów krajobrazu oraz określenie ich znaczenia. W pracy przedstawiono możliwości zastosowania numerycznego modelu terenu do określenia wpływu wybranych atrybutów topograficznych na rozmieszczenie elementów krajobrazu kulturowego oraz do określenia jego struktury w poszczególnych strefach wysokościowych. Zwrócono uwagę, iż uzyskane za pomocą numerycznego modelu terenu wyniki są efektem jednego z etapów badania uwarunkowań rozmieszczenia elementów krajobrazu kulturowego i stanowią bazę wyjściową do poszukiwania innych czynników, które mogły wpływać na jego strukturę.

  9. A search for Ganymede stereo images and 3D mapping opportunities

    NASA Astrophysics Data System (ADS)

    Zubarev, A.; Nadezhdina, I.; Brusnikin, E.; Giese, B.; Oberst, J.

    2017-10-01

    We used 126 Voyager-1 and -2 as well as 87 Galileo images of Ganymede and searched for stereo images suitable for digital 3D stereo analysis. Specifically, we consider image resolutions, stereo angles, as well as matching illumination conditions of respective stereo pairs. Lists of regions and local areas with stereo coverage are compiled. We present anaglyphs and we selected areas, not previously discussed, for which we constructed Digital Elevation Models and associated visualizations. The terrain characteristics in the models are in agreement with our previous notion of Ganymede morphology, represented by families of lineaments and craters of various sizes and degradation stages. The identified areas of stereo coverage may serve as important reference targets for the Ganymede Laser Altimeter (GALA) experiment on the future JUICE (Jupiter Icy Moons Explorer) mission.

  10. A generalized adaptive mathematical morphological filter for LIDAR data

    NASA Astrophysics Data System (ADS)

    Cui, Zheng

    Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.

  11. Automated thematic mapping and change detection of ERTS-A images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In the first part of the investigation, spatial and spectral features were developed which were employed to automatically recognize terrain features through a clustering algorithm. In this part of the investigation, the size of the cell which is the number of digital picture elements used for computing the spatial and spectral features was varied. It was determined that the accuracy of terrain recognition decreases slowly as the cell size is reduced and coincides with increased cluster diffuseness. It was also proven that a cell size of 17 x 17 pixels when used with the clustering algorithm results in high recognition rates for major terrain classes. ERTS-1 data from five diverse geographic regions of the United States were processed through the clustering algorithm with 17 x 17 pixel cells. Simple land use maps were produced and the average terrain recognition accuracy was 82 percent.

  12. Development Considerations for the ICESat-2 ATL18 Terrain and Canopy Global Gridded Product

    NASA Astrophysics Data System (ADS)

    Pitts, K. L.; Neuenschwander, A. L.

    2016-12-01

    The ICESat-2 mission, expected to launch in late 2017 or early 2018, will provide estimates of terrain and canopy heights along the satellite ground track which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to mapping the distribution of above ground vegetation structure. Shortly after launch of ICESat-2, the Global Ecosystem Dynamics Investigation (GEDI) mission will be placed on the International Space Station (ISS) and will also derive terrain and canopy heights using laser altimetry for latitudes covered by the ISS. NASA's GEDI mission is designed to capture forest structure in densely covered regions over a period of 12-18 months. This study will present the factors required to produce a global gridded product that fuses information from both ICESat-2 and GEDI. The gridded values from ICESat-2 will be calculated from the along-track geodetic measurements of the terrain and relative canopy heights (ATL08), but considerations must be made on how best to combine ICESat-2 terrain and canopy height estimates with GEDI terrain and canopy height estimates. In particular, factors such as phenology, spatial and temporal resolution, surface interpolation methods, and error propagation are presented.

  13. Worlddem - a Novel Global Foundation Layer

    NASA Astrophysics Data System (ADS)

    Riegler, G.; Hennig, S. D.; Weber, M.

    2015-03-01

    Airbus Defence and Space's WorldDEM™ provides a global Digital Elevation Model of unprecedented quality, accuracy, and coverage. The product will feature a vertical accuracy of 2m (relative) and better than 6m (absolute) in a 12m x 12m raster. The accuracy will surpass that of any global satellite-based elevation model available. WorldDEM is a game-changing disruptive technology and will define a new standard in global elevation models. The German radar satellites TerraSAR-X and TanDEM-X form a high-precision radar interferometer in space and acquire the data basis for the WorldDEM. This mission is performed jointly with the German Aerospace Center (DLR). Airbus DS refines the Digital Surface Model (e.g. editing of acquisition, processing artefacts and water surfaces) or generates a Digital Terrain Model. Three product levels are offered: WorldDEMcore (output of the processing, no editing is applied), WorldDEM™ (guarantees a void-free terrain description and hydrological consistency) and WorldDEM DTM (represents bare Earth elevation). Precise elevation data is the initial foundation of any accurate geospatial product, particularly when the integration of multi-source imagery and data is performed based upon it. Fused data provides for improved reliability, increased confidence and reduced ambiguity. This paper will present the current status of product development activities including methodologies and tool to generate these, like terrain and water bodies editing and DTM generation. In addition, the studies on verification & validation of the WorldDEM products will be presented.

  14. Remote sensing applications for range management

    NASA Technical Reports Server (NTRS)

    Haas, R. H.

    1981-01-01

    The use of satellite information for range management is discussed. The use of infrared photography and color photography for analysis of vegetation cover is described. The methods of interpreting LANDSAT imagery are highlighted and possible applications of such interpretive methods to range management are considered. The concept of using LANDSAT as a sampling frame for renewable natural resource inventories was examined. It is concluded that a blending of LANDSAT vegetation data with soils and digital terrain data, will define a basic sampling unit that is appropriate for range management utilization.

  15. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    NASA Astrophysics Data System (ADS)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  16. Next-Generation NATO Reference Mobility Model (NG-NRMM)

    DTIC Science & Technology

    2016-05-11

    facilitate comparisons between vehicle design candidates and to assess the mobility of existing vehicles under specific scenarios. Although NRMM has...of different deployed platforms in different areas of operation and routes  Improved flexibility as a design and procurement support tool through...Element Method DEM Digital Elevation Model DIL Driver in the Loop DP Drawbar Pull Force DOE Design of Experiments DTED Digital Terrain Elevation Data

  17. California desert resource inventory using multispectral classification of digitally mosaicked Landsat frames

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Mcleod, R. G.; Zobrist, A. L.; Johnson, H. B.

    1979-01-01

    Procedures for adjustment of brightness values between frames and the digital mosaicking of Landsat frames to standard map projections are developed for providing a continuous data base for multispectral thematic classification. A combination of local terrain variations in the Californian deserts and a global sampling strategy based on transects provided the framework for accurate classification throughout the entire geographic region.

  18. Evaluating terrain based criteria for snow avalanche exposure ratings using GIS

    NASA Astrophysics Data System (ADS)

    Delparte, Donna; Jamieson, Bruce; Waters, Nigel

    2010-05-01

    Snow avalanche terrain in backcountry regions of Canada is increasingly being assessed based upon the Avalanche Terrain Exposure Scale (ATES). ATES is a terrain based classification introduced in 2004 by Parks Canada to identify "simple", "challenging" and "complex" backcountry areas. The ATES rating system has been applied to well over 200 backcountry routes, has been used in guidebooks, trailhead signs and maps and is part of the trip planning component of the AVALUATOR™, a simple decision-support tool for backcountry users. Geographic Information Systems (GIS) offers a means to model and visualize terrain based criteria through the use of digital elevation model (DEM) and land cover data. Primary topographic variables such as slope, aspect and curvature are easily derived from a DEM and are compatible with the equivalent evaluation criteria in ATES. Other components of the ATES classification are difficult to extract from a DEM as they are not strictly terrain based. An overview is provided of the terrain variables that can be generated from DEM and land cover data; criteria from ATES which are not clearly terrain based are identified for further study or revision. The second component of this investigation was the development of an algorithm for inputting suitable ATES criteria into a GIS, thereby mimicking the process avalanche experts use when applying the ATES classification to snow avalanche terrain. GIS based classifications were compared to existing expert assessments for validity. The advantage of automating the ATES classification process through GIS is to assist avalanche experts with categorizing and mapping remote backcountry terrain.

  19. Context-Based Urban Terrain Reconstruction from Uav-Videos for Geoinformation Applications

    NASA Astrophysics Data System (ADS)

    Bulatov, D.; Solbrig, P.; Gross, H.; Wernerus, P.; Repasi, E.; Heipke, C.

    2011-09-01

    Urban terrain reconstruction has many applications in areas of civil engineering, urban planning, surveillance and defense research. Therefore the needs of covering ad-hoc demand and performing a close-range urban terrain reconstruction with miniaturized and relatively inexpensive sensor platforms are constantly growing. Using (miniaturized) unmanned aerial vehicles, (M)UAVs, represents one of the most attractive alternatives to conventional large-scale aerial imagery. We cover in this paper a four-step procedure of obtaining georeferenced 3D urban models from video sequences. The four steps of the procedure - orientation, dense reconstruction, urban terrain modeling and geo-referencing - are robust, straight-forward, and nearly fully-automatic. The two last steps - namely, urban terrain modeling from almost-nadir videos and co-registration of models 6ndash; represent the main contribution of this work and will therefore be covered with more detail. The essential substeps of the third step include digital terrain model (DTM) extraction, segregation of buildings from vegetation, as well as instantiation of building and tree models. The last step is subdivided into quasi- intrasensorial registration of Euclidean reconstructions and intersensorial registration with a geo-referenced orthophoto. Finally, we present reconstruction results from a real data-set and outline ideas for future work.

  20. Toward a better integration of roughness in rockfall simulations - a sensitivity study with the RockyFor3D model

    NASA Astrophysics Data System (ADS)

    Monnet, Jean-Matthieu; Bourrier, Franck; Milenkovic, Milutin

    2017-04-01

    Advances in numerical simulation and analysis of real-size field experiments have supported the development of process-based rockfall simulation models. Availability of high resolution remote sensing data and high-performance computing now make it possible to implement them for operational applications, e.g. risk zoning and protection structure design. One key parameter regarding rock propagation is the surface roughness, sometimes defined as the variation in height perpendicular to the slope (Pfeiffer and Bowen, 1989). Roughness-related input parameters for rockfall models are usually determined by experts on the field. In the RockyFor3D model (Dorren, 2015), three values related to the distribution of obstacles (deposited rocks, stumps, fallen trees,... as seen from the incoming rock) relatively to the average slope are estimated. The use of high resolution digital terrain models (DTMs) questions both the scale usually adopted by experts for roughness assessment and the relevance of modeling hypotheses regarding the rock / ground interaction. Indeed, experts interpret the surrounding terrain as obstacles or ground depending on the overall visibility and on the nature of objects. Digital models represent the terrain with a certain amount of smoothing, depending on the sensor capacities. Besides, the rock rebound on the ground is modeled by changes in the velocities of the gravity center of the block due to impact. Thus, the use of a DTM with resolution smaller than the block size might have little relevance while increasing computational burden. The objective of this work is to investigate the issue of scale relevance with simulations based on RockyFor3D in order to derive guidelines for roughness estimation by field experts. First a sensitivity analysis is performed to identify the combinations of parameters (slope, soil roughness parameter, rock size) where the roughness values have a critical effect on rock propagation on a regular hillside. Second, a more complex hillside is simulated by combining three components: a) a global trend (planar surface), b) local systematic components (sine waves), c) random roughness (Gaussian, zero-mean noise). The parameters for simulating these components are estimated for three typical scenarios of rockfall terrains: soft soil, fine scree and coarse scree, based on expert knowledge and available airborne and terrestrial laser scanning data. For each scenario, the reference terrain is created and used to compute input data for RockyFor3D simulations at different scales, i.e. DTMs with resolutions from 0.5 m to 20 m and associated roughness parameters. Subsequent analysis mainly focuses on the sensitivity of simulations both in terms of run-out envelope and kinetic energy distribution. Guidelines drawn from the results are expected to help experts handle the scale issue while integrating remote sensing data and field measurements of roughness in rockfall simulations.

  1. Terrain-Moisture Classification Using GPS Surface-Reflected Signals

    NASA Technical Reports Server (NTRS)

    Grant, Michael S.; Acton, Scott T.; Katzberg, Stephen J.

    2006-01-01

    In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.

  2. Topographical Hill Shading Map Production Based Tianditu (map World)

    NASA Astrophysics Data System (ADS)

    Wang, C.; Zha, Z.; Tang, D.; Yang, J.

    2018-04-01

    TIANDITU (Map World) is the public version of National Platform for Common Geospatial Information Service, and the terrain service is an important channel for users on the platform. With the development of TIANDITU, topographical hill shading map production for providing and updating global terrain map on line becomes necessary for the characters of strong intuition, three-dimensional sense and aesthetic effect. As such, the terrain service of TIANDITU focuses on displaying the different scales of topographical data globally. And this paper mainly aims to research the method of topographical hill shading map production globally using DEM (Digital Elevation Model) data between the displaying scales about 1 : 140,000,000 to 1 : 4,000,000, corresponded the display level from 2 to 7 on TIANDITU website.

  3. Increasing the UAV data value by an OBIA methodology

    NASA Astrophysics Data System (ADS)

    García-Pedrero, Angel; Lillo-Saavedra, Mario; Rodriguez-Esparragon, Dionisio; Rodriguez-Gonzalez, Alejandro; Gonzalo-Martin, Consuelo

    2017-10-01

    Recently, there has been a noteworthy increment of using images registered by unmanned aerial vehicles (UAV) in different remote sensing applications. Sensors boarded on UAVs has lower operational costs and complexity than other remote sensing platforms, quicker turnaround times as well as higher spatial resolution. Concerning this last aspect, particular attention has to be paid on the limitations of classical algorithms based on pixels when they are applied to high resolution images. The objective of this study is to investigate the capability of an OBIA methodology developed for the automatic generation of a digital terrain model of an agricultural area from Digital Elevation Model (DEM) and multispectral images registered by a Parrot Sequoia multispectral sensor board on a eBee SQ agricultural drone. The proposed methodology uses a superpixel approach for obtaining context and elevation information used for merging superpixels and at the same time eliminating objects such as trees in order to generate a Digital Terrain Model (DTM) of the analyzed area. Obtained results show the potential of the approach, in terms of accuracy, when it is compared with a DTM generated by manually eliminating objects.

  4. Dark Hill on Asteroid Vesta Movie

    NASA Image and Video Library

    2011-12-06

    This still from a movie shows an image taken by NASA Dawn spacecraft layered on a digital terrain model of an unusual hill containing a dark-rayed impact crater and nearby dark deposit on asteroid Vesta.

  5. Topography of Vesta Surface

    NASA Image and Video Library

    2011-08-26

    This view of the topography of asteroid Vesta surface is composed of several images obtained with the framing camera on NASA Dawn spacecraft on August 6, 2011. The image mosaic is shown superimposed on a digital terrain model.

  6. Near-station terrain corrections for gravity data by a surface-integral technique

    USGS Publications Warehouse

    Gettings, M.E.

    1982-01-01

    A new method of computing gravity terrain corrections by use of a digitizer and digital computer can result in substantial savings in the time and manual labor required to perform such corrections by conventional manual ring-chart techniques. The method is typically applied to estimate terrain effects for topography near the station, for example within 3 km of the station, although it has been used successfully to a radius of 15 km to estimate corrections in areas where topographic mapping is poor. Points (about 20) that define topographic maxima, minima, and changes in the slope gradient are picked on the topographic map, within the desired radius of correction about the station. Particular attention must be paid to the area immediately surrounding the station to ensure a good topographic representation. The horizontal and vertical coordinates of these points are entered into the computer, usually by means of a digitizer. The computer then fits a multiquadric surface to the input points to form an analytic representation of the surface. By means of the divergence theorem, the gravity effect of an interior closed solid can be expressed as a surface integral, and the terrain correction is calculated by numerical evaluation of the integral over the surfaces of a cylinder, The vertical sides of which are at the correction radius about the station, the flat bottom surface at the topographic minimum, and the upper surface given by the multiquadric equation. The method has been tested with favorable results against models for which an exact result is available and against manually computed field-station locations in areas of rugged topography. By increasing the number of points defining the topographic surface, any desired degree of accuracy can be obtained. The method is more objective than manual ring-chart techniques because no average compartment elevations need be estimated ?

  7. How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis?

    NASA Astrophysics Data System (ADS)

    Callow, John Nikolaus; Van Niel, Kimberly P.; Boggs, Guy S.

    2007-01-01

    SummaryMany digital elevation models (DEMs) have difficulty replicating hydrological patterns in flat landscapes. Efforts to improve DEM performance in replicating known hydrology have included a variety of soft (i.e. algorithm-based approaches) and hard techniques, such as " Stream burning" or "surface reconditioning" (e.g. Agree or ANUDEM). Using a representation of the known stream network, these methods trench or mathematically warp the original DEM to improve how accurately stream position, stream length and catchment boundaries replicate known hydrological conditions. However, these techniques permanently alter the DEM and may affect further analyses (e.g. slope). This paper explores the impact that commonly used hydrological correction methods ( Stream burning, Agree.aml and ANUDEM v4.6.3 and ANUDEM v5.1) have on the overall nature of a DEM, finding that different methods produce non-convergent outcomes for catchment parameters (such as catchment boundaries, stream position and length), and differentially compromise secondary terrain analysis. All hydrological correction methods successfully improved calculation of catchment area, stream position and length as compared to using the DEM without any modification, but they all increased catchment slope. No single method performing best across all categories. Different hydrological correction methods changed elevation and slope in different spatial patterns and magnitudes, compromising the ability to derive catchment parameters and conduct secondary terrain analysis from a single DEM. Modification of a DEM to better reflect known hydrology can be useful, however knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.

  8. Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models

    NASA Astrophysics Data System (ADS)

    Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.

    2018-03-01

    Tree or canopy height is an important attribute for carbon stock estimation, forest management and habitat quality assessment. Airborne Laser Scanning (ALS) based on Light Detection and Ranging (LiDAR) has advantages over other remote sensing techniques for describing the structure of forests. However, sloped terrain can be challenging for accurate estimation of tree locations and heights based on a Canopy Height Model (CHM) generated from ALS data; a CHM is a height-normalised Digital Surface Model (DSM) obtained by subtracting a Digital Terrain Model (DTM) from a DSM. On sloped terrain, points at the same elevation on a tree crown appear to increase in height in the downhill direction, based on the ground elevations at these points. A point will be incorrectly identified as the treetop by individual tree crown (ITC) recognition algorithms if its height is greater than that of the actual treetop in the CHM, which will be recorded as the tree height. In this study, the influence of terrain slope and crown characteristics on the detection of treetops and estimation of tree heights is assessed using ALS data in a tropical forest with complex terrain (i.e. micro-topography) and tree crown characteristics. Locations and heights of 11,442 trees based on a DSM are compared with those based on a CHM. The horizontal (DH) and vertical displacements (DV) increase with terrain slope (r = 0.47 and r = 0.54 respectively, p < 0.001). The overestimations in tree height are up to 16.6 m on slopes greater than 50° in our study area in Sumatra. The errors in locations (DH) and tree heights (DV) are modelled for trees with conical and spherical tree crowns. For a spherical tree crown, DH can be modelled as R sin θ, and DV as R (sec θ - 1). In this study, a model is developed for an idealised conical tree crown, DV = R (tan θ - tan ψ), where R is the crown radius, and θ and ψ are terrain and crown angles respectively. It is shown that errors occur only when terrain angle exceeds the crown angle, with the horizontal displacement equal to the crown radius. Errors in location are seen to be greater for spherical than conical trees on slopes where crown angles of conical trees are less than the terrain angle. The results are especially relevant for biomass and carbon stock estimations in tropical forests where there are trees with large crown radii on slopes.

  9. Assessing the Utility of Temporally Dynamic Terrain Indices in Alaskan Moose Resource Selection

    NASA Astrophysics Data System (ADS)

    Jennewein, J. S.; Hebblewhite, M.; Meddens, A. J.; Gilbert, S.; Vierling, L. A.; Boelman, N.; Eitel, J.

    2017-12-01

    The accelerated warming in arctic and boreal regions impacts ecosystem structure and plant species distribution, which have secondary effects on wildlife. In summer months, moose (Alces alces) are especially vulnerable to changes in the availability and quality of forage and foliage cover due to their thermoregulatory needs and high energetic demands post calving. Resource selection functions (RSFs) have been used with great success to model such tradeoffs in habitat selection. Recently, RSFs have expanded to include more dynamic representations of habitat selection through the use of time-varying covariates such as dynamic habitat indices. However, to date few studies have investigated dynamic terrain indices, which incorporate long-term, highly-dynamic meteorological data (e.g., albedo, air temperature) and their utility in modeling habitat selection. The purpose of this study is to compare two dynamic terrain indices (i.e., solar insolation and topographic wetness) to their static counterparts in Alaskan moose resource selection over a ten-year period (2008-2017). Additionally, the utility of a dynamic wind-shelter index is assessed. Three moose datasets (n=130 total), spanning a north-to-south gradient in Alaska, are analyzed independently to assess location-specific resource selection. The newly-released, high-resolution Arctic Digital Elevation Model (5m2) is used as the terrain input into both dynamic and static indices. Dynamic indices are programmed with meteorological data from the North American Regional Analysis (NARR) and NASA's Goddard Earth Sciences Data and Information Services Center (GES-DISC) databases. Static wetness and solar insolation indices are estimated using only topographic parameters (e.g., slope, aspect). Preliminary results from pilot analyses suggest that dynamic terrain indices may provide novel insights into resource selection of moose that could not be gained when using static counterparts. Future applications of such dynamic terrain indices that incorporate time-varying meteorological data may be increasingly important in modelling habitat selection under continued climate change scenarios.

  10. Using Digital Earth to create online scientific reality tourist guides to tourist attractions in Taiwan, China

    NASA Astrophysics Data System (ADS)

    Ding, Yea-Chung

    2010-11-01

    In recent years national parks worldwide have introduced online virtual tourism, through which potential visitors can search for tourist information. Most virtual tourism websites are a simulation of an existing location, usually composed of panoramic images, a sequence of hyperlinked still or video images, and/or virtual models of the actual location. As opposed to actual tourism, a virtual tour is typically accessed on a personal computer or an interactive kiosk. Using modern Digital Earth techniques such as high resolution satellite images, precise GPS coordinates and powerful 3D WebGIS, however, it's possible to create more realistic scenic models to present natural terrain and man-made constructions in greater detail. This article explains how to create an online scientific reality tourist guide for the Jinguashi Gold Ecological Park at Jinguashi in northern Taiwan, China. This project uses high-resolution Formosat 2 satellite images and digital aerial images in conjunction with DTM to create a highly realistic simulation of terrain, with the addition of 3DMAX to add man-made constructions and vegetation. Using this 3D Geodatabase model in conjunction with INET 3D WebGIS software, we have found Digital Earth concept can greatly improve and expand the presentation of traditional online virtual tours on the websites.

  11. Fort Hood: Home of the Third Corps

    DTIC Science & Technology

    1989-01-01

    34 Special Effects Design ...................................................... 34 Post...145 Digital Special Effects ...................................................... 148...geographic sphere of responsibility. The use of aerial video is effective in showing the vast size and varying terrain of the p cs an’ graphics depict

  12. Identification and visualisation of possible ancient ocean shoreline on Mars using submeter-resolution Digital Terrain Models

    NASA Astrophysics Data System (ADS)

    Świąder, Andrzej

    2014-12-01

    Digital Terrain Models (DTMs) produced from stereoscopic, submeter-resolution High Resolution Imaging Science Experiment (HiRISE) imagery provide a solid basis for all morphometric analyses of the surface of Mars. In view of the fact that a more effective use of DTMs is hindered by complicated and time-consuming manual handling, the automated process provided by specialists of the Ames Intelligent Robotics Group (NASA), Ames Stereo Pipeline, constitutes a good alternative. Four DTMs, covering the global dichotomy boundary between the southern highlands and northern lowlands along the line of the presumable Arabia shoreline, were produced and analysed. One of them included forms that are likely to be indicative of an oceanic basin that extended across the lowland northern hemisphere of Mars in the geological past. The high resolution DTMs obtained were used in the process of landscape visualisation.

  13. The rapid terrain visualization interferometric synthetic aperture radar sensor

    NASA Astrophysics Data System (ADS)

    Graham, Robert H.; Bickel, Douglas L.; Hensley, William H.

    2003-11-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  14. Global terrain classification using Multiple-Error-Removed Improved-Terrain (MERIT) to address susceptibility of landslides and other geohazards

    NASA Astrophysics Data System (ADS)

    Iwahashi, J.; Yamazaki, D.; Matsuoka, M.; Thamarux, P.; Herrick, J.; Yong, A.; Mital, U.

    2017-12-01

    A seamless model of landform classifications with regional accuracy will be a powerful platform for geophysical studies that forecast geologic hazards. Spatial variability as a function of landform on a global scale was captured in the automated classifications of Iwahashi and Pike (2007) and additional developments are presented here that incorporate more accurate depictions using higher-resolution elevation data than the original 1-km scale Shuttle Radar Topography Mission digital elevation model (DEM). We create polygon-based terrain classifications globally by using the 280-m DEM interpolated from the Multi-Error-Removed Improved-Terrain DEM (MERIT; Yamazaki et al., 2017). The multi-scale pixel-image analysis method, known as Multi-resolution Segmentation (Baatz and Schäpe, 2000), is first used to classify the terrains based on geometric signatures (slope and local convexity) calculated from the 280-m DEM. Next, we apply the machine learning method of "k-means clustering" to prepare the polygon-based classification at the globe-scale using slope, local convexity and surface texture. We then group the divisions with similar properties by hierarchical clustering and other statistical analyses using geological and geomorphological data of the area where landslides and earthquakes are frequent (e.g. Japan and California). We find the 280-m DEM resolution is only partially sufficient for classifying plains. We nevertheless observe that the categories correspond to reported landslide and liquefaction features at the global scale, suggesting that our model is an appropriate platform to forecast ground failure. To predict seismic amplification, we estimate site conditions using the time-averaged shear-wave velocity in the upper 30-m (VS30) measurements compiled by Yong et al. (2016) and the terrain model developed by Yong (2016; Y16). We plan to test our method on finer resolution DEMs and report our findings to obtain a more globally consistent terrain model as there are known errors in DEM derivatives at higher-resolutions. We expect the improvement in DEM resolution (4 times greater detail) and the combination of regional and global coverage will yield a consistent dataset of polygons that have the potential to improve relations to the Y16 estimates significantly.

  15. Merging of an EET CInSAR DEM with the SRTM DEM

    NASA Astrophysics Data System (ADS)

    Wegmuller, Urs; Wiesmann, Andreas; Santoro, Maurizio

    2010-03-01

    Cross-interferometry (CInSAR) using ERS-2 and ENVISAT ASAR SAR data acquired in the ERS like mode IS2 at VV-polarization with perpendicular baselines of approximately 2 kilometers permits generation of digital elevation models (DEMs). Thanks to the long perpendicular baselines CInSAR has a good potential to generate accurate DEMs over relatively flat terrain. Over sloped terrain the topographic phase gradients get very high and the signals decorrelate if the carrier frequency difference and the baseline effects do not compensate any more. As a result phase unwrapping gets very difficult so that often no reliable solution is obtained for hilly terrain, resulting in DEMs with significant spatial gaps.Spatial gaps in ERS-2 ENVISAT Tandem (EET) CInSAR DEMs over hilly terrain are clearly an important limitation to the utility of these DEMs. On the other hand the high quality achieved over relatively flat terrain is of high interest. As an attempt to significantly improve the utility of the "good information" contained in the CInSAR DEM we developed a methodology to merge a CInSAR DEM with another available DEM, e.g. the SRTM DEM.The methodology was applied to an area in California, USA, including relatively flat terrain belonging to the Mohave desert as well as hilly to mountainous terrain of the San Gabriel and Tehachapi Mountains.

  16. LiDAR-based TWI and terrain attributes in improving parametric predictor for tree growth in southeast Finland

    NASA Astrophysics Data System (ADS)

    Mohamedou, Cheikh; Tokola, Timo; Eerikäinen, Kalle

    2017-10-01

    The effect of soil moisture content on vegetation and therefore on growth is well known. Information about the growth of forest stands is key in forest planning and management, and is the concern of various stakeholders. One way to assess moisture content and its impacts on forest growth is to apply the Topographic Wetness Index (TWI) and the derived terrain attributes from the Digital Terrain Model (DTM). The TWI is an important terrain attribute, used in various ecological studies. In the current study, a total of 9987 tally trees within 197 sample plots in southeastern Finland and LiDAR (Light Detection and Ranging) -based TWI were selected to examine: 1) the effect of cell resolutions and focal statistics of neighborhood cells of DTM, on tree diameter increment, and 2) possibilities to improve the prediction accuracy of an existing single-tree growth model using the terrain attributes and TWI with the combined effects of three characteristics (i.e., cell resolutions, neighborhood cells and terrain attributes). The results suggest that the TWI with terrain attributes improved the growth estimation significantly, and within different site types the Root Mean Square Errors (RMSE) were lowered substantially. The best results were obtained for birch trees. The higher resolution of the DTM and the lower focal neighborhood cells were found to be the best alternative in computing the TWI.

  17. An ice-rich flow origin for the banded terrain in the Hellas basin, Mars

    NASA Astrophysics Data System (ADS)

    Diot, X.; El-Maarry, M. R.; Guallini, L.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Sutton, S.; Grindrod, P. M.

    2015-12-01

    The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (Context Camera and High-Resolution Imaging Science Experiment) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds, and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summertime temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively "temperate" climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.

  18. Automatic Detection and Vulnerability Analysis of Areas Endangered by Heavy Rain

    NASA Astrophysics Data System (ADS)

    Krauß, Thomas; Fischer, Peter

    2016-08-01

    In this paper we present a new method for fully automatic detection and derivation of areas endangered by heavy rainfall based only on digital elevation models. Tracking news show that the majority of occuring natural hazards are flood events. So already many flood prediction systems were developed. But most of these existing systems for deriving areas endangered by flooding events are based only on horizontal and vertical distances to existing rivers and lakes. Typically such systems take not into account dangers arising directly from heavy rain events. In a study conducted by us together with a german insurance company a new approach for detection of areas endangered by heavy rain was proven to give a high correlation of the derived endangered areas and the losses claimed at the insurance company. Here we describe three methods for classification of digital terrain models and analyze their usability for automatic detection and vulnerability analysis for areas endangered by heavy rainfall and analyze the results using the available insurance data.

  19. The use of IFSAR data in GIS-based landslide susceptibility evaluation

    NASA Astrophysics Data System (ADS)

    Floris, M.; Squarzoni, C.; Hundseder, C.; Mason, M.; Genevois, R.

    2010-05-01

    GIS-based landslide susceptibility evaluation is based on the spatial relationships between landslides and their related factors. The analyses are highly conditioned by precision and accuracy of input factors, in particular landslides identification and characterization. Factors influencing landslide spatial hazard consist of geological, geomorphological, hydrogeological and tectonic features, geomechanical and geotechnical properties, land use and management, and DEM-derived factors (elevation, slope, aspect, curvature, superficial flow). The choice of influencing factors depends on: method of analysis, scale of inputs, aim of the outputs, availability and quality of the input data. Then, the choice can be made a priori, on the bases of an in-deep territorial knowledge and experts' judgements, or by performing statistical analyses, finalized to identify the significance of each of the influencing factor. Due to the large availability of terrain data, spatial models often include DEM-derived factors, but the resolution and accuracy of DEMs influence the final outputs. In this work the relationships between landslides occurred in the volcanic area of the Euganean Hills Regional Park (SE of Padua, Veneto region, Italy) and morphometric factors (slope, aspect and curvature) will be examined through a simple probability method. The use of complex and time consuming mathematical or statistical models is not always recommended, because often simple models can lead to more accurate results. Morphometric input factors are derived from DEMs created from vector elevation data of the regional cartography at 1:5.000 scale and with NEXTMap® data (http://www.intermap.com). NEXTMap® Digital Surface Model (DSM) and Digital Terrain Model (DTM) are generated using Intermap's IFSAR (Interferometric Synthetic Aperture Radar) technology mounted on an aircraft at a flight height of 8500 m above Mean Sea Level and under a side viewing angle of about 45°. The DSM represents the first reflective surface as illuminated by the radar. IFSAR sensors retrieve the mean height of the main scattering elements in a grid cell, known as the scattering phase centre height. The radar return from vegetation usually penetrates to some extend lower than the ‘first' tree canopy height. The DTM is derived from DSM applying a semi-automated process that classifies areas as obstructed (buildings and vegetation) and unobstructed , where the obstructed areas are processed to approximate bald earth. DSM and DTM data present a post spacing of 5 m and a vertical accuracy of 1 m (RMSE) or better in areas of unobstructed flat terrain. IFSAR elevation models are compared with photogrammetrically derived models (topographic map of Veneto Region) for the following aspects: Every elevation point of IFSAR models is derived through a direct measure of the terrain surface, while photogrammetric elevation models are usually compiled through digitalization and interpolation of contour lines. Frequent seam lines are evident in vector maps derived DEMs, compiled during many years, with different specifications and tools. IFSAR 5 m posted DEM's generate a much more detailed description of terrain features. Seamless and homogeneous IFSAR elevation models pave the way to accurate applications like landslides study and risk assessment. The results obtained using the two DEM sources will be compared. The contribution of IFSAR data to the GIS-based spatial analysis of the study area will be tested and discussed.

  20. Open-Source Digital Elevation Model (DEMs) Evaluation with GPS and LiDAR Data

    NASA Astrophysics Data System (ADS)

    Khalid, N. F.; Din, A. H. M.; Omar, K. M.; Khanan, M. F. A.; Omar, A. H.; Hamid, A. I. A.; Pa'suya, M. F.

    2016-09-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM), Shuttle Radar Topography Mission (SRTM), and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) are freely available Digital Elevation Model (DEM) datasets for environmental modeling and studies. The quality of spatial resolution and vertical accuracy of the DEM data source has a great influence particularly on the accuracy specifically for inundation mapping. Most of the coastal inundation risk studies used the publicly available DEM to estimated the coastal inundation and associated damaged especially to human population based on the increment of sea level. In this study, the comparison between ground truth data from Global Positioning System (GPS) observation and DEM is done to evaluate the accuracy of each DEM. The vertical accuracy of SRTM shows better result against ASTER and GMTED10 with an RMSE of 6.054 m. On top of the accuracy, the correlation of DEM is identified with the high determination of coefficient of 0.912 for SRTM. For coastal zone area, DEMs based on airborne light detection and ranging (LiDAR) dataset was used as ground truth data relating to terrain height. In this case, the LiDAR DEM is compared against the new SRTM DEM after applying the scale factor. From the findings, the accuracy of the new DEM model from SRTM can be improved by applying scale factor. The result clearly shows that the value of RMSE exhibit slightly different when it reached 0.503 m. Hence, this new model is the most suitable and meets the accuracy requirement for coastal inundation risk assessment using open source data. The suitability of these datasets for further analysis on coastal management studies is vital to assess the potentially vulnerable areas caused by coastal inundation.

  1. Measuring distance “as the horse runs”: Cross-scale comparison of terrain-based metrics

    USGS Publications Warehouse

    Buttenfield, Barbara P.; Ghandehari, M; Leyk, S; Stanislawski, Larry V.; Brantley, M E; Qiang, Yi

    2016-01-01

    Distance metrics play significant roles in spatial modeling tasks, such as flood inundation (Tucker and Hancock 2010), stream extraction (Stanislawski et al. 2015), power line routing (Kiessling et al. 2003) and analysis of surface pollutants such as nitrogen (Harms et al. 2009). Avalanche risk is based on slope, aspect, and curvature, all directly computed from distance metrics (Gutiérrez 2012). Distance metrics anchor variogram analysis, kernel estimation, and spatial interpolation (Cressie 1993). Several approaches are employed to measure distance. Planar metrics measure straight line distance between two points (“as the crow flies”) and are simple and intuitive, but suffer from uncertainties. Planar metrics assume that Digital Elevation Model (DEM) pixels are rigid and flat, as tiny facets of ceramic tile approximating a continuous terrain surface. In truth, terrain can bend, twist and undulate within each pixel.Work with Light Detection and Ranging (lidar) data or High Resolution Topography to achieve precise measurements present challenges, as filtering can eliminate or distort significant features (Passalacqua et al. 2015). The current availability of lidar data is far from comprehensive in developed nations, and non-existent in many rural and undeveloped regions. Notwithstanding computational advances, distance estimation on DEMs has never been systematically assessed, due to assumptions that improvements are so small that surface adjustment is unwarranted. For individual pixels inaccuracies may be small, but additive effects can propagate dramatically, especially in regional models (e.g., disaster evacuation) or global models (e.g., sea level rise) where pixels span dozens to hundreds of kilometers (Usery et al 2003). Such models are increasingly common, lending compelling reasons to understand shortcomings in the use of planar distance metrics. Researchers have studied curvature-based terrain modeling. Jenny et al. (2011) use curvature to generate hierarchical terrain models. Schneider (2001) creates a ‘plausibility’ metric for DEM-extracted structure lines. d’Oleire- Oltmanns et al. (2014) adopt object-based image processing as an alternative to working with DEMs; acknowledging the pre-processing involved in converting terrain into an object model is computationally intensive, and likely infeasible for some applications.This paper compares planar distance with surface adjusted distance, evolving from distance “as the crow flies” to distance “as the horse runs”. Several methods are compared for DEMs spanning a range of resolutions for the study area and validated against a 3 meter (m) lidar data benchmark. Error magnitudes vary with pixel size and with the method of surface adjustment. The rate of error increase may also vary with landscape type (terrain roughness, precipitation regimes and land settlement patterns). Cross-scale analysis for a single study area is reported here. Additional areas will be presented at the conference.

  2. Received signal strength and local terrain profile data for radio network planning and optimization at GSM frequency bands.

    PubMed

    Popoola, Segun I; Atayero, Aderemi A; Faruk, Nasir

    2018-02-01

    The behaviour of radio wave signals in a wireless channel depends on the local terrain profile of the propagation environments. In view of this, Received Signal Strength (RSS) of transmitted signals are measured at different points in space for radio network planning and optimization. However, these important data are often not publicly available for wireless channel characterization and propagation model development. In this data article, RSS data of a commercial base station operating at 900 and 1800 MHz were measured along three different routes of Lagos-Badagry Highway, Nigeria. In addition, local terrain profile data of the study area (terrain elevation, clutter height, altitude, and the distance of the mobile station from the base station) are extracted from Digital Terrain Map (DTM) to account for the unique environmental features. Statistical analyses and probability distributions of the RSS data are presented in tables and graphs. Furthermore, the degree of correlations (and the corresponding significance) between the RSS and the local terrain parameters were computed and analyzed for proper interpretations. The data provided in this article will help radio network engineers to: predict signal path loss; estimate radio coverage; efficiently reuse limited frequencies; avoid interferences; optimize handover; and adjust transmitted power level.

  3. A 3-D terrain visualization database for highway information management

    DOT National Transportation Integrated Search

    1999-07-26

    A Multimedia based Highway Information System (MMHIS) is described in the paper to improve the existing photologging system for various operation and management needs. The full digital, computer based MMHIS uses technologies of video, multimedia data...

  4. The 2nd Symposium on the Frontiers of Massively Parallel Computations

    NASA Technical Reports Server (NTRS)

    Mills, Ronnie (Editor)

    1988-01-01

    Programming languages, computer graphics, neural networks, massively parallel computers, SIMD architecture, algorithms, digital terrain models, sort computation, simulation of charged particle transport on the massively parallel processor and image processing are among the topics discussed.

  5. Using Agisoft Photoscan to Compare Terrestrial and Planetary Volcanic Features

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Henriksen, M. R.; Manheim, M. R.; Robinson, M. S.

    2018-04-01

    We used Agisoft Photoscan to create three high-resolution digital terrain models (DTMs) of terrestrial volcanic features. We explore the potential for using these DTMs to better understand analogous features on the Moon and on Mars.

  6. Ground Collision Avoidance System (Igcas)

    NASA Technical Reports Server (NTRS)

    Prosser, Kevin (Inventor); Hook, Loyd (Inventor); Skoog, Mark A (Inventor)

    2017-01-01

    The present invention is a system and method for aircraft ground collision avoidance (iGCAS) comprising a modular array of software, including a sense own state module configured to gather data to compute trajectory, a sense terrain module including a digital terrain map (DTM) and map manger routine to store and retrieve terrain elevations, a predict collision threat module configured to generate an elevation profile corresponding to the terrain under the trajectory computed by said sense own state module, a predict avoidance trajectory module configured to simulate avoidance maneuvers ahead of the aircraft, a determine need to avoid module configured to determine which avoidance maneuver should be used, when it should be initiated, and when it should be terminated, a notify Module configured to display each maneuver's viability to the pilot by a colored GUI, a pilot controls module configured to turn the system on and off, and an avoid module configured to define how an aircraft will perform avoidance maneuvers through 3-dimensional space.

  7. Quadtree of TIN: a new algorithm of dynamic LOD

    NASA Astrophysics Data System (ADS)

    Zhang, Junfeng; Fei, Lifan; Chen, Zhen

    2009-10-01

    Currently, Real-time visualization of large-scale digital elevation model mainly employs the regular structure of GRID based on quadtree and triangle simplification methods based on irregular triangulated network (TIN). TIN is a refined means to express the terrain surface in the computer science, compared with GRID. However, the data structure of TIN model is complex, and is difficult to realize view-dependence representation of level of detail (LOD) quickly. GRID is a simple method to realize the LOD of terrain, but contains more triangle count. A new algorithm, which takes full advantage of the two methods' merit, is presented in this paper. This algorithm combines TIN with quadtree structure to realize the view-dependence LOD controlling over the irregular sampling point sets, and holds the details through the distance of viewpoint and the geometric error of terrain. Experiments indicate that this approach can generate an efficient quadtree triangulation hierarchy over any irregular sampling point sets and achieve dynamic and visual multi-resolution performance of large-scale terrain at real-time.

  8. An efficient approach for site-specific scenery prediction in surveillance imaging near Earth's surface

    NASA Astrophysics Data System (ADS)

    Jylhä, Juha; Marjanen, Kalle; Rantala, Mikko; Metsäpuro, Petri; Visa, Ari

    2006-09-01

    Surveillance camera automation and camera network development are growing areas of interest. This paper proposes a competent approach to enhance the camera surveillance with Geographic Information Systems (GIS) when the camera is located at the height of 10-1000 m. A digital elevation model (DEM), a terrain class model, and a flight obstacle register comprise exploited auxiliary information. The approach takes into account spherical shape of the Earth and realistic terrain slopes. Accordingly, considering also forests, it determines visible and shadow regions. The efficiency arises out of reduced dimensionality in the visibility computation. Image processing is aided by predicting certain advance features of visible terrain. The features include distance from the camera and the terrain or object class such as coniferous forest, field, urban site, lake, or mast. The performance of the approach is studied by comparing a photograph of Finnish forested landscape with the prediction. The predicted background is well-fitting, and potential knowledge-aid for various purposes becomes apparent.

  9. From the air to digital landscapes: generating reach-scale topographic models from aerial photography in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Vericat, Damià; Narciso, Efrén; Béjar, Maria; Tena, Álvaro; Brasington, James; Gibbins, Chris; Batalla, Ramon J.

    2014-05-01

    Digital Terrain Models are fundamental to characterise landscapes, to support numerical modelling and to monitor topographic changes. Recent advances in topography, remote sensing and geomatics are providing new opportunities to obtain high density/quality and rapid topographic data. In this paper we present an integrated methodology to rapidly obtain reach scale topographic models of fluvial systems. This methodology has been tested and is being applied to develop event-scale terrain models of a 11-km river reach in the highly dynamic Upper Cinca (NE Iberian Peninsula). This research is conducted in the background of the project MorphSed. The methodology integrates (a) the acquisition of dense point clouds of the exposed floodplain (aerial photography and digital photogrammetry); (b) the registration of all observations to the same coordinate system (using RTK-GPS surveyed GCPs); (c) the acquisition of bathymetric data (using aDcp measurements integrated with RTK-GPS); (d) the intelligent decimation of survey observations (using the open source TopCat toolkit) and, finally, (e) data fusion (elaborating Digital Elevation Models). In this paper special emphasis is given to the acquisition and registration of point clouds. 3D point clouds are obtained from aerial photography and by means of automated digital photogrammetry. Aerial photographs are taken at 275 meters above the ground by means of a SLR digital camera manually operated from an autogyro. Four flight paths are defined in order to cover the 11 km long and 500 meters wide river reach. A total of 45 minutes are required to fly along these paths. Camera has been previously calibrated with the objective to ensure image resolution at around 5 cm. A total of 220 GCPs are deployed and RTK-GPS surveyed before the flight is conducted. Two people and one full workday are necessary to deploy and survey the full set of GCPs. Field data acquisition may be finalised in less than 2 days. Structure-from-Motion is subsequently applied in the lab using Agisoft PhotoScan, photographs are aligned and a 3d point cloud is generated. GCPs are used to geo-register all point clouds. This task may be time consuming since GCPs need to be identified in at least two of the pictures. A first automatic identification of GCPs positions is performed in the rest of the photos, although user supervision is necessary. Preliminary results show as geo-registration errors between 0.08 and and 0.10 meters can be obtained. The number of GCPs is being degraded and the quality of the point cloud assessed based on check points (the extracted GCPs). A critical analysis of GCPs density and scene locations is being performed (results in preparation). The results show that automated digital photogrammetry may provide new opportunities in the acquisition of topographic data at multiple temporal and spatial scales, being competitive with other more expensive techniques that, in turn, may require much more time to acquire field observations. SfM offers new opportunities to develop event-scale terrain models of fluvial systems suitable for hydraulic modelling and to study topographic change in highly dynamic environments.

  10. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  11. Integrated navigation, flight guidance, and synthetic vision system for low-level flight

    NASA Astrophysics Data System (ADS)

    Mehler, Felix E.

    2000-06-01

    Future military transport aircraft will require a new approach with respect to the avionics suite to fulfill an ever-changing variety of missions. The most demanding phases of these mission are typically the low level flight segments, including tactical terrain following/avoidance,payload drop and/or board autonomous landing at forward operating strips without ground-based infrastructure. As a consequence, individual components and systems must become more integrated to offer a higher degree of reliability, integrity, flexibility and autonomy over existing systems while reducing crew workload. The integration of digital terrain data not only introduces synthetic vision into the cockpit, but also enhances navigation and guidance capabilities. At DaimlerChrysler Aerospace AG Military Aircraft Division (Dasa-M), an integrated navigation, flight guidance and synthetic vision system, based on digital terrain data, has been developed to fulfill the requirements of the Future Transport Aircraft (FTA). The fusion of three independent navigation sensors provides a more reliable and precise solution to both the 4D-flight guidance and the display components, which is comprised of a Head-up and a Head-down Display with synthetic vision. This paper will present the system, its integration into the DLR's VFW 614 Advanced Technology Testing Aircraft System (ATTAS) and the results of the flight-test campaign.

  12. Assessment of the Quality of Digital Terrain Model Produced from Unmanned Aerial System Imagery

    NASA Astrophysics Data System (ADS)

    Kosmatin Fras, M.; Kerin, A.; Mesarič, M.; Peterman, V.; Grigillo, D.

    2016-06-01

    Production of digital terrain model (DTM) is one of the most usual tasks when processing photogrammetric point cloud generated from Unmanned Aerial System (UAS) imagery. The quality of the DTM produced in this way depends on different factors: the quality of imagery, image orientation and camera calibration, point cloud filtering, interpolation methods etc. However, the assessment of the real quality of DTM is very important for its further use and applications. In this paper we first describe the main steps of UAS imagery acquisition and processing based on practical test field survey and data. The main focus of this paper is to present the approach to DTM quality assessment and to give a practical example on the test field data. For data processing and DTM quality assessment presented in this paper mainly the in-house developed computer programs have been used. The quality of DTM comprises its accuracy, density, and completeness. Different accuracy measures like RMSE, median, normalized median absolute deviation and their confidence interval, quantiles are computed. The completeness of the DTM is very often overlooked quality parameter, but when DTM is produced from the point cloud this should not be neglected as some areas might be very sparsely covered by points. The original density is presented with density plot or map. The completeness is presented by the map of point density and the map of distances between grid points and terrain points. The results in the test area show great potential of the DTM produced from UAS imagery, in the sense of detailed representation of the terrain as well as good height accuracy.

  13. Modelling Soil-Landscapes in Coastal California Hills Using Fine Scale Terrestrial Lidar

    NASA Astrophysics Data System (ADS)

    Prentice, S.; Bookhagen, B.; Kyriakidis, P. C.; Chadwick, O.

    2013-12-01

    Digital elevation models (DEMs) are the dominant input to spatially explicit digital soil mapping (DSM) efforts due to their increasing availability and the tight coupling between topography and soil variability. Accurate characterization of this coupling is dependent on DEM spatial resolution and soil sampling density, both of which may limit analyses. For example, DEM resolution may be too coarse to accurately reflect scale-dependent soil properties yet downscaling introduces artifactual uncertainty unrelated to deterministic or stochastic soil processes. We tackle these limitations through a DSM effort that couples moderately high density soil sampling with a very fine scale terrestrial lidar dataset (20 cm) implemented in a semiarid rolling hillslope domain where terrain variables change rapidly but smoothly over short distances. Our guiding hypothesis is that in this diffusion-dominated landscape, soil thickness is readily predicted by continuous terrain attributes coupled with catenary hillslope segmentation. We choose soil thickness as our keystone dependent variable for its geomorphic and hydrologic significance, and its tendency to be a primary input to synthetic ecosystem models. In defining catenary hillslope position we adapt a logical rule-set approach that parses common terrain derivatives of curvature and specific catchment area into discrete landform elements (LE). Variograms and curvature-area plots are used to distill domain-scale terrain thresholds from short range order noise characteristic of very fine-scale spatial data. The revealed spatial thresholds are used to condition LE rule-set inputs, rendering a catenary LE map that leverages the robustness of fine-scale terrain data to create a generalized interpretation of soil geomorphic domains. Preliminary regressions show that continuous terrain variables alone (curvature, specific catchment area) only partially explain soil thickness, and only in a subset of soils. For example, at spatial scales up 20, curvature explains 40% of soil thickness variance among soils <3 m deep, while soils >3 m deep show no clear relation to curvature. To further demonstration our geomorphic segmentation approach, we apply it to DEM domains where diffusion processes are less dominant than in our primary study area. Classified landform map derived from fine scale terrestrial lidar. Color classes depict hydrogeomorphic process domains in zero order watersheds.

  14. The creation of digital thematic soil maps at the regional level (with the map of soil carbon pools in the Usa River basin as an example)

    NASA Astrophysics Data System (ADS)

    Pastukhov, A. V.; Kaverin, D. A.; Shchanov, V. M.

    2016-09-01

    A digital map of soil carbon pools was created for the forest-tundra ecotone in the Usa River basin with the use of ERDAS Imagine 2014 and ArcGIS 10.2 software. Supervised classification and thematic interpretation of satellite images and digital terrain models with the use of a georeferenced database on soil profiles were applied. Expert assessment of the natural diversity and representativeness of random samples for different soil groups was performed, and the minimal necessary size of the statistical sample was determined.

  15. Topographic map of the western region of Dao Vallis in Hellas Planitia, Mars; MTM 500k -40/082E OMKT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszka, Donna M.

    2006-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. Contours were derived from a digital terrain model (DTM) compiled on a digital photogrammetric workstation using Viking Orbiter stereo image pairs with orientation parameters derived from an analytic aerotriangulation. The image base for this map employs Viking Orbiter images from orbits 406 and 363. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models.

  16. Using Visual Odometry to Estimate Position and Attitude

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Cheng, Yang; Matthies, Larry; Schoppers, Marcel; Olson, Clark

    2007-01-01

    A computer program in the guidance system of a mobile robot generates estimates of the position and attitude of the robot, using features of the terrain on which the robot is moving, by processing digitized images acquired by a stereoscopic pair of electronic cameras mounted rigidly on the robot. Developed for use in localizing the Mars Exploration Rover (MER) vehicles on Martian terrain, the program can also be used for similar purposes on terrestrial robots moving in sufficiently visually textured environments: examples include low-flying robotic aircraft and wheeled robots moving on rocky terrain or inside buildings. In simplified terms, the program automatically detects visual features and tracks them across stereoscopic pairs of images acquired by the cameras. The 3D locations of the tracked features are then robustly processed into an estimate of overall vehicle motion. Testing has shown that by use of this software, the error in the estimate of the position of the robot can be limited to no more than 2 percent of the distance traveled, provided that the terrain is sufficiently rich in features. This software has proven extremely useful on the MER vehicles during driving on sandy and highly sloped terrains on Mars.

  17. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models.

    PubMed

    Eisank, Clemens; Smith, Mike; Hillier, John

    2014-06-01

    Mapping or "delimiting" landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter ( SP ), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the reliability, validity and applicability of results.

  18. LIDAR Investigation Of The 2004 Niigata Ken Chuetsu, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Pack, R. T.; Sugimoto, S.; Tanaka, H.

    2005-12-01

    The 23 October 2004 Niigata Ken Chuetsu, Japan, Mw 6.6 earthquake was the most significant earthquake to affect Japan since the 1995 Kobe earthquake. Forty people were killed, almost 3,000 injured, and numerous landslides destroyed entire upland villages. Landslides and permanent ground deformation caused extensive damage to roads, rail lines and other lifelines, resulting in major economic disruption. The cities and towns most significantly affected by the earthquake were Nagaoka, Ojiya, and the mountainous rural areas of Yamakoshi village and Kawaguchi town. Our EERI team traveled with a tripod mounted LIDAR (Light Detection and Ranging) unit, a scanning-laser that creates ultra high-resolution 3-D digital terrain models of the earthquake damaged surfaces the ground, structures, and life-lines. This new technology allows for rapid and remote sensing of damaged terrain. Ground-based LIDAR has an accuracy range of 0.5-2.5 cm, and can illuminate targets up to 400m away from the sensor. During a single tripod-mounted LIDAR scan of 10 minutes, several million survey points are collected and processed into an ultra-high resolution terrain model of the damaged ground or structure. There are several benefits in acquiring these LIDAR data in the initial reconnaissance effort after the earthquake. First, we record the detailed failure morphologies of damaged ground and structures in order to make measurements that are either impractical or impossible by conventional survey means. The digital terrain models allow us to enlarge, enhance and rotate data in order to visualize damage in orientations and scales not previously possible. This ability to visualize damage allows us to better understand failure modes. Finally, LIDAR allows us to archive 3-D terrain models so that the engineering community can evaluate analytical and numerical models of deformation potential against detailed field measurements. Here, we discuss the findings of this 2004 Niigata Chuetsu Earthquake (M6.6) reconnaissance presented with LIDAR examples for damage-visualization.

  19. Processing of airborne laser scanning data to generate accurate DTM for floodplain wetland

    NASA Astrophysics Data System (ADS)

    Szporak-Wasilewska, Sylwia; Mirosław-Świątek, Dorota; Grygoruk, Mateusz; Michałowski, Robert; Kardel, Ignacy

    2015-10-01

    Structure of the floodplain, especially its topography and vegetation, influences the overland flow and dynamics of floods which are key factors shaping ecosystems in surface water-fed wetlands. Therefore elaboration of the digital terrain model (DTM) of a high spatial accuracy is crucial in hydrodynamic flow modelling in river valleys. In this study the research was conducted in the unique Central European complex of fens and marshes - the Lower Biebrza river valley. The area is represented mainly by peat ecosystems which according to EU Water Framework Directive (WFD) are called "water-dependent ecosystems". Development of accurate DTM in these areas which are overgrown by dense wetland vegetation consisting of alder forest, willow shrubs, reed, sedges and grass is very difficult, therefore to represent terrain in high accuracy the airborne laser scanning data (ALS) with scanning density of 4 points/m2 was used and the correction of the "vegetation effect" on DTM was executed. This correction was performed utilizing remotely sensed images, topographical survey using the Real Time Kinematic positioning and vegetation height measurements. In order to classify different types of vegetation within research area the object based image analysis (OBIA) was used. OBIA allowed partitioning remotely sensed imagery into meaningful image-objects, and assessing their characteristics through spatial and spectral scale. The final maps of vegetation patches that include attributes of vegetation height and vegetation spectral properties, utilized both the laser scanning data and the vegetation indices developed on the basis of airborne and satellite imagery. This data was used in process of segmentation, attribution and classification. Several different vegetation indices were tested to distinguish different types of vegetation in wetland area. The OBIA classification allowed correction of the "vegetation effect" on DTM. The final digital terrain model was compared and examined within distinguished land cover classes (formed mainly by natural vegetation of the river valley) with archival height models developed through interpolation of ground points measured with GPS RTK and also with elevation models from the ASTER-GDEM and SRTM programs. The research presented in this paper allowed improving quality of hydrodynamic modelling in the surface water-fed wetlands protected within Biebrza National Park. Additionally, the comparison with other digital terrain models allowed to demonstrate the importance of accurate topography products in such modelling. The ALS data also significantly improved the accuracy and actuality of the river Biebrza course, its tributaries and location of numerous oxbows typical in this part of the river valley in comparison to previously available data. This type of data also helped to refine the river valley cross-sections, designate river banks and to develop the slope map of the research area.

  20. Laser scanning methods and a phase comparison, modulated laser range finder for terrain sensing on a Mars roving vehicle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Herb, G. T.

    1973-01-01

    Two areas of a laser range finder for a Mars roving vehicle are investigated: (1) laser scanning systems, and (2) range finder methods and implementation. Several ways of rapidly scanning a laser are studied. Two digital deflectors and a matrix of laser diodes, are found to be acceptable. A complete range finder scanning system of high accuracy is proposed. The problem of incident laser spot distortion on the terrain is discussed. The instrumentation for a phase comparison, modulated laser range finder is developed and sections of it are tested.

  1. Accuracy evaluation of an ASTER-Derived Global Digital Elevation Model (GDEM) Version 1 and Version 2 for two sites in western Africa

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Trimble, Sarah M.

    2012-01-01

    This study compares the ASTER Global DEM version 1 (GDEMv1) and version 2 (GDEMv2) for two study sites with distinct terrain and land cover characteristics in western Africa. The effects of land cover, slope, relief, and stack number are evaluated through both absolute and relative DEM statistical comparisons. While GDEMv2 at times performed better than GDEMv1, this improvement was not consistent, revealing the complex nature and interaction of terrain and land cover characteristics, which influences the accuracy of GDEM tiles on local and regional scales.

  2. Heli/SITAN: A Terrain Referenced Navigation algorithm for helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollowell, J.

    1990-01-01

    Heli/SITAN is a Terrain Referenced Navigation (TRN) algorithm that utilizes radar altimeter ground clearance measurements in combination with a conventional navigation system and a stored digital terrain elevation map to accurately estimate a helicopter's position. Multiple Model Adaptive Estimation (MMAE) techniques are employed using a bank of single state Kalman filters to ensure that reliable position estimates are obtained even in the face of large initial position errors. A real-time implementation of the algorithm was tested aboard a US Army UH-1 helicopter equipped with a Singer-Kearfott Doppler Velocity Sensor (DVS) and a Litton LR-80 strapdown Attitude and Heading Reference Systemmore » (AHRS). The median radial error of the position fixes provided in real-time by this implementation was less than 50 m for a variety of mission profiles. 6 refs., 7 figs.« less

  3. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt

    NASA Astrophysics Data System (ADS)

    Masoud, Alaa; Koike, Katsuaki

    2006-08-01

    Fracture zones on the Earth's surface are important elements in the understanding of plate motion forces, the dynamics of the subsurface fluid flow, and earthquake distributions. However, good exposures of these features are always lacking in arid regions, characterized by flat topography and where sand dunes extensively cover the terrain. During field surveys these conditions, in many cases, hinder the proper characterization of such features. Therefore, an approach that identifies the regional fractures as lineaments on remotely-sensed images or shaded digital terrain models, with its large scale synoptic coverage, could be promising. In the present work, a segment tracing algorithm (STA), for lineament detection from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) imagery, and the data from the Shuttle Radar Topographic Mission (SRTM) 30 m digital elevation model (DEM), has been applied in the Siwa region, located in the northwest of the Western Desert of Egypt. The objectives are to analyze the spatial variation in orientation of the detected linear features and its relation to the hydrogeologic setting in the area and the underlying geology, and to evaluate the performance of the algorithm applied to the ETM+ and the DEM data. Detailed structural analysis and better understanding of the tectonic evolution of the area could provide useful tools for hydrologists for reliable groundwater management and development planning. The results obtained have been evaluated by the structural analysis of the area and field observations. Four major vertical fracture zones were detected corresponding to two conjugate sets of strike-slip faults that governed the surface, and subsurface environments of the lakes in the region, and these correlate well with the regional tectonics.

  4. Surface rupture and vertical deformation associated with 20 May 2016 M6 Petermann Ranges earthquake, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Clark, Dan; King, Tamarah; Quigley, Mark

    2017-04-01

    Surface-rupturing earthquakes in stable continental regions (SCRs) occur infrequently, though when they occur in heavily populated regions the damage and loss of life can be severe (e.g., 2001 Bhuj earthquake). Quantifying the surface-rupture characteristics of these low-probability events is therefore important, both to improve understanding of the on- and off-fault deformation field near the rupture trace and to provide additional constraints on earthquake magnitude to rupture length and displacement, which are critical inputs for seismic hazard calculations. This investigation focuses on the 24 August 2016 M6.0 Petermann Ranges earthquake, Northern Territory, Australia. We use 0.3-0.5 m high-resolution optical Worldview satellite imagery to map the trace of the surface rupture associated with the earthquake. From our mapping, we are able to trace the rupture over a length of 20 km, trending NW, and exhibiting apparent north-side-up motion. To quantify the magnitude of vertical surface deformation, we use stereo Worldview images processed using NASA Ames Stereo Pipeline software to generate pre- and post-earthquake digital terrain models with a spatial resolution of 1.5 to 2 m. The surface scarp is apparent in much of the post-event digital terrain model. Initial efforts to difference the pre- and post-event digital terrain models yield noisy results, though we detect vertical deformation of 0.2 to 0.6 m over length scales of 100 m to 1 km from the mapped trace of the rupture. Ongoing efforts to remove ramps and perform spatial smoothing will improve our understanding of the extent and pattern of vertical deformation. Additionally, we will compare our results with InSAR and field measurements obtained following the earthquake.

  5. Lidar-based mapping of flood control levees in south Louisiana

    USGS Publications Warehouse

    Thatcher, Cindy A.; Lim, Samsung; Palaseanu-Lovejoy, Monica; Danielson, Jeffrey J.; Kimbrow, Dustin R.

    2016-01-01

    Flood protection in south Louisiana is largely dependent on earthen levees, and in the aftermath of Hurricane Katrina the state’s levee system has received intense scrutiny. Accurate elevation data along the levees are critical to local levee district managers responsible for monitoring and maintaining the extensive system of non-federal levees in coastal Louisiana. In 2012, high resolution airborne lidar data were acquired over levees in Lafourche Parish, Louisiana, and a mobile terrestrial lidar survey was conducted for selected levee segments using a terrestrial lidar scanner mounted on a truck. The mobile terrestrial lidar data were collected to test the feasibility of using this relatively new technology to map flood control levees and to compare the accuracy of the terrestrial and airborne lidar. Metrics assessing levee geometry derived from the two lidar surveys are also presented as an efficient, comprehensive method to quantify levee height and stability. The vertical root mean square error values of the terrestrial lidar and airborne lidar digital-derived digital terrain models were 0.038 m and 0.055 m, respectively. The comparison of levee metrics derived from the airborne and terrestrial lidar-based digital terrain models showed that both types of lidar yielded similar results, indicating that either or both surveying techniques could be used to monitor geomorphic change over time. Because airborne lidar is costly, many parts of the USA and other countries have never been mapped with airborne lidar, and repeat surveys are often not available for change detection studies. Terrestrial lidar provides a practical option for conducting repeat surveys of levees and other terrain features that cover a relatively small area, such as eroding cliffs or stream banks, and dunes.

  6. Steepness of Slopes at the Luna-Glob Landing Sites: Estimating by the Shaded Area Percentage in the LROC NAC Images

    NASA Astrophysics Data System (ADS)

    Krasilnikov, S. S.; Basilevsky, A. T.; Ivanov, M. A.; Abdrakhimov, A. M.; Kokhanov, A. A.

    2018-03-01

    The paper presents estimates of the occurrence probability of slopes, whose steep surfaces could be dangerous for the landing of the Luna-Glob descent probe ( Luna-25) given the baseline of the span between the landing pads ( 3.5 m), for five potential landing ellipses. As a rule, digital terrain models built from stereo pairs of high-resolution images (here, the images taken by the Narrow Angle Camera onboard the Lunar Reconnaissance Orbiter (LROC NAC)) are used in such cases. However, the planned landing sites are at high latitudes (67°-74° S), which makes it impossible to build digital terrain models, since the difference in the observation angle of the overlapping images is insufficient at these latitudes. Because of this, to estimate the steepness of slopes, we considered the interrelation between the shaded area percentage in the image and the Sun angle over horizon at the moment of imaging. For five proposed landing ellipses, the LROC NAC images (175 images in total) with a resolution from 0.4 to 1.2 m/pixel were analyzed. From the results of the measurements in each of the ellipses, the dependence of the shaded area percentage on the solar angle were built, which was converted to the occurrence probability of slopes. For this, the data on the Apollo 16 landing region ware used, which is covered by both the LROC NAC images and the digital terrain model with high resolution. As a result, the occurrence probability of slopes with different steepness has been estimated on the baseline of 3.5 m for five landing ellipses according to the steepness categories of <7°, 7°-10°, 10°-15°, 15°-20°, and >20°.

  7. Semi-automated extraction of longitudinal subglacial bedforms from digital terrain models - Two new methods

    NASA Astrophysics Data System (ADS)

    Jorge, Marco G.; Brennand, Tracy A.

    2017-07-01

    Relict drumlin and mega-scale glacial lineation (positive relief, longitudinal subglacial bedforms - LSBs) morphometry has been used as a proxy for paleo ice-sheet dynamics. LSB morphometric inventories have relied on manual mapping, which is slow and subjective and thus potentially difficult to reproduce. Automated methods are faster and reproducible, but previous methods for LSB semi-automated mapping have not been highly successful. Here, two new object-based methods for the semi-automated extraction of LSBs (footprints) from digital terrain models are compared in a test area in the Puget Lowland, Washington, USA. As segmentation procedures to create LSB-candidate objects, the normalized closed contour method relies on the contouring of a normalized local relief model addressing LSBs on slopes, and the landform elements mask method relies on the classification of landform elements derived from the digital terrain model. For identifying which LSB-candidate objects correspond to LSBs, both methods use the same LSB operational definition: a ruleset encapsulating expert knowledge, published morphometric data, and the morphometric range of LSBs in the study area. The normalized closed contour method was separately applied to four different local relief models, two computed in moving windows and two hydrology-based. Overall, the normalized closed contour method outperformed the landform elements mask method. The normalized closed contour method performed on a hydrological relief model from a multiple direction flow routing algorithm performed best. For an assessment of its transferability, the normalized closed contour method was evaluated on a second area, the Chautauqua drumlin field, Pennsylvania and New York, USA where it performed better than in the Puget Lowland. A broad comparison to previous methods suggests that the normalized relief closed contour method may be the most capable method to date, but more development is required.

  8. The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.; Christensen, P.; Smith, D. E.; Neumann, G. A.; Kirk, R. L.; Caplinger, M. A.; Albee, A. A.; Seregina, N. V.; Neukum, G.; Archinal, B. A.

    2014-12-01

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses in the year 2000 tied Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to update the location of Airy-0. Based upon this tie and radiometric tracking of landers/rovers from Earth, new expressions for the Mars spin axis direction, spin rate, and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Since the Mars Global Surveyor mission and Mars Orbiter Laser Altimeter global digital terrain model were completed some time ago, a more exhaustive study has been performed to determine the accuracy of the Airy-0 location and orientation of Mars at the standard epoch. Thermal Emission Imaging System (THEMIS) IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be about 0.001° east of its predicted location using the currently defined International Astronomical Union (IAU) prime meridian location. Information on this new location and how it was derived will be provided to the NASA Mars Exploration Program Geodesy and Cartography Working Group for their assessment. This NASA group will make a recommendation to the IAU Working Group on Cartographic Coordinates and Rotational Elements to update the expression for the Mars spin axis direction, spin rate, and prime meridian location.

  9. Estimation of regional material yield from coastal landslides based on historical digital terrain modelling

    USGS Publications Warehouse

    Hapke, C.J.

    2005-01-01

    High-resolution historical (1942) and recent (1994) digital terrain models were derived from aerial photographs along the Big Sur coastline in central California to measure the long-term volume of material that enters the nearshore environment. During the 52-year measurement time period, an average of 21 000 ?? 3100 m3 km-1 a-1 of material was eroded from nine study sections distributed along the coast, with a low yield of 1000 ?? 240 m3 km-1 a-1 and a high of 46 700 ?? 7300 m3 km-1 a-1. The results compare well with known volumes from several deep-seated landslides in the area and suggest that the processes by which material is delivered to the coast are episodic in nature. In addition, a number of parameters are investigated to determine what influences the substantial variation in yield along the coast. It is found that the magnitude of regional coastal landslide sediment yield is primarily related to the physical strength of the slope-forming material. Coastal Highway 1 runs along the lower portion of the slope along this stretch of coastline, and winter storms frequently damage the highway. The California Department of Transportation is responsible for maintaining this scenic highway while minimizing the impacts to the coastal ecosystems that are part of the Monterey Bay National Marine Sanctuary. This study provides environmental managers with critical background data on the volumes of material that historically enter the nearshore from landslides, as well as demonstrating the application of deriving historical digital terrain data to model landscape evolution. Published in 2005 by John Wiley & Sons, Ltd.

  10. Synthetic environments

    NASA Astrophysics Data System (ADS)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  11. Observing and characterizing avalanche activity in the Khumbu Himal, Nepal, using Pleiades and airborne HDR imagery

    NASA Astrophysics Data System (ADS)

    Thompson, Sarah; Nicholson, Lindsey; Klug, Christoph; Rieg, Lorenzo; Sailer, Rudolf; Bucher, Tilman; Brauchle, Jörg

    2017-04-01

    In the high, steep terrain of the Khumbu Himal, Nepal, snow avalanches play an important role in glacier mass balance, and rockfall supplies much of the rock material that forms the extensive debris covers on glaciers in the region. Information on the frequency and size of gravitational mass movements is helpful for understanding current and future glacier behaviour but currently lacking. In this study we use a combination of high resolution Pleiades optical satellite imagery in conjunction with airborne HDR imagery of slopes in deep shadow or overexposed snow slopes, provided by the German Aerospace Center (DLR) MACS system (see Brauchle et al., MM3.2/GI2.12/GMPV6.4/HS11.13/NH8.9/SSS12.24), to undertake a qualitative observational study of the gravitational processes evident in these sets of imagery. We classify the features found and discuss their likely frequency in the context of previously published research findings. Terrain analysis based upon digital terrain models derived from the same Pleiades imagery is used to investigate the slope angle, degree of confinement, curvature and aspect of observed avalanche and rock fall tracks. This work presents a first overview of the types of gravitational slides affecting glaciers of the Khumbu Himal. Subsequent research efforts will focus on attempting to quantify volumes of mass movement using repeat satellite imagery.

  12. Data-Driven Surface Traversability Analysis for Mars 2020 Landing Site Selection

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Rothrock, Brandon; Almeida, Eduardo; Ansar, Adnan; Otero, Richard; Huertas, Andres; Heverly, Matthew

    2015-01-01

    The objective of this paper is three-fold: 1) to describe the engineering challenges in the surface mobility of the Mars 2020 Rover mission that are considered in the landing site selection processs, 2) to introduce new automated traversability analysis capabilities, and 3) to present the preliminary analysis results for top candidate landing sites. The analysis capabilities presented in this paper include automated terrain classification, automated rock detection, digital elevation model (DEM) generation, and multi-ROI (region of interest) route planning. These analysis capabilities enable to fully utilize the vast volume of high-resolution orbiter imagery, quantitatively evaluate surface mobility requirements for each candidate site, and reject subjectivity in the comparison between sites in terms of engineering considerations. The analysis results supported the discussion in the Second Landing Site Workshop held in August 2015, which resulted in selecting eight candidate sites that will be considered in the third workshop.

  13. Global detection of large lunar craters based on the CE-1 digital elevation model

    NASA Astrophysics Data System (ADS)

    Luo, Lei; Mu, Lingli; Wang, Xinyuan; Li, Chao; Ji, Wei; Zhao, Jinjin; Cai, Heng

    2013-12-01

    Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detection algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ⩾10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.

  14. Combining Landform Thematic Layer and Object-Oriented Image Analysis to Map the Surface Features of Mountainous Flood Plain Areas

    NASA Astrophysics Data System (ADS)

    Chuang, H.-K.; Lin, M.-L.; Huang, W.-C.

    2012-04-01

    The Typhoon Morakot on August 2009 brought more than 2,000 mm of cumulative rainfall in southern Taiwan, the extreme rainfall event caused serious damage to the Kaoping River basin. The losses were mostly blamed on the landslides along sides of the river, and shifting of the watercourse even led to the failure of roads and bridges, as well as flooding and levees damage happened around the villages on flood bank and terraces. Alluvial fans resulted from debris flow of stream feeders blocked the main watercourse and debris dam was even formed and collapsed. These disasters have highlighted the importance of identification and map the watercourse alteration, surface features of flood plain area and artificial structures soon after the catastrophic typhoon event for natural hazard mitigation. Interpretation of remote sensing images is an efficient approach to acquire spatial information for vast areas, therefore making it suitable for the differentiation of terrain and objects near the vast flood plain areas in a short term. The object-oriented image analysis program (Definiens Developer 7.0) and multi-band high resolution satellite images (QuickBird, DigitalGlobe) was utilized to interpret the flood plain features from Liouguei to Baolai of the the Kaoping River basin after Typhoon Morakot. Object-oriented image interpretation is the process of using homogenized image blocks as elements instead of pixels for different shapes, textures and the mutual relationships of adjacent elements, as well as categorized conditions and rules for semi-artificial interpretation of surface features. Digital terrain models (DTM) are also employed along with the above process to produce layers with specific "landform thematic layers". These layers are especially helpful in differentiating some confusing categories in the spectrum analysis with improved accuracy, such as landslides and riverbeds, as well as terraces, riverbanks, which are of significant engineering importance in disaster mitigation. In this study, an automatic and fast image interpretation process for eight surface features including main channel, secondary channel, sandbar, flood plain, river terrace, alluvial fan, landslide, and the nearby artificial structures in the mountainous flood plain is proposed. Images along timelines can even be compared in order to differentiate historical events such as village inundations, failure of roads, bridges and levees, as well as alternation of watercourse, and therefore can be used as references for safety evaluation of engineering structures near rivers, disaster prevention and mitigation, and even future land-use planning. Keywords: Flood plain area, Remote sensing, Object-oriented, Surface feature interpretation, Terrain analysis, Thematic layer, Typhoon Morakot

  15. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1983-01-01

    Progress on the registration of TM data to digital topographic data; on comparison of TM, MSS and NOAA meteorological satellite data for snowcover mapping; and on radiative transfer models for atmospheric correction is reported. Some methods for analyzing spatial contiguity of snow within the snow covered area were selected. The methods are based on a two-channel version of the grey level co-occurence matrix, combined with edge detection derived from an algorithm for computing slopes and exposures from digital terrain data.

  16. Processing of 3-Dimensional Flash Lidar Terrain Images Generated From an Airborne Platform

    NASA Technical Reports Server (NTRS)

    Bulyshev, Alexander; Pierrottet, Diego; Amzajerdian, Farzin; Busch, George; Vanek, Michael; Reisse, Robert

    2009-01-01

    Data from the first Flight Test of the NASA Langley Flash Lidar system have been processed. Results of the analyses are presented and discussed. A digital elevation map of the test site is derived from the data, and is compared with the actual topography. The set of algorithms employed, starting from the initial data sorting, and continuing through to the final digital map classification is described. The accuracy, precision, and the spatial and angular resolution of the method are discussed.

  17. Automated identification of potential snow avalanche release areas based on digital elevation models

    NASA Astrophysics Data System (ADS)

    Bühler, Y.; Kumar, S.; Veitinger, J.; Christen, M.; Stoffel, A.; Snehmani

    2013-05-01

    The identification of snow avalanche release areas is a very difficult task. The release mechanism of snow avalanches depends on many different terrain, meteorological, snowpack and triggering parameters and their interactions, which are very difficult to assess. In many alpine regions such as the Indian Himalaya, nearly no information on avalanche release areas exists mainly due to the very rough and poorly accessible terrain, the vast size of the region and the lack of avalanche records. However avalanche release information is urgently required for numerical simulation of avalanche events to plan mitigation measures, for hazard mapping and to secure important roads. The Rohtang tunnel access road near Manali, Himachal Pradesh, India, is such an example. By far the most reliable way to identify avalanche release areas is using historic avalanche records and field investigations accomplished by avalanche experts in the formation zones. But both methods are not feasible for this area due to the rough terrain, its vast extent and lack of time. Therefore, we develop an operational, easy-to-use automated potential release area (PRA) detection tool in Python/ArcGIS which uses high spatial resolution digital elevation models (DEMs) and forest cover information derived from airborne remote sensing instruments as input. Such instruments can acquire spatially continuous data even over inaccessible terrain and cover large areas. We validate our tool using a database of historic avalanches acquired over 56 yr in the neighborhood of Davos, Switzerland, and apply this method for the avalanche tracks along the Rohtang tunnel access road. This tool, used by avalanche experts, delivers valuable input to identify focus areas for more-detailed investigations on avalanche release areas in remote regions such as the Indian Himalaya and is a precondition for large-scale avalanche hazard mapping.

  18. An earth remote sensing satellite- 1 Synthetic Aperture Radar Mosaic of the Tanana River Basin in Alaska

    USGS Publications Warehouse

    Wivell, Charles E.; Olmsted, Coert; Steinwand, Daniel R.; Taylor, Christopher

    1993-01-01

    Because the pixel location in a line of Synthetic Aperture Radar (SAR) image data is directly related to the distance the pixel is from the radar, terrain elevations cause large displacement errors in the geo-referenced location of the pixel. This is especially true for radar systems with small angles between the nadir and look vectors. Thus, to geo-register a SAR image accurately, the terrain of the area must be taken into account. (Curlander et al., 1987; Kwok et al., 1987, Schreier et al., 1990; Wivell et al., 1992). As part of the 1992 National Aeronautics and Space Administration's Earth Observing System Version 0 activities, a prototype SAR geocod-. ing and terrain correction system was developed at the US. Geological Survey's (USGS) E~os Data Center (EDC) in Sioux Falls, South Dakota. Using this system with 3-arc-second digital elevation models (DEMs) mosaicked at the ED^ Alaska Field Office, 21 ERS-I s.4~ scenes acquired at the Alaska SAR Facility were automatically geocoded, terrain corrected, and mosaicked. The geo-registered scenes were mosaicked using a simple concatenation.

  19. Determination of Landslide and Driftwood Potentials by Fixed-wing UAV-Borne RGB and NIR images: A Case Study of Shenmu Area in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Su-Chin; Hsiao, Yu-Shen; Chung, Ta-Hsien

    2015-04-01

    This study is aimed at determining the landslide and driftwood potentials at Shenmu area in Taiwan by Unmanned Aerial Vehicle (UAV). High-resolution orthomosaics and digital surface models (DSMs) are both obtained from several UAV practical surveys by using a red-green-blue(RGB) camera and a near-infrared(NIR) one, respectively. Couples of artificial aerial survey targets are used for ground control in photogrammtry. The algorithm for this study is based on Logistic regression. 8 main factors, which are elevations, terrain slopes, terrain aspects, terrain reliefs, terrain roughness, distances to roads, distances to rivers, land utilizations, are taken into consideration in our Logistic regression model. The related results from UAV are compared with those from traditional photogrammetry. Overall, the study is focusing on monitoring the distribution of the areas with high-risk landslide and driftwood potentials in Shenmu area by Fixed-wing UAV-Borne RGB and NIR images. We also further analyze the relationship between forests, landslides, disaster potentials and upper river areas.

  20. Digital terrain modeling

    NASA Astrophysics Data System (ADS)

    Wilson, John P.

    2012-01-01

    This article examines how the methods and data sources used to generate DEMs and calculate land surface parameters have changed over the past 25 years. The primary goal is to describe the state-of-the-art for a typical digital terrain modeling workflow that starts with data capture, continues with data preprocessing and DEM generation, and concludes with the calculation of one or more primary and secondary land surface parameters. The article first describes some of ways in which LiDAR and RADAR remote sensing technologies have transformed the sources and methods for capturing elevation data. It next discusses the need for and various methods that are currently used to preprocess DEMs along with some of the challenges that confront those who tackle these tasks. The bulk of the article describes some of the subtleties involved in calculating the primary land surface parameters that are derived directly from DEMs without additional inputs and the two sets of secondary land surface parameters that are commonly used to model solar radiation and the accompanying interactions between the land surface and the atmosphere on the one hand and water flow and related surface processes on the other. It concludes with a discussion of the various kinds of errors that are embedded in DEMs, how these may be propagated and carried forward in calculating various land surface parameters, and the consequences of this state-of-affairs for the modern terrain analyst.

  1. Exploring the Potential of Aerial Photogrammetry for 3d Modelling of High-Alpine Environments

    NASA Astrophysics Data System (ADS)

    Legat, K.; Moe, K.; Poli, D.; Bollmannb, E.

    2016-03-01

    High-alpine areas are subject to rapid topographic changes, mainly caused by natural processes like glacial retreat and other geomorphological processes, and also due to anthropogenic interventions like construction of slopes and infrastructure in skiing resorts. Consequently, the demand for highly accurate digital terrain models (DTMs) in alpine environments has arisen. Public administrations often have dedicated resources for the regular monitoring of glaciers and natural hazard processes. In case of glaciers, traditional monitoring encompasses in-situ measurements of area and length and the estimation of volume and mass changes. Next to field measurements, data for such monitoring programs can be derived from DTMs and digital ortho photos (DOPs). Skiing resorts, on the other hand, require DTMs as input for planning and - more recently - for RTK-GNSS supported ski-slope grooming. Although different in scope, the demand of both user groups is similar: high-quality and up-to-date terrain data for extended areas often characterised by difficult accessibility and large elevation ranges. Over the last two decades, airborne laser scanning (ALS) has replaced photogrammetric approaches as state-of-the-art technology for the acquisition of high-resolution DTMs also in alpine environments. Reasons include the higher productivity compared to (manual) stereo-photogrammetric measurements, canopy-penetration capability, and limitations of photo measurements on sparsely textured surfaces like snow or ice. Nevertheless, the last few years have shown strong technological advances in the field of aerial camera technology, image processing and photogrammetric software which led to new possibilities for image-based DTM generation even in alpine terrain. At Vermessung AVT, an Austrian-based surveying company, and its subsidiary Terra Messflug, very promising results have been achieved for various projects in high-alpine environments, using images acquired by large-format digital cameras of Microsoft's UltraCam series and the in-house processing chain centred on the Dense-Image-Matching (DIM) software SURE by nFrames. This paper reports the work carried out at AVT for the surface- and terrain modelling of several high-alpine areas using DIM- and ALS-based approaches. A special focus is dedicated to the influence of terrain morphology, flight planning, GNSS/IMU measurements, and ground-control distribution in the georeferencing process on the data quality. Based on the very promising results, some general recommendations for aerial photogrammetry processing in high-alpine areas are made to achieve best possible accuracy of the final 3D-, 2.5D- and 2D products.

  2. Discussion on the 3D visualizing of 1:200 000 geological map

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng

    2018-01-01

    Using United States National Aeronautics and Space Administration Shuttle Radar Topography Mission (SRTM) terrain data as digital elevation model (DEM), overlap scanned 1:200 000 scale geological map, program using Direct 3D of Microsoft with C# computer language, the author realized the three-dimensional visualization of the standard division geological map. User can inspect the regional geology content with arbitrary angle, rotating, roaming, and can examining the strata synthetical histogram, map section and legend at any moment. This will provide an intuitionistic analyzing tool for the geological practitioner to do structural analysis with the assistant of landform, dispose field exploration route etc.

  3. Laser altimetry simulator. Version 3.0: User's guide

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Mcgarry, Jan F.; Pacini, Linda K.; Blair, J. Bryan; Elman, Gregory C.

    1994-01-01

    A numerical simulator of a pulsed, direct detection laser altimeter has been developed to investigate the performance of space-based laser altimeters operating over surfaces with various height profiles. The simulator calculates the laser's optical intensity waveform as it propagates to and is reflected from the terrain surface and is collected by the receiver telescope. It also calculates the signal and noise waveforms output from the receiver's optical detector and waveform digitizer. Both avalanche photodiode and photomultiplier detectors may be selected. Parameters of the detected signal, including energy, the 50 percent rise-time point, the mean timing point, and the centroid, can be collected into histograms and statistics calculated after a number of laser firings. The laser altimeter can be selected to be fixed over the terrain at any altitude. Alternatively, it can move between laser shots to simulate the terrain profile measured with the laser altimeter.

  4. Preliminary results of SAR soil moisture experiment, November 1975

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Chang, A. T. C.; Schmugge, T. J.; Salomonson, V. V.; Wang, J. R.

    1979-01-01

    The experiment was performed using the Environmental Research Institute of Michigan's (ERIM) dual-frequency and dual-polarization side-looking SAR system on board a C-46 aircraft. For each frequency, horizontally polarized pulses were transmitted and both horizontally and vertically polarized return signals were recorded on the signal film simultaneously. The test sites were located in St. Charles, Missouri; Centralia, Missouri; and Lafayette, Indiana. Each test site was a 4.83 km by 8.05 km (3 mile by 5 mile) rectangular strip of terrain. Concurrent with SAR overflight, ground soil samples of 0-to-2.5 cm and 0-to-15 cm layers were collected for soil moisture estimation. The surface features were also noted. Hard-copy image films and the digital data produced via optical processing of the signal films are analyzed in this report to study the relationship of radar backscatter to the moisture content and the surface roughness. Many difficulties associated with processing and analysis of the SAR imagery are noted. In particular, major uncertainty in the quantitative analysis appeared due to the difficulty of quality reproduction of digital data from the signal films.

  5. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability

    NASA Astrophysics Data System (ADS)

    Lewińska, Paulina; Matuła, Rafał; Dyczko, Artur

    2018-01-01

    Spoil tips are anthropogenic terrain structures built of leftover (coal) mining materials. They consist mostly of slate and sandstone or mudstone but also include coal and highly explosive coal dust. Coal soil tip fires cause an irreversible degradation to the environment. Government organizations notice the potential problem of spoil tip hazard and are looking for ways of fast monitoring of their temperature and inside structure. In order to test new monitoring methods an experimental was performed in the area of spoil tip of Lubelski Węgiel "Bogdanka" S.A. A survey consisted of creating a 3D discreet thermal model. This was done in order to look for potential fire areas. MASW (Multichannel analysis of surface wave) was done in order to find potential voids within the body of a tip. Existing data was digitalized and a 3D model of object's outside and inside was produced. This article provides results of this survey and informs about advantages of such an approach.

  6. Hybrid Network Architectures for the Next Generation NAS

    NASA Technical Reports Server (NTRS)

    Madubata, Christian

    2003-01-01

    To meet the needs of the 21st Century NAS, an integrated, network-centric infrastructure is essential that is characterized by secure, high bandwidth, digital communication systems that support precision navigation capable of reducing position errors for all aircraft to within a few meters. This system will also require precision surveillance systems capable of accurately locating all aircraft, and automatically detecting any deviations from an approved path within seconds and be able to deliver high resolution weather forecasts - critical to create 4- dimensional (space and time) profiles for up to 6 hours for all atmospheric conditions affecting aviation, including wake vortices. The 21st Century NAS will be characterized by highly accurate digital data bases depicting terrain, obstacle, and airport information no matter what visibility conditions exist. This research task will be to perform a high-level requirements analysis of the applications, information and services required by the next generation National Airspace System. The investigation and analysis is expected to lead to the development and design of several national network-centric communications architectures that would be capable of supporting the Next Generation NAS.

  7. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  8. A terrain-based site characterization map of California with implications for the contiguous United States

    USGS Publications Warehouse

    Yong, Alan K.; Hough, Susan E.; Iwahashi, Junko; Braverman, Amy

    2012-01-01

    We present an approach based on geomorphometry to predict material properties and characterize site conditions using the VS30 parameter (time‐averaged shear‐wave velocity to a depth of 30 m). Our framework consists of an automated terrain classification scheme based on taxonomic criteria (slope gradient, local convexity, and surface texture) that systematically identifies 16 terrain types from 1‐km spatial resolution (30 arcsec) Shuttle Radar Topography Mission digital elevation models (SRTM DEMs). Using 853 VS30 values from California, we apply a simulation‐based statistical method to determine the mean VS30 for each terrain type in California. We then compare the VS30 values with models based on individual proxies, such as mapped surface geology and topographic slope, and show that our systematic terrain‐based approach consistently performs better than semiempirical estimates based on individual proxies. To further evaluate our model, we apply our California‐based estimates to terrains of the contiguous United States. Comparisons of our estimates with 325 VS30 measurements outside of California, as well as estimates based on the topographic slope model, indicate our method to be statistically robust and more accurate. Our approach thus provides an objective and robust method for extending estimates of VS30 for regions where in situ measurements are sparse or not readily available.

  9. Development of an infrared analyzer following the

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A radar calibration subsystem for measuring the radar backscattering characteristics of an imaged terrain is described. To achieve the required accuracy for the backscattering coefficient measurement (about 2 dB with 80 percent confidence), the space hardware design includes a means of monitoring the state parameters of the radar. For example, the transmitter output power is sampled and a replica of its output waveform is circulated through the receiver. These are recorded digitally and are used on the ground to determine such radar parameters as the transmitter power and the receiver gain. This part of the data is needed by the ground processor to measure the terrain backscattering characteristics.

  10. Visual terrain mapping for traversable path planning of mobile robots

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Amrani, Rachida; Tunstel, Edward W.

    2004-10-01

    In this paper, we have primarily discussed technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain visual clues. The Kalman Filtering technique is applied for aggregative fusion of sub-terrain assessment results. The last two terrain classifiers are shown to have remarkable capability for terrain traversability assessment of natural terrains. We have conducted a comparative performance evaluation of all three terrain classifiers and presented the results in this paper.

  11. Soft computing-based terrain visual sensing and data fusion for unmanned ground robotic systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir

    2006-05-01

    In this paper, we have primarily discussed technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain visual clues. The Kalman Filtering technique is applied for aggregative fusion of sub-terrain assessment results. The last two terrain classifiers are shown to have remarkable capability for terrain traversability assessment of natural terrains. We have conducted a comparative performance evaluation of all three terrain classifiers and presented the results in this paper.

  12. Interpretation of laser/multi-sensor data for short range terrain modeling and hazard detection

    NASA Technical Reports Server (NTRS)

    Messing, B. S.

    1980-01-01

    A terrain modeling algorithm that would reconstruct the sensed ground images formed by the triangulation scheme, and classify as unsafe any terrain feature that would pose a hazard to a roving vehicle is described. This modeler greatly reduces quantization errors inherent in a laser/sensing system through the use of a thinning algorithm. Dual filters are employed to separate terrain steps from the general landscape, simplifying the analysis of terrain features. A crosspath analysis is utilized to detect and avoid obstacles that would adversely affect the roll of the vehicle. Computer simulations of the rover on various terrains examine the performance of the modeler.

  13. Characterization of the horizontal structure of the tropical forest canopy using object-based LiDAR and multispectral image analysis

    NASA Astrophysics Data System (ADS)

    Dupuy, Stéphane; Lainé, Gérard; Tassin, Jacques; Sarrailh, Jean-Michel

    2013-12-01

    This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the "Litto3D" coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition.

  14. Improving the Terrain-Based Parameter for the Assessment of Snow Redistribution in the Col du Lac Blanc Area and Comparisons with TLS Snow Depth Data

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert

    2014-05-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter's quantitative abilities, we modified the parameter, based on the comparisons with TLS data and the terrain and wind conditions specific to the research site. The modification is in a linear form f(x) = a * Sx, where a is a newly introduced parameter; f(x) yields the estimates for the snow height. We found that the parameter depends on the time period between the compared snow surfaces and the intensity of drifting snow events, which are linked to wind velocities. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter a. We could improve the parameters' correlations with measured snow heights and its ability to quantitatively describe snow distribution in the Col du Lac Blanc area. We believe that our work is also a prerequisite to further improve the parameter's ability to describe snow redistribution.

  15. Modelling vertical error in LiDAR-derived digital elevation models

    NASA Astrophysics Data System (ADS)

    Aguilar, Fernando J.; Mills, Jon P.; Delgado, Jorge; Aguilar, Manuel A.; Negreiros, J. G.; Pérez, José L.

    2010-01-01

    A hybrid theoretical-empirical model has been developed for modelling the error in LiDAR-derived digital elevation models (DEMs) of non-open terrain. The theoretical component seeks to model the propagation of the sample data error (SDE), i.e. the error from light detection and ranging (LiDAR) data capture of ground sampled points in open terrain, towards interpolated points. The interpolation methods used for infilling gaps may produce a non-negligible error that is referred to as gridding error. In this case, interpolation is performed using an inverse distance weighting (IDW) method with the local support of the five closest neighbours, although it would be possible to utilize other interpolation methods. The empirical component refers to what is known as "information loss". This is the error purely due to modelling the continuous terrain surface from only a discrete number of points plus the error arising from the interpolation process. The SDE must be previously calculated from a suitable number of check points located in open terrain and assumes that the LiDAR point density was sufficiently high to neglect the gridding error. For model calibration, data for 29 study sites, 200×200 m in size, belonging to different areas around Almeria province, south-east Spain, were acquired by means of stereo photogrammetric methods. The developed methodology was validated against two different LiDAR datasets. The first dataset used was an Ordnance Survey (OS) LiDAR survey carried out over a region of Bristol in the UK. The second dataset was an area located at Gador mountain range, south of Almería province, Spain. Both terrain slope and sampling density were incorporated in the empirical component through the calibration phase, resulting in a very good agreement between predicted and observed data (R2 = 0.9856 ; p < 0.001). In validation, Bristol observed vertical errors, corresponding to different LiDAR point densities, offered a reasonably good fit to the predicted errors. Even better results were achieved in the more rugged morphology of the Gador mountain range dataset. The findings presented in this article could be used as a guide for the selection of appropriate operational parameters (essentially point density in order to optimize survey cost), in projects related to LiDAR survey in non-open terrain, for instance those projects dealing with forestry applications.

  16. Programs for skyline planning.

    Treesearch

    Ward W. Carson

    1975-01-01

    This paper describes four computer programs for the logging engineer's use in planning log harvesting by skyline systems. One program prepares terrain profile plots from maps mounted on a digitizer; the other programs prepare load-carrying capability and other information for single and multispan standing skylines and single span running skylines. In general, the...

  17. The Paradoxical Future of Digital Learning

    ERIC Educational Resources Information Center

    Warschauer, Mark

    2007-01-01

    What constitutes learning in the 21st century will be contested terrain as our society strives toward post-industrial forms of knowledge acquisition and production without having yet overcome the educational contradictions and failings of the industrial age. Educational reformers suggest that the advent of new technologies will radically transform…

  18. Stereoscopic Machine-Vision System Using Projected Circles

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.

    2010-01-01

    A machine-vision system capable of detecting obstacles large enough to damage or trap a robotic vehicle is undergoing development. The system includes (1) a pattern generator that projects concentric circles of laser light forward onto the terrain, (2) a stereoscopic pair of cameras that are aimed forward to acquire images of the circles, (3) a frame grabber and digitizer for acquiring image data from the cameras, and (4) a single-board computer that processes the data. The system is being developed as a prototype of machine- vision systems to enable robotic vehicles ( rovers ) on remote planets to avoid craters, large rocks, and other terrain features that could capture or damage the vehicles. Potential terrestrial applications of systems like this one could include terrain mapping, collision avoidance, navigation of robotic vehicles, mining, and robotic rescue. This system is based partly on the same principles as those of a prior stereoscopic machine-vision system in which the cameras acquire images of a single stripe of laser light that is swept forward across the terrain. However, this system is designed to afford improvements over some of the undesirable features of the prior system, including the need for a pan-and-tilt mechanism to aim the laser to generate the swept stripe, ambiguities in interpretation of the single-stripe image, the time needed to sweep the stripe across the terrain and process the data from many images acquired during that time, and difficulty of calibration because of the narrowness of the stripe. In this system, the pattern generator does not contain any moving parts and need not be mounted on a pan-and-tilt mechanism: the pattern of concentric circles is projected steadily in the forward direction. The system calibrates itself by use of data acquired during projection of the concentric-circle pattern onto a known target representing flat ground. The calibration- target image data are stored in the computer memory for use as a template in processing terrain images. During operation on terrain, the images acquired by the left and right cameras are analyzed. The analysis includes (1) computation of the horizontal and vertical dimensions and the aspect ratios of rectangles that bound the circle images and (2) comparison of these aspect ratios with those of the template. Coordinates of distortions of the circles are used to identify and locate objects. If the analysis leads to identification of an object of significant size, then stereoscopicvision algorithms are used to estimate the distance to the object. The time taken in performing this analysis on a single pair of images acquired by the left and right cameras in this system is a fraction of the time taken in processing the many pairs of images acquired in a sweep of the laser stripe across the field of view in the prior system. The results of the analysis include data on sizes and shapes of, and distances and directions to, objects. Coordinates of objects are updated as the vehicle moves so that intelligent decisions regarding speed and direction can be made. The results of the analysis are utilized in a computational decision-making process that generates obstacle-avoidance data and feeds those data to the control system of the robotic vehicle.

  19. Analysis of hydraulic steering system of tracked all-terrain vehicles' articulated mechanism

    NASA Astrophysics Data System (ADS)

    Meng, Zhongliang; Zang, Hao

    2018-04-01

    As for the researches on the dynamic characteristics of tracked all-terrain vehicles' articulated mechanism, the hydraulic feature of their steering system needs researching more, apart from the study on mechanical models. According to the maximum pressure required by the steering system of tracked all-terrain vehicle and the principle of the steering system, this paper conducts an analysis of the hydraulic steering system of the articulated mechanism. Based on the structure principle of the steering gear, a simulation model of the tracked all-terrain vehicle turning left is built. When building the simulation model of the steering gear, it makes a simulation analysis, taking the tracked all-terrain vehicle turning left as an example.

  20. How does landscape structure influence catchment transit time across different geomorphic provinces?

    USGS Publications Warehouse

    Tetzlaff, D.; Seibert, J.; McGuire, K.J.; Laudon, H.; Burns, Douglas A.; Dunn, S.M.; Soulsby, C.

    2009-01-01

    Despite an increasing number of empirical investigations of catchment transit times (TTs), virtually all are based on individual catchments and there are few attempts to synthesize understanding across different geographical regions. Uniquely, this paper examines data from 55 catchments in five geomorphic provinces in northern temperate regions (Scotland, United States of America and Sweden). The objective is to understand how the role of catchment topography as a control on the TTs differs in contrasting geographical settings. Catchment inverse transit time proxies (ITTPs) were inferred by a simple metric of isotopic tracer damping, using the ratio of standard deviation of ??18O in streamwater to the standard deviation of ??18O in precipitation. Quantitative landscape analysis was undertaken to characterize the catchments according to hydrologically relevant topographic indices that could be readily determined from a digital terrain model (DTM). The nature of topographic controls on transit times varied markedly in different geomorphic regions. In steeper montane regions, there are stronger gravitational influences on hydraulic gradients and TTs tend to be lower in the steepest catchments. In provinces where terrain is more subdued, direct topographic control weakened; in particular, where flatter areas with less permeable soils give rise to overland flow and lower TTs. The steeper slopes within this flatter terrain appear to have a greater coverage of freely draining soils, which increase sub-surface flow, therefore increasing TTs. Quantitative landscape analysis proved a useful tool for intercatchment comparison. However, the critical influence of sub-surface permeability and connectivity may limit the transferability of predictive tools of hydrological function based on topographic parameters alone. Copyright ?? 2009 John Wiley & Sons, Ltd.

  1. 3D-information fusion from very high resolution satellite sensors

    NASA Astrophysics Data System (ADS)

    Krauss, T.; d'Angelo, P.; Kuschk, G.; Tian, J.; Partovi, T.

    2015-04-01

    In this paper we show the pre-processing and potential for environmental applications of very high resolution (VHR) satellite stereo imagery like these from WorldView-2 or Pl'eiades with ground sampling distances (GSD) of half a metre to a metre. To process such data first a dense digital surface model (DSM) has to be generated. Afterwards from this a digital terrain model (DTM) representing the ground and a so called normalized digital elevation model (nDEM) representing off-ground objects are derived. Combining these elevation based data with a spectral classification allows detection and extraction of objects from the satellite scenes. Beside the object extraction also the DSM and DTM can directly be used for simulation and monitoring of environmental issues. Examples are the simulation of floodings, building-volume and people estimation, simulation of noise from roads, wave-propagation for cellphones, wind and light for estimating renewable energy sources, 3D change detection, earthquake preparedness and crisis relief, urban development and sprawl of informal settlements and much more. Also outside of urban areas volume information brings literally a new dimension to earth oberservation tasks like the volume estimations of forests and illegal logging, volume of (illegal) open pit mining activities, estimation of flooding or tsunami risks, dike planning, etc. In this paper we present the preprocessing from the original level-1 satellite data to digital surface models (DSMs), corresponding VHR ortho images and derived digital terrain models (DTMs). From these components we present how a monitoring and decision fusion based 3D change detection can be realized by using different acquisitions. The results are analyzed and assessed to derive quality parameters for the presented method. Finally the usability of 3D information fusion from VHR satellite imagery is discussed and evaluated.

  2. Sink detection on tilted terrain for automated identification of glacial cirques

    NASA Astrophysics Data System (ADS)

    Prasicek, Günther; Robl, Jörg; Lang, Andreas

    2016-04-01

    Glacial cirques are morphologically distinct but complex landforms and represent a vital part of high mountain topography. Their distribution, elevation and relief are expected to hold information on (1) the extent of glacial occupation, (2) the mechanism of glacial cirque erosion, and (3) how glacial in concert with periglacial processes can limit peak altitude and mountain range height. While easily detectably for the expert's eye both in nature and on various representations of topography, their complicated nature makes them a nemesis for computer algorithms. Consequently, manual mapping of glacial cirques is commonplace in many mountain landscapes worldwide, but consistent datasets of cirque distribution and objectively mapped cirques and their morphometrical attributes are lacking. Among the biggest problems for algorithm development are the complexity in shape and the great variability of cirque size. For example, glacial cirques can be rather circular or longitudinal in extent, exist as individual and composite landforms, show prominent topographic depressions or can entirely be filled with water or sediment. For these reasons, attributes like circularity, size, drainage area and topology of landform elements (e.g. a flat floor surrounded by steep walls) have only a limited potential for automated cirque detection. Here we present a novel, geomorphometric method for automated identification of glacial cirques on digital elevation models that exploits their genetic bowl-like shape. First, we differentiate between glacial and fluvial terrain employing an algorithm based on a moving window approach and multi-scale curvature, which is also capable of fitting the analysis window to valley width. We then fit a plane to the valley stretch clipped by the analysis window and rotate the terrain around the center cell until the plane is level. Doing so, we produce sinks of considerable size if the clipped terrain represents a cirque, while no or only very small sinks develop on other valley stretches. We normalize sink area by window size for sink classification, apply this method to the Sawtooth Mountains, Idaho, and to Fiordland, New Zealand, and compare the results to manually mapped reference cirques. Results indicate that false negatives are produced only in very rugged terrain and false positives occur in rare cases, when valleys are strongly curved in longitudinal direction.

  3. Stereo-vision-based terrain mapping for off-road autonomous navigation

    NASA Astrophysics Data System (ADS)

    Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.

    2009-05-01

    Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as nogo regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.

  4. Stereo Vision Based Terrain Mapping for Off-Road Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.

    2009-01-01

    Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as no-go regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.

  5. EROS Data Center Landsat digital enhancement techniques and imagery availability

    USGS Publications Warehouse

    Rohde, Wayne G.; Lo, Jinn Kai; Pohl, Russell A.

    1978-01-01

    The US Geological Survey's EROS Data Center (EDC) is experimenting with the production of digitally enhanced Landsat imagery. Advanced digital image processing techniques are used to perform geometric and radiometric corrections and to perform contrast and edge enhancements. The enhanced image product is produced from digitally preprocessed Landsat computer compatible tapes (CCTs) on a laser beam film recording system. Landsat CCT data have several geometric distortions which are corrected when NASA produces the standard film products. When producing film images from CCT's, geometric correction of the data is required. The EDC Digital Image Enhancement System (EDIES) compensates for geometric distortions introduced by Earth's rotation, variable line length, non-uniform mirror scan velocity, and detector misregistration. Radiometric anomalies such as bad data lines and striping are common to many Landsat film products and are also in the CCT data. Bad data lines or line segments with more than 150 contiguous bad pixels are corrected by inserting data from the previous line in place of the bad data. Striping, caused by variations in detector gain and offset, is removed with a destriping algorithm applied after digitally enhancing the data. Image enhancement is performed by applying a linear contrast stretch and an edge enhancement algorithm. The linear contrast enhancement algorithm is designed to expand digitally the full range of useful data recorded on the CCT over the range of 256 digital counts. This minimizes the effect of atmospheric scattering and saturates the relative brightness of highly reflecting features such as clouds or snow. It is the intent that no meaningful terrain data are eliminated by the digital processing. The edge enhancement algorithm is designed to enhance boundaries between terrain features that exhibit subtle differences in brightness values along edges of features. After the digital data have been processed, data for each Landsat band are recorded on black-and-white film with a laser beam film recorder (LBR). The LBR corrects for aspect ratio distortions as the digital data are recorded on the recording film over a preselected density range. Positive transparencies of MSS bands 4, 5, and 7 produced by the LBR are used to make color composite transparencies. Color film positives are made photographically from first generation black-and-white products generated on the LBR.

  6. Viking image processing. [digital stereo imagery and computer mosaicking

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  7. Classification of vegetation communities in the Battle Mountain SE quadrangle, Nevada with MSS digital data

    NASA Technical Reports Server (NTRS)

    Ridd, M. K.; Ramsey, R. D.; Douglass, G. E.; Merola, J. A.

    1984-01-01

    LANDSAT MSS digital data were utilized to identify vegetation types in an area of Battle Mountain SE in northern Nevada. Ways in which terrain data may improve spectral classification were investigated. The basic data set was a CCT of LANDSAT scene 82233617450, dated 15 June 1981. Seventeen ecotypic classifications were identified in the study area on the basis of field investigations. The percent cover by life form and non-living material for the 17 classes is summarized along with the percent cover by species for the 17 classes.

  8. Heading for the Hills: Risk Avoidance Drives Den Site Selection in African Wild Dogs

    PubMed Central

    Jackson, Craig R.; Power, R. John; Groom, Rosemary J.; Masenga, Emmanuel H.; Mjingo, Ernest E.; Fyumagwa, Robert D.; Røskaft, Eivin; Davies-Mostert, Harriet

    2014-01-01

    Compared to their main competitors, African wild dogs (Lycaon pictus) have inferior competitive abilities and interspecific competition is a serious fitness-limiting factor. Lions (Panthera leo) are the dominant large carnivore in African savannah ecosystems and wild dogs avoid them both spatially and temporally. Wild dog young are particularly vulnerable and suffer high rates of mortality from lions. Since lions do not utilize all parts of the landscape with an equal intensity, spatial variation in lion densities can be exploited by wild dogs both during their general ranging behaviour, but more specifically when they are confined to a den with vulnerable young. Since patches of rugged terrain are associated with lower lion densities, we hypothesized that these comparatively safe habitats should be selected by wild dogs for denning. We investigated the relationship between the distribution of 100 wild dog den sites and the occurrence of rugged terrain in four wild dog populations located in Tanzania, Zimbabwe and South Africa. A terrain ruggedness index was derived from a 90 m digital elevation model and used to map terrain ruggedness at each site. We compared characteristics of actual and potential (random) den sites to determine how wild dogs select den sites. The distributions of wild dog dens were strongly associated with rugged terrain and wild dogs actively selected terrain that was more rugged than that available on average. The likelihood of encountering lions is reduced in these habitats, minimizing the risk to both adults and pups. Our findings have important implications for the conservation management of the species, especially when assessing habitat suitability for potential reintroductions. The simple technique used to assess terrain ruggedness may be useful to investigate habitat suitability, and even predict highly suitable denning areas, across large landscapes. PMID:24918935

  9. Heading for the hills: risk avoidance drives den site selection in African wild dogs.

    PubMed

    Jackson, Craig R; Power, R John; Groom, Rosemary J; Masenga, Emmanuel H; Mjingo, Ernest E; Fyumagwa, Robert D; Røskaft, Eivin; Davies-Mostert, Harriet

    2014-01-01

    Compared to their main competitors, African wild dogs (Lycaon pictus) have inferior competitive abilities and interspecific competition is a serious fitness-limiting factor. Lions (Panthera leo) are the dominant large carnivore in African savannah ecosystems and wild dogs avoid them both spatially and temporally. Wild dog young are particularly vulnerable and suffer high rates of mortality from lions. Since lions do not utilize all parts of the landscape with an equal intensity, spatial variation in lion densities can be exploited by wild dogs both during their general ranging behaviour, but more specifically when they are confined to a den with vulnerable young. Since patches of rugged terrain are associated with lower lion densities, we hypothesized that these comparatively safe habitats should be selected by wild dogs for denning. We investigated the relationship between the distribution of 100 wild dog den sites and the occurrence of rugged terrain in four wild dog populations located in Tanzania, Zimbabwe and South Africa. A terrain ruggedness index was derived from a 90 m digital elevation model and used to map terrain ruggedness at each site. We compared characteristics of actual and potential (random) den sites to determine how wild dogs select den sites. The distributions of wild dog dens were strongly associated with rugged terrain and wild dogs actively selected terrain that was more rugged than that available on average. The likelihood of encountering lions is reduced in these habitats, minimizing the risk to both adults and pups. Our findings have important implications for the conservation management of the species, especially when assessing habitat suitability for potential reintroductions. The simple technique used to assess terrain ruggedness may be useful to investigate habitat suitability, and even predict highly suitable denning areas, across large landscapes.

  10. Lunar Pole Illumination and Communications Maps Computed from GSSR Elevation Data

    NASA Technical Reports Server (NTRS)

    Bryant, Scott

    2009-01-01

    A Digital Elevation Model of the lunar south pole was produced using Goldstone Solar System RADAR (GSSR) data obtained in 2006.12 This model has 40-meter horizontal resolution and about 5-meter relative vertical accuracy. This Digital Elevation Model was used to compute average solar illumination and Earth visibility with 100 kilometers of the lunar south pole. The elevation data were converted into local terrain horizon masks, then converted into lunar-centric latitude and longitude coordinates. The horizon masks were compared to latitude, longitude regions bounding the maximum Sun and Earth motions relative to the moon. Estimates of Earth visibility were computed by integrating the area of the region bounding the Earth's motion that was below the horizon mask. Solar illumination and other metrics were computed similarly. Proposed lunar south pole base sites were examined in detail, with the best site showing yearly solar power availability of 92 percent and Direct-To-Earth (DTE) communication availability of about 50 percent. Similar analysis of the lunar south pole used an older GSSR Digital Elevation Model with 600-meter horizontal resolution. The paper also explores using a heliostat to reduce the photovoltaic power system mass and complexity.

  11. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  12. System for real-time generation of georeferenced terrain models

    NASA Astrophysics Data System (ADS)

    Schultz, Howard J.; Hanson, Allen R.; Riseman, Edward M.; Stolle, Frank; Zhu, Zhigang; Hayward, Christopher D.; Slaymaker, Dana

    2001-02-01

    A growing number of law enforcement applications, especially in the areas of border security, drug enforcement and anti- terrorism require high-resolution wide area surveillance from unmanned air vehicles. At the University of Massachusetts we are developing an aerial reconnaissance system capable of generating high resolution, geographically registered terrain models (in the form of a seamless mosaic) in real-time from a single down-looking digital video camera. The efficiency of the processing algorithms, as well as the simplicity of the hardware, will provide the user with the ability to produce and roam through stereoscopic geo-referenced mosaic images in real-time, and to automatically generate highly accurate 3D terrain models offline in a fraction of the time currently required by softcopy conventional photogrammetry systems. The system is organized around a set of integrated sensor and software components. The instrumentation package is comprised of several inexpensive commercial-off-the-shelf components, including a digital video camera, a differential GPS, and a 3-axis heading and reference system. At the heart of the system is a set of software tools for image registration, mosaic generation, geo-location and aircraft state vector recovery. Each process is designed to efficiently handle the data collected by the instrument package. Particular attention is given to minimizing geospatial errors at each stage, as well as modeling propagation of errors through the system. Preliminary results for an urban and forested scene are discussed in detail.

  13. NASA's Earth Science Use of Commercially Availiable Remote Sensing Datasets: Cover Image

    NASA Technical Reports Server (NTRS)

    Underwood, Lauren W.; Goward, Samuel N.; Fearon, Matthew G.; Fletcher, Rose; Garvin, Jim; Hurtt, George

    2008-01-01

    The cover image incorporates high resolution stereo pairs acquired from the DigitalGlobe(R) QuickBird sensor. It shows a digital elevation model of Meteor Crater, Arizona at approximately 1.3 meter point-spacing. Image analysts used the Leica Photogrammetry Suite to produce the DEM. The outside portion was computed from two QuickBird panchromatic scenes acquired October 2006, while an Optech laser scan dataset was used for the crater s interior elevations. The crater s terrain model and image drape were created in a NASA Constellation Program project focused on simulating lunar surface environments for prototyping and testing lunar surface mission analysis and planning tools. This work exemplifies NASA s Scientific Data Purchase legacy and commercial high resolution imagery applications, as scientists use commercial high resolution data to examine lunar analog Earth landscapes for advanced planning and trade studies for future lunar surface activities. Other applications include landscape dynamics related to volcanism, hydrologic events, climate change, and ice movement.

  14. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  15. Geographical Database Integrity Validation

    NASA Technical Reports Server (NTRS)

    Jacobs, Derya; Kauffman, Paul; Blackstock, Dexter

    2000-01-01

    Airport Safety Modeling Data (ASMD) was developed at the request of a 1997 White House Conference on Aviation Safety and Security. Politicians, military personnel, commercial aircraft manufacturers and the airline industry attended the conference. The objective of the conference was to study the airline industry and make recommendations to improve safety and security. One of the topics discussed at the conference was the loss of situational awareness by aircraft pilots. Loss of situational awareness occurs when a pilot loses his geographic position during flight and can result in crashes into terrain and obstacles. It was recognized at the conference that aviation safety could be improved by reducing the loss of situational awareness. The conference advised that a system be placed in the airplane cockpit that would provide pilots with a visual representation of the terrain around airports. The system would prevent airline crashes during times of inclement weather and loss of situational awareness. The system must be based on accurate data that represents terrain around airports. The Department of Defense and the National Imagery and Mapping Agency (NIMA) released ASMD to be used for the development of a visual system for aircraft pilots. ASMD was constructed from NIMA digital terrain elevation data (DTED).

  16. Online History-Keeping for Outreach and Community Development

    ERIC Educational Resources Information Center

    Huwe, Terence K.

    2010-01-01

    The rapidly evolving digital world inspires much use of nautical terminology: (1) navigation; (2) discovery; (3) the voyage; and (4) the new terrain at the end of the journey. Considering how quickly new technologies are arriving on smartphones, the nautical adventure is continuing at an increased pace. Innovations in basic library services follow…

  17. Printing Space: Using 3D Printing of Digital Terrain Models in Geosciences Education and Research

    ERIC Educational Resources Information Center

    Horowitz, Seth S.; Schultz, Peter H.

    2014-01-01

    Data visualization is a core component of every scientific project; however, generation of physical models previously depended on expensive or labor-intensive molding, sculpting, or laser sintering techniques. Physical models have the advantage of providing not only visual but also tactile modes of inspection, thereby allowing easier visual…

  18. Elevation, aspect, and cove size effects on southern Appalachian salamanders

    Treesearch

    W. Mark Ford; Michael A. Menzel; Richard H. Odom

    2002-01-01

    Using museum collection records and variables computed by digital terrain modeling in a geographic information system, we examined the relationship of elevation, aspect, and "cove" patch size to the presence or absence of 7 common woodland salamanders in mature cove hardwood and northern hardwood forests in the southern Appalachians of Georgia, North Carolina...

  19. Quantifying early-seral forest composition with remote sensing

    Treesearch

    Rayma A. Cooley; Peter T. Wolter; Brian R. Sturtevant

    2016-01-01

    Spatially explicit modeling of recovering forest structure within two years following wildfire disturbance has not been attempted, yet such knowledge is critical for determining successional pathways. We used remote sensing and field data, along with digital climate and terrain data, to model and map early-seral aspen structure and vegetation species richness following...

  20. PRIMUS: autonomous navigation in open terrain with a tracked vehicle

    NASA Astrophysics Data System (ADS)

    Schaub, Guenter W.; Pfaendner, Alfred H.; Schaefer, Christoph

    2004-09-01

    The German experimental robotics program PRIMUS (PRogram for Intelligent Mobile Unmanned Systems) is focused on solutions for autonomous driving in unknown open terrain, over several project phases under specific realization aspects for more than 12 years. The main task of the program is to develop algorithms for a high degree of autonomous navigation skills with off-the-shelf available hardware/sensor technology and to integrate this into military vehicles. For obstacle detection a Dornier-3D-LADAR is integrated on a tracked vehicle "Digitized WIESEL 2". For road-following a digital video camera and a visual perception module from the Universitaet der Bundeswehr Munchen (UBM) has been integrated. This paper gives an overview of the PRIMUS program with a focus on the last program phase D (2001 - 2003). This includes the system architecture, the description of the modes of operation and the technology development with the focus on obstacle avoidance and obstacle classification using a 3-D LADAR. A collection of experimental results and a short look at the next steps in the German robotics program will conclude the paper.

  1. Characteristics of Forests in Western Sayani Mountains, Siberia from SAR Data

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, Guoqing; Kharuk, V. I.; Kovacs, Katalin

    1998-01-01

    This paper investigated the possibility of using spaceborne radar data to map forest types and logging in the mountainous Western Sayani area in Siberia. L and C band HH, HV, and VV polarized images from the Shuttle Imaging Radar-C instrument were used in the study. Techniques to reduce topographic effects in the radar images were investigated. These included radiometric correction using illumination angle inferred from a digital elevation model, and reducing apparent effects of topography through band ratios. Forest classification was performed after terrain correction utilizing typical supervised techniques and principal component analyses. An ancillary data set of local elevations was also used to improve the forest classification. Map accuracy for each technique was estimated for training sites based on Russian forestry maps, satellite imagery and field measurements. The results indicate that it is necessary to correct for topography when attempting to classify forests in mountainous terrain. Radiometric correction based on a DEM (Digital Elevation Model) improved classification results but required reducing the SAR (Synthetic Aperture Radar) resolution to match the DEM. Using ratios of SAR channels that include cross-polarization improved classification and

  2. Remote sensing application to regional activities

    NASA Technical Reports Server (NTRS)

    Shahrokhi, F.; Jones, N. L.; Sharber, L. A.

    1976-01-01

    Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray.

  3. Comparative analysis of hierarchical triangulated irregular networks to represent 3D elevation in terrain databases

    NASA Astrophysics Data System (ADS)

    Abdelguerfi, Mahdi; Wynne, Chris; Cooper, Edgar; Ladner, Roy V.; Shaw, Kevin B.

    1997-08-01

    Three-dimensional terrain representation plays an important role in a number of terrain database applications. Hierarchical triangulated irregular networks (TINs) provide a variable-resolution terrain representation that is based on a nested triangulation of the terrain. This paper compares and analyzes existing hierarchical triangulation techniques. The comparative analysis takes into account how aesthetically appealing and accurate the resulting terrain representation is. Parameters, such as adjacency, slivers, and streaks, are used to provide a measure on how aesthetically appealing the terrain representation is. Slivers occur when the triangulation produces thin and slivery triangles. Streaks appear when there are too many triangulations done at a given vertex. Simple mathematical expressions are derived for these parameters, thereby providing a fairer and a more easily duplicated comparison. In addition to meeting the adjacency requirement, an aesthetically pleasant hierarchical TINs generation algorithm is expected to reduce both slivers and streaks while maintaining accuracy. A comparative analysis of a number of existing approaches shows that a variant of a method originally proposed by Scarlatos exhibits better overall performance.

  4. Sippar Sulcus, Ganymede

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These two frames, derived from images of Jupiter's moon Ganymede by NASA's Galileo and Voyager spacecraft, show bright terrain types and topography within an area called Sippar Sulcus in Ganymede's southern hemisphere. All three dominant structural styles of the bright regions -- grooved terrain, smooth terrain and reticulate terrain -- are represented.

    The left frame (a) is a mosaic of images taken by Galileo with a resolution of 180 meters (590 feet) per pixel superimposed on lower-resolution Voyager images. A swath of smooth terrain crosses the scene diagonally from upper right to center left. Irregularly shaped enclosures are interpreted as calderas, which, on Earth, are depressions typically caused by collapse of subsurface lava reservoirs. The numerous bright patches are due to secondary impacts from creation of a large crater, Osiris, which is out of the frame to the right.

    The right frame (b) shows a digital elevation model of the three-dimensional shape of the same scene. Relative elevation values have been color-coded and merged with the Galileo image mosaic. The inset shows a geological map highlighting areas of grooved terrain (g, black), reticulate terrain (r, gray), smooth terrain (s, white), calderas (hatched), and locations for higher-resolution views PIA-XXC [fig3a] (upper box) and PIA-XXD [fig3b] (lower box).

    These images were prepared by the Lunar and Planetary Institute, Houston, and included in a report by Dr. Paul Schenk et al. in the March 1, 2001, edition of the journal Nature.

    The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo and Voyager missions for NASA's Office of Space Science, Washington, D.C.

    Images and data received from Galileo are posted on the Galileo mission home page at http://www.jpl.nasa.gov/galileo. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo.

  5. Ames Stereo Pipeline for Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Alexandrov, O.; McMichael, S.; Fong, T.

    2017-12-01

    We are using the NASA Ames Stereo Pipeline to process Operation IceBridge Digital Mapping System (DMS) images into terrain models and to align them with the simultaneously acquired LIDAR data (ATM and LVIS). The expected outcome is to create a contiguous, high resolution terrain model for each flight that Operation IceBridge has flown during its eight year history of Arctic and Antarctic flights. There are some existing terrain models in the NSIDC repository that cover 2011 and 2012 (out of the total period of 2009 to 2017), which were made with the Agisoft Photoscan commercial software. Our open-source stereo suite has been verified to create terrains of similar quality. The total number of images we expect to process is around 5 million. There are numerous challenges with these data: accurate determination and refinement of camera pose when the images were acquired based on data logged during the flights and/or using information from existing orthoimages, aligning terrains with little or no features, images containing clouds, JPEG artifacts in input imagery, inconsistencies in how data was acquired/archived over the entire period, not fully reliable camera calibration files, and the sheer amount of data. We will create the majority of terrain models at 40 cm/pixel with a vertical precision of 10 to 20 cm. In some circumstances when the aircraft was flying higher than usual, those values will get coarser. We will create orthoimages at 10 cm/pixel (with the same caveat that some flights are at higher altitudes). These will differ from existing orthoimages by using the underlying terrain we generate rather than some pre-existing very low-resolution terrain model that may differ significantly from what is on the ground at the time of IceBridge acquisition.The results of this massive processing will be submitted to the NSIDC so that cryosphere researchers will be able to use these data for their investigations.

  6. Terrain Classification of Aster gDEM for Seismic Microzonation of Port-Au Haiti, Using - and - Based Analytic Methods

    NASA Astrophysics Data System (ADS)

    Yong, A.; Hough, S. E.; Cox, B. R.; Rathje, E. M.; Bachhuber, J.; Hulslander, D.; Christiansen, L.; Abrams, M.

    2010-12-01

    The aftermath of the M7.0 Haiti earthquake of 12 January 2010 witnessed an impressive scientific response from the international community. In addition to conventional post-earthquake investigations, there was also an unprecedented reliance on remote-sensing technologies for scientific investigation and damage assessment. These technologies include sensors from both aerial and space-borne observational platforms. As part of the Haiti earthquake response and recovery effort, we develop a seismic zonation map of Port-au-Prince based on high-resolution satellite imagery as well as data from traditional seismographic monitoring stations and geotechnical site characterizations. Our imagery consists of a global digital elevation model (gDEM) of Hispaniola derived from data recorded by NASA-JPL's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard the multi-platform satellite Terra. To develop our model we also consider recorded waveforms from portable seismographic stations (Hough et al., in review) and 36 geotechnical shear-wave velocity surveys (Cox et al., in review). Following a similar approach developed by Yong et al. (2008; Bull. Seism Soc. Am.), we use both pixel- and object- based imaging analytic methods to systematically identify and extract local terrain features that are expected to amplify seismic ground motion. Using histogram-stretching techniques applied to the rDEM values, followed by multi-resolution, segmentations of the imagery into terrain types, we systematically classify the terrains of Hispaniola. By associating available Vs30 (average shear-wave velocity in the upper 30 meter depth) calculated from the MASW (Multi-channel Analysis of Surface Wave) survey method, we develop a first-order site characterization map. Our results indicate that the terrain-based Vs30 estimates are significantly associated with amplitudes recorded at station sites. We also find that the damage distribution inferred from UNOSAT (UNITAR Operational Satellite Applications Program) data matches our estimates. However, the strongest amplifications are observed at two stations on a foothill ridge, where Vs30 values indicate that amplification should be relatively lower. Hough et al. (2010, this session) conclude that the observations can be explained by topographic amplification along a steep, narrow ridge. On the basis of these preliminary results, we conclude that the terrain-based framework, which characterizes topographic amplification as well as sediment-induced amplification, is needed to develop a microzonation map for Port-au-Prince.

  7. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    USGS Publications Warehouse

    Bland, Michael T.; McKinnon, William B.

    2018-01-01

    Ganymede’s bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25–50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede’s surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  8. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; McKinnon, William B.

    2018-05-01

    Ganymede's bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25-50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede's surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  9. Terrain Portrayal for Head-Down Displays Experiment

    NASA Technical Reports Server (NTRS)

    Hughes, Monica F.; Takallu, M. A.

    2002-01-01

    The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study has been conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and pilot performance. Composed of complementary simulation and flight test efforts, Terrain Portrayal for Head-Down Displays (TP-HDD) experiments will help researchers evaluate critical terrain portrayal concepts. The experimental effort is to provide data to enable design trades that optimize SVS applications, as well as develop requirements and recommendations to facilitate the certification process. This paper focuses on the experimental set-up and preliminary qualitative results of the TP-HDD simulation experiment. In this experiment a fixed based flight simulator was equipped with various types of Head Down flight displays, ranging from conventional round dials (typical of most GA aircraft) to glass cockpit style PFD's. The variations of the PFD included an assortment of texturing and Digital Elevation Model (DEM) resolution combinations. A test matrix of 10 terrain display configurations (in addition to the baseline displays) were evaluated by 27 pilots of various backgrounds and experience levels. Qualitative (questionnaires) and quantitative (pilot performance and physiological) data were collected during the experimental runs. Preliminary results indicate that all of the evaluation pilots favored SVS displays over standard gauges, in terms of terrain awareness, SA, and perceived pilot performance. Among the terrain portrayal concepts tested, most pilots preferred the higher-resolution DEM. In addition, with minimal training, low-hour VFR evaluation pilots were able to negotiate a precision approach using SVS displays with a tunnel in the sky guidance concept.

  10. Textured digital elevation model formation from low-cost UAV LADAR/digital image data

    NASA Astrophysics Data System (ADS)

    Bybee, Taylor C.; Budge, Scott E.

    2015-05-01

    Textured digital elevation models (TDEMs) have valuable use in precision agriculture, situational awareness, and disaster response. However, scientific-quality models are expensive to obtain using conventional aircraft-based methods. The cost of creating an accurate textured terrain model can be reduced by using a low-cost (<$20k) UAV system fitted with ladar and electro-optical (EO) sensors. A texel camera fuses calibrated ladar and EO data upon simultaneous capture, creating a texel image. This eliminates the problem of fusing the data in a post-processing step and enables both 2D- and 3D-image registration techniques to be used. This paper describes formation of TDEMs using simulated data from a small UAV gathering swaths of texel images of the terrain below. Being a low-cost UAV, only a coarse knowledge of position and attitude is known, and thus both 2D- and 3D-image registration techniques must be used to register adjacent swaths of texel imagery to create a TDEM. The process of creating an aggregate texel image (a TDEM) from many smaller texel image swaths is described. The algorithm is seeded with the rough estimate of position and attitude of each capture. Details such as the required amount of texel image overlap, registration models, simulated flight patterns (level and turbulent), and texture image formation are presented. In addition, examples of such TDEMs are shown and analyzed for accuracy.

  11. Techniques for computer-aided analysis of ERTS-1 data, useful in geologic, forest and water resource surveys. [Colorado Rocky Mountains

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1974-01-01

    Forestry, geology, and water resource applications were the focus of this study, which involved the use of computer-implemented pattern-recognition techniques to analyze ERTS-1 data. The results have proven the value of computer-aided analysis techniques, even in areas of mountainous terrain. Several analysis capabilities have been developed during these ERTS-1 investigations. A procedure to rotate, deskew, and geometrically scale the MSS data results in 1:24,000 scale printouts that can be directly overlayed on 7 1/2 minutes U.S.G.S. topographic maps. Several scales of computer-enhanced "false color-infrared" composites of MSS data can be obtained from a digital display unit, and emphasize the tremendous detail present in the ERTS-1 data. A grid can also be superimposed on the displayed data to aid in specifying areas of interest.

  12. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system.

  13. A method to harness global crowd-sourced data to understand travel behavior in avalanche terrain.

    NASA Astrophysics Data System (ADS)

    Hendrikx, J.; Johnson, J.

    2015-12-01

    To date, most studies of the human dimensions of decision making in avalanche terrain has focused on two areas - post-accident analysis using accident reports/interviews and, the development of tools as decision forcing aids. We present an alternate method using crowd-sourced citizen science, for understanding decision-making in avalanche terrain. Our project combines real-time GPS tracking via a smartphone application, with internet based surveys of winter backcountry users as a method to describe and quantify travel practices in concert with group decision-making dynamics, and demographic data of participants during excursions. Effectively, we use the recorded GPS track taken within the landscape as an expression of the decision making processes and terrain usage by the group. Preliminary data analysis shows that individual experience levels, gender, avalanche hazard, and group composition all influence the ways in which people travel in avalanche terrain. Our results provide the first analysis of coupled real-time GPS tracking of the crowd while moving in avalanche terrain combined with psychographic and demographic correlates. This research will lead to an improved understanding of real-time decision making in avalanche terrain. In this paper we will specifically focus on the presentation of the methods used to solicit, and then harness the crowd to obtain data in a unique and innovative application of citizen science where the movements within the terrain are the desired output data (Figure 1). Figure 1: Example GPS tracks sourced from backcountry winter users in the Teton Pass area (Wyoming), from the 2014-15 winter season, where tracks in red represent those recorded as self-assessed experts (as per our survey), and where tracks in blue represent those recorded as self-assessed intermediates. All tracks shown were obtained under similar avalanche conditions. Statistical analysis of terrain metrics showed that the experts used steeper terrain than the intermediate users under similar avalanche conditions, demonstrating different terrain choice and use as a function of experience rather than hazard level.

  14. Spatial Prediction of Soil Classes by Using Soil Weathering Parameters Derived from vis-NIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose

    2010-05-01

    There is consensus in the scientific community about the great need of spatial soil information. Conventional mapping methods are time consuming and involve high costs. Digital soil mapping has emerged as an area in which the soil mapping is optimized by the application of mathematical and statistical approaches, as well as the application of expert knowledge in pedology. In this sense, the objective of the study was to develop a methodology for the spatial prediction of soil classes by using soil spectroscopy methodologies related with fieldwork, spectral data from satellite image and terrain attributes in simultaneous. The studied area is located in São Paulo State, and comprised an area of 473 ha, which was covered by a regular grid (100 x 100 m). In each grid node was collected soil samples at two depths (layers A and B). There were extracted 206 samples from transect sections and submitted to soil analysis (clay, Al2O3, Fe2O3, SiO2 TiO2, and weathering index). The first analog soil class map (ASC-N) contains only soil information regarding from orders to subgroups of the USDA Soil Taxonomy System. The second (ASC-H) map contains some additional information related to some soil attributes like color, ferric levels and base sum. For the elaboration of the digital soil maps the data was divided into three groups: i) Predicted soil attributes of the layer B (related to the soil weathering) which were obtained by using a local soil spectral library; ii) Spectral bands data extracted from a Landsat image; and iii) Terrain parameters. This information was summarized by a principal component analysis (PCA) in each group. Digital soil maps were generated by supervised classification using a maximum likelihood method. The trainee information for this classification was extracted from five toposequences based on the analog soil class maps. The spectral models of weathering soil attributes shown a high predictive performance with low error (R2 0.71 to 0.90). The spatial prediction of these attributes also showed a high performance (validations with R2> 0.78). These models allowed to increase spatial resolution of soil weathering information. On the other hand, the comparison between the analog and digital soil maps showed a global accuracy of 69% for the ASC-N map and 62% in the ASC-H map, with kappa indices of 0.52 and 0.45 respectively.

  15. Merging a Terrain-Based Parameter and Snow Particle Counter Data for the Assessment of Snow Redistribution in the Col du Lac Blanc Area

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi

    2015-04-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development of the snow surface in dependency of Sx, SPC flux and time, we apply a simple cellular automata system. The system consists of raster cells that develop through discrete time steps according to a set of rules. The rules are based on the states of neighboring cells. Our model assumes snow transport in dependency of Sx gradients between neighboring cells. The cells evolve based on difference quotients between neighbouring cells. Our analyses and results are steps towards using the terrain-based parameter Sx, coupled with SPC data, to quantitatively estimate changes in snow depths, using high raster resolutions of 1 m.

  16. Digital floodplain mapping and an analysis of errors involved

    USGS Publications Warehouse

    Hamblen, C.S.; Soong, D.T.; Cai, X.

    2007-01-01

    Mapping floodplain boundaries using geographical information system (GIS) and digital elevation models (DEMs) was completed in a recent study. However convenient this method may appear at first, the resulting maps potentially can have unaccounted errors. Mapping the floodplain using GIS is faster than mapping manually, and digital mapping is expected to be more common in the future. When mapping is done manually, the experience and judgment of the engineer or geographer completing the mapping and the contour resolution of the surface topography are critical in determining the flood-plain and floodway boundaries between cross sections. When mapping is done digitally, discrepancies can result from the use of the computing algorithm and digital topographic datasets. Understanding the possible sources of error and how the error accumulates through these processes is necessary for the validation of automated digital mapping. This study will evaluate the procedure of floodplain mapping using GIS and a 3 m by 3 m resolution DEM with a focus on the accumulated errors involved in the process. Within the GIS environment of this mapping method, the procedural steps of most interest, initially, include: (1) the accurate spatial representation of the stream centerline and cross sections, (2) properly using a triangulated irregular network (TIN) model for the flood elevations of the studied cross sections, the interpolated elevations between them and the extrapolated flood elevations beyond the cross sections, and (3) the comparison of the flood elevation TIN with the ground elevation DEM, from which the appropriate inundation boundaries are delineated. The study area involved is of relatively low topographic relief; thereby, making it representative of common suburban development and a prime setting for the need of accurately mapped floodplains. This paper emphasizes the impacts of integrating supplemental digital terrain data between cross sections on floodplain delineation. ?? 2007 ASCE.

  17. Adams-Based Rover Terramechanics and Mobility Simulator - ARTEMIS

    NASA Technical Reports Server (NTRS)

    Trease, Brian P.; Lindeman, Randel A.; Arvidson, Raymond E.; Bennett, Keith; VanDyke, Lauren P.; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine

    2013-01-01

    The Mars Exploration Rovers (MERs), Spirit and Opportunity, far exceeded their original drive distance expectations and have traveled, at the time of this reporting, a combined 29 kilometers across the surface of Mars. The Rover Sequencing and Visualization Program (RSVP), the current program used to plan drives for MERs, is only a kinematic simulator of rover movement. Therefore, rover response to various terrains and soil types cannot be modeled. Although sandbox experiments attempt to model rover-terrain interaction, these experiments are time-intensive and costly, and they cannot be used within the tactical timeline of rover driving. Imaging techniques and hazard avoidance features on MER help to prevent the rover from traveling over dangerous terrains, but mobility issues have shown that these methods are not always sufficient. ARTEMIS, a dynamic modeling tool for MER, allows planned drives to be simulated before commands are sent to the rover. The deformable soils component of this model allows rover-terrain interactions to be simulated to determine if a particular drive path would take the rover over terrain that would induce hazardous levels of slip or sink. When used in the rover drive planning process, dynamic modeling reduces the likelihood of future mobility issues because high-risk areas could be identified before drive commands are sent to the rover, and drives planned over these areas could be rerouted. The ARTEMIS software consists of several components. These include a preprocessor, Digital Elevation Models (DEMs), Adams rover model, wheel and soil parameter files, MSC Adams GUI (commercial), MSC Adams dynamics solver (commercial), terramechanics subroutines (FORTRAN), a contact detection engine, a soil modification engine, and output DEMs of deformed soil. The preprocessor is used to define the terrain (from a DEM) and define the soil parameters for the terrain file. The Adams rover model is placed in this terrain. Wheel and soil parameter files can be altered in the respective text files. The rover model and terrain are viewed in Adams View, the GUI for ARTEMIS. The Adams dynamics solver calls terramechanics subroutines in FORTRAN containing the Bekker-Wong equations.

  18. Lidar and Hyperspectral Remote Sensing for the Analysis of Coniferous Biomass Stocks and Fluxes

    NASA Astrophysics Data System (ADS)

    Halligan, K. Q.; Roberts, D. A.

    2006-12-01

    Airborne lidar and hyperspectral data can improve estimates of aboveground carbon stocks and fluxes through their complimentary responses to vegetation structure and biochemistry. While strong relationships have been demonstrated between lidar-estimated vegetation structural parameters and field data, research is needed to explore the portability of these methods across a range of topographic conditions, disturbance histories, vegetation type and climate. Additionally, research is needed to evaluate contributions of hyperspectral data in refining biomass estimates and determination of fluxes. To address these questions we are a conducting study of lidar and hyperspectral remote sensing data across sites including coniferous forests, broadleaf deciduous forests and a tropical rainforest. Here we focus on a single study site, Yellowstone National Park, where tree heights, stem locations, above ground biomass and basal area were mapped using first-return small-footprint lidar data. A new method using lidar intensity data was developed for separating the terrain and vegetation components in lidar data using a two-scale iterative local minima filter. Resulting Digital Terrain Models (DTM) and Digital Canopy Models (DCM) were then processed to retrieve a diversity of vertical and horizontal structure metrics. Univariate linear models were used to estimate individual tree heights while stepwise linear regression was used to estimate aboveground biomass and basal area. Three small-area field datasets were compared for their utility in model building and validation of vegetation structure parameters. All structural parameters were linearly correlated with lidar-derived metrics, with higher accuracies obtained where field and imagery data were precisely collocated . Initial analysis of hyperspectral data suggests that vegetation health metrics including measures of live and dead vegetation and stress indices may provide good indicators of carbon flux by mapping vegetation vigor or senescence. Additionally, the strength of hyperspectral data for vegetation classification suggests these data have additional utility for modeling carbon flux dynamics by allowing more accurate plant functional type mapping.

  19. Using Digital Terrain Modeling to Predict Ecological Types in the Balsam Mountains of Western North Carolina

    Treesearch

    Richard H. Odom; W. Henry McNab

    2000-01-01

    Relationships between overstory composition and topographic conditions were studied in high-elevation (>1300 meters) forests in the Balsam Mountains of western North Carolina to determine whether models could be developed to predict the occurrence of number vegetative communities in relation to topographic variables (elevation, landscape position, surface geometry,...

  20. Tracking rainfall impulses through progressively larger drainage basins in steep forested terrain

    Treesearch

    R. R. Ziemer; R. M. Rice

    1990-01-01

    Abstract - The precision of timing devices in modern electronic data loggers makes it possible to study the routing of water through small drainage basins having rapid responses to hydrologic impulses. Storm hyetographs were measured using digital tipping bucket rain gauges and their routing was observed at headwater piezometers located mid-slope, above a swale, and...

  1. Teaching with AR as a Tool for Relief Visualization: Usability and Motivation Study

    ERIC Educational Resources Information Center

    Carrera, Carlos Carbonell; Perez, Jose Luis Saorin; Cantero, Jorge de la Torre

    2018-01-01

    In the field of geographical and environmental education, maps and geo-referenced information are frequently used, in which the earth's surfaces are represented in a two-dimensional (2D) way. Students have difficulty interpreting the relief representation and switching between 2D and 3D scenarios. Digital terrain modelling is added to the…

  2. Sensor fusion IV: Control paradigms and data structures; Proceedings of the Meeting, Boston, MA, Nov. 12-15, 1991

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1992-01-01

    Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.

  3. Delineation, characterization, and classification of topographic eminences

    NASA Astrophysics Data System (ADS)

    Sinha, Gaurav

    Topographic eminences are defined as upwardly rising, convex shaped topographic landforms that are noticeably distinct in their immediate surroundings. As opposed to everyday objects, the properties of a topographic eminence are dependent not only on how it is conceptualized, but is also intrinsically related to its spatial extent and its relative location in the landscape. In this thesis, a system for automated detection, delineation and characterization of topographic eminences based on an analysis of digital elevation models is proposed. Research has shown that conceptualization of eminences (and other landforms) is linked to the cultural and linguistic backgrounds of people. However, the perception of stimuli from our physical environment is not subject to cultural or linguistic bias. Hence, perceptually salient morphological and spatial properties of the natural landscape can form the basis for generically applicable detection and delineation of topographic eminences. Six principles of cognitive eminence modeling are introduced to develop the philosophical foundation of this research regarding eminence delineation and characterization. The first step in delineating eminences is to automatically detect their presence within digital elevation models. This is achieved by the use of quantitative geomorphometric parameters (e.g., elevation, slope and curvature) and qualitative geomorphometric features (e.g., peaks, passes, pits, ridgelines, and valley lines). The process of eminence delineation follows that of eminence detection. It is posited that eminences may be perceived either as monolithic terrain objects, or as composites of morphological parts (e.g., top, bottom, slope). Individual eminences may also simultaneously be conceived as comprising larger, higher order eminence complexes (e.g., mountain ranges). Multiple algorithms are presented for the delineation of simple and complex eminences, and the morphological parts of eminences. The proposed eminence detection and delineation methods are amenable to intuitive parameterization such that they can easily capture the multitude of eminence conceptualizations that people develop due to differences in terrain type and cultural and linguistic backgrounds. Eminence delineation is an important step in object based modeling of the natural landscape. However, mere 'geocoding' of eminences is not sufficient for modeling how people intuitively perceive and reason about eminences. Therefore, a comprehensive eminence parameterization system for characterizing the perceptual properties of eminences is also proposed in this thesis. Over 40 parameters are suggested for measuring the commonly perceived properties of eminences: size, shape, topology, proximity, and visibility. The proposed parameters describe different aspects of naive eminence perception. Quantitative analysis of eminence parameters using cluster analysis, confirms that not only can eminences be parameterized as individual terrain objects, but that eminence (dis)similarities can be exploited to develop intuitive eminence classification systems. Eminence parameters are also shown to be essential for exploring the relationships between extracted eminences and natural language terms (e.g., hill, mount, mountain, peak) used commonly to refer to different types of eminences. The results from this research confirm that object based modeling of the landscape is not only useful for terrain information system design, but is also essential for understanding how people commonly conceptualize their observations of and interactions with the natural landscape.

  4. Heuristic-driven graph wavelet modeling of complex terrain

    NASA Astrophysics Data System (ADS)

    Cioacǎ, Teodor; Dumitrescu, Bogdan; Stupariu, Mihai-Sorin; Pǎtru-Stupariu, Ileana; Nǎpǎrus, Magdalena; Stoicescu, Ioana; Peringer, Alexander; Buttler, Alexandre; Golay, François

    2015-03-01

    We present a novel method for building a multi-resolution representation of large digital surface models. The surface points coincide with the nodes of a planar graph which can be processed using a critically sampled, invertible lifting scheme. To drive the lazy wavelet node partitioning, we employ an attribute aware cost function based on the generalized quadric error metric. The resulting algorithm can be applied to multivariate data by storing additional attributes at the graph's nodes. We discuss how the cost computation mechanism can be coupled with the lifting scheme and examine the results by evaluating the root mean square error. The algorithm is experimentally tested using two multivariate LiDAR sets representing terrain surface and vegetation structure with different sampling densities.

  5. Evaluation of a Map Interpretation and Terrain Analysis Course for Nap-of-the-Earth Navigation. Research Report 1198.

    ERIC Educational Resources Information Center

    Holman, Garvin L.

    This report documents the training effectiveness of a map interpretation and terrain analysis course (MITAC) developed to enhance the ability of helicopter pilots to navigate accurately during low altitude terrain following flight. A study comparing student aviators taught by the MITAC technique with a control group of students taught by…

  6. Distributed parameterization of complex terrain

    NASA Astrophysics Data System (ADS)

    Band, Lawrence E.

    1991-03-01

    This paper addresses the incorporation of high resolution topography, soils and vegetation information into the simulation of land surface processes in atmospheric circulation models (ACM). Recent work has concentrated on detailed representation of one-dimensional exchange processes, implicitly assuming surface homogeneity over the atmospheric grid cell. Two approaches that could be taken to incorporate heterogeneity are the integration of a surface model over distributed, discrete portions of the landscape, or over a distribution function of the model parameters. However, the computational burden and parameter intensive nature of current land surface models in ACM limits the number of independent model runs and parameterizations that are feasible to accomplish for operational purposes. Therefore, simplications in the representation of the vertical exchange processes may be necessary to incorporate the effects of landscape variability and horizontal divergence of energy and water. The strategy is then to trade off the detail and rigor of point exchange calculations for the ability to repeat those calculations over extensive, complex terrain. It is clear the parameterization process for this approach must be automated such that large spatial databases collected from remotely sensed images, digital terrain models and digital maps can be efficiently summarized and transformed into the appropriate parameter sets. Ideally, the landscape should be partitioned into surface units that maximize between unit variance while minimizing within unit variance, although it is recognized that some level of surface heterogeneity will be retained at all scales. Therefore, the geographic data processing necessary to automate the distributed parameterization should be able to estimate or predict parameter distributional information within each surface unit.

  7. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J.-B.; Rabine, D. L.; Bufton, J. L.

    1999-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based GPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous GPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  8. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.

    2000-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based CPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous CPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  9. The Efficacy of Using Synthetic Vision Terrain-Textured Images to Improve Pilot Situation Awareness

    NASA Technical Reports Server (NTRS)

    Uenking, Michael D.; Hughes, Monica F.

    2002-01-01

    The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study is being conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and performance. Composed of complementary simulation and flight test efforts, Terrain Portrayal for Head-Down Displays (TP-HDD) experiments will help researchers evaluate critical terrain portrayal concepts. The experimental effort is to provide data to enable design trades that optimize SVS applications, as well as develop requirements and recommendations to facilitate the certification process. In this part of the experiment a fixed based flight simulator was equipped with various types of Head Down flight displays, ranging from conventional round dials (typical of most GA aircraft) to glass cockpit style PFD's. The variations of the PFD included an assortment of texturing and Digital Elevation Model (DEM) resolution combinations. A test matrix of 10 terrain display configurations (in addition to the baseline displays) were evaluated by 27 pilots of various backgrounds and experience levels. Qualitative (questionnaires) and quantitative (pilot performance and physiological) data were collected during the experimental runs. This paper focuses on the experimental set-up and final physiological results of the TP-HDD simulation experiment. The physiological measures of skin temperature, heart rate, and muscle response, show a decreased engagement (while using the synthetic vision displays as compared to the baseline conventional display) of the sympathetic and somatic nervous system responses which, in turn, indicates a reduced level of mental workload. This decreased level of workload is expected to enable improvement in the pilot's situation and terrain awareness.

  10. Terrain Portrayal for Head-Down Displays Flight Test

    NASA Technical Reports Server (NTRS)

    Hughes, Monica F.; Glaab, Louis J.

    2003-01-01

    The Synthetic Vision Systems General Aviation (SVS-GA) element of NASA's Aviation Safety Program is developing technology to eliminate low visibility induced General Aviation (GA) accidents through the application of synthetic vision techniques. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain (CFIT), as well as Low-Visibility Loss of Control (LVLOC) accidents. In addition to substantial safety benefits, SVS displays have many potential operational benefits that can lead to flight in instrument meteorological conditions (IMC) resembling those conducted in visual meteorological conditions (VMC). Potential benefits could include lower landing minimums, more approach options, reduced training time, etc. SVS conducted research will develop display concepts providing the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. The relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and pilot performance has been largely undefined. Comprised of coordinated simulation and flight test efforts, the terrain portrayal for head-down displays (TP-HDD) test series examined the effects of two primary elements of terrain portrayal: variations of digital elevation model (DEM) resolution and terrain texturing. Variations in DEM resolution ranged from sparsely spaced (30 arc-sec/2,953ft) to very closely spaced data (1 arc-sec/98 ft). Variations in texture involved three primary methods: constant color, elevation-based generic, and photo-realistic, along with a secondary depth cue enhancer in the form of a fishnet grid overlay. The TP-HDD test series was designed to provide comprehensive data to enable design trades to optimize all SVS applications, as well as develop requirements and recommendations to facilitate the implementation and certification of SVS displays. The TP-HDD flight experiment utilized the NASA LaRC Cessna 206 Stationaire and evaluated eight terrain portrayal concepts in an effort to confirm and extend results from the previously conducted TP-HDD simulation experiment. A total of 15 evaluation pilots, of various qualifications, accumulated over 75 hours of dedicated research flight time at Newport News (PHF) and Roanoke (ROA), VA, airports from August through October, 2002. This report will present results from the portion of testing conducted at Roanoke, VA.

  11. Integration of ground-based laser scanner and aerial digital photogrammetry for topographic modelling of Vesuvio volcano

    NASA Astrophysics Data System (ADS)

    Pesci, Arianna; Fabris, Massimo; Conforti, Dario; Loddo, Fabiana; Baldi, Paolo; Anzidei, Marco

    2007-05-01

    This work deals with the integration of different surveying methodologies for the definition of very accurate Digital Terrain Models (DTM) and/or Digital Surface Models (DSM): in particular, the aerial digital photogrammetry and the terrestrial laser scanning were used to survey the Vesuvio volcano, allowing the total coverage of the internal cone and surroundings (the whole surveyed area was about 3 km × 3 km). The possibility to reach a very high precision, especially from the laser scanner data set, allowed a detailed description of the morphology of the volcano. The comparisons of models obtained in repeated surveys allow a detailed map of residuals providing a data set that can be used for detailed studies of the morphological evolution. Moreover, the reflectivity information, highly correlated to materials properties, allows for the measurement and quantification of some morphological variations in areas where structural discontinuities and displacements are present.

  12. Environmental drivers of spatial patterns of topsoil nitrogen and phosphorus under monsoon conditions in a complex terrain of South Korea

    PubMed Central

    Choi, Kwanghun; Spohn, Marie; Park, Soo Jin; Huwe, Bernd; Ließ, Mareike

    2017-01-01

    Nitrogen (N) and phosphorus (P) in topsoils are critical for plant nutrition. Relatively little is known about the spatial patterns of N and P in the organic layer of mountainous landscapes. Therefore, the spatial distributions of N and P in both the organic layer and the A horizon were analyzed using a light detection and ranging (LiDAR) digital elevation model and vegetation metrics. The objective of the study was to analyze the effect of vegetation and topography on the spatial patterns of N and P in a small watershed covered by forest in South Korea. Soil samples were collected using the conditioned latin hypercube method. LiDAR vegetation metrics, the normalized difference vegetation index (NDVI), and terrain parameters were derived as predictors. Spatial explicit predictions of N/P ratios were obtained using a random forest with uncertainty analysis. We tested different strategies of model validation (repeated 2-fold to 20-fold and leave-one-out cross validation). Repeated 10-fold cross validation was selected for model validation due to the comparatively high accuracy and low variance of prediction. Surface curvature was the best predictor of P contents in the organic layer and in the A horizon, while LiDAR vegetation metrics and NDVI were important predictors of N in the organic layer. N/P ratios increased with surface curvature and were higher on the convex upper slope than on the concave lower slope. This was due to P enrichment of the soil on the lower slope and a more even spatial distribution of N. Our digital soil maps showed that the topsoils on the upper slopes contained relatively little P. These findings are critical for understanding N and P dynamics in mountainous ecosystems. PMID:28837590

  13. Co-registration of Laser Altimeter Tracks with Digital Terrain Models and Applications in Planetary Science

    NASA Technical Reports Server (NTRS)

    Glaeser, P.; Haase, I.; Oberst, J.; Neumann, G. A.

    2013-01-01

    We have derived algorithms and techniques to precisely co-register laser altimeter profiles with gridded Digital Terrain Models (DTMs), typically derived from stereo images. The algorithm consists of an initial grid search followed by a least-squares matching and yields the translation parameters at sub-pixel level needed to align the DTM and the laser profiles in 3D space. This software tool was primarily developed and tested for co-registration of laser profiles from the Lunar Orbiter Laser Altimeter (LOLA) with DTMs derived from the Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) stereo images. Data sets can be co-registered with positional accuracy between 0.13 m and several meters depending on the pixel resolution and amount of laser shots, where rough surfaces typically result in more accurate co-registrations. Residual heights of the data sets are as small as 0.18 m. The software can be used to identify instrument misalignment, orbit errors, pointing jitter, or problems associated with reference frames being used. Also, assessments of DTM effective resolutions can be obtained. From the correct position between the two data sets, comparisons of surface morphology and roughness can be made at laser footprint- or DTM pixel-level. The precise co-registration allows us to carry out joint analysis of the data sets and ultimately to derive merged high-quality data products. Examples of matching other planetary data sets, like LOLA with LRO Wide Angle Camera (WAC) DTMs or Mars Orbiter Laser Altimeter (MOLA) with stereo models from the High Resolution Stereo Camera (HRSC) as well as Mercury Laser Altimeter (MLA) with Mercury Dual Imaging System (MDIS) are shown to demonstrate the broad science applications of the software tool.

  14. Topographically-determined soil thickening explained spatial variability of soil carbon and nitrogen in Southern California grasslands

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Prentice, S., III; Tran, T.; Bingham, N.; King, J. Y.; Chadwick, O.

    2015-12-01

    At the scale of hillslopes, topography strongly regulates soil formation, affecting hillslope hydrology and biological activities. Topographic control of soil formation is particularly strong for semi-arid landscapes where soil thickening is induced by pedoturbation and soil creep. Thus, terrain attributes hold great potential for modeling full profile soil C and N stocks at the hillslope scale in these landscapes. In this study, we developed predictions of grassland soil C and N stocks using digital terrain attributes scaled to the signal of site-specific hillslope geomorphic processes. We found that soil thickness was the major control of soil organic C and N stocks and was best predicted by mean curvature. This curvature dependency of soil thickness affected prediction of organic C and N stocks because of the C and N added by taking subsoil into account. We also found that curvature was positively correlated with depth to carbonate reflecting drier soil conditions in convex hillslope positions and wetter soil conditions in concave areas. Slope aspect also had a marginal effect on soil C and N stocks; soil organic C and N stocks on the north-facing slope tended to be higher than those on the south-facing slope. We found that terrain attributes at medium resolutions (8 to 16 m) were most effective in modeling soil C and N stocks. Overall, terrain attributes explained 61% of the variation in soil thickness and 49% of the variation in soil organic C stock. Our results suggest that curvature-induced soil thickening, coupled with aspect, likely exerts a first-order control on soil organic C and N accumulation rates, and these changes occur predominantly in subsoil. Thus our data highlight the importance of subsoil in mapping soil C and N stocks and other soil properties. Our model also demonstrates how scale-driven analysis may guide soil C and N prediction in other hillslope dominated regions.

  15. Investigation of Error Patterns in Geographical Databases

    NASA Technical Reports Server (NTRS)

    Dryer, David; Jacobs, Derya A.; Karayaz, Gamze; Gronbech, Chris; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The objective of the research conducted in this project is to develop a methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a methodology can contribute to answering the following research questions: Over a representative sampling of ASMD databases, can statistical error analysis techniques be accurately learned and replicated by ANN modeling techniques? This representative ASMD sample should include numerous airports and a variety of terrain characterizations. Is it possible to identify and automate the recognition of patterns of error related to geographical features? Do such patterns of error relate to specific geographical features, such as elevation or terrain slope? Is it possible to combine the errors in small regions into an error prediction for a larger region? What are the data density reduction implications of this work? ASMD may be used as the source of terrain data for a synthetic visual system to be used in the cockpit of aircraft when visual reference to ground features is not possible during conditions of marginal weather or reduced visibility. In this research, United States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as the benchmark. Artificial Neural Networks (ANNS) have been used and tested as alternate methods in place of the statistical methods in similar problems. They often perform better in pattern recognition, prediction and classification and categorization problems. Many studies show that when the data is complex and noisy, the accuracy of ANN models is generally higher than those of comparable traditional methods.

  16. Tactical Intelligence Applications Experimentation (TIAX) Report. Intelligence Preparation of the Battlefield (IPB)-An Automated Approach to Terrain and Mobility Corridor Analysis

    DTIC Science & Technology

    1978-10-20

    Preparation of the Battlefield (IPB) - Phase A An Automated Approach to Terrain and Mobility Cocridor Analysis Prepared For The ;*ttlefield Systems... the Battlefield (IPB) - Phase A An Automated Approach to Terrain and Mobility Corridcr Analysis, Prepared For The Battlefield Systems Integration... series of snapshots developed for Option A. The situation snapshots would be deteloped in like manner for each option, and stored in an

  17. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models.

    PubMed

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S; Wu, Xiaowei; Müller, Rolf

    2018-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design.

  18. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models

    PubMed Central

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S.; Wu, Xiaowei; Müller, Rolf

    2017-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design. PMID:29749977

  19. Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Hare, T.; Dorrer, E.; Cook, D.; Becker, K.; Thompson, K.; Redding, B.; Blue, J.; Galuszka, D.; Lee, E.M.; Gaddis, L.R.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Smith, P.H.; Britt, D.T.

    1999-01-01

    This paper describes our photogrammetric analysis of the Imager for Mars Pathfinder data, part of a broader program of mapping the Mars Pathfinder landing site in support of geoscience investigations. This analysis, carried out primarily with a commercial digital photogrammetric system, supported by our in-house Integrated Software for Imagers and Spectrometers (ISIS), consists of three steps: (1) geometric control: simultaneous solution for refined estimates of camera positions and pointing plus three-dimensional (3-D) coordinates of ???103 features sitewide, based on the measured image coordinates of those features; (2) topographic modeling: identification of ???3 ?? 105 closely spaced points in the images and calculation (based on camera parameters from step 1) of their 3-D coordinates, yielding digital terrain models (DTMs); and (3) geometric manipulation of the data: combination of the DTMs from different stereo pairs into a sitewide model, and reprojection of image data to remove parallax between the different spectral filters in the two cameras and to provide an undistorted planimetric view of the site. These processes are described in detail and example products are shown. Plans for combining the photogrammetrically derived topographic data with spectrophotometry are also described. These include photometric modeling using surface orientations from the DTM to study surface microtextures and improve the accuracy of spectral measurements, and photoclinometry to refine the DTM to single-pixel resolution where photometric properties are sufficiently uniform. Finally, the inclusion of rover images in a joint photogrammetric analysis with IMP images is described. This challenging task will provide coverage of areas hidden to the IMP, but accurate ranging of distant features can be achieved only if the lander is also visible in the rover image used. Copyright 1999 by the American Geophysical Union.

  20. Camera system considerations for geomorphic applications of SfM photogrammetry

    USGS Publications Warehouse

    Mosbrucker, Adam; Major, Jon J.; Spicer, Kurt R.; Pitlick, John

    2017-01-01

    The availability of high-resolution, multi-temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three-dimensional topographic point measurements acquired from structure-from-motion (SfM) photogrammetry have been shown to be highly accurate and cost-effective compared to laser-based alternatives in some environments. Use of consumer-grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. This article is protected by copyright. All rights reserved.A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM- and lidar-derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. This article is protected by copyright. All rights reserved.Greater information capacity of source imagery was found to increase pixel matching quality, which produced 8 times greater point density and 6 times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100,000 m3) on an unvegetated fluvial surface; change detection determined from repeat lidar and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post-processing techniques increased point density by 5–25% and decreased processing time by 10–30%. This article is protected by copyright. All rights reserved.Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error.

  1. A framework for global terrain classification using 250-m DEMs to predict geohazards

    NASA Astrophysics Data System (ADS)

    Iwahashi, J.; Matsuoka, M.; Yong, A.

    2016-12-01

    Geomorphology is key for identifying factors that control geohazards induced by landslides, liquefaction, and ground shaking. To systematically identify landforms that affect these hazards, Iwahashi and Pike (2007; IP07) introduced an automated terrain classification scheme using 1-km-scale Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs). The IP07 classes describe 16 categories of terrain types and were used as a proxy for predicting ground motion amplification (Yong et al., 2012; Seyhan et al., 2014; Stewart et al., 2014; Yong, 2016). These classes, however, were not sufficiently resolved because coarse-scaled SRTM DEMs were the basis for the categories (Yong, 2016). Thus, we develop a new framework consisting of more detailed polygonal global terrain classes to improve estimations of soil-type and material stiffness. We first prepare high resolution 250-m DEMs derived from the 2010 Global Multi-resolution Terrain Elevation Data (GMTED2010). As in IP07, we calculate three geometric signatures (slope, local convexity and surface texture) from the DEMs. We create additional polygons by using the same signatures and multi-resolution segmentation techniques on the GMTED2010. We consider two types of surface texture thresholds in different window sizes (3x3 and 13x13 pixels), in addition to slope and local convexity, to classify pixels within the DEM. Finally, we apply the k-means clustering and thresholding methods to the 250-m DEM and produce more detailed polygonal terrain classes. We compare the new terrain classification maps of Japan and California with geologic, aerial photography, and landslide distribution maps, and visually find good correspondence of key features. To predict ground motion amplification, we apply the Yong (2016) method for estimating VS30. The systematic classification of geomorphology has the potential to provide a better understanding of the susceptibility to geohazards, which is especially vital in populated areas.

  2. Terrain Analysis Procedural Guide for Railroads (Report Number 10 in the ETL Series on Guides for Army Terrain Analysis).

    DTIC Science & Technology

    1982-12-01

    study was conducted under DA Project 4A762707A855, Task C, Work 6 Unit 21, "Military Geographic Analysis Technology." This study was done under the...supplement to the Terrain Analysis Procedural Guide for Roads and Related Structures (ETL-0205, October 1979). In sparsely inhabited study areas, railroad data... study area. " W, In general, three major sources of information are available that will = be helpful in the production of factor overlays for railroads

  3. Map Interpretation and Terrain Analysis Course (MITAC) for Infantrymen: Illustrated Lectures

    DTIC Science & Technology

    1982-01-01

    Factors Influencing Map Design . . . . . ..... ............ 4 Interpretation of Terrain Relief and Other Topographic Features...Institute (ARI) sponsored a project to design and develop a map interpretation and terrain analysis course (MITAC) to improve the ability of Army...helicopter pilots to navigate accurately when flying at nap-of-the-earth (NOE) altitudes (McGrath, 1975; McGrath & Foster, 1975). MITAC was designed to

  4. New Tools for a New Terrain Air Force Support to Special Operations in the Cyber Environment

    DTIC Science & Technology

    2016-08-01

    54 3 PREFACE As a career targeteer for the US...capabilities of a toolkit of cyber options, from hardware on the front lines to “digital reachback” relationships with USCYBERCOM, is to leave...of career fields, including, but not limited to, cyberspace operations, intelligence, aircrew operations, command and control systems operations, and

  5. 47 CFR 90.309 - Tables and figures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Maps with a scale of 1:250,000 or larger (such as 1:24,000) shall be used. Digital Terrain Data Tapes... sec. 90.307(d). Table “F”—Decibel Reduction/Power Equivalents dB reduction below 1 kW ERP permitted... curve draw a horizontal line to the power reduction scale. (6) The power reduction in dB determines the...

  6. The Army Digital Terrain Catalog II (ADTC)

    DTIC Science & Technology

    2006-06-01

    Engineering (Eds.). Readings for Systems Engineering & Engineering Management. Mason, OH: Thomson Customer Publishing, 2004, p. 2. [3] E. von Hippel ...responsive, deployable, agile, versatile, lethal, survivable, and sustainable force. --Former Army Chief of Staff General Eric Shinseki and former...to advance the tenets of Army Transformation. As former Army Chief of Staff General Eric Shinseki and former Army Secretary Thomas White have stated

  7. Mobile robots traversability awareness based on terrain visual sensory data fusion

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir

    2007-04-01

    In this paper, we have presented methods that significantly improve the robot awareness of its terrain traversability conditions. The terrain traversability awareness is achieved by association of terrain image appearances from different poses and fusion of extracted information from multimodality imaging and range sensor data for localization and clustering environment landmarks. Initially, we describe methods for extraction of salient features of the terrain for the purpose of landmarks registration from two or more images taken from different via points along the trajectory path of the robot. The method of image registration is applied as a means of overlaying (two or more) of the same terrain scene at different viewpoints. The registration geometrically aligns salient landmarks of two images (the reference and sensed images). A Similarity matching techniques is proposed for matching the terrain salient landmarks. Secondly, we present three terrain classifier models based on rule-based, supervised neural network, and fuzzy logic for classification of terrain condition under uncertainty and mapping the robot's terrain perception to apt traversability measures. This paper addresses the technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain spatial and textural cues.

  8. Spatial Modeling and Uncertainty Assessment of Fine Scale Surface Processes Based on Coarse Terrain Elevation Data

    NASA Astrophysics Data System (ADS)

    Rasera, L. G.; Mariethoz, G.; Lane, S. N.

    2017-12-01

    Frequent acquisition of high-resolution digital elevation models (HR-DEMs) over large areas is expensive and difficult. Satellite-derived low-resolution digital elevation models (LR-DEMs) provide extensive coverage of Earth's surface but at coarser spatial and temporal resolutions. Although useful for large scale problems, LR-DEMs are not suitable for modeling hydrologic and geomorphic processes at scales smaller than their spatial resolution. In this work, we present a multiple-point geostatistical approach for downscaling a target LR-DEM based on available high-resolution training data and recurrent high-resolution remote sensing images. The method aims at generating several equiprobable HR-DEMs conditioned to a given target LR-DEM by borrowing small scale topographic patterns from an analogue containing data at both coarse and fine scales. An application of the methodology is demonstrated by using an ensemble of simulated HR-DEMs as input to a flow-routing algorithm. The proposed framework enables a probabilistic assessment of the spatial structures generated by natural phenomena operating at scales finer than the available terrain elevation measurements. A case study in the Swiss Alps is provided to illustrate the methodology.

  9. Digital image comparison by subtracting contextual transformations—percentile rank order differentiation

    USGS Publications Warehouse

    Wehde, M. E.

    1995-01-01

    The common method of digital image comparison by subtraction imposes various constraints on the image contents. Precise registration of images is required to assure proper evaluation of surface locations. The attribute being measured and the calibration and scaling of the sensor are also important to the validity and interpretability of the subtraction result. Influences of sensor gains and offsets complicate the subtraction process. The presence of any uniform systematic transformation component in one of two images to be compared distorts the subtraction results and requires analyst intervention to interpret or remove it. A new technique has been developed to overcome these constraints. Images to be compared are first transformed using the cumulative relative frequency as a transfer function. The transformed images represent the contextual relationship of each surface location with respect to all others within the image. The process of differentiating between the transformed images results in a percentile rank ordered difference. This process produces consistent terrain-change information even when the above requirements necessary for subtraction are relaxed. This technique may be valuable to an appropriately designed hierarchical terrain-monitoring methodology because it does not require human participation in the process.

  10. Topographic correction realization based on the CBERS-02B image

    NASA Astrophysics Data System (ADS)

    Qin, Hui-ping; Yi, Wei-ning; Fang, Yong-hua

    2011-08-01

    The special topography of mountain terrain will induce the retrieval distortion in same species and surface spectral lines. In order to improve the research accuracy of topographic surface characteristic, many researchers have focused on topographic correction. Topographic correction methods can be statistical-empirical model or physical model, in which the methods based on the digital elevation model data are most popular. Restricted by spatial resolution, previous model mostly corrected topographic effect based on Landsat TM image, whose spatial resolution is 30 meter that can be easily achieved from internet or calculated from digital map. Some researchers have also done topographic correction based on high spatial resolution images, such as Quickbird and Ikonos, but there is little correlative research on the topographic correction of CBERS-02B image. In this study, liao-ning mountain terrain was taken as the objective. The digital elevation model data was interpolated to 2.36 meter by 15 meter original digital elevation model one meter by one meter. The C correction, SCS+C correction, Minnaert correction and Ekstrand-r were executed to correct the topographic effect. Then the corrected results were achieved and compared. The images corrected with C correction, SCS+C correction, Minnaert correction and Ekstrand-r were compared, and the scatter diagrams between image digital number and cosine of solar incidence angel with respect to surface normal were shown. The mean value, standard variance, slope of scatter diagram, and separation factor were statistically calculated. The analysed result shows that the shadow is weakened in corrected images than the original images, and the three-dimensional affect is removed. The absolute slope of fitting lines in scatter diagram is minished. Minnaert correction method has the most effective result. These demonstrate that the former correction methods can be successfully adapted to CBERS-02B images. The DEM data can be interpolated step by step to get the corresponding spatial resolution approximately for the condition that high spatial resolution elevation data is hard to get.

  11. Land Survey from Unmaned Aerial Veichle

    NASA Astrophysics Data System (ADS)

    Peterman, V.; Mesarič, M.

    2012-07-01

    In this paper we present, how we use a quadrocopter unmanned aerial vehicle with a camera attached to it, to do low altitude photogrammetric land survey. We use the quadrocopter to take highly overlapping photos of the area of interest. A "structure from motion" algorithm is implemented to get parameters of camera orientations and to generate a sparse point cloud representation of objects in photos. Than a patch based multi view stereo algorithm is applied to generate a dense point cloud. Ground control points are used to georeference the data. Further processing is applied to generate digital orthophoto maps, digital surface models, digital terrain models and assess volumes of various types of material. Practical examples of land survey from a UAV are presented in the paper. We explain how we used our system to monitor the reconstruction of commercial building, then how our UAV was used to assess the volume of coal supply for Ljubljana heating plant. Further example shows the usefulness of low altitude photogrammetry for documentation of archaeological excavations. In the final example we present how we used our UAV to prepare an underlay map for natural gas pipeline's route planning. In the final analysis we conclude that low altitude photogrammetry can help bridge the gap between laser scanning and classic tachymetric survey, since it offers advantages of both techniques.

  12. Irdis: A Digital Scene Storage And Processing System For Hardware-In-The-Loop Missile Testing

    NASA Astrophysics Data System (ADS)

    Sedlar, Michael F.; Griffith, Jerry A.

    1988-07-01

    This paper describes the implementation of a Seeker Evaluation and Test Simulation (SETS) Facility at Eglin Air Force Base. This facility will be used to evaluate imaging infrared (IIR) guided weapon systems by performing various types of laboratory tests. One such test is termed Hardware-in-the-Loop (HIL) simulation (Figure 1) in which the actual flight of a weapon system is simulated as closely as possible in the laboratory. As shown in the figure, there are four major elements in the HIL test environment; the weapon/sensor combination, an aerodynamic simulator, an imagery controller, and an infrared imagery system. The paper concentrates on the approaches and methodologies used in the imagery controller and infrared imaging system elements for generating scene information. For procurement purposes, these two elements have been combined into an Infrared Digital Injection System (IRDIS) which provides scene storage, processing, and output interface to drive a radiometric display device or to directly inject digital video into the weapon system (bypassing the sensor). The paper describes in detail how standard and custom image processing functions have been combined with off-the-shelf mass storage and computing devices to produce a system which provides high sample rates (greater than 90 Hz), a large terrain database, high weapon rates of change, and multiple independent targets. A photo based approach has been used to maximize terrain and target fidelity, thus providing a rich and complex scene for weapon/tracker evaluation.

  13. Geological mapping of the Schuppen belt of north-east India using geospatial technology

    NASA Astrophysics Data System (ADS)

    Ghosh, Tanaya; Basu, Surajit; Hazra, Sugata

    2014-01-01

    A revised geologic map of the Schuppen belt of northeast India has been prepared based on interpretation of digitally enhanced satellite images. The satellite image interpretation is supported by limited field work and existing geologic maps. Available geological maps of this fold thrust belt are discontinuous and multi-scaled. The authors are of multiple opinions regarding the trajectory of formation boundaries and fault contacts. Digital image processing of satellite images and limited field surveys have been used to reinterpret and modify the existing geological maps of this fold thrust belt. Optical data of Landsat Thematic Mapper, Enhanced Thematic Mapper and elevation data of ASTER have been used to prepare this revised geological map. The study area extends from Hajadisa in south to Digboi oilfield in north, bounded by Naga thrust in the west and Disang thrust in the east. PCA, Image fusion, Linear Contrast stretch, Histogram Equalization and Painted relief algorithms have been used for the delineation of major geological lineaments like lithological boundary, thrust and strike slip faults. Digital elevation maps have enabled in the discrimination between thrust contacts and lithological boundaries, with the former being located mostly in the valleys. Textural enhancements of PCA, colour composites and Painted relief algorithm have been used to discriminate between different rock types. Few geological concepts about the terrain have been revisited and modified. It is assumed that this revised map should be of practical use as this terrain promises unexploited hydrocarbon reserves.

  14. Extracting Semantic Building Models from Aerial Stereo Images and Conversion to Citygml

    NASA Astrophysics Data System (ADS)

    Sengul, A.

    2012-07-01

    The collection of geographic data is of primary importance for the creation and maintenance of a GIS. Traditionally the acquisition of 3D information has been the task of photogrammetry using aerial stereo images. Digital photogrammetric systems employ sophisticated software to extract digital terrain models or to plot 3D objects. The demand for 3D city models leads to new applications and new standards. City Geography Mark-up Language (CityGML), a concept for modelling and exchange of 3D city and landscape models, defines the classes and relations for the most relevant topographic objects in cities and regional models with respect to their geometrical, topological, semantically and topological properties. It now is increasingly accepted, since it fulfils the prerequisites required e.g. for risk analysis, urban planning, and simulations. There is a need to include existing 3D information derived from photogrammetric processes in CityGML databases. In order to filling the gap, this paper reports on a framework transferring data plotted by Erdas LPS and Stereo Analyst for ArcGIS software to CityGML using Safe Software's Feature Manupulate Engine (FME)

  15. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  16. Rectangular Array Of Digital Processors For Planning Paths

    NASA Technical Reports Server (NTRS)

    Kemeny, Sabrina E.; Fossum, Eric R.; Nixon, Robert H.

    1993-01-01

    Prototype 24 x 25 rectangular array of asynchronous parallel digital processors rapidly finds best path across two-dimensional field, which could be patch of terrain traversed by robotic or military vehicle. Implemented as single-chip very-large-scale integrated circuit. Excepting processors on edges, each processor communicates with four nearest neighbors along paths representing travel to north, south, east, and west. Each processor contains delay generator in form of 8-bit ripple counter, preset to 1 of 256 possible values. Operation begins with choice of processor representing starting point. Transmits signals to nearest neighbor processors, which retransmits to other neighboring processors, and process repeats until signals propagated across entire field.

  17. EVALUATION OF LOW-SUN ILLUMINATED LANDSAT-4 THEMATIC MAPPER DATA FOR MAPPING HYDROTHERMALLY ALTERED ROCKS IN SOUTHERN NEVADA.

    USGS Publications Warehouse

    Podwysocki, Melvin H.; Power, Marty S.; Salisbury, Jack; Jones, O.D.

    1984-01-01

    Landsat-4 Thematic Mapper (TM) data of southern Nevada collected under conditions of low-angle solar illumination were digitally processed to identify hydroxyl-bearing minerals commonly associated with hydrothermal alteration in volcanic terrains. Digital masking procedures were used to exclude shadow areas and vegetation and thus to produce a CRC image suitable for testing the new TM bands as a means to map hydrothermally altered rocks. Field examination of a masked CRC image revealed that several different types of altered rocks displayed hues associated with spectral characteristics common to hydroxyl-bearing minerals. Several types of unaltered rocks also displayed similar hues.

  18. Integrating advanced visualization technology into the planetary Geoscience workflow

    NASA Astrophysics Data System (ADS)

    Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb

    2011-09-01

    Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.

  19. A bibliography of terrain modeling (geomorphometry), the quantitative representation of topography: supplement 4.0

    USGS Publications Warehouse

    Pike, Richard J.

    2002-01-01

    Terrain modeling, the practice of ground-surface quantification, is an amalgam of Earth science, mathematics, engineering, and computer science. The discipline is known variously as geomorphometry (or simply morphometry), terrain analysis, and quantitative geomorphology. It continues to grow through myriad applications to hydrology, geohazards mapping, tectonics, sea-floor and planetary exploration, and other fields. Dating nominally to the co-founders of academic geography, Alexander von Humboldt (1808, 1817) and Carl Ritter (1826, 1828), the field was revolutionized late in the 20th Century by the computer manipulation of spatial arrays of terrain heights, or digital elevation models (DEMs), which can quantify and portray ground-surface form over large areas (Maune, 2001). Morphometric procedures are implemented routinely by commercial geographic information systems (GIS) as well as specialized software (Harvey and Eash, 1996; Köthe and others, 1996; ESRI, 1997; Drzewiecki et al., 1999; Dikau and Saurer, 1999; Djokic and Maidment, 2000; Wilson and Gallant, 2000; Breuer, 2001; Guth, 2001; Eastman, 2002). The new Earth Surface edition of the Journal of Geophysical Research, specializing in surficial processes, is the latest of many publication venues for terrain modeling. This is the fourth update of a bibliography and introduction to terrain modeling (Pike, 1993, 1995, 1996, 1999) designed to collect the diverse, scattered literature on surface measurement as a resource for the research community. The use of DEMs in science and technology continues to accelerate and diversify (Pike, 2000a). New work appears so frequently that a sampling must suffice to represent the vast literature. This report adds 1636 entries to the 4374 in the four earlier publications1. Forty-eight additional entries correct dead Internet links and other errors found in the prior listings. Chronicling the history of terrain modeling, many entries in this report predate the 1999 supplement. Coverage is representative from about 1800 through early–mid 2002. Papers increasingly are published exclusively or in duplicate on the Internet's World Wide Web; the dates given here for Web addresses (URLs) that lack a print publication indicate a Web site's last update or my last access of it. The bibliography is arranged alphabetically and thus is not readily summarized. This introduction cites about 500 entries, a third of them grouped under 24 morphometric topics, as a guide to the listing's contents. Continuing the practice of previous bibliographies in the series to provide more information on a few applications (see summary of past topics in Pike, 2000a), this report elaborates further on topographic data, putative new parameters, tectonic geomorphology/neo-orometry, biogeography, ice-cap morphometry, results from the Mars Global DEM, landslide-hazard mapping, terrain modeling as physics, Hack's law, and broad-scale computer visualization. The literature of some of these subjects is large, and none of the summaries is intended to more than introduce the topic and comment on some of the current contributions of terrain modeling. Closing the essay is a discussion of pre-1900 papers that trace the evolution of ridge-line and watercourse quantification by descriptive geometry, as well as comments on some new books and an on-line bulletin board.

  20. The netlore of the infinite: death (and beyond) in the digital memory ecology

    NASA Astrophysics Data System (ADS)

    Lagerkvist, Amanda

    2015-04-01

    In an era that celebrates instantaneity and hyper-connectivity, compulsions of networked individualism coexist with technological obsolescence, amounting to a sense of fragmentation and a heightened tension between remembering and forgetting. This article argues, however, that in our era of absolute presence, a netlore of the infinite is emerging, precisely in and through our digital memory practices. This is visible in the ubiquitous meaning-making practices of for instance personal digital archiving through the urges for self-perpetuation; it is evident at sites where the self may be saved for posterity; it is discernible in the techno-spiritual practices of directly speaking to the dead on digital memorials, as well as in the tendency among some users to regard the Internet itself as a manifestation of eternity, "heaven" and the sacred. This article shows that by approaching digital memory cultures existentially, and by attending to the complexities of digital time, we may gain insights into important and paradoxical aspects of our existential terrains of connectivity. This makes possible an exploration into how people navigate and create meaning in the digital memory ecology-in seeking to ground a sense of the eternal in the ephemeral.

  1. Remote sensing for environmental protection of the eastern Mediterranean rugged mountainous areas, Lebanon

    NASA Astrophysics Data System (ADS)

    Khawlie, M.; Awad, M.; Shaban, A.; Bou Kheir, R.; Abdallah, C.

    Lying along the eastern Mediterranean coast with elevated mountain chains higher than 2500 m straddling its terrain, Lebanon is a country of natural beauty and is thus attracting tourism. However, with a population density exceeding 800/km 2 and a rugged steep sloping land, problems abound in the country calling for holistic-approach studies. Only remote sensing, whose use is new in Lebanon can secure such needed studies within a scientific and pragmatic framework. The paper demonstrates for the concerned themes, the innovative use of remote sensing in such a difficult terrain, giving three examples of major environmental problems in the coastal mountains. Only few studies have so far focused on those mountains, notably application of remote sensing. The rugged mountainous terrain receives considerable rain, but the water is quickly lost running on the steep slopes, or infiltrating through fractures and the karstic conduits into the subsurface. Field investigations are difficult to achieve, therefore, remote sensing helps reveal various surface land features important in reflecting water feeding into the subsurface. Optical, radar and thermal infrared remotely sensed data cover a wide spectrum serving that purpose. A map of preferential groundwater accumulation potential is produced. It can serve for better water exploitation as well as protection. Because the terrain is karstic and rugged, the subsurface water flow is difficult to discern. Any pollution at a certain spot would certainly spread around. This constitutes the second example of environmental problems facing the mountainous areas in Lebanon. An integrated approach using remote sensing and geographic information systems (GIS) gives good results in finding out the likelihood of how pollution, or contaminants, can selectively move in the subsurface. A diagnostic analysis with a GIS-type software acts as a guide producing indicative maps for the above purpose. The third example given deals with the problem of losing soil, which is a very vital source in such mountainous land. With steep slopes, torrential rain and improper human interference, run-off is high and water-soil erosion is continuously deteriorating the land cover. Remote sensing can facilitate studying the factors enhancing the process, such as soil type, slope gradient, drainage, geology and land cover. Digital elevation models created from SAR imagery contribute significantly to assessing vulnerability of hydric-soil erosion over such a difficult terrain. GIS layers of the above factors are integrated with erosional criteria to produce a risk map of soil erosion. Results indicate that 36% of the Lebanese terrain is under threat of high-level erosion, and 52% of that is concentrated in the rugged mountainous regions.

  2. Automated algorithm for mapping regions of cold-air pooling in complex terrain

    NASA Astrophysics Data System (ADS)

    Lundquist, Jessica D.; Pepin, Nicholas; Rochford, Caitlin

    2008-11-01

    In complex terrain, air in contact with the ground becomes cooled from radiative energy loss on a calm clear night and, being denser than the free atmosphere at the same elevation, sinks to valley bottoms. Cold-air pooling (CAP) occurs where this cooled air collects on the landscape. This article focuses on identifying locations on a landscape subject to considerably lower minimum temperatures than the regional average during conditions of clear skies and weak synoptic-scale winds, providing a simple automated method to map locations where cold air is likely to pool. Digital elevation models of regions of complex terrain were used to derive surfaces of local slope, curvature, and percentile elevation relative to surrounding terrain. Each pixel was classified as prone to CAP, not prone to CAP, or exhibiting no signal, based on the criterion that CAP occurs in regions with flat slopes in local depressions or valleys (negative curvature and low percentile). Along-valley changes in the topographic amplification factor (TAF) were then calculated to determine whether the cold air in the valley was likely to drain or pool. Results were checked against distributed temperature measurements in Loch Vale, Rocky Mountain National Park, Colorado; in the Eastern Pyrenees, France; and in Yosemite National Park, Sierra Nevada, California. Using CAP classification to interpolate temperatures across complex terrain resulted in improvements in root-mean-square errors compared to more basic interpolation techniques at most sites within the three areas examined, with average error reductions of up to 3°C at individual sites and about 1°C averaged over all sites in the study areas.

  3. Flight test of a low-altitude helicopter guidance system with obstacle avoidance capability

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.; Clark, Raymond F.; Branigan, Robert G.

    1995-01-01

    Military aircraft regularly conduct missions that include low-atltitude, near-terrain flight in order to increase covertness and payload effectiveness. Civilian applications include airborne fire fighting, police surveillance, search and rescue, and helicopter emergency medical service. Several fixed-wing aircraft now employ terrain elevation maps and forward-pointed radars to achieve automated terrain following or terrain avoidance flight. Similar systems specialized to helicopters and their flight regime have not received as much attention. A helicopter guidance system relying on digitized terrain elevation maps has been developed that employs airborne navigation, mission requirements, aircraft performance limits, and radar altimeter returns to generate a valley-seeking, low-altitude trajectory between waypoints. The guidance trajectory is symbolically presented to the pilot on a helmet mounted display. This system has been flight tested to 150 ft (45.7 m) above ground level altitude at 80 kts, and is primarily limited by the ability of the pilot to perform manual detection and avoidance of unmapped hazards. In this study, a wide field of view laser radar sensor has been incorporated into this guidance system to assist the pilot in obstacle detection and avoidance, while expanding the system's operational flight envelope. The results from early flight tests of this system are presented. Low-altitude missions to 100 ft (30.5 m) altitude at 80n kts in the presence of unmapped natural and man-made obstacles were demonstrated while the pilot maintained situational awareness and tracking of the guidance trajectory. Further reductions in altitude are expected with continued flight testing.

  4. Relationships between vegetation and terrain variables in southeastern Arizona. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mouat, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Relationships were established between eight terrain variables and plant species and 31 vegetation types. Certain plant species are better than others for differentiating or discriminating groups of specified terrain variables. Certain terrain variables are better than others for differentiating or discriminating groups of vegetation types. Stepwise discriminant analysis was shown to be a useful tool in plant ecological studies.

  5. ESNIB (European Science Notes Information Bulletin): Reports on Current European/Middle Eastern Science

    DTIC Science & Technology

    1989-11-01

    tool for planning, programming , The TERMOS is a digital terrain modeling system and simulating, initiating, and surveying small-scale was developed ...workshop fea- (FRG) turing the European Strategic Program for Research and Conference Language: English Development in Information Technologies...self- * Research and Development in the Numerical addressed mailer and return it to ONREUR. Aerodynamic Systems Program , R. Bailey, NASA

  6. Design and Development of the Terrain Information Extraction System

    DTIC Science & Technology

    1990-09-04

    system successfully demonstrated relief measurement and orthophoto production, automated feature extraction has remained "the major problem of today’s...the hierarchical relaxation correlation method developed by Helava Associates, Inc. and digital orthophoto production. To achieve this high accuracy...image memory transfer rates will be achieved by using data blocks or "image tiles ." Further, an image fringe loading module will be implemented which

  7. A Graphics Facility for Integration, Editing, and Display of Slope, Curvature, and Contours from a Digital Terrain Elevation Database

    DTIC Science & Technology

    1988-06-01

    DETAILED PROBLEM STATEM ENT ......................................................... 23 A . INTRODUCTION...assorted information about the world land masses. When this is done, the problem of storage, manipulation, and display of realistic, dense, and accurate...elevation data becomes a problem of paramount importance. If the data which is stored can be utilized to recreate specific information about certain

  8. A SIMULATION OF HELICOPTER AIRCRAFT IN AN ARMED RECONNAISSANCE MODE, FOR THE CDC 1604 DIGITAL COMPUTER.

    DTIC Science & Technology

    A model is presented which is a computer simulation of a duel involving two helicopter sections, a scout and an attack section, and an armored mobile...constructed in an attempt to include the possible effects of terrain on tactics used by the combatants in the duel . The computer program, logic and model results are included. (Author)

  9. The Use of Multiple Data Sources in the Process of Topographic Maps Updating

    NASA Astrophysics Data System (ADS)

    Cantemir, A.; Visan, A.; Parvulescu, N.; Dogaru, M.

    2016-06-01

    The methods used in the process of updating maps have evolved and become more complex, especially upon the development of the digital technology. At the same time, the development of technology has led to an abundance of available data that can be used in the updating process. The data sources came in a great variety of forms and formats from different acquisition sensors. Satellite images provided by certain satellite missions are now available on space agencies portals. Images stored in archives of satellite missions such us Sentinel, Landsat and other can be downloaded free of charge.The main advantages are represented by the large coverage area and rather good spatial resolution that enables the use of these images for the map updating at an appropriate scale. In our study we focused our research of these images on 1: 50.000 scale map. DEM that are globally available could represent an appropriate input for watershed delineation and stream network generation, that can be used as support for hydrography thematic layer update. If, in addition to remote sensing aerial photogrametry and LiDAR data are ussed, the accuracy of data sources is enhanced. Ortophotoimages and Digital Terrain Models are the main products that can be used for feature extraction and update. On the other side, the use of georeferenced analogical basemaps represent a significant addition to the process. Concerning the thematic maps, the classic representation of the terrain by contour lines derived from DTM, remains the best method of surfacing the earth on a map, nevertheless the correlation with other layers such as Hidrography are mandatory. In the context of the current national coverage of the Digital Terrain Model, one of the main concerns of the National Center of Cartography, through the Cartography and Photogrammetry Department, is represented by the exploitation of the available data in order to update the layers of the Topographic Reference Map 1:5000, known as TOPRO5 and at the same time, through the generalization and additional data sources of the Romanian 1:50 000 scale map. This paper also investigates the general perspective of DTM automatic use derived products in the process of updating the topographic maps.

  10. Recalculation of regional and detailed gravity database from Slovak Republic and qualitative interpretation of new generation Bouguer anomaly map

    NASA Astrophysics Data System (ADS)

    Pasteka, Roman; Zahorec, Pavol; Mikuska, Jan; Szalaiova, Viktoria; Papco, Juraj; Krajnak, Martin; Kusnirak, David; Panisova, Jaroslava; Vajda, Peter; Bielik, Miroslav

    2014-05-01

    In this contribution results of the running project "Bouguer anomalies of new generation and the gravimetrical model of Western Carpathians (APVV-0194-10)" are presented. The existing homogenized regional database (212478 points) was enlarged by approximately 107 500 archive detailed gravity measurements. These added gravity values were measured since the year 1976 to the present, therefore they need to be unified and reprocessed. The improved positions of more than 8500 measured points were acquired by digitizing of archive maps (we recognized some local errors within particular data sets). Besides the local errors (due to the wrong positions, heights or gravity of measured points) we have found some areas of systematic errors probably due to the gravity measurement or processing errors. Some of them were confirmed and consequently corrected by field measurements within the frame of current project. Special attention is paid to the recalculation of the terrain corrections - we have used a new developed software as well as the latest version of digital terrain model of Slovakia DMR-3. Main improvement of the new terrain corrections evaluation algorithm is the possibility to calculate it in the real gravimeter position and involving of 3D polyhedral bodies approximation (accepting the spherical approximation of Earth's curvature). We have realized several tests by means of the introduction of non-standard distant relief effects introduction. A new complete Bouguer anomalies map was constructed and transformed by means of higher derivatives operators (tilt derivatives, TDX, theta-derivatives and the new TDXAS transformation), using the regularization approach. A new interesting regional lineament of probably neotectonic character was recognized in the new map of complete Bouguer anomalies and it was confirmed also by realized in-situ field measurements.

  11. Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: a case study of the Supin-Upper Tons Basin, Indian Himalayas.

    PubMed

    Das, Sayantan; Patel, Priyank Pravin; Sengupta, Somasis

    2016-01-01

    With myriad geospatial datasets now available for terrain information extraction and particularly streamline demarcation, there arises questions regarding the scale, accuracy and sensitivity of the initial dataset from which these aspects are derived, as they influence all other parameters computed subsequently. In this study, digital elevation models (DEM) derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER V2), Shuttle Radar Topography Mission (SRTM V4, C-Band, 3 arc-second), Cartosat -1 (CartoDEM 1.0) and topographical maps (R.F. 1:250,000 and 1:50,000), have been used to individually extract and analyze the relief, surface, size, shape and texture properties of a mountainous drainage basin. Nestled inside a mountainous setting, the basin is a semi-elongated one with high relief ratio (>90), steep slopes (25°-30°) and high drainage density (>3.5 km/sq km), as computed from the different DEMs. The basin terrain and stream network is extracted from each DEM, whose morphometric attributes are compared with the surveyed stream networks present in the topographical maps, with resampling of finer DEM datasets to coarser resolutions, to reduce scale-implications during the delineation process. Ground truth verifications for altitudinal accuracy have also been done by a GPS survey. DEMs derived from the 1:50,000 topographical map and ASTER GDEM V2 data are found to be more accurate and consistent in terms of absolute accuracy, than the other generated or available DEM data products, on basis of the morphometric parameters extracted from each. They also exhibit a certain degree of proximity to the surveyed topographical map.

  12. Development of an Integrated Hydrologic Modeling System for Rainfall-Runoff Simulation

    NASA Astrophysics Data System (ADS)

    Lu, B.; Piasecki, M.

    2008-12-01

    This paper aims to present the development of an integrated hydrological model which involves functionalities of digital watershed processing, online data retrieval, hydrologic simulation and post-event analysis. The proposed system is intended to work as a back end to the CUAHSI HIS cyberinfrastructure developments. As a first step into developing this system, a physics-based distributed hydrologic model PIHM (Penn State Integrated Hydrologic Model) is wrapped into OpenMI(Open Modeling Interface and Environment ) environment so as to seamlessly interact with OpenMI compliant meteorological models. The graphical user interface is being developed from the openGIS application called MapWindows which permits functionality expansion through the addition of plug-ins. . Modules required to set up through the GUI workboard include those for retrieving meteorological data from existing database or meteorological prediction models, obtaining geospatial data from the output of digital watershed processing, and importing initial condition and boundary condition. They are connected to the OpenMI compliant PIHM to simulate rainfall-runoff processes and includes a module for automatically displaying output after the simulation. Online databases are accessed through the WaterOneFlow web services, and the retrieved data are either stored in an observation database(OD) following the schema of Observation Data Model(ODM) in case for time series support, or a grid based storage facility which may be a format like netCDF or a grid-based-data database schema . Specific development steps include the creation of a bridge to overcome interoperability issue between PIHM and the ODM, as well as the embedding of TauDEM (Terrain Analysis Using Digital Elevation Models) into the model. This module is responsible for developing watershed and stream network using digital elevation models. Visualizing and editing geospatial data is achieved by the usage of MapWinGIS, an ActiveX control developed by MapWindow team. After applying to the practical watershed, the performance of the model can be tested by the post-event analysis module.

  13. Analysis of Local Slopes at the InSight Landing Site on Mars

    NASA Astrophysics Data System (ADS)

    Fergason, R. L.; Kirk, R. L.; Cushing, G.; Galuszka, D. M.; Golombek, M. P.; Hare, T. M.; Howington-Kraus, E.; Kipp, D. M.; Redding, B. L.

    2017-10-01

    To evaluate the topography of the surface within the InSight candidate landing ellipses, we generated Digital Terrain Models (DTMs) at lander scales and those appropriate for entry, descent, and landing simulations, along with orthoimages of both images in each stereopair, and adirectional slope images. These products were used to assess the distribution of slopes for each candidate ellipse and terrain type in the landing site region, paying particular attention to how these slopes impact InSight landing and engineering safety, and results are reported here. Overall, this region has extremely low slopes at 1-meter baseline scales and meets the safety constraints of the InSight lander. The majority of the landing ellipse has a mean slope at 1-meter baselines of 3.2°. In addition, a mosaic of HRSC, CTX, and HiRISE DTMs within the final landing ellipse (ellipse 9) was generated to support entry, descent, and landing simulations and evaluations. Several methods were tested to generate this mosaic and the NASA Ames Stereo Pipeline program dem_mosaic produced the best results. For the HRSC-CTX-HiRISE DTM mosaic, more than 99 % of the mosaic has slopes less than 15°, and the introduction of artificially high slopes along image seams was minimized.

  14. Analysis of local slopes at the InSight landing site on Mars

    USGS Publications Warehouse

    Fergason, Robin L.; Kirk, Randolph L.; Cushing, Glen; Galuszka, Donna M.; Golombek, Matthew P.; Hare, Trent M.; Howington-Kraus, Elpitha; Kipp, Devin M; Redding, Bonnie L.

    2017-01-01

    To evaluate the topography of the surface within the InSight candidate landing ellipses, we generated Digital Terrain Models (DTMs) at lander scales and those appropriate for entry, descent, and landing simulations, along with orthoimages of both images in each stereopair, and adirectional slope images. These products were used to assess the distribution of slopes for each candidate ellipse and terrain type in the landing site region, paying particular attention to how these slopes impact InSight landing and engineering safety, and results are reported here. Overall, this region has extremely low slopes at 1-meter baseline scales and meets the safety constraints of the InSight lander. The majority of the landing ellipse has a mean slope at 1-meter baselines of 3.2°. In addition, a mosaic of HRSC, CTX, and HiRISE DTMs within the final landing ellipse (ellipse 9) was generated to support entry, descent, and landing simulations and evaluations. Several methods were tested to generate this mosaic and the NASA Ames Stereo Pipeline program dem_mosaic produced the best results. For the HRSC-CTX-HiRISE DTM mosaic, more than 99 % of the mosaic has slopes less than 15°, and the introduction of artificially high slopes along image seams was minimized.

  15. An application of the geophysical methods and ALS DTM for the identification of the geological structure in the Kraśnik region - Lublin Upland, Poland

    NASA Astrophysics Data System (ADS)

    Kamiński, Mirosław

    2017-11-01

    The purpose of the study was the assessment of the viability of selected geophysical methods and the Airborne Laser Scanning (ALS) for the identification and interpretation of the geological structure. The studied area is covered with a dense forest. For this reason, the ALS numerical terrain model was applied for the analysis of the topography. Three geophysical methods were used: gravimetric, in the form of a semi-detailed gravimetric photograph, Vertical Electrical Sounding (VES), and Electrical Resistivity Tomography (ERT). The numerical terrain model enabled the identification of Jurassic limestone outcrops and interpretation of the directions of the faults network. The geological interpretation of the digitally processed gravimetric data enabled the determination of the spatial orientation of the synclines and anticlines axes and of the course directions of main faults. Vertical Electrical Sounding carried along the section line perpendicular to the Gościeradów anticline axis enabled the interpretation of the lithology of this structure and identification of its complex tectonic structure. The shallow geophysical surveys using the ERT method enabled the estimation of the thickness of Quaternary formations deposited unconformably on the highly eroded Jurassic limestone outcrop. The lithology of Quaternary, Cretaceous and Jurassic rocks was also interpreted.

  16. Automated thematic mapping and change detection of ERTS-A images. [farmlands, cities, and mountain identification in Utah, Washington, Arizona, and California

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A diffraction pattern analysis of MSS images led to the development of spatial signatures for farm land, urban areas and mountains. Four spatial features are employed to describe the spatial characteristics of image cells in the digital data. Three spectral features are combined with the spatial features to form a seven dimensional vector describing each cell. Then, the classification of the feature vectors is accomplished by using the maximum likelihood criterion. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month, but vary substantially between seasons. Three ERTS-1 images from the Phoenix, Arizona area were processed, and recognition rates between 85% and 100% were obtained for the terrain classes of desert, farms, mountains, and urban areas. To eliminate the need for training data, a new clustering algorithm has been developed. Seven ERTS-1 images from four test sites have been processed through the clustering algorithm, and high recognition rates have been achieved for all terrain classes.

  17. Comparing physiographic maps with different categorisations

    NASA Astrophysics Data System (ADS)

    Zawadzka, J.; Mayr, T.; Bellamy, P.; Corstanje, R.

    2015-02-01

    This paper addresses the need for a robust map comparison method suitable for finding similarities between thematic maps with different forms of categorisations. In our case, the requirement was to establish the information content of newly derived physiographic maps with regards to set of reference maps for a study area in England and Wales. Physiographic maps were derived from the 90 m resolution SRTM DEM, using a suite of existing and new digital landform mapping methods with the overarching purpose of enhancing the physiographic unit component of the Soil and Terrain database (SOTER). Reference maps were seven soil and landscape datasets mapped at scales ranging from 1:200,000 to 1:5,000,000. A review of commonly used statistical methods for categorical comparisons was performed and of these, the Cramer's V statistic was identified as the most appropriate for comparison of maps with different legends. Interpretation of multiple Cramer's V values resulting from one-by-one comparisons of the physiographic and baseline maps was facilitated by multi-dimensional scaling and calculation of average distances between the maps. The method allowed for finding similarities and dissimilarities amongst physiographic maps and baseline maps and informed the recommendation of the most suitable methodology for terrain analysis in the context of soil mapping.

  18. Image-based terrain modeling with thematic mapper applied to resolving the limit of Holocene Lake expansion in the Great Salt Lake Desert, Utah, part 1

    NASA Technical Reports Server (NTRS)

    Merola, John A.

    1989-01-01

    The LANDSAT Thematic Mapper (TM) scanner records reflected solar energy from the earth's surface in six wavelength regions, or bands, and one band that records emitted energy in the thermal region, giving a total of seven bands. Useful research was extracted about terrain morphometry from remote sensing measurements and this information is used in an image-based terrain model for selected coastal geomorphic features in the Great Salt Lake Desert (GSLD). Technical developments include the incorporation of Aerial Profiling of Terrain System (APTS) data in satellite image analysis, and the production and use of 3-D surface plots of TM reflectance data. Also included in the technical developments is the analysis of the ground control point spatial distribution and its affects on geometric correction, and the terrain mapping procedure; using satellite data in a way that eliminates the need to degrade the data by resampling. The most common approach for terrain mapping with multispectral scanner data includes the techniques of pattern recognition and image classification, as opposed to direct measurement of radiance for identification of terrain features. The research approach in this investigation was based on an understanding of the characteristics of reflected light resulting from the variations in moisture and geometry related to terrain as described by the physical laws of radiative transfer. The image-based terrain model provides quantitative information about the terrain morphometry based on the physical relationship between TM data, the physical character of the GSLD, and the APTS measurements.

  19. Evaluation of various modelling approaches in flood routing simulation and flood area mapping

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe

    2016-04-01

    An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.

  20. Electromagnetic wave scattering from rough terrain

    NASA Astrophysics Data System (ADS)

    Papa, R. J.; Lennon, J. F.; Taylor, R. L.

    1980-09-01

    This report presents two aspects of a program designed to calculate electromagnetic scattering from rough terrain: (1) the use of statistical estimation techniques to determine topographic parameters and (2) the results of a single-roughness-scale scattering calculation based on those parameters, including comparison with experimental data. In the statistical part of the present calculation, digitized topographic maps are used to generate data bases for the required scattering cells. The application of estimation theory to the data leads to the specification of statistical parameters for each cell. The estimated parameters are then used in a hypothesis test to decide on a probability density function (PDF) that represents the height distribution in the cell. Initially, the formulation uses a single observation of the multivariate data. A subsequent approach involves multiple observations of the heights on a bivariate basis, and further refinements are being considered. The electromagnetic scattering analysis, the second topic, calculates the amount of specular and diffuse multipath power reaching a monopulse receiver from a pulsed beacon positioned over a rough Earth. The program allows for spatial inhomogeneities and multiple specular reflection points. The analysis of shadowing by the rough surface has been extended to the case where the surface heights are distributed exponentially. The calculated loss of boresight pointing accuracy attributable to diffuse multipath is then compared with the experimental results. The extent of the specular region, the use of localized height variations, and the effect of the azimuthal variation in power pattern are all assessed.

  1. Lunar Polar Illumination for Power Analysis

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    This paper presents illumination analyses using the latest Earth-based radar digital elevation model (DEM) of the lunar south pole and an independently developed analytical tool. These results enable the optimum sizing of solar/energy storage lunar surface power systems since they quantify the timing and durations of illuminated and shadowed periods. Filtering and manual editing of the DEM based on comparisons with independent imagery were performed and a reduced resolution version of the DEM was produced to reduce the analysis time. A comparison of the DEM with lunar limb imagery was performed in order to validate the absolute heights over the polar latitude range, the accuracy of which affects the impact of long range, shadow-casting terrain. Average illumination and energy storage duration maps of the south pole region are provided for the worst and best case lunar day using the reduced resolution DEM. Average illumination fractions and energy storage durations are presented for candidate low energy storage duration south pole sites. The best site identified using the reduced resolution DEM required a 62 hr energy storage duration using a fast recharge power system. Solar and horizon terrain elevations as well as illumination fraction profiles are presented for the best identified site and the data for both the reduced resolution and high resolution DEMs compared. High resolution maps for three low energy storage duration areas are presented showing energy storage duration for the worst case lunar day, surface height, and maximum absolute surface slope.

  2. A Realistic Framework for Delay-Tolerant Network Routing in Open Terrains with Continuous Churn

    NASA Astrophysics Data System (ADS)

    Mahendran, Veeramani; Anirudh, Sivaraman K.; Murthy, C. Siva Ram

    The conventional analysis of Delay-Tolerant Network (DTN) routing assumes that the terrain over which nodes move is closed implying that when the nodes hit a boundary, they either wrap around or get reflected. In this work, we study the effect of relaxing this closed terrain assumption on the routing performance, where a continuous stream of nodes enter the terrain and get absorbed upon hitting the boundary.

  3. Predicting active-layer soil thickness using topographic variables at a small watershed scale

    PubMed Central

    Li, Aidi; Tan, Xing; Wu, Wei; Liu, Hongbin; Zhu, Jie

    2017-01-01

    Knowledge about the spatial distribution of active-layer (AL) soil thickness is indispensable for ecological modeling, precision agriculture, and land resource management. However, it is difficult to obtain the details on AL soil thickness by using conventional soil survey method. In this research, the objective is to investigate the possibility and accuracy of mapping the spatial distribution of AL soil thickness through random forest (RF) model by using terrain variables at a small watershed scale. A total of 1113 soil samples collected from the slope fields were randomly divided into calibration (770 soil samples) and validation (343 soil samples) sets. Seven terrain variables including elevation, aspect, relative slope position, valley depth, flow path length, slope height, and topographic wetness index were derived from a digital elevation map (30 m). The RF model was compared with multiple linear regression (MLR), geographically weighted regression (GWR) and support vector machines (SVM) approaches based on the validation set. Model performance was evaluated by precision criteria of mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Comparative results showed that RF outperformed MLR, GWR and SVM models. The RF gave better values of ME (0.39 cm), MAE (7.09 cm), and RMSE (10.85 cm) and higher R2 (62%). The sensitivity analysis demonstrated that the DEM had less uncertainty than the AL soil thickness. The outcome of the RF model indicated that elevation, flow path length and valley depth were the most important factors affecting the AL soil thickness variability across the watershed. These results demonstrated the RF model is a promising method for predicting spatial distribution of AL soil thickness using terrain parameters. PMID:28877196

  4. Landsat analysis of tropical forest succession employing a terrain model

    NASA Technical Reports Server (NTRS)

    Barringer, T. H.; Robinson, V. B.; Coiner, J. C.; Bruce, R. C.

    1980-01-01

    Landsat multispectral scanner (MSS) data have yielded a dual classification of rain forest and shadow in an analysis of a semi-deciduous forest on Mindonoro Island, Philippines. Both a spatial terrain model, using a fifth side polynomial trend surface analysis for quantitatively estimating the general spatial variation in the data set, and a spectral terrain model, based on the MSS data, have been set up. A discriminant analysis, using both sets of data, has suggested that shadowing effects may be due primarily to local variations in the spectral regions and can therefore be compensated for through the decomposition of the spatial variation in both elevation and MSS data.

  5. Land cover mapping of the upper Kuskokwim Resource Managment Area using LANDSAT and a digital data base approach

    USGS Publications Warehouse

    Markon, Carl J.

    1988-01-01

    Digital land cover and terrain data for the Upper Kuskokwim Resource Hanagement Area (UKRMA) were produced by the U.S. Geological Survey, Earth Resources Observation Systems Field Office, Anchorage, Alaska for the Bureau of Land Management. These and other environmental data, were incorporated into a digital data base to assist in the management and planning of the UKRMA. The digital data base includes land cover classifications, elevation, slope, and aspect data centering on the UKRMA boundaries. The data are stored on computer compatible tapes at a 50-m pixel size. Additional digital data in the data base include: (a) summer and winter Landsat multispectral scanner (MSS) data registered to a 50-m Universal Transverse Mercator grid; (b) elevation, slope, aspect, and solar illumination data; (c) soils and surficial geology; and (e) study area boundary. The classification of Landsat MSS data resulted in seven major classes and 24 subclasses. Major classes include: forest, shrubland, dwarf scrub, herbaceous, barren, water, and other. The final data base will be used by resource personnel for management and planning within the UKRMA.

  6. North Dakota aeromagnetic and gravity maps and data, a web site for distribution of data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Hill, Patricia L.

    2003-01-01

    The North Dakota aeromagnetic grid is constructed from grids that combine information collected in 13 separate aeromagnetic surveys conducted between 1978 and 2001. The data from these surveys are of varying quality. The design and specifications (terrain clearance, sampling rates, line spacing, and reduction procedures) varied from survey to survey depending on the purpose of the project and the technology of that time. Every attempt was made to acquire the data in digital form. Most of the available digital data were obtained from aeromagnetic surveys flown by the U.S. Geological Survey (USGS), flown on contract with the USGS, or were obtained from other federal agencies and state universities. Some of the 1980 data are available only on hand-contoured maps and had to be digitized. These maps were digitized along flight-line/contour-line intersections, which is considered to be the most accurate method of recovering the original data. Digitized data are available as USGS Open File Report 99-557. All surveys have been continued to 304.8 meters (1000 feet) above ground and then blended or merged together.

  7. Digital colour management system for colour parameters reconstruction

    NASA Astrophysics Data System (ADS)

    Grudzinski, Karol; Lasmanowicz, Piotr; Assis, Lucas M. N.; Pawlicka, Agnieszka; Januszko, Adam

    2013-10-01

    Digital Colour Management System (DCMS) and its application to new adaptive camouflage system are presented in this paper. The DCMS is a digital colour rendering method which would allow for transformation of a real image into a set of colour pixels displayed on a computer monitor. Consequently, it can analyse pixels' colour which comprise images of the environment such as desert, semi-desert, jungle, farmland or rocky mountain in order to prepare an adaptive camouflage pattern most suited for the terrain. This system is described in present work as well as the use the subtractive colours mixing method to construct the real time colour changing electrochromic window/pixel (ECD) for camouflage purpose. The ECD with glass/ITO/Prussian Blue(PB)/electrolyte/CeO2-TiO2/ITO/glass configuration was assembled and characterized. The ECD switched between green and yellow after +/-1.5 V application and the colours have been controlled by Digital Colour Management System and described by CIE LAB parameters.

  8. A model of the extent and distribution of woody linear features in rural Great Britain.

    PubMed

    Scholefield, Paul; Morton, Dan; Rowland, Clare; Henrys, Peter; Howard, David; Norton, Lisa

    2016-12-01

    Hedges and lines of trees (woody linear features) are important boundaries that connect and enclose habitats, buffer the effects of land management, and enhance biodiversity in increasingly impoverished landscapes. Despite their acknowledged importance in the wider countryside, they are usually not considered in models of landscape function due to their linear nature and the difficulties of acquiring relevant data about their character, extent, and location. We present a model which uses national datasets to describe the distribution of woody linear features along boundaries in Great Britain. The method can be applied for other boundary types and in other locations around the world across a range of spatial scales where different types of linear feature can be separated using characteristics such as height or width. Satellite-derived Land Cover Map 2007 (LCM2007) provided the spatial framework for locating linear features and was used to screen out areas unsuitable for their occurrence, that is, offshore, urban, and forest areas. Similarly, Ordnance Survey Land-Form PANORAMA®, a digital terrain model, was used to screen out where they do not occur. The presence of woody linear features on boundaries was modelled using attributes from a canopy height dataset obtained by subtracting a digital terrain map (DTM) from a digital surface model (DSM). The performance of the model was evaluated against existing woody linear feature data in Countryside Survey across a range of scales. The results indicate that, despite some underestimation, this simple approach may provide valuable information on the extents and locations of woody linear features in the countryside at both local and national scales.

  9. Systemic Approach to Elevation Data Acquisition for Geophysical Survey Alignments in Hilly Terrains Using UAVs

    NASA Astrophysics Data System (ADS)

    Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.

    2018-04-01

    This study is about systematic approach to photogrammetric survey that is applicable in the extraction of elevation data for geophysical surveys in hilly terrains using Unmanned Aerial Vehicles (UAVs). The outcome will be to acquire high-quality geophysical data from areas where elevations vary by locating the best survey lines. The study area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. Seismic refraction surveys were carried out for the modelling of the subsurface for detailed site investigations. Study were carried out to identify the accuracy of the digital elevation model (DEM) produced from an UAV. At 100 m altitude (flying height), over 135 overlapping images were acquired using a DJI Phantom 3 quadcopter. All acquired images were processed for automatic 3D photo-reconstruction using Agisoft PhotoScan digital photogrammetric software, which was applied to all photogrammetric stages. The products generated included a 3D model, dense point cloud, mesh surface, digital orthophoto, and DEM. In validating the accuracy of the produced DEM, the coordinates of the selected ground control point (GCP) of the survey line in the imaging area were extracted from the generated DEM with the aid of Global Mapper software. These coordinates were compared with the GCPs obtained using a real-time kinematic global positioning system. The maximum percentage of difference between GCP’s and photogrammetry survey is 13.3 %. UAVs are suitable for acquiring elevation data for geophysical surveys which can save time and cost.

  10. Investigation of alternative organizational structures for a digitized platoon

    NASA Astrophysics Data System (ADS)

    Bossi, Linda L. M.; Tack, David W.; Angel, Harold A.; Vilhena, Paul G. S.; Frim, John

    2006-05-01

    To evaluate the effect of digitization on platoon effectiveness and investigate the suitability of different platoon structures, a twelve-day field trial was undertaken with a Company of light infantry at Fort Benning, Georgia. Test missions were conducted in both day and night conditions, in wooded and urban terrain environments, in each of three organizational structures, with and without digitization. The three different organizational structures included our current in-service 8-man Section, a 13-man USMC squad, and a distributed model comprising six four-man teams. Results of this study confirmed that the effectiveness of a dismounted platoon is significantly enhanced by the use of select digital enhancements in the areas of navigation, situation awareness, communications, and command. During night operations, digitally-enabled capabilities were the difference between mission success and failure. None of the organizational structures tested proved to be universally better than the others at optimizing the benefits of digitally-enhanced capabilities, although each had their strengths and weaknesses. However, considerable insights were gained in the organizational structure issues of distributed small unit command and control, swarming formation tactics, and the tactics, techniques, and procedures necessary to employ small units effectively in a NCW environment.

  11. Investigation of Terrain Analysis and Classification Methods for Ground Vehicles

    DTIC Science & Technology

    2012-08-27

    exteroceptive terrain classifier takes exteroceptive sensor data (here, color stereo images of the terrain) as its input and returns terrain class...Mishkin & Laubach, 2006), the rover cannot safely travel beyond the distance it can image with its cameras, which has been as little as 15 meters or...field of view roughly 44°×30°, capturing pairs of color images at 640×480 pixels each (Videre Design, 2001). Range data were extracted from the stereo

  12. Computer Aided Design Parameters for Forward Basing

    DTIC Science & Technology

    1988-12-01

    21 meters. Systematic errors within limits stated for absolute accuracy are tolerated at this level. DEM data acquired photogrammetrically using manual ...This is a professional drawing package, 19 capable of the manipulation required for this project. With the AutoLISP programming language (a variation on...Table 2). 0 25 Data Conversion Package II GWN System’s Digital Terrain Modeling (DTM) package was used. This AutoLISP -based third party software is

  13. Comparative assessment of LANDSAT-D MSS and TM data quality for mapping applications in the Southeast

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Rectifications of multispectral scanner and thematic mapper data sets for full and subscene areas, analyses of planimetric errors, assessments of the number and distribution of ground control points required to minimize errors, and factors contributing to error residual are examined. Other investigations include the generation of three dimensional terrain models and the effects of spatial resolution on digital classification accuracies.

  14. High-Speed, Low-Level Flight: Aircrew Factors

    DTIC Science & Technology

    1980-03-01

    relation to terrain information, threat detection and aircraft information, and highlighted many areas requiring further research. These include what...on a digital computer and used to produce , in real time, a continuous ’turbulence’ record for aircraft handling qualities studies in a piloted ground...Master Caution Unit" which produces a multitude of signals at varying tone levels, causing pilots to ironically call it "The Airbus Symphony". The

  15. Registratiom of TM data to digital elevation models

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Several problems arise when attempting to register LANDSAT thematic mapper data to U.S. B Geological Survey digital elevation models (DEMs). The TM data are currently available only in a rotated variant of the Space Oblique Mercator (SOM) map projection. Geometric transforms are thus; required to access TM data in the geodetic coordinates used by the DEMs. Due to positional errors in the TM data, these transforms require some sort of external control. The spatial resolution of TM data exceeds that of the most commonly DEM data. Oversampling DEM data to TM resolution introduces systematic noise. Common terrain processing algorithms (e.g., close computation) compound this problem by acting as high-pass filters.

  16. High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia

    NASA Astrophysics Data System (ADS)

    Neelmeijer, Julia; Motagh, Mahdi; Bookhagen, Bodo

    2017-08-01

    This study demonstrates the potential of using single-pass TanDEM-X (TDX) radar imagery to analyse inter- and intra-annual glacier changes in mountainous terrain. Based on SAR images acquired in February 2012, March 2013 and November 2013 over the Inylchek Glacier, Kyrgyzstan, we discuss in detail the processing steps required to generate three reliable digital elevation models (DEMs) with a spatial resolution of 10 m that can be used for glacial mass balance studies. We describe the interferometric processing steps and the influence of a priori elevation information that is required to model long-wavelength topographic effects. We also focus on DEM alignment to allow optimal DEM comparisons and on the effects of radar signal penetration on ice and snow surface elevations. We finally compare glacier elevation changes between the three TDX DEMs and the C-band shuttle radar topography mission (SRTM) DEM from February 2000. We introduce a new approach for glacier elevation change calculations that depends on the elevation and slope of the terrain. We highlight the superior quality of the TDX DEMs compared to the SRTM DEM, describe remaining DEM uncertainties and discuss the limitations that arise due to the side-looking nature of the radar sensor.

  17. A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera

    NASA Technical Reports Server (NTRS)

    Barker, M. K.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Haruyama, J.; Smith, D. E.

    2015-01-01

    We present an improved lunar digital elevation model (DEM) covering latitudes within +/-60 deg, at a horizontal resolution of 512 pixels per degree ( approx.60 m at the equator) and a typical vertical accuracy approx.3 to 4 m. This DEM is constructed from approx.4.5 ×10(exp 9) geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1 deg×1 deg) from the SELENE Terrain Camera (TC) ( approx.10(exp 10) pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of < 5 m compared to approx.50% prior to co-registration. We use the co-registered TC data to estimate and correct orbital and pointing geolocation errors from the LOLA altimetric profiles (typically amounting to < 10 m horizontally and < 1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors.

  18. Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains

    NASA Astrophysics Data System (ADS)

    Han, Yi; Stoellinger, Michael; Naughton, Jonathan

    2016-09-01

    In this work, we present Large Eddy Simulation (LES) results of atmospheric boundary layer (ABL) flow over complex terrain with neutral stratification using the OpenFOAM-based simulator for on/offshore wind farm applications (SOWFA). The complete work flow to investigate the LES for the ABL over real complex terrain is described including meteorological-tower data analysis, mesh generation and case set-up. New boundary conditions for the lateral and top boundaries are developed and validated to allow inflow and outflow as required in complex terrain simulations. The turbulent inflow data for the terrain simulation is generated using a precursor simulation of a flat and neutral ABL. Conditionally averaged met-tower data is used to specify the conditions for the flat precursor simulation and is also used for comparison with the simulation results of the terrain LES. A qualitative analysis of the simulation results reveals boundary layer separation and recirculation downstream of a prominent ridge that runs across the simulation domain. Comparisons of mean wind speed, standard deviation and direction between the computed results and the conditionally averaged tower data show a reasonable agreement.

  19. Post-fire Thermokarst Development Along a Planned Road Corridor in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Jones, B. M.; Grosse, G.; Larsen, C. F.; Hayes, D. J.; Arp, C. D.; Liu, L.; Miller, E.

    2015-12-01

    Wildfire disturbance in northern high latitude regions is an important factor contributing to ecosystem and landscape change. In permafrost influenced terrain, fire may initiate thermokarst development which impacts hydrology, vegetation, wildlife, carbon storage and infrastructure. In this study we differenced two airborne LiDAR datasets that were acquired in the aftermath of the large and severe Anaktuvuk River tundra fire, which in 2007 burned across a proposed road corridor in Arctic Alaska. The 2009 LiDAR dataset was acquired by the Alaska Department of Transportation in preparation for construction of a gravel road that would connect the Dalton Highway with the logistical camp of Umiat. The 2014 LiDAR dataset was acquired by the USGS to quantify potential post-fire thermokarst development over the first seven years following the tundra fire event. By differencing the two 1 m resolution digital terrain models, we measured permafrost thaw subsidence across 34% of the burned tundra area studied, and observed less than 1% in similar, undisturbed tundra terrain units. Ice-rich, yedoma upland terrain was most susceptible to thermokarst development following the disturbance, accounting for 50% of the areal and volumetric change detected, with some locations subsiding more than six meters over the study period. Calculation of rugosity, or surface roughness, in the two datasets showed a doubling in microtopography on average across the burned portion of the study area, with a 340% increase in yedoma upland terrain. An additional LiDAR dataset was acquired in April 2015 to document the role of thermokarst development on enhanced snow accumulation and subsequent snowmelt runoff within the burn area. Our findings will enable future vulnerability assessments of ice-rich permafrost terrain as a result of shifting disturbance regimes. Such assessments are needed to address questions focused on the impact of permafrost degradation on physical, ecological, and socio-economic processes.

  20. Using a spatial and tabular database to generate statistics from terrain and spectral data for soil surveys

    USGS Publications Warehouse

    Horvath , E.A.; Fosnight, E.A.; Klingebiel, A.A.; Moore, D.G.; Stone, J.E.; Reybold, W.U.; Petersen, G.W.

    1987-01-01

    A methodology has been developed to create a spatial database by referencing digital elevation, Landsat multispectral scanner data, and digitized soil premap delineations of a number of adjacent 7.5-min quadrangle areas to a 30-m Universal Transverse Mercator projection. Slope and aspect transformations are calculated from elevation data and grouped according to field office specifications. An unsupervised classification is performed on a brightness and greenness transformation of the spectral data. The resulting spectral, slope, and aspect maps of each of the 7.5-min quadrangle areas are then plotted and submitted to the field office to be incorporated into the soil premapping stages of a soil survey. A tabular database is created from spatial data by generating descriptive statistics for each data layer within each soil premap delineation. The tabular data base is then entered into a data base management system to be accessed by the field office personnel during the soil survey and to be used for subsequent resource management decisions.Large amounts of data are collected and archived during resource inventories for public land management. Often these data are stored as stacks of maps or folders in a file system in someone's office, with the maps in a variety of formats, scales, and with various standards of accuracy depending on their purpose. This system of information storage and retrieval is cumbersome at best when several categories of information are needed simultaneously for analysis or as input to resource management models. Computers now provide the resource scientist with the opportunity to design increasingly complex models that require even more categories of resource-related information, thus compounding the problem.Recently there has been much emphasis on the use of geographic information systems (GIS) as an alternative method for map data archives and as a resource management tool. Considerable effort has been devoted to the generation of tabular databases, such as the U.S. Department of Agriculture's SCS/S015 (Soil Survey Staff, 1983), to archive the large amounts of information that are collected in conjunction with mapping of natural resources in an easily retrievable manner.During the past 4 years the U.S. Geological Survey's EROS Data Center, in a cooperative effort with the Bureau of Land Management (BLM) and the Soil Conservation Service (SCS), developed a procedure that uses spatial and tabular databases to generate elevation, slope, aspect, and spectral map products that can be used during soil premapping. The procedure results in tabular data, residing in a database management system, that are indexed to the final soil delineations and help quantify soil map unit composition.The procedure was developed and tested on soil surveys on over 600 000 ha in Wyoming, Nevada, and Idaho. A transfer of technology from the EROS Data Center to the BLM will enable the Denver BLM Service Center to use this procedure in soil survey operations on BLM lands. Also underway is a cooperative effort between the EROS Data Center and SCS to define and evaluate maps that can be produced as derivatives of digital elevation data for 7.5-min quadrangle areas, such as those used during the premapping stage of the soil surveys mentioned above, the idea being to make such products routinely available.The procedure emphasizes the applications of digital elevation and spectral data to order-three soil surveys on rangelands, and will:Incorporate digital terrain and spectral data into a spatial database for soil surveys.Provide hardcopy products (that can be generated from digital elevation model and spectral data) that are useful during the soil pre-mapping process.Incorporate soil premaps into a spatial database that can be accessed during the soil survey process along with terrain and spectral data.Summarize useful quantitative information for soil mapping and for making interpretations for resource management.

  1. Mapping coastal morphodynamics with geospatial techniques, Cape Henry, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Allen, Thomas R.; Oertel, George F.; Gares, Paul A.

    2012-01-01

    The advent and proliferation of digital terrain technologies have spawned concomitant advances in coastal geomorphology. Airborne topographic Light Detection and Ranging (LiDAR) has stimulated a renaissance in coastal mapping, and field-based mapping techniques have benefitted from improvements in real-time kinematic (RTK) Global Positioning System (GPS). Varied methodologies for mapping suggest a need to match geospatial products to geomorphic forms and processes, a task that should consider product and process ontologies from each perspective. Towards such synthesis, coastal morphodynamics on a cuspate foreland are reconstructed using spatial analysis. Sequential beach ridge and swale topography are mapped using photogrammetric spot heights and airborne LiDAR data and integrated with digital bathymetry and large-scale vector shoreline data. Isobaths from bathymetric charts were digitized to determine slope and toe depth of the modern shoreface and a reconstructed three-dimensional antecedent shoreface. Triangulated irregular networks were created for the subaerial cape and subaqueous shoreface models of the cape beach ridges and sets for volumetric analyses. Results provide estimates of relative age and progradation rate and corroborate other paleogeologic sea-level rise data from the region. Swale height elevations and other measurements quantifiable in these data provide several parameters suitable for studying coastal geomorphic evolution. Mapped paleoshorelines and volumes suggest the Virginia Beach coastal compartment is related to embryonic spit development from a late Holocene shoreline located some 5 km east of the current beach.

  2. Snow Depth from Lidar: Challenges and New Technology for Measurements in Extreme Terrain

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Kadatskiy, V.; Boardman, J. W.; Bormann, K.; Deems, J. S.; Goodale, C. E.; Mattmann, C. A.; Ramirez, P.; Richardson, M.; Painter, T. H.

    2014-12-01

    The Airborne Snow Observatory (ASO) uses an airborne LiDAR system to measure basin-wide snow depth with cm-scale accuracy at ~1m spatial resolution. This is accomplished by creating a Digital Elevation Model (DEM) over snow-free terrain in the summer, then repeating the flights again when the terrain is snow-covered and subtracting the elevations. Snow Water Equivalent (SWE) is then calculated by incorporating modeled snow density estimates, and when combined with coincident spectrometer albedo measurements, informs distributed hydrologic modeling and runoff prediction. This method provides SWE estimates of unprecedented accuracy and extent compared to traditional snow surveys and towers, and 24hr latency data products through the ASO processing pipeline using Apache Tika and OODT software. The timely ASO outputs support operational decision making by water/dam operators for optimal water management. The water-resource snowpack in the western US lies in remote mountainous terrain, spanning large areas containing steep faces at all aspects, often amongst tree canopy. This extreme terrain presents unusual challenges for LiDAR, and requires high altitude flights to achieve wide area coverage, high point density to capture small terrain features, and the ability to capture all slope aspects without shadowing. These challenges were met by the new state-of-the-art Riegl LMS-Q1560 LiDAR system, which incorporates two independent laser channels and a single rotating mirror. Both lasers and mirror are designed to provide forward, backward, and nadir look capability, which minimizes shadowing and ensures data capture even on very steep slopes. The system is capable of logging more than 10 simultaneous pulses in the air, which allows data collection at extremely high resolution while maintaining very high altitude which reduces complete region acquisition time significantly, and allows data collection over terrain with extreme elevation variation. Our experience to-date includes acquisition of data over terrain relief of more than 3500m, and ranges of up to 6000m in a single swath. We present data acquired during spring of 2013 and 2014 in western Colorado and the central Sierra Nevada, which demonstrates the capability of the new LiDAR technology and shows basin-wide measured snow depth and SWE results.

  3. Topographic Metric Predictions of Soil redistribution and Organic Carbon Distribution in Croplands

    NASA Astrophysics Data System (ADS)

    Mccarty, G.; Li, X.

    2017-12-01

    Landscape topography is a key factor controlling soil redistribution and soil organic carbon (SOC) distribution in Iowa croplands (USA). In this study, we adopted a combined approach based on carbon () and cesium (137Cs) isotope tracers, and digital terrain analysis to understand patterns of SOC redistribution and carbon sequestration dynamics as influenced by landscape topography in tilled cropland under long term corn/soybean management. The fallout radionuclide 137Cs was used to estimate soil redistribution rates and a Lidar-derived DEM was used to obtain a set of topographic metrics for digital terrain analysis. Soil redistribution rates and patterns of SOC distribution were examined across 560 sampling locations at two field sites as well as at larger scale within the watershed. We used δ13C content in SOC to partition C3 and C4 plant derived C density at 127 locations in one of the two field sites with corn being the primary source of C4 C. Topography-based models were developed to simulate SOC distribution and soil redistribution using stepwise ordinary least square regression (SOLSR) and stepwise principal component regression (SPCR). All topography-based models developed through SPCR and SOLSR demonstrated good simulation performance, explaining more than 62% variability in SOC density and soil redistribution rates across two field sites with intensive samplings. However, the SOLSR models showed lower reliability than the SPCR models in predicting SOC density at the watershed scale. Spatial patterns of C3-derived SOC density were highly related to those of SOC density. Topographic metrics exerted substantial influence on C3-derived SOC density with the SPCR model accounting for 76.5% of the spatial variance. In contrast C4 derived SOC density had poor spatial structure likely reflecting the substantial contribution of corn vegetation to recently sequestered SOC density. Results of this study highlighted the utility of topographic SPCR models for scaling field measurements of SOC density and soil redistribution rates to watershed scale which will allow watershed model to better predict fate of ecosystem C on agricultural landscapes.

  4. The Global Color of Pluto from New Horizons

    NASA Astrophysics Data System (ADS)

    Olkin, Catherine B.; Spencer, John R.; Grundy, William M.; Parker, Alex H.; Beyer, Ross A.; Schenk, Paul M.; Howett, Carly J. A.; Stern, S. Alan; Reuter, Dennis C.; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly; Binzel, Richard P.; Buie, Marc W.; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Jennings, Donald E.; Singer, Kelsi N.; Linscott, Ivan E.; Lunsford, Allen W.; Protopapa, Silvia; Schmitt, Bernard; Weigle, Eddie; the New Horizons Science Team

    2017-12-01

    The New Horizons flyby provided the first high-resolution color maps of Pluto. We present here, for the first time, an analysis of the color of the entire sunlit surface of Pluto and the first quantitative analysis of color and elevation on the encounter hemisphere. These maps show the color variation across the surface from the very red terrain in the equatorial region, to the more neutral colors of the volatile ices in Sputnik Planitia, the blue terrain of East Tombaugh Regio, and the yellow hue on Pluto’s North Pole. There are two distinct color mixing lines in the color-color diagrams derived from images of Pluto. Both mixing lines have an apparent starting point in common: the relatively neutral-color volatile-ice covered terrain. One line extends to the dark red terrain exemplified by Cthulhu Regio and the other extends to the yellow hue in the northern latitudes. There is a latitudinal dependence of the predominant color mixing line with the most red terrain located near the equator, less red distributed at mid-latitudes and more neutral terrain at the North Pole. This is consistent with the seasonal cycle controlling the distribution of colors on Pluto. Additionally, the red color is consistent with tholins. The yellow terrain (in the false color images) located at the northern latitudes occurs at higher elevations.

  5. Application of Ifsar Technology in Topographic Mapping: JUPEM's Experience

    NASA Astrophysics Data System (ADS)

    Zakaria, Ahamad

    2018-05-01

    The application of Interferometric Synthetic Aperture Radar (IFSAR) in topographic mapping has increased during the past decades. This is due to the advantages that IFSAR technology offers in solving data acquisition problems in tropical regions. Unlike aerial photography, radar technology offers wave penetration through cloud cover, fog and haze. As a consequence, images can be made free of any natural phenomenon defects. In Malaysia, Department of Survey and Mapping Malaysia (JUPEM) has been utilizing the IFSAR products since 2009 to update topographic maps at 1 : 50,000 map scales. Orthorectified radar imagery (ORI), Digital Surface Models (DSM) and Digital Terrain Models (DTM) procured under the project have been further processed before the products are ingested into a revamped mapping workflow consisting of stereo and mono digitizing processes. The paper will highlight the experience of Department of Survey and Mapping Malaysia (DSMM)/ JUPEM in using such technology in order to speed up mapping production.

  6. 3D morphometry of valley networks on Mars from HRSC/MEX DEMs: Implications for climatic evolution through time

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Mangold, N.

    2013-09-01

    valley networks have been identified mainly in the Noachian heavily cratered uplands. Eight dense branching valley networks were studied in Noachian terrains of Huygens, Newcomb and Kepler craters, south Tyrrhena Terra, and Thaumasia, in Hesperian terrains of Echus Plateau and west Eberswalde craters, and in Amazonian terrains of Alba Patera, using images and digital elevation models from the Mars Express High Resolution Stereo Camera to determine 2D and 3D morphometric parameters. Extracted geomorphic parameters show similar geometry to terrestrial valleys: drainage densities, organization from bifurcation ratios and lengths ratios, Hack exponent consistent with terrestrial values of ~0.6, and progressive deepening of valleys with increasing Strahler order. In addition, statistics on valley depths indicate a deeper incision of Noachian valleys compared to younger post-Noachian valleys (<25 m for Amazonian ones compared to >100 m for Noachian ones), showing a strong difference in fluvial erosion. These characteristics show that dense Martian valley networks formed by overland flows in relation to a global atmospheric water cycle in Noachian epoch and confirm that the later stages of activity may be related to shorter duration of activity, distinct climatic conditions, and/or regional processes, or conditions.

  7. Morphologic Quality of DSMs Based on Optical and Radar Space Imagery

    NASA Astrophysics Data System (ADS)

    Sefercik, U. G.; Bayik, C.; Karakis, S.; Jacobsen, K.

    2011-09-01

    Digital Surface Models (DSMs) are representing the visible surface of the earth by the height corresponding to its X-, Y-location and height value Z. The quality of a DSM can be described by the accuracy and the morphologic details. Both depend upon the used input information, the used technique and the roughness of the terrain. The influence of the topographic details to the DSM quality is shown for the test fields Istanbul and Zonguldak. Zonguldak has a rough mountainous character with heights from sea level up to 1640m, while Istanbul is dominated by rolling hills going up to an elevation of 435m. DSMs from SPOT-5, the SRTM C-band height models and ASTER GDEM have been investigated. The DSMs have been verified with height models from large scale aerial photos being more accurate and including morphologic details. It was necessary to determine and respect shifts of the height models caused by datum problems and orientation of the height models. The DSM quality is analyzed depending upon the terrain inclination. The DSM quality differs for both test fields. The morphologic quality depends upon the point spacing of the analyzed DSMs and the terrain characteristics.

  8. Deciphering groundwater potential zones in hard rock terrain using geospatial technology.

    PubMed

    Dar, Imran A; Sankar, K; Dar, Mithas A

    2011-02-01

    Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m×23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.

  9. Robust, Flexible Motion Control for the Mars Explorer Rovers

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Biesiadecki, Jeffrey

    2007-01-01

    The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.

  10. The North America tapestry of time and terrain

    USGS Publications Warehouse

    Barton, Kate E.; Howell, David G.; Vigil, Jose F.

    2003-01-01

    The North America Tapestry of Time and Terrain (1:8,000,000 scale) is a product of the US Geological Survey in the I-map series (I-2781). This map was prepared in collaboration with the Geological Survey of Canada and the Mexican Consejo Recursos de Minerales. This cartographic Tapestry is woven from a geologic map and a shaded relief image. This digital combination reveals the geologic history of North America through the interrelation of rock type, topography and time. Regional surface processes as well as continent-scale tectonic events are exposed in the three dimensions of space and the fourth dimension, geologic time. The large map shows the varying age of bedrock underlying North America, while four smaller maps show the distribution of four principal types of rock: sedimentary, volcanic, plutonic and metamorphic.This map expands the original concept of the 2000 Tapestry of Time and Terrain, by José F. Vigil, Richard J. Pike and David G. Howell, which covered the conterminous United States. The U.S. Tapestry poster and website have been popular in classrooms, homes, and even the Google office building, and we anticipate the North America Tapestry will have a similarly wide appeal, and to a larger audience.

  11. Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) using ICESat geodetic control

    USGS Publications Warehouse

    Carabajal, C.C.; Harding, D.J.; Boy, J.-P.; Danielson, Jeffrey J.; Gesch, D.B.; Suchdeo, V.P.

    2011-01-01

    Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (?? 86?? latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete ???50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m. ?? 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Identifying high energy density stream-reaches through refined geospatial resolution in hydropower resource assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba

    Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less

  13. Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Using ICESat Geodetic Control

    NASA Technical Reports Server (NTRS)

    Carabajal, Claudia C.; Harding, David J.; Boy, Jean-Paul; Danielson, Jeffrey J.; Gesch, Dean B.; Suchdeo, Vijay P.

    2011-01-01

    Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m.

  14. Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods

    NASA Technical Reports Server (NTRS)

    Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.

    2010-01-01

    Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.

  15. Identifying high energy density stream-reaches through refined geospatial resolution in hydropower resource assessment

    DOE PAGES

    Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba; ...

    2016-01-07

    Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less

  16. Quantifying geological structures of the Nigde province in central Anatolia, Turkey using SRTM DEM data

    NASA Astrophysics Data System (ADS)

    Demirkesen, A. C.

    2009-01-01

    A digital terrain model and a 3D fly-through model of the Nigde province in central Anatolia, Turkey were generated and quantitatively analyzed employing the shuttle radar topographic mission (SRTM) digital elevation model (DEM). Besides, stream drainage patterns, lineaments and structural-geological features were extracted and analyzed. In the process of analyzing and interpreting the DEM for landforms, criteria such as color and color tones (attributes of heights), topography (shaded DEM and 3D fly-through model) and stream drainage patterns were employed to acquire geo-information about the land, such as hydrologic, geomorphologic, topographic and tectonic structures. In this study, the SRTM DEM data of the study region were experimentally used for both DEM classification and quantitative analysis of the digital terrain model. The results of the DEM classification are: (1) low plain including the plains of Bor and Altunhisar (20.7%); (2) high plain including the Misli (Konakli) plain (28.8%); (3) plateau plain including the Melendiz (Ciftlik) plateau plain (1.0%); (4) mountain including the Nigde massif (33.3%); and (5) high mountain (16.2%). High mountain areas include a caldera complex of Mt Melendiz, Mt Hasan and Mt Pozanti apart from the Ala mountains called Aladaglar and the Bolkar mountains called Bolkarlar in the study region (7,312 km2). Analysis of both the stream drainage patterns and the lineaments revealed that the Nigde province has a valley zone called Karasu valley zone (KVZ) or Nigde valley zone (NVZ), where settlements and agricultural plains, particularly the Bor plain in addition to settlements of the Bor town and the central city of Nigde have the most flooding risk when a heavy raining occurs. The study revealed that the NVZ diagonally divides the study region roughly into two equal parts, heading from northeast to southwest. According to the map created in this study, the right side of the NVZ has more mountainous area, where the Aladaglar is a wildlife national park consisting of many species of fauna and flora whereas the left side of the NVZ has more agricultural plain, with exception of a caldera complex of Mt Melendiz and volcanic Mt Hasan. The south of the study region includes the Bolkarlar. In addition, the Ecemis fault zone (EFZ) lying along the Ecemis rivulet, running from north to south at the west side of the Aladaglar, forms the most important and sensitive location in the region in terms of the tectonics.

  17. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would thereforemore » be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a laser altimetry remote sensing method, obtained from the USDA Forest Service at Savannah River Site. The specific DEM resolutions were chosen because they are common grid cell sizes (10m, 30m, and 50m) used in mapping for management applications and in research. The finer resolutions (2m and 5m) were chosen for the purpose of determining how finer resolutions performed compared with coarser resolutions at predicting wetness and related soil attributes. The wetness indices were compared across DEMs and with each other in terms of quantile and distribution differences, then in terms of how well they each correlated with measured soil attributes. Spatial and non-spatial analyses were performed, and predictions using regression and geostatistics were examined for efficacy relative to each DEM resolution. Trends in the raw data and analysis results were also revealed.« less

  18. A terrain-based paired-site sampling design to assess biodiversity losses from eastern hemlock decline

    USGS Publications Warehouse

    Young, J.A.; Smith, D.R.; Snyder, C.D.; Lemarie, D.P.

    2002-01-01

    Biodiversity surveys are often hampered by the inability to control extraneous sources of variability introduced into comparisons of populations across a heterogenous landscape. If not specifically accounted for a priori, this noise can weaken comparisons between sites, and can make it difficult to draw inferences about specific ecological processes. We developed a terrain-based, paired-site sampling design to analyze differences in aquatic biodiversity between streams draining eastern hemlock (Tsuga canadensis) forests, and those draining mixed hardwood forests in Delaware Water Gap National Recreation Area (USA). The goal of this design was to minimize variance due to terrain influences on stream communities, while representing the range of hemlock dominated stream environments present in the park. We used geographic information systems (GIS) and cluster analysis to define and partition hemlock dominated streams into terrain types based on topographic variables and stream order. We computed similarity of forest stands within terrain types and used this information to pair hemlock-dominated streams with hardwood counterparts prior to sampling. We evaluated the effectiveness of the design through power analysis and found that power to detect differences in aquatic invertebrate taxa richness was highest when sites were paired and terrain type was included as a factor in the analysis. Precision of the estimated difference in mean richness was nearly doubled using the terrain-based, paired site design in comparison to other evaluated designs. Use of this method allowed us to sample stream communities representative of park-wide forest conditions while effectively controlling for landscape variability.

  19. Mountainous terrain and violent conflict in the post-Soviet Caucasus.

    NASA Astrophysics Data System (ADS)

    Witmer, F. D. W.; Linke, A. M.; Holland, E.; O'Loughlin, J.

    2015-12-01

    What are the connections between mountainous terrain and violent conflict in the post-Soviet Caucasus? Political science and international relations research often use simplistic metrics to characterize terrain and its relation to conflict. We examine linkages between environmental conditions and conflict using fine-resolution spatially disaggregated data for violent events occurring in five wars in the broader Caucasus region: between the Russian state and separatists in Chechnya and the neighboring republics (1999-2002); the Russian state and Islamists in the North Caucasus (2002-2015); between Armenians and Azerbaijanis in Nagorno-Karabakh (1990-2015); and between Georgia and separatists in South Ossetia (1991-2008) and Abkhazia (1992-2008). For environmental conditions, we consider land use, elevation, and slope to identify profiles of violence intensity within each of the five cases. Data include forest cover derived from Landsat imagery, slope data calculated from a digital elevation model, and land cover derived from MODIS imagery. The Landsat imagery provide consistent 30 meter information on percent forest cover across the multiple study regions. We use GIS (buffers around conflict points) to create categorical summary statistics. The "operational costs of context" vary dramatically across regions within the study area and by the actor who initiates subsets of violent events. Our empirical focus is on Russia's south and the neighboring countries of the South Caucasus but we leverage comparisons between the five wars to generalize outward to other world regions and to contribute to research on conflict propensity in regions of rugged and mountainous terrain.

  20. Arid land monitoring using Landsat albedo difference images

    USGS Publications Warehouse

    Robinove, Charles J.; Chavez, Pat S.; Gehring, Dale G.; Holmgren, Ralph

    1981-01-01

    The Landsat albedo, or percentage of incoming radiation reflected from the ground in the wavelength range of 0.5 [mu]m to 1.1 [mu]m, is calculated from an equation using the Landsat digital brightness values and solar irradiance values, and correcting for atmospheric scattering, multispectral scanner calibration, and sun angle. The albedo calculated for each pixel is used to create an albedo image, whose grey scale is proportional to the albedo. Differencing sequential registered images and mapping selected values of the difference is used to create quantitative maps of increased or decreased albedo values of the terrain. All maps and other output products are in black and white rather than color, thus making the method quite economical. Decreases of albedo in arid regions may indicate improvement of land quality; increases may indicate degradation. Tests of the albedo difference mapping method in the Desert Experimental Range in southwestern Utah (a cold desert with little long-term terrain change) for a four-year period show that mapped changes can be correlated with erosion from flash floods, increased or decreased soil moisture, and increases or decreases in the density of desert vegetation, both perennial shrubs and annual plants. All terrain changes identified in this test were related to variations in precipitation. Although further tests of this method in hot deserts showing severe "desertification" are needed, the method is nevertheless recommended for experimental use in monitoring terrain change in other arid and semiarid regions of the world.

  1. Automatic Rooftop Extraction in Stereo Imagery Using Distance and Building Shape Regularized Level Set Evolution

    NASA Astrophysics Data System (ADS)

    Tian, J.; Krauß, T.; d'Angelo, P.

    2017-05-01

    Automatic rooftop extraction is one of the most challenging problems in remote sensing image analysis. Classical 2D image processing techniques are expensive due to the high amount of features required to locate buildings. This problem can be avoided when 3D information is available. In this paper, we show how to fuse the spectral and height information of stereo imagery to achieve an efficient and robust rooftop extraction. In the first step, the digital terrain model (DTM) and in turn the normalized digital surface model (nDSM) is generated by using a newly step-edge approach. In the second step, the initial building locations and rooftop boundaries are derived by removing the low-level pixels and high-level pixels with higher probability to be trees and shadows. This boundary is then served as the initial level set function, which is further refined to fit the best possible boundaries through distance regularized level-set curve evolution. During the fitting procedure, the edge-based active contour model is adopted and implemented by using the edges indicators extracted from panchromatic image. The performance of the proposed approach is tested by using the WorldView-2 satellite data captured over Munich.

  2. Visual and Statistical Analysis of Digital Elevation Models Generated Using Idw Interpolator with Varying Powers

    NASA Astrophysics Data System (ADS)

    Asal, F. F.

    2012-07-01

    Digital elevation data obtained from different Engineering Surveying techniques is utilized in generating Digital Elevation Model (DEM), which is employed in many Engineering and Environmental applications. This data is usually in discrete point format making it necessary to utilize an interpolation approach for the creation of DEM. Quality assessment of the DEM is a vital issue controlling its use in different applications; however this assessment relies heavily on statistical methods with neglecting the visual methods. The research applies visual analysis investigation on DEMs generated using IDW interpolator of varying powers in order to examine their potential in the assessment of the effects of the variation of the IDW power on the quality of the DEMs. Real elevation data has been collected from field using total station instrument in a corrugated terrain. DEMs have been generated from the data at a unified cell size using IDW interpolator with power values ranging from one to ten. Visual analysis has been undertaken using 2D and 3D views of the DEM; in addition, statistical analysis has been performed for assessment of the validity of the visual techniques in doing such analysis. Visual analysis has shown that smoothing of the DEM decreases with the increase in the power value till the power of four; however, increasing the power more than four does not leave noticeable changes on 2D and 3D views of the DEM. The statistical analysis has supported these results where the value of the Standard Deviation (SD) of the DEM has increased with increasing the power. More specifically, changing the power from one to two has produced 36% of the total increase (the increase in SD due to changing the power from one to ten) in SD and changing to the powers of three and four has given 60% and 75% respectively. This refers to decrease in DEM smoothing with the increase in the power of the IDW. The study also has shown that applying visual methods supported by statistical analysis has proven good potential in the DEM quality assessment.

  3. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    NASA Astrophysics Data System (ADS)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  4. Machine processing of remotely sensed data - quantifying global process: Models, sensor systems, and analytical methods; Proceedings of the Eleventh International Symposium, Purdue University, West Lafayette, IN, June 25-27, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mengel, S.K.; Morrison, D.B.

    1985-01-01

    Consideration is given to global biogeochemical issues, image processing, remote sensing of tropical environments, global processes, geology, landcover hydrology, and ecosystems modeling. Topics discussed include multisensor remote sensing strategies, geographic information systems, radars, and agricultural remote sensing. Papers are presented on fast feature extraction; a computational approach for adjusting TM imagery terrain distortions; the segmentation of a textured image by a maximum likelihood classifier; analysis of MSS Landsat data; sun angle and background effects on spectral response of simulated forest canopies; an integrated approach for vegetation/landcover mapping with digital Landsat images; geological and geomorphological studies using an image processing technique;more » and wavelength intensity indices in relation to tree conditions and leaf-nutrient content.« less

  5. The moon in heiligenschein

    USGS Publications Warehouse

    Wildey, R.L.

    1978-01-01

    An analysis of 25 photometric digital images of the moon has been carried out to obtain a single image in a new mapping parameter, the Heiligenschein exponent. The data necessarily represent a range of lunar phases, but all are within 10 hours of full moon. The new parameter characterizes the rate at which lunar features brighten as their local phase angles approach zero. Although considerable contrast is present in this parameter, there is only a small correlation with normal albedo. In particular, the large albedo difference between maria and highlands is not simply reflected in Heiligenschein differences, which are larger within each category of terrain than the difference between the Heiligenschein averages of each. A correlation with age may be present in both the maria and the highlands, but its determination will require separation into distinct geochemical provinces. Copyright ?? 1978 AAAS.

  6. Wind turbine wake measurement in complex terrain

    NASA Astrophysics Data System (ADS)

    Hansen, KS; Larsen, GC; Menke, R.; Vasiljevic, N.; Angelou, N.; Feng, J.; Zhu, WJ; Vignaroli, A.; W, W. Liu; Xu, C.; Shen, WZ

    2016-09-01

    SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large downstream distances (more than 5 diameters) from the wake generating turbine, the wake changes according to local atmospheric conditions e.g. vertical wind speed. In very complex terrain the wake effects are often “overruled” by distortion effects due to the terrain complexity or topology.

  7. Modern Geodetic Measurement Techniques in Gravimetric Studies on the Example of Gypsum Karst in the Siesławice Region

    NASA Astrophysics Data System (ADS)

    Porzucek, Sławomir; Łój, Monika; Matwij, Karolina; Matwij, Wojciech

    2018-03-01

    In the region of Siesławice (near Busko-Zdrój, Poland) there are unique phenomena of gypsum karst. Atmospheric factors caused numerous gypsum outcrops, canals and underground voids. The article presents the possibility of using non-invasive gravimetric surveys supplemented with geodetic measurements to illustrate karst changes occurring around the void. The use of modern geodetic measurement techniques including terrestrial and airborne laser scanning enables to generate a digital terrain model and a three-dimensional model of voids. Gravimetric field studies allowed to map the anomalies of the gravitational field of the near-surface zone. Geodetic measurement results have made it possible to accurately determine the terrain correction that supplemented the gravimetric anomaly information. Geophysical interpretation indicate the presence of weathered rocks in the near surface zone and fractures and loosened zones located surround the karst cave.

  8. Terrain Adaptability Mechanism of Large Ruminants' Feet on the Kinematics View

    PubMed Central

    Zhang, Qun; Ding, Xilun; Xu, Kun

    2015-01-01

    Ruminants live in various parts of land. Similar cloven hooves assist ruminants in adapting to different ground environment during locomotion. This paper analyzes the general terrain adaptability of the feet of ruminants using kinematics of the equivalent mechanism model based on screw theory. Cloven hooves could adjust attitude by changing relative positions between two digits in swing phase. This function helps to choose better landing orientation. “Grasping” or “holding” a rock or other object on the ground passively provides extra adhesion force in stance phase. Ruminants could adjust the position of the metacarpophalangeal joint or metatarsophalangeal joint (MTP or MCP) with no relative motion between the tip of feet and the ground, which ensures the adhesion and dexterity in stance phase. These functions are derived from an example from chamois' feet and several assumptions, which are believed to demonstrate the foundation of adaptation of ruminants and ensure a stable and continuous movement. PMID:27019579

  9. The characteristics and use patterns of all-terrain vehicle drivers in the United States.

    PubMed

    Rodgers, G B

    1999-07-01

    The consent decrees between the US Consumer Product Safety Commission and the major distributors of all-terrain vehicles (ATV), which were designed to address ATV-related injuries and deaths, expired in April, 1998. While national estimates of nonfatal and fatal injuries involving ATVs declined after the consent decrees went into effect 10 years ago, the injury estimates have stabilized in recent years. To gain a better understanding of current ATV use patterns, the CPSC sponsored a national probability survey of ATV drivers in the fall of 1997. The survey was designed to collect information about the characteristics and use patterns of ATV drivers and to quantify the numbers and types of ATVs in use. It employed a single stage list-assisted random-digit-dial sample design. This article describes the results of the survey, and discusses long term ATV usage trends.

  10. Terrain Adaptability Mechanism of Large Ruminants' Feet on the Kinematics View.

    PubMed

    Zhang, Qun; Ding, Xilun; Xu, Kun

    2015-01-01

    Ruminants live in various parts of land. Similar cloven hooves assist ruminants in adapting to different ground environment during locomotion. This paper analyzes the general terrain adaptability of the feet of ruminants using kinematics of the equivalent mechanism model based on screw theory. Cloven hooves could adjust attitude by changing relative positions between two digits in swing phase. This function helps to choose better landing orientation. "Grasping" or "holding" a rock or other object on the ground passively provides extra adhesion force in stance phase. Ruminants could adjust the position of the metacarpophalangeal joint or metatarsophalangeal joint (MTP or MCP) with no relative motion between the tip of feet and the ground, which ensures the adhesion and dexterity in stance phase. These functions are derived from an example from chamois' feet and several assumptions, which are believed to demonstrate the foundation of adaptation of ruminants and ensure a stable and continuous movement.

  11. NASA Tech Briefs, June 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics covered include: iGlobe Interactive Visualization and Analysis of Spatial Data; Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer; Small Aircraft Data Distribution System; Earth Science Datacasting v2.0; Algorithm for Compressing Time-Series Data; Onboard Science and Applications Algorithm for Hyperspectral Data Reduction; Sampling Technique for Robust Odorant Detection Based on MIT RealNose Data; Security Data Warehouse Application; Integrated Laser Characterization, Data Acquisition, and Command and Control Test System; Radiation-Hard SpaceWire/Gigabit Ethernet-Compatible Transponder; Hardware Implementation of Lossless Adaptive Compression of Data From a Hyperspectral Imager; High-Voltage, Low-Power BNC Feedthrough Terminator; SpaceCube Mini; Dichroic Filter for Separating W-Band and Ka-Band; Active Mirror Predictive and Requirement Verification Software (AMP-ReVS); Navigation/Prop Software Suite; Personal Computer Transport Analysis Program; Pressure Ratio to Thermal Environments; Probabilistic Fatigue Damage Program (FATIG); ASCENT Program; JPL Genesis and Rapid Intensification Processes (GRIP) Portal; Data::Downloader; Fault Tolerance Middleware for a Multi-Core System; DspaceOgreTerrain 3D Terrain Visualization Tool; Trick Simulation Environment 07; Geometric Reasoning for Automated Planning; Water Detection Based on Color Variation; Single-Layer, All-Metal Patch Antenna Element with Wide Bandwidth; Scanning Laser Infrared Molecular Spectrometer (SLIMS); Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy; Detection of Carbon Monoxide Using Polymer-Composite Films with a Porphyrin-Functionalized Polypyrrole; Enhanced-Adhesion Multiwalled Carbon Nanotubes on Titanium Substrates for Stray Light Control; Three-Dimensional Porous Particles Composed of Curved, Two-Dimensional, Nano-Sized Layers for Li-Ion Batteries 23 Ultra-Lightweight; and Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structure Applications.

  12. Non-Destructive Survey of Archaeological Sites Using Airborne Laser Scanning and Geophysical Applications

    NASA Astrophysics Data System (ADS)

    Poloprutský, Z.; Cejpová, M.; Němcová, J.

    2016-06-01

    This paper deals with the non-destructive documentation of the "Radkov" (Svitavy district, Czech Republic) archaeological site. ALS, GPR and land survey mapping will be used for the analysis. The fortified hilltop settlement "Radkov" is an immovable historical monument with preserved relics of anthropogenic origin in relief. Terrain reconnaissance can identify several accentuated objects on site. ALS enables identification of poorly recognizable archaeological objects and their contexture in the field. Geophysical survey enables defunct objects identification. These objects are hidden below the current ground surface and their layout is crucial. Land survey mapping provides technical support for ALS and GPR survey. It enables data georeferencing in geodetic reference systems. GIS can then be used for data analysis. M. Cejpová and J. Němcová have studied this site over a long period of time. In 2012 Radkov was surveyed using ALS in the project "The Research of Ancient Road in Southwest Moravia and East Bohemia". Since 2015 the authors have been examining this site. This paper summarises the existing results of the work of these authors. The digital elevation model in the form of a grid (GDEM) with a resolution 1 m of 2012 was the basis for this work. In 2015 the survey net, terrain reconnaissance and GPR survey of two archaeological objects were done at the site. GDEM was compared with these datasets. All datasets were processed individually and its results were compared in ArcGIS. This work was supported by the Grant Agency of the CTU in Prague, grant No. SGS16/063/OHK1/1T/11.

  13. Landslides Identification Using Airborne Laser Scanning Data Derived Topographic Terrain Attributes and Support Vector Machine Classification

    NASA Astrophysics Data System (ADS)

    Pawłuszek, Kamila; Borkowski, Andrzej

    2016-06-01

    Since the availability of high-resolution Airborne Laser Scanning (ALS) data, substantial progress in geomorphological research, especially in landslide analysis, has been carried out. First and second order derivatives of Digital Terrain Model (DTM) have become a popular and powerful tool in landslide inventory mapping. Nevertheless, an automatic landslide mapping based on sophisticated classifiers including Support Vector Machine (SVM), Artificial Neural Network or Random Forests is often computationally time consuming. The objective of this research is to deeply explore topographic information provided by ALS data and overcome computational time limitation. For this reason, an extended set of topographic features and the Principal Component Analysis (PCA) were used to reduce redundant information. The proposed novel approach was tested on a susceptible area affected by more than 50 landslides located on Rożnów Lake in Carpathian Mountains, Poland. The initial seven PCA components with 90% of the total variability in the original topographic attributes were used for SVM classification. Comparing results with landslide inventory map, the average user's accuracy (UA), producer's accuracy (PA), and overall accuracy (OA) were calculated for two models according to the classification results. Thereby, for the PCA-feature-reduced model UA, PA, and OA were found to be 72%, 76%, and 72%, respectively. Similarly, UA, PA, and OA in the non-reduced original topographic model, was 74%, 77% and 74%, respectively. Using the initial seven PCA components instead of the twenty original topographic attributes does not significantly change identification accuracy but reduce computational time.

  14. Principles and techniques of polarimetric mapping.

    NASA Technical Reports Server (NTRS)

    Halajian, J.; Hallock, H.

    1973-01-01

    This paper introduces the concept and potential value of polarimetric maps and the techniques for generating these maps in operational remote sensing. The application-oriented polarimetric signature analyses in the literature are compiled, and several optical models are illustrated to bring out requirements of a sensor system for polarimetric mapping. By use of the concepts of Stokes parameters the descriptive specification of one sensor system is refined. The descriptive specification for a multichannel digital photometric-polarimetric mapper is based upon our experience with the present single channel device which includes the generation of polarimetric maps and pictures. High photometric accuracy and stability coupled with fast, accurate digital output has enabled us to overcome the handicap of taking sequential data from the same terrain.

  15. Determination of Shift/Bias in Digital Aerial Triangulation of UAV Imagery Sequences

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Damian

    2017-12-01

    Currently UAV Photogrammetry is characterized a largely automated and efficient data processing. Depicting from the low altitude more often gains on the meaning in the uses of applications as: cities mapping, corridor mapping, road and pipeline inspections or mapping of large areas e.g. forests. Additionally, high-resolution video image (HD and bigger) is more often use for depicting from the low altitude from one side it lets deliver a lot of details and characteristics of ground surfaces features, and from the other side is presenting new challenges in the data processing. Therefore, determination of elements of external orientation plays a substantial role the detail of Digital Terrain Models and artefact-free ortophoto generation. Parallel a research on the quality of acquired images from UAV and above the quality of products e.g. orthophotos are conducted. Despite so fast development UAV photogrammetry still exists the necessity of accomplishment Automatic Aerial Triangulation (AAT) on the basis of the observations GPS/INS and via ground control points. During low altitude photogrammetric flight, the approximate elements of external orientation registered by UAV are burdened with the influence of some shift/bias errors. In this article, methods of determination shift/bias error are presented. In the process of the digital aerial triangulation two solutions are applied. In the first method shift/bias error was determined together with the drift/bias error, elements of external orientation and coordinates of ground control points. In the second method shift/bias error was determined together with the elements of external orientation, coordinates of ground control points and drift/bias error equals 0. When two methods were compared the difference for shift/bias error is more than ±0.01 m for all terrain coordinates XYZ.

  16. Some Aspects in Photogrammetry Education at the Department of Geodesy and Cadastre of the VGTU

    NASA Astrophysics Data System (ADS)

    Ruzgienė, Birutė

    2008-03-01

    The education in photogrammetry is very important when applying photogrammetric methods for the terrain mapping purposes, for spatial data modelling, solving engineering tasks, measuring of architectural monuments etc. During the time the traditional photogrammetric technologies have been changing to modern fully digital photogrammetric workflow. The number of potential users of the photogrammetric methods tends to increase, because of high-degree automation in photographs (images) processing. The main subjects in Photogrammetry (particularly in Digital Photogrammetry) educational process are discussed. Different methods and digital systems are demonstrated with the examples of aerial photogrammetry products. The main objective is to search the possibilities for training in the photogrammetric measurements. Special attention is paid to the stereo plotting from aerial photography applying modified for teaching analytical technology. The integration of functionality of Digital Photogrammetric Systems and Digital Image Processing is analysed as well with an intention of extending the application areas and possibilities for usage of modern technologies in urban mapping and land cadastre. The practical presentation of photos geometry restitution is implemented as significant part of the studies. The interactive teaching for main photogrammetric procedures and controlling systems are highly desirable that without any doubt improve the quality of educational process.

  17. SRTM 3" comparison with local information: Two examples at national level in Peru

    NASA Astrophysics Data System (ADS)

    Plasencia Sánchez, Edson; Fernandez de Villarán, Ruben

    2012-06-01

    The access to the high resolution digital terrain models (DEM) generated from the data collected by the Shuttle Radar Topography Mission (SRTM) of NASA is freely available to the public. Consequently it has become a source of topographic information which is of great value to scientists involved in geophysical or geodetic analysis. Despite the efforts of the Consultative Group on International Agricultural Research (CGIAR), to validate and complement the information contained in these DEMs (currently offered as version 4.1), they still need to be checked for their accuracy in certain regions of the planet. In this paper, the vertical accuracy of the SRTM 3" version 4.1 DEM was analyzed in several areas of Peru using two sets of control points: the height of the district capitals (the minor politics units) and the heights of the weather and hydrological stations from the National Meteorology and Hydrology Service (SENAMHI) of Peru. The comparison shows that the height differences are independent of the altitude, latitude and longitude of the evaluated points. They are rather related to the aspect of the terrain and to the way the SRTM data were acquired. It shows that the mean square of the height differences at national level was ±20 m for district capitals and ±25 m for the SENAMHI stations. This is slightly larger than the overall accuracy of the SRTM ±16 m.

  18. UAV-based mapping, back analysis and trajectory modeling of a coseismic rockfall in Lefkada island, Greece

    NASA Astrophysics Data System (ADS)

    Saroglou, Charalampos; Asteriou, Pavlos; Zekkos, Dimitrios; Tsiambaos, George; Clark, Marin; Manousakis, John

    2018-01-01

    We present field evidence and a kinematic study of a rock block mobilized in the Ponti area by a Mw = 6.5 earthquake near the island of Lefkada on 17 November 2015. A detailed survey was conducted using an unmanned aerial vehicle (UAV) with an ultrahigh definition (UHD) camera, which produced a high-resolution orthophoto and a digital terrain model (DTM). The sequence of impact marks from the rock trajectory on the ground surface was identified from the orthophoto and field verified. Earthquake characteristics were used to estimate the acceleration of the rock slope and the initial condition of the detached block. Using the impact points from the measured rockfall trajectory, an analytical reconstruction of the trajectory was undertaken, which led to insights on the coefficients of restitution (CORs). The measured trajectory was compared with modeled rockfall trajectories using recommended parameters. However, the actual trajectory could not be accurately predicted, revealing limitations of existing rockfall analysis software used in engineering practice.

  19. Image processing developments and applications for water quality monitoring and trophic state determination

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.

    1982-01-01

    Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.

  20. Complex geomorphologic assemblage of terrains in association with the banded terrain in Hellas basin, Mars

    NASA Astrophysics Data System (ADS)

    Diot, X.; El-Maarry, M. R.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Grindrod, P. M.; Chojnacki, M.

    2016-02-01

    Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called ;banded terrain;, which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of the evolution of the deepest part of Hellas.

  1. Analysis of ArcticDEM orthorectification for polar navigational traverses

    NASA Astrophysics Data System (ADS)

    Menio, E. C.; Deeb, E. J.; Weale, J.; Courville, Z.; Tracy, B.; Cloutier, M. D.; Cothren, J. D.; Liu, J.

    2017-12-01

    The availability and accessibility of high-resolution satellite imagery allows operational support teams to visually assess physical risks along traverse routes before and during the field season. In support of operations along the Greenland Inland Traverse (GrIT), DigitalGlobe's WorldView 0.5m resolution panchromatic imagery is analyzed to identify and digitize crevasse features along the route from Thule Air Force Base to Summit Station, Greenland. In the spring of 2016, field teams reported up to 150 meters of offset between the location of crevasse features on the ground and the location of the same feature on the imagery provided. Investigation into this issue identified the need to orthorectify imagery—use digital elevation models (DEMs) to correct viewing geometry distortions—to improve navigational accuracy in the field. It was previously thought that orthorectification was not necessary for applications in relatively flat terrain such as ice sheets. However, the surface elevations on the margins of the Greenland Ice Sheet vary enough to cause distortions in imagery, if taken obliquely. As is standard for requests, the Polar Geospatial Center (PGC) provides orthorectified imagery using the MEaSUREs Greenland Ice Mapping Project (GIMP) 30m digital elevation model. Current, higher-resolution elevation datasets, such as the ArcticDEM (2-5m resolution) and WorldView stereopair DEMs (2-3m resolution), are available for use in orthorectification. This study examines three heavily crevassed areas along the GrIT traverse, as identified in 2015 and 2016 imagery. We extracted elevation profiles along the GrIT route from each of the three DEMs: GIMP, ArcticDEM, and WorldView stereopair mosaic. Results show the courser GIMP data deviating significantly from the ArcticDEM and WorldView data, at points by up to 80m, which is seen as offset of features in plan view. In-situ Ground Penetrating Radar (GPR) surveys of crevasse crossings allow for evaluation of geopositional accuracy of each resulting orthorectified photo and a quantitative analysis of plan view offset.

  2. Automatic 3D relief acquisition and georeferencing of road sides by low-cost on-motion SfM

    NASA Astrophysics Data System (ADS)

    Voumard, Jérémie; Bornemann, Perrick; Malet, Jean-Philippe; Derron, Marc-Henri; Jaboyedoff, Michel

    2017-04-01

    3D terrain relief acquisition is important for a large part of geosciences. Several methods have been developed to digitize terrains, such as total station, LiDAR, GNSS or photogrammetry. To digitize road (or rail tracks) sides on long sections, mobile spatial imaging system or UAV are commonly used. In this project, we compare a still fairly new method -the SfM on-motion technics- with some traditional technics of terrain digitizing (terrestrial laser scanning, traditional SfM, UAS imaging solutions, GNSS surveying systems and total stations). The SfM on-motion technics generates 3D spatial data by photogrammetric processing of images taken from a moving vehicle. Our mobile system consists of six action cameras placed on a vehicle. Four fisheye cameras mounted on a mast on the vehicle roof are placed at 3.2 meters above the ground. Three of them have a GNNS chip providing geotagged images. Two pictures were acquired every second by each camera. 4K resolution fisheye videos were also used to extract 8.3M not geotagged pictures. All these pictures are then processed with the Agisoft PhotoScan Professional software. Results from the SfM on-motion technics are compared with results from classical SfM photogrammetry on a 500 meters long alpine track. They were also compared with mobile laser scanning data on the same road section. First results seem to indicate that slope structures are well observable up to decimetric accuracy. For the georeferencing, the planimetric (XY) accuracy of few meters is much better than the altimetric (Z) accuracy. There is indeed a Z coordinate shift of few tens of meters between GoPro cameras and Garmin camera. This makes necessary to give a greater freedom to altimetric coordinates in the processing software. Benefits of this low-cost SfM on-motion method are: 1) a simple setup to use in the field (easy to switch between vehicle types as car, train, bike, etc.), 2) a low cost and 3) an automatic georeferencing of 3D points clouds. Main disadvantages are: 1) results are less accurate than those from LiDAR system, 2) a heavy images processing and 3) a short distance of acquisition.

  3. Evaluation of Cartosat-1 Multi-Scale Digital Surface Modelling Over France

    PubMed Central

    Gianinetto, Marco

    2009-01-01

    On 5 May 2005, the Indian Space Research Organization launched Cartosat-1, the eleventh satellite of its constellation, dedicated to the stereo viewing of the Earth's surface for terrain modeling and large-scale mapping, from the Satish Dhawan Space Centre (India). In early 2006, the Indian Space Research Organization started the Cartosat-1 Scientific Assessment Programme, jointly established with the International Society for Photogrammetry and Remote Sensing. Within this framework, this study evaluated the capabilities of digital surface modeling from Cartosat-1 stereo data for the French test sites of Mausanne les Alpilles and Salon de Provence. The investigation pointed out that for hilly territories it is possible to produce high-resolution digital surface models with a root mean square error less than 7.1 m and a linear error at 90% confidence level less than 9.5 m. The accuracy of the generated digital surface models also fulfilled the requirements of the French Reference 3D®, so Cartosat-1 data may be used to produce or update such kinds of products. PMID:22412311

  4. Tension zones of deep-seated rockslides revealed by thermal anomalies and airborne laser scan data

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Bečkovský, David; Gajdošík, Juraj; Opálka, Filip; Plan, Lukas; Winkler, Gerhard

    2015-04-01

    Open cracks, tension fractures and crevice caves are important diagnostic features of gravitationally deformed slopes. When the cracks on the upper part of the slope open to the ground surface, they transfer relatively warm and buoyant air from the underground in cold seasons and thus could be detected by the infrared thermography (IRT) as warmer anomalies. Here we present two IRT surveys of deep-seated rockslides in Austria and the Czech Republic. We used thermal imaging cameras Flir and Optris, manipulated manually from the ground surface and also from unmanned aerial vehicle and piloted ultralight-plane platforms. The surveys were conducted during cold days of winter 2014/2015 and early in the morning to avoid the negative effect of direct sunshine. The first study site is the Bad Fischau rockslide in the southern part of the Vienna Basin (Austria). It was firstly identified by the morphostructural analysis of 1-m digital terrain model from the airborne laser scan data. The rockslide is superimposed on, and closely related to the active marginal faults of the Vienna basin, which is a pull apart structure. There is the 80-m-deep Eisenstein Show Cave situated in the southern lateral margin of the rockslide. The cave was originally considered to be purely of hydrothermal (hypogene) karstification; however its specific morphology and position within the detachment zone of the rockslide suggests its relation to gravitational slope-failure. The IRT survey revealed the Eisenstein Cave at the ground surface and also several other open cracks and possible cleft caves along the margins, headscarp, and also within the body of the rockslide. The second surveyed site was the Kněhyně rockslide in the flysch belt of the Outer Western Carpathians in the eastern Czech Republic. This deep-seated translational rockslide formed about eight known pseudokarst crevice caves, which reach up to 57 m in depth. The IRT survey recognized several warm anomalies indicating very deep deformation of the slope. When compared to digital terain model, some of these thermal anomalies suggest large unexplored crack systems deep in the rock-slope failure. As a conclusion we notice that especially when compared to topographic structures visualized on high accuracy digital terrain models, detecting the thermal anomalies could significantly contribute to understanding the subsurface occurrence of the tension fractures and voids within deep-seated rockslide bodies.

  5. Fusion of UAV photogrammetry and digital optical granulometry for detection of structural changes in floodplains

    NASA Astrophysics Data System (ADS)

    Langhammer, Jakub; Lendzioch, Theodora; Mirijovsky, Jakub

    2016-04-01

    Granulometric analysis represents a traditional, important and for the description of sedimentary material substantial method with various applications in sedimentology, hydrology and geomorphology. However, the conventional granulometric field survey methods are time consuming, laborious, costly and are invasive to the surface being sampled, which can be limiting factor for their applicability in protected areas.. The optical granulometry has recently emerged as an image analysis technique, enabling non-invasive survey, employing semi-automated identification of clasts from calibrated digital imagery, taken on site by conventional high resolution digital camera and calibrated frame. The image processing allows detection and measurement of mixed size natural grains, their sorting and quantitative analysis using standard granulometric approaches. Despite known limitations, the technique today presents reliable tool, significantly easing and speeding the field survey in fluvial geomorphology. However, the nature of such survey has still limitations in spatial coverage of the sites and applicability in research at multitemporal scale. In our study, we are presenting novel approach, based on fusion of two image analysis techniques - optical granulometry and UAV-based photogrammetry, allowing to bridge the gap between the needs of high resolution structural information for granulometric analysis and spatially accurate and data coverage. We have developed and tested a workflow that, using UAV imaging platform enabling to deliver seamless, high resolution and spatially accurate imagery of the study site from which can be derived the granulometric properties of the sedimentary material. We have set up a workflow modeling chain, providing (i) the optimum flight parameters for UAV imagery to balance the two key divergent requirements - imagery resolution and seamless spatial coverage, (ii) the workflow for the processing of UAV acquired imagery by means of the optical granulometry and (iii) the workflow for analysis of spatial distribution and temporal changes of granulometric properties across the point bar. The proposed technique was tested on a case study of an active point bar of mid-latitude mountain stream at Sumava mountains, Czech Republic, exposed to repeated flooding. The UAV photogrammetry was used to acquire very high resolution imagery to build high-precision digital terrain models and orthoimage. The orthoimage was then analyzed using the digital optical granulometric tool BaseGrain. This approach allowed us (i) to analyze the spatial distribution of the grain size in a seamless transects over an active point bar and (ii) to assess the multitemporal changes of granulometric properties of the point bar material resulting from flooding. The tested framework prove the applicability of the proposed method for granulometric analysis with accuracy comparable with field optical granulometry. The seamless nature of the data enables to study spatial distribution of granulometric properties across the study sites as well as the analysis of multitemporal changes, resulting from repeated imaging.

  6. The propagation of varied timescale perturbations in landscapes

    NASA Astrophysics Data System (ADS)

    Bingham, N.; Johnson, K. N.; Bookhagen, B.; Chadwick, O.

    2016-12-01

    The classic assumption of steady-state landscapes greatly simplifies models of earth-surface processes. Theoretically, steady-state denotes time independence, but in real landscapes steady-state requires a timescale over which to assume (or document) no change. In the past, poor spatiotemporal resolution of eroding landscapes necessitated that shorter timescale perturbations be ignored in favor of regional formulations of rock uplift = erosion, 105, 6 years. Now, novel techniques and technologies provide an opportunity to define local landscape response to various timescales of perturbations; thus, allowing us to consider multiple steady-states on adjacent watersheds or even along a single watershed. This study seeks to identify the physical propagation of varied timescale perturbations in landscapes in order to provide an updated geomorphic context for interpreting critical zone processes. At our study site - Santa Cruz Island (SCI), CA - perturbations include sea level and climate fluctuations over 105 years coupled with pulses of overgrazing and extreme storm events during the last 200 years. Comprehensive knickpoint location maps and dated marine and fill terraces tighten the spatiotemporal constraints on erosion for SCI. In addition, the island hosts a wide range of lithologies, allowing us to compare lithologic effects on landscape response to perturbations. Our study uses lidar point clouds and high resolution (0.25 and 1 m) digital elevation model analysis to segment landscapes by the degree of their response to perturbations. Landscape response is measured by increases in topographic roughness. We ascertain roughness by analyzing the changes in different terrain attributes on multiple spatial scales: catchment, sub-catchments and individual hillslopes. Terrain attributes utilized include slope, curvature, local relief, flowpath length and contributing catchment area. Statistical analysis of these properties indicates narrower ranges in values for regions of relative stability compared to unstable areas. This updated assessment of landscape response leads to a more detailed and nuanced definition of steady-state across landscapes, enabling a finer resolution of process understanding with the critical zone. The classic assumption of steady-state landscapes greatly simplifies models of earth-surface processes. Theoretically, steady-state denotes time independence, but in real landscapes steady-state requires a timescale over which to assume (or document) no change. In the past, poor spatiotemporal resolution of eroding landscapes necessitated that shorter timescale perturbations be ignored in favor of regional formulations of rock uplift = erosion, 105, 6 years. Now, novel techniques and technologies provide an opportunity to define local landscape response to various timescales of perturbations; thus, allowing us to consider multiple steady-states on adjacent watersheds or even along a single watershed. This study seeks to identify the physical propagation of varied timescale perturbations in landscapes in order to provide an updated geomorphic context for interpreting critical zone processes. At our study site - Santa Cruz Island (SCI), CA - perturbations include sea level and climate fluctuations over 105 years coupled with pulses of overgrazing and extreme storm events during the last 200 years. Comprehensive knickpoint location maps and dated marine and fill terraces tighten the spatiotemporal constraints on erosion for SCI. In addition, the island hosts a wide range of lithologies, allowing us to compare lithologic effects on landscape response to perturbations. Our study uses lidar point clouds and high resolution (0.25 and 1 m) digital elevation model analysis to segment landscapes by the degree of their response to perturbations. Landscape response is measured by increases in topographic roughness. We ascertain roughness by analyzing the changes in different terrain attributes on multiple spatial scales: catchment, sub-catchments and individual hillslopes. Terrain attributes utilized include slope, curvature, local relief, flowpath length and contributing catchment area. Statistical analysis of these properties indicates narrower ranges in values for regions of relative stability compared to unstable areas. This updated assessment of landscape response leads to a more detailed and nuanced definition of steady-state across landscapes, enabling a finer resolution of process understanding with the critical zone.

  7. Map and map database of susceptibility to slope failure by sliding and earthflow in the Oakland area, California

    USGS Publications Warehouse

    Pike, R.J.; Graymer, R.W.; Roberts, Sebastian; Kalman, N.B.; Sobieszczyk, Steven

    2001-01-01

    Map data that predict the varying likelihood of landsliding can help public agencies make informed decisions on land use and zoning. This map, prepared in a geographic information system from a statistical model, estimates the relative likelihood of local slopes to fail by two processes common to an area of diverse geology, terrain, and land use centered on metropolitan Oakland. The model combines the following spatial data: (1) 120 bedrock and surficial geologic-map units, (2) ground slope calculated from a 30-m digital elevation model, (3) an inventory of 6,714 old landslide deposits (not distinguished by age or type of movement and excluding debris flows), and (4) the locations of 1,192 post-1970 landslides that damaged the built environment. The resulting index of likelihood, or susceptibility, plotted as a 1:50,000-scale map, is computed as a continuous variable over a large area (872 km2) at a comparatively fine (30 m) resolution. This new model complements landslide inventories by estimating susceptibility between existing landslide deposits, and improves upon prior susceptibility maps by quantifying the degree of susceptibility within those deposits. Susceptibility is defined for each geologic-map unit as the spatial frequency (areal percentage) of terrain occupied by old landslide deposits, adjusted locally by steepness of the topography. Susceptibility of terrain between the old landslide deposits is read directly from a slope histogram for each geologic-map unit, as the percentage (0.00 to 0.90) of 30-m cells in each one-degree slope interval that coincides with the deposits. Susceptibility within landslide deposits (0.00 to 1.33) is this same percentage raised by a multiplier (1.33) derived from the comparative frequency of recent failures within and outside the old deposits. Positive results from two evaluations of the model encourage its extension to the 10-county San Francisco Bay region and elsewhere. A similar map could be prepared for any area where the three basic constituents, a geologic map, a landslide inventory, and a slope map, are available in digital form. Added predictive power of the new susceptibility model may reside in attributes that remain to be explored?among them seismic shaking, distance to nearest road, and terrain elevation, aspect, relief, and curvature.

  8. Lunar terrain mapping and relative-roughness analysis

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Mccauley, J. F.; Holm, E. A.

    1971-01-01

    Terrain maps of the equatorial zone were prepared at scales of 1:2,000,000 and 1:1,000,000 to classify lunar terrain with respect to roughness and to provide a basis for selecting sites for Surveyor and Apollo landings, as well as for Ranger and Lunar Orbiter photographs. Lunar terrain was described by qualitative and quantitative methods and divided into four fundamental classes: maria, terrae, craters, and linear features. Some 35 subdivisions were defined and mapped throughout the equatorial zone, and, in addition, most of the map units were illustrated by photographs. The terrain types were analyzed quantitatively to characterize and order their relative roughness characteristics. For some morphologically homogeneous mare areas, relative roughness can be extrapolated to the large scales from measurements at small scales.

  9. Proceedings of the Digital/Electronic Terrain Board Symposium Held in Wichita, Kansas on 5-6 October 1989

    DTIC Science & Technology

    1990-02-01

    Representative is Mr. H. C. Race, AMC Smart Weapons Management Office, ATTN: AMSMI-SW, Redstone Arsenal, Alabama 35898- 5222. Reproduction. Permission to...reproduce any material contained in this document must be requested and approved in writing by the AMC Smart Weapons Management Office, AMSMI-SW, Redstone...elevation points, necessitating a large geometric data base that requires heavy computation loads for rendering. The second innovative technique is the

  10. High-Resolution Topography of Mercury from Messenger Orbital Stereo Imaging - the Southern Hemisphere Quadrangles

    NASA Astrophysics Data System (ADS)

    Preusker, F.; Oberst, J.; Stark, A.; Burmeister, S.

    2018-04-01

    We produce high-resolution (222 m/grid element) Digital Terrain Models (DTMs) for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.

  11. The Characterization of a DIRSIG Simulation Environment to Support the Inter-Calibration of Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Ambeau, Brittany L.; Gerace, Aaron D.; Montanaro, Matthew; McCorkel, Joel

    2016-01-01

    Climate change studies require long-term, continuous records that extend beyond the lifetime, and the temporal resolution, of a single remote sensing satellite sensor. The inter-calibration of spaceborne sensors is therefore desired to provide spatially, spectrally, and temporally homogeneous datasets. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool is a first principle-based synthetic image generation model that has the potential to characterize the parameters that impact the accuracy of the inter-calibration of spaceborne sensors. To demonstrate the potential utility of the model, we compare the radiance observed in real image data to the radiance observed in simulated image from DIRSIG. In the present work, a synthetic landscape of the Algodones Sand Dunes System is created. The terrain is facetized using a 2-meter digital elevation model generated from NASA Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) imager. The material spectra are assigned using hyperspectral measurements of sand collected from the Algodones Sand Dunes System. Lastly, the bidirectional reflectance distribution function (BRDF) properties are assigned to the modeled terrain using the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product in conjunction with DIRSIG's Ross-Li capability. The results of this work indicate that DIRSIG is in good agreement with real image data. The potential sources of residual error are identified and the possibilities for future work are discussed..

  12. The characterization of a DIRSIG simulation environment to support the inter-calibration of spaceborne sensors

    NASA Astrophysics Data System (ADS)

    Ambeau, Brittany L.; Gerace, Aaron D.; Montanaro, Matthew; McCorkel, Joel

    2016-09-01

    Climate change studies require long-term, continuous records that extend beyond the lifetime, and the temporal resolution, of a single remote sensing satellite sensor. The inter-calibration of spaceborne sensors is therefore desired to provide spatially, spectrally, and temporally homogeneous datasets. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool is a first principle-based synthetic image generation model that has the potential to characterize the parameters that impact the accuracy of the inter-calibration of spaceborne sensors. To demonstrate the potential utility of the model, we compare the radiance observed in real image data to the radiance observed in simulated image from DIRSIG. In the present work, a synthetic landscape of the Algodones Sand Dunes System is created. The terrain is facetized using a 2-meter digital elevation model generated from NASA Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) imager. The material spectra are assigned using hyperspectral measurements of sand collected from the Algodones Sand Dunes System. Lastly, the bidirectional reflectance distribution function (BRDF) properties are assigned to the modeled terrain using the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product in conjunction with DIRSIG's Ross-Li capability. The results of this work indicate that DIRSIG is in good agreement with real image data. The potential sources of residual error are identified and the possibilities for future work are discussed.

  13. Use of high resolution Airborne Laser Scanning data for landslide interpretation under mixed forest and tropical rainforest: case study in Barcelonnette, France and Cameron Highlands, Malaysia

    NASA Astrophysics Data System (ADS)

    Azahari Razak, Khamarrul; Straatsma, Menno; van Westen, Cees; Malet, Jean-Philippe; de Jong, Steven M.

    2010-05-01

    Airborne Laser Scanning (ALS) is the state of the art technology for topographic mapping over a wide variety of spatial and temporal scales. It is also a promising technique for identification and mapping of landslides in a forested mountainous landscape. This technology demonstrates the ability to pass through the gaps between forest foliage and record the terrain height under vegetation cover. To date, most of the images either derived from satellite imagery, aerial-photograph or synthetic aperture radar are not appropriate for visual interpretation of landslide features that are covered by dense vegetation. However, it is a necessity to carefully map the landslides in order to understand its processes. This is essential for landslide hazard and risk assessment. This research demonstrates the capabilities of high resolution ALS data to recognize and identify different types of landslides in mixed forest in Barcelonnette, France and tropical rainforest in Cameron Highlands, Malaysia. ALS measurements over the 100-years old forest in Bois Noir catchment were carried out in 2007 and 2009. Both ALS dataset were captured using a Riegl laser scanner. First and last pulse with density of one point per meter square was derived from 2007 ALS dataset, whereas multiple return (of up to five returns) pulse was derived from July 2009 ALS dataset, which consists of 60 points per meter square over forested terrain. Generally, this catchment is highly affected by shallow landslides which mostly occur beneath dense vegetation. It is located in the dry intra-Alpine zone and represented by the climatic of the South French Alps. In the Cameron Highlands, first and last pulse data was captured in 2004 which covers an area of up to 300 kilometres square. Here, the Optech laser scanner was used under the Malaysian national pilot study which has slightly low point density. With precipitation intensity of up to 3000 mm per year over rugged topography and elevations up to 2800 m a.s.l., mapping the landslides under tropical rainforest which are highly vegetated and rapidly re-vegetated still remains a challenge. With the advancement of point clouds processing algorithm, high resolution Digital Terrain Models (DTMs) are becoming a very valuable data source for the production of landslide related maps. In this study, two filtering algorithms, which are based on least square interpolation and progressive TIN densification, are used to extract the bare earth surface. Quantitative and qualitative assessment that was carried out under ISPRS Working Group III/3 shown that those algorithms performed well in terms of discontinuity preservation, vegetation on the slope and high outlier influence in the point clouds. Hence, they are capable to extract ground points under difficult scenarios, especially for application under rugged forested terrain. The optimal terrain information has been exploited from ALS point clouds, particularly to preserve important landslide characteristics and to filter out unnecessary features. Morphological characteristics and geometric signatures of landslides are taken into consideration for the derivation of high-quality digital terrain model. Furthermore, ALS-derived DTMs are investigated at different spatial scales for suitable hillslopes morphology representation. Hence, appropriate 2D and 3D visualization methods are presented in such a way to help the image interpreters to detect landslides and classify them according to type, movement mechanism and activity status in forested mountainous terrain.

  14. Data Services in Support of High Performance Computing-Based Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Horsburgh, J. S.; Dash, P. K.; Gichamo, T.; Yildirim, A. A.; Jones, N.

    2014-12-01

    We have developed web-based data services to support the application of hydrologic models on High Performance Computing (HPC) systems. The purposes of these services are to provide hydrologic researchers, modelers, water managers, and users access to HPC resources without requiring them to become HPC experts and understanding the intrinsic complexities of the data services, so as to reduce the amount of time and effort spent in finding and organizing the data required to execute hydrologic models and data preprocessing tools on HPC systems. These services address some of the data challenges faced by hydrologic models that strive to take advantage of HPC. Needed data is often not in the form needed by such models, requiring researchers to spend time and effort on data preparation and preprocessing that inhibits or limits the application of these models. Another limitation is the difficult to use batch job control and queuing systems used by HPC systems. We have developed a REST-based gateway application programming interface (API) for authenticated access to HPC systems that abstracts away many of the details that are barriers to HPC use and enhances accessibility from desktop programming and scripting languages such as Python and R. We have used this gateway API to establish software services that support the delineation of watersheds to define a modeling domain, then extract terrain and land use information to automatically configure the inputs required for hydrologic models. These services support the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation and generation of hydrology-based terrain information such as wetness index and stream networks. These services also support the derivation of inputs for the Utah Energy Balance snowmelt model used to address questions such as how climate, land cover and land use change may affect snowmelt inputs to runoff generation. To enhance access to the time varying climate data used to drive hydrologic models, we have developed services to downscale and re-grid nationally available climate analysis data from systems such as NLDAS and MERRA. These cases serve as examples for how this approach can be extended to other models to enhance the use of HPC for hydrologic modeling.

  15. Terrain Analysis for Human-Robot Interaction (TAH-RI): Enabling Terrain Understanding to Improve Tactical Behavior

    DTIC Science & Technology

    2005-04-01

    determine terrain. (Howard, Seraji , & Tunstel 2001; Larson, Voyles, & Demir 2004) use inclinometers to determine the slope of the terrain. (Larson, Voyles...G .a............... jCurent Lonation Seht Currt Lons o in Workspace Weights N+FW Let j2 8 05 6608 + S SE Lon: 82 4225+’€;+"++ Fe ++et/Gride8 I5o04o𔃻s...o SShow Grld Lines i + iShow Cell Weights •+ iSS wArrows j Show Path fe .1 i Show Aerial Image li"’ .. . Run++ Trulla ........ j •:9 : 9 onltdm-82,e

  16. The Impact of Ensemble Kalman Filter Assimilation of Near-Surface Observations on the Predictability of Atmospheric Conditions over Complex Terrain: Results from Recent MATERHORN Field Program

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Zhang, H.

    2013-12-01

    Near-surface atmospheric observations are the main conventional observations for weather forecasts. However, in modern numerical weather prediction, the use of surface observations, especially those data over complex terrain, remains a unique challenge. There are fundamental difficulties in assimilating surface observations with three-dimensional variational data assimilation (3DVAR). In our early study[1] (Pu et al. 2013), a series of observing system simulation experiments was performed with the ensemble Kalman filter (EnKF) and compared with 3DVAR for its ability to assimilate surface observations with 3DVAR. Using the advanced research version of the Weather Research and Forecasting (WRF) model, results demonstrate that the EnKF can overcome some fundamental limitations that 3DVAR has in assimilating surface observations over complex terrain. Specifically, through its flow-dependent background error term, the EnKF produces more realistic analysis increments over complex terrain in general. Over complex terrain, the EnKF clearly performs better than 3DVAR, because it is more capable of handling surface data in the presence of terrain misrepresentation. With this presentation, we further examine the impact of EnKF data assimilation on the predictability of atmospheric conditions over complex terrain with the WRF model and the observations obtained from the most recent field experiments of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. The MATERHORN program provides comprehensive observations over mountainous regions, allowing the opportunity to study the predictability of atmospheric conditions over complex terrain in great details. Specifically, during fall 2012 and spring 2013, comprehensive observations were collected of soil states, surface energy budgets, near-surface atmospheric conditions, and profiling measurements from multiple platforms (e.g., balloon, lidar, radiosondes, etc.) over Dugway Proving Ground (DPG), Utah. With the near-surface observations and sounding data obtained during the MATERHORN fall 2012 field experiment, a month-long cycled EnKF analysis and forecast was produced with the WRF model and an advanced EnKF data assimilation system. Results are compared with the WRF near real-time forecasting during the same month and a set of analysis with 3DVAR data assimilation. Overall evaluation suggests some useful insights on the impacts of different data assimilation methods, surface and soil states, terrain representation on the predictability of atmospheric conditions over mountainous terrain. Details will be presented. References [1] Pu, Z., H. Zhang, and J. A. Anderson,. 'Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts.' Tellus A, vol. 65,19620. 2013. http://dx.doi.org/10.3402/tellusa.v65i0. 19620.

  17. Knowledge-based modelling of historical surfaces using lidar data

    NASA Astrophysics Data System (ADS)

    Höfler, Veit; Wessollek, Christine; Karrasch, Pierre

    2016-10-01

    Currently in archaeological studies digital elevation models are mainly used especially in terms of shaded reliefs for the prospection of archaeological sites. Hesse (2010) provides a supporting software tool for the determination of local relief models during the prospection using LiDAR scans. Furthermore the search for relicts from WW2 is also in the focus of his research. In James et al. (2006) the determined contour lines were used to reconstruct locations of archaeological artefacts such as buildings. This study is much more and presents an innovative workflow of determining historical high resolution terrain surfaces using recent high resolution terrain models and sedimentological expert knowledge. Based on archaeological field studies (Franconian Saale near Bad Neustadt in Germany) the sedimentological analyses shows that archaeological interesting horizon and geomorphological expert knowledge in combination with particle size analyses (Koehn, DIN ISO 11277) are useful components for reconstructing surfaces of the early Middle Ages. Furthermore the paper traces how it is possible to use additional information (extracted from a recent digital terrain model) to support the process of determination historical surfaces. Conceptual this research is based on methodology of geomorphometry and geo-statistics. The basic idea is that the working procedure is based on the different input data. One aims at tracking the quantitative data and the other aims at processing the qualitative data. Thus, the first quantitative data were available for further processing, which were later processed with the qualitative data to convert them to historical heights. In the final stage of the workflow all gathered information are stored in a large data matrix for spatial interpolation using the geostatistical method of Kriging. Besides the historical surface, the algorithm also provides a first estimation of accuracy of the modelling. The presented workflow is characterized by a high flexibility and the opportunity to include new available data in the process at any time.

  18. Observing Crop-Height Dynamics Using a UAV

    NASA Astrophysics Data System (ADS)

    Ziliani, M. G.; Parkes, S. D.; McCabe, M.

    2017-12-01

    Retrieval of vegetation height during a growing season is a key indicator for monitoring crop status, offering insight to the forecast yield relative to previous planting cycles. Improvement in Unmanned Aerial Vehicle (UAV) technologies, supported by advances in computer vision and photogrammetry software, has enabled retrieval of crop heights with much higher spatial resolution and coverage. These methodologies retrieve a Digital Surface Map (DSM), which combine terrain and crop elements to obtain a Crop Surface Map (CSM). Here we describe an automated method for deriving high resolution CSMs from a DSM, using RGB imagery from a UAV platform. Importantly, the approach does not require the need for a digital terrain map (DTM). The method involves distinguishing between vegetation and bare-ground cover pixels, using vegetation index maps from the RGB orthomosaic derived from the same flight as the DSM. We show that the absolute crop height can be extracted to within several centimeters, exploiting the data captured from a single UAV flight. In addition, the method is applied across five surveys during a maize growing cycle and compared against a terrain map constructed from a baseline UAV survey undertaken prior to crop growth. Results show that the approach is able to reproduce the observed spatial variability of the crop height within the maize field throughout the duration of the growing season. This is particularly valuable since it may be employed to detect intra-field problems (i.e. fertilizer variability, inefficiency in the irrigation system, salinity etc.) at different stages of the season, from which remedial action can be initiated to mitigate against yield loss. The method also demonstrates that UAV imagery combined with commercial photogrammetry software can determine a CSM from a single flight without the requirement of a prior DTM. This, together with the dynamic crop height estimation, provide useful information with which to inform precision agricultural management at the local scale.

  19. Project of the planetary terrain analogs research for technology development and education in geodesy and image processing.

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Gavrushin, Nikolay; Bataev, Mikhail; Kruzhkov, Maxim; Oberst, Juergen

    2013-04-01

    The MIIGAiK Extraterrestrial Laboratory (MExLab) is currently finalizing the development the robotic mobile science platform MExRover, designed for simulating rover activities on the surface of earth-type planets and satellites. In the project, we develop a hardware and software platform for full rover operation and telemetry processing from onboard instruments, as a means of training undergraduate and postgraduate students and young scientists working in the field of planetary exploration. 1. Introduction The main aim of the project is to provide the research base for image processing development and geodesy survey. Other focus is the development of research programs with participation of students and young scientists of the University, for digital terrain model creation for macro- and microrelief surveying. MExRover would be a bridge from the old soviet Lunokhod experience to the new research base for the future rover technology development support. 2. Rover design The design of the rover and its instrument suite allows acquiring images and navigation data satisfying the requirements for photogrammetric processing. The high-quality color panoramas as well as DTMs (Digital Terrain Models) will be produced aboard and could be used for the real-time track correction and environment analysis. A local operator may control the rover remotely from a distance up to 3 km and continuously monitor all systems. The MExRover has a modular design, which provides maximum flexibility for accomplishing different tasks with different sets of additional equipment weighing up to 15 kg. The framework can be easily disassembled and fit into 3 transport boxes, which allows transporting them on foot, by car, train or plane as a the ordinary luggage. The imaging system included in the present design comprises low resolution video cameras, high resolution stereo camera, microphone and IR camera. More instruments are planned to be installed later as auxiliary equipment, such as: spectrometer, odometer, solar radiation sensor, temperature sensor, wind sensor, magnetometer and radiation detector. The first version of the MExRover is operational and now is in testing process. We are open to proposals of mutual exploitation of MExRover platform for science, education and outreach purposes. 3. Specification Dimensions W×L×H 600×1000×400/1700 mm Maximum weight 60 kg Payload weight 20 kg Cruising range 3 km Mean velocity 1 km/h Acknowledgements This work is supported by the Ministry of Education and Science of the Russian Federation (MEGA-GRANT, Project name: "Geodesy, cartography and the study of planets and satellites", contract # 11.G34.31.0021 dd. 30.11.2010).

  20. Global multi-resolution terrain elevation data 2010 (GMTED2010)

    USGS Publications Warehouse

    Danielson, Jeffrey J.; Gesch, Dean B.

    2011-01-01

    In 1996, the U.S. Geological Survey (USGS) developed a global topographic elevation model designated as GTOPO30 at a horizontal resolution of 30 arc-seconds for the entire Earth. Because no single source of topographic information covered the entire land surface, GTOPO30 was derived from eight raster and vector sources that included a substantial amount of U.S. Defense Mapping Agency data. The quality of the elevation data in GTOPO30 varies widely; there are no spatially-referenced metadata, and the major topographic features such as ridgelines and valleys are not well represented. Despite its coarse resolution and limited attributes, GTOPO30 has been widely used for a variety of hydrological, climatological, and geomorphological applications as well as military applications, where a regional, continental, or global scale topographic model is required. These applications have ranged from delineating drainage networks and watersheds to using digital elevation data for the extraction of topographic structure and three-dimensional (3D) visualization exercises (Jenson and Domingue, 1988; Verdin and Greenlee, 1996; Lehner and others, 2008). Many of the fundamental geophysical processes active at the Earth's surface are controlled or strongly influenced by topography, thus the critical need for high-quality terrain data (Gesch, 1994). U.S. Department of Defense requirements for mission planning, geographic registration of remotely sensed imagery, terrain visualization, and map production are similarly dependent on global topographic data. Since the time GTOPO30 was completed, the availability of higher-quality elevation data over large geographic areas has improved markedly. New data sources include global Digital Terrain Elevation Data (DTEDRegistered) from the Shuttle Radar Topography Mission (SRTM), Canadian elevation data, and data from the Ice, Cloud, and land Elevation Satellite (ICESat). Given the widespread use of GTOPO30 and the equivalent 30-arc-second DTEDRegistered level 0, the USGS and the National Geospatial-Intelligence Agency (NGA) have collaborated to produce an enhanced replacement for GTOPO30, the Global Land One-km Base Elevation (GLOBE) model and other comparable 30-arc-second-resolution global models, using the best available data. The new model is called the Global Multi-resolution Terrain Elevation Data 2010, or GMTED2010 for short. This suite of products at three different resolutions (approximately 1,000, 500, and 250 meters) is designed to support many applications directly by providing users with generic products (for example, maximum, minimum, and median elevations) that have been derived directly from the raw input data that would not be available to the general user or would be very costly and time-consuming to produce for individual applications. The source of all the elevation data is captured in metadata for reference purposes. It is also hoped that as better data become available in the future, the GMTED2010 model will be updated.

  1. Impact of recent Global Digital Bathymetry and Topography Models on geoid modelling: Results from two case studies in Balearic and Aegean Seas

    NASA Astrophysics Data System (ADS)

    Delikaraoglou, D.; Mintourakis, I.; Kallianou, F.

    2009-04-01

    With the realization of the Shuttle Radar Topographic Mission (SRTM) and the free distribution of its global elevation dataset with 3 arcsec (90 m) resolution and less than 16 m vertical accuracy, together with the availability of the higher resolution (30 m) and accuracy (10 m) Digital Terrain Models (DTM) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), these two valuable sources of uniform DEM data represent a revolution in the world of terrain modelling. DEMs are an important source of data for the generation of high resolution geoids since they provide the high-frequency content of the gravity field spectrum and are suitable for the computation of terrain effects to gravity and indirect effects to the geoid, thus allowing the combination of global geopotential models, local gravity anomalies and information about the earth's topography (represented by a given DEM). However, although such models are available for land, there are no readily accessible Digital Bathymetry Models (DBMs) of equivalent quality for the coastal and oceanic regions. Most of the global DBM's (e.g. ETOPO1, SRTM30, and GEBCO global bathymetric grid) are compilations of heterogeneous data with medium resolution and accuracy. This prevents to exploit the potential of the recent high resolution (1 arcmin) marine free-air gravity anomalies datasets derived from satellite altimetry (such as the DNSC08, and the Sandwell & Smith v18.1 (S&Sv18.1) global solutions) in conjunction with such global DBM's. Fortunately, for some regions, recently have become available DBM's of much better accuracy and resolution, such as the DBM of 1 km resolution for many regions of the Mediterranean Sea which is distributed by IFREMER, the French Research Institute for Exploitation of the Sea. The scope of this study is to use this latest regional DBM in combination with the newly available DNSC08 and SSV18.1 global marine free-air gravity anomalies datasets for marine and near shore geoid modelling of archipelagic (island) areas. We have concentrated in two test regions: (a) the Catalano-Balearic Sea (South of Spain in the NW Meditteranean), where adequate marine and land gravity data allow a detailed evaluation of our processing methodologies and their results and, (b) the Aegean Sea where the presence of many islands in varying distances from the mainland Greece and located on the continental shelf and/or divided by steep sea floor topography present some unique challenges for any high resolution geoid modelling efforts. For both test regions, we generated a combined DEM (C-DEM) using the IFREMER and SRTM 30 arcsec bathymetric data for the sea areas and SRTM 3 arcsec data for the surrounding land areas. In this contribution, we discuss various computational aspects relating to the so-called "Direct Topographical Effect" (DTE) and the "Indirect Topographical Effect" (ITE), the two most significant topographical effects that have to be evaluated when a precise geoid is being compiled. In addition, we outline the evaluation and the impact of the results obtained, especially with regard to the differences in the geoid models when different elevation data are used, and point out the main limitations and possibilities for further improvements in the use of the aforementioned satellite and terrestrial data for regional and local geoid mapping in coastal and island regions. Keywords: IFREMER, SRTM, terrain effects, free-air gravity anomalies, geoid modelling,Digital Bathymetry Models.

  2. Mapping gullies, dunes, lava fields, and landslides via surface roughness

    NASA Astrophysics Data System (ADS)

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan

    2018-01-01

    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  3. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  4. Remote sensing evidence of lava-ground ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Marcucci, Emma C.; Hamilton, Christopher W.; Herrick, Robert R.

    2017-12-01

    Thermokarst terrains develop when ice-bearing permafrost melts and causes the overlying surface to subside or collapse. This process occurs widely throughout Arctic regions due to environmental and climatological factors, but can also be induced by localized melting of ground ice by active lava flows. The Lost Jim Lava Flow (LJLF) on the Seward Peninsula of Alaska provides evidence of former lava-ground ice interactions. Associated geomorphic features, on the scale of meters to tens of meters, were identified using satellite orthoimages and stereo-derived digital terrain models. The flow exhibits positive- and mixed-relief features, including tumuli ( N = 26) and shatter rings ( N = 4), as well as negative-relief features, such as lava tube skylights ( N = 100) and irregularly shaped topographic depressions ( N = 1188) that are interpreted to include lava-rise pits and lava-induced thermokarst terrain. Along the margins of the flow, there are also clusters of small peripheral pits that may be the products of meltwater or steam escape. On Mars, we observed morphologically similar pits near lava flow margins in northeastern Elysium Planitia, which suggests a common formation mechanism. Investigating the LJLF may therefore help to elucidate processes of lava-ground ice interaction on both Earth and Mars.

  5. Airborne Lidar-Based Estimates of Tropical Forest Structure in Complex Terrain: Opportunities and Trade-Offs for REDD+

    NASA Technical Reports Server (NTRS)

    Leitold, Veronika; Keller, Michael; Morton, Douglas C.; Cook, Bruce D.; Shimabukuro, Yosio E.

    2015-01-01

    Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. Results: We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (approx. 20 returns/sq m) data was highly accurate (mean signed error of 0.19 +/-0.97 m), while those derived from reduced-density datasets (8/sq m, 4/sq m, 2/sq m and 1/sq m) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4/sq m, the bias in height estimates translated into errors of 80-125 Mg/ha in predicted aboveground biomass. Conclusions: Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

  6. Synthetic Vision for Lunar and Planetary Landing Vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Steven P.; Arthur, Jarvis (Trey) J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Norman, R. Michael

    2008-01-01

    The Crew Vehicle Interface (CVI) group of the Integrated Intelligent Flight Deck Technologies (IIFDT) has done extensive research in the area of Synthetic Vision (SV), and has shown that SV technology can substantially enhance flight crew situation awareness, reduce pilot workload, promote flight path control precision and improve aviation safety. SV technology is being extended to evaluate its utility for lunar and planetary exploration vehicles. SV may hold significant potential for many lunar and planetary missions since the SV presentation provides a computer-generated view of the terrain and other significant environment characteristics independent of the outside visibility conditions, window locations, or vehicle attributes. SV allows unconstrained control of the computer-generated scene lighting, terrain coloring, and virtual camera angles which may provide invaluable visual cues to pilots/astronauts and in addition, important vehicle state information may be conformally displayed on the view such as forward and down velocities, altitude, and fuel remaining to enhance trajectory control and vehicle system status. This paper discusses preliminary SV concepts for tactical and strategic displays for a lunar landing vehicle. The technical challenges and potential solutions to SV applications for the lunar landing mission are explored, including the requirements for high resolution terrain lunar maps and an accurate position and orientation of the vehicle that is essential in providing lunar Synthetic Vision System (SVS) cockpit displays. The paper also discusses the technical challenge of creating an accurate synthetic terrain portrayal using an ellipsoid lunar digital elevation model which eliminates projection errors and can be efficiently rendered in real-time.

  7. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

    PubMed

    Leitold, Veronika; Keller, Michael; Morton, Douglas C; Cook, Bruce D; Shimabukuro, Yosio E

    2015-12-01

    Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (~20 returns m -2 ) data was highly accurate (mean signed error of 0.19 ± 0.97 m), while those derived from reduced-density datasets (8 m -2 , 4 m -2 , 2 m -2 and 1 m -2 ) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4 m -2 , the bias in height estimates translated into errors of 80-125 Mg ha -1 in predicted aboveground biomass. Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

  8. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis.

    PubMed

    Zaggia, Luca; Lorenzetti, Giuliano; Manfé, Giorgia; Scarpa, Gian Marco; Molinaroli, Emanuela; Parnell, Kevin Ellis; Rapaglia, John Paul; Gionta, Maria; Soomere, Tarmo

    2017-01-01

    An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3-4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968-2015 (1.19×106 m3). The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide.

  9. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis

    PubMed Central

    Lorenzetti, Giuliano; Manfé, Giorgia; Scarpa, Gian Marco; Molinaroli, Emanuela; Parnell, Kevin Ellis; Rapaglia, John Paul; Gionta, Maria; Soomere, Tarmo

    2017-01-01

    An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3˗4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968˗2015 (1.19×106 m3). The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide. PMID:29088244

  10. Impact of input data (in)accuracy on overestimation of visible area in digital viewshed models

    PubMed Central

    Klouček, Tomáš; Šímová, Petra

    2018-01-01

    Viewshed analysis is a GIS tool in standard use for more than two decades to perform numerous scientific and practical tasks. The reliability of the resulting viewshed model depends on the computational algorithm and the quality of the input digital surface model (DSM). Although many studies have dealt with improving viewshed algorithms, only a few studies have focused on the effect of the spatial accuracy of input data. Here, we compare simple binary viewshed models based on DSMs having varying levels of detail with viewshed models created using LiDAR DSM. The compared DSMs were calculated as the sums of digital terrain models (DTMs) and layers of forests and buildings with expertly assigned heights. Both elevation data and the visibility obstacle layers were prepared using digital vector maps differing in scale (1:5,000, 1:25,000, and 1:500,000) as well as using a combination of a LiDAR DTM with objects vectorized on an orthophotomap. All analyses were performed for 104 sample locations of 5 km2, covering areas from lowlands to mountains and including farmlands as well as afforested landscapes. We worked with two observer point heights, the first (1.8 m) simulating observation by a person standing on the ground and the second (80 m) as observation from high structures such as wind turbines, and with five estimates of forest heights (15, 20, 25, 30, and 35 m). At all height estimations, all of the vector-based DSMs used resulted in overestimations of visible areas considerably greater than those from the LiDAR DSM. In comparison to the effect from input data scale, the effect from object height estimation was shown to be secondary. PMID:29844982

  11. Impact of input data (in)accuracy on overestimation of visible area in digital viewshed models.

    PubMed

    Lagner, Ondřej; Klouček, Tomáš; Šímová, Petra

    2018-01-01

    Viewshed analysis is a GIS tool in standard use for more than two decades to perform numerous scientific and practical tasks. The reliability of the resulting viewshed model depends on the computational algorithm and the quality of the input digital surface model (DSM). Although many studies have dealt with improving viewshed algorithms, only a few studies have focused on the effect of the spatial accuracy of input data. Here, we compare simple binary viewshed models based on DSMs having varying levels of detail with viewshed models created using LiDAR DSM. The compared DSMs were calculated as the sums of digital terrain models (DTMs) and layers of forests and buildings with expertly assigned heights. Both elevation data and the visibility obstacle layers were prepared using digital vector maps differing in scale (1:5,000, 1:25,000, and 1:500,000) as well as using a combination of a LiDAR DTM with objects vectorized on an orthophotomap. All analyses were performed for 104 sample locations of 5 km 2 , covering areas from lowlands to mountains and including farmlands as well as afforested landscapes. We worked with two observer point heights, the first (1.8 m) simulating observation by a person standing on the ground and the second (80 m) as observation from high structures such as wind turbines, and with five estimates of forest heights (15, 20, 25, 30, and 35 m). At all height estimations, all of the vector-based DSMs used resulted in overestimations of visible areas considerably greater than those from the LiDAR DSM. In comparison to the effect from input data scale, the effect from object height estimation was shown to be secondary.

  12. Range Analysis and Terrain Preference of Adult Southern White Rhinoceros (Ceratotherium simum) in a South African Private Game Reserve: Insights into Carrying Capacity and Future Management.

    PubMed

    Thompson, S; Avent, T; Doughty, L S

    2016-01-01

    The Southern white rhinoceros (Ceratotherium simum) is a threatened species, central to the tourism appeal of private game reserves in South Africa. Privately owned reserves in South Africa tend to be smaller than government run reserves such as Kruger National Park. Because of their relatively small size and the often heterogeneous nature of the landscape private game reserve managers benefit from detailed knowledge of white rhinoceros terrain selection preferences, which can be assessed from their ranging behaviours. We collected adult and sub-adult white rhinoceros distribution data over a 15 month period, calculating individual range size using kernel density estimation analysis within a GIS. From this, terrain selectivity was calculated using 50% and 95% kernels to extract terrain composition values. Jacob's correction of the Ivlev's selectivity index was subsequently applied to the terrain composition of each individual to identify trends in selectivity. Results reveal that adult males hold exclusive territories considerably smaller than those found in previous work conducted in "open" or large reserves. Similarly, results for the size of male versus female territories were also not in keeping with those from previous field studies, with males, rather than females, having the larger territory requirement. Terrain selection for both genders and age classes (adult and sub-adult) showed a strong preference for open grassland and avoidance of hill slope and riparian terrains. This research reveals white rhinoceros terrain selection preferences and how they influence range requirements in small, closed reserves. We conclude that this knowledge will be valuable in future white rhinoceros conservation management in small private game reserves, particularly in decisions surrounding removal of surplus individuals or augmentation of existing populations, calculation of reserve carrying capacity and future private reserve acquisition.

  13. Spatial and temporal analyses for multiscale monitoring of landslides: Examples from Northern Ireland

    NASA Astrophysics Data System (ADS)

    Bell, Andrew; McKinley, Jennifer; Hughes, David

    2013-04-01

    Landslides in the form of debris flows, large scale rotational features and composite mudflows impact transport corridors cutting off local communities and in some instances result in loss of life. This study presents landslide monitoring methods used for predicting and characterising landslide activity along transport corridors. A variety of approaches are discussed: desk based risk assessment of slopes using Geographical Information Systems (GIS); Aerial LiDAR surveys and Terrestrial LiDAR monitoring and field instrumentation of selected sites. A GIS based case study is discussed which provides risk assessment for the potential of slope stability issues. Layers incorporated within the system include Digital Elevation Model (DEM), slope, aspect, solid and drift geology and groundwater conditions. Additional datasets include consequence of failure. These are combined within a risk model, presented as likelihoods of failure. This integrated spatial approach for slope risk assessment provides the user with a preliminary risk assessment of sites. An innovative "Flexviewer" web-based server interface allows users to view data without needing advanced GIS techniques to gather information about selected areas. On a macro landscape scale, Aerial LiDAR (ALS) surveys are used for the characterisation of landslides from the surrounding terrain. DEMs are generated along with terrain derivatives: slope, curvature and various measures of terrain roughness. Spatial analysis of terrain morphological parameters allow characterisation of slope stability issues and are used to predict areas of potential failure or recently failure terrain. On a local scale ground monitoring approaches are employed for the monitoring of changes in selected slopes using ALS and risk assessment approaches. Results are shown from on-going bimonthly Terrestrial LiDAR (TLS) monitoring of the slope within a site specific geodectically referenced network. This has allowed a classification of changes in the slopes with DEMs of difference showing areas of recent movement, erosion and deposition. In addition, changes in the structure of the slope characterised by DEM of difference and morphological parameters in the form of roughness, slope and curvature measures are progressively linked to failures indicated from temporal DEM monitoring. Preliminary results are presented for a case site at Straidkilly Point, Glenarm, Co. Antrim, Northern Ireland, illustrating multiple approaches to the spatial and temporal monitoring of landslides. These indicate how spatial morphological approaches and risk assessment frameworks coupled with TLS monitoring and field instrumentation enable characterisation and prediction of potential areas of slope stability issues. On site weather instrumentation and piezometers document changes in pore water pressures resulting in site-specific information with geotechnical observations parameterised within the temporal LiDAR monitoring. This provides a multifaceted approach to the characterisation and analysis of slope stability issues. The presented methodology of multiscale datasets and surveying approaches utilising spatial parameters and risk index mapping enables a more comprehensive and effective prediction of landslides resulting in effective characterisation and remediation strategies.

  14. An Investigation of the Hypotheses for Formation of the Platy-Ridged Terrain in Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Yue, Z.; Gou, S.; Michael, G.; Di, K.; Xie, H.; Gong, H.; Shao, Y.

    2017-07-01

    The origin of the platy-ridged-polygonized (PRP) terrains on Martian surface has long been debated. The terrain has generally been classified as water, pack ice, or basalt lava related flow. The crater counting results of the PRP terrains suggest they are geologically very young; therefore, they are significant in understanding the recent evolution of Mars. This work evaluated the current hypotheses through detailed analysis of the distribution and microtopographies with the High Resolution Imaging Science Experiment (HiRISE) images for the PRP terrains in Elysium Planitia, Mars. Quantitative measurements and statistics of the typical features of the PRP terrains were also made. In addition, we also found an analog site in Tarim Basin in Xinjiang, China. Our results suggest that mud flow is responsible for the formation of the PRP terrains on the Mars surface, although the hypothesis of low-viscosity basalt lava floods cannot be completely excluded. This finding implies that a regional environment suitable for liquid water may have existed in recent geologic time, which has great importance for future Mars scientific exploration.

  15. SpaceTime Environmental Image Information for Scene Understanding

    DTIC Science & Technology

    2016-04-01

    public Internet resources such as Google,65 MapQuest,66 Bing,67 and Yahoo Maps.68 Approved for public release; distribution unlimited. 9 Table 3...azimuth angle 3 Terrain and location: USACE AGC — Satellite/aerial imagery and terrain analysis 4 Terrain and location: Google, MapQuest, Bing, Yahoo ...Maps. [accessed 2015 Dec]. https://www.bing.com/maps/. 68. YAHOO ! Maps. [accessed 2015 Dec]. https://maps.yahoo.com/b/. 69. 557th Weather Wing. US

  16. A Galerkin Approach to Define Measured Terrain Surfaces with Analytic Basis Vectors to Produce a Compact Representation

    DTIC Science & Technology

    2010-11-01

    defined herein as terrain whose surface deformation due to a single vehicle traversing the surface is negligible, such as paved roads (both asphalt ...ground vehicle reliability predictions. Current application of this work is limited to the analysis of U.S. Highways, comprised of both asphalt and...Highways that are consistent between asphalt and concrete roads b. The principle terrain characteristics are defined with analytic basis vectors

  17. A Description for Rock Joint Roughness Based on Terrestrial Laser Scanner and Image Analysis

    PubMed Central

    Ge, Yunfeng; Tang, Huiming; Eldin, M. A. M Ez; Chen, Pengyu; Wang, Liangqing; Wang, Jinge

    2015-01-01

    Shear behavior of rock mass greatly depends upon the rock joint roughness which is generally characterized by anisotropy, scale effect and interval effect. A new index enabling to capture all the three features, namely brightness area percentage (BAP), is presented to express the roughness based on synthetic illumination of a digital terrain model derived from terrestrial laser scanner (TLS). Since only tiny planes facing opposite to shear direction make contribution to resistance during shear failure, therefore these planes are recognized through the image processing technique by taking advantage of the fact that they appear brighter than other ones under the same light source. Comparison with existing roughness indexes and two case studies were illustrated to test the performance of BAP description. The results reveal that the rock joint roughness estimated by the presented description has a good match with existing roughness methods and displays a wider applicability. PMID:26585247

  18. Analysis of ICESat Data Using Kalman Filter and Kriging to Study Height Changes in East Antarctica

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.

    2005-01-01

    We analyze ICESat derived heights collected between Feb. 03-Nov. 04 using a kriging/Kalman filtering approach to investigate height changes in East Antarctica. The model's parameters are height change to an a priori static digital height model, seasonal signal expressed as an amplitude Beta and phase Theta, and height-change rate dh/dt for each (100 km)(exp 2) block. From the Kalman filter results, dh/dt has a mean of -0.06 m/yr in the flat interior of East Antarctica. Spatially correlated pointing errors in the current data releases give uncertainties in the range 0.06 m/yr, making height change detection unreliable at this time. Our test shows that when using all available data with pointing knowledge equivalent to that of Laser 2a, height change detection with an accuracy level 0.02 m/yr can be achieved over flat terrains in East Antarctica.

  19. Compaction and sedimentary basin analysis on Mars

    NASA Astrophysics Data System (ADS)

    Gabasova, Leila R.; Kite, Edwin S.

    2018-03-01

    Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.

  20. Ranging performance of satellite laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, Chester S.

    1992-01-01

    Topographic mapping of the earth, moon and planets can be accomplished with high resolution and accuracy using satellite laser altimeters. These systems employ nanosecond laser pulses and microradian beam divergences to achieve submeter vertical range resolution from orbital altitudes of several hundred kilometers. Here, we develop detailed expressions for the range and pulse width measurement accuracies and use the results to evaluate the ranging performances of several satellite laser altimeters currently under development by NASA for launch during the next decade. Our analysis includes the effects of the target surface characteristics, spacecraft pointing jitter and waveform digitizer characteristics. The results show that ranging accuracy is critically dependent on the pointing accuracy and stability of the altimeter especially over high relief terrain where surface slopes are large. At typical orbital altitudes of several hundred kilometers, single-shot accuracies of a few centimeters can be achieved only when the pointing jitter is on the order of 10 mu rad or less.

  1. A Geothermal GIS for Nevada: Defining Regional Controls and Favorable Exploration Terrains for Extensional Geothermal Systems

    USGS Publications Warehouse

    Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.

    2002-01-01

    Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.

  2. Cartographic and geodetic methods to characterize the potential landing sites for the future Russian missions Luna-Glob and Luna-Resurs

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I. P.; Kokhanov, A. A.; Konopikhin, A. A.; Nadezhdina, I. E.; Zubarev, A. E.; Patratiy, V. D.; Kozlova, N. A.; Uchaev, D. V.; Uchaev, Dm. V.; Malinnikov, V. A.; Oberst, J.

    2015-04-01

    Characterization of the potential landing sites for the planned Luna-Glob and Luna-Resurs Russian missions requires cartographic and geodetic support prepared with special methods and techniques that are briefly overviewed here. The data used in the analysis, including the digital terrain models (DTMs) and the orthoimages acquired in the survey carried out from the Lunar Reconnaissance Orbiter and Kaguya spacecraft, are described and evaluated. By way of illustration, different regions of the lunar surface, including the subpolar regions of the Moon, are characterized with the suggested methods and the GIS-technologies. The development of the information support for the future lunar missions started in 2011, and it is now carried on in MIIGAiK Extraterrestrial Laboratory (MExLab), which is a department of the Moscow State University of Geodesy and Cartography (MIIGAiK).

  3. Use of slope, aspect, and elevation maps derived from digital elevation model data in making soil surveys

    USGS Publications Warehouse

    Klingebiel, A.A.; Horvath, E.H.; Moore, D.G.; Reybold, W.U.

    1987-01-01

    Maps showing different classes of slope, aspect, and elevation were developed from U.S. Geological Survey digital elevation model data. The classes were displayed on clear Mylar at 1:24 000-scale and registered with topographic maps and orthophotos. The maps were used with aerial photographs, topographic maps, and other resource data to determine their value in making order-three soil surveys. They were tested on over 600 000 ha in Wyoming, Idaho, and Nevada under various climatic and topographic conditions. Field evaluations showed that the maps developed from digital elevation model data were accurate, except for slope class maps where slopes were <4%. The maps were useful to soil scientists, especially where (i) class boundaries coincided with soil changes, landform delineations, land use and management separations, and vegetation changes, and (ii) rough terrain and dense vegetation made it difficult to traverse the area. In hot, arid areas of sparse vegetation, the relationship of slope classes to kinds of soil and vegetation was less significant.

  4. Digital structural

    USGS Publications Warehouse

    Dohm, J.M.; Anderson, R.C.; Tanaka, K.L.

    1998-01-01

    Magmatic and tectonic activity have both contributed significantly to the surface geology of Mars. Digital structural mapping techniques have now been used to classify and date centers of tectonic activity in the western equatorial region. For example, our results show a center of tectonic activity at Valles Marineris, which may be associated with uplift caused by intrusion. Such evidence may help explain, in part, the development of the large troughs and associated outflow channels and chaotic terrain. We also find a local centre of tectonic activity near the source region of Warrego Valles. Here, we suggest that the valley system may have resulted largely from intrusive-related hydrothermal activity. We hope that this work, together with the current Mars Global Surveyor mission, will lead to a better understanding of the geological processes that shaped the Martian surface.

  5. Geocoding and stereo display of tropical forest multisensor datasets

    NASA Technical Reports Server (NTRS)

    Welch, R.; Jordan, T. R.; Luvall, J. C.

    1990-01-01

    Concern about the future of tropical forests has led to a demand for geocoded multisensor databases that can be used to assess forest structure, deforestation, thermal response, evapotranspiration, and other parameters linked to climate change. In response to studies being conducted at the Braulino Carrillo National Park, Costa Rica, digital satellite and aircraft images recorded by Landsat TM, SPOT HRV, Thermal Infrared Multispectral Scanner, and Calibrated Airborne Multispectral Scanner sensors were placed in register using the Landsat TM image as the reference map. Despite problems caused by relief, multitemporal datasets, and geometric distortions in the aircraft images, registration was accomplished to within + or - 20 m (+ or - 1 data pixel). A digital elevation model constructed from a multisensor Landsat TM/SPOT stereopair proved useful for generating perspective views of the rugged, forested terrain.

  6. A statistical approach for validating eSOTER and digital soil maps in front of traditional soil maps

    NASA Astrophysics Data System (ADS)

    Bock, Michael; Baritz, Rainer; Köthe, Rüdiger; Melms, Stephan; Günther, Susann

    2015-04-01

    During the European research project eSOTER, three different Digital Soil Maps (DSM) were developed for the pilot area Chemnitz 1:250,000 (FP7 eSOTER project, grant agreement nr. 211578). The core task of the project was to revise the SOTER method for the interpretation of soil and terrain data. It was one of the working hypothesis that eSOTER does not only provide terrain data with typical soil profiles, but that the new products actually perform like a conceptual soil map. The three eSOTER maps for the pilot area considerably differed in spatial representation and content of soil classes. In this study we compare the three eSOTER maps against existing reconnaissance soil maps keeping in mind that traditional soil maps have many subjective issues and intended bias regarding the overestimation and emphasize of certain features. Hence, a true validation of the proper representation of modeled soil maps is hardly possible; rather a statistical comparison between modeled and empirical approaches is possible. If eSOTER data represent conceptual soil maps, then different eSOTER, DSM and conventional maps from various sources and different regions could be harmonized towards consistent new data sets for large areas including the whole European continent. One of the eSOTER maps has been developed closely to the traditional SOTER method: terrain classification data (derived from SRTM DEM) were combined with lithology data (re-interpreted geological map); the corresponding terrain units were then extended with soil information: a very dense regional soil profile data set was used to define soil mapping units based on a statistical grouping of terrain units. The second map is a pure DSM map using continuous terrain parameters instead of terrain classification; radiospectrometric data were used to supplement parent material information from geology maps. The classification method Random Forest was used. The third approach predicts soil diagnostic properties based on covariates similar to DSM practices; in addition, multi-temporal MODIS data were used; the resulting soil map is the product of these diagnostic layers producing a map of soil reference groups (classified according to WRB). Because the third approach was applied to a larger test area in central Europe, and compared to the first two approaches, has worked with coarser input data, comparability is only partly fulfilled. To evaluate the usability of the three eSOTER maps, and to make a comparison among them, traditional soil maps 1:200,000 and 1:50,000 were used as reference data sets. Three statistical methods were applied: (i) in a moving window the distribution of the soil classes of each DSM product was compared to that of the soil maps by calculating the corrected coefficient of contingency, (ii) the value of predictive power for each of the eSOTER maps was determined, and (iii) the degree of consistency was derived. The latter is based on a weighting of the match of occurring class combinations via expert knowledge and recalculating the proportions of map appearance with these weights. To re-check the validation results a field study by local soil experts was conducted. The results show clearly that the first eSOTER approach based on the terrain classification / reinterpreted parent material information has the greatest similarity with traditional soil maps. The spatial differentiation offered by such an approach is well suitable to serve as a conceptual soil map. Therefore, eSOTER can be a tool for soil mappers to generate conceptual soil maps in a faster and more consistent way. This conclusion is at least valid for overview scales such as 1.250,000.

  7. A Low-Visibility Force Multiplier: Assessing China’s Cruise Missile Ambitions

    DTIC Science & Technology

    2014-04-01

    terminal sensor to achieve 10–15 meter (m) accuracy. • The second-generation DH-10 has a GPS/inertial guidance system but may also use terrain...contour mapping for redundant midcourse guidance and a digital scene-matching sensor to permit an accuracy of 10 m. • Development of the Chinese Beidou...pictures of the target as seen from different perspectives. DSMAC permits LACMs to achieve accuracies of about 1 m. Other (for example, thermal) sensors

  8. Geological mapping in northwestern Saudi Arabia using LANDSAT multispectral techniques

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Brown, G. F.; Moik, J. G.

    1975-01-01

    Various computer enhancement and data extraction systems using LANDSAT data were assessed and used to complement a continuing geologic mapping program. Interactive digital classification techniques using both the parallel-piped and maximum-likelihood statistical approaches achieve very limited success in areas of highly dissected terrain. Computer enhanced imagery developed by color compositing stretched MSS ratio data was constructed for a test site in northwestern Saudi Arabia. Initial results indicate that several igneous and sedimentary rock types can be discriminated.

  9. GPS test range mission planning

    NASA Astrophysics Data System (ADS)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  10. Image Processing

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A new spinoff product was derived from Geospectra Corporation's expertise in processing LANDSAT data in a software package. Called ATOM (for Automatic Topographic Mapping), it's capable of digitally extracting elevation information from stereo photos taken by spaceborne cameras. ATOM offers a new dimension of realism in applications involving terrain simulations, producing extremely precise maps of an area's elevations at a lower cost than traditional methods. ATOM has a number of applications involving defense training simulations and offers utility in architecture, urban planning, forestry, petroleum and mineral exploration.

  11. High Severity Wildfire Effect On Rainfall Infiltration And Runoff: A Cellular Automata Based Simulation

    NASA Astrophysics Data System (ADS)

    Vergara-Blanco, J. E.; Leboeuf-Pasquier, J.; Benavides-Solorio, J. D. D.

    2017-12-01

    A simulation software that reproduces rainfall infiltration and runoff for a storm event in a particular forest area is presented. A cellular automaton is utilized to represent space and time. On the time scale, the simulation is composed by a sequence of discrete time steps. On the space scale, the simulation is composed of forest surface cells. The software takes into consideration rain intensity and length, individual forest cell soil absorption capacity evolution, and surface angle of inclination. The software is developed with the C++ programming language. The simulation is executed on a 100 ha area within La Primavera Forest in Jalisco, Mexico. Real soil texture for unburned terrain and high severity wildfire affected terrain is employed to recreate the specific infiltration profile. Historical rainfall data of a 92 minute event is used. The Horton infiltration equation is utilized for infiltration capacity calculation. A Digital Elevation Model (DEM) is employed to reproduce the surface topography. The DEM is displayed with a 3D mesh graph where individual surface cells can be observed. The plot colouring renders water content development at the cell level throughout the storm event. The simulation shows that the cumulative infiltration and runoff which take place at the surface cell level depend on the specific storm intensity, fluctuation and length, overall terrain topography, cell slope, and soil texture. Rainfall cumulative infiltration for unburned and high severity wildfire terrain are compared: unburned terrain exhibits a significantly higher amount of rainfall infiltration.It is concluded that a cellular automaton can be utilized with a C++ program to reproduce rainfall infiltration and runoff under diverse soil texture, topographic and rainfall conditions in a forest setting. This simulation is geared for an optimization program to pinpoint the locations of a series of forest land remediation efforts to support reforestation or to minimize runoff.

  12. Soil organic carbon dynamics as affected by topography in southern California hillslopes systems

    NASA Astrophysics Data System (ADS)

    Fissore, C.; Dalzell, B. J.; Berhe, A. A.; Evans, M.; Voegtle, M.; Wu, A. M.

    2015-12-01

    Active topography is a predominant feature of Southern California's landscapes where intense erosion and depositional processes can influence SOC translocation and accumulation and where changes in chemical, physical, and topographic conditions may affect long-term stability of SOC. Considering the large variability in SOC content across areas with active topography, it is necessary to develop landscape-scale stratifications of sampling that capture SOC variability due to erosion and deposition processes at different topographic locations. To achieve this goal, landscape SOC needs to be assessed based on more than just slope position by taking into account specific topographic indices, such as slope class, curvature, and catchment area. In this work, we used a series of analytical approaches, including total and water extractable C fractions, ultraviolet absorbance, infrared spectroscopy and a radio-isotope tracer (137Cs) in combination with GIS and digital terrain attributes analyses to investigate the quality and distribution of SOC along the sloping landscape of Puente Hills Preserve, in Whittier, CA. The complex interaction of terrain attributes on erosion and depositional processes was evident from 137Cs analysis, which allowed us to identify depositional and eroding areas. Our findings indicate that greater SOC accumulation is associated with concave profile and plane curvature, when combined with low slope class. Slope appears to be the terrain attribute that most affects SOC content and slope effects persist at depth. Ultraviolet absorbance of water extractable OC and infrared spectroscopy of SOC allowed the identification of different levels of aromaticity and distribution of SOC moieties that have been correlated to rates of mineralization. Southern California, like other Mediterranean regions around the world, is expected to experience increasingly severe droughts, more intense erosion and more frequent fire perturbation - which can exacerbate erosion - in the context of a changing climate. For these reasons, our findings are relevant to make better predictions on future SOC dynamics in areas with evolving and complex three-dimensional landscapes.

  13. Digital Elevation Models of the Earth derived from space-based observations: Advances and potential for geomorphological studies

    NASA Astrophysics Data System (ADS)

    Mouratidis, Antonios

    2013-04-01

    Digital Elevation Models (DEMs) are an inherently interdisciplinary topic, both due to their production and validation methods, as well as their significance for numerous disciplines. The most utilized contemporary topographic datasets worldwide are those of global DEMs. Several space-based sources have been used for the production of (almost) global DEMs, namely satellite Synthetic Aperture Radar (SAR) Interferometry/InSAR, stereoscopy of multispectral satellite images and altimetry, producing several versions of autonomous or mixed products (i.e. SRTM, ACE, ASTER-GDEM). Complementary space-based observations, such as those of Global Navigation Satellite Systems (GNSS), are also used, mainly for validation purposes. The apparent positive impact of these elevation datasets so far has been consolidated by the plethora of related scientific, civil and military applications. Topography is a prominent element for almost all Earth sciences, but in Geomorphology it is even more fundamental. In geomorphological studies, elevation data and thus DEMs can be extensively used for the extraction of both qualitative and quantitative information, such as relief classification, determination of slope and slope orientation, delineation of drainage basins, extraction of drainage networks and much more. Global DEMs are constantly becoming finer, i.e. of higher spatial resolution and more "sensitive" to elevation changes, i.e. of higher vertical accuracy and these progresses are undoubtedly considered as a major breakthrough, each time a new improved global DEM is released. Nevertheless, for Geomorphology in particular, if not already there, we are close to the point in time, where the need for discrimination between DSM (Digital Surface Model) and DTM (Digital Terrain Model) is becoming critical; if the distinction between vegetation and man-made structures on one side (DSM), and actual terrain elevation on the other side (DTM) cannot be made, then, in many cases, any further increase of elevation accuracy in DEMs will have little impact on geomorphological studies. After shortly reviewing the evolution of satellite-based global DEMs, the purpose of this paper is to address their current limitations and challenges from the perspective of a geomorphologist. Subsequently, the implications for geomorphological studies are discussed, with respect to the expected near-future advances in the field, such as the TanDEM-X Global Digital Elevation Model ("WorldDEM", 2014), as well as spaceborne LIDAR (Light Detection and Ranging) approaches (e.g. Lidar Surface Topography/LIST mission, 2016-2020).

  14. Study on the performance of the articulated mechanism of tracked all-terrain vehicle

    NASA Astrophysics Data System (ADS)

    Meng, Zhongliang; Zang, Hao

    2018-04-01

    Tracked all-terrain vehicle consists of two vehicle bodies featured by superior performance, the running system which can meet the all-terrain requirement, the unique steering system, power system and the vehicle body protection system. This paper focuses on the study of the five freely articulated steering system of crawler-type all-terrain engineering vehicle. The study on the dynamic characteristics of the articulated steering system can't do without the dynamic analysis of the whole vehicle. Therefore, it first studies the overall model of the tracked all-terrain vehicle, and then based on the critical states where the overall model is situated under different road conditions, mathematical models of the articulated mechanism are built under different operating conditions and also the load bearing condition of the articulated mechanism is deduced.

  15. The influence of control parameter estimation on large scale geomorphological interpretation of pointclouds

    NASA Astrophysics Data System (ADS)

    Dorninger, P.; Koma, Z.; Székely, B.

    2012-04-01

    In recent years, laser scanning, also referred to as LiDAR, has proved to be an important tool for topographic data acquisition. Basically, laser scanning acquires a more or less homogeneously distributed point cloud. These points represent all natural objects like terrain and vegetation as well as man-made objects such as buildings, streets, powerlines, or other constructions. Due to the enormous amount of data provided by current scanning systems capturing up to several hundred thousands of points per second, the immediate application of such point clouds for large scale interpretation and analysis is often prohibitive due to restrictions of the hard- and software infrastructure. To overcome this, numerous methods for the determination of derived products do exist. Commonly, Digital Terrain Models (DTM) or Digital Surface Models (DSM) are derived to represent the topography using a regular grid as datastructure. The obvious advantages are a significant reduction of the amount of data and the introduction of an implicit neighborhood topology enabling the application of efficient post processing methods. The major disadvantages are the loss of 3D information (i.e. overhangs) as well as the loss of information due to the interpolation approach used. We introduced a segmentation approach enabling the determination of planar structures within a given point cloud. It was originally developed for the purpose of building modeling but has proven to be well suited for large scale geomorphological analysis as well. The result is an assignment of the original points to a set of planes. Each plane is represented by its plane parameters. Additionally, numerous quality and quantity parameters are determined (e.g. aspect, slope, local roughness, etc.). In this contribution, we investigate the influence of the control parameters required for the plane segmentation on the geomorphological interpretation of the derived product. The respective control parameters may be determined either automatically (i.e. estimated of the given data) or manually (i.e. supervised parameter estimation). Additionally, the result might be influenced if data processing is performed locally (i.e. using tiles) or globally. Local processing of the data has the advantages of generally performing faster, having less hardware requirements, and enabling the determination of more detailed information. By contrast, especially in geomorphological interpretation, a global data processing enables determining large scale relations within the dataset analyzed. We investigated the influence of control parameter settings on the geomorphological interpretation on airborne and terrestrial laser scanning data sets of the landslide at Doren (Vorarlberg, Austria), on airborne laser scanning data of the western cordilleras of the central Andes, and on HRSC terrain data of the Mars surface. Topics discussed are the suitability of automated versus manual determination of control parameters, the influence of the definition of the area of interest (local versus global application) as well as computational performance.

  16. Determining the Optimum Post Spacing of LIDAR-Derived Elevation Data in Varying Terrain for Flood Hazard Mapping Purposes in North Carolina and Texas

    NASA Technical Reports Server (NTRS)

    Berglund, Judith; Davis, Bruce; Estep, Lee

    2004-01-01

    The major flood events in the United States in the past few years have made it apparent that many floodplain maps being used by State governments are outdated and inaccurate. In response, many Stated have begun to update their Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps. Accurate topographic data is one of the most critical inputs for floodplain analysis and delineation. Light detection and ranging (LIDAR) altimetry is one of the primary remote sensing technologies that can be used to obtain high-resolution and high-accuracy digital elevation data suitable for hydrologic and hydraulic (H&H) modeling, in part because of its ability to "penetrate" various cover types and to record geospatial data from the Earth's surface. However, the posting density or spacing at which LIDAR collects the data will affect the resulting accuracies of the derived bare Earth surface, depending on terrain type and land cover type. For example, flat areas are thought to require higher or denser postings than hilly areas to capture subtle changes in the topography that could have a significant effect on flooding extent. Likewise, if an area has dense understory and overstory, it may be difficult to receive LIDAR returns from the Earth's surface, which would affect the accuracy of that bare Earth surface and thus would affect flood model results. For these reasons, NASA and FEMA have partnered with the State of North Carolina and with the U.S./Mexico Foundation in Texas to assess the effect of LIDAR point density on the characterization of topographic variation and on H&H modeling results for improved floodplain mapping. Research for this project is being conducted in two areas of North Carolina and in the City of Brownsville, Texas, each with a different type of terrain and varying land cover/land use. Because of various project constraints, LIDAR data were acquired once at a high posting density and then decimated to coarser postings or densities. Quality assurance/quality control analyses were performed on each dataset. Cross sections extracted form the high density and then the decimated datasets were individually input into an H&H model to determine the model's sensitivity to topographic variation and the effect of that variation on the resulting water profiles. Additional analysis was performed on the Brownsville, Texas, LIDAR data to determine the percentage of returns that "penetrated" various types of canopy or vegetative cover. It is hoped that the results of these studies will benefit state and local communities as they consider the post spacing at which to acquire LIDAR data (which affects cost) and will benefit FEMA as the Agency assesses the use of different technologies for updating National Flood Insurance Program and related products.

  17. Terrain-analysis procedures for modeling radar backscatter

    USGS Publications Warehouse

    Schaber, Gerald G.; Pike, Richard J.; Berlin, Graydon Lennis

    1978-01-01

    The collection and analysis of detailed information on the surface of natural terrain are important aspects of radar-backscattering modeling. Radar is especially sensitive to surface-relief changes in the millimeter- to-decimeter scale four conventional K-band (~1-cm wavelength) to L-band (~25-cm wavelength) radar systems. Surface roughness statistics that characterize these changes in detail have been generated by a comprehensive set of seven programmed calculations for radar-backscatter modeling from sets of field measurements. The seven programs are 1) formatting of data in readable form for subsequent topographic analysis program; 2) relief analysis; 3) power spectral analysis; 4) power spectrum plots; 5) slope angle between slope reversals; 6) slope angle against slope interval plots; and 7) base length slope angle and curvature. This complete Fortran IV software package, 'Terrain Analysis', is here presented for the first time. It was originally developed a decade ago for investigations of lunar morphology and surface trafficability for the Apollo Lunar Roving Vehicle.

  18. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate-siliciclastic alternations of the Hainich CZE, central Germany

    NASA Astrophysics Data System (ADS)

    Kohlhepp, Bernd; Lehmann, Robert; Seeber, Paul; Küsel, Kirsten; Trumbore, Susan E.; Totsche, Kai U.

    2017-12-01

    The quality of near-surface groundwater reservoirs is controlled, but also threatened, by manifold surface-subsurface interactions. Vulnerability studies typically evaluate the variable interplay of surface factors (land management, infiltration patterns) and subsurface factors (hydrostratigraphy, flow properties) in a thorough way, but disregard the resulting groundwater quality. Conversely, hydrogeochemical case studies that address the chemical evolution of groundwater often lack a comprehensive analysis of the structural buildup. In this study, we aim to reconstruct the actual spatial groundwater quality pattern from a synoptic analysis of the hydrostratigraphy, lithostratigraphy, pedology and land use in the Hainich Critical Zone Exploratory (Hainich CZE). This CZE represents a widely distributed yet scarcely described setting of thin-bedded mixed carbonate-siliciclastic strata in hillslope terrains. At the eastern Hainich low-mountain hillslope, bedrock is mainly formed by alternated marine sedimentary rocks of the Upper Muschelkalk (Middle Triassic) that partly host productive groundwater resources. Spatial patterns of the groundwater quality of a 5.4 km long well transect are derived by principal component analysis and hierarchical cluster analysis. Aquifer stratigraphy and geostructural links were deduced from lithological drill core analysis, mineralogical analysis, geophysical borehole logs and mapping data. Maps of preferential recharge zones and recharge potential were deduced from digital (soil) mapping, soil survey data and field measurements of soil hydraulic conductivities (Ks). By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow. Generally, the aquifer configuration (spatial arrangement of strata, valley incision/outcrops) and related geostructural links (enhanced recharge areas, karst phenomena) control the role of surface factors (input quality and locations) vs. subsurface factors (water-rock interaction, cross-formational flow) for groundwater quality in the multi-layered aquifer system. Our investigation reveals general properties of alternating sequences in hillslope terrains that are prone to forming multi-layered aquifer systems. This synoptic analysis is fundamental and indispensable for a mechanistic understanding of ecological functioning, sustainable resource management and protection.

  19. Evaluation of Lunar Dark Mantle Deposits as Key to Future Human Missions

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra

    1997-01-01

    I proposed to continue detailed mapping, analysis and assessment of the lunar pyroclastic dark mantle deposits in support of the Human Exploration and Development of Space (HEDS) initiative. Specifically: (1) I continued gathering data via the Internet and mailable media, and a variety of other digital lunar images including; high resolution digital images of the new Apollo masters from JSC, images from Clementine and Galileo, and recent telescopic images from Hawaii; (2) continued analyses on these images using sophisticated hardware and software at JSC and the College of Charleston to determine and map composition using returned sample data for calibration; (3) worked closely with Dr. David McKay and others at JSC to relate sample data to image data using laboratory spectra from JSC and Brown University; (4) mapped the extent, thickness, and composition of important dark mantle deposits in selected study areas; and (5) began composing a geographically referenced database of lunar pyroclastic materials in the Apollo 17 area. The results have been used to identify and evaluate several candidate landing sites in dark mantle terrains. Additional work spawned from this effort includes the development of an educational CD-Rom on exploring the Moon: Contact Light. Throughout the whole process I have been in contact with the JSC HEDS personnel.

  20. The effect of flight altitude to data quality of fixed-wing UAV imagery: case study in Murcia, Spain

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Keesstra, Saskia; Cammeraat, Erik

    2014-05-01

    Unmanned Aerial System (UAS) are becoming popular tools in the geosciences due to improving technology and processing techniques. They can potentially fill the gap between spaceborne or manned aircraft remote sensing and terrestrial remote sensing, both in terms of spatial and temporal resolution. In this study we tested a fixed-wing Unmanned Aerial System (UAS) for the application of digital landscape analysis. The focus was to analyze the effect of flight altitude and the effect to accuracy and detail of the produced digital elevation models, derived terrain properties and orthophotos. The aircraft was equipped with a Panasonic GX1 16MP pocket camera with 20 mm lens to capture normal JPEG RGB images. Images were processed using Agisoft Photoscan Pro which includes the structure-from-motion and multiview stereopsis algorithms. The test area consisted of small abandoned agricultural fields in semi-arid Murcia in southeastern Spain. The area was severely damaged after a destructive rainfall event, including damaged check dams, rills, deep gully incisions and piping. Results suggest that careful decisions on flight altitude are essential to find a balance between the area coverage, ground sampling distance, UAS ground speed, camera processing speed and the accurate registration of specific soil erosion features of interest.

  1. Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data

    NASA Astrophysics Data System (ADS)

    Onojeghuo, Alex Okiemute; Onojeghuo, Ajoke Ruth

    2017-07-01

    This study investigated the combined use of multispectral/hyperspectral imagery and LiDAR data for habitat mapping across parts of south Cumbria, North West England. The methodology adopted in this study integrated spectral information contained in pansharp QuickBird multispectral/AISA Eagle hyperspectral imagery and LiDAR-derived measures with object-based machine learning classifiers and ensemble analysis techniques. Using the LiDAR point cloud data, elevation models (such as the Digital Surface Model and Digital Terrain Model raster) and intensity features were extracted directly. The LiDAR-derived measures exploited in this study included Canopy Height Model, intensity and topographic information (i.e. mean, maximum and standard deviation). These three LiDAR measures were combined with spectral information contained in the pansharp QuickBird and Eagle MNF transformed imagery for image classification experiments. A fusion of pansharp QuickBird multispectral and Eagle MNF hyperspectral imagery with all LiDAR-derived measures generated the best classification accuracies, 89.8 and 92.6% respectively. These results were generated with the Support Vector Machine and Random Forest machine learning algorithms respectively. The ensemble analysis of all three learning machine classifiers for the pansharp QuickBird and Eagle MNF fused data outputs did not significantly increase the overall classification accuracy. Results of the study demonstrate the potential of combining either very high spatial resolution multispectral or hyperspectral imagery with LiDAR data for habitat mapping.

  2. URBAN MORPHOLOGICAL ANALYSIS FOR MESOSCALE METEOROLOGICAL AND DISPERSION MODELING APPLICATIONS: CURRENT ISSUES

    EPA Science Inventory

    Representing urban terrain characteristics in mesoscale meteorological and dispersion models is critical to produce accurate predictions of wind flow and temperature fields, air quality, and contaminant transport. A key component of the urban terrain representation is the charac...

  3. Applicability Analysis of Cloth Simulation Filtering Algorithm for Mobile LIDAR Point Cloud

    NASA Astrophysics Data System (ADS)

    Cai, S.; Zhang, W.; Qi, J.; Wan, P.; Shao, J.; Shen, A.

    2018-04-01

    Classifying the original point clouds into ground and non-ground points is a key step in LiDAR (light detection and ranging) data post-processing. Cloth simulation filtering (CSF) algorithm, which based on a physical process, has been validated to be an accurate, automatic and easy-to-use algorithm for airborne LiDAR point cloud. As a new technique of three-dimensional data collection, the mobile laser scanning (MLS) has been gradually applied in various fields, such as reconstruction of digital terrain models (DTM), 3D building modeling and forest inventory and management. Compared with airborne LiDAR point cloud, there are some different features (such as point density feature, distribution feature and complexity feature) for mobile LiDAR point cloud. Some filtering algorithms for airborne LiDAR data were directly used in mobile LiDAR point cloud, but it did not give satisfactory results. In this paper, we explore the ability of the CSF algorithm for mobile LiDAR point cloud. Three samples with different shape of the terrain are selected to test the performance of this algorithm, which respectively yields total errors of 0.44 %, 0.77 % and1.20 %. Additionally, large area dataset is also tested to further validate the effectiveness of this algorithm, and results show that it can quickly and accurately separate point clouds into ground and non-ground points. In summary, this algorithm is efficient and reliable for mobile LiDAR point cloud.

  4. Simulation of the erosion and drainage development of Loess surface based on GIS

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Tang, Guoan; Ge, Shanshan; Li, Zhanbin; Zhou, Jieyu

    2006-10-01

    The research probes into the temporal-spatial process of drainage development of Loess Plateau on the basis of a carefully designed experiment. In the experiment, the development of a simulated loess watershed is tested under the condition of lab-simulated rainfall. A close-range photogrammetry survey is employed to establish a series of high precision and resolution DEM (Digit Elevation Model) of the simulated loess surface. Based on the established DEM, the erosion loss, the slope distribution, the topographic index , the gully-brink, and the drainage networks are all derived and discussed through comparison analysis and experimental validation. All the efforts aim at revealing the process and mechanism of erosion and drainage development of loess surface .This study demonstrates: 1) the stimulation result can effectively reflect the truth if those experimental conditions, i.e. loess soil structure, simulated rainfall, are adjusted in accord with true situation; 2) the remarkable character of the erosion and drainage up-growth of loess surface include the drainage traced to the source, the increased of the drainage's density, the enlarged of gully, the durative variety of multiple terrain factor's mean value and its distribution, such as slope and topographic index; 3) The slope spectrum is the more felicitous terrain factor for depicting the erosion and drainage development of loess surface, including the rule of erosion and evolution process. It is the new way and mean for studying the loess physiognomy.

  5. Toward Soil Spatial Information Systems (SSIS) for global modeling and ecosystem management

    NASA Technical Reports Server (NTRS)

    Baumgardner, Marion F.

    1995-01-01

    The general objective is to conduct research to contribute toward the realization of a world soils and terrain (SOTER) database, which can stand alone or be incorporated into a more complete and comprehensive natural resources digital information system. The following specific objectives are focussed on: (1) to conduct research related to (a) translation and correlation of different soil classification systems to the SOTER database legend and (b) the inferfacing of disparate data sets in support of the SOTER Project; (2) to examine the potential use of AVHRR (Advanced Very High Resolution Radiometer) data for delineating meaningful soils and terrain boundaries for small scale soil survey (range of scale: 1:250,000 to 1:1,000,000) and terrestrial ecosystem assessment and monitoring; and (3) to determine the potential use of high dimensional spectral data (220 reflectance bands with 10 m spatial resolution) for delineating meaningful soils boundaries and conditions for the purpose of detailed soil survey and land management.

  6. Applying Terrain and Hydrological Editing to Tandem-X Data to Create a Consumer-Ready Worlddem Product

    NASA Astrophysics Data System (ADS)

    Collins, J.; Riegler, G.; Schrader, H.; Tinz, M.

    2015-04-01

    The Geo-intelligence division of Airbus Defence and Space and the German Aerospace Center (DLR) have partnered to produce the first fully global, high-accuracy Digital Surface Model (DSM) using SAR data from the twin satellite constellation: TerraSAR-X and TanDEM-X. The DLR is responsible for the processing and distribution of the TanDEM-X elevation model for the world's scientific community, while Airbus DS is responsible for the commercial production and distribution of the data, under the brand name WorldDEM. For the provision of a consumer-ready product, Airbus DS undertakes several steps to reduce the effect of radar-specific artifacts in the WorldDEM data. These artifacts can be divided into two categories: terrain and hydrological. Airbus DS has developed proprietary software and processes to detect and correct these artifacts in the most efficient manner. Some processes are fullyautomatic, while others require manual or semi-automatic control by operators.

  7. High-resolution measurements of surface topography with airborne laser altimetry and the global positioning system

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.; Cavanaugh, John F.; Krabill, William B.; Clem, Thomas D.; Frederick, Earl B.; Ward, John L.

    1991-01-01

    Recently, an airborne lidar system that measures laser pulse time-of-flight and the distortion of the pulse waveform upon reflection from earth surface terrain features was developed and is now operational. This instrument is combined with Global Positioning System (GPS) receivers and a two-axis gyroscope for accurate recovery of aircraft position and pointing attitude. The laser altimeter system is mounted on a high-altitude aircraft platform and operated in a repetitively-pulsed mode for measurements of surface elevation profiles at nadir. The laser transmitter makes use of recently developed short-pulse diode-pumped solid-state laser technology in Q-switched Nd:YAG operating at its fundamental wavelength of 1064 nm. A reflector telescope and silicon avalanche photodiode are the basis of the optical receiver. A high-speed time-interval unit and a separate high-bandwidth waveform digitizer under microcomputer control are used to process the backscattered pulses for measurements of terrain. Other aspects of the lidar system are briefly discussed.

  8. Analysis of Voyager images of Europa - plasma bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.E.; Nelson, M.L.; Nccord, T.B.

    1988-09-01

    Voyager-derived data on the albedos of Europa are presently photometrically corrected and converted into average, single-scattering form, in order to analyze them as a function of angular distance from the apex of orbital motion. A hypothesized magnetospheric modification of the Europa surface is confirmed by the UV absorption found in the 0.35-micron filter data; this absorption directly correlates with the longitudinal ion implantation distribution in both terrain types. A red spectrum is found in both terrain types as well, and is found to be constant across the surface. A uniform increase is noted in the dark terrain absorption over thatmore » in the bright terrain. 43 references.« less

  9. Derivation of planetary topography using multi-image shape-from-shading

    USGS Publications Warehouse

    Lohse, V.; Heipke, C.; Kirk, R.L.

    2006-01-01

    In many cases, the derivation of high-resolution digital terrain models (DTMs) from planetary surfaces using conventional digital image matching is a problem. The matching methods need at least one stereo pair of images with sufficient texture. However, many space missions provide only a few stereo images and planetary surfaces often possess insufficient texture. This paper describes a method for the generation of high-resolution DTMs from planetary surfaces, which has the potential to overcome the described problem. The suggested method, developed by our group, is based on shape-from-shading using an arbitrary number of digital optical images, and is termed "multi-image shape-from-shading" (MI-SFS). The paper contains an explanation of the theory of MI-SFS, followed by a presentation of current results, which were obtained using images from NASA's lunar mission Clementine, and constitute the first practical application with our method using extraterrestrial imagery. The lunar surface is reconstructed under the assumption of different kinds of reflectance models (e.g. Lommel-Seeliger and Lambert). The represented results show that the derivation of a high-resolution DTM of real digital planetary images by means of MI-SFS is feasible. ?? 2006 Elsevier Ltd. All rights reserved.

  10. Nebraska, Kansas, and Oklahoma aeromagnetic and gravity maps and data: a web site for distribution of data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Hill, Patricia L.

    2005-01-01

    The Nebraska, Kansas, and Oklahoma aeromagnetic grid is constructed from grids that combine information collected in 28 separate aeromagnetic surveys conducted between 1954 and 1985. The data from these surveys are of varying quality. The design and specifications (terrain clearance, sampling rates, line spacing, and reduction procedures) varied from survey to survey depending on the purpose of the project and the technology of that time. Every attempt was made to acquire the data in digital form. Most of the available digital data were obtained from aeromagnetic surveys flown by the U.S. Geological Survey (USGS), flown on contract with the USGS, or were obtained from other Federal agencies and State universities. The Kansas data were flown by and acquired from the Kansas Geological Survey. Some of the 1954, 1963, and 1964 data are available only on hand-contoured maps and had to be digitized. These maps were digitized along flight-line/contour-line intersections, which is considered to be the most accurate method of recovering the original data. All surveys have been continued to 304.8 m (1,000 ft) above ground and then blended or merged together.

  11. The National Map - Orthoimagery

    USGS Publications Warehouse

    Mauck, James; Brown, Kim; Carswell, William J.

    2009-01-01

    Orthorectified digital aerial photographs and satellite images of 1-meter (m) pixel resolution or finer make up the orthoimagery component of The National Map. The process of orthorectification removes feature displacements and scale variations caused by terrain relief and sensor geometry. The result is a combination of the image characteristics of an aerial photograph or satellite image and the geometric qualities of a map. These attributes allow users to: *Measure distance *Calculate areas *Determine shapes of features *Calculate directions *Determine accurate coordinates *Determine land cover and use *Perform change detection *Update maps The standard digital orthoimage is a 1-m or finer resolution, natural color or color infra-red product. Most are now produced as GeoTIFFs and accompanied by a Federal Geographic Data Committee (FGDC)-compliant metadata file. The primary source for 1-m data is the National Agriculture Imagery Program (NAIP) leaf-on imagery. The U.S. Geological Survey (USGS) utilizes NAIP imagery as the image layer on its 'Digital- Map' - a new generation of USGS topographic maps (http://nationalmap.gov/digital_map). However, many Federal, State, and local governments and organizations require finer resolutions to meet a myriad of needs. Most of these images are leaf-off, natural-color products at resolutions of 1-foot (ft) or finer.

  12. Space Shuttle orbit determination using empirical force modeling of attitude maneuvers for the German MOMS-02/D2 mission

    NASA Technical Reports Server (NTRS)

    Vonbraun, C.; Reigber, Christoph

    1994-01-01

    In the spring of 1993, the MOMS-02 (modular Optoelectronic Multispectral Scanner) camera, as part of the second German Spacelab mission aboard STS-55, successfully took digital threefold stereo images of the surface of the Earth. While the mission is experimental in nature, its primary goals are to produce high quality maps and three-dimensional digital terrain models of the Earth's surface. Considerable improvement in the quality of the terrain model can be attained if information about the position and attitude of the camera is included during the adjustment of the image data. One of the primary sources of error in the Shuttle's position is due to the significant attitude maneuvers conducted during the course of the mission. Various arcs, using actual Tracking and Data Relay Satellite (TDRSS) Doppler data of STS-55, were processed to determine how effectively empirical force modeling could be used to solve for the radial, transverse, and normal components of the orbit perturbations caused by these routine maneuvers. Results are presented in terms of overlap-orbit differences in the three components. Comparisons of these differences, before and after the maneuvers are estimated, show that the quality of an orbit can be greatly enhanced with this technique, even if several maneuvers are present. Finally, a discussion is made of some of the difficulties encountered with this approach, and some ideas for future studies are presented.

  13. Five-minute, 1/2°, and 1° data sets of continental watersheds and river networks for use in regional and global hydrologic and climate system modeling studies

    NASA Astrophysics Data System (ADS)

    Graham, S. T.; Famiglietti, J. S.; Maidment, D. R.

    1999-02-01

    A major shortcoming of the land surface component in climate models is the absence of a river transport algorithm. This issue becomes particularly important in fully coupled climate system models (CSMs), where river transport is required to close and realistically represent the global water cycle. The development of a river transport algorithm requires knowledge of watersheds and river networks at a scale that is appropriate for use in CSMs. These data must be derived largely from global digital topographic information. The purpose of this paper is to describe a new data set of watersheds and river networks, which is derived primarily from the TerrainBase 5' Global DTM (digital terrain model) and the CIA World Data Bank II. These data serve as a base map for routing continental runoff to the appropriate coast and therefore into the appropriate ocean or inland sea. Using this data set, the runoff produced in any grid cell, when coupled with a routing algorithm, can easily be transported to the appropriate water body and distributed across that water body as desired. The data set includes watershed and flow direction information, as well as supporting hydrologic data at 5', 1/2°, and 1° resolutions globally. It will be useful in fully coupled land-ocean-atmosphere models, in terrestrial ecosystem models, or in stand-alone macroscale hydrologic-modeling studies.

  14. Towards the Crowdsourcing of Massive Smartphone Assisted-GPS Sensor Ground Observations for the Production of Digital Terrain Models

    PubMed Central

    Massad, Ido

    2018-01-01

    Digital Terrain Models (DTMs) used for the representation of the bare earth are produced from elevation data obtained using high-end mapping platforms and technologies. These require the handling of complex post-processing performed by authoritative and commercial mapping agencies. In this research, we aim to exploit user-generated data to produce DTMs by handling massive volumes of position and elevation data collected using ubiquitous smartphone devices equipped with Assisted-GPS sensors. As massive position and elevation data are collected passively and straightforwardly by pedestrians, cyclists, and drivers, it can be transformed into valuable topographic information. Specifically, in dense and concealed built and vegetated areas, where other technologies fail, handheld devices have an advantage. Still, Assisted-GPS measurements are not as accurate as high-end technologies, requiring pre- and post-processing of observations. We propose the development and implementation of a 2D Kalman filter and smoothing on the acquired crowdsourced observations for topographic representation production. When compared to an authoritative DTM, results obtained are very promising in producing good elevation values. Today, open-source mapping infrastructures, such as OpenStreetMap, rely primarily on the global authoritative SRTM (Shuttle Radar Topography Mission), which shows similar accuracy but inferior resolution when compared to the results obtained in this research. Accordingly, our crowdsourced methodology has the capacity for reliable topographic representation production that is based on ubiquitous volunteered user-generated data. PMID:29562627

  15. Soaring over Pluto

    NASA Image and Video Library

    2017-07-14

    In July 2015, NASA's New Horizons spacecraft sent home the first close-up pictures of Pluto and its moons. Using actual New Horizons data and digital elevation models of Pluto and its largest moon, Charon, mission scientists created flyover movies that offer spectacular new perspectives of the many unusual features that were discovered and which have reshaped our views of the Pluto system -- from a vantage point even closer than a ride on New Horizons itself. The dramatic Pluto flyover begins over the highlands to the southwest of the great expanse of nitrogen ice plain informally named Sputnik Planitia. (Note that all feature names in the Pluto system are informal.) The viewer first passes over the western margin of Sputnik, where it borders the dark, cratered terrain of Cthulhu Macula, with the blocky mountain ranges located within the planitia seen on the right. The tour moves north past the rugged and fractured highlands of Voyager Terra and then turns southward over Pioneer Terra, which exhibits deep and wide pits, before concluding over the bladed terrain of Tartarus Dorsa in the far east of the encounter hemisphere. The topographic relief is exaggerated by a factor of 2 to 3 in these movies to emphasize topography; the surface colors have also been enhanced to bring out detail. Digital mapping and rendering were performed by Paul Schenk and John Blackwell of the Lunar and Planetary Institute in Houston. A video can be viewed at https://photojournal.jpl.nasa.gov/catalog/PIA21863

  16. The possible use of ancient tower tombs as watchtowers in Syro-Mesopotamia

    NASA Astrophysics Data System (ADS)

    Silver, M.; Törmä, M.; Silver, K.; Okkonen, J.; Nuñez, M.

    2015-08-01

    Traditionally polygonal tower tombs dating from the Greco-Roman era, especially found in the area of Syro-Mesopotamia, have only been treated as funerary structures without discussion of their other possible purposes. In this paper we wish to inquire whether they had other functions as well. The most famous examples of these types of tombs are situated in Palmyra in Syria. They are built of limestone, follow a square layout, and some exceed the height of 20 m. Similar structures are found in the Euphrates valley of Syria. The Finnish project SYGIS that worked in the neighbourhood of the Euphrates and Palmyra during the previous decade studied some of the structures in the region. As far as the tower tombs are concerned, our research suggests that new structural, topographical and spatial aspects can be raised, and GIS (Geographic Information Systems) can be applied for analysing their properties for visibility. The tendency to locate tower tombs along roads and the entrance areas of a city as well as at a mountain edge seems to indicate that the tombs may have had observational functions serving as watch towers. The aspects of the location in terrains are emphasized in the present study, and digital terrain models were utilized using SRTM DEM (Digital Elevation Model) data for carrying out viewshed analyses in order to survey the observational qualities of the towers in Palmyra, on Halabiya, on Jebel Bishri in Syria and Hatra in Iraq.

  17. The OSIRIS-REx Laser Altimeter (OLA) Investigation and Instrument

    NASA Astrophysics Data System (ADS)

    Daly, M. G.; Barnouin, O. S.; Dickinson, C.; Seabrook, J.; Johnson, C. L.; Cunningham, G.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Aslam, I.; Taylor, A.; Bierhaus, E. B.; Boynton, W.; Nolan, M.; Lauretta, D. S.

    2017-10-01

    The Canadian Space Agency (CSA) has contributed to the Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) spacecraft the OSIRIS-REx Laser Altimeter (OLA). The OSIRIS-REx mission will sample asteroid 101955 Bennu, the first B-type asteroid to be visited by a spacecraft. Bennu is thought to be primitive, carbonaceous, and spectrally most closely related to CI and/or CM meteorites. As a scanning laser altimeter, the OLA instrument will measure the range between the OSIRIS-REx spacecraft and the surface of Bennu to produce digital terrain maps of unprecedented spatial scales for a planetary mission. The digital terrain maps produced will measure ˜7 cm per pixel globally, and ˜3 cm per pixel at specific sample sites. In addition, OLA data will be used to constrain and refine the spacecraft trajectories. Global maps and highly accurate spacecraft trajectory estimates are critical to infer the internal structure of the asteroid. The global and regional maps also are key to gain new insights into the surface processes acting across Bennu, which inform the selection of the OSIRIS-REx sample site. These, in turn, are essential for understanding the provenance of the regolith sample collected by the OSIRIS-REx spacecraft. The OLA data also are important for quantifying any hazards near the selected OSIRIS-REx sample site and for evaluating the range of tilts at the sampling site for comparison against the capabilities of the sample acquisition device.

  18. Merging LIDAR digital terrain model with direct observed elevation points for urban flood numerical simulation

    NASA Astrophysics Data System (ADS)

    Arrighi, Chiara; Campo, Lorenzo

    2017-04-01

    In last years, the concern about the economical and lives loss due to urban floods has grown hand in hand with the numerical skills in simulating such events. The large amount of computational power needed in order to address the problem (simulating a flood in a complex terrain such as a medium-large city) is only one of the issues. Among them it is possible to consider the general lack of exhaustive observations during the event (exact extension, dynamic, water level reached in different parts of the involved area), needed for calibration and validation of the model, the need of considering the sewers effects, and the availability of a correct and precise description of the geometry of the problem. In large cities the topographic surveys are in general available with a number of points, but a complete hydraulic simulation needs a detailed description of the terrain on the whole computational domain. LIDAR surveys can achieve this goal, providing a comprehensive description of the terrain, although they often lack precision. In this work an optimal merging of these two sources of geometrical information, measured elevation points and LIDAR survey, is proposed, by taking into account the error variance of both. The procedure is applied to a flood-prone city over an area of 35 square km approximately starting with a DTM from LIDAR with a spatial resolution of 1 m, and 13000 measured points. The spatial pattern of the error (LIDAR vs points) is analysed, and the merging method is tested with a series of Jackknife procedures that take into account different densities of the available points. A discussion of the results is provided.

  19. Terrain feature recognition for synthetic aperture radar (SAR) imagery employing spatial attributes of targets

    NASA Astrophysics Data System (ADS)

    Iisaka, Joji; Sakurai-Amano, Takako

    1994-08-01

    This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.

  20. Spatial and temporal variability of hyperspectral signatures of terrain

    NASA Astrophysics Data System (ADS)

    Jones, K. F.; Perovich, D. K.; Koenig, G. G.

    2008-04-01

    Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.

Top