Sample records for digitally sampling scintillation

  1. Tests of PMT signal read-out of liquid argon scintillation with a new fast waveform digitizer

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Canci, N.; Cavanna, F.; Cortopassi, A.; D'Incecco, M.; Mini, G.; Pietropaolo, F.; Romboli, A.; Segreto, E.; Szelc, A. M.

    2012-07-01

    The CAEN V1751 is a new generation of Waveform Digitizer recently introduced by CAEN SpA. It features 8 Channels per board, 10 bit, 1 GS/s using Flash ADCs Waveform Digitizers (or 4 channels at 2 GS/s in Dual Edge Sampling mode) with threshold and Auto-Trigger capabilities. This provides a good basis for data acquisition in Dark Matter searches using PMTs to detect scintillation light in liquid argon, as it matches the requirements for measuring the fast scintillation component. The board was tested by operating it in real experimental conditions and by comparing it with a state of the art digital oscilloscope. We find that the sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the scintillation light in argon (characteristic time of about 6-7 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.

  2. A comparison of digital zero-crossing and charge-comparison methods for neutron/γ-ray discrimination with liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.

    2015-10-01

    In this paper, we have compared the performances of the digital zero-crossing and charge-comparison methods for n/γ discrimination with liquid scintillation detectors at low light outputs. The measurements were performed with a 2″×2″ cylindrical liquid scintillation detector of type BC501A whose outputs were sampled by means of a fast waveform digitizer with 10-bit resolution, 4 GS/s sampling rate and one volt input range. Different light output ranges were measured by operating the photomultiplier tube at different voltages and a new recursive algorithm was developed to implement the digital zero-crossing method. The results of our study demonstrate the superior performance of the digital zero-crossing method at low light outputs when a large dynamic range is measured. However, when the input range of the digitizer is used to measure a narrow range of light outputs, the charge-comparison method slightly outperforms the zero-crossing method. The results are discussed in regard to the effects of the quantization noise and the noise filtration performance of the zero-crossing filter.

  3. Pulse-shape discrimination of the new plastic scintillators in neutron-gamma mixed field using fast digitizer card

    NASA Astrophysics Data System (ADS)

    Jančář, A.; Kopecký, Z.; Dressler, J.; Veškrna, M.; Matěj, Z.; Granja, C.; Solar, M.

    2015-11-01

    Recently invented plastic scintillator EJ-299-33 enables pulse-shape discrimination (PSD) and thus measurement of neutron and photon spectra in mixed fields. In this work we compare the PSD properties of EJ-299-33 plastic and the well-known NE-213 liquid scintillator in monoenergetic neutron fields generated by the Van de Graaff accelerator using the 3H(d, n)4He reaction. Pulses from the scintillators are processed by a newly developed digital measuring system employing the fast digitizer card. This card contains two AD converters connected to the measuring computer via 10 Gbps optical ethernet. The converters operate with a resolution of 12 bits and have two differential inputs with a sampling frequency 1 GHz. The resulting digital channels with different gains are merged into one composite channel with a higher digital resolution in a wide dynamic range of energies. Neutron signals are fully discriminated from gamma signals. Results are presented.

  4. Gamma ray spectroscopy employing divalent europium-doped alkaline earth halides and digital readout for accurate histogramming

    DOEpatents

    Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B.; Sturm, Benjamin W.

    2016-02-09

    According to one embodiment, a scintillator radiation detector system includes a scintillator, and a processing device for processing pulse traces corresponding to light pulses from the scintillator, where the processing device is configured to: process each pulse trace over at least two temporal windows and to use pulse digitization to improve energy resolution of the system. According to another embodiment, a scintillator radiation detector system includes a processing device configured to: fit digitized scintillation waveforms to an algorithm, perform a direct integration of fit parameters, process multiple integration windows for each digitized scintillation waveform to determine a correction factor, and apply the correction factor to each digitized scintillation waveform.

  5. Gamma ray spectroscopy employing divalent europium-doped alkaline earth halides and digital readout for accurate histogramming

    DOEpatents

    Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B; Sturm, Benjamin W

    2014-11-11

    A scintillator radiation detector system according to one embodiment includes a scintillator; and a processing device for processing pulse traces corresponding to light pulses from the scintillator, wherein pulse digitization is used to improve energy resolution of the system. A scintillator radiation detector system according to another embodiment includes a processing device for fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times and performing a direct integration of fit parameters. A method according to yet another embodiment includes processing pulse traces corresponding to light pulses from a scintillator, wherein pulse digitization is used to improve energy resolution of the system. A method in a further embodiment includes fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times; and performing a direct integration of fit parameters. Additional systems and methods are also presented.

  6. Microdome-gooved Gd(2)O(2)S:Tb scintillator for flexible and high resolution digital radiography.

    PubMed

    Jung, Phill Gu; Lee, Chi Hoon; Bae, Kong Myeong; Lee, Jae Min; Lee, Sang Min; Lim, Chang Hwy; Yun, Seungman; Kim, Ho Kyung; Ko, Jong Soo

    2010-07-05

    A flexible microdome-grooved Gd(2)O(2)S:Tb scintillator is simulated, fabricated, and characterized for digital radiography applications. According to Monte Carlo simulation results, the dome-grooved structure has a high spatial resolution, which is verified by X-ray image performance of the scintillator. The proposed scintillator has lower X-ray sensitivity than a nonstructured scintillator but almost two times higher spatial resolution at high spatial frequency. Through evaluation of the X-ray performance of the fabricated scintillators, we confirm that the microdome-grooved scintillator can be applied to next-generation flexible digital radiography systems requiring high spatial resolution.

  7. A Wavelet Packet Transform Inspired Method of Neutron-Gamma Discrimination

    NASA Astrophysics Data System (ADS)

    Shippen, David I.; Joyce, Malcolm J.; Aspinall, Michael D.

    2010-10-01

    A Simplified Digital Charge Collection (SDCC) method of discrimination between neutron and gamma pulses in an organic scintillator is presented and compared to the Pulse Gradient Analysis (PGA) discrimination method. Data used in this research were gathered from events arising from the 7Li(p,n)7Be reaction detected by an EJ-301 organic liquid scintillator recorded with a fast digital oscilloscope. Time-of-Flight (TOF) data were also recorded and used as a second means of identification. The SDCC method is found to improve on the figure of merit (FOM) given by PGA method at the equivalent sampling rate.

  8. Neutron/gamma pulse shape discrimination (PSD) in plastic scintillators with digital PSD electronics

    NASA Astrophysics Data System (ADS)

    Hutcheson, Anthony L.; Simonson, Duane L.; Christophersen, Marc; Phlips, Bernard F.; Charipar, Nicholas A.; Piqué, Alberto

    2013-05-01

    Pulse shape discrimination (PSD) is a common method to distinguish between pulses produced by gamma rays and neutrons in scintillator detectors. This technique takes advantage of the property of many scintillators that excitations by recoil protons and electrons produce pulses with different characteristic shapes. Unfortunately, many scintillating materials with good PSD properties have other, undesirable properties such as flammability, toxicity, low availability, high cost, and/or limited size. In contrast, plastic scintillator detectors are relatively low-cost, and easily handled and mass-produced. Recent studies have demonstrated efficient PSD in plastic scintillators using a high concentration of fluorescent dyes. To further investigate the PSD properties of such systems, mixed plastic scintillator samples were produced and tested. The addition of up to 30 wt. % diphenyloxazole (DPO) and other chromophores in polyvinyltoluene (PVT) results in efficient detection with commercial detectors. These plastic scintillators are produced in large diameters up to 4 inches by melt blending directly in a container suitable for in-line detector use. This allows recycling and reuse of materials while varying the compositions. This strategy also avoids additional sample handling and polishing steps required when using removable molds. In this presentation, results will be presented for different mixed-plastic compositions and compared with known scintillating materials

  9. Digital pulse shape discrimination methods for n-γ separation in an EJ-301 liquid scintillation detector

    NASA Astrophysics Data System (ADS)

    Wan, Bo; Zhang, Xue-Ying; Chen, Liang; Ge, Hong-Lin; Ma, Fei; Zhang, Hong-Bin; Ju, Yong-Qin; Zhang, Yan-Bin; Li, Yan-Yan; Xu, Xiao-Wei

    2015-11-01

    A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with an EJ-301 liquid scintillation detector. The module was operated by running programs developed in LabVIEW, with a sampling frequency up to 1.6 GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function was obtained. Digital algorithms for the charge comparison method and zero-crossing method have been developed. The experimental results show that both digital signal processing (DSP) algorithms can discriminate neutrons from γ-rays. Moreover, the zero-crossing method shows better n-γ discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) for detectors of two different dimensions were extracted at 9 energy thresholds, and it was found that the smaller detector presented better n-γ separation for fission neutrons. Supported by National Natural Science Foundation of China (91226107, 11305229) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03030300)

  10. First results from gamma ray diagnostics in EAST Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, R. J.; Hu, L. Q.; Zhong, G. Q., E-mail: gqzhong@ipp.ac.cn

    2016-11-15

    Gamma ray diagnostics has been developed in the EAST tokamak recently. Six BGO scintillator detectors are arranged on the down-half cross-section and pointed at the up-half cross-section of plasma, with space resolution about 15 cm and energy range from 0.3 MeV to 6 MeV. Three main gamma ray peaks in the energy spectra have been observed and are identified as the results of nuclear reactions {sup 207}Pb(n, n′){sup 207m}Pb, H(n, γ) D, and D(p, γ){sup 3}He, respectively. Upgrading of the system is in progress by using LaBr3(Ce) scintillator, fast photo-multiplier tubes, and a fully digital data acquisition system based onmore » high sample frequency digitizers with digital pulse processing algorithms.« less

  11. First Tests of a New Fast Waveform Digitizer for PMT Signal Read-out from Liquid Argon Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Szelc, A. M.; Canci, N.; Cavanna, F.; Cortopassi, A.; D'Incecco, M.; Mini, G.; Pietropaolo, F.; Romboli, A.; Segreto, E.; Acciarri, R.

    A new generation Waveform Digitizer board as been recently made available on the market by CAEN. The new board CAEN V1751 with 8 Channels per board, 10 bit, 1 GS/s Flash ADC Waveform Digitizer (or 4 channel, 10 bit, 2 GS/s Flash ADC Waveform Digitizer -Dual Edge Sampling mode) with threshold and Auto-Trigger capabilities provides an ideal (relatively low-cost) solution for reading signals from liquid Argon detectors for Dark Matter search equipped with an array of PMTs for the detection of scintillation light. The board was extensively used in real experimental conditions to test its usefulness for possible future uses and to compare it with a state of the art digital oscilloscope. As results, PMT Signal sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the signal scintillation in Argon (characteristic time of about 4 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.

  12. Investigation of Self Triggered Cosmic Ray Detectors using Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Knox, Adrian; Niduaza, Rommel; Hernandez, Victor; Ruiz, Daniel; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is a highly sensitive light detector capable of measuring single photons. It costs a fraction of the photomultiplier tube and operates slightly above the breakdown voltage. At this conference we describe our investigation of SiPM, the multipixel photon counters (MPPC) from Hamamatsu as readout detectors for plastic scintillators working for detecting cosmic ray particles. Our setup consists of scintillator sheets embedded with blue to green wavelength shifting fibers optically coupled to MPPCs to detect scintillating light. Four detector assemblies would be constructed and arranged to work in self triggered mode. Using custom matching tee boxes, the amplified MPPC signals are fed to discriminators with threshold set to give a reasonable coincidence count rate. Moreover, the detector waveforms are digitized using a 5 Giga Samples per second waveform digitizer, the DRS4, and triggered with the coincidence logic to capture the MPPC waveforms. Offline analysis of the digitized waveforms is accomplished using the CERN package PAW and results of our experiments and the data analysis would also be discussed. US Department of Education Title V Grant Number PO31S090007.

  13. Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Alharbi, T.

    2015-01-01

    The development of compact, battery-powered digital liquid scintillation neutron detection systems for field applications requires digital pulse processing (DPP) algorithms with minimum computational overhead. To meet this demand, two DPP algorithms for the discrimination of neutron and γ-rays with liquid scintillation detectors were developed and examined by using a NE213 liquid scintillation detector in a mixed radiation field. The first algorithm is based on the relation between the amplitude of a current pulse at the output of a photomultiplier tube and the amount of charge contained in the pulse. A figure-of-merit (FOM) value of 0.98 with 450 keVee (electron equivalent energy) energy threshold was achieved with this method when pulses were sampled at 250 MSample/s and with 8-bit resolution. Compared to the similar method of charge-comparison this method requires only a single integration window, thereby reducing the amount of computations by approximately 40%. The second approach is a digital version of the trailing-edge constant-fraction discrimination method. A FOM value of 0.84 with an energy threshold of 450 keVee was achieved with this method. In comparison with the similar method of rise-time discrimination this method requires a single time pick-off, thereby reducing the amount of computations by approximately 50%. The algorithms described in this work are useful for developing portable detection systems for applications such as homeland security, radiation dosimetry and environmental monitoring.

  14. Novel scintillating material 2-(4-styrylphenyl)benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators

    PubMed Central

    Dulski, Kamil; Niedźwiecki, Szymon; Alfs, Dominika; Białas, Piotr; Curceanu, Catalina; Czerwiński, Eryk; Danel, Andrzej; Gajos, Aleksander; Głowacz, Bartosz; Gorgol, Marek; Hiesmayr, Beatrix; Jasińska, Bożena; Kacprzak, Krzysztof; Kamińska, Daria; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Kubicz, Ewelina; Kucharek, Mateusz; Mohammed, Muhsin; Pawlik-Niedźwiecka, Monika; Pałka, Marek; Raczyński, Lech; Rudy, Zbigniew; Rundel, Oleksandr; Sharma, Neha G.; Silarski, Michał; Uchacz, Tomasz; Wiślicki, Wojciech; Zgardzińska, Bożena; Zieliński, Marcin; Moskal, Paweł

    2017-01-01

    A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm. PMID:29176834

  15. Novel scintillating material 2-(4-styrylphenyl)benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators.

    PubMed

    Wieczorek, Anna; Dulski, Kamil; Niedźwiecki, Szymon; Alfs, Dominika; Białas, Piotr; Curceanu, Catalina; Czerwiński, Eryk; Danel, Andrzej; Gajos, Aleksander; Głowacz, Bartosz; Gorgol, Marek; Hiesmayr, Beatrix; Jasińska, Bożena; Kacprzak, Krzysztof; Kamińska, Daria; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Kubicz, Ewelina; Kucharek, Mateusz; Mohammed, Muhsin; Pawlik-Niedźwiecka, Monika; Pałka, Marek; Raczyński, Lech; Rudy, Zbigniew; Rundel, Oleksandr; Sharma, Neha G; Silarski, Michał; Uchacz, Tomasz; Wiślicki, Wojciech; Zgardzińska, Bożena; Zieliński, Marcin; Moskal, Paweł

    2017-01-01

    A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm.

  16. A multi-channel setup to study fractures in scintillators

    NASA Astrophysics Data System (ADS)

    Tantot, A.; Bouard, C.; Briche, R.; Lefèvre, G.; Manier, B.; Zaïm, N.; Deschanel, S.; Vanel, L.; Di Stefano, P. C. F.

    2016-12-01

    To investigate fractoluminescence in scintillating crystals used for particle detection, we have developed a multi-channel setup built around samples of double-cleavage drilled compression (DCDC) geometry in a controllable atmosphere. The setup allows the continuous digitization over hours of various parameters, including the applied load, and the compressive strain of the sample, as well as the acoustic emission. Emitted visible light is recorded with nanosecond resolution, and crack propagation is monitored using infrared lighting and camera. An example of application to \\text{B}{{\\text{i}}4}\\text{G}{{\\text{e}}3}{{\\text{O}}12} (BGO) is provided.

  17. Coincidence measurements in α/β/γ spectrometry with phoswich detectors using digital pulse shape discrimination analysis

    NASA Astrophysics Data System (ADS)

    de Celis, B.; de la Fuente, R.; Williart, A.; de Celis Alonso, B.

    2007-09-01

    A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for α/β/γ ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed α/β/γ field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of β particles in a plastic scintillator and γ rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF 2(Eu) for β ray detection and NaI(Tl) for γ ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis.

  18. Optimal design of waveform digitisers for both energy resolution and pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Cang, Jirong; Xue, Tao; Zeng, Ming; Zeng, Zhi; Ma, Hao; Cheng, Jianping; Liu, Yinong

    2018-04-01

    Fast digitisers and digital pulse processing have been widely used for spectral application and pulse shape discrimination (PSD) owing to their advantages in terms of compactness, higher trigger rates, offline analysis, etc. Meanwhile, the noise of readout electronics is usually trivial for organic, plastic, or liquid scintillator with PSD ability because of their poor intrinsic energy resolution. However, LaBr3(Ce) has been widely used for its excellent energy resolution and has been proven to have PSD ability for alpha/gamma particles. Therefore, designing a digital acquisition system for such scintillators as LaBr3(Ce) with both optimal energy resolution and promising PSD ability is worthwhile. Several experimental research studies about the choice of digitiser properties for liquid scintillators have already been conducted in terms of the sampling rate and vertical resolution. Quantitative analysis on the influence of waveform digitisers, that is, fast amplifier (optional), sampling rates, and vertical resolution, on both applications is still lacking. The present paper provides quantitative analysis of these factors and, hence, general rules about the optimal design of digitisers for both energy resolution and PSD application according to the noise analysis of time-variant gated charge integration.

  19. An investigation of the digital discrimination of neutrons and γ rays with organic scintillation detectors using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Liu, G.; Aspinall, M. D.; Ma, X.; Joyce, M. J.

    2009-08-01

    The discrimination of neutron and γ-ray events in an organic scintillator has been investigated by using a method based on an artificial neural network (ANN). Voltage pulses arising from an EJ-301 organic liquid scintillation detector in a mixed radiation field have been recorded with a fast digital sampling oscilloscope. Piled-up events have been disentangled using a pile-up management unit based on a fitting method. Each individual pulse has subsequently been sent to a discrimination unit which discriminates neutron and γ-ray events with a method based on an artificial neural network. This discrimination technique has been verified by the corresponding mixed-field data assessed by time of flight (TOF). It is shown that the characterization of the neutrons and photons achieved by the discrimination method based on the ANN is consistent with that afforded by TOF. This approach enables events that are often as a result of scattering or pile-up to be identified and returned to the data set and affords digital discrimination of mixed radiation fields in a broad range of environments on the basis of training obtained with a single TOF dataset.

  20. Improved pulse shape discrimination in EJ-301 liquid scintillators

    NASA Astrophysics Data System (ADS)

    Lang, R. F.; Masson, D.; Pienaar, J.; Röttger, S.

    2017-06-01

    Digital pulse shape discrimination has become readily available to distinguish nuclear recoil and electronic recoil events in scintillation detectors. We evaluate digital implementations of pulse shape discrimination algorithms discussed in the literature, namely the Charge Comparison Method, Pulse-Gradient Analysis, Fourier Series and Standard Event Fitting. In addition, we present a novel algorithm based on a Laplace Transform. Instead of comparing the performance of these algorithms based on a single Figure of Merit, we evaluate them as a function of recoil energy. Specifically, using commercial EJ-301 liquid scintillators, we examined both the resulting acceptance of nuclear recoils at a given rejection level of electronic recoils, as well as the purity of the selected nuclear recoil event samples. We find that both a Standard Event fit and a Laplace Transform can be used to significantly improve the discrimination capabilities over the whole considered energy range of 0 - 800keVee . Furthermore, we show that the Charge Comparison Method performs poorly in accurately identifying nuclear recoils.

  1. Skin contamination dosimeter

    DOEpatents

    Hamby, David M [Corvallis, OR; Farsoni, Abdollah T [Corvallis, OR; Cazalas, Edward [Corvallis, OR

    2011-06-21

    A technique and device provides absolute skin dosimetry in real time at multiple tissue depths simultaneously. The device uses a phoswich detector which has multiple scintillators embedded at different depths within a non-scintillating material. A digital pulse processor connected to the phoswich detector measures a differential distribution (dN/dH) of count rate N as function of pulse height H for signals from each of the multiple scintillators. A digital processor computes in real time from the differential count-rate distribution for each of multiple scintillators an estimate of an ionizing radiation dose delivered to each of multiple depths of skin tissue corresponding to the multiple scintillators embedded at multiple corresponding depths within the non-scintillating material.

  2. Time-resolved gamma spectroscopy of single events

    NASA Astrophysics Data System (ADS)

    Wolszczak, W.; Dorenbos, P.

    2018-04-01

    In this article we present a method of characterizing scintillating materials by digitization of each individual scintillation pulse followed by digital signal processing. With this technique it is possible to measure the pulse shape and the energy of an absorbed gamma photon on an event-by-event basis. In contrast to time-correlated single photon counting technique, the digital approach provides a faster measurement, an active noise suppression, and enables characterization of scintillation pulses simultaneously in two domains: time and energy. We applied this method to study the pulse shape change of a CsI(Tl) scintillator with energy of gamma excitation. We confirmed previously published results and revealed new details of the phenomenon.

  3. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  4. Sample-interpolation timing: an optimized technique for the digital measurement of time of flight for γ rays and neutrons at relatively low sampling rates

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Mackin, R. O.; Jarrah, Z.; Boston, A. J.; Nolan, P. J.; Peyton, A. J.; Hawkes, N. P.

    2009-01-01

    A unique, digital time pick-off method, known as sample-interpolation timing (SIT) is described. This method demonstrates the possibility of improved timing resolution for the digital measurement of time of flight compared with digital replica-analogue time pick-off methods for signals sampled at relatively low rates. Three analogue timing methods have been replicated in the digital domain (leading-edge, crossover and constant-fraction timing) for pulse data sampled at 8 GSa s-1. Events arising from the 7Li(p, n)7Be reaction have been detected with an EJ-301 organic liquid scintillator and recorded with a fast digital sampling oscilloscope. Sample-interpolation timing was developed solely for the digital domain and thus performs more efficiently on digital signals compared with analogue time pick-off methods replicated digitally, especially for fast signals that are sampled at rates that current affordable and portable devices can achieve. Sample interpolation can be applied to any analogue timing method replicated digitally and thus also has the potential to exploit the generic capabilities of analogue techniques with the benefits of operating in the digital domain. A threshold in sampling rate with respect to the signal pulse width is observed beyond which further improvements in timing resolution are not attained. This advance is relevant to many applications in which time-of-flight measurement is essential.

  5. A DSP equipped digitizer for online analysis of nuclear detector signals

    NASA Astrophysics Data System (ADS)

    Pasquali, G.; Ciaranfi, R.; Bardelli, L.; Bini, M.; Boiano, A.; Giannelli, F.; Ordine, A.; Poggi, G.

    2007-01-01

    In the framework of the NUCL-EX collaboration, a DSP equipped fast digitizer has been implemented and it has now reached the production stage. Each sampling channel is implemented on a separate daughter-board to be plugged on a VME mother-board. Each channel features a 12-bit, 125 MSamples/s ADC and a Digital Signal Processor (DSP) for online analysis of detector signals. A few algorithms have been written and successfully tested on detectors of different types (scintillators, solid-state, gas-filled), implementing pulse shape discrimination, constant fraction timing, semi-Gaussian shaping, gated integration.

  6. Digital pulse shape discrimination.

    PubMed

    Miller, L F; Preston, J; Pozzi, S; Flaska, M; Neal, J

    2007-01-01

    Pulse-shape discrimination (PSD) has been utilised for about 40 years as a method to obtain estimates for dose in mixed neutron and photon fields. Digitizers that operate close to GHz are currently available at a reasonable cost, and they can be used to directly sample signals from photomultiplier tubes. This permits one to perform digital PSD rather than the traditional, and well-established, analogoue techniques. One issue that complicates PSD for neutrons in mixed fields is that the light output characteristics of typical scintillators available for PSD, such as BC501A, vary as a function of energy deposited in the detector. This behaviour is more easily accommodated with digital processing of signals than with analogoue signal processing. Results illustrate the effectiveness of digital PSD.

  7. Pulse-shape discrimination scintillators for homeland security applications

    NASA Astrophysics Data System (ADS)

    Ellis, Mark E.; Duroe, Kirk; Kendall, Paul A.

    2016-09-01

    An extensive programme of research has been conducted for scintillation liquids and plastics capable of neutron-gamma discrimination for deployment in future passive and active Homeland Security systems to provide protection against radiological and nuclear threats. The more established detection materials such as EJ-301 and EJ-309 are compared with novel materials such as EJ-299-33 and p-terphenyl. This research also explores the benefits that can be gained from improvements in the analogue-to-digital sampling rate and sample bit resolution. Results are presented on the Pulse Shape Discrimination performance of various detector and data acquisition combinations and how optimum configurations from these studies have been developed into field-ready detector arrays. Early results from application-specific experimental configurations of multi-element detector arrays are presented.

  8. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Hrynevich, A.

    2017-06-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC . Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV . Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response and its modelling by the Monte Carlo simulations. The calorimeter time resolution is studied with multijet events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  9. Neutron/ γ-ray digital pulse shape discrimination with organic scintillators

    NASA Astrophysics Data System (ADS)

    Kaschuck, Y.; Esposito, B.

    2005-10-01

    Neutrons and γ-rays produce light pulses with different shapes when interacting with organic scintillators. This property is commonly used to distinguish between neutrons (n) and γ-rays ( γ) in mixed n/ γ fields as those encountered in radiation physics experiments. Although analog electronic pulse shape discrimination (PSD) modules have been successfully used for many years, they do not allow data reprocessing and are limited in count rate capability (typically up to 200 kHz). The performance of a n/ γ digital pulse shape discrimination (DPSD) system by means of a commercial 12-bit 200 MSamples/s transient recorder card is investigated here. Three organic scintillators have been studied: stilbene, NE213 and anthracene. The charge comparison method has been used to obtain simultaneous n/ γ discrimination and pulse height analysis. The importance of DPSD for high-intensity radiation field measurements and its advantages with respect to analog PSD are discussed. Based on post-experiment simulations with acquired data, the requirements for fast digitizers to provide DPSD with organic scintillators are also analyzed.

  10. Real-Time, Digital Pulse-Shape Discrimination in Non-Hazardous Fast Liquid Scintillation Detectors: Prospects for Safety and Security

    NASA Astrophysics Data System (ADS)

    Joyce, Malcolm J.; Aspinall, Michael D.; Cave, Francis D.; Lavietes, Anthony D.

    2012-08-01

    Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and γ rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/γ-ray separation. Moreover, the scintillation media on which the technique relies usually have a low flashpoint and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/γ-ray separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 × 106 events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous.

  11. Methods of alleviation of ionospheric scintillation effects on digital communications

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1974-01-01

    The degradation of the performance of digital communication systems because of ionospheric scintillation effects can be reduced either by diversity techniques or by coding. The effectiveness of traditional space-diversity, frequency-diversity and time-diversity techniques is reviewed and design considerations isolated. Time-diversity signaling is then treated as an extremely simple form of coding. More advanced coding methods, such as diffuse threshold decoding and burst-trapping decoding, which appear attractive in combatting scintillation effects are discussed and design considerations noted. Finally, adaptive coding techniques appropriate when the general state of the channel is known are discussed.

  12. Measurement of Fission Neutron Spectrum and Multiplicity using a Gamma Tag Double Time-of-flight Setup

    NASA Astrophysics Data System (ADS)

    Blain, E.; Daskalakis, A.; Danon, Y.

    2014-05-01

    Recent efforts have been made to improve the prompt fission neutron spectrum and nu-bar measurements for Uranium and Plutonium isotopes particularly in the keV region. A system has been designed at Rensselaer Polytechnic Institute (RPI) utilizing an array of EJ-301 liquid scintillators as well as lithium glass and plastic scintillators to experimentally determine these values. An array of BaF2 detectors was recently obtained from Oak Ridge National Laboratory to be used in conjunction with the neutron detectors. The system uses a novel gamma tagging method for fission which can offer an improvement over conventional fission chambers due to increased sample mass. A coincidence requirement on the gamma detectors from prompt fission gammas is used as the fission tag for the system as opposed to fission fragments in a conventional fission chamber. The system utilizes pulse digitization using Acqiris 8 bit digitizer boards which allow for gamma/neutron pulse height discrimination on the liquid scintillators during post processing. Additionally, a 252Cf fission chamber was designed and constructed at RPI which allowed for optimization and testing of the system without the need for an external neutron source. The characteristics of the gamma tagging method such as false detection rate and detection efficiency were determined using this fission chamber and verified using MCNP Polimi modeling. Prompt fission neutron spectrum data has been taken using the fission chamber focusing on the minimum detectable neutron energy for each of the various detectors. Plastic scintillators were found to offer a significant improvement over traditional liquid scintillators allowing energy measurements down to 50 keV. Background was also characterized for all detectors and will be discussed.

  13. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  14. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution

    NASA Astrophysics Data System (ADS)

    Seifert, Stefan; van der Lei, Gerben; van Dam, Herman T.; Schaart, Dennis R.

    2013-05-01

    Monolithic scintillator detectors can offer a combination of spatial resolution, energy resolution, timing performance, depth-of-interaction information, and detection efficiency that make this type of detector a promising candidate for application in clinical, time-of-flight (TOF) positron emission tomography (PET). In such detectors the scintillation light is distributed over a relatively large number of photosensor pixels and the light intensity per pixel can be relatively low. Therefore, monolithic scintillator detectors are expected to benefit from the low readout noise offered by a novel photosensor called the digital silicon photomultiplier (dSiPM). Here, we present a first experimental characterization of a TOF PET detector comprising a 24 × 24 × 10 mm3 LSO:Ce,0.2%Ca scintillator read out by a dSiPM array (DPC-6400-44-22) developed by Philips Digital Photon Counting. A spatial resolution of ˜1 mm full-width-at-half-maximum (FWHM) averaged over the entire crystal was obtained (varying from just below 1 mm FWHM in the detector center to ˜1.2 mm FWHM close to the edges). Furthermore, the bias in the position estimation at the crystal edges that is typically found in monolithic scintillators is well below 1 mm even in the corners of the crystal.

  15. Cross-correlation measurements with the EJ-299-33 plastic scintillator

    NASA Astrophysics Data System (ADS)

    Bourne, Mark M.; Whaley, Jeff; Dolan, Jennifer L.; Polack, John K.; Flaska, Marek; Clarke, Shaun D.; Tomanin, Alice; Peerani, Paolo; Pozzi, Sara A.

    2015-06-01

    New organic-plastic scintillation compositions have demonstrated pulse-shape discrimination (PSD) of neutrons and gamma rays. We present cross-correlation measurements of 252Cf and mixed uranium-plutonium oxide (MOX) with the EJ-299-33 plastic scintillator. For comparison, equivalent measurements were performed with an EJ-309 liquid scintillator. Offline, digital PSD was applied to each detector. These measurements show that EJ-299-33 sacrifices a factor of 5 in neutron-neutron efficiency relative to EJ-309, but could still utilize the difference in neutron-neutron efficiency and neutron single-to-double ratio to distinguish 252Cf from MOX. These measurements were modeled with MCNPX-PoliMi, and MPPost was used to convert the detailed collision history into simulated cross-correlation distributions. MCNPX-PoliMi predicted the measured 252Cf cross-correlation distribution for EJ-309 to within 10%. Greater photon uncertainty in the MOX sample led to larger discrepancy in the simulated MOX cross-correlation distribution. The modeled EJ-299-33 plastic also gives reasonable agreement with measured cross-correlation distributions, although the MCNPX-PoliMi model appears to under-predict the neutron detection efficiency.

  16. Simultaneous beta and gamma spectroscopy

    DOEpatents

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  17. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    NASA Astrophysics Data System (ADS)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  18. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    NASA Astrophysics Data System (ADS)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  19. Development of a real-time digital radiography system using a scintillator-type flat-panel detector

    NASA Astrophysics Data System (ADS)

    Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Okajima, Kenichi

    2001-06-01

    In order to study the advantage and remaining problems of FPD (flat panel detector) for clinical use by the real-time DR (digital radiography) system, we developed a prototype system using a scintillator type FPD and which was compared with previous I.I.-CCD type real-time DR. We replaced the X- ray detector of DR-2000X from I.I.-4M (4 million pixels)-CCD camera to the scintillator type dynamic FPD(7' X 9', 127 micrometers ), which can take both radiographic and fluoroscopic images. We obtained the images of head and stomach phantoms, and discussed about the image quality with medical doctors.

  20. Investigation of digital timing resolution and further improvement by using constant fraction signal time marker slope for fast scintillator detectors

    NASA Astrophysics Data System (ADS)

    Singh, Kundan; Siwal, Davinder

    2018-04-01

    A digital timing algorithm is explored for fast scintillator detectors, viz. LaBr3, BaF2, and BC501A. Signals were collected with CAEN 250 mega samples per second (MSPS) and 500 MSPS digitizers. The zero crossing time markers (TM) were obtained with a standard digital constant fraction timing (DCF) method. Accurate timing information is obtained using cubic spline interpolation of a DCF transient region sample points. To get the best time-of-flight (TOF) resolution, an optimization of DCF parameters is performed (delay and constant fraction) for each pair of detectors: (BaF2-LaBr3), (BaF2-BC501A), and (LaBr3-BC501A). In addition, the slope information of an interpolated DCF signal is extracted at TM position. This information gives a new insight to understand the broadening in TOF, obtained for a given detector pair. For a pair of signals having small relative slope and interpolation deviations at TM, leads to minimum time broadening. However, the tailing in TOF spectra is dictated by the interplay between the interpolation error and slope variations. Best TOF resolution achieved at the optimum DCF parameters, can be further improved by using slope parameter. Guided by the relative slope parameter, events selection can be imposed which leads to reduction in TOF broadening. While the method sets a trade-off between timing response and coincidence efficiency, it provides an improvement in TOF. With the proposed method, the improved TOF resolution (FWHM) for the aforementioned detector pairs are; 25% (0.69 ns), 40% (0.74 ns), 53% (0.6 ns) respectively, obtained with 250 MSPS, and corresponds to 12% (0.37 ns), 33% (0.72 ns), 35% (0.69 ns) respectively with 500 MSPS digitizers. For the same detector pair, event survival probabilities are; 57%, 58%, 51% respectively with 250 MSPS and becomes 63%, 57%, 68% using 500 MSPS digitizers.

  1. A digital acquisition and elaboration system for nuclear fast pulse detection

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Riva, M.; Marocco, D.; Kaschuck, Y.

    2007-03-01

    A new digital acquisition and elaboration system has been developed and assembled in ENEA-Frascati for the direct sampling of fast pulses from nuclear detectors such as scintillators and diamond detectors. The system is capable of performing the digital sampling of the pulses (200 MSamples/s, 14-bit) and the simultaneous (compressed) data transfer for further storage and software elaboration. The design (FPGA-based) is oriented to real-time applications and has been developed in order to allow acquisition with no loss of pulses and data storage for long-time intervals (tens of s at MHz pulse count rates) without the need of large on-board memory. A dedicated pulse analysis software, written in LabVIEWTM, performs the treatment of the acquired pulses, including pulse recognition, pile-up rejection, baseline removal, pulse shape particle separation and pulse height spectra analysis. The acquisition and pre-elaboration programs have been fully integrated with the analysis software.

  2. Timing Characterization of Helium-4 Fast Neutron Detector with EJ-309 Organic Liquid Scintillator

    NASA Astrophysics Data System (ADS)

    Liang, Yinong; Zhu, Ting; Enqvist, Andreas

    2018-01-01

    Recently, the Helium-4 gas fast neutron scintillation detectors is being used in time-sensitive measurements, such time-of-flight and multiplicity counting. In this paper, a set of time aligned signals was acquired in a coincidence measurement using the Helium-4 gas detectors and EJ-309 liquid scintillators. The high-speed digitizer system is implanted with a trigger moving average window (MAW) unit combing with its constant fraction discriminator (CFD) feature. It can calculate a "time offset" to the timestamp value to get a higher resolution timestamp (up to 50 ps), which is better than the digitizer's time resolution (4 ns) [1]. The digitized waveforms were saved to the computer hard drive and post processed with digital analysis code to determine the difference of their arrival times. The full-width at half-maximum (FWHM) of the Gaussian fit was used as to examine the resolution. For the cascade decay of Cobalt-60 (1.17 and 1.33 MeV), the first version of the Helium-4 detector with two Hamamatsu R580 photomultipliers (PMT) installed at either end of the cylindrical gas chamber (20 cm in length and 4.4 cm in diameter) has a time resolution which is about 3.139 ns FWHM. With improved knowledge of the timing performance, the Helium-4 scintillation detectors are excellent for neutron energy spectrometry applications requiring high temporal and energy resolutions.

  3. Radiation Discrimination in LiBaF3 Scintillator Using Digital Signal Processing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Bowyer, Sonya M.; Reeder, Paul L.

    2002-11-01

    The new scintillator material LiBaF3:Ce offers the possibility of measuring neutron or alpha count rates and energy spectra simultaneously while measuring gamma count rates and spectra using a single detector.

  4. Real-Time Capabilities of a Digital Analyzer for Mixed-Field Assay Using Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Lavietes, A.; Plenteda, R.; Cave, F. D.; Parker, H.; Jones, A.; Astromskas, V.

    2017-03-01

    Scintillation detectors offer a single-step detection method for fast neutrons and necessitate real-time acquisition, whereas this is redundant in two-stage thermal detection systems using helium-3 and lithium-6, where the fast neutrons need to be thermalized prior to detection. The relative affordability of scintillation detectors and the associated fast digital acquisition systems have enabled entirely new measurement setups that can consist of sizeable detector arrays. These detectors in most cases rely on photomultiplier tubes, which have significant tolerances and result in variations in detector response functions. The detector tolerances and other environmental instabilities must be accounted for in measurements that depend on matched detector performance. This paper presents recent advances made to a high-speed FPGA-based digitizer. The technology described offers a complete solution for fast-neutron scintillation detectors by integrating multichannel high-speed data acquisition technology with dedicated detector high-voltage supplies. This configuration has significant advantages for large detector arrays that require uniform detector responses. We report on bespoke control software and firmware techniques that exploit real-time functionality to reduce setup and acquisition time, increase repeatability, and reduce statistical uncertainties.

  5. Digital simulation of a communication link for Pioneer Saturn Uranus atmospheric entry probe, part 1

    NASA Technical Reports Server (NTRS)

    Hinrichs, C. A.

    1975-01-01

    A digital simulation study is presented for a candidate modulator/demodulator design in an atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the conditions of an outer planet atmospheric probe. The simulation results indicate that the mean channel error rate with and without scintillation are similar to theoretical characterizations of the link. The simulation gives information for calculating other channel statistics and generates a quantized symbol stream on magnetic tape from which error correction decoding is analyzed. Results from the magnetic tape data analyses are also included. The receiver and bit synchronizer are modeled in the simulation at the level of hardware component parameters rather than at the loop equation level and individual hardware parameters are identified. The atmospheric scintillation amplitude and phase are modeled independently. Normal and log normal amplitude processes are studied. In each case the scintillations are low pass filtered. The receiver performance is given for a range of signal to noise ratios with and without the effects of scintillation. The performance is reviewed for critical reciever parameter variations.

  6. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2011-01-01

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  7. Measuring the dependence of the decay curve on the electron energy deposit in NaI(Tl)

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Bizarri, G.; Cherepy, N. J.; Hull, G.; Moses, W. W.; Payne, S. A.

    2011-08-01

    We report on the first measurement of the decay times of NaI(Tl) as a function of the deposited electron energy. It has been suggested that the decay curve depends on the ionization density, which is correlated with the electron energy deposit in the scintillator. The ionization creates excitation states, which can decay radiatively and non-radiatively through a number of competing processes. As a result, the rate at which the excitation decays depends on the ionization density. A measurement of the decay curve as a function of the ionization density will allow us to probe the kinetic rates of the competing processes. The Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI) measures the electron response of scintillators utilizing fast sampling ADCs to digitize the raw signals from the detectors, and so can provide a measurement of the light pulse shape from the scintillator. Using data collected with the SLYNCI instrument, the intrinsic scintillation profile is extracted on an event-by-event basis by deconvolving the raw signal with the impulse response of the system. Scintillation profiles with the same electron energy deposit are summed to obtain decay curves as a function of the deposited electron energy. The decay time constants are obtained by fitting the decay curves with a two-component exponential decay. While a slight dependence of the decay time constants on the electron energy deposit is observed, the results are not statistically significant.

  8. Bright Eu2+-activated polycrystalline ceramic neutron scintillators

    NASA Astrophysics Data System (ADS)

    Wang, C. L.; Paranthaman, M. P.; Riedel, R. A.; Hodges, J. P.; Karlic, J. J.; Veatch, R. A.; Li, L.; Bridges, C. A.

    2018-03-01

    Scintillation properties of Eu2+-doped CaF2-AlF3-6LiF (Eu:CALF) polycrystalline ceramic thermal-neutron scintillators as a function of AlF3 concentration have been studied. The emission band peaked at a wavelength of 425-431 nm is due to the presence of Eu:CaF2 micro-crystallites. The highest light output from these samples is approximately 20,000 photons per thermal neutron, which is 3 times that of a GS20 6Li-glass scintillator. The pulse-decay lifetime and light output vs. AlF3 concentration may be understood using a radiation trapping model and the formation of a Li3AlF6 phase. At lower AlF3 concentration, Al3+ ions in Eu:CaF2 passivate the hole-trapping defects and enhance the light output; whereas at higher AlF3 concentration, Al3+ ions lead to the formation of electron trapping centers in Eu:CaF2 and the Li3AlF6 phase is formed, which reduces the light output. A neutron-gamma-discrimination (NGD) ratio of 9 × 108 was obtained from Principal Component Analysis (PCA) of digital waveforms, while Fisher Linear Discriminant Analysis (FLDA) can completely separate the thermal neutrons from 60Co gamma rays within the limit of gamma event statistics used in this work. Our results suggest that Eu:CALF scintillators can potentially replace the GS20 scintillator used for thermal and cold neutron detection systems.

  9. Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation.

    PubMed

    van Dam, Herman T; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R

    2013-05-21

    Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm(3), 16 × 16 × 20 mm(3), 24 × 24 × 10 mm(3), and 24 × 24 × 20 mm(3). The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm(3) LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.

  10. Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation

    NASA Astrophysics Data System (ADS)

    van Dam, Herman T.; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R.

    2013-05-01

    Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm3, 16 × 16 × 20 mm3, 24 × 24 × 10 mm3, and 24 × 24 × 20 mm3. The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm3 LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.

  11. Neutron detection in a high gamma-ray background with EJ-301 and EJ-309 liquid scintillators

    NASA Astrophysics Data System (ADS)

    Stevanato, L.; Cester, D.; Nebbia, G.; Viesti, G.

    2012-10-01

    Using a fast digitizer, the neutron-gamma discrimination capability of the new liquid scintillator EJ-309 is compared with that obtained using standard EJ-301. Moreover the capability of both the scintillation detectors to identify a weak neutron source in a high gamma-ray background is demonstrated. The probability of neutron detection is PD=95% at 95% confidence level for a gamma-ray background corresponding to a dose rate of 100 μSv/h.

  12. A first comparison of the responses of a 4He-based fast-neutron detector and a NE-213 liquid-scintillator reference detector

    NASA Astrophysics Data System (ADS)

    Jebali, R.; Scherzinger, J.; Annand, J. R. M.; Chandra, R.; Davatz, G.; Fissum, K. G.; Friederich, H.; Gendotti, U.; Hall-Wilton, R.; Håkansson, E.; Kanaki, K.; Lundin, M.; Murer, D.; Nilsson, B.; Rosborg, A.; Svensson, H.

    2015-09-01

    A first comparison has been made between the pulse-shape discrimination characteristics of a novel 4He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the 4He gas volume, the 4He-based detector registered a maximum scintillation-light yield of 750keVee to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750keVee was excellent in the case of the 4He-based detector. Above 750keVee its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.

  13. Imaging model for the scintillator and its application to digital radiography image enhancement.

    PubMed

    Wang, Qian; Zhu, Yining; Li, Hongwei

    2015-12-28

    Digital Radiography (DR) images obtained by OCD-based (optical coupling detector) Micro-CT system usually suffer from low contrast. In this paper, a mathematical model is proposed to describe the image formation process in scintillator. By solving the correlative inverse problem, the quality of DR images is improved, i.e. higher contrast and spatial resolution. By analyzing the radiative transfer process of visible light in scintillator, scattering is recognized as the main factor leading to low contrast. Moreover, involved blurring effect is also concerned and described as point spread function (PSF). Based on these physical processes, the scintillator imaging model is then established. When solving the inverse problem, pre-correction to the intensity of x-rays, dark channel prior based haze removing technique, and an effective blind deblurring approach are employed. Experiments on a variety of DR images show that the proposed approach could improve the contrast of DR images dramatically as well as eliminate the blurring vision effectively. Compared with traditional contrast enhancement methods, such as CLAHE, our method could preserve the relative absorption values well.

  14. Maximum likelihood positioning and energy correction for scintillation detectors

    NASA Astrophysics Data System (ADS)

    Lerche, Christoph W.; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten

    2016-02-01

    An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30× 30 scintillator pixel array with an 8× 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner’s spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner’s overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.

  15. Digital timing: sampling frequency, anti-aliasing filter and signal interpolation filter dependence on timing resolution.

    PubMed

    Cho, Sanghee; Grazioso, Ron; Zhang, Nan; Aykac, Mehmet; Schmand, Matthias

    2011-12-07

    The main focus of our study is to investigate how the performance of digital timing methods is affected by sampling rate, anti-aliasing and signal interpolation filters. We used the Nyquist sampling theorem to address some basic questions such as what will be the minimum sampling frequencies? How accurate will the signal interpolation be? How do we validate the timing measurements? The preferred sampling rate would be as low as possible, considering the high cost and power consumption of high-speed analog-to-digital converters. However, when the sampling rate is too low, due to the aliasing effect, some artifacts are produced in the timing resolution estimations; the shape of the timing profile is distorted and the FWHM values of the profile fluctuate as the source location changes. Anti-aliasing filters are required in this case to avoid the artifacts, but the timing is degraded as a result. When the sampling rate is marginally over the Nyquist rate, a proper signal interpolation is important. A sharp roll-off (higher order) filter is required to separate the baseband signal from its replicates to avoid the aliasing, but in return the computation will be higher. We demonstrated the analysis through a digital timing study using fast LSO scintillation crystals as used in time-of-flight PET scanners. From the study, we observed that there is no significant timing resolution degradation down to 1.3 Ghz sampling frequency, and the computation requirement for the signal interpolation is reasonably low. A so-called sliding test is proposed as a validation tool checking constant timing resolution behavior of a given timing pick-off method regardless of the source location change. Lastly, the performance comparison for several digital timing methods is also shown.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, M. J.; Aspinall, M. D.; Cave, F. D.

    Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and {gamma} rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/{gamma}-ray separation. Moreover, the scintillation media on whichmore » the technique relies usually have a low flash point and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/{gamma} separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 x 10{sup 6} events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous. (authors)« less

  17. Study of sampling rate influence on neutron-gamma discrimination with stilbene coupled to a silicon photomultiplier.

    PubMed

    Zhang, Jinglong; Moore, Michael E; Wang, Zhonghai; Rong, Zhou; Yang, Chaowen; Hayward, Jason P

    2017-10-01

    Choosing a digitizer with an appropriate sampling rate is often a trade-off between performance and economy. The influence of sampling rates on the neutron-gamma Pulse Shape Discrimination (PSD) with a solid stilbene scintillator coupled to a Silicon Photomultiplier was investigated in this work. Sampling rates from 125MSPS to 2GSPS from a 10-bit digitizer were used to collect detector pulses produced by the interactions of a Cf-252 source. Due to the decreased signal-to-noise ratio (SNR), the PSD performance degraded with reduced sampling rates. The reason of PSD performance degradation was discussed. Then, an efficient combination of filtering and digital signal processing (DSP) was then applied to suppress the timing noise and electronic background noise. The results demonstrate an improved PSD performance especially at low sampling rates, down to 125MSPS. Using filtering and DSP, the ascribed Figure of Merit (FOM) at 125keV ee (± 10keV ee ) increased from 0.95 to 1.02 at 125MSPS. At 300keV ee and above, all the FOMs are better than 2.00. Our study suggests that 250MSPS is a good enough sampling rate for neutron-gamma discrimination in this system in order to be sensitive to neutrons at and above ~ 125keV ee . Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. X-ray radiation detectors of ``scintillator-photoreceiving device type'' for industrial digital radiography with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Ryzhykov, V. D.; Lysetska, O. K.; Opolonin, O. D.; Kozin, D. N.

    2003-06-01

    Main types of photoreceivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of "scintillator-photoreceiving device" (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm.

  19. Plastic scintillation detectors for dose monitoring in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Antunes, J.; Machado, J.; Peralta, L.; Matela, N.

    2018-01-01

    Plastic scintillators detectors (PSDs) have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Measurement and analysis of energy dependency were performed on a Siemens Mammomat tomograph for two different peak kilovoltages: 26 kV and 35 kV. Both PSD displayed good linearity for each energy considered and almost no energy dependence.

  20. Upgrade of Tile Calorimeter of the ATLAS Detector for the High Luminosity LHC.

    NASA Astrophysics Data System (ADS)

    Valdes Santurio, Eduardo; Tile Calorimeter System, ATLAS

    2017-11-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 × 1034 cm -2 s -1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC in 2026. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. Field Programmable Gate Arrays (FPGAs) are extensively used for the logic functions of the off- and on-detector electronics. One hybrid demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, may be inserted in ATLAS at the end of 2016.

  1. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  2. Spectroscopic Investigations with Dual Neutron-Gamma Scintillators

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Brown, T.; Doucet, E.; Lister, C. J.; Morse, C.; Rogers, A. M.; Wilson, G. L.; Devlin, M.; Fotiades, N.; Gomez, J. A.; Mosby, S.

    2017-09-01

    The spectroscopic capabilities of 7Li-enriched Cs27LiYCl6 (C7LYC) dual neutron-gamma scintillators are being tested in diverse application arenas to exploit the excellent pulse-shape discrimination together with the unprecedented pulse height resolution ( 10%) for fast neutrons in the < 8 MeV range via the 35Cl(n,p) reaction. Test experiments include both elastic and inelastic neutron scattering cross-sections on 56Fe at Los Alamos with a pulsed white neutron source, as well as (p,n) and (d,n) reactions on low-Z targets using mono-energetic proton and deuteron beams from the 5.5 MV Van de Graaff accelerator at the UMass Lowell Radiation Laboratory. Tests of waveform digitizers with different sampling rates are also being performed. A key goal is to evaluate whether the low intrinsic efficiency of C7LYC for fast neutrons compared to traditional neutron detectors, such as liquid scintillators, can be effectively offset by the gain in solid angle obtained by positioning the detectors much closer to the target, since the typical long time-of-flight arms for energy resolution are not necessary. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA0002932.

  3. Characterization of a clinical unit for digital radiography based on irradiation side sampling technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco

    2013-10-15

    Purpose: A characterization of a clinical unit for digital radiography (FUJIFILM FDR D-EVO) is presented. This system is based on the irradiation side sampling (ISS) technology and can be equipped with two different scintillators: one traditional gadolinium-oxysulphide phosphor (GOS) and a needle structured cesium iodide (CsI) phosphor panel.Methods: The characterization was achieved in terms of response curve, modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). For both scintillation screens the authors accomplished the measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9.Results:more » At the Nyquist frequency (3.33 lp/mm) the MTF is about 35% and 25% for CsI and GOS detectors, respectively. The CsI scintillator has better noise properties than the GOS screen in almost all the conditions. This is particularly true for low-energy beams, where the noise for the GOS system can go up to a factor 2 greater than that found for CsI. The DQE of the CsI detector reaches a peak of 60%, 60%, 58%, and 50% for the RQA3, RQA5, RQA7, and RQA9 beams, respectively, whereas for the GOS screen the maximum DQE is 40%, 44%, 44%, and 35%. The contrast-detail analysis confirms that in the majority of cases the CsI scintillator is able to provide improved outcomes to those obtained with the GOS screen.Conclusions: The limited diffusion of light produced by the ISS reading makes possible the achievement of very good spatial resolution. In fact, the MTF of the unit with the CsI panel is only slightly lower to that achieved with direct conversion detectors. The combination of very good spatial resolution, together with the good noise properties reached with the CsI screen, allows achieving DQE on average about 1.5 times greater than that obtained with GOS. In fact, the DQE of unit equipped with CsI is comparable to the best alternative methods available which are based on the same technology, and similar to others based on an a-Se direct conversion detectors.« less

  4. Characterization of ParTI Phoswiches Using Charged Pion Beams

    NASA Astrophysics Data System (ADS)

    Churchman, Emily; Zarrella, Andrew; Youngs, Michael; Yennello, Sherry

    2017-09-01

    The Partial Truncated Icosahedron (ParTI) detector array consists of 15 phoswiches. Each phoswich is made of two scintillating components - a thallium-doped cesium iodide (CsI(Tl)) crystal and an EJ-212 scintillating plastic - coupled to a photomultiplier tube. Both materials have different scintillation times and are sensitive to both charged and neutral particles. The type of particle and amount of energy deposited determine the shape of the scintillation pulse as a function of time. By integrating the fast and slow signals of the scintillation pulses, a ``Fast vs. Slow Integration'' plot can be created that produces particle identification lines based on the energy deposited in the scintillating materials. Four of these phoswiches were taken to the Paul Scherrer Institute (PSI) in Switzerland where π + , π-, and proton beams were scattered onto the phoswiches to demonstrate their particle identification (PID) capabilities. Using digitizers to record the detector response waveforms, pions can also be identified by the characteristic decay pulse of the muon daughters.

  5. System for uncollimated digital radiography

    DOEpatents

    Wang, Han; Hall, James M.; McCarrick, James F.; Tang, Vincent

    2015-08-11

    The inversion algorithm based on the maximum entropy method (MEM) removes unwanted effects in high energy imaging resulting from an uncollimated source interacting with a finitely thick scintillator. The algorithm takes as input the image from the thick scintillator (TS) and the radiography setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesimally thin scintillator (ITS). Inversion is accomplished by numerically generating a probabilistic model relating the ITS image to the TS image and then inverting this model on the TS image through MEM. This reconstruction technique can reduce the exposure time or the required source intensity without undesirable object blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer source-to-detector distances to maximize incident radiation flux. The technique is applicable in radiographic applications including fast neutron, high-energy gamma and x-ray radiography using thick scintillators.

  6. Optimum filter-based discrimination of neutrons and gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek

    2015-07-01

    An optimum filter-based method for discrimination of neutrons and gamma-rays in a mixed radiation field is presented. The existing filter-based implementations of discriminators require sample pulse responses in advance of the experiment run to build the filter coefficients, which makes them less practical. Our novel technique creates the coefficients during the experiment and improves their quality gradually. Applied to several sets of mixed neutron and photon signals obtained through different digitizers using stilbene scintillator, this approach is analyzed and its discrimination quality is measured. (authors)

  7. Measuring and Validating Neutron Capture Cross Sections Using a Lead Slowing-Down Spectrometer

    NASA Astrophysics Data System (ADS)

    Thompson, Nicholas

    Accurate nuclear data is essential for the modeling, design, and operation of nuclear systems. In this work, the Rensselaer Polytechnic Institute (RPI) Lead Slowing-Down Spectrometer (LSDS) at the Gaerttner Linear Accelerator Center (LINAC) was used to measure neutron capture cross sections and validate capture cross sections in cross section libraries. The RPI LINAC was used to create a fast burst of neutrons in the center of the LSDS, a large cube of high purity lead. A sample and YAP:Ce scintillator were placed in the LSDS, and as neutrons lost energy through scattering interactions with the lead, the scintillator detected capture gammas resulting from neutron capture events in the sample. Samples of silver, gold, cobalt, iron, indium, molybdenum, niobium, nickel, tin, tantalum, and zirconium were measured. Data was collected as a function of time after neutron pulse, or slowing-down time, which is correlated to average neutron energy. An analog and a digital data acquisition system collected data simultaneously, allowing for collection of pulse shape information as well as timing. Collection of digital data allowed for pulse shape analysis after the experiment. This data was then analyzed and compared to Monte Carlo simulations to validate the accuracy of neutron capture cross section libraries. These measurements represent the first time that neutron capture cross sections have been measured using an LSDS in the United States, and the first time tools such as coincidence measurements and pulse height weighting have been applied to measurements of neutron capture cross sections using an LSDS. Significant differences between measurement results and simulation results were found in multiple materials, and some errors in nuclear data libraries have already been identified due to these measurements.

  8. Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods

    DOE PAGES

    Wang, Cai -Lin; Riedel, Richard A.

    2016-01-14

    A 6Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at SNS. Traditional pulse-height analysis (PHA) for neutron-gamma discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 10 4. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, five digital signal analysis methods of individual waveforms from PMTs were proposed using: i). pulse-amplitude histogram; ii). power spectrum analysis combined with the maximum pulse amplitude; iii). two event parameters (a 1, b 0) obtained from Wiener filter; iv). anmore » effective amplitude (m) obtained from an adaptive least-mean-square (LMS) filter; and v). a cross-correlation (CC) coefficient between an individual waveform and a reference. The NGD ratios can be 1-102 times those from traditional PHA method. A brighter scintillator GS2 has better NGD ratio than GS20, but lower neutron detection efficiency. The ultimate NGD ratio is related to the ambient, high-energy background events. Moreover, our results indicate the NGD capability of neutron Anger cameras can be improved using digital signal analysis methods and brighter neutron scintillators.« less

  9. The beam test of muon detector parameters for the SHiP experiment at CERN

    NASA Astrophysics Data System (ADS)

    Likhacheva, V. L.; Kudenko, Yu. G.; Mefodiev, A. V.; Mineev, O. V.; Khotyantsev, A. N.

    2018-01-01

    Scintillation detectors based on extruded plastics have been tested in a 10 GeV/c beam at CERN. The scintillation signal readout was provided using optical wavelength shifting fibers Y11 Kuraray and Hamamatsu MPPC micropixel avalanche photodiodes. The light yield was scanned along and across the detectors. Time resolution was found by fitting the MPPC digitized pulse rise and other methods.

  10. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devol, Timothy A.

    2005-06-01

    Comparison of different pulse shape discrimination methods was performed under two different experimental conditions and the best method was identified. Beta/gamma discrimination of 90Sr/90Y and 137Cs was performed using a phoswich detector made of BC400 (2.5 cm OD x 1.2 cm) and BGO (2.5 cm O.D. x 2.5 cm ) scintillators. Alpha/gamma discrimination of 210Po and 137Cs was performed using a CsI:Tl (2.8 x 1.4 x 1.4 cm3) scintillation crystal. The pulse waveforms were digitized with a DGF-4c (X-Ray Instrumentation Associates) and analyzed offline with IGOR Pro software (Wavemetrics, Inc.). The four pulse shape discrimination methods that were compared include:more » rise time discrimination, digital constant fraction discrimination, charge ratio, and constant time discrimination (CTD) methods. The CTD method is the ratio of the pulse height at a particular time after the beginning of the pulse to the time at the maximum pulse height. The charge comparison method resulted in a Figure of Merit (FoM) of 3.3 (9.9 % spillover) and 3.7 (0.033 % spillover) for the phoswich and the CsI:Tl scintillator setups, respectively. The CTD method resulted in a FoM of 3.9 (9.2 % spillover) and 3.2 (0.25 % spillover), respectively. Inverting the pulse shape data typically resulted in a significantly higher FoM than conventional methods, but there was no reduction in % spillover values. This outcome illustrates that the FoM may not be a good scheme for the quantification of a system to perform pulse shape discrimination. Comparison of several pulse shape discrimination (PSD) methods was performed as a means to compare traditional analog and digital PSD methods on the same scintillation pulses. The X-ray Instrumentation Associates DGF-4C (40 Msps, 14-bit) was used to digitize waveforms from a CsI:Tl crystal and BC400/BGO phoswich detector.« less

  11. Spatial resolution properties of digital autoradiography systems for pre-clinical alpha particle imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tanguay, Jesse; Benard, Francois; Celler, Anna; Ruth, Thomas; Schaffer, Paul

    2017-03-01

    Attaching alpha-emitting radionuclides to cancer-targeting agents increases the anti-tumor effects of targeted cancer therapies. The success of alpha therapy for treating bone metastases has increased interest in using targeted alpha therapy (TAT) to treat a broad spectrum of metastatic cancers. Estimating radiation doses to targeted tumors, including small (<250 μm) clusters of cancer cells, and to non-targeted tissues is critical in the pre-clinical development of TATs. However, accurate quantification of heterogeneous distributions of alpha-emitters in small metastases is not possible with existing pre-clinical in-vivo imaging systems. Ex-vivo digital autoradiography using a scintillator in combination with an image intensifier and a charged coupled device (CCD) has gained interest for pre-clinical ex-vivo alpha particle imaging. We present a simulation-based analysis of the fundamental spatial resolution limits of digital autoradiography systems. Spatial resolution was quantified in terms of the modulation transfer function (MTF) and Wagner's equivalent aperture. We modeled systems operating in either particle-counting (PC) or energy-integrating (EI) mode using a cascaded systems approach that accounts for: 1) the stopping power of alpha particles; 2) the distance alpha particles travel within the scintillator; 3) optical blur, and; 4) binning in detector elements. We applied our analysis to imaging of astatine-211 using an LYSO scintillator with thickness ranging from 10 μm to 20 μm. Our analysis demonstrates that when these systems are operated in particle-counting mode with a centroid-calculation algorithm, the effective apertures of 35 μm can be achieved, which suggests that digital autoradiography may enable quantifying the uptake of alpha emitters in tumors consisting of a few cancer cells. Future work will investigate the image noise and energy-resolution properties of digital autoradiography systems.

  12. System and method for assaying radiation

    DOEpatents

    DiPrete, David P; Whiteside, Tad; Pak, Donald J; DiPrete, Cecilia C

    2013-11-12

    A system for assaying radiation includes a sample holder configured to hold a liquid scintillation solution. A photomultiplier receives light from the liquid scintillation solution and generates a signal reflective of the light. A control circuit biases the photomultiplier and receives the signal from the photomultiplier reflective of the light. A light impermeable casing surrounds the sample holder, photomultiplier, and control circuit. A method for assaying radiation includes placing a sample in a liquid scintillation solution, placing the liquid scintillation solution in a sample holder, and placing the sample holder inside a light impermeable casing. The method further includes positioning a photomultiplier inside the light impermeable casing and supplying power to a control circuit inside the light impermeable casing.

  13. Reactor antineutrino detector iDREAM.

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2017-09-01

    Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.

  14. Daytime VHF amplitude scintillations recorded at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during 1997-2003

    NASA Astrophysics Data System (ADS)

    Uma, G.; Brahmanandam, P. S.; Srinivasu, V. K. D.; Prasad, D. S. V. V. D.; Rama Rao, P. V. S.

    2018-04-01

    In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997-2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.

  15. Improved DQE by means of X-ray spectra and scintillator optimization for FFDM

    NASA Astrophysics Data System (ADS)

    Job, Isaias D.; Taie-Nobraie, Nima; Colbeth, Richard E.; Mollov, Ivan; Gray, Keith D.; Webb, Chris; Pavkovich, John M.; Zoghi, Fred; Tognina, Carlo A.; Roos, Pieter G.

    2012-03-01

    The focus of this work was to improve the DQE performance of a full-field digital mammography (FFDM) system by means of selecting an optimal X-ray tube anode-filter combination in conjunction with an optimal scintillator configuration. The flat panel detector in this work is a Varian PaxScan 3024M. The detector technology is comprised of a 2816 row × 3584 column amorphous silicon (a-Si) photodiode array with a pixel pitch of 83μm. The scintillator is cesium iodide and is deposited directly onto the photodiode array and available with configurable optical and x-ray properties. Two X-ray beam spectra were generated with the anode/filter combinations, Molybdenum/Molybdenum (Mo/Mo) and Tungsten/Aluminum (W/Al), to evaluate the imaging performance of two types of scintillators, high resolution (HR) type and high light output (HL) type. The results for the HR scintillator with W/Al anode-filter (HRW/ Al) yielded a DQE(0) of 67%, while HR-Mo/Mo was lower with a DQE(0) of 50%. In addition, the DQE(0) of the HR-W/Al configuration was comparable to the DQE(0) of the HL-Mo/Mo configuration. The significance of this result is the HR type scintillator yields about twice the light output with the W/Al spectrum, at about half the dose, as compared to the Mo/Mo spectrum. The light output or sensitivity was measured in analog-to-digital convertor units (ADU) per dose. The sensitivities (ADU/uGy) were 8.6, 16.8 and 25.4 for HR-Mo/Mo, HR-W/Al, HL-Mo/Mo, respectively. The Nyquist frequency for the 83 μm pixel is 6 lp/mm. The MTF at 5 lp/mm for HR-Mo/Mo and HR-W/Al were equivalent at 37%, while the HL-Mo/Mo MTF was 24%. According to the DQE metric, the more favorable anodefilter combination was W/Al with the HR scintillator. Future testing will evaluate the HL-W/Al configuration, as well as other x-ray filters materials and other scintillator optimizations. While higher DQE values were achieved, the more general conclusion is that the imaging performance can be tuned as required by the application by modifying optical and x-ray properties of the scintillator to match the spectral output of the chosen anode-filter combination.

  16. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy.

    PubMed

    Bruza, Petr; Gollub, Sarah L; Andreozzi, Jacqueline M; Tendler, Irwin I; Williams, Benjamin B; Jarvis, Lesley A; Gladstone, David J; Pogue, Brian W

    2018-05-02

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  17. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy

    NASA Astrophysics Data System (ADS)

    Bruza, Petr; Gollub, Sarah L.; Andreozzi, Jacqueline M.; Tendler, Irwin I.; Williams, Benjamin B.; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2018-05-01

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  18. High-sensitivity, high-speed continuous imaging system

    DOEpatents

    Watson, Scott A; Bender, III, Howard A

    2014-11-18

    A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.

  19. High Sensitive Scintillation Observations At Very Low Frequencies

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.

    The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.

  20. Alpha-gamma pulse-shape discrimination in Gd3Al2Ga3O12 (GAGG):Ce3+ crystal scintillator using shape indicator

    NASA Astrophysics Data System (ADS)

    Tamagawa, Yoichi; Inukai, Yuji; Ogawa, Izumi; Kobayashi, Masaaki

    2015-09-01

    The pulse-shape discrimination (PSD) in a GAGG single-crystal scintillator was studied by using a shape indicator (SI) parameter of the optimal digital filter method. SI is one of the most useful PSD methods that use typical pulse shapes. Excellent discrimination between 0.662 MeV γ-rays and 5.48 MeV α-rays was achieved. For a cut at SI=0.0056, 99.95% of the γ-rays and only 0.22% of the α-rays were retained. Selection of background events (γ and α) in the GAGG scintillator was achieved by using the PSD method.

  1. Comparison of Digital Imaging Systems for Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Pugliesi, R.; Pugliesi, Fábio; Stanojev Pereira, M. A.

    2011-09-01

    The characteristics of three digital imaging systems for neutron radiography purposes have been compared. Two of them make use of films, CR-39 and Kodak AA, and the third makes use of a LiF scintillator, for image registration. The irradiations were performed in the neutron radiography facility installed at the IEA-R1 nuclear research reactor of IPEN-CNEN/SP. According to the obtained results, the system based on CR-39 is the slowest to obtain an image, and the best in terms of resolution but the worse in terms of contrast. The system based on Kodak AA is faster than the prior, exhibits good resolution and contrast. The system based on the scintillator is the fastest to obtain an image, and best in terms of contrast but the worse in terms of resolution.

  2. Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer.

    PubMed

    Oliveira, Juliana; Correia, Vitor; Sowade, Enrico; Etxebarria, Ikerne; Rodriguez, Raul D; Mitra, Kalyan Y; Baumann, Reinhard R; Lanceros-Mendez, Senentxu

    2018-04-18

    Organic photodetectors (PDs) based on printing technologies will allow to expand the current field of PD applications toward large-area and flexible applications in areas such as medical imaging, security, and quality control, among others. Inkjet printing is a powerful digital tool for the deposition of smart and functional materials on various substrates, allowing the development of electronic devices such as PDs on various substrates. In this work, inkjet-printed PD arrays, based on the organic thin-film transistor architecture, have been developed and applied for the indirect detection of X-ray radiation using a scintillator ink as an X-ray absorber. The >90% increase of the photocurrent of the PDs under X-ray radiation, from about 53 nA without the scintillator film to about 102 nA with the scintillator located on top of the PD, proves the suitability of the developed printed device for X-ray detection applications.

  3. Evaluation of a SiPM array coupled to a Gd3Al2Ga3O12:Ce (GAGG:Ce) discrete scintillator.

    PubMed

    David, S; Georgiou, M; Fysikopoulos, E; Loudos, G

    2015-11-01

    In this study, we present the results of the evaluation of the SensL ArraySL-4 photo-detector, coupled to a 6 × 6 GAGG:Ce scintillator array, with 2 × 2 × 5 mm(3) crystal size elements for possible applications in medical imaging detectors with focus in PET applications. Experimental evaluation was carried out with (22)Na and (137)Cs radioactive sources and the parameters studied were energy resolution and peak to valley ratio. ArraySL-4 is a commercially available, 4 × 4 array detector covering an active area of 13.4 mm(2). The GAGG:Ce scintillator array used in this study has 0.1 mm thickness BaSO4 reflector material between the crystal elements. A symmetric resistive voltage division matrix was applied, which reduces the 16 outputs of the array to 4 position signals. A Field Programmable Gate Array was used for triggering and digital processing of the signal pulses acquired using free running Analog to Digital Converters. Raw images and horizontal profiles of the 6 × 6 GAGG:Ce scintillator array produced under 511 keV and 662 keV excitation are illustrated. Moreover, the energy spectra obtained with (22)Na and (137)Cs radioactive sources from a single 2 × 2 × 5 mm(3) GAGG:Ce scintillator are shown. The peak to valley ratio and the mean energy resolution values are reported. The acquired raw image of the GAGG:Ce crystal array under 511 keV excitation shows a clear visualization of all discrete scintillator elements with a mean peak to valley ratio equal to 40. The mean energy resolution was measured equal to 10.5% and 9% respectively under 511 keV and 662 keV irradiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Spectral estimation of received phase in the presence of amplitude scintillation

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Brown, D. H.; Hurd, W. J.

    1988-01-01

    A technique is demonstrated for obtaining the spectral parameters of the received carrier phase in the presence of carrier amplitude scintillation, by means of a digital phased locked loop. Since the random amplitude fluctuations generate time-varying loop characteristics, straightforward processing of the phase detector output does not provide accurate results. The method developed here performs a time-varying inverse filtering operation on the corrupted observables, thus recovering the original phase process and enabling accurate estimation of its underlying parameters.

  5. Optimization of a Fast Neutron Scintillator for Real-Time Pulse Shape Discrimination in the Transient Reactor Test Facility (TREAT) Hodoscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, James T.; Thompson, Scott J.; Watson, Scott M.

    We present a multi-channel, fast neutron/gamma ray detector array system that utilizes ZnS(Ag) scintillator detectors. The system employs field programmable gate arrays (FPGAs) to do real-time all digital neutron/gamma ray discrimination with pulse height and time histograms to allow count rates in excess of 1,000,000 pulses per second per channel. The system detector number is scalable in blocks of 16 channels.

  6. Study of pulse shape discrimination for a neutron phoswich detector

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica; Barzilov, Alexander

    2017-09-01

    A portable phoswich detector capable of differentiating between fast neutrons and thermal neutrons, and photons was developed. The detector design is based on the use of two solid-state scintillators with dissimilar scintillation time properties coupled with a single optical sensor: a 6Li loaded glass and EJ-299-33A plastic. The on-the-fly digital pulse shape discrimination and the wavelet treatment of measured waveforms were employed in the data analysis. The instrument enabled neutron spectrum evaluation.

  7. Study of compact radio sources using interplanetary scintillations at 111 MHz. The Pearson-Readhead sample

    NASA Astrophysics Data System (ADS)

    Tyul'Bashev, S. A.

    2009-01-01

    A complete sample of radio sources has been studied using the interplanetary scintillation method. In total, 32 sources were observed, with scintillations detected in 12 of them. The remaining sources have upper limits for the flux densities of their compact components. Integrated flux densities are estimated for 18 sources.

  8. A compact and modular x- and gamma-ray detector with a CsI scintillator and double-readout Silicon Drift Detectors

    NASA Astrophysics Data System (ADS)

    Campana, R.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Bellutti, P.; Evangelista, Y.; Elmi, I.; Feroci, M.; Ficorella, F.; Frontera, F.; Picciotto, A.; Piemonte, C.; Rachevski, A.; Rashevskaya, I.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Zorzi, N.

    2016-07-01

    A future compact and modular X and gamma-ray spectrometer (XGS) has been designed and a series of proto- types have been developed and tested. The experiment envisages the use of CsI scintillator bars read out at both ends by single-cell 25 mm2 Silicon Drift Detectors. Digital algorithms are used to discriminate between events absorbed in the Silicon layer (lower energy X rays) and events absorbed in the scintillator crystal (higher energy X rays and -rays). The prototype characterization is shown and the modular design for future experiments with possible astrophysical applications (e.g. for the THESEUS mission proposed for the ESA M5 call) are discussed.

  9. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or γ rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted γ background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for <1.0 MeV neutrons; and ranging between a 5-35% reduction for 2.5-3.0 MeV neutrons compared to the EJ-301/309, depending on the scintillator and geometry. Monte Carlo modeling techniques were used to investigate how the neutron beam and accelerator background environment affected the detector response. We find relatively good agreement between our results and the modeling; however, the observed response could not be fully accounted for due to events with pulse pile up, thus leading to contamination of the neutron PSD selected events.

  10. A PET detector prototype based on digital SiPMs and GAGG scintillators.

    PubMed

    Schneider, Florian R; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I

    2015-02-21

    Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm(2), comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm(-3), 520 nm peak emission, 46 000 photons MeV(-1), 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm(3) were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm(3)) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with (18)F was used for tomographic tests.

  11. A PET detector prototype based on digital SiPMs and GAGG scintillators

    NASA Astrophysics Data System (ADS)

    Schneider, Florian R.; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I.

    2015-02-01

    Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm2, comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm-3, 520 nm peak emission, 46 000 photons MeV-1, 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm3 were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm3) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with 18F was used for tomographic tests.

  12. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. HPLC and TLC methods for analysis of [18F]FDG and its metabolites from biological samples.

    PubMed

    Rokka, Johanna; Grönroos, Tove J; Viljanen, Tapio; Solin, Olof; Haaparanta-Solin, Merja

    2017-03-24

    The most used positron emission tomography (PET) tracer, 2-[ 18 F]fluoro-2-deoxy-d-glucose ([ 18 F]FDG), is a glucose analogue that is used to measure tissue glucose consumption. Traditionally, the Sokoloff model is the basis for [ 18 F]FDG modeling. According to this model, [ 18 F]FDG is expected to be trapped in a cell in the form of [ 18 F]FDG-6-phosphate ([ 18 F]FDG-6-P). However, several studies have shown that in tissues, [ 18 F]FDG metabolism goes beyond [ 18 F]FDG-6-P. Our aim was to develop radioHPLC and radioTLC methods for analysis of [ 18 F]FDG metabolites from tissue samples. The radioHPLC method uses a sensitive on-line scintillation detector to detect radioactivity, and the radioTLC method employs digital autoradiography to detect the radioactivity distribution on a TLC plate. The HPLC and TLC methods were developed using enzymatically in vitro-produced metabolites of [ 18 F]FDG as reference standards. For this purpose, three [ 18 F]FDG metabolites were synthesized: [ 18 F]FDG-6-P, [ 18 F]FD-PGL, and [ 18 F]FDG-1,6-P2. The two methods were evaluated by analyzing the [ 18 F]FDG metabolic profile from rodent ex vivo tissue homogenates. The HPLC method with an on-line scintillation detector had a wide linearity in a range of 5Bq-5kBq (LOD 46Bq, LOQ 139Bq) and a good resolution (Rs ≥1.9), and separated [ 18 F]FDG and its metabolites clearly. The TLC method combined with digital autoradiography had a high sensitivity in a wide range of radioactivity (0.1Bq-2kBq, LOD 0.24Bq, LOQ 0.31Bq), and multiple samples could be analyzed simultaneously. As our test and the method validation with ex vivo samples showed, both methods are useful, and at best they complement each other in analysis of [ 18 F]FDG and its radioactive metabolites from biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors

    NASA Astrophysics Data System (ADS)

    Oliveira, J.; Martins, P. M.; Martins, P.; Correia, V.; Rocha, J. G.; Lanceros-Mendez, S.

    2015-11-01

    Polymer-based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1 wt.% of 2,5-diphenyloxazole (PPO) and 0.01 wt.% of 1,4 di[2-(5phenyloxazolyl)]benzene (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e., the measured intensity of the output visible radiation, under X-ray irradiation. Increasing scintillator filler concentration (from 0.25 to 7.5 wt.%) increases scintillator light yield and decreases the optical transparency of the composite. The addition of PPO and POPOP strongly increased the overall transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites with 0.25 wt.% of scintillator content with fluorescence molecules are suitable for the development of innovative large-area X-ray radiation detectors with huge demand from the industries.

  15. Digital pile-up rejection for plutonium experiments with solution-grown stilbene

    NASA Astrophysics Data System (ADS)

    Bourne, M. M.; Clarke, S. D.; Paff, M.; DiFulvio, A.; Norsworthy, M.; Pozzi, S. A.

    2017-01-01

    A solution-grown stilbene detector was used in several experiments with plutonium samples including plutonium oxide, mixed oxide, and plutonium metal samples. Neutrons from different reactions and plutonium isotopes are accompanied by numerous gamma rays especially by the 59-keV gamma ray of 241Am. Identifying neutrons correctly is important for nuclear nonproliferation applications and makes neutron/gamma discrimination and pile-up rejection necessary. Each experimental dataset is presented with and without pile-up filtering using a previously developed algorithm. The experiments were simulated using MCNPX-PoliMi, a Monte Carlo code designed to accurately model scintillation detector response. Collision output from MCNPX-PoliMi was processed using the specialized MPPost post-processing code to convert neutron energy depositions event-by-event into light pulses. The model was compared to experimental data after pulse-shape discrimination identified waveforms as gamma ray or neutron interactions. We show that the use of the digital pile-up rejection algorithm allows for accurate neutron counting with stilbene to within 2% even when not using lead shielding.

  16. Novel multipurpose timer for laboratories

    NASA Technical Reports Server (NTRS)

    Eisler, W. J.; Klein, P. D.

    1969-01-01

    Multipurpose digital delay timer simultaneously controls both a buffer pump and a fraction-collector. Timing and control may be in 30-second increments for up to 15 hours. Use of glassware and scintillation vials make it economical.

  17. ATLAS Tile calorimeter calibration and monitoring systems

    NASA Astrophysics Data System (ADS)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  18. Real-Time, Fast Neutron Coincidence Assay of Plutonium With a 4-Channel Multiplexed Analyzer and Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Joyce, Malcolm J.; Gamage, Kelum A. A.; Aspinall, M. D.; Cave, F. D.; Lavietes, A.

    2014-06-01

    The design, principle of operation and the results of measurements made with a four-channel organic scintillator system are described. The system comprises four detectors and a multiplexed analyzer for the real-time parallel processing of fast neutron events. The function of the real-time, digital multiple-channel pulse-shape discrimination analyzer is described together with the results of laboratory-based measurements with 252Cf, 241Am-Li and plutonium. The analyzer is based on a single-board solution with integrated high-voltage supplies and graphical user interface. It has been developed to meet the requirements of nuclear materials assay of relevance to safeguards and security. Data are presented for the real-time coincidence assay of plutonium in terms of doubles count rate versus mass. This includes an assessment of the limiting mass uncertainty for coincidence assay based on a 100 s measurement period and samples in the range 0-50 g. Measurements of count rate versus order of multiplicity for 252Cf and 241Am-Li and combinations of both are also presented.

  19. Systematic studies of small scintillators for new sampling calorimeter

    NASA Astrophysics Data System (ADS)

    Jacosalem, E. P.; Iba, S.; Nakajima, N.; Ono, H.; Sanchez, A. L. C.; Bacala, A. M.; Miyata, H.

    2007-12-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R&D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated ^{90}Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 × 40 × 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness.

  20. Evaluation of a digital data acquisition system and optimization of n-γ discrimination for a compact neutron spectrometer.

    PubMed

    Giacomelli, L; Zimbal, A; Reginatto, M; Tittelmeier, K

    2011-01-01

    A compact NE213 liquid scintillation neutron spectrometer with a new digital data acquisition (DAQ) system is now in operation at the Physikalisch-Technische Bundesanstalt (PTB). With the DAQ system, developed by ENEA Frascati, neutron spectrometry with high count rates in the order of 5×10(5) s(-1) is possible, roughly an order of magnitude higher than with an analog acquisition system. To validate the DAQ system, a new data analysis code was developed and tests were done using measurements with 14-MeV neutrons made at the PTB accelerator. Additional analysis was carried out to optimize the two-gate method used for neutron and gamma (n-γ) discrimination. The best results were obtained with gates of 35 ns and 80 ns. This indicates that the fast and medium decay time components of the NE213 light emission are the ones that are relevant for n-γ discrimination with the digital acquisition system. This differs from what is normally implemented in the analog pulse shape discrimination modules, namely, the fast and long decay emissions of the scintillating light.

  1. Neutron/Gamma-ray discrimination through measures of fit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek

    2015-07-01

    Statistical tests and their underlying measures of fit can be utilized to separate neutron/gamma-ray pulses in a mixed radiation field. In this article, first the application of a sample statistical test is explained. Fit measurement-based methods require true pulse shapes to be used as reference for discrimination. This requirement makes practical implementation of these methods difficult; typically another discrimination approach should be employed to capture samples of neutrons and gamma-rays before running the fit-based technique. In this article, we also propose a technique to eliminate this requirement. These approaches are applied to several sets of mixed neutron and gamma-ray pulsesmore » obtained through different digitizers using stilbene scintillator in order to analyze them and measure their discrimination quality. (authors)« less

  2. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    PubMed

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. Detecting fast and thermal neutrons with a boron loaded liquid scintillator, EJ-339A.

    PubMed

    Pino, F; Stevanato, L; Cester, D; Nebbia, G; Sajo-Bohus, L; Viesti, G

    2014-09-01

    A commercial boron-loaded liquid scintillator EJ-339 A was studied, using a (252)Cf source with/without polyethylene moderator, to examine the possibility of discriminating slow-neutron induced events in (10)B from fast-neutron events, resulting from proton recoils, and gamma-ray events. Despite the strong light quenching associated with neutron induced events in (10)B, correct classification of these events is shown to be possible with the aid of digital signal processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Measurement of tritium with high efficiency by using liquid scintillation counter with plastic scintillator.

    PubMed

    Furuta, Etsuko; Ohyama, Ryu-ichiro; Yokota, Shigeaki; Nakajo, Toshiya; Yamada, Yuka; Kawano, Takao; Uda, Tatsuhiko; Watanabe, Yasuo

    2014-11-01

    The detection efficiencies of tritium samples by using liquid scintillation counter with hydrophilic plastic scintillator (PS) was approximately 48% when the sample of 20 μL was held between 2 PS sheets treated by plasma. The activity and count rates showed a good relationship between 400 Bq to 410 KBq mL(-1). The calculated detection limit of 2 min measurement by the PS was 13 Bq mL(-1) when a confidence was 95%. The plasma method for PS produces no radioactive waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The uniformity and imaging properties of some new ceramic scintillators

    NASA Astrophysics Data System (ADS)

    Chac, George T. L.; Miller, Brian W.; Shah, Kanai; Baldoni, Gary; Domanik, Kenneth J.; Bora, Vaibhav; Cherepy, Nerine J.; Seeley, Zachary; Barber, H. Bradford

    2012-10-01

    Results are presented of investigations into the composition, uniformity and gamma-ray imaging performance of new ceramic scintillators with synthetic garnet structure. The ceramic scintillators were produced by a process that uses flame pyrolysis to make nanoparticles which are sintered into a ceramic and then compacted by hot isostatic compression into a transparent material. There is concern that the resulting ceramic scintillator might not have the uniformity of composition necessary for use in gamma-ray spectroscopy and gamma-ray imaging. The compositional uniformity of four samples of three ceramic scintillator types (GYGAG:Ce, GLuGAG:Ce and LuAG:Pr) was tested using an electron microprobe. It was found that all samples were uniform in elemental composition to the limit of sensitivity of the microprobe (few tenths of a percent atomic) over distance scales from ~ 1 cm to ~ 1 um. The light yield and energy resolution of all ceramic scintillator samples were mapped with a highly collimated 57Co source (122 keV) and performance was uniform at mapping scale of 0.25 mm. Good imaging performance with single gamma-ray photon detection was demonstrated for all samples using a BazookaSPECT system, and the imaging spatial resolution, measured as the FWHM of a LSF was 150 um.

  6. MuTRiG: a mixed signal Silicon Photomultiplier readout ASIC with high timing resolution and gigabit data link

    NASA Astrophysics Data System (ADS)

    Chen, H.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Shen, W.; Stankova, V.; Schultz-Coulon, H. C.

    2017-01-01

    MuTRiG is a mixed signal Silicon Photomultiplier readout ASIC designed in UMC 180 nm CMOS technology for precise timing and high event rate applications in high energy physics experiments and medical imaging. It is dedicated to the readout of the scintillating fiber detector and the scintillating tile detector of the Mu3e experiment. The MuTRiG chip extends the excellent timing performance of the STiCv3 chip with a fast digital readout for high rate applications. The high timing performance of the fully differential SiPM readout channels and 50 ps time binning TDCs are complemented by an upgraded digital readout logic and a 1.28 Gbps LVDS serial data link. The design of the chip and the characterization results of the analog front-end, TDC and the LVDS data link are presented.

  7. A phoswich detector design for improved spatial sampling in PET

    NASA Astrophysics Data System (ADS)

    Thiessen, Jonathan D.; Koschan, Merry A.; Melcher, Charles L.; Meng, Fang; Schellenberg, Graham; Goertzen, Andrew L.

    2018-02-01

    Block detector designs, utilizing a pixelated scintillator array coupled to a photosensor array in a light-sharing design, are commonly used for positron emission tomography (PET) imaging applications. In practice, the spatial sampling of these designs is limited by the crystal pitch, which must be large enough for individual crystals to be resolved in the detector flood image. Replacing the conventional 2D scintillator array with an array of phoswich elements, each consisting of an optically coupled side-by-side scintillator pair, may improve spatial sampling in one direction of the array without requiring resolving smaller crystal elements. To test the feasibility of this design, a 4 × 4 phoswich array was constructed, with each phoswich element consisting of two optically coupled, 3 . 17 × 1 . 58 × 10mm3 LSO crystals co-doped with cerium and calcium. The amount of calcium doping was varied to create a 'fast' LSO crystal with decay time of 32.9 ns and a 'slow' LSO crystal with decay time of 41.2 ns. Using a Hamamatsu R8900U-00-C12 position-sensitive photomultiplier tube (PS-PMT) and a CAEN V1720 250 MS/s waveform digitizer, we were able to show effective discrimination of the fast and slow LSO crystals in the phoswich array. Although a side-by-side phoswich array is feasible, reflections at the crystal boundary due to a mismatch between the refractive index of the optical adhesive (n = 1 . 5) and LSO (n = 1 . 82) caused it to behave optically as an 8 × 4 array rather than a 4 × 4 array. Direct coupling of each phoswich element to individual photodetector elements may be necessary with the current phoswich array design. Alternatively, in order to implement this phoswich design with a conventional light sharing PET block detector, a high refractive index optical adhesive is necessary to closely match the refractive index of LSO.

  8. Fast collimated neutron flux measurement using stilbene scintillator and flashy analog-to-digital converter in JT-60U

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.; Itoga, T.; Okuji, T.; Nakhostin, M.; Shinohara, K.; Hayashi, T.; Sukegawa, A.; Baba, M.; Nishitani, T.

    2006-10-01

    A line-integrated neutron emission profile is routinely measured using the radial neutron collimator system in JT-60U tokamak. Stilbene neuron detectors (SNDs), which combine a stilbene organic crystal scintillation detector (SD) with an analog neutron-gamma pulse shape discrimination (PSD) circuit, have been used to measure collimated neutron flux. Although the SND has many advantages as a neutron detector, the maximum count rate is limited up to ˜1×105counts/s due to the analog PSD circuit. To overcome this issue, a digital signal processing system (DSPS) using a flash analog-to-digital converter (Acqiris DC252, 8GHz, 10bits) has been developed at Cyclotron and Radioisotope Center in Tohoku University. In this system anode signals from photomultiplier of the SD are directory stored and digitized. Then, the PSD between neutrons and gamma rays is performed using software. The DSPS has been installed in the vertical neutron collimator system in JT-60U and applied to deuterium experiments. It is confirmed that the PSD is sufficiently performed and collimated neutron flux is successfully measured with count rate up to ˜5×105counts/s without the effect of pileup of detected pulses. The performance of the DSPS as a neutron detector, which supersedes the SND, is demonstrated.

  9. Monopole search below the Parker limit with the MACRO detector at Gran Sasso

    NASA Technical Reports Server (NTRS)

    Tarle, G.

    1985-01-01

    The MACRO detector approved for the Gran Sasso Underground Laboratory in Italy will be the first capable of performing a definitive search for super-massive grand unified theory (GUT) monopoles at a level significantly below the Parker flux limit of 10 to the minus 15th power square centimeters Sr(-1) 5(-1). GUT monopoles will move at very low velocities (V approx. 0.001 c) relative to the Earth and a multifaceted detection technique is required to assume their unambiguous identification. Calculations of scintillator response to slow monopoles and measurements of scintillation efficiency for low energy protons have shown that bare monopoles and electrically charged monopoles moving at velocities as low as 5 x .0001 c will produce detectable scintillation signals. The time-of-flight between two thick (25 cm) liquid scintillation layers separated by 4.3m will be used in conjunction with waveform digitization of signals of extended duration in each thick scintillator to provide a redundant signature for slow penetrating particles. Limited streamer tubes filled with He and n-pentane will detect bare monopoles with velocities as low as 1 x 0.0001 c by exploiting monopole induced level mixing and the Penning effect.

  10. Optimization of low-level LS counter Quantulus 1220 for tritium determination in water samples

    NASA Astrophysics Data System (ADS)

    Jakonić, Ivana; Todorović, Natasa; Nikolov, Jovana; Bronić, Ines Krajcar; Tenjović, Branislava; Vesković, Miroslav

    2014-05-01

    Liquid scintillation counting (LSC) is the most commonly used technique for measuring tritium. To optimize tritium analysis in waters by ultra-low background liquid scintillation spectrometer Quantulus 1220 the optimization of sample/scintillant ratio, choice of appropriate scintillation cocktail and comparison of their efficiency, background and minimal detectable activity (MDA), the effect of chemi- and photoluminescence and combination of scintillant/vial were performed. ASTM D4107-08 (2006) method had been successfully applied in our laboratory for two years. During our last preparation of samples a serious quench effect in count rates of samples that could be consequence of possible contamination by DMSO was noticed. The goal of this paper is to demonstrate development of new direct method in our laboratory proposed by Pujol and Sanchez-Cabeza (1999), which turned out to be faster and simpler than ASTM method while we are dealing with problem of neutralization of DMSO in apparatus. The minimum detectable activity achieved was 2.0 Bq l-1 for a total counting time of 300 min. In order to test the optimization of system for this method tritium level was determined in Danube river samples and also for several samples within intercomparison with Ruđer Bošković Institute (IRB).

  11. Performance comparison between ceramic Ce:GAGG and single crystal Ce:GAGG with digital-SiPM

    NASA Astrophysics Data System (ADS)

    Park, C.; Kim, C.; Kim, J.; Lee, Y.; Na, Y.; Lee, K.; Yeom, J. Y.

    2017-01-01

    The Gd3Al2Ga3O12 (Ce:GAGG) is a new inorganic scintillator known for its attractive properties such as high light yield, stopping power and relatively fast decay time. In this study, we fabricated a ceramic Ce:GAGG scintillator as a cost-effective alternative to single crystal Ce:GAGG and, for the first time, investigated their performances when coupled to the digital silicon photomultiplier (dSiPM)—a new type of photosensor designed for applications in medical imaging, high energy and astrophysics. Compared to 3 × 3 × 2 mm3 sized single crystal Ce:GAGG, the translucent ceramic Ce:GAGG, which has a much lower transmittance than the single crystal, was determined to give an output signal amplitude that is approximately 61% of single crystal Ce:GAGG. The energy resolution of the 511 keV annihilation peak of a 22Na source was measured to be 9.9 ± 0.2% and 13.0 ± 0.3% for the single and ceramic scintillators respectively. On the other hand, the coincidence resolving time (CRT) of ceramic Ce:GAGG was 307 ± 23 ps, better than the 465 ± 37 ps acquired with single crystals—probably attributed to its slightly faster decay time and higher proportion of the fast decay component. The ceramic Ce:GAGG may be a promising cost-effective candidate for applications that do not require thick scintillators such as x-ray detectors and charged particle detectors, and those that require time-of-flight capabilities.

  12. A Sub-Sampling Approach for Data Acquisition in Gamma Ray Emission Tomography

    NASA Astrophysics Data System (ADS)

    Fysikopoulos, Eleftherios; Kopsinis, Yannis; Georgiou, Maria; Loudos, George

    2016-06-01

    State of the art data acquisition systems for small animal imaging gamma ray detectors often rely on free running Analog to Digital Converters (ADCs) and high density Field Programmable Gate Arrays (FPGA) devices for digital signal processing. In this work, a sub-sampling acquisition approach, which exploits a priori information regarding the shape of the obtained detector pulses is proposed. Output pulses shape depends on the response of the scintillation crystal, photodetector's properties and amplifier/shaper operation. Using these known characteristics of the detector pulses prior to digitization, one can model the voltage pulse derived from the shaper (a low-pass filter, last in the front-end electronics chain), in order to reduce the desirable sampling rate of ADCs. Fitting with a small number of measurements, pulse shape estimation is then feasible. In particular, the proposed sub-sampling acquisition approach relies on a bi-exponential modeling of the pulse shape. We show that the properties of the pulse that are relevant for Single Photon Emission Computed Tomography (SPECT) event detection (i.e., position and energy) can be calculated by collecting just a small fraction of the number of samples usually collected in data acquisition systems used so far. Compared to the standard digitization process, the proposed sub-sampling approach allows the use of free running ADCs with sampling rate reduced by a factor of 5. Two small detectors consisting of Cerium doped Gadolinium Aluminum Gallium Garnet (Gd3Al2Ga3O12 : Ce or GAGG:Ce) pixelated arrays (array elements: 2 × 2 × 5 mm3 and 1 × 1 × 10 mm3 respectively) coupled to a Position Sensitive Photomultiplier Tube (PSPMT) were used for experimental evaluation. The two detectors were used to obtain raw images and energy histograms under 140 keV and 661.7 keV irradiation respectively. The sub-sampling acquisition technique (10 MHz sampling rate) was compared with a standard acquisition method (52 MHz sampling rate), in terms of energy resolution and image signal to noise ratio for both gamma ray energies. The Levenberg-Marquardt (LM) non-linear least-squares algorithm was used, in post processing, in order to fit the acquired data with the proposed model. The results showed that analog pulses prior to digitization are being estimated with high accuracy after fitting with the bi-exponential model.

  13. Determination of beta emitters ( 90Sr, 14C and 3H) in routine measurements using plastic scintillation beads

    NASA Astrophysics Data System (ADS)

    Tarancón, A.; García, J. F.; Rauret, G.

    2004-01-01

    Plastic scintillation has recently been shown to be a powerful alternative to liquid scintillation and Cherenkov techniques in radionuclide determination due to the good values obtained for the measurement parameters and the low amount of wastes generated. The present study evaluated the capability of plastic scintillation beads and polyethylene vials for routine measurements of beta emitters ( 90Sr, 14C, 3H). Results show that high- and medium-energetic beta emitters can be quantified with relative errors less than 5% in low-activity aqueous samples, whereas low-energetic beta emitters can only be quantified in medium-activity samples.

  14. Characterizations of Pr-doped Yb3Al5O12 single crystals for scintillator applications

    NASA Astrophysics Data System (ADS)

    Yoshida, Yasuki; Shinozaki, Kenji; Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-04-01

    Yb3Al5O12 (YbAG) single crystals doped with different concentrations of Pr were synthesized by the Floating Zone (FZ) method. Then, we evaluated their basic optical and scintillation properties. All the samples showed photoluminescence (PL) with two emission bands appeared approximately 300-500 nm and 550-600 nm due to the charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. A PL decay profile of each sample was approximated by a sum of two exponential decay functions, and the obtained decay times were 1 ns and 3-4 ns. In the scintillation spectra, we observed emission peaks in the ranges from 300 to 400 nm and from 450 to 550 nm for all the samples. The origins of these emissions were attributed to charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. The scintillation decay times became longer with increasing the Pr concentrations. Among the present samples, the 0.1% Pr-doped sample showed the lowest scintillation afterglow level. In addition, pulse height spectrum of 5.5 MeV α-rays was demonstrated using the Pr-doped YbAG, and we confirmed that all the samples showed a full energy deposited peak. Above all, the 0.1% Pr-doped sample showed the highest light yield with a value of 14 ph/MeV under α-rays excitation.

  15. SU-C-201-01: Investigation of the Effects of Scintillator Surface Treatment On Light Output Measurements with SiPM Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenciaga, Y; Prout, D; Chatziioannou, A

    2015-06-15

    Purpose: To examine the effect of different scintillator surface treatments (BGO crystals) on the fraction of scintillation photons that exit the crystal and reach the photodetector (SiPM). Methods: Positron Emission Tomography is based on the detection of light that exits scintillator crystals, after annihilation photons deposit energy inside these crystals. A considerable fraction of the scintillation light gets trapped or absorbed after going through multiple internal reflections on the interfaces surrounding the crystals. BGO scintillator crystals generate considerably less scintillation light than crystals made of LSO and its variants. Therefore, it is crucial that the small amount of light producedmore » by BGO exits towards the light detector. The surface treatment of scintillator crystals is among the factors affecting the ability of scintillation light to reach the detectors. In this study, we analyze the effect of different crystal surface treatments on the fraction of scintillation light that is detected by the solid state photodetector (SiPM), once energy is deposited inside a BGO crystal. Simulations were performed by a Monte Carlo based software named GATE, and validated by measurements from individual BGO crystals coupled to Philips digital-SiPM sensor (DPC-3200). Results: The results showed an increment in light collection of about 4 percent when only the exit face of the BGO crystal, is unpolished; compared to when all the faces are polished. However, leaving several faces unpolished caused a reduction of at least 10 percent of light output when the interaction occurs as far from the exit face of the crystal as possible compared to when it occurs very close to the exit face. Conclusion: This work demonstrates the advantages on light collection from leaving unpolished the exit face of BGO crystals. The configuration with best light output will be used to obtain flood images from BGO crystal arrays coupled to SiPM sensors.« less

  16. Investigation of three-dimensional localisation of radioactive sources using a fast organic liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Gamage, K. A. A.; Joyce, M. J.; Taylor, G. C.

    2013-04-01

    In this paper we discuss the possibility of locating radioactive sources in space using a scanning-based method, relative to the three-dimensional location of the detector. The scanning system comprises an organic liquid scintillator detector, a tungsten collimator and an adjustable equatorial mount. The detector output is connected to a bespoke fast digitiser (Hybrid Instruments Ltd., UK) which streams digital samples to a personal computer. A radioactive source has been attached to a vertical wall and the data have been collected in two stages. In the first case, the scanning system was placed a couple of metres away from the wall and in the second case it moved few centimetres from the previous location, parallel to the wall. In each case data were collected from a grid of measurement points (set of azimuth angles for set of elevation angles) which covered the source on the wall. The discrimination of fast neutrons and gamma rays, detected by the organic liquid scintillator detector, is carried out on the basis of pulse gradient analysis. Images are then produced in terms of the angular distribution of events for total counts, gamma rays and neutrons for both cases. The three-dimensional location of the neutron source can be obtained by considering the relative separation of the centres of the corresponding images of angular distribution of events. The measurements have been made at the National Physical Laboratory, Teddington, Middlesex, UK.

  17. X-ray detection properties of plastic scintillators containing surface-modified Bi2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hiyama, Fumiyuki; Noguchi, Takio; Koshimizu, Masanori; Kishimoto, Shunji; Haruki, Rie; Nishikido, Fumihiko; Fujimoto, Yutaka; Aida, Tsutomu; Takami, Seiichi; Adschiri, Tadafumi; Asai, Keisuke

    2018-05-01

    Plastic scintillators containing Bi2O3 nanoparticles (NPs) were developed as detectors for X-ray synchrotron radiation. A hydrothermal method was used to synthesize the NPs that had average particle sizes of less than 10 nm. Higher NP concentration led to a higher detection efficiency at 67.4 keV. The light yield of the scintillator containing 5 wt % Bi2O3 NPs was comparable with or higher than that of the commercially available plastic scintillator, EJ 256. The time resolution of the developed scintillation detector equipped with each sample scintillator was approximately 0.6 ns. Dispersion of nanoparticles within plastic scintillators is generally applicable and has wide application as a method for preparation of plastic scintillators for detecting X-ray synchrotron radiation.

  18. Nuclear Science Symposium, 21st, Scintillation and Semiconductor Counter Symposium, 14th, and Nuclear Power Systems Symposium, 6th, Washington, D.C., December 11-13, 1974, Proceedings

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented dealing with latest advances in the design of scintillation counters, semiconductor radiation detectors, gas and position sensitive radiation detectors, and the application of these detectors in biomedicine, satellite instrumentation, and environmental and reactor instrumentation. Some of the topics covered include entopistic scintillators, neutron spectrometry by diamond detector for nuclear radiation, the spherical drift chamber for X-ray imaging applications, CdTe detectors in radioimmunoassay analysis, CAMAC and NIM systems in the space program, a closed loop threshold calibrator for pulse height discriminators, an oriented graphite X-ray diffraction telescope, design of a continuous digital-output environmental radon monitor, and the optimization of nanosecond fission ion chambers for reactor physics. Individual items are announced in this issue.

  19. Correlation of Non-proportionality and Scintillation Properties with Cerium Concentration in YAlO 3:Ce

    DOE PAGES

    Donnald, Samuel B.; Williams, Richard; Melcher, Charles L.; ...

    2018-04-19

    Cerium doped YAlO3 (YAP:Ce) is an interesting oxide scintillator in that it exhibits a wider range of light yield non-proportionality on a sample-to-sample basis than most other well-known oxide scintillators. In general, most oxide materials, such as BGO and LSO:Ce, are thought to have an intrinsic proportional response that is nearly constant between samples and independent of growth conditions. Since light yield nonproportionality is responsible for degrading the achievable energy resolution of all known scintillators, it is important to understand what contributes to the behavior. In this study, in an attempt to understand if the phenomenon can be affected bymore » growth parameters or by other means, seven samples of YAP:Ce were collected from various sources, and eight samples were grown inhouse using the Czochralski method. Based on optical and scintillation measurement as well as direct measurement of the cerium concentration, it was determined that the light yield proportionality in YAlO3:Ce is strongly related to the cerium concentration. Samples that were found to have a higher relative cerium concentration displayed a more proportional light yield response. In addition, it was determined that samples with a higher cerium concentration also exhibit a faster decay time and an enhanced energy resolution when compared to samples with less cerium. Finally, it was also determined that growth in a reducing atmosphere can effectively suppress a parasitic optical absorption band.« less

  20. Correlation of Non-proportionality and Scintillation Properties with Cerium Concentration in YAlO 3:Ce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnald, Samuel B.; Williams, Richard; Melcher, Charles L.

    Cerium doped YAlO3 (YAP:Ce) is an interesting oxide scintillator in that it exhibits a wider range of light yield non-proportionality on a sample-to-sample basis than most other well-known oxide scintillators. In general, most oxide materials, such as BGO and LSO:Ce, are thought to have an intrinsic proportional response that is nearly constant between samples and independent of growth conditions. Since light yield nonproportionality is responsible for degrading the achievable energy resolution of all known scintillators, it is important to understand what contributes to the behavior. In this study, in an attempt to understand if the phenomenon can be affected bymore » growth parameters or by other means, seven samples of YAP:Ce were collected from various sources, and eight samples were grown inhouse using the Czochralski method. Based on optical and scintillation measurement as well as direct measurement of the cerium concentration, it was determined that the light yield proportionality in YAlO3:Ce is strongly related to the cerium concentration. Samples that were found to have a higher relative cerium concentration displayed a more proportional light yield response. In addition, it was determined that samples with a higher cerium concentration also exhibit a faster decay time and an enhanced energy resolution when compared to samples with less cerium. Finally, it was also determined that growth in a reducing atmosphere can effectively suppress a parasitic optical absorption band.« less

  1. Neutron induced radiation damage of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector.

    NASA Astrophysics Data System (ADS)

    Mdhluli, J. E.; Jivan, H.; Erasmus, R.; Davydov, Yu I.; Baranov, V.; Mthembu, S.; Mellado, B.; Sideras-Haddad, E.; Solovyanov, O.; Sandrock, C.; Peter, G.; Tlou, S.; Khanye, N.; Tjale, B.

    2017-07-01

    With the prediction that the plastic scintillators in the gap region of the Tile Calorimeter will sustain a significantly large amount of radiation damage during the HL-LHC run time, the current plastic scintillators will need to be replaced during the phase 2 upgrade in 2018. The scintillators in the gap region were exposed to a radiation environment of up to 10 kGy/year during the first run of data taking and with the luminosity being increased by a factor of 10, the radiation environment will be extremely harsh. We report on the radiation damage to the optical properties of plastic scintillators following irradiation using a neutron beam of the IBR-2 pulsed reactor in Joint Institute for Nuclear Research (JINR), Dubna. A comparison is drawn between polyvinyl toluene based commercial scintillators EJ200, EJ208 and EJ260 as well as polystyrene based scintillator from Kharkov. The samples were subjected to irradiation with high energy neutrons and a flux density range of 1 × 106-7.7 × 106. Light transmission, Raman spectroscopy, fluorescence spectroscopy and light yield testing was performed to characterize the damage induced in the samples. Preliminary results from the tests done indicate a minute change in the optical properties of the scintillators with further studies underway to gain a better understanding of the interaction between neutrons with plastic scintillators.

  2. A new scalable modular data acquisition system for SPECT (PET)

    NASA Astrophysics Data System (ADS)

    Stenstrom, P.; Rillbert, A.; Bergquist, M.; Habte, F.; Bohm, C.; Larsson, S. A.

    1998-06-01

    Describes a modular decentralized data acquisition system that continuously samples shaped PMT pulses from a SPECT detector. The pulse waveform data are used by signal processors to accurately reconstruct amplitude and time for each scintillation event. Data acquisition for a PMT channel is triggered in two alternative ways, either when its own signal exceeds a selected digital threshold, or when it receives a trigger pulse from one of its neighboring PMTs. The triggered region is restricted to seven, thirteen or nineteen neighboring PMT channels. Each acquisition module supports three PMT channels and connects to all other modules and a reconstruction computer via Firewire to cover the 72 channels in the Stockholm University/Karolinska Hospital cylindrical SPECT camera.

  3. Deriving depth-dependent light escape efficiency and optical Swank factor from measured pulse height spectra of scintillators.

    PubMed

    Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R; Zhao, Wei

    2017-03-01

    Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e., variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε¯(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε¯(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150-1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε¯(z) were used to calculate each scintillator's optical Swank factor. For scintillators of the same optical design, only minor differences in light escape efficiency were observed between samples with different thickness. As thickness increased, escape efficiency decreased by up to 20% for interactions furthest away from light collection. Optical design (i.e., backing and FOP) predominantly affected the magnitude and relative variation in ε¯(z). Depending on interaction depth and scintillator thickness, samples with an absorptive backing and FOP were estimated to yield 4.1-13.4 photons/keV. Samples with a reflective backing and FOP yielded 10.4-18.4 keV -1 , while those with a reflective backing and no FOP yielded 29.5-52.0 keV -1 . Optical Swank factors were approximately 0.9 and near-unity in samples featuring an absorptive or reflective backing, respectively. This work uses a modeling approach to remove the noise introduced by the measurement apparatus from measured PHS. This method allows absolute quantification of ε¯(z) and more accurate estimation of the optical Swank factor of scintillators. The method was applied to CsI scintillators with different thickness and optical design, and determined that optical design more strongly affects ε¯(z) and Swank factor than differences in CsI thickness. Despite large variations in ε¯(z) between optical designs, the Swank factor of all evaluated samples is above 0.9. Information provided by this methodology can help validate Monte Carlo simulations of structured CsI and optimize scintillator design for x-ray imaging applications. © 2016 American Association of Physicists in Medicine.

  4. Very High-Frequency (VHF) ionospheric scintillation fading measurements at Lima, Peru

    NASA Technical Reports Server (NTRS)

    Blank, H. A.; Golden, T. S.

    1972-01-01

    During the spring equinox of 1970, scintillating signals at VHF (136.4 MHz) were observed at Lima, Peru. The transmission originated from ATS 3 and was observed through a pair of antennas spaced 1200 feet apart on an east-west baseline. The empirical data were digitized, reduced, and analyzed. The results include amplitude probability density and distribution functions, time autocorrelation functions, cross correlation functions for the spaced antennas, and appropriate spectral density functions. Results show estimates of the statistics of the ground diffraction pattern to gain insight into gross ionospheric irregularity size, and irregularity velocity in the antenna planes.

  5. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  6. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    PubMed

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. Copyright © 2011. Published by Elsevier GmbH.

  7. Improved neutron-gamma discrimination for a {sup 6}Li-glass neutron detector using digital signal analysis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C. L., E-mail: wangc@ornl.gov; Riedel, R. A.

    2016-01-15

    A {sup 6}Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at Spallation Neutron Source. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 10{sup 4}. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, six digital signal analysis methods of individual waveforms acquired from photomultiplier tubes were proposed using (i) charge integration, (ii) pulse-amplitude histograms, (iii) power spectrum analysis combined with the maximum pulse-amplitude, (iv) two event parameters (a{sub 1}, b{submore » 0}) obtained from a Wiener filter, (v) an effective amplitude (m) obtained from an adaptive least-mean-square filter, and (vi) a cross-correlation coefficient between individual and reference waveforms. The NGD ratios are about 70 times those from the traditional PHA method. Our results indicate the NGD capabilities of neutron Anger cameras based on GS20 scintillators can be significantly improved with digital signal analysis methods.« less

  8. Sub-micrometer resolution proximity X-ray microscope with digital image registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chkhalo, N. I.; Salashchenko, N. N.; Sherbakov, A. V., E-mail: SherbakovAV@ipm.sci-nnov.ru

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector’s design allows the use of lensesmore » with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.« less

  9. Radiation imaging apparatus

    DOEpatents

    Anger, Hal O.; Martin, Donn C.; Lampton, Michael L.

    1983-01-01

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

  10. Deriving depth-dependent light escape efficiency and optical Swank factor from measured pulse height spectra of scintillators

    PubMed Central

    Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R.; Zhao, Wei

    2017-01-01

    Purpose Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e. variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε̄(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε̄(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. Methods The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically-reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150–1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε̄(z) were used to calculate each scintillator’s optical Swank factor. Results For scintillators of the same optical design, only minor differences in light escape efficiency were observed between samples with different thickness. As thickness increased, escape efficiency decreased by up to 20% for interactions furthest away from light collection. Optical design (i.e. backing and FOP) predominantly affected the magnitude and relative variation in ε̄(z). Depending on interaction depth and scintillator thickness, samples with an absorptive backing and FOP were estimated to yield 4.1–13.4 photons/keV. Samples with a reflective backing and FOP yielded 10.4–18.4 keV−1, while those with a reflective backing and no FOP yielded 29.5–52.0 keV−1. Optical Swank factors were approximately 0.9 and near-unity in samples featuring an absorptive or reflective backing, respectively. Conclusions This work uses a modeling approach to remove the noise introduced by the measurement apparatus from measured PHS. This method allows absolute quantification of ε̄(z) and more accurate estimation of the optical Swank factor of scintillators. The method was applied to CsI scintillators with different thickness and optical design, and determined that optical design more strongly affects ε̄(z) and Swank factor than differences in CsI thickness. Despite large variations in ε̄(z) between optical designs, the Swank factor of all evaluated samples is above 0.9. Information provided by this methodology can help validate Monte Carlo simulations of structured CsI and optimize scintillator design for x-ray imaging applications. PMID:28039881

  11. History and current status of strontium iodide scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepy, Nerine J.; Beck, Patrick R.; Payne, Stephen A.

    Eu-doped strontium iodide single crystal growth has reached maturity and prototype SrI 2(Eu)-based gamma ray spectrometers provide detection performance advantages over standard detectors. SrI 2(Eu) offers a high, proportional light yield of >80,000 photons/MeV. Energy resolution of <3% at 662 keV with 1.5” x 1.5” SrI2(Eu) crystals is routinely achieved, by employing either a small taper at the top of the crystal or a digital readout technique. These methods overcome light-trapping, in which scintillation light is re-absorbed and re-emitted in Eu 2+-doped crystals. As a result, its excellent energy resolution, lack of intrinsic radioactivity or toxicity, and commercial availability makemore » SrI 2(Eu) the ideal scintillator for use in handheld radioisotope identification devices. A 6-lb SrI 2(Eu) radioisotope identifier is described.« less

  12. History and current status of strontium iodide scintillators

    DOE PAGES

    Cherepy, Nerine J.; Beck, Patrick R.; Payne, Stephen A.; ...

    2017-09-15

    Eu-doped strontium iodide single crystal growth has reached maturity and prototype SrI 2(Eu)-based gamma ray spectrometers provide detection performance advantages over standard detectors. SrI 2(Eu) offers a high, proportional light yield of >80,000 photons/MeV. Energy resolution of <3% at 662 keV with 1.5” x 1.5” SrI2(Eu) crystals is routinely achieved, by employing either a small taper at the top of the crystal or a digital readout technique. These methods overcome light-trapping, in which scintillation light is re-absorbed and re-emitted in Eu 2+-doped crystals. As a result, its excellent energy resolution, lack of intrinsic radioactivity or toxicity, and commercial availability makemore » SrI 2(Eu) the ideal scintillator for use in handheld radioisotope identification devices. A 6-lb SrI 2(Eu) radioisotope identifier is described.« less

  13. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignell, L. J.; Diwan, M. V.; Hans, S.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  14. Physical Vapor Deposition and Defect Engineering of Europium Doped Lutetium Oxide

    NASA Astrophysics Data System (ADS)

    Gillard, Scott James

    Lutetium oxide doped with europium (Lu2O3:Eu 3+) has been established as a promising scintillator material with properties that are advantageous when compared to other scintillators such as cesium iodide doped with thallium (CsI:Tl). Due to high X-ray attenuation characteristics, Lu2O3:Eu3+ is an attractive material for use in high resolution digital X-ray imaging systems. However, challenges still remain especially in the area of light output for Lu 2O3:Eu3+. Processing by physical vapor deposition (PVD) and manipulation of oxygen defect structure was explored in order to better understand the effect on the scintillation phenomena. PVD results were obtained using high temperature radio frequency sputtering (RF) and pulsed laser deposition (PLD) systems. Characterization of light output by radial noise power spectrum density measurements revealed that high temperature RF films were superior to those obtained using PLD. Optimization of sputtered films based on light output over a range of process parameters, namely temperature, power, pressure, and substrate orientation was investigated. Parameterization of deposition conditions revealed that: 75 watts, 10.00 mtorr, and 800°C were optimum conditions for Lu2O3:Eu 3+ films. Manipulation of anionic defect structure in similar material systems has been shown to improve scintillation response. Similar methods for Lu 2O3:Eu3+ were explored for hot pressed samples of Lu2O3:Eu3+; via controlled atmosphere annealing, and use of extrinsic co-doping with calcium. The controlled atmosphere experiments established the importance of oxygen defect structure within Lu 2O3:Eu3+ and showed that fully oxidized samples were preferred for light output. The second method utilized co-doping by the addition of calcium which induced oxygen vacancies and by Frenkel equilibrium changed the oxygen interstitial population within the Lu2O 3:Eu3+ structure. The addition of calcium was investigated and revealed that scintillation was improved with a maximum response occurring at 340ppm of calcium. PVD optimization and co-doping experimental results provided a template for the use of calcium co-doped Lu2O3 :Eu3+ targets for deposition of films. Preliminary deposition results were promising and revealed that small additions (around 550 ppm) of calcium resulted in better activator efficiency. Calcium co-doped films have a predicted increase in the light yield greater than 14% when compared to analogous un-doped Lu2O3:Eu3+ films at 60keV.

  15. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    DOE PAGES

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less

  16. Cosmic-muon intensity measurement and overburden estimation in a building at surface level and in an underground facility using two BC408 scintillation detectors coincidence counting system.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Liu, Chuanlei; Mailhot, Maverick

    2016-10-01

    A series of measurements have been recently conducted to determine the cosmic-muon intensities and attenuation factors at various indoor and underground locations for a gamma spectrometer. For this purpose, a digital coincidence spectrometer was developed by using two BC408 plastic scintillation detectors and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results indicate that the overburden in the building at surface level absorbs a large part of cosmic ray protons while attenuating the cosmic-muon intensity by 20-50%. The underground facility has the largest overburden of 39 m water equivalent, where the cosmic-muon intensity is reduced by a factor of 6. The study provides a cosmic-muon intensity measurement and overburden assessment, which are important parameters for analysing the background of an HPGe counting system, or for comparing the background of similar systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Study of the peak shape in alpha spectra measured by liquid scintillation

    NASA Astrophysics Data System (ADS)

    Vera Tomé, F.; Gómez Escobar, V.; Martín Sánchez, A.

    2002-06-01

    Liquid-scintillation counting allows the measurement of alpha and beta activities jointly or only of the alpha-emitting nuclides in a sample. Although the resolution of the alpha spectra is poorer than that attained with semiconductor detectors, it is still an attractive alternative. We describe here attempts to fit a peak shape to experimental liquid-scintillation alpha spectra and discuss the parameters affecting this shape, such as the PSA (pulse-shape analyser) level, vial type, shaking the sample, etc. Spectral analysis has been applied for complex alpha spectra.

  18. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET.

    PubMed

    Gundacker, Stefan; Auffray, Etiennette; Pauwels, Kristof; Lecoq, Paul

    2016-04-07

    The coincidence time resolution (CTR) of scintillator based detectors commonly used in positron emission tomography is well known to be dependent on the scintillation decay time (τd) and the number of photons detected (n'), i.e. CTR proportional variant √τd/n'. However, it is still an open question to what extent the scintillation rise time (τr) and other fast or prompt photons, e.g. Cherenkov photons, at the beginning of the scintillation process influence the CTR. This paper presents measurements of the scintillation emission rate for different LSO type crystals, i.e. LSO:Ce, LYSO:Ce, LSO:Ce codoped Ca and LGSO:Ce. For the various LSO-type samples measured we find an average value of 70 ps for the scintillation rise time, although some crystals like LSO:Ce codoped Ca seem to have a much faster rise time in the order of 20 ps. Additional measurements for LuAG:Ce and LuAG:Pr show a rise time of 535 ps and 251 ps, respectively. For these crystals, prompt photons (Cherenkov) can be observed at the beginning of the scintillation event. Furthermore a significantly lower rise time value is observed when codoping with calcium. To quantitatively investigate the influence of the rise time to the time resolution we measured the CTR with the same L(Y)SO samples and compared the values to Monte Carlo simulations. Using the measured relative light yields, rise- and decay times of the scintillators we are able to quantitatively understand the measured CTRs in our simulations. Although the rise time is important to fully explain the CTR variation for the different samples tested we determined its influence on the CTR to be in the order of a few percent only. This result is surprising because, if only photonstatistics of the scintillation process is considered, the CTR would be proportional to the square root of the rise time. The unexpected small rise time influence on the CTR can be explained by the convolution of the scintillation rate with the single photon time resolution (SPTR) of the photodetector and the photon travel spread (PTS) in the crystal. The timing benefits of prompt photons at the beginning of the scintillation process (Cherenkov etc) are further studied, which leads to the conclusion that the scintillation rise time, SPTR and PTS have to be lowered simultaneously to fully profit from these fast photons in order to improve the CTR significantly.

  19. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET

    NASA Astrophysics Data System (ADS)

    Gundacker, Stefan; Auffray, Etiennette; Pauwels, Kristof; Lecoq, Paul

    2016-04-01

    The coincidence time resolution (CTR) of scintillator based detectors commonly used in positron emission tomography is well known to be dependent on the scintillation decay time ({τd} ) and the number of photons detected ({{n}\\prime} ), i.e. CTR\\propto \\sqrt{{τd}/{{n}\\prime}} . However, it is still an open question to what extent the scintillation rise time ({τr} ) and other fast or prompt photons, e.g. Cherenkov photons, at the beginning of the scintillation process influence the CTR. This paper presents measurements of the scintillation emission rate for different LSO type crystals, i.e. LSO:Ce, LYSO:Ce, LSO:Ce codoped Ca and LGSO:Ce. For the various LSO-type samples measured we find an average value of 70 ps for the scintillation rise time, although some crystals like LSO:Ce codoped Ca seem to have a much faster rise time in the order of 20 ps. Additional measurements for LuAG:Ce and LuAG:Pr show a rise time of 535 ps and 251 ps, respectively. For these crystals, prompt photons (Cherenkov) can be observed at the beginning of the scintillation event. Furthermore a significantly lower rise time value is observed when codoping with calcium. To quantitatively investigate the influence of the rise time to the time resolution we measured the CTR with the same L(Y)SO samples and compared the values to Monte Carlo simulations. Using the measured relative light yields, rise- and decay times of the scintillators we are able to quantitatively understand the measured CTRs in our simulations. Although the rise time is important to fully explain the CTR variation for the different samples tested we determined its influence on the CTR to be in the order of a few percent only. This result is surprising because, if only photonstatistics of the scintillation process is considered, the CTR would be proportional to the square root of the rise time. The unexpected small rise time influence on the CTR can be explained by the convolution of the scintillation rate with the single photon time resolution (SPTR) of the photodetector and the photon travel spread (PTS) in the crystal. The timing benefits of prompt photons at the beginning of the scintillation process (Cherenkov etc) are further studied, which leads to the conclusion that the scintillation rise time, SPTR and PTS have to be lowered simultaneously to fully profit from these fast photons in order to improve the CTR significantly.

  20. Radiation imaging apparatus

    DOEpatents

    Anger, H.O.; Martin, D.C.; Lampton, M.L.

    1983-07-26

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

  1. Cosmic-ray cascades photographed in scintillator

    NASA Technical Reports Server (NTRS)

    Barrowes, S. C.; Huggett, R. W.; Levit, L. B.; Porter, L. G.

    1974-01-01

    Light produced by nuclear-electromagnetic cascades in a plastic scintillator can be photographed, and the resulting images on film used to measure both the energy content of the cascades and also the positions at which the cascades passed through the scintillator. The energy content of a cascade can be measured to 20% and its position determined to plus or minus 0.8 cm in each scintillator. Techniques for photographing the cascades and analyzing the film are described. Sample data are presented and discussed.

  2. Overview of a FPGA-based nuclear instrumentation dedicated to primary activity measurements.

    PubMed

    Bobin, C; Bouchard, J; Pierre, S; Thiam, C

    2012-09-01

    In National Metrology Institutes like LNE-LNHB, renewal and improvement of the instrumentation is an important task. Nowadays, the current trend is to adopt digital boards, which present numerous advantages over the standard electronics. The feasibility of an on-line fulfillment of nuclear-instrumentation functionalities using a commercial FPGA-based (Field-Programmable Gate Array) board has been validated in the case of TDCR primary measurements (Triple to Double Coincidence Ratio method based on liquid scintillation). The new applications presented in this paper have been included to allow either an on-line processing of the information or a raw-data acquisition for an off-line treatment. Developed as a complementary tool for TDCR counting, a time-to-digital converter specifically designed for this technique has been added. In addition, the description is given of a spectrometry channel based on the connection between conventional shaping amplifiers and the analog-to-digital converter (ADC) input available on the same digital board. First results are presented in the case of α- and γ-counting related to, respectively, the defined solid angle and well-type NaI(Tl) primary activity techniques. The combination of two different channels (liquid scintillation and γ-spectrometry) implementing the live-time anticoincidence processing is also described for the application of the 4πβ-γ coincidence method. The need for an optimized coupling between the analog chain and the ADC stage is emphasized. The straight processing of the signals delivered by the preamplifier connected to a HPGe detector is also presented along with the first development of digital filtering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Automatic measurements and computations for radiochemical analyses

    USGS Publications Warehouse

    Rosholt, J.N.; Dooley, J.R.

    1960-01-01

    In natural radioactive sources the most important radioactive daughter products useful for geochemical studies are protactinium-231, the alpha-emitting thorium isotopes, and the radium isotopes. To resolve the abundances of these thorium and radium isotopes by their characteristic decay and growth patterns, a large number of repeated alpha activity measurements on the two chemically separated elements were made over extended periods of time. Alpha scintillation counting with automatic measurements and sample changing is used to obtain the basic count data. Generation of the required theoretical decay and growth functions, varying with time, and the least squares solution of the overdetermined simultaneous count rate equations are done with a digital computer. Examples of the complex count rate equations which may be solved and results of a natural sample containing four ??-emitting isotopes of thorium are illustrated. These methods facilitate the determination of the radioactive sources on the large scale required for many geochemical investigations.

  4. Quality assurance in proton beam therapy using a plastic scintillator and a commercially available digital camera.

    PubMed

    Almurayshid, Mansour; Helo, Yusuf; Kacperek, Andrzej; Griffiths, Jennifer; Hebden, Jem; Gibson, Adam

    2017-09-01

    In this article, we evaluate a plastic scintillation detector system for quality assurance in proton therapy using a BC-408 plastic scintillator, a commercial camera, and a computer. The basic characteristics of the system were assessed in a series of proton irradiations. The reproducibility and response to changes of dose, dose-rate, and proton energy were determined. Photographs of the scintillation light distributions were acquired, and compared with Geant4 Monte Carlo simulations and with depth-dose curves measured with an ionization chamber. A quenching effect was observed at the Bragg peak of the 60 MeV proton beam where less light was produced than expected. We developed an approach using Birks equation to correct for this quenching. We simulated the linear energy transfer (LET) as a function of depth in Geant4 and found Birks constant by comparing the calculated LET and measured scintillation light distribution. We then used the derived value of Birks constant to correct the measured scintillation light distribution for quenching using Geant4. The corrected light output from the scintillator increased linearly with dose. The system is stable and offers short-term reproducibility to within 0.80%. No dose rate dependency was observed in this work. This approach offers an effective way to correct for quenching, and could provide a method for rapid, convenient, routine quality assurance for clinical proton beams. Furthermore, the system has the advantage of providing 2D visualization of individual radiation fields, with potential application for quality assurance of complex, time-varying fields. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. A FADC-Based Data Acquisition System for the KASCADE-Grande Experiment

    NASA Astrophysics Data System (ADS)

    Walkowiak, W.; Antoni, T.; Apel, W. D.; Badea, F.; Bekk, K.; Bercuci, A.; Bertaina, M.; Blumer, H.; Bozdog, H.; Brancus, I. M.; Bruggemann, M.; Buchholz, P.; Buttner, C.; Chiavassa, A.; Daumiller, K.; Dipierro, F.; Doll, P.; Engel, R.; Engler, J.; Febler, F.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Horandel, J. R.; Kampert, K.-H.; Klages, H. O.; Kolotaev, Y.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Muller, M.; Navarra, G.; Obenland, R.; Oehlschlager, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Plewnia, S.; Rebel, H.; Risse, A.; Roth, M.; Schieler, H.; Scholz, J.; Stumpert, M.; Thouw, T.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Valchierotti, S.; Vanburen, J.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zagromski, S.; Zimmermann, D.

    2006-02-01

    We present the design and first test results of a new FADC-based data acquisition (DAQ) system for the Grande array of the KASCADE-Grande experiment. The original KASCADE experiment at the Forschungszentrum Karlsruhe, Germany, has been extended by 37 detector stations of the former EAS-TOP experiment (Grande array)to provide sensitivity to energies of primary particles from the cosmos of up to $10^{18}$ eV. The new FADC-based DAQ system will improve the quality of the data taken by the Grande array by digitizing the scintillator signals with a 250 MHz sampling rate. events per second. Two Grande stations have been equipped with the FADC-based data acquisition system and first data are shown.

  6. A rapid method for the simultaneous determination of gross alpha and beta activities in water samples using a low background liquid scintillation counter.

    PubMed

    Sanchez-Cabeza, J A; Pujol, L

    1995-05-01

    The radiological examination of water requires a rapid screening technique that permits the determination of the gross alpha and beta activities of each sample in order to decide if further radiological analyses are necessary. In this work, the use of a low background liquid scintillation system (Quantulus 1220) is proposed to simultaneously determine the gross activities in water samples. Liquid scintillation is compared to more conventional techniques used in most monitoring laboratories. In order to determine the best counting configuration of the system, pulse shape discrimination was optimized for 6 scintillant/vial combinations. It was concluded that the best counting configuration was obtained with the scintillation cocktail Optiphase Hisafe 3 in Zinsser low diffusion vials. The detection limits achieved were 0.012 Bq L-1 and 0.14 Bq L-1 for gross alpha and beta activity respectively, after a 1:10 concentration process by simple evaporation and for a counting time of only 360 min. The proposed technique is rapid, gives spectral information, and is adequate to determine gross activities according to the World Health Organization (WHO) guideline values.

  7. An easy method for Ra-226 determination in river waters by liquid-scintillation counting

    NASA Astrophysics Data System (ADS)

    Moreno, H. P.; Vioque, I.; Manjón, G.; García-Tenorio, R.

    1999-01-01

    226Ra activity concentration in river water was determined using a low background liquid scintillation counter. Radium was extracted from the samples as Ra-BaSO4 precipitate which, afterwards, was dissolved with EDTA in ammonia medium. Solution was transferred into a low potassium glass vial and then mixed with a scintillation cocktail. Two different scintillation cocktails were selected for comparison. Efficiency, recovery yield and α/β separation were studied with both liquid scintillation cocktails. One single measurement, made one month after radium separation, allows to calculate the226Ra concentration as well as to assess the presence of alpha contamination of the sample. In the case of negligible interferences,224Ra concentrations can be subsequently evaluated in the same sample by the measurement made just after chemical separation of radium. This method has been applied for the determination of226Ra and224Ra activity concentrations in river water collected from different locations along the Odiel river estuary area (South-west of Spain). The presence of chemical industry, the wastes of which are released into the river, could be connected with radium activity concentration enhancements in the water.

  8. Neutron irradiation and damage assessment of plastic scintillators of the Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Mdhluli, J. E.; Mellado, B.; Sideras-Haddad, E.

    2017-01-01

    Following the comparative study of proton induced radiation damage on various plastic scintillator samples from the ATLAS-CERN detector, a study on neutron irradiation and damage assessment on the same type of samples will be conducted. The samples will be irradiated with different dose rates of neutrons produced in favourable nuclear reactions using a radiofrequency linear particle accelerator as well as from the SAFARI nuclear reactor at NECSA. The MCNP 5 code will be utilized in simulating the neutron transport for determining the dose rate. Light transmission and light yield tests will be performed in order to assess the radiation damage on the scintillators. In addition, Raman spectroscopy and Electron Paramagnetic Resonance (EPR) analysis will be used to characterize the samples after irradiation. The project aims to extent these studies to include radiation assessment damage of any component that processes the scintillating light and deteriorates the quantum efficiency of the Tilecal detector, namely, photomultiplier tubes, wavelength shifting optical fibres and the readout electronics. They will also be exposed to neutron irradiation and the damage assessed in the same manner.

  9. Liquid scintillation sample analysis in microcentrifuge tubes.

    PubMed

    Elliott, J C

    1993-01-01

    Local regulations prohibiting drain disposal of "biodegradable" liquid scintillation cocktails prompted investigation of volume reduction for these materials. Microcentrifuge tubes were used with aqueous and filter media samples of 3H, 14C, 32P, and 125I. Backgrounds, counting efficiencies, figures of merit, and spectral distributions obtained for microcentrifuge tubes compared favorably to conventional vials. Differences in 32P spectra for solid support samples appeared related to filter material and sample volume. Decreases in sample costs and waste volume and disposal costs were approximately 50-75%.

  10. Highly Soluble p-Terphenyl and Fluorene Derivatives as Efficient Dopants in Plastic Scintillators for Sensitive Nuclear Material Detection.

    PubMed

    Yemam, Henok A; Mahl, Adam; Tinkham, Jonathan S; Koubek, Joshua T; Greife, Uwe; Sellinger, Alan

    2017-07-03

    Plastic scintillators are commonly used as first-line detectors for special nuclear materials. Current state-of-the-art plastic scintillators based on poly(vinyltoluene) (PVT) matrices containing high loadings (>15.0 wt %) of 2,5-diphenyloxazole (PPO) offer neutron signal discrimination in gamma radiation background (termed pulse shape discrimination, PSD), however, they suffer from poor mechanical properties. In this work, a series of p-terphenyl and fluorene derivatives were synthesized and tested as dopants in PVT based plastic scintillators as possible alternatives to PPO to address the mechanical property issue and to study the PSD mechanism. The derivatives were synthesized from low cost starting materials in high yields using simple chemistry. The photophysical and thermal properties were investigated for their influence on radiation sensitivity/detection performance, and mechanical stability. A direct correlation was found between the melting point of the dopants and the subsequent mechanical properties of the PVT based plastic scintillators. For example, select fluorene derivatives used as dopants produced scintillator samples with mechanical properties exceeding those of the commercial PPO-based scintillators while producing acceptable PSD capabilities. The physical properties of the synthesized dopants were also investigated to examine their effect on the final scintillator samples. Planar derivatives of fluorene were found to be highly soluble in PVT matrices with little to no aggregation induced effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Side readout of long scintillation crystal elements with digital SiPM for TOF-DOI PET.

    PubMed

    Yeom, Jung Yeol; Vinke, Ruud; Levin, Craig S

    2014-12-01

    Side readout of scintillation light from crystal elements in positron emission tomography (PET) is an alternative to conventional end-readout configurations, with the benefit of being able to provide accurate depth-of-interaction (DOI) information and good energy resolution while achieving excellent timing resolution required for time-of-flight PET. This paper explores different readout geometries of scintillation crystal elements with the goal of achieving a detector that simultaneously achieves excellent timing resolution, energy resolution, spatial resolution, and photon sensitivity. The performance of discrete LYSO scintillation elements of different lengths read out from the end/side with digital silicon photomultipliers (dSiPMs) has been assessed. Compared to 3 × 3 × 20 mm(3) LYSO crystals read out from their ends with a coincidence resolving time (CRT) of 162 ± 6 ps FWHM and saturated energy spectra, a side-readout configuration achieved an excellent CRT of 144 ± 2 ps FWHM after correcting for timing skews within the dSiPM and an energy resolution of 11.8% ± 0.2% without requiring energy saturation correction. Using a maximum likelihood estimation method on individual dSiPM pixel response that corresponds to different 511 keV photon interaction positions, the DOI resolution of this 3 × 3 × 20 mm(3) crystal side-readout configuration was computed to be 0.8 mm FWHM with negligible artifacts at the crystal ends. On the other hand, with smaller 3 × 3 × 5 mm(3) LYSO crystals that can also be tiled/stacked to provide DOI information, a timing resolution of 134 ± 6 ps was attained but produced highly saturated energy spectra. The energy, timing, and DOI resolution information extracted from the side of long scintillation crystal elements coupled to dSiPM have been acquired for the first time. The authors conclude in this proof of concept study that such detector configuration has the potential to enable outstanding detector performance in terms of timing, energy, and DOI resolution.

  12. Side readout of long scintillation crystal elements with digital SiPM for TOF-DOI PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, Jung Yeol, E-mail: yeomjy@kumoh.ac.kr, E-mail: cslevin@stanford.edu; Vinke, Ruud; Levin, Craig S., E-mail: yeomjy@kumoh.ac.kr, E-mail: cslevin@stanford.edu

    Purpose: Side readout of scintillation light from crystal elements in positron emission tomography (PET) is an alternative to conventional end-readout configurations, with the benefit of being able to provide accurate depth-of-interaction (DOI) information and good energy resolution while achieving excellent timing resolution required for time-of-flight PET. This paper explores different readout geometries of scintillation crystal elements with the goal of achieving a detector that simultaneously achieves excellent timing resolution, energy resolution, spatial resolution, and photon sensitivity. Methods: The performance of discrete LYSO scintillation elements of different lengths read out from the end/side with digital silicon photomultipliers (dSiPMs) has been assessed.more » Results: Compared to 3 × 3 × 20 mm{sup 3} LYSO crystals read out from their ends with a coincidence resolving time (CRT) of 162 ± 6 ps FWHM and saturated energy spectra, a side-readout configuration achieved an excellent CRT of 144 ± 2 ps FWHM after correcting for timing skews within the dSiPM and an energy resolution of 11.8% ± 0.2% without requiring energy saturation correction. Using a maximum likelihood estimation method on individual dSiPM pixel response that corresponds to different 511 keV photon interaction positions, the DOI resolution of this 3 × 3 × 20 mm{sup 3} crystal side-readout configuration was computed to be 0.8 mm FWHM with negligible artifacts at the crystal ends. On the other hand, with smaller 3 × 3 × 5 mm{sup 3} LYSO crystals that can also be tiled/stacked to provide DOI information, a timing resolution of 134 ± 6 ps was attained but produced highly saturated energy spectra. Conclusions: The energy, timing, and DOI resolution information extracted from the side of long scintillation crystal elements coupled to dSiPM have been acquired for the first time. The authors conclude in this proof of concept study that such detector configuration has the potential to enable outstanding detector performance in terms of timing, energy, and DOI resolution.« less

  13. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki

    2018-04-01

    13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.

  14. Measurement of tritium in natural water

    NASA Astrophysics Data System (ADS)

    Li, Meifen

    1985-06-01

    A detergent-scintillation liquid mixture applied to measure low specific activity of tritium in natural water was studied. The DYS-1 low level liquid scintillation counter designed and manufactured by our institute was employed. In comparing the Triton X-100 scintillation liquid mixture with the dioxane-based-scintillation liquid, a better formula for Triton X-100 scintillation liquid mixture was determined, the mixture possesses the quality of high water content; high efficiency and low back-ground in measuring tritium in water. Chemiluminescence of the Triton X-100 scintillation liquid mixture can be totally de-excited in short time. It can be employed at ambient temperature 11 28°C. For 20ml sample in quartz vials, counting efficiency is 15% with a background 2.17 cpm, Y=31 TU (t=30 min).

  15. Electron response of some low-Z scintillators in wide energy range

    NASA Astrophysics Data System (ADS)

    Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-06-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  16. Rapid method for determination of 90Sr in seawater by liquid scintillation counting with an extractive scintillator.

    PubMed

    Uesugi, Masaki; Watanabe, Ryosuke; Sakai, Hiroaki; Yokoyama, Akihiko

    2018-02-01

    A rapid determination method of 90 Sr is developed for the monitoring of seawater around the Fukushima Daiichi Nuclear Power Plant (FDNPP). Three ideas of chemical separation and measurements to accelerate 90 Sr analysis are investigated. Strontium is co-precipitated in a two-step procedure with hydroxyapatite after the removal of magnesium phosphate in the presence of citric acid. The purification process of strontium is in combination with solid phase extraction disks. One or two sheets of Sr Rad disk and cyclic operations are examined to eliminate interfering substances and secure the exchange capacity. The suitable conditions of adsorption and stripping are determined with a 85 Sr tracer. Seawater samples up to 1L can be analyzed within 4h. Additionally, the appropriate pH conditions to extract strontium to the scintillator are studied, and the 90 Sr activity is assessed via liquid scintillation counting using an extractive scintillator based on the di-(2-etyl hexyl)-phosphoric acid (HDEHP) extraction method. The new scintillation counting method involves a small quenching effect and a low background compared to the conventional emulsion scintillator method. The minimum detectable activity (MDA) is 35mBq/L of 90 Sr in 180min of counting. The proposed method provides analytical results within a day after receipt of the samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Nikl, Martin; Kurosawa, Shunsuke; Beitlerova, Alena; Nagura, Aya; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-03-01

    The Mg and Ca co-doped Ce:Gd3Al2Ga3O12 single crystals were prepared by micro pulling down method with a wide concentration range 0-1000 ppm of the codopants. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg and Ca co-doping. The scintillation decays were accelerated by both Mg and Ca codopants. Comparing to Ca co-doping, the Mg co-doped samples showed much faster decay and comparatively smaller light output decrease with increasing Mg dopant concentration.

  18. Simultaneous Global Positioning System observations of equatorial scintillations and total electron content fluctuations

    NASA Astrophysics Data System (ADS)

    Beach, Theodore L.; Kintner, Paul M.

    1999-10-01

    One aspect of the Global Positioning System (GPS) is the potential to conduct geophysical research, and worldwide networks of GPS receivers have been established to exploit this potential. Several research groups have begun using this global GPS data to study ionospheric total electron content (TEC) variations, also referred to as GPS phase fluctuations, as surrogates for ionospheric scintillations. This paper investigates the relationship between GPS amplitude scintillations and TEC variations for the same line of sight using observations from Ancón, Peru. These observations were taken under equatorial spread F conditions for three nights in April 1997. As expected, only when the spectrum of TEC fluctuations includes significant power at the Fresnel scale do scintillations appear. We also find that when the TEC fluctuation spectrum includes the Fresnel scale, the S4 scintillation index is roughly proportional to measures of TEC fluctuation for the weak scintillations observed. The proportionality constant varies from night to night, however, casting doubt on the ability to predict GPS S4 successfully from TEC fluctuation data alone. We also present a simple theoretical phase screen model and show that if a relationship between TEC fluctuation measures and S4 exists, that relationship depends on the power spectrum of phase variations at the screen. Unfortunately, the available TEC data, at 30 s per sample (with some aliasing apparently permitted), offer limited spectral information. A preliminary comparison of 1 s/sample data with the same data decimated to a 30 s/sample interval suggests, however, that the level of successful S4 prediction, based on TEC fluctuation measures alone, is comparable at either sample rate.

  19. System and method for assaying a radionuclide

    DOEpatents

    Cadieux, James R; King, III, George S; Fugate, Glenn A

    2014-12-23

    A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.

  20. Current trends in gamma radiation detection for radiological emergency response

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  1. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  2. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    DOE PAGES

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; ...

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be (1.01±0.12)×103photons/MeV.« less

  3. Measurement of Entrance Surface Dose on an Anthropomorphic Thorax Phantom Using a Miniature Fiber-Optic Dosimeter

    PubMed Central

    Yoo, Wook Jae; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Kyoung Won; Cho, Seunghyun; Youn, Won Sik; Lee, Bongsoo

    2014-01-01

    A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology. PMID:24694678

  4. Measurement of entrance surface dose on an anthropomorphic thorax phantom using a miniature fiber-optic dosimeter.

    PubMed

    Yoo, Wook Jae; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Kyoung Won; Cho, Seunghyun; Youn, Won Sik; Lee, Bongsoo

    2014-04-01

    A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology.

  5. Development of the Fast Scintillation Detector with Programmable High Voltage Adjustment Suitable for Moessbauer Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochazka, R.; Frydrych, J.; Pechousek, J.

    2010-07-13

    This work is focused on a development of a compact fast scintillation detector suitable for Moessbauer spectroscopy (low energy X-ray/{gamma}-ray detection) where high counting rates are inevitable. Optimization of this part was necessary for a reliable function, better time resolution and to avoid a detector pulses pile-up effect. The pile-up effect decreases the measurement performance, significantly depends on the source activity and also on the pulse duration. Our new detection unit includes a fast scintillation crystal YAP:Ce, an R6095 photomultiplier tube, a high voltage power supply socket C9028-01 assembly, an AD5252 digital potentiometer with an I2C interface and an AD8000more » ultra fast operation preamplifier. The main advantages of this solution lie in a short pulse duration (less than 200 ns), stable operation for high activities, programmable gain of the high voltage supply and compact design in the aluminum housing.« less

  6. Fast-Neutron Survey With Compact Plastic Scintillation Detectors.

    PubMed

    Preston, Rhys M; Tickner, James R

    2017-07-01

    With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Measurements of response functions of EJ-299-33A plastic scintillator for fast neutrons

    NASA Astrophysics Data System (ADS)

    Hartman, J.; Barzilov, A.; Peters, E. E.; Yates, S. W.

    2015-12-01

    Monoenergetic neutron response functions were measured for an EJ-299-33A plastic scintillator. The 7-MV Van de Graaff accelerator at the University of Kentucky Accelerator Laboratory was used to produce proton and deuteron beams for reactions with gaseous tritium and deuterium targets, yielding monoenergetic neutrons by means of the 3H(p,n)3He, 2H(d,n)3He, and 3H(d,n)4He reactions. The neutron energy was selected by tuning the charged-particle's energy and using the angular dependence of the neutron emission. The resulting response functions were measured for 0.1-MeV steps in neutron energy from 0.1 MeV to 8.2 MeV and from 12.2 MeV to 20.2 MeV. Experimental data were processed using a procedure for digital pulse-shape discrimination, which allowed characterization of the response functions of the plastic scintillator to neutrons only. The response functions are intended for use in neutron spectrum unfolding methods.

  8. A prototype of a portable TDCR system at ENEA.

    PubMed

    Capogni, Marco; De Felice, Pierino

    2014-11-01

    A prototype of a portable liquid scintillation counting system based on the Triple-to-Double Coincidence Ratio (TDCR) technique was developed at ENEA-INMRI in the framework of the European Metrofission project. The new device equipped with the CAEN digitizers was tested for the activity measurements of pure β-emitters ((99)Tc and (63)Ni). The list-mode data recorded by the digitizers were analyzed by software implemented in the CERN ROOT environment, which allows the application of pulse shape discrimination using the new device. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Advances in Neutron Spectroscopy with Deuterated Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Febbraro, Michael; Pain, Steve; Becchetti, Frederick

    2015-10-01

    Deuterated organic scintillators have shown promise as neutron detectors for nuclear science as well as applications in nuclear non-proliferation and safeguards. In particular, they can extract neutron spectra without the use of neutron time-of-flight measurement (n-ToF) utilizing spectrum unfolding techniques. This permits the measure of cross sections of bound and unbound states with high efficiency and angular coverage. In the case of measurements with radioactive ion beams where low beam intensities limit long path n-ToF, short path n-ToF can be used to discriminate neutrons of interest from room return and background neutrons. This presentation will provide recent advances with these types of detectors. Digital pulse-shape discrimination using fast waveform digitizers, spectrum unfolding methods for extraction of neutron spectra, and a new safer deuterated-xylene formulation EJ-301D will be discussed. In addition, experimental results from measurements of discrete and continuous neutron spectra which illustrate the advantage of these detectors for certain applications in nuclear physics research and nuclear security will be shown. This work is supported by NSF and DOE.

  10. Development of a low background liquid scintillation counter for a shallow underground laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erchinger, Jennifer L.; Aalseth, Craig E.; Bernacki, Bruce E.

    2015-08-20

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of lowconcentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., B, a) emitting isotopes with no (orvery weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunitymore » for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35-meter water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the instrumental shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.« less

  11. Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Raczyński, L.; Moskal, P.; Kowalski, P.; Wiślicki, W.; Bednarski, T.; Białas, P.; Czerwiński, E.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kozik, T.; Krzemień, W.; Kubicz, E.; Molenda, M.; Moskal, I.; Niedźwiecki, Sz.; Pałka, M.; Pawlik-Niedźwiecka, M.; Rudy, Z.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zieliński, M.; Zoń, N.

    2014-11-01

    Currently inorganic scintillator detectors are used in all commercial Time of Flight Positron Emission Tomograph (TOF-PET) devices. The J-PET collaboration investigates a possibility of construction of a PET scanner from plastic scintillators which would allow for single bed imaging of the whole human body. This paper describes a novel method of hit-position reconstruction based on sampled signals and an example of an application of the method for a single module with a 30 cm long plastic strip, read out on both ends by Hamamatsu R4998 photomultipliers. The sampling scheme to generate a vector with samples of a PET event waveform with respect to four user-defined amplitudes is introduced. The experimental setup provides irradiation of a chosen position in the plastic scintillator strip with an annihilation gamma quanta of energy 511 keV. The statistical test for a multivariate normal (MVN) distribution of measured vectors at a given position is developed, and it is shown that signals sampled at four thresholds in a voltage domain are approximately normally distributed variables. With the presented method of a vector analysis made out of waveform samples acquired with four thresholds, we obtain a spatial resolution of about 1 cm and a timing resolution of about 80 ps (σ).

  12. A Submillimeter Resolution PET Prototype Evaluated With an 18F Inkjet Printed Phantom

    NASA Astrophysics Data System (ADS)

    Schneider, Florian R.; Hohberg, Melanie; Mann, Alexander B.; Paul, Stephan; Ziegler, Sibylle I.

    2015-10-01

    This work presents a submillimeter resolution PET (Positron Emission Tomography) scanner prototype based on SiPM/MPPC arrays (Silicon Photomultiplier/Multi Pixel Photon Counter). Onto each active area a 1 ×1 ×20 mm3 LYSO (Lutetium-Yttrium-Oxyorthosilicate) scintillator crystal is coupled one-to-one. Two detector modules facing each other in a distance of 10.0 cm have been set up with in total 64 channels that are digitized by SADCs (Sampling Analog to Digital Converters) with 80 MHz, 10 bit resolution and FPGA (Field Programmable Gate Array) based extraction of energy and time information. Since standard phantoms are not sufficient for testing submillimeter resolution at which positron range is an issue, a 18F inkjet printed phantom has been used to explore the limit in spatial resolution. The phantom could be successfully reconstructed with an iterative MLEM (Maximum Likelihood Expectation Maximization) and an analytically calculated system matrix based on the DRF (Detector Response Function) model. The system yields a coincidence time resolution of 4.8 ns FWHM, an energy resolution of 20%-30% FWHM and a spatial resolution of 0.8 mm.

  13. High fluence neutron radiation of plastic scintillators for the TileCal of the ATLAS detector.

    NASA Astrophysics Data System (ADS)

    Mdhluli, J. E.; Davydov, Yu I.; Baranov, V.; Mthembu, S.; Erasmus, R.; Jivan, H.; Khanye, N.; Tlou, H.; Tjale, B.; Starchenko, J.; Solovyanov, O.; Mellado, B.; Sideras-Haddad, E.

    2017-09-01

    We report on structural and optical properties of neutron irradiated plastic scintillators. These scintillators were subjected to a neutron beam with wide energy range of up to 10MeV and a neutron flux range of 1.2 × 1012 - 9.4 × 1012 n/cm 2 using the IBR-2 pulsed reactor at the Joint Institute for Nuclear Research in Dubna. A study between polyvinyl toluene based commercial scintillators EJ200, EJ208 and EJ260 as well as polystyrene based scintillator from Kharkov is conducted. Light transmission, Raman spectroscopy, fluorescence spectroscopy and light yield testing was performed to characterize the damage induced in the samples. Preliminary results from the tests performed indicate no change in the optical and structural properties of the scintillators. The polystyrene based scintillators were further subjected to a higher neutron flux range of 3.8 × 1012 - 1.8 × 1014 n/cm 2 using the IBR-2 pulsed reactor.

  14. [Low level alpha activity measurements with pulse shape discrimination--application to the determination of alpha-nuclides in environmental samples].

    PubMed

    Satoh, K; Noguchi, M; Higuchi, H; Kitamura, K

    1984-12-01

    Liquid scintillation counting of alpha rays with pulse shape discrimination was applied to the analysis of 226Ra and 239+240Pu in environmental samples and of alpha-emitters in/on a filter paper. The instrument used in this study was either a specially designed detector or a commercial liquid scintillation counter with an automatic sample changer, both of which were connected to the pulse shape discrimination circuit. The background counting rate in alpha energy region of 5-7 MeV was 0.01 or 0.04 cpm/MeV, respectively. The figure of merit indicating the resolving power for alpha- and beta-particles in time spectrum was found to be 5.7 for the commercial liquid scintillation counter.

  15. Background characterization of an ultra-low background liquid scintillation counter

    DOE PAGES

    Erchinger, J. L.; Orrell, John L.; Aalseth, C. E.; ...

    2017-01-26

    The Ultra-Low Background Liquid Scintillation Counter developed by Pacific Northwest National Laboratory will expand the application of liquid scintillation counting by enabling lower detection limits and smaller sample volumes. By reducing the overall count rate of the background environment approximately 2 orders of magnitude below that of commercially available systems, backgrounds on the order of tens of counts per day over an energy range of ~3–3600 keV can be realized. Finally, initial test results of the ULB LSC show promising results for ultra-low background detection with liquid scintillation counting.

  16. Data Processing for a High Resolution Preclinical PET Detector Based on Philips DPC Digital SiPMs

    NASA Astrophysics Data System (ADS)

    Schug, David; Wehner, Jakob; Goldschmidt, Benjamin; Lerche, Christoph; Dueppenbecker, Peter Michael; Hallen, Patrick; Weissler, Bjoern; Gebhardt, Pierre; Kiessling, Fabian; Schulz, Volkmar

    2015-06-01

    In positron emission tomography (PET) systems, light sharing techniques are commonly used to readout scintillator arrays consisting of scintillation elements, which are smaller than the optical sensors. The scintillating element is then identified evaluating the signal heights in the readout channels using statistical algorithms, the center of gravity (COG) algorithm being the simplest and mostly used one. We propose a COG algorithm with a fixed number of input channels in order to guarantee a stable calculation of the position. The algorithm is implemented and tested with the raw detector data obtained with the Hyperion-II D preclinical PET insert which uses Philips Digital Photon Counting's (PDPC) digitial SiPMs. The gamma detectors use LYSO scintillator arrays with 30 ×30 crystals of 1 ×1 ×12 mm3 in size coupled to 4 ×4 PDPC DPC 3200-22 sensors (DPC) via a 2-mm-thick light guide. These self-triggering sensors are made up of 2 ×2 pixels resulting in a total of 64 readout channels. We restrict the COG calculation to a main pixel, which captures most of the scintillation light from a crystal, and its (direct and diagonal) neighboring pixels and reject single events in which this data is not fully available. This results in stable COG positions for a crystal element and enables high spatial image resolution. Due to the sensor layout, for some crystals it is very likely that a single diagonal neighbor pixel is missing as a result of the low light level on the corresponding DPC. This leads to a loss of sensitivity, if these events are rejected. An enhancement of the COG algorithm is proposed which handles the potentially missing pixel separately both for the crystal identification and the energy calculation. Using this advancement, we show that the sensitivity of the Hyperion-II D insert using the described scintillator configuration can be improved by 20-100% for practical useful readout thresholds of a single DPC pixel ranging from 17-52 photons. Furthermore, we show that the energy resolution of the scanner is superior for all readout thresholds if singles with a single missing pixel are accepted and correctly handled compared to the COG method only accepting singles with all neighbors present by 0-1.6% (relative difference). The presented methods can not only be applied to gamma detectors employing DPC sensors, but can be generalized to other similarly structured and self-triggering detectors, using light sharing techniques, as well.

  17. High efficiency microcolumnar Lu2O3:Eu scintillator thin film for hard X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Marton, Z.; Bhandari, H. B.; Brecher, C.; Miller, S. R.; Singh, B.; Nagarkar, V. V.

    2013-03-01

    We have developed microstructured Lu2O3:Eu scintillator films capable of providing spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their extraordinary resolution, Lu2O3:Eu films simultaneously provide high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission, with intensity rivalling that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays, resulting in excessive measurement time and exposure to the specimen. Lu2O3:Eu would significantly improve that (99.9% @12 keV and 30% @ 70 keV). Important properties and features of our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapour deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, microcolumnar structure emitting 48000 photons/MeV whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films measuring 5-50μm in thickness as well as covering areas up to 5 × 5 cm2 which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT).

  18. Silicon Photo-Multiplier Readouts for Scintillators in High-Energy Astronomy

    NASA Technical Reports Server (NTRS)

    Bloser, Peter F.; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.

    2008-01-01

    New scintillator materials have recently been shown to hold great potential for low-cost, reliable gamma-ray detectors in high-energy astronomy. New devices for the detection of scintillation light promise to make scintillator-based instruments even more attractive by reducing mass and power requirements,in particular, silicon photo-multipliers (SiPMs) are starting to become commercially available that offer gains and quantum efficiencies similar to those of photo-multiplier tubes (PMTs), but with greatly reduced mass, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. We have conducted laboratory tests of a sample of commercially available SiPMs coupled to LaBr3;Ce, a scintillator of relevance to to future high-energy astrophysics missions. We present results for gamma-ray spectroscopy. compare the SiPM performance to that of a PMT, and discuss the extent to which SiPMs offer significant advantages for scintillator-based space missions.

  19. Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination.

    PubMed

    Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R

    2016-11-01

    In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator's temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector's single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal.

  20. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and potentially, mitigation of phase distortions.

  1. Baby MIND: A Magnetized Segmented Neutrino Detector for the WAGASCI Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonova, M.; et al.

    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) hasmore » been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.« less

  2. Baby MIND: a magnetized segmented neutrino detector for the WAGASCI experiment

    NASA Astrophysics Data System (ADS)

    Antonova, M.; Asfandiyarov, R.; Bayes, R.; Benoit, P.; Blondel, A.; Bogomilov, M.; Bross, A.; Cadoux, F.; Cervera, A.; Chikuma, N.; Dudarev, A.; Ekelöf, T.; Favre, Y.; Fedotov, S.; Hallsjö, S.-P.; Izmaylov, A.; Karadzhov, Y.; Khabibullin, M.; Khotyantsev, A.; Kleymenova, A.; Koga, T.; Kostin, A.; Kudenko, Y.; Likhacheva, V.; Martinez, B.; Matev, R.; Medvedeva, M.; Mefodiev, A.; Minamino, A.; Mineev, O.; Nessi, M.; Nicola, L.; Noah, E.; Ovsiannikova, T.; Pais Da Silva, H.; Parsa, S.; Rayner, M.; Rolando, G.; Shaykhiev, A.; Simion, P.; Soler, F. J. P.; Suvorov, S.; Tsenov, R.; Ten Kate, H.; Vankova-Kirilova, G.; Yershov, N.

    2017-07-01

    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.

  3. [Low level alpha activity measurements with pulse shape discrimination--the analytical system and its characteristics].

    PubMed

    Noguchi, M; Satoh, K; Higuchi, H

    1984-12-01

    Pulse shape discrimination of alpha and beta rays with liquid scintillation counting was investigated for the purpose of low level alpha activity measurements. Various liquid scintillators for pulse shape discrimination were examined by means of pulse rise time analysis. A new scintillator of low cost and of superior characteristics was found. The figure of merits better than 3.5 in rise time spectrum and the energy resolution better than 9% were obtained for carefully prepared samples. The background counting rate for a sample of 10 ml was reduced to 0.013 cpm/MeV in the range of alpha ray energy 5 to 7 MeV.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mohan; Guo, Ziyi; Yeh, Minfang

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be (1.01±0.12)×103photons/MeV.« less

  5. Liquid scintillator tiles for calorimetry

    DOE PAGES

    Amouzegar, M.; Belloni, A.; Bilki, B.; ...

    2016-11-28

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less

  6. Liquid scintillator tiles for calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amouzegar, M.; Belloni, A.; Bilki, B.

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less

  7. Study of properties of the plastic scintillator EJ-260 under irradiation with 150 MeV protons and 1.2MeV gamma-rays

    NASA Astrophysics Data System (ADS)

    Dormenev, V.; Brinkmann, K.-T.; Korjik, M.; Novotny, R. W.

    2017-11-01

    One of the most critical aspects for the application of a scintillation material in high energy physics is the degradation of properties of the material in an environment of highly ionizing particles in particular due to hadrons. There are presently several detector concepts in consideration being based on organic scintillator material for fast timing of charged particles or sampling calorimeters. We have tested different samples of the organic plastic scintillator EJ-260 produced by the company Eljen Technology (Sweetwater, TX, USA). The ongoing activity has characterized the relevant parameters such as light output, kinetics and temperature dependence. The study has focused on the change of performance after irradiation with 150 MeV protons up to an integral fluence of 5·1013 protons/cm2 as well as with a strong 60Co γ-source accumulating an integral dose of 100 Gy. The paper will report on the obtained results.

  8. Development and characterization of a scintillating cell imaging dish for radioluminescence microscopy.

    PubMed

    Sengupta, Debanti; Kim, Tae Jin; Almasi, Sepideh; Miller, Stuart; Marton, Zsolt; Nagarkar, Vivek; Pratx, Guillem

    2018-04-16

    Radioluminescence microscopy is an emerging modality that can be used to image radionuclide probes with micron-scale resolution. This technique is particularly useful as a way to probe the metabolic behavior of single cells and to screen and characterize radiopharmaceuticals, but the quality of the images is critically dependent on the scintillator material used to image the cells. In this paper, we detail the development of a microscopy dish made of a thin-film scintillating material, Lu2O3:Eu, that could be used as the blueprint for a future consumable product. After developing a simple quality control method based on long-lived alpha and beta sources, we characterize the radioluminescence properties of various thin-film scintillator samples. We find consistent performance for most samples, but also identify a few samples that do not meet the specifications, thus stressing the need for routine quality control prior to biological experiments. In addition, we test and quantify the transparency of the material, and demonstrate that transparency correlates with thickness. Finally, we evaluate the biocompatibility of the material and show that the microscopy dish can produce radioluminescent images of live single cells.

  9. Scintillation characterization of the pure Tl2LiGdBr6 single crystal

    NASA Astrophysics Data System (ADS)

    Jang, Jonghun; Rooh, Gul; Kim, Sunghwan; Kim, HongJoo

    2018-05-01

    A pure Tl2LiGdBr6 (TLGB) single crystal was developed. This scintillator was grown by the two-zone vertical Bridgman technique. Owing to the improvement in the crystal quality of TLGB, excellent scintillation properties were observed. The characterization of this scintillation material was carried out under X- and γ-ray excitations. In the X-ray excitation emission spectrum, the Tl+ ion emission band was observed between 390 and 550 nm and peaked at 435 nm. Under 662 keV γ-ray excitation, the energy resolution and light yield of the grown sample were measured to be 7.2% (FWHM) and 27,000 ± 2,700 ph/MeV, respectively. In addition, under the same γ-ray excitation, scintillation decay time was also measured at room temperature. Three decay time components were found to be 56 ns (24%), 105 ns (53%), and 1.5 µs (23%). Further improvements in scintillation properties are expected with the good quality crystal of this compound.

  10. Synthesis and characterization of a BaGdF5:Tb glass ceramic as a nanocomposite scintillator for x-ray imaging.

    PubMed

    Lee, Gyuhyon; Struebing, Christian; Wagner, Brent; Summers, Christopher; Ding, Yong; Bryant, Alex; Thadhani, Naresh; Shedlock, Daniel; Star-Lack, Josh; Kang, Zhitao

    2016-05-20

    Transparent glass ceramics with embedded light-emitting nanocrystals show great potential as low-cost nanocomposite scintillators in comparison to single crystal and transparent ceramic scintillators. In this study, cubic structure BaGdF5:Tb nanocrystals embedded in an aluminosilicate glass matrix are reported for potential high performance MeV imaging applications. Scintillator samples with systematically varied compositions were prepared by a simple conventional melt-quenching method followed by annealing. Optical, structural and scintillation properties were characterized to guide the design and optimization of selected material systems, aiming at the development of a system with higher crystal volume and larger crystal size for improved luminosity. It is observed that enhanced scintillation performance was achieved by tuning the glass matrix composition and using GdF3 in the raw materials, which served as a nucleation agent. A 26% improvement in light output was observed from a BaGdF5:Tb glass ceramic with addition of GdF3.

  11. Scintillation properties of Pr-activated LuAlO 3

    NASA Astrophysics Data System (ADS)

    Drozdowski, Winicjusz; Wojtowicz, Andrzej J.; Wiśniewski, Dariusz; Łukasiewicz, Tadeusz; Kisielewski, Jarosław

    2006-01-01

    Praseodymium activated LuAlO 3 (LuAP) crystals have been grown using the Czochralski method at ITME, Warsaw. In this communication the measurements of radioluminescence (RL), low temperature thermoluminescence (TL), room temperature afterglow (AG), scintillation light yields (LY), and scintillation time profiles (STP), performed on polished 2 × 2 × 10 mm pixels with three Pr concentrations (0.003, 0.04, and 0.08 at.%), are reported. Two sets of samples are compared: (i) "as grown", and (ii) annealed in H 2 atmosphere.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erchinger, J. L.; Orrell, John L.; Aalseth, C. E.

    The Ultra-Low Background Liquid Scintillation Counter developed by Pacific Northwest National Laboratory will expand the application of liquid scintillation counting by enabling lower detection limits and smaller sample volumes. By reducing the overall count rate of the background environment approximately 2 orders of magnitude below that of commercially available systems, backgrounds on the order of tens of counts per day over an energy range of ~3–3600 keV can be realized. Finally, initial test results of the ULB LSC show promising results for ultra-low background detection with liquid scintillation counting.

  13. Study of Sun-Earth interactions using equatorial VHF scintillation in the Indian region

    NASA Astrophysics Data System (ADS)

    Banola, Sridhar

    Plasma density irregularities in the ionosphere (associated with ESF, plasma bubbles and Spo-radic E layers) cause scintillations in various frequency ranges. VHF radio wave scintillation technique is extensively used to study plasma density irregularities of sub-kilometre size . Ef-fects of magnetic and solar activity on ionospheric irregularities are studied so as to ascertain their role in the space weather of the near earth environment in space. Indian Institute of Ge-omagnetism operated a ground network of 13 stations monitoring amplitude scintillations on 244/251 MHz (FLEETSAT 73° E) signals in placecountry-regionIndia for more than a decade under AICPITS. At present VHF scintillation is being recorded at Mumbai by monitoring 251 MHz signal transmitted by geostationary satellite UFO2(71.2 E). sampling at 20 Hz. During CAWSES campaign (March-April 2006, low sunspot period) occurrence of daytime scintilla-tions was observed higher than the nighttime scintillations. This could be due to the fact that during low sunspot years occurrence of spread-F is limited to a narrow latitude region near the dip equator. To study solar cycle association of scintillations, long series of simultaneous amplitude scintillation data for period Jan 1989 to Dec 2000 at Indian low-latitude stations Tirunelveli/Trivandrum, close to dip equator, Pondicherry/Karur, located at the fringe of elec-trojet, Mumbai (dip lat. 13.5o N), a temperate station and Ujjain (dip lat. 18.6o N), close to anomaly crest region are utilized. Nighttime scintillation occurrence is solar activity dependent. Equatorial scintillations are inhibited with increase in geomagnetic activity.

  14. Scintillation properties of Gd3Al2Ga3O12:Ce (GAGG:Ce): a comparison between monocrystalline and nanoceramic samples

    NASA Astrophysics Data System (ADS)

    Drozdowski, Winicjusz; Witkowski, Marcin E.; Solarz, Piotr; Głuchowski, Paweł; Głowacki, Michał; Brylew, Kamil

    2018-05-01

    In this Communication the behavior of two types of Gd3Al2Ga3O12:Ce samples under gamma and X-ray excitation is compared. Single crystals of GAGG:1%Ce have been grown by the Czochralski technique, while nanoceramic pills of GAGG:1%Ce have been fabricated by the LTHP sintering from nanocrystalline powders prepared by the Pechini method. The results of pulse height, scintillation time profile, radioluminescence as a function of temperature, and low temperature thermoluminescence measurements, are reported, indicating that monocrystals are still a better choice for scintillator application, nevertheless some of the properties of nanoceramics are indeed promising and there should be a room for improvement.

  15. Scintillation properties of the Ce-doped multicomponent garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Prusa, P.; Kucera, M.; Mares, J. A.; Hanus, M.; Beitlerova, A.; Onderisinova, Z.; Nikl, M.

    2013-10-01

    (Lu,Y,Gd)3(Al,Ga)5O12:Ce garnet scintillator single crystalline films were grown onto LuAG, YAG and GGG substrates by liquid phase epitaxy method. Absorption, radioluminescence spectra and photoluminescence excitation, emission spectra, and decay kinetics were measured. Photoelectron yield, its dependence on amplifier shaping time and energy resolution were determined to evaluate scintillation performance. Most of the samples exhibited strong UV emission caused by trapped excitons and/or Gd3+ 4f-4f transition. However, emission spectrum of the best performing Gd2YAl5O12:Ce is dominated by the Ce3+ fast 5d-4f luminescence. This sample has outperformed photoelectron yield of all the garnet films studied so far.

  16. Scintillation properties of YAlO3 doped with Lu and Nd perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Akatsuka, Masaki; Usui, Yuki; Nakauchi, Daisuke; Kato, Takumi; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    YAlO3 (YAP) single crystals doped with Lu and Nd were grown by the Floating Zone (FZ) method to evaluate their scintillation properties particularly emissions in the near-infrared (NIR) range. The Nd concentration was fixed to 0 or 1 mol% while the Lu concentration was varied from 0 to 30%. When X-ray was irradiated, the scintillation of Nd-doped samples was observed predominantly at 1064 nm due to 4F3/2 → 4I11/2 transition of Nd3+. In contrast, a weak emission around 700 nm appeared in the samples doped with only Lu, and the emission origin was attributed to defect centers. In the Nd3+-doped samples, the decay time was 94-157 μs due to the 4f-4f transitions of Nd3+ whereas the Lu-doped samples showed signal with the decay time of 1.45-1.54 ms. The emission origin of the latter signal was attributed to the perovskite lattice defect.

  17. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield

    NASA Astrophysics Data System (ADS)

    Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.

    2018-04-01

    This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.

  18. Scintillation and optical properties of Sn-doped Ga2O3 single crystals

    NASA Astrophysics Data System (ADS)

    Usui, Yuki; Nakauchi, Daisuke; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-06-01

    Sn-doped Ga2O3 single crystals were synthesized by the Floating Zone (FZ) method. In photoluminescence (PL) under the excitation wavelength of 280 nm, we observed two types of luminescence: (1) defect luminescence due to recombination of the donor/acceptor pairs which appears at 430 nm and (2) the nsnp-ns2 transitions of Sn2+ which appear at 530 nm. The PL and scintillation decay time curves of the Sn-doped samples were approximated by a sum of exponential decay functions. The faster two components were ascribed to the defect luminescence, and the slowest component was owing to the nsnp-ns2 transitions. In the pulse height spectrum measurements under 241Am α-rays irradiation, all the Sn-doped Ga2O3 samples were confirmed to show a full energy absorption peak but the undoped one. Among the present samples, the 1% Sn-doped sample exhibited the highest scintillation light yield (1,500 ± 150 ph/5.5 MeV-α).

  19. Ionosphere VHF scintillations over Vaddeswaram (Geographic Latitude 16.31°N, Geographic Longitude 80.30°E, Dip 18°N), a latitude Indian station - A case study

    NASA Astrophysics Data System (ADS)

    Brahmanandam, P. S.; Uma, G.; Pant, T. K.

    2017-10-01

    This research reports the 250 MHz amplitude ionosphere scintillations recorded at Vaddeswaram (Geographic Latitude 16.31°N, Geographic Longitude 80.30°E, Dip 18°N), a low-latitude station in India. Though amplitude scintillations were recorded for four continuous days (05-08 November 2011), the presence of intense and long-duration scintillations on 06 November 2011 instigated us to verify the ionosphere background conditions. This research, therefore, is also used important databases including, diurnal variations of h‧F (virtual height of the F-layer) and the vertical drifts as measured by an advanced digital ionosonde radar located at an Indian equatorial station i.e. Trivandrum (Geographic Latitude 8.5°N, Geographic Longitude 77°E, Dip 0.5°N), equatorial Electrojet (EEJ) ground strength measured using magnetometers and the total electron content (TEC) maps provided by the International GPS Service (IGS) to study the background ionosphere conditions. The interesting observations are higher E × B drifts, the occurrence of long-duration range-type spread F signatures at Trivandrum and, thereafter, intense scintillations over Vaddeswaram. It was found a secondary peak at around 1600 LT in EEJ strength followed by a higher upward drift velocity (more than 60 m/s) with a significant raise of the F region up to 470 km over the magnetic equator on 06 November 2011. The possible physical mechanisms of these important observational results are discussed in the light of available literature.

  20. A Digital Preclinical PET/MRI Insert and Initial Results.

    PubMed

    Weissler, Bjoern; Gebhardt, Pierre; Dueppenbecker, Peter M; Wehner, Jakob; Schug, David; Lerche, Christoph W; Goldschmidt, Benjamin; Salomon, Andre; Verel, Iris; Heijman, Edwin; Perkuhn, Michael; Heberling, Dirk; Botnar, Rene M; Kiessling, Fabian; Schulz, Volkmar

    2015-11-01

    Combining Positron Emission Tomography (PET) with Magnetic Resonance Imaging (MRI) results in a promising hybrid molecular imaging modality as it unifies the high sensitivity of PET for molecular and cellular processes with the functional and anatomical information from MRI. Digital Silicon Photomultipliers (dSiPMs) are the digital evolution in scintillation light detector technology and promise high PET SNR. DSiPMs from Philips Digital Photon Counting (PDPC) were used to develop a preclinical PET/RF gantry with 1-mm scintillation crystal pitch as an insert for clinical MRI scanners. With three exchangeable RF coils, the hybrid field of view has a maximum size of 160 mm × 96.6 mm (transaxial × axial). 0.1 ppm volume-root-mean-square B 0-homogeneity is kept within a spherical diameter of 96 mm (automatic volume shimming). Depending on the coil, MRI SNR is decreased by 13% or 5% by the PET system. PET count rates, energy resolution of 12.6% FWHM, and spatial resolution of 0.73 mm (3) (isometric volume resolution at isocenter) are not affected by applied MRI sequences. PET time resolution of 565 ps (FWHM) degraded by 6 ps during an EPI sequence. Timing-optimized settings yielded 260 ps time resolution. PET and MR images of a hot-rod phantom show no visible differences when the other modality was in operation and both resolve 0.8-mm rods. Versatility of the insert is shown by successfully combining multi-nuclei MRI ((1)H/(19)F) with simultaneously measured PET ((18)F-FDG). A longitudinal study of a tumor-bearing mouse verifies the operability, stability, and in vivo capabilities of the system. Cardiac- and respiratory-gated PET/MRI motion-capturing (CINE) images of the mouse heart demonstrate the advantage of simultaneous acquisition for temporal and spatial image registration.

  1. Data acquisition system for segmented reactor antineutrino detector

    NASA Astrophysics Data System (ADS)

    Hons, Z.; Vlášek, J.

    2017-01-01

    This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.

  2. DESCANT--The DEuterated SCintillator Array for Neutron Tagging

    NASA Astrophysics Data System (ADS)

    Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Ball, G. C.; Garnsworthy, A. B.; Hackman, G.; Pearson, C. J.; Sarazin, F.

    2014-09-01

    The DESCANT array at TRIUMF is designed to track neutrons from RIB experiments. DESCANT is composed of 70 close-packed deuterated organic liquid scintillators coupled to digital fast read-out ADC modules. This configuration will permit online pulse-shape discrimination between neutron and γ-ray events. The anisotropy of the n - d scattering will allow distinction of higher neutron multiplicities from scattering within the array and determination of the neutron energy spectrum directly from the pulse-height spectrum without using TOF. A prototype detector has been tested with monoenergetic neutrons at the accelerator laboratory of the University of Kentucky and a 24Mg(3He, n)26Si experiment has been performed with eight DESCANT detectors and two HPGe detectors. The results of the tests and the status of DESCANT will be presented.

  3. DESCANT - The DEuterated SCintillator Array for Neutron Tagging

    NASA Astrophysics Data System (ADS)

    Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Turko, J.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Ball, G. C.; Bishop, D. P.; Garnsworthy, A. B.; Hackman, G.; Pearson, C. J.; Shaw, B.; Saran, F.

    2016-09-01

    The DESCANT array at TRIUMF is designed to detect neutrons from RIB experiments. DESCANT is composed of 70 close-packed deuterated organic liquid scintillators coupled to digital fast read-out ADC modules. This configuration will permit online pulse-shape discrimination between neutron and γ-ray events. A prototype detector has been tested with monoenergetic neutrons at the accelerator laboratory of the University of Kentucky. A first commissioning experiment of the full array, using the decay of 145-146Cs, will be performed in August 2016. The results of the tests and a preliminary analysis of the commissioning experiment will be presented. Work supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the National Research Council of Canada and the Canadian Research Chairs program.

  4. Optical transmission radiation damage and recovery stimulation of DSB: Ce3+ inorganic scintillation material

    NASA Astrophysics Data System (ADS)

    Borisevich, A.; Dormenev, V.; Korjik, M.; Kozlov, D.; Mechinsky, V.; Novotny, R. W.

    2015-02-01

    Recently, a new scintillation material DSB: Ce3+ was announced. It can be produced in a form of glass or nano-structured glass ceramics with application of standard glass production technology with successive thermal annealing. When doped with Ce3+, material can be applied as scintillator. Light yield of scintillation is near 100 phe/MeV. Un-doped material has a wide optical window from 4.5eV and can be applied to detect Cherenkov light. Temperature dependence of the light yield LY(T) is 0.05% which is 40 times less than in case of PWO. It can be used for detectors tolerant to a temperature variation between -20° to +20°C. Several samples with dimensions of 15x15x7 mm3 have been tested for damage effects on the optical transmission under irradiation with γ-quanta. It was found that the induced absorption in the scintillation range depends on the doping concentration and varies in range of 0.5-7 m-1. Spontaneous recovery of induced absorption has fast initial component. Up to 25% of the damaged transmission is recuperated in 6 hours. Afterwards it remains practically constant if the samples are kept in the dark. However, induced absorption is reduced by a factor of 2 by annealing at 50°C and completely removed in a short time when annealing at 100°C. A significant acceleration of the induced absorption recovery is observed by illumination with visible and IR light. This effect is observed for the first time in a Ce-doped scintillation material. It indicates, that radiation induced absorption in DSB: Ce scintillation material can be retained at the acceptable level by stimulation with light in a strong irradiation environment of collider experiments.

  5. Plutonium and uranium determination in environmental samples: combined solvent extraction-liquid scintillation method.

    PubMed

    McDowell, W J; Farrar, D T; Billings, M R

    1974-12-01

    A method for the determination of uranium and plutonium by a combined high-resolution liquid scintillation-solvent extraction method is presented. Assuming a sample count equal to background count to be the detection limit, the lower detection limit for these and other alpha-emitting nuclides is 1.0 dpm with a Pyrex sample tube, 0.3 dpm with a quartz sample tube using present detector shielding or 0.02 d.p.m. with pulse-shape discrimination. Alpha-counting efficiency is 100%. With the counting data presented as an alpha-energy spectrum, an energy resolution of 0.2-0.3 MeV peak half-width and an energy identification to +/-0.1 MeV are possible. Thus, within these limits, identification and quantitative determination of a specific alpha-emitter, independent of chemical separation, are possible. The separation procedure allows greater than 98% recovery of uranium and plutonium from solution containing large amounts of iron and other interfering substances. In most cases uranium, even when present in 10(8)-fold molar ratio, may be quantitatively separated from plutonium without loss of the plutonium. Potential applications of this general analytical concept to other alpha-counting problems are noted. Special problems associated with the determination of plutonium in soil and water samples are discussed. Results of tests to determine the pulse-height and energy-resolution characteristics of several scintillators are presented. Construction of the high-resolution liquid scintillation detector is described.

  6. Experimental evaluation of Gd3Al2Ga3O12:Ce (GAGG:Ce) single crystals coupled to a silicon photomultiplier (SiPM) under high gamma ray irradiation conditions

    NASA Astrophysics Data System (ADS)

    Metallinos, A.; Kefalidis, E.; Kandarakis, I.; David, S.

    2017-11-01

    Cerium (Ce) ion doped scintillators are of high interest in Medical Imaging systems and radiation monitoring devices, due to their very fast response and very good emission characteristics. In this study, a series of measurements regarding the energy resolution, photofraction, sensitivity, as well as the figure of merit, of Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillator crystals, is presented. All GAGG:Ce crystals have a surface area of 3x3 mm2 with varying thicknesses, from 4 up to 20 mm (4, 5, 6, 8, 10, 15 and 20 mm). These crystals were exposed to γ radiation, using two different radioactive sources: 137Cs (0.662 MeV) and 60Co (1.173 MeV and 1.332 MeV). Each crystal was measured individually and was optically coupled to a KETEK PM3350 SiPM, an optical sensor with high gain, suitable to operate in room temperature. The digitization of the pulses was accomplished using CAEN DT5720 desktop digitizer and its corresponding digital pulse processing (DPP) firmware. Each measurement was performed in a light-tight box and had duration of 30 min. The best energy resolution value was measured for the GAGG:Ce crystal with dimensions 3x3x15mm3, equal to 3.9% at 1.332 MeV. Results were evaluated and compared to previous published data.

  7. Simultaneous separation and detection of actinides in acidic solutions using an extractive scintillating resin.

    PubMed

    Roane, J E; DeVol, T A

    2002-11-01

    An extractive scintillating resin was evaluated for the simultaneous separation and detection of actinides in acidic solutions. The transuranic extractive scintillating (TRU-ES) resin is composed of an inert macroporous polystyrene core impregnated with organic fluors (diphenyloxazole and 1,4-bis-(4-methyl-5-phenyl-2-oxazolyl)benzene) and an extractant (octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide in tributyl phosphate). The TRU-ES resin was packed into FEP Teflon tubing to produce a flow cell (0.2-mL free column volume), which is placed into a scintillation detection system to obtain pulse height spectra and time series data during loading and elution of actinides onto/from the resin. The alpha-particle absolute detection efficiencies ranged from 77% to 96.5%, depending on the alpha energy and quench. In addition to the on-line analyses, off-line analyses of the effluent can be conducted using conventional detection methods. The TRU-ES resin was applied to the quantification of a mixed radionuclide solution and two actual waste samples. The on-line characterization of the mixed radionuclide solution was within 10% of the reported activities whereas the agreement with the waste samples was not as good due to sorption onto the sample container walls and the oxidation state of plutonium. Agreement between the on-line and off-line analyses was within 35% of one another for both waste samples.

  8. Measurement of the absolute reflectance of polytetrafluoroethylene (PTFE) immersed in liquid xenon

    NASA Astrophysics Data System (ADS)

    Neves, F.; Lindote, A.; Morozov, A.; Solovov, V.; Silva, C.; Bras, P.; Rodrigues, J. P.; Lopes, M. I.

    2017-01-01

    The performance of a detector using liquid xenon (LXe) as a scintillator is strongly dependent on the collection efficiency for xenon scintillation light, which in turn is critically dependent on the reflectance of the surfaces that surround the active volume. To improve the light collection in such detectors the active volume is usually surrounded by polytetrafluoroethylene (PTFE) reflector panels, used due to its very high reflectance—even at the short wavelength of scintillation light of LXe (peaked at 178 nm). In this work, which contributed to the overall R&D effort towards the LUX-ZEPLIN (LZ) experiment, we present experimental results for the absolute reflectance measurements of three different PTFE samples (including the material used in the LUX detector) immersed in LXe for its scintillation light. The obtained results show that very high bi-hemispherical reflectance values (>= 97%) can be achieved, enabling very low energy thresholds in liquid xenon scintillator-based detectors.

  9. A study on the radiation resistance of CdWO4 thin-film scintillators deposited by using an electron-beam physical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Park, Seyong; Yoon, Young Soo

    2016-09-01

    In this paper, we report the first successful fabrication of CdWO4 thin film scintillators deposited on quartz glass substrates by using an electron-beam physical vapor deposition method. The films were dense, uniform, and crack-free. CdWO4 thin-film samples of varying thicknesses were investigated by using structural and optical characterization techniques. An optimized thickness for the CdWO4 thin-film scintillators was discovered. The scintillation and the optical properties were found to depend strongly on the annealing process. The annealing process resulted in thin films with a distinct crystal structure and with improved transparency and scintillation properties. For potential applications in gamma-ray energy storage systems, photoluminescence measurements were performed using gamma rays at a dose rate of 10 kGy h-1.

  10. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    PubMed

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  11. First light from a kilometer-baseline Scintillation Auroral GPS Array

    PubMed Central

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-01-01

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318

  12. Optimization of scintillator loading with the tellurium-130 isotope for long-term stability

    NASA Astrophysics Data System (ADS)

    Duhamel, Lauren; Song, Xiaoya; Goutnik, Michael; Kaptanoglu, Tanner; Klein, Joshua; SNO+ Collaboration

    2017-09-01

    Tellurium-130 was selected as the isotope for the SNO + neutrinoless double beta decay search, as 130Te decays to 130Xe via double beta decay. Linear alkyl benzene(LAB) is the liquid scintillator for the SNO + experiment. To load tellurium into scintillator, it is combined with 1,2-butanediol to form an organometallic complex, commonly called tellurium butanediol (TeBD). This study focuses on maximizing the percentage of tellurium loaded into scintillator and evaluates the complex's long-term stability. Studies on the effect of nucleation due to imperfections in the detector's surface and external particulates were employed by filtration and induced nucleation. The impact of water on the stability of TeBD complex was evaluated by liquid-nitrogen sparging, variability in pH and induced humidity. Alternative loading methods were evaluated, including the addition of stability-inducing organic compounds. Samples of tellurium-loaded scintillator were synthesized, treated, and consistently monitored in a controlled environment. It was found that the hydronium ions cause precipitation in the loaded scintillator, demonstrating that water has a detrimental effect on long-term stability. Optimization of loaded scintillator stability can contribute to the SNO + double beta decay search.

  13. Composition engineering of single crystalline films based on the multicomponent garnet compounds

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitalii; Zorenko, Tetiana; Paprocki, Kazimierz; Bilski, Paweł; Twardak, Anna; Voznyak, Taras; Sidletskiy, Oleg; Gerasimov, Yaroslav; Gryniov, Boris; Fedorov, Alexandr

    2016-11-01

    The paper demonstrates our last achievement in development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped multicomponent garnets using the Liquid Phase Epitaxy (LPE) method. We report in this work the optimized content and excellent scintillation properties of SCF of Lu3-xGdxAl5-yGayO12, Lu3-xTbxAl5-yGayO12 and TbxGdxAl5-yGayO12 garnet compounds grown by the LPE method from PbOsbnd B2O3 based melt-solution onto Gd3Al2.5Ga2.5O12 and YAG substrates. We also show that the Tb1.5Gd1.5Al2.5Ga2.5O12:Ce SCF possess the highest light yield (LY) in comparison with all ever grown garnet SCF scintillators. Namely, the LY of these SCF exceeds by 3.8 and 1.85 times the LY values of the best samples of YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCF samples of the mentioned compounds show low thermoluminescence in the above room temperature range and relatively fast scintillation decay time t1/e in the 180-200 ns range.

  14. L-Band Ionosphere Scintillations Observed by A GNSS Receiver Array at HAARP

    NASA Astrophysics Data System (ADS)

    Morton, Y.; Pelgrum, W.; van Graas, F.

    2011-12-01

    As we enter a new solar maximum period, GNSS receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to gain better understandings of scintillation effects on GNSS signals. During the past decade, many GPS receivers have been deployed around the globe to monitor ionosphere scintillations. Most of these GPS receivers are commercial receivers whose tracking mechanisms are not designed to operate under ionosphere scintillation. When strong scintillations occur, these receivers will either generate erroneous outputs or completely lose lock. Even when the scintillation is mild, the tracking loop outputs are not true representation of the signal parameters due the tracking loop transfer function. High quality, unprocessed GNSS receiver front end raw IF samples collected during ionosphere scintillations are necessary to produce realistic scintillation signal parameter estimations. In this presentation, we will update our effort in establishing a unique GNSS receiver array at HAARP, Alaska to collect GPS and GLONASS satellite signals at various stages of the GNSS receiver processing. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array as well as additional on-site diagnostic instrumentation measurements obtained from two active heating experiment campaigns conducted in 2011 will be presented. Additionally, we will also highlight and contrast the artificial heating experiment results with observations of natural scintillation events captured by our receivers using an automatic event trigger mechanism during the past year. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  15. Robust GPS carrier tracking under ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance of the proposed tracking scheme is assessed by using both simulated and real data. Real data have been collected in Vietnam by using a USRP (Universal Software Radio Peripheral) N210 front end connected to a rubidium oscillator. Selected events are exploited in order to challenge the algorithm with strong phase and amplitude variations. Moreover, simulated data have been collected by using the prototype of a digital front end developed by Novatel, namely the 'Firehose'. Since the latter includes a TCXO oscillator, the proposed tracking scheme is also opportunely modified to take in account the clock error contribution. References 1. R.S., Conker, M. B. El-Arini, C. J. Hegarty, and T. Hsiao, Modelling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci., 38, 1, 1001, doi: 10.1029/2000RS002604, 2003. 2. B. Bougard et al, 'CIGALA: Challenging the Solar Maximum in Brazil with PolaRxS,' ION GNSS, Portland, Sept. 2011.

  16. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    NASA Astrophysics Data System (ADS)

    Santiago, L. M.; Bagán, H.; Tarancón, A.; Garcia, J. F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3H, 51.2% for 14C, 180.6% for 90Sr/90Y and 76.7% for 241Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition of naphthalene modifies the shape of the pulses produced by alpha and beta particles leading to better alpha/beta separation.

  17. Measuring horizontal atmospheric turbulence at ground level from optical turbulence generator (OTG) using a 1D sensor

    NASA Astrophysics Data System (ADS)

    Tíjaro Rojas, Omar J.; Torres Moreno, Yezid; Rhodes, William T.

    2017-06-01

    Different theories including Kolmogorov have been valid to explain and model physic phenomenal like vertical atmospheric turbulence. In horizontal path, we still have many questions, due to weather problems and consequences that it generates. To emulate some conditions of environment, we built an Optical Turbulence Generator (OTG) having spatial, humidity and temperature, measurements that were captured in the same time from optical synchronization. This development was made using digital modules as ADC (Analog to Digital Converters) and communications protocol as SPI. We all made from microcontrollers. On the other hand, to measure optical signal, we used a photomultiplier tube (PMT) where captured the intensity of fringes that shifted with a known frequency. Outcomes show temporal shift and phase drive from dependent samples (in time domain) that correspond with frozen turbulence given by Taylor theory. Parameters studied were C2n, scintillation and inner scale in temporal patterns and analysis of their relationship with the physical associated variables. These patterns were taken from Young Interferometer in laboratory room scale. In the future, we hope with these studies, we will can implement an experiment to characterize atmospheric turbulence in a long distance, placed in the equatorial weather zone.

  18. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis.

    PubMed

    de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L

    2008-10-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.

  19. Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors

    NASA Astrophysics Data System (ADS)

    Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.

  20. Radar error statistics for the space shuttle

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1979-01-01

    Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.

  1. Plastic Scintillator Based Detector for Observations of Terrestrial Gamma-ray Flashes.

    NASA Astrophysics Data System (ADS)

    Barghi, M. R., Sr.; Delaney, N.; Forouzani, A.; Wells, E.; Parab, A.; Smith, D.; Martinez, F.; Bowers, G. S.; Sample, J.

    2017-12-01

    We present an overview of the concept and design of the Light and Fast TGF Recorder (LAFTR), a balloon borne gamma-ray detector designed to observe Terrestrial Gamma-Ray Flashes (TGFs). Terrestrial Gamma-Ray Flashes (TGFs) are extremely bright, sub-millisecond bursts of gamma-rays observed to originate inside thunderclouds coincident with lightning. LAFTR is joint institutional project built by undergraduates at the University of California Santa Cruz and Montana State University. It consists of a detector system fed into analog front-end electronics and digital processing. The presentation focuses specifically on the UCSC components, which consists of the detector system and analog front-end electronics. Because of the extremely high count rates observed during TGFs, speed is essential for both the detector and electronics of the instrument. The detector employs a fast plastic scintillator (BC-408) read out by a SensL Silicon Photomultiplier (SiPM). BC-408 is chosen for its speed ( 4 ns decay time) and low cost and availability. Furthermore, GEANT3 simulations confirm the scintillator is sensitive to 500 counts at 7 km horizontal distance from the TGF source (for a 13 km source altitude and 26 km balloon altitude) and to 5 counts out to 20 km. The signal from the SiPM has a long exponential decay tail and is sent to a custom shaping circuit board that amplifies and shapes the signal into a semi-Gaussian pulse with a 40 ns FWHM. The signal is then input to a 6-channel discriminator board that clamps the signal and outputs a Low Voltage Differential Signal (LVDS) for processing by the digital electronics.

  2. Neutron spectroscopy with scintillation detectors using wavelets

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica

    The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the effects of photons and allow for source characterization based solely on the neutron response. The unfolding technique was performed through polynomial fitting and optimization techniques in MATLAB, and provided an energy spectrum for the PuBe source.

  3. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and DQE metrics for clinical EPID and CBCT systems based on a novel adaptation of a traditional line-pair resolution bar-pattern. This research provides two significant benefits to radiotherapy: the characterization of a new generation of thick scintillator based megavoltage x-ray imagers for CBCT based IGRT, and the novel adaptation of fundamental imaging metrics from imaging research to routine clinical performance monitoring.

  4. Measurement of tritium with plastic scintillator surface improvement with plasma treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshihara, Y.; Furuta, E.; Ohyama, R.I.

    2015-03-15

    Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic whichmore » contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.« less

  5. Development of a digital method for neutron/gamma-ray discrimination based on matched filtering

    NASA Astrophysics Data System (ADS)

    Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.

    2016-09-01

    Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.

  6. Characterization of GAGG:Ce scintillators with various Al-to-Ga ratio

    NASA Astrophysics Data System (ADS)

    Sibczynski, Pawel; Iwanowska-Hanke, Joanna; Moszyński, Marek; Swiderski, Lukasz; Szawłowski, Marek; Grodzicka, Martyna; Szczęśniak, Tomasz; Kamada, Kei; Yoshikawa, Akira

    2015-02-01

    We have studied the scintillation properties of cerium doped gadolinium aluminum gallium garnet (GAGG:Ce) scintillators with various Al-to-Ga ratio. Having many advantages, like high density (6.63 g/cm3), high light output, fair energy resolution and quite fast decay time, the scintillators are an excellent solution for gamma rays detection. In this paper performance of the GAGG:1%Ce crystals with different Al-to-Ga ratios is presented. The study covered measurements of emission spectra, light output, energy resolution and non-proportionality for each crystal. It was observed that the light output of the recently obtainable crystals varies from 40,000 to 55,000 ph/MeV. Maximum emission wavelength of about 520 nm promotes silicon based photodetectors for use with these scintillators. The best energy resolution of 3.7% at 662 keV, measured with Hamamatsu S8664-1010 APD, was obtained for the sample with the minimum gallium content. This result is close to these obtained with the group of scintillators retaining very good energy resolution, like LaCl3 and CeBr3.

  7. Photoluminescence and scintillation properties of Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) crystals

    NASA Astrophysics Data System (ADS)

    Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    Apatite crystals with chemical compositions of 0.5% Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) were synthesized by the Floating Zone method, and then we evaluated their photoluminescence (PL) and scintillation properties. All the Ce-doped samples exhibited PL and scintillation with an intense broad emission in 400-550 nm in which the origin was attributed to the 5d-4f transition of Ce3+, and the emission peak became broader with increasing the concentration of Lu3+. Both PL and scintillation decay time profiles were best-approximated by a sum of two exponential decay functions, and the origin of slower component was attributed to the 5d-4f transition of Ce3+. In the X-ray induced afterglow measurements, the Ce-doped Sr2(Gd0.4Lu0.6)8(SiO4)6O2 sample exhibited the lowest afterglow level. Furthermore, the Ce-doped Sr2(Gd0.5Lu0.5)8(SiO4)6O2 and Sr2(Gd0.4Lu0.6)8(SiO4)6O2 samples showed a clear full energy deposited peak under 5.5 MeV 241Am α-ray irradiation, and the estimated absolute scintillation light yields were around 290 and 1300 ph/5.5 MeV-α, respectively.

  8. The influence of neutron radiation damage on the optical properties of plastic scintillator UPS 923A

    NASA Astrophysics Data System (ADS)

    Mthembu, Skhathisomusa; Davydov, Yuri; Baranov, Vladimir; Mellado Garcia, Bruce; Mdhluli, Joyful; Sideras-Haddad, Elias

    2017-09-01

    Plastic scintillators are vital in the reconstruction of hadronic particle energy and tracks resulting from the collision of high energy particles in the Large Hadron Collider (LHC) at CERN. These plastic scintillators are exposed to harsh radiation environments and are susceptible to radiation damage. The effects of radiation damage on the transmittance, luminescence and light yield of Ukraine polystyrene-based scintillator UPS 923A were studied. Samples were irradiated with fast neutrons, of varying energies and fluences, using the IBR-2 reactor FLNP (Frank Laboratory for Nuclear Problems) at the Joint Institute for Nuclear Research. Results show a small change in the transmittance of the higher energy visible spectrum, and a noticeable change in the light yield of the samples as a result of the damage. There is no change observed on the luminescence as a result of radiation damage at studied fluences. The doses and uences of the neutrons shall be increased and changes in optical properties as a result of the radiation shall be further studied.

  9. Efficient high-resolution hard x-ray imaging with transparent Lu2O3:Eu scintillator thin films

    NASA Astrophysics Data System (ADS)

    Marton, Zsolt; Miller, Stuart R.; Brecher, Charles; Kenesei, Peter; Moore, Matthew D.; Woods, Russell; Almer, Jonathan D.; Miceli, Antonino; Nagarkar, Vivek V.

    2015-09-01

    We have developed microstructured Lu2O3:Eu scintillator films that provide spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their outstanding resolution, Lu2O3:Eu films also exhibits both high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission whose intensity rivals that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays; this results in excessive measurement time and exposure to the specimen. But the absorption efficiency of Lu2O3:Eu (99.9% @12 keV and 30% @ 70 keV) is much greater, significantly decreasing measurement time and radiation exposure. Our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapor deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, a microcolumnar structure for higher spatial resolution, and a bright emission (48000 photons/MeV) whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films of this material on a variety of matching substrates, measuring some 5-10μm in thickness and covering areas up to 1 x 1 cm2, which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT). The microstructure and optical transparency of such screens was optimized, and their imaging performance was evaluated in the Argonne National Laboratory's Advanced Photon Source. Spatial resolution and efficiency were also characterized.

  10. Improved LabPET Detectors Using Lu1.8Gd0.2SiO5:Ce (LGSO) Scintillator Blocks

    NASA Astrophysics Data System (ADS)

    Bergeron, Mélanie; Pepin, Catherine M.; Cadorette, Jules; Loignon-Houle, Francis; Fontaine, Réjean; Lecomte, Roger

    2015-02-01

    The scintillator is one of the key building blocks that critically determine the physical performance of PET detectors. The quest for scintillation crystals with improved characteristics has been crucial in designing scanners with superior imaging performance. Recently, it was shown that the decay time constant of high lutetium content Lu1.8Gd0.2SiO5: Ce (LGSO) scintillators can be adjusted by varying the cerium concentration from 0.025 mol% to 0.75 mol%, thus providing interesting characteristics for phoswich detectors. The high light output (90%-120% NaI) and the improved spectral match of these scintillators with avalanche photodiode (APD) readout promise superior energy and timing resolutions. Moreover, their improved mechanical properties, as compared to conventional LGSO ( Lu0.4Gd1.6SiO5: Ce), make block array manufacturing readily feasible. To verify these assumptions, new phoswich block arrays made of LGSO-90%Lu with low and high mol% Ce concentrations were fabricated and assembled into modules dedicated to the LabPET scanner. Typical crystal decay time constants were 31 ns and 47 ns, respectively. Phoswich crystal identification performed using a digital pulse shape discrimination algorithm yielded an average 8% error. At 511 keV, an energy resolution of 17-21% was obtained, while coincidence timing resolution between 4.6 ns and 5.2 ns was achieved. The characteristics of this new LGSO-based phoswich detector module are expected to improve the LabPET scanner performance. The higher stopping power would increase the detection efficiency. The better timing resolution would also allow the use of a narrower coincidence window, thus minimizing the random event rate. Altogether, these two improvements will significantly enhance the noise equivalent count rate performance of an all LGSO-based LabPET scanner.

  11. Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination

    PubMed Central

    Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R.

    2016-01-01

    In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator’s temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector’s single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal. PMID:27295658

  12. Accelerated Aging Test for Plastic Scintillator Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouzes, Richard T.

    Polyvinyl toluene (PVT) and polystyrene (PS), collectively referred to as “plastic scintillator,” are synthetic polymer materials used to detect gamma radiation, and are commonly used in instrumentation. Recent studies have revealed that plastic scintillator undergoes an environmentally related material degradation that adversely affects performance under certain conditions and histories. A significant decrease in gamma ray sensitivity has been seen in some detectors in systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no agingmore » effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. It has been demonstrated that exposure of plastic scintillator in an environmental chamber to 30 days of high temperature and humidity (90% relative humidity and 55°C) followed by a single cycle to cold temperature (-30°C) will produce severe fogging in all PVT samples. This thermal cycle will be referred to as the “Accelerated Aging Test.” This document describes the procedure for performing this Accelerated Aging Test.« less

  13. Solid state VRX CT detector

    NASA Astrophysics Data System (ADS)

    DiBianca, Frank A.; Melnyk, Roman; Sambari, Aniket; Jordan, Lawrence M.; Laughter, Joseph S.; Zou, Ping

    2000-04-01

    A technique called Variable-Resolution X-ray (VRX) detection that greatly increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Preliminary results from a 576-channel solid-state detector are presented. The detector has a dual-arm geometry and is comprised of CdWO4 scintillator crystals arranged in 24 modules of 24 channels/module. The scintillators are 0.85 mm wide and placed on 1 mm centers. Measurements of signal level, MTF and SNR, all versus detector angle, are presented.

  14. Fast frame rate rodent cardiac x-ray imaging using scintillator lens coupled to CMOS camera

    NASA Astrophysics Data System (ADS)

    Swathi Lakshmi, B.; Sai Varsha, M. K. N.; Kumar, N. Ashwin; Dixit, Madhulika; Krishnamurthi, Ganapathy

    2017-03-01

    Micro-Computed Tomography (MCT) systems for small animal imaging plays a critical role for monitoring disease progression and therapy evaluation. In this work, an in-house built micro-CT system equipped with a X-ray scintillator lens coupled to a commercial CMOS camera was used to test the feasibility of its application to Digital Subtraction Angiography (DSA). Literature has reported such studies being done with clinical X-ray tubes that can be pulsed rapidly or with rotating gantry systems, thus increasing the cost and infrastructural requirements.The feasibility of DSA was evaluated by injected Iodinated contrast agent (ICA) through the tail vein of a mouse. Projection images of the heart were acquired pre and post contrast using the high frame rate X-ray detector and processing done to visualize transit of ICA through the heart.

  15. Response of Cs 2LiYCl 6:Ce (CLYC) to High Energy Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coupland, Daniel David Schechtman; Stonehill, Laura Catherine; Goett III, John Jerome

    2015-11-23

    Cs 2LiYCl 6:Ce (CLYC) is a promising new inorganic scintillator for gamma and neutron detection. As a gamma-ray detector, it exhibits bright light output and better resolution and proportionality of response than traditional gamma-ray scintillators such as NaI. It is also highly sensitive to thermal neutrons through capture on 6Li, and recent experiments have demonstrated sensitivity to fast neutrons through interactions with 35Cl. The response of CLYC to other forms of radiation has not been reported. We have performed the first measurements of the response of CLYC to several-hundred MeV protons. We have collected digitized waveforms from proton events, andmore » compare to those produced by gammas and thermal neutrons. Finally, we discuss the potential for pulse shape discrimination between them.« less

  16. High energy resolution with transparent ceramic garnet scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.

    2014-09-01

    Breakthrough energy resolution, R(662keV) < 4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.

  17. Measurement of the optical and the physical properties of a liquid scintillator containing water at different times and under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Kim, Seung Chan; Joo, Kyung Kwang; Kim, Ba Ro; Shin, Chang Dong; So, Sun Heang; Yeo, In Sung

    2014-10-01

    In this paper, we describe the optical and the physical properties of a liquid scintillator (LS) containing water with long-term stability. Gadolinium (Gd) is loaded into the liquid scintillator to increase the intensity of the neutron capture signal. If a successful neutrino experiment is to be performed, the Gd-loaded liquid scintillator (GdLS) must be stable over the entire duration of the experiment. If water is contained inside the GdLS, the optical and the physical parameters of the GdLS may change. We, therefore, briefly describe several characteristics of GdLS samples with various water contents under different environmental conditions. Measurements of the water content, Gd concentration, transmittance, and light yield (LY) were performed over 600 days.

  18. High Latitude Scintillations during the ICI-4 Rocket Campaign.

    NASA Astrophysics Data System (ADS)

    Patra, S.; Moen, J.

    2015-12-01

    We present the first results from the Norwegian ICI-4 sounding rocket campaign in February 2015. The ICI-4 was launched into F-region auroral blobs from the Andøya Space Center. The multi needle langmuir probe (m-NLP) on board the rocket sampled the ionospheric density structures at a sub-meter spatial resolution. A multi-phase screen model has been developed to estimate the scintillations from the density measurements acquired on-board spacecrafts. The phase screen model is validated and the comparison of the estimated values with scintillations measured by ground receivers during the campaign will be presented. A combination of scintillation receivers in Svalbard and surrounding areas as well as all sky imagers at Ny Ålesund, Longyerbyen, and Skibotn are used to improve the performance of the model.

  19. Light output function and assembly of the time-of-flight enhanced diagnostics neutron spectrometer plastic scintillators for background reduction by double kinematic selection at EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, X. Y.; Chen, Z. J.; Zhang, X.

    The 2.5 MeV neutron spectrometer TOFED (Time-Of-Flight Enhanced Diagnostics) has been constructed to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas on EAST. The instrument has a double-ring structure which, in combination with pulse shape digitization, allows for a dual kinematic selection in the time-of-flight/recoil proton energy (tof/E{sub p}) space, thus improving the spectrometer capability to resolve fast ion signatures in the neutron spectrum, in principle up to a factor ≈100. The identification and separation of features from the energetic ions in the neutron spectrum depends on the detailed knowledge of the instrument response function, both in terms ofmore » the light output function of the scintillators and the effect of undesired multiple neutron scatterings in the instrument. This work presents the determination of the light output function of the TOFED plastic scintillator detectors and their geometrical assembly. Results from dedicated experiments with γ-ray sources and quasi-monoenergetic neutron beams are presented. Implications on the instrument capability to perform background suppression based on double kinematic selection are discussed.« less

  20. Pulse shape discrimination of plastic scintillator EJ 299-33 with radioactive sources

    NASA Astrophysics Data System (ADS)

    Pagano, E. V.; Chatterjee, M. B.; De Filippo, E.; Russotto, P.; Auditore, L.; Cardella, G.; Geraci, E.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; De Luca, S.; Maiolino, C.; Martorana, N. S.; Pagano, A.; Papa, M.; Parsani, T.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Trifirò, A.; Trimarchi, M.

    2018-05-01

    The present study has been carried out in order to investigate about the possibility of using EJ 299-33 scintillator in a multi-detector array to detect neutrons along with light charged particles. In a reaction induced by stable and exotic heavy-ions beams, where copious production of neutrons and other light charged particles occurs, discrimination with low identification threshold of these particles are of great importance. In view of this, EJ 299-33 scintillator having dimension of 3 cm × 3 cm × 3 cm backed by a photomultiplier tube was tested and used under vacuum to detect neutrons, gamma-rays and alpha particles emitted by radioactive sources. Anode pulses from the photomultiplier tube were digitized through GET electronics, recorded and stored in a data acquisition system for the purpose of an off-line analysis. The measurements, under vacuum and low background conditions, show good pulse shape discrimination properties characterized by low identification threshold for neutrons, gamma-rays and alpha particles. The Figures of Merit for neutron-gamma and alpha particles-gamma discriminations have been evaluated together with the energy resolution for gamma-ray and alpha particles.

  1. Detectors for Active Interrogation Applications

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Hamel, M. C.; Bourne, M. M.; Pozzi, S. A.

    Active interrogation creates an environment that is particularly challenging from a radiation-detection standpoint: the elevated background levels from the source can mask the desired signatures from the SNM. Neutron based interrogation experiments have shown that nanosecond-level timing is required to discriminate induced-fission neutrons from the scattered source neutrons. Previous experiments using high-energy bremsstrahlung X-rays have demonstrated the ability to induce and detect prompt photofission neutrons from single target materials; however, a real-world application would require spectroscopic capability to discern between photofission neutrons emitted by SNM and neutrons emitted by other reactions in non-SNM. Using digital pulse-shape discrimination, organic liquid scintillators are capable of reliably detecting neutrons in an intense gamma-ray field. Photon misclassification rates as low as 1 in 106 have been achieved, which is approaching the level of gaseous neutron detectors such as 3He without the need for neutron moderation. These scintillators also possess nanosecond-timing resolution, making them candidates for both neutron-and photon-driven active interrogation systems. We have applied an array of liquid and NaI(Tl) scintillators to successfully image 13.7 kg of HEU interrogated by a DT neutron generator; the system was in the direct presence of the accelerator during the experiment.

  2. Multisector scintillation detector with fiber-optic light collection

    NASA Astrophysics Data System (ADS)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  3. Automated response matching for organic scintillation detector arrays

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Cave, F. D.; Plenteda, R.; Tomanin, A.

    2017-07-01

    This paper identifies a digitizer technology with unique features that facilitates feedback control for the realization of a software-based technique for automatically calibrating detector responses. Three such auto-calibration techniques have been developed and are described along with an explanation of the main configuration settings and potential pitfalls. Automating this process increases repeatability, simplifies user operation, enables remote and periodic system calibration where consistency across detectors' responses are critical.

  4. Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators

    NASA Astrophysics Data System (ADS)

    Wolszczak, W.; Dorenbos, P.

    2017-06-01

    Internal contamination with actinium-227 and its daughters is a serious drawback in low-background applications of lanthanide-based scintillators. In this work we showed the important role of nuclear γ de-excitations on the shape of the internal alpha spectrum measured in scintillators. We calculated with Bateman equations the activities of contamination isotopes and the time evolution of actinium-227 and its progenies. Next, we measured the intrinsic background spectra of LaBr3(Ce), LaBr3(Ce,Sr) and CeBr3 with a digital spectroscopy technique, and we analyzed them with a pulse shape discrimination method (PSD) and a time-amplitude analysis. Finally, we simulated the α background spectrum with Geant4 tool-kit, consequently taking into account complex α-γ-electron events, the α / β ratio dependence on the α energy, and the electron/γ nonproportionality. We found that α-γ mixed events have higher light yield than expected for alpha particles alone, which leads to overestimation of the α / β ratio when it is measured with internal 227Th and 223Ra isotopes. The time-amplitude analysis showed that the α peaks of 219Rn and 215Po in LaBr3(Ce) and LaBr3(Ce,Sr) are not symmetric. We compared the simulation results with the measured data and provided further evidence of the important role of mixed α-γ-electron events for understanding the shape of the internal α spectrum in scintillators.

  5. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    PubMed

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-05-11

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  6. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber

    PubMed Central

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-01-01

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of −0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber. PMID:25970257

  7. Attenuation characteristics of fiberoptic plates for digital mammography and other X-ray imaging applications.

    PubMed

    Vedantham, S; Karellas, A; Suryanarayanan, S

    2003-01-01

    Spatially coherent fiberoptic plates are important components of some charge-coupled device (CCD)-based x-ray imaging systems. These plates efficiently transmit scintillations from the phosphor, and also filter out x-rays not absorbed by the phosphor, thus protecting the CCD from direct x-ray interaction. The thickness of the fiberoptic plate and the CCD package present a significant challenge in the design of a digital x-ray cassette capable of insertion into the existing film-screen cassette holders of digital mammography systems. This study was performed with an aim to optimize fiberoptic plate thickness. Attenuation measurements were performed on nine fiberoptic plates varying in material composition that exhibit desirable optical characteristics such as good coupling efficiency. Mammographic spectra from a clinical mammographic system and an Americium-241 (Am-241) source (59.54 KeV) were used. The spectra were recorded with a high-resolution cadmium zinc telluride (CZT)-based spectrometer and corrected for dead time and pile-up. The linear attenuation coefficients varied by a factor of 3 in the set of tested fiberoptic plates at both mammographic energies and 59.54 keV. Our results suggest that a 3-mm thick high-absorption plate might provide adequate for shielding at mammographic energies. A thickness of 2-mm is feasible for mammographic applications with further optimization of the fiberoptic plate composition by incorporating non-scintillating, high-atomic number material. This would allow more space for cooling components of the cassette and for a more compact device, which is critical for clinical implementation of the technology.

  8. Characterization of the Ionospheric Scintillations at High Latitude using GPS Signal

    NASA Astrophysics Data System (ADS)

    Mezaoui, H.; Hamza, A. M.; Jayachandran, P. T.

    2013-12-01

    Transionospheric radio signals experience both amplitude and phase variations as a result of propagation through a turbulent ionosphere; this phenomenon is known as ionospheric scintillations. As a result of these fluctuations, Global Positioning System (GPS) receivers lose track of signals and consequently induce position and navigational errors. Therefore, there is a need to study these scintillations and their causes in order to not only resolve the navigational problem but in addition develop analytical and numerical radio propagation models. In order to quantify and qualify these scintillations, we analyze the probability distribution functions (PDFs) of L1 GPS signals at 50 Hz sampling rate using the Canadian High arctic Ionospheric Network (CHAIN) measurements. The raw GPS signal is detrended using a wavelet-based technique and the detrended amplitude and phase of the signal are used to construct probability distribution functions (PDFs) of the scintillating signal. The resulting PDFs are non-Gaussian. From the PDF functional fits, the moments are estimated. The results reveal a general non-trivial parabolic relationship between the normalized fourth and third moments for both the phase and amplitude of the signal. The calculated higher-order moments of the amplitude and phase distribution functions will help quantify some of the scintillation characteristics and in the process provide a base for forecasting, i.e. develop a scintillation climatology model. This statistical analysis, including power spectra, along with a numerical simulation will constitute the backbone of a high latitude scintillation model.

  9. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Dolan; M. J. Marcath; M. Flaska

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  10. Polystyrene-Core, Silica-Shell Scintillant Nanoparticles for Low-Energy Radionuclide Quantification in Aqueous Media.

    PubMed

    Janczak, Colleen M; Calderon, Isen A C; Mokhtari, Zeinab; Aspinwall, Craig A

    2018-02-07

    β-particle emitting radionuclides are useful molecular labels due to their abundance in biomolecules. Detection of β-emission from 3 H, 35 S, and 33 P, important biological isotopes, is challenging due to the low energies (E max ≤ 300 keV) and short penetration depths (≤0.6 mm) in aqueous media. The activity of biologically relevant β-emitters is usually measured in liquid scintillation cocktail (LSC), a mixture of energy-absorbing organic solvents, surfactants, and scintillant fluorophores, which places significant limitations on the ability to acquire time-resolved measurements directly in aqueous biological systems. As an alternative to LSC, we developed polystyrene-core, silica-shell nanoparticle scintillators (referred to as nanoSCINT) for quantification of low-energy β-particle emitting radionuclides directly in aqueous solutions. The polystyrene acts as an absorber for energy from emitted β-particles and can be loaded with a range of hydrophobic scintillant fluorophores, leading to photon emission at visible wavelengths. The silica shell serves as a hydrophilic shield for the polystyrene core, enabling dispersion in aqueous media and providing better compatibility with water-soluble analytes. While polymer and inorganic scintillating microparticles are commercially available, their large size and/or high density complicates effective dispersion throughout the sample volume. In this work, nanoSCINT nanoparticles were prepared and characterized. nanoSCINT responds to 3 H, 35 S, and 33 P directly in aqueous solutions, does not exhibit a change in scintillation response between pH 3.0 and 9.5 or with 100 mM NaCl, and can be recovered and reused for activity measurements in bulk aqueous samples, demonstrating the potential for reduced production of LSC waste and reduced total waste volume during radionuclide quantification. The limits of detection for 1 mg/mL nanoSCINT are 130 nCi/mL for 3 H, 8 nCi/mL for 35 S, and <1 nCi/mL for 33 P.

  11. Compton suppression and event triggering in a commercial data acquisition system

    NASA Astrophysics Data System (ADS)

    Tabor, Samuel; Caussyn, D. D.; Tripathi, Vandana; Vonmoss, J.; Liddick, S. N.

    2012-10-01

    A number of groups are starting to use flash digitizer systems to directly convert the preamplifier signals of high-resolution Ge detectors to a stream of digital data. Some digitizers are also equipped with software constant fraction discriminator algorithms capable of operating on the resulting digital data stream to provide timing information. Because of the dropping cost per channel of these systems, it should now be possible to also connect outputs of the Bismuth Germanate (BGO) scintillators used for Compton suppression to other digitizer inputs so that BGO logic signals can also be available in the same system. This provides the possibility to perform all the Compton suppression and multiplicity trigger logic within the digital system, thus eliminating the need for separate timing filter amplifiers (TFA), constant fraction discriminators (CFD), logic units, and lots of cables. This talk will describe the performance of such a system based on Pixie16 modules from XIA LLC with custom field programmable gate array (FPGA) programming for an array of Compton suppressed single Ge crystal and 4-crystal ``Clover'' detector array along with optional particle detectors. Initial tests of the system have produced results comparable with the current traditional system of individual electronics and peak sensing analog to digital converters. The advantages of the all digital system will be discussed.

  12. Scintillating screens based on the LPE grown Tb3Al5O12:Ce single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Douissard, Paul-Antoine; Martin, Thierry; Riva, Federica; Gorbenko, Vitaliy; Zorenko, Tetiana; Paprocki, Kazimierz; Iskalieva, Aizhan; Witkiewicz, Sandra; Fedorov, Alexander; Bilski, Paweł; Twardak, Anna

    2017-03-01

    We report in this work the creation of new heavy and efficient Tb3Al5O12:Ce (TbAG:Ce) single crystalline film (SCF) scintillators, grown by LPE method from PbO-B2O3 based flux onto Y3Al5O12 (YAG) and Gd3Ga2.5Al2.5O12 (GAGG) substrates, for different optoelectronic applications. The luminescent and scintillation properties of the TbAG:Ce SCF screens, grown onto different types of substrates, are studied and compared with the properties of the Lu3Al5O12:Ce (LuAG:Ce) and YAG:Ce SCF counterparts. TbAG:Ce SCFs show very high scintillation light yield (LY) under α-particles excitation, which overcomes by 30% the LY of high-quality LuAG:Ce SCF samples. In comparison with YAG:Ce and LuAG:Ce SCFs, TbAG:Ce SCF screens show also significantly lower afterglow (up to 10-4 level at X-ray burst duration of 0.1 s), which is comparable with the afterglow level of the best samples of LSO:Ce, Tb SCFs typically being used now for microimaging. Together with a high light output of X-ray excited luminescence, such extremely low afterglow of TbAG:Ce SCF is a very good reason for future development of scintillating screens based on the mentioned garnet. We also introduce the possibility to create new types of ;film-substrate; hybrid scintillators using the LPE method for simultaneous registration of different components of ionizing radiation and microimaging based on the TbAG:Ce SCF and GAGG:Ce substrates.

  13. Reflectance of polytetrafluoroethylene for xenon scintillation light

    NASA Astrophysics Data System (ADS)

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-01

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region (λ ≃175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  14. Luminescent properties of Al2O3:Ce single crystalline films under synchrotron radiation excitation

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Zorenko, T.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Fabisiak, K.; Zhusupkalieva, G.; Fedorov, A.

    2016-09-01

    The paper is dedicated to study the luminescent and scintillation properties of the Al2O3:Ce single crystalline films (SCF) grown by LPE method onto saphire substrates from PbO based flux. The structural quality of SCF samples was investigated by XRD method. For characterization of luminescent properties of Al2O3:Ce SCFs the cathodoluminescence spectra, scintillation light yield (LY) and decay kinetics under excitation by α-particles of Pu239 source were used. We have found that the scintillation LY of Al2O3:Ce SCF samples is relatively large and can reach up to 50% of the value realized in the reference YAG:Ce SCF. Using the synchrotron radiation excitation in the 3.7-25 eV range at 10 K we have also determined the basic parameters of the Ce3+ luminescence in Al2O3 host.

  15. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators. The solid angle subtended by the fiber is ∼2.2 × 10-5 sr. The final element is a compact and high sensitive spectrometer, QE6500 (Ocean Optics Inc.) with a 2D area detector which allow us to measure simultaneously in the range of 200-1100 nm with a spectral resolution ∼1-2 nm. The measured signals were analyzed and stored with the SpectraSuite software [6]. The absolute calibration of the optical system described above was carried out with a HL-2000-CAL Tungsten Halogen Calibration Standard light source which provides absolute intensity values (in μW/cm2/nm) at the fiber port at wavelengths from 360-1050 nm.The beam fluxes used to irradiate the phosphors were ∼ 1012 p/cm2s- for the IL yields determination, and up to ten times higher for the degradation analyses.The Rutherford Backscattering Spectrometry (RBS) measurements of the screens were accomplished in the same vacuum chamber using protons at 3 MeV and 5 MeV. Two different energies were employed due to the large difference between the thicknesses of the samples. The proton beam intensity was 10 nA and the beam size 1 mm of diameter. The analysis were performed with a Passivated Implanted Planar Silicon (PIPS) detector of 300 mm2, positioned at 150° and with a 10 μm thick aluminized mylar foil placed at the detector surface to avoid the light emitted by the scintillators. The RBS spectra were analyzed using the SIMNRA code [7].The scintillators investigated in this work were selected according to their availability, radiation hardness, fast response, and/or prior use in plasma diagnostics. In this paper, three different kinds of materials have been analyzed. The TG-Green (so called by the manufacturer, Sarnoff Corporation, USA) is a Eu doped SrGa2S4 powder substrate with density of 3.65 g/cm3, and presents an emission at 540 nm with a very short decay time.≈490 ns [8]. A TG-Green scintillator coating has been applied, for the first time, to a fusion plasma diagnostics for the detection of fast-particle losses on the AUG tokamak [9,10]. The same material supplied by other manufacturer (CIEMAT) has been used to compare the yields for both samples. We will refer to these screens as TGa and TGb for the corresponding to Sarnoff Co. and CIEMAT, respectively. The P46 is a rare earth oxide Y3Al5O12 (YAG) doped with Ce by 0.15% CeO2, manufactured by Proxitronic GmbH, Germany. The luminescence emission consists in a broad peak, centered at 550 nm with a stated decay time constant of 70 ns. [11]. The P46 has been widely applied to fusion plasma diagnostic and in particular to fast-ion loss detection on several devices such as TFTR and NSTX [12,13]. Finally, the P56 scintillator is a Eu doped Y2O3 powder substrate, Y2O3:Eu3+, manufactured by AST Corporation, England. Although this material has a high efficiency, its light emission has a long decay time of 2 ms [14], making the P56 unsuitable to follow the frequency of the MHD fluctuations.The samples were deposited using different processes directly by the manufacturers on 2 mm thick stainless steel plates. It is important to remind that reflections on the substrate may contribute to a luminescence enhancement of the thin scintillator screens. Therefore, the screens under study here as well as the experimental set-up were designed to mimic the real operation of a fast-ion loss detector.

  16. Development of an Ultra-Low Background Liquid Scintillation Counter for Trace Level Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erchinger, Jennifer L.; Orrell, John L.; Aalseth, Craig E.

    2015-09-01

    Low-level liquid scintillation counting (LSC) has been established as one of the radiation detection techniques useful in elucidating environmental processes and environmental monitoring around nuclear facilities. The Ultra-Low Background Liquid Scintillation Counter (ULB-LSC) under construction in the Shallow Underground Laboratory at Pacific Northwest National Laboratory aims to further reduce the MDAs and/or required sample processing. Through layers of passive shielding in conjunction with an active veto and 30 meters water equivalent overburden, the background reduction is expected to be 10 to 100 times below typical analytic low-background liquid scintillation systems. Simulations have shown an expected background of around 14 countsmore » per day. A novel approach to the light collection will use a coated hollow light guide cut into the inner copper shielding. Demonstration LSC measurements will show low-energy detection, spectral deconvolution, and alpha/beta discrimination capabilities, from trials with standards of tritium, strontium-90, and actinium-227, respectively. An overview of the system design and expected demonstration measurements will emphasize the potential applications of the ULB-LSC in environmental monitoring for treaty verification, reach-back sample analysis, and facility inspections.« less

  17. Classical vs. evolved quenching parameters and procedures in scintillation measurements: The importance of ionization quenching

    NASA Astrophysics Data System (ADS)

    Bagán, H.; Tarancón, A.; Rauret, G.; García, J. F.

    2008-07-01

    The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach.

  18. Optimization of liquid scintillation measurements applied to smears and aqueous samples collected in industrial environments

    NASA Astrophysics Data System (ADS)

    Chapon, Arnaud; Pigrée, Gilbert; Putmans, Valérie; Rogel, Gwendal

    Search for low-energy β contaminations in industrial environments requires using Liquid Scintillation Counting. This indirect measurement method supposes a fine control from sampling to measurement itself. Thus, in this paper, we focus on the definition of a measurement method, as generic as possible, for both smears and aqueous samples' characterization. That includes choice of consumables, sampling methods, optimization of counting parameters and definition of energy windows, using the maximization of a Figure of Merit. Detection limits are then calculated considering these optimized parameters. For this purpose, we used PerkinElmer Tri-Carb counters. Nevertheless, except those relative to some parameters specific to PerkinElmer, most of the results presented here can be extended to other counters.

  19. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  20. The EGRET high energy gamma ray telescope

    NASA Astrophysics Data System (ADS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.; Michelson, P. F.; von Montigny, C.; Nolan, P. L.; Pinkau, K.; Rothermel, H.; Schneid, E.; Sommer, M.; Sreekumar, P.; Thompson, D. J.

    1992-02-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  1. Development of New High Resolution Neutron Detector

    NASA Astrophysics Data System (ADS)

    Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.

    2017-09-01

    Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.

  2. Photodetector timing research at Fermilab

    DOE PAGES

    Ramberg, E.; Ronzhin, A.; Albrow, M.; ...

    2011-01-01

    We describe here the outlines of research undertaken by Fermilab into timing characteristics of photodetectors. We describe our experimental method and give benchtop results on the timing resolution of micro-channel plate photomultipliers (MCP-PMT) and silicon photomultipliers (SiPM). In addition, we describe results of various configurations of these detectors, along with quartz radiators, in particle test beams at Fermilab. Results for timing of scintillator light using the DRS4 high speed digitizer are also presented.

  3. Data Analysis for the Scintillating Optical Fiber Calorimeter (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    1997-01-01

    The scintillating optical fiber calorimeter is a hybrid instrument with both active and passive components for measuring the proton and helium cosmic ray spectra from 0.2 to IO TeV kinetic energy. A thin emulsion/x-ray film chamber is situated between a cerenkov counter and an imaging calorimeter. Scintillating optical fibers sample the electromagnetic showers that develop in the calorimeter and identify the trajectory of cosmic rays that interact in SOFCAL. The emulsion/x-ray film data provide an in flight calibration for SOFCAL. The data reduction techniques used will be discussed and interim results of the analysis from a 20 hour balloon flight will be presented.

  4. A new device for dynamic sampling of radon in air

    NASA Astrophysics Data System (ADS)

    Lozano, J. C.; Escobar, V. Gómez; Tomé, F. Vera

    2000-08-01

    A new system is proposed for the active sampling of radon in air, based on the well-known property of activated charcoal to retain radon. Two identical carbon-activated cartridges arranged in series remove the radon from the air being sampled. The air passes first through a desiccant cell and then the carbon cartridges for short sampling times using a low-flow pump. The alpha activity for each cartridge is determined by a liquid scintillation counting system. The cartridge is placed in a holder into a vial that also contains the appropriate amount of scintillation cocktail, in a way that avoids direct contact between cocktail and charcoal. Once dynamic equilibrium between the phases has been reached, the vials can be counted. Optimum sampling conditions concerning flow rates and sampling times are determined. Using those conditions, the method was applied to environmental samples, straightforwardly providing good results for very different levels of activity.

  5. Development of an ultra-compact CsI/HgI{sub 2} gamma-ray scintillation spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Wang, Y.J.; Iwanczyk, J.S.

    A novel new semiconductor photodetector has been developed which utilizes large mercuric iodide photodetectors coupled to highly optimized CsI(T1) scintillators for gamma ray spectroscopy. With this new detector technology the authors have achieved energy resolution superior to that of any other scintillation detector. Furthermore, gamma probes based on the new HgI{sub 2}/CsI(Tl) detector can be highly miniaturized offering improved portability. A {1/2}-inch diameter HgI{sub 2} photodetector coupled with a {1/2}-inch diameter by {1/2}-inch high right-rectangular scintillator produced energy resolution of 4.58% FWHM for {sup 137}Cs (662 keV). This is perhaps the best result ever reported for room temperature scintillation spectroscopy.more » Evaluation of a prototype device with similar performance has been conducted at Los Alamos using Pu and U standard samples. Recently, Monte-Carlo simulations have been performed for co-optimization of the gamma-collection efficiency and light collection efficiency of the scintillator/photodetector pairs resulting in a new tapered scintillator geometry. Energy resolution of 5.69% FWHM at 662 keV was obtained for a 1-inch diameter photodetector coupled to a two-inch long conical CsI(Tl) scintillator; with dimensions: 1-inch diameter at the top tapered to 2-inch diameter at the bottom. The long term stability of the technology has been verified. Current efforts to optimize the detectors for specific applications in safeguards and in materials control and accountability are discussed.« less

  6. SPADnet: a fully digital, scalable, and networked photonic component for time-of-flight PET applications

    NASA Astrophysics Data System (ADS)

    Bruschini, Claudio; Charbon, Edoardo; Veerappan, Chockalingam; Braga, Leo H. C.; Massari, Nicola; Perenzoni, Matteo; Gasparini, Leonardo; Stoppa, David; Walker, Richard; Erdogan, Ahmet; Henderson, Robert K.; East, Steve; Grant, Lindsay; Játékos, Balázs; Ujhelyi, Ferenc; Erdei, Gábor; Lörincz, Emöke; André, Luc; Maingault, Laurent; Jacolin, David; Verger, L.; Gros d'Aillon, Eric; Major, Peter; Papp, Zoltan; Nemeth, Gabor

    2014-05-01

    The SPADnet FP7 European project is aimed at a new generation of fully digital, scalable and networked photonic components to enable large area image sensors, with primary target gamma-ray and coincidence detection in (Time-of- Flight) Positron Emission Tomography (PET). SPADnet relies on standard CMOS technology, therefore allowing for MRI compatibility. SPADnet innovates in several areas of PET systems, from optical coupling to single-photon sensor architectures, from intelligent ring networks to reconstruction algorithms. It is built around a natively digital, intelligent SPAD (Single-Photon Avalanche Diode)-based sensor device which comprises an array of 8×16 pixels, each composed of 4 mini-SiPMs with in situ time-to-digital conversion, a multi-ring network to filter, carry, and process data produced by the sensors at 2Gbps, and a 130nm CMOS process enabling mass-production of photonic modules that are optically interfaced to scintillator crystals. A few tens of sensor devices are tightly abutted on a single PCB to form a so-called sensor tile, thanks to TSV (Through Silicon Via) connections to their backside (replacing conventional wire bonding). The sensor tile is in turn interfaced to an FPGA-based PCB on its back. The resulting photonic module acts as an autonomous sensing and computing unit, individually detecting gamma photons as well as thermal and Compton events. It determines in real time basic information for each scintillation event, such as exact time of arrival, position and energy, and communicates it to its peers in the field of view. Coincidence detection does therefore occur directly in the ring itself, in a differed and distributed manner to ensure scalability. The selected true coincidence events are then collected by a snooper module, from which they are transferred to an external reconstruction computer using Gigabit Ethernet.

  7. TH-CD-207B-06: Swank Factor of Segmented Scintillators in Multi-Slice CT Detectors: Pulse Height Spectra and Light Escape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howansky, A; Peng, B; Lubinsky, A

    Purpose: Pulse height spectra (PHS) have been used to determine the Swank factor of a scintillator by measuring fluctuations in its light output per x-ray interaction. The Swank factor and x-ray quantum efficiency of a scintillator define the upper limit to its imaging performance, i.e. DQE(0). The Swank factor below the K-edge is dominated by optical properties, i.e. variations in light escape efficiency from different depths of interaction, denoted e(z). These variations can be optimized to improve tradeoffs in x-ray absorption, light yield, and spatial resolution. This work develops a quantitative model for interpreting measured PHS, and estimating e(z) onmore » an absolute scale. The method is used to investigate segmented ceramic GOS scintillators used in multi-slice CT detectors. Methods: PHS of a ceramic GOS plate (1 mm thickness) and segmented GOS array (1.4 mm thick) were measured at 46 keV. Signal and noise propagation through x-ray conversion gain, light escape, detection by a photomultiplier tube and dynode amplification were modeled using a cascade of stochastic gain stages. PHS were calculated with these expressions and compared to measurements. Light escape parameters were varied until modeled PHS agreed with measurements. The resulting estimates of e(z) were used to calculate PHS without measurement noise to determine the inherent Swank factor. Results: The variation in e(z) was 67.2–89.7% in the plate and 40.2–70.8% in the segmented sample, corresponding to conversion gains of 28.6–38.1 keV{sup −1} and 17.1–30.1 keV{sup −1}, respectively. The inherent Swank factors of the plate and segmented sample were 0.99 and 0.95, respectively. Conclusion: The high light escape efficiency in the ceramic GOS samples yields high Swank factors and DQE(0) in CT applications. The PHS model allows the intrinsic optical properties of scintillators to be deduced from PHS measurements, thus it provides new insights for evaluating the imaging performance of segmented ceramic GOS scintillators.« less

  8. Scintillating Screens Based on the Single Crystalline Films of Multicomponent Garnets: New Achievements and Possibilities

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitalii; Zorenko, Tetiana; Paprocki, Kazimierz; Nikl, Martin; Mares, Jiri A.; Bilski, Pawel; Twardak, Anna; Sidletskiy, Oleg; Gerasymov, Iaroslav; Grinyov, Boris; Fedorov, Alexandr

    2016-04-01

    The paper is dedicated to development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped Lu3 - xTbxAl5 - yGayO12 multicomponent garnets at x = 2 - 3 and y = 0 - 2.5 onto Y3Al5O12 (YAG) and Gd3Al2.5Ga2.5O12 (GAGG) substrates using the liquid phase epitaxy (LPE) method. We report the optimized content and high scintillation figure of merit of SCF of these garnets grown by the LPE method with using PbO based flux. Namely, the Tb3Al2.5Ga2.5O12:Ce SCFs possess the highest values of light yield (LY) compared to all earlier investigated SCF samples, with their LY exceeding by 2.35 and 1.15 times the LY values for YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCFs of the mentioned compounds show very lower thermoluminescence in the above room temperature range and relatively fast scintillation decay.

  9. A new tritiated water measurement method with plastic scintillator pellets.

    PubMed

    Furuta, Etsuko; Iwasaki, Noriko; Kato, Yuka; Tomozoe, Yusuke

    2016-01-01

    A new tritiated water measurement method with plastic scintillator pellets (PS-pellets) by using a conventional liquid scintillation counter was developed. The PS-pellets used were 3 mm in both diameter and length. A low potassium glass vial was filled full with the pellets, and tritiated water was applied to the vial from 5 to 100 μl. Then, the sample solution was scattered in the interstices of the pellets in a vial. This method needs no liquid scintillator, so no liquid organic waste fluid is generated. The counting efficiency with the pellets was approximately 48 % when a 5 μl solution was used, which was higher than that of conventional measurement using liquid scintillator. The relationship between count rate and activity showed good linearity. The pellets were able to be used repeatedly, so few solid wastes are generated with this method. The PS-pellets are useful for tritiated water measurement; however, it is necessary to develop a new device which can be applied to a larger volume and measure low level concentration like an environmental application.

  10. Crystal Growth and Scintillation Properties of Ce Doped Gd3Ga,Al5O12 Single Crystals

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Yanagida, Takayuki; Pejchal, Jan; Nikl, Martin; Endo, Takanori; Tsutsumi, Kousuke; Fujimoto, Yutaka; Fukabori, Akihiro; Yoshikawa, Akira

    2012-10-01

    Ce1%, 2% and 3% doped Gd3(Ga,Al)5O12 (GAGG) single crystals were grown by the Cz method. Luminescence and scintillation properties were measured. Light yield change along the growth direction and effects of Ce concentration on scintillation properties in Ce:GAGG were studied. Ce3+ 5d-4f emission within 520-530 nm was observed in the Ce:GAGG crystals. The Ce1%:GAGG sample with 3×3×1 mm size showed the highest light yield of 46000 photon/MeV. The energy resolution was 7.8%@662 keV. With increasing solidification fraction, the LY were decreased. It is proposed that the increase of Ga concentration along the growth direction is the main cause of the decrease of LY. The scintillation decay times were accelerated with increasing Ce concentration in the Ce:GAGG crystals. The scintillation decay times were 92.0 ns, 79.1 ns and 68.3 ns in the Ce1, 2 and 3% GAGG, respectively.

  11. Digital fast neutron radiography of steel reinforcing bar in concrete

    NASA Astrophysics Data System (ADS)

    Mitton, K.; Jones, A.; Joyce, M. J.

    2014-12-01

    Neutron imaging has previously been used in order to test for cracks, degradation and water content in concrete. However, these techniques often fall short of alternative non-destructive testing methods, such as γ-ray and X-ray imaging, particularly in terms of resolution. Further, thermal neutron techniques can be compromised by the significant expense associated with thermal neutron sources of sufficient intensity to yield satisfactory results that can often precipitate the need for a reactor. Such embodiments are clearly not portable in the context of the needs of field applications. This paper summarises the results of a study to investigate the potential for transmission radiography based on fast neutrons. The objective of this study was to determine whether the presence of heterogeneities in concrete, such as reinforcement structures, could be identified on the basis of variation in transmitted fast-neutron flux. Monte-Carlo simulations have been performed and the results from these are compared to those arising from practical tests using a 252Cf source. The experimental data have been acquired using a digital pulse-shape discrimination system that enables fast neutron transmission to be studied across an array of liquid scintillators placed in close proximity to samples under test, and read out in real time. Whilst this study does not yield sufficient spatial resolution, a comparison of overall flux ratios does provide a basis for the discrimination between samples with contrasting rebar content. This approach offers the potential for non-destructive testing that gives less dose, better transportability and better accessibility than competing approaches. It is also suitable for thick samples where γ-ray and X-ray methods can be limited.

  12. High-energy X-ray detection by hafnium-doped organic-inorganic hybrid scintillators prepared by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan; Koshimizu, Masanori, E-mail: koshi@qpc.che.tohoku.ac.jp; Yahaba, Natsuna

    2014-04-28

    With the aim of enhancing the efficiency with which plastic scintillators detect high-energy X-rays, hafnium-doped organic-inorganic hybrid scintillators were fabricated via a sol-gel method. Transmission electron microscopy of sampled material reveals the presence of Hf{sub x}Si{sub 1−x}O{sub 2} nanoparticles, dispersed in a polymer matrix that constitutes the active material of the X-ray detector. With Hf{sub x}Si{sub 1−x}O{sub 2} nanoparticles incorporated in the polymer matrix, the absorption edge and the luminescence wavelength is shifted, which we attribute to Mie scattering. The detection efficiency for 67.4-keV X-rays in a 0.6-mm-thick piece of this material is two times better than the same thicknessmore » of a commercial plastic scintillator-NE142.« less

  13. Investigating new activators for small-bandgap LaX3 (X = Br, I) scintillators

    NASA Astrophysics Data System (ADS)

    Rutstrom, Daniel; Collette, Robyn; Stand, Luis; Loyd, Matthew; Wu, Yuntao; Koschan, Merry; Melcher, Charles L.; Zhuravleva, Mariya

    2018-02-01

    Luminescence and scintillation properties of Bi3+, Sb3+, and Eu2+-doped LaI3 and LaBr3 were explored. Out of the three dopants investigated, Eu2+ was the most promising new activator for small-bandgap LaX3 (X = Br, I) and was further studied in the mixed-halide LaBr3-xIx. Crystals were grown from the melt using the vertical Bridgman method. LaBr3:Eu2+ 0.5% (mol) had the most favorable scintillation properties with a light output of 43,000 ph/MeV and 6% energy resolution at 662 keV. Performance of LaBr3-xIx:Eu2+ worsened for most samples as iodide concentration was increased. Room-temperature scintillation of LaI3:Eu2+ 0.1% and 0.5% was observed and is the first case of room-temperature emission reported for doped LaI3.

  14. Temperature response of several scintillator materials to light ions

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, M.; Jiménez-Ramos, M. C.; García-Muñoz, M.; García López, J.

    2017-07-01

    Ion beam induced luminescence has been used to study the response of scintillator screens of Y2O3:Eu3+ (P56) and SrGa2S4:Eu2+ (TG-Green) when irradiated with light ions (protons, deuterium and helium particles). The absolute efficiency of the samples has been studied as a function of the ion energy (with energies up to 3.5 MeV), the beam current and the operating temperature. The evolution of the scintillator yield with ion fluence has been carried out for all the scintillators to estimate radiation damage. Finally, measurements of the decay time of these materials using a system of pulsed beam accelerated particles have been done. Among the screens under study, the TG-Green is the best suited material, in terms of absolute efficiency, temporal response and degradation with ion dose, for fast-ion loss detectors in fusion devices.

  15. R&D of the CEPC scintillator-tungsten ECAL

    NASA Astrophysics Data System (ADS)

    Dong, M. Y.

    2018-03-01

    The circular electron and positron collider (CEPC) was proposed as a future Higgs factory. To meet the physics requirements, a particle flow algorithm-oriented calorimeter system with high energy resolution and precise reconstruction is considered. A sampling calorimeter with scintillator-tungsten sandwich structure is selected as one of the electromagnetic calorimeter (ECAL) options due to its good performance and relatively low cost. We present the design, the test and the optimization of the scintillator module read out by silicon photomultiplier (SiPM), including the design and the development of the electronics. To estimate the performance of the scintillator and SiPM module for particles with different energy, the beam test of a mini detector prototype without tungsten shower material was performed at the E3 beams in Institute of High Energy Physics (IHEP). The results are consistent with the expectation. These studies provide a reference and promote the development of particle flow electromagnetic calorimeter for the CEPC.

  16. Comparative investigation of the detective quantum efficiency of direct and indirect conversion detector technologies in dedicated breast CT.

    PubMed

    Kuttig, Jan D; Steiding, Christian; Kolditz, Daniel; Hupfer, Martin; Karolczak, Marek; Kalender, Willi A

    2015-06-01

    To investigate the dose saving potential of direct-converting CdTe photon-counting detector technology for dedicated breast CT. We analyzed the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of two detector technologies, suitable for breast CT (BCT): a flat-panel energy-integrating detector with a 70 μm and a 208 μm thick gadolinium oxysulfide (GOS) and a 150 μm thick cesium iodide (CsI) scintillator and a photon-counting detector with a 1000 μm thick CdTe sensor. The measurements for GOS scintillator thicknesses of 70 μm and 208 μm delivered 10% pre-sampled MTF values of 6.6 mm(-1) and 3.2 mm(-1), and DQE(0) values of 23% and 61%. The 10% pre-sampled MTF value for the 150 μm thick CsI scintillator 6.9 mm(-1), and the DQE(0) value was 49%. The CdTe sensor reached a 10% pre-sampled MTF value of 8.5 mm(-1) and a DQE(0) value of 85%. The photon-counting CdTe detector technology allows for significant dose reduction compared to the energy-integrating scintillation detector technology used in BCT today. Our comparative evaluation indicates that a high potential dose saving may be possible for BCT by using CdTe detectors, without loss of spatial resolution. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Extractive procedure for uranium determination in water samples by liquid scintillation counting.

    PubMed

    Gomez Escobar, V; Vera Tomé, F; Lozano, J C; Martín Sánchez, A

    1998-07-01

    An extractive procedure for uranium determination using liquid scintillation counting with the URAEX cocktail is described. Interference from radon and a strong influence of nitrate ion were detected in this procedure. Interference from radium, thorium and polonium emissions were very low when optimal operating conditions were reached. Quenching effects were considered and the minimum detectable activity was evaluated for different sample volumes. Isotopic analysis of samples can be performed using the proposed method. Comparisons with the results obtained with the general procedure used in alpha spectrometry with passivated implanted planar silicon detectors showed good agreement. The proposed procedure is thus suitable for uranium determination in water samples and can be considered as an alternative to the laborious conventional chemical preparations needed for alpha spectrometry methods using semiconductor detectors.

  18. Structural and optical properties of Nd- and Tb-doped BaY 2F 8

    NASA Astrophysics Data System (ADS)

    Valerio, Mário E. G.; Ribeiro, Viviane G.; de Mello, Ana C. S.; dos Santos, Marcos A. C.; Baldochi, Sonia L.; Mazzocchi, Vera L.; Parente, Carlos B. R.; Jackson, Robert A.; Amaral, Jomar B.

    2007-09-01

    In the present work, we report the optical properties of rare-earth doped BaY2F8 and its potential use as a scintillator in radiation detection. The samples were synthesized and grown by the zone melting method under a HF flow. X-ray powder diffraction was performed and quantitative phase analysis was done using the Rietveld method. Emission and excitation spectra of the doped samples were measured at room temperature. The identification of the transitions was done comparing the excitation and emission peaks with the results obtained from computer modelling. The scintillator properties of the pure and doped samples were checked by measuring the radioluminescence of the sample when excited with different types of radiation, revealing that these materials are promising radiation detectors.

  19. TDC Array Tradeoffs in Current and Upcoming Digital SiPM Detectors for Time-of-Flight PET

    NASA Astrophysics Data System (ADS)

    Tétrault, Marc-André; Therrien, Audrey Corbeil; Lemaire, William; Fontaine, Réjean; Pratte, Jean-François

    2017-03-01

    Radiation detection used in positron emission tomography (PET) exploits the timing information to remove background noise and refine position measurement through time-of-flight information. Fine time resolution in the order of 10 ps full-width at half-maximum (FWHM) would not only improve contrast in the image, but would also enable direct image reconstruction without iterative or back-projected algorithms. Currently, PET experimental setups based on silicon photomultipliers (SiPMs) reach 73 ps FWHM, where the scintillation process plays the larger role in spreading the timing resolution. This will change with the optimization of faster light emission mechanisms (prompt photons), where readout optoelectronics will once more have a noticeable contribution to the timing resolution limit. In addition to reducing electronic jitter as much as possible, other aspects of the design space must also explored, especially for digital SiPMs. Unlike traditional SiPMs, digital SiPMs can integrate circuits like time-to-digital converters (TDCs) directly with individual or groups of light sensing cells. Designers should consider the number of TDCs to integrate, the area they occupy, their power consumption, their resolution, and the impact of signal processing algorithms and find a compromise with the figure of merit and the coincidence timing resolution (CTR). This paper presents a parametric simulation flow for digital SiPM microsystems that evaluates CTR based on these aspects and on the best linear unbiased estimator (BLUE) in order to guide their design for present and future PET systems. For a small 1.1 × 1.1 × 3.0 mm3 LYSO crystal, the simulations indicate that for a low jitter digital SiPM microsystem with 18.2% photon detection efficiency, fewer than four timestamps with any multi-TDC configuration scheme nearly obtain the optimal CTR with BLUE (just below 100 ps FWHM), but with limited 5% improvement over only using the first observed photon. On the other hand, if a similar crystal but with 2.5% prompt photon fraction is considered, BLUE provides an improvement between 80% and 200% (depending on electronic jitter) over using only the first observed photon. In this case, a few tens of timestamps are required, yielding very different design guidelines than for standard LYSO scintillators.

  20. Precise rise and decay time measurements of inorganic scintillators by means of X-ray and 511 keV excitation

    NASA Astrophysics Data System (ADS)

    Gundacker, S.; Turtos, R. M.; Auffray, E.; Lecoq, P.

    2018-05-01

    The emergence of new solid-state avalanche photodetectors, e.g. SiPMs, with unprecedented timing capabilities opens new ways to profit from ultrafast and prompt photon emission in scintillators. In time of flight positron emission tomography (TOF-PET) and high energy timing detectors based on scintillators the ultimate coincidence time resolution (CTR) achievable is proportional to the square root of the scintillation rise time, decay time and the reciprocal light yield, CTR ∝√{τrτd / LY }. Hence, the precise study of light emission in the very first tens of picoseconds is indispensable to understand time resolution limitations imposed by the scintillator. We developed a time correlated single photon counting setup having a Gaussian impulse response function (IRF) of 63ps sigma, allowing to precisely measure the scintillation rise time of various materials with 511keV excitation. In L(Y)SO:Ce we found two rise time components, the first below the resolution of our setup <10 ps and a second component being ∼380 ps. Co-doping with Ca2+ completely suppresses the slow rise component leading to a very fast initial scintillation emission with a rise time of <10ps. A very similar behavior is observed in LGSO:Ce crystals. The results are further confirmed by complementary measurements using a streak-camera system with pulsed X-ray excitation and additional 511 keV excited measurements of Mg2+ co-doped LuAG:Ce, YAG:Ce and GAGG:Ce samples.

  1. SU-E-I-88: The Effect of System Dead Time On Real-Time Plastic and GOS Based Fiber-Optic Dosimetry Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerner, M; Hintenlang, D

    Purpose: A methodology is presented to correct for measurement inaccuracies at high detector count rates using a plastic and GOS scintillation fibers coupled to a photomultiplier tube with digital readout. This system allows temporal acquisition and manipulation of measured data. Methods: The detection system used was a plastic scintillator and a separate gadolinium scintillator, both (0.5 diameter) coupled to an optical fiber with a Hamamatsu photon counter with a built-in microcontroller and digital interface. Count rate performance of the system was evaluated using the nonparalzable detector model. Detector response was investigated across multiple radiation sources including: orthovoltage x-ray system, colbat-60more » gamma rays, proton therapy beam, and a diagnostic radiography x-ray tube. The dead time parameter was calculated by measuring the count rate of the system at different exposure rates using a reference detector. Results: The system dead time was evaluated for the following sources of radiation used clinically: diagnostic energy x-rays, cobalt-60 gamma rays, orthovoltage xrays, particle proton accelerator, and megavoltage x-rays. It was found that dead time increased significantly when exposing the detector to sources capable of generating Cerenkov radiation, all of the sources sans the diagnostic x-rays, with increasing prominence at higher photon energies. Percent depth dose curves generated by a dedicated ionization chamber and compared to the detection system demonstrated that correcting for dead time improves accuracy. On most sources, nonparalzable model fit provided an improved system response. Conclusion: Overall, the system dead time was variable across the investigated radiation particles and energies. It was demonstrated that the system response accuracy was greatly improved by correcting for dead time effects. Cerenkov radiation plays a significant role in the increase in the system dead time through transient absorption effects attributed to electron hole-pair creations within the optical waveguide.« less

  2. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  3. A neutron camera system for MAST.

    PubMed

    Cecconello, M; Turnyanskiy, M; Conroy, S; Ericsson, G; Ronchi, E; Sangaroon, S; Akers, R; Fitzgerald, I; Cullen, A; Weiszflog, M

    2010-10-01

    A prototype neutron camera has been developed and installed at MAST as part of a feasibility study for a multichord neutron camera system with the aim to measure the spatial and time resolved 2.45 MeV neutron emissivity profile. Liquid scintillators coupled to a fast digitizer are used for neutron/gamma ray digital pulse shape discrimination. The preliminary results obtained clearly show the capability of this diagnostic to measure neutron emissivity profiles with sufficient time resolution to study the effect of fast ion loss and redistribution due to magnetohydrodynamic activity. A minimum time resolution of 2 ms has been achieved with a modest 1.5 MW of neutral beam injection heating with a measured neutron count rate of a few 100 kHz.

  4. NE-213-scintillator-based neutron detection system for diagnostic measurements of energy spectra for neutrons having energies greater than or equal to 0.8 MeV created during plasma operations at the Princeton Tokamak Fusion Test Reactor

    NASA Astrophysics Data System (ADS)

    Dickens, J. K.; Hill, N. W.; Hou, F. S.; McConnell, J. W.; Spencer, R. R.; Tsang, F. Y.

    1985-08-01

    A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in the detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report.

  5. Using a fast-neutron spectrometer system to candle luggage for hidden explosives

    NASA Astrophysics Data System (ADS)

    Lefevre, Harlan W.; Rasmussen, R. J.; Chmelik, Michael S.; Schofield, R. M. S.; Sieger, G. E.; Overley, Jack C.

    1997-02-01

    A continuous spectrum of neutron switch energies up to 8.2 MeV is produced by a 4.2-MeV nanosecond-pulsed deuteron beam slowing down in a thick beryllium target. The spectrum form the locally shielded target is collimated to a horizontal fan-beam and delivered to a row of 16, 6-cm square plastic scintillators located 4 m from the neutron source. The scintillators are coupled to 12-stage photomultiplier tubes, constant-fraction discriminators, time-to-amplitude converters, analog-to-digital converters, and digital memories. Unattenuated neutron-source spectra and background spectra ar recorded. Luggage is stepped through the fan beam by an automated lift located 2 m from the neutron source. Transmission spectra are measured, and are transferred to a computer while the location is advanced one pixel width. As the next set of spectra is being measured, the computer calculates neutron attenuations for the previous set, deconvolutes attenuations into projected elemental number densities, and determines the explosive likelihood for each pixel. With a time-averaged deuteron beam current o 1(mu) A, a suitcase 60-cm long can be automatically imaged in 1600s. We will suggest that time can be reduced to 8s or less with straight-forward improvements. The following paper describes the explosives recognition algorithm and presents the results of teste with explosives.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfaro, R.; Sandoval, A.; Cruz, E.

    We have performed radiation tolerance tests on the BCF-99-29MC wavelength shifting fibers and the BC404 plastic scintillator from Bicron as well as on silicon rubber optical couplers. We used the 60Co gamma source at the Instituto de Ciencias Nucleares facility to irradiate 30-cm fiber samples with doses from 50 Krad to 1 Mrad. We also irradiated a 10x10 cm2 scintillator detector with the WLS fibers embedded on it with a 200 krad dose and the optical conectors between the scintillator and the PMT with doses from 100 to 300 krad. We measured the radiation damage on the materials by comparingmore » the pre- and post-irradiation optical transparency as a function of time.« less

  7. Development and melt growth of novel scintillating halide crystals

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Yokota, Yuui; Shoji, Yasuhiro; Kral, Robert; Kamada, Kei; Kurosawa, Shunsuke; Ohashi, Yuji; Arakawa, Mototaka; Chani, Valery I.; Kochurikhin, Vladimir V.; Yamaji, Akihiro; Andrey, Medvedev; Nikl, Martin

    2017-12-01

    Melt growth of scintillating halide crystals is reviewed. The vertical Bridgman growth technique is still considered as very popular method that enables production of relatively large and commercially attractive crystals. On the other hand, the micro-pulling-down method is preferable when fabrication of small samples, sufficient for preliminary characterization of their optical and/or scintillation performance, is required. Moreover, bulk crystal growth is also available using the micro-pulling-down furnace. The examples of growths of various halide crystals by industrially friendly melt growth techniques including Czochralski and edge-defined film-fed growth methods are also discussed. Finally, traveling molten zone growth that in some degree corresponds to horizontal zone melting is briefly overviewed.

  8. Scintillation properties of Nd 3+, Tm 3+, and Er 3+ doped LuF 3 scintillators in the vacuum ultra violet region

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fukuda, Kentaro; Kurosawa, Shunsuke; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Taniue, Kojiro; Sekiya, Hiroyuki; Kubo, Hidetoshi; Yoshikawa, Akira; Tanimori, Toru

    2011-12-01

    In order to develop novel vacuum ultra violet (VUV) emitting scintillators, we grew Nd 0.5%, Tm 0.5%, and Er 0.5% doped LuF3 scintillators by the μ-pulling down method, because LuF3 has a very wide band gap and Nd3+, Tm3+, and Er3+ luminescence centers show fast and intense 5d-4f emission in VUV region. Transmittance and X-ray induced radioluminescence were studied in these three samples using our original spectrometer made by Bunkou-Keiki company. In the VUV region, transmittance of 20-60% was achieved for all the samples. The emission peaks appeared at approximately 180, 165, and 164 nm for Nd3+, Tm3+, and Er3+ doped LuF3, respectively. Using PMT R8778 (Hamamatsu), we measured their light yields under 241Am α-ray excitation. Compared with Nd:LaF3 scintillator, which has 33 photoelectrons/5.5 MeV α, Nd:LuF3 and Tm:LuF3 showed 900±90 and 170±20 ph/5.5 MeV-α, respectively. Only for the Nd doped one, we can detect 137Cs 662 keV γ-ray photoabsorption peak and the light yield of 1200±120 ph/MeV was measured. We also investigated their decay time profiles by picosecond pulse X-ray equipped streak camera, and the main decay component of Nd:LuF3 turned out to be 7.63 ns.

  9. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varlam, C.; Vagner, I.; Faurescu, I.

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of themore » combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.« less

  10. Radiocarbon dating of archaeological samples (sambaqui) using CO(2) absorption and liquid scintillation spectrometry of low background radiation.

    PubMed

    Mendonça, Maria Lúcia T G; Godoy, José M; da Cruz, Rosana P; Perez, Rhoneds A R

    2006-01-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO(2) absorption on Carbo-sorb and (14)C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H(3)PO(4) in a closed vessel in order to generate CO(2). The produced CO(2) was absorbed on Carbo-sorb. On saturation about 0.6g of carbon, as CO(2), was mixed with commercial liquid scintillation cocktail (Permafluor), and the (14)C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the (14)C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  11. Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix

    NASA Astrophysics Data System (ADS)

    Zheng, Zhanlong; Zhu, Jiayi; Luo, Xuan; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Bi, Yutie; Zhang, Lin

    2017-04-01

    A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV-Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.

  12. Development of a high spatial resolution neutron imaging system and performance evaluation

    NASA Astrophysics Data System (ADS)

    Cao, Lei

    The combination of a scintillation screen and a charged coupled device (CCD) camera is a digitized neutron imaging technology that has been widely employed for research and industry application. The maximum of spatial resolution of scintillation screens is in the range of 100 mum and creates a bottleneck for the further improvement of the overall system resolution. In this investigation, a neutron sensitive micro-channel plate (MCP) detector with pore pitch of 11.4 mum is combined with a cooled CCD camera with a pixel size of 6.8 mum to provide a high spatial resolution neutron imaging system. The optical path includes a high reflection front surface mirror for keeping the camera out of neutron beam and a macro lens for achieving the maximum magnification that could be achieved. All components are assembled into an aluminum light tight box with heavy radiation shielding to protect the camera as well as to provide a dark working condition. Particularly, a remote controlled stepper motor is also integrated into the system to provide on-line focusing ability. The best focus is guaranteed through use of an algorithm instead of perceptual observation. An evaluation routine not previously utilized in the field of neutron radiography is developed in this study. Routines like this were never previously required due to the lower resolution of other systems. Use of the augulation technique to obtain presampled MTF addresses the problem of aliasing associated with digital sampling. The determined MTF agrees well with the visual inspection of imaging a testing target. Other detector/camera combinations may be integrated into the system and their performances are also compared. The best resolution achieved by the system at the TRIGA Mark II reactor at the University of Texas at Austin is 16.2 lp/mm, which is equivalent to a minimum resolvable spacing of 30 mum. The noise performance of the device is evaluated in terms of the noise power spectrum (NPS) and the detective quantum efficiency (DQE) is calculated with above determined MTF and NPS.

  13. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg

    2013-08-15

    Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-termmore » stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.Conclusions: It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.« less

  14. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography.

    PubMed

    Kroll, Florian; Pawelke, Jörg; Karsch, Leonhard

    2013-08-01

    Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time. A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators. Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible. It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.

  15. Performance of the NASA Beacon Receiver for the Alphasat Aldo Paraboni TDP5 Propagation Experiment

    NASA Technical Reports Server (NTRS)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2015-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 gigahertz band. NASA GRC has developed and installed a K/Q-band (20/40 gigahertz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 gigahertz signals broadcast from the Alphasat Aldo Paraboni Technology Demonstration Payload (TDP) no. 5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since June 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 gigahertz beacon signals. The system consists of a 1.2-meter K-band and a 0.6-meter Q-band Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 hertz sampling rate is implemented to characterize scintillation effects, with a 1-hertz measurement bandwidth dynamic range of 45 decibels. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  16. Preliminary Results of the NASA Beacon Receiver for Alphasat Aldo Paraboni TDP5 Propagation Experiment

    NASA Technical Reports Server (NTRS)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2014-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 GHz band. NASA GRC has developed and installed a K/Q-band (20/40 GHz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 GHz signals broadcast from the Alphasat Aldo Paraboni TDP#5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since May 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 GHz beacon signals. The system consists of a 1.2-m K-band and a 0.6-m Qband Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 Hz sampling rate is implemented to characterize scintillation effects, with a 1-Hz measurement bandwidth dynamic range of 45 dB. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  17. The electronics and data acquisition system for the DarkSide-50 veto detectors

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2016-12-01

    DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles. It utilizes a liquid argon time projection chamber for the inner main detector, surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors. The system is made of a custom built front end electronics and commercial National Instruments high speed digitizers. The front end electronics, the DAQ, and the trigger system have been used to acquire data in the form of zero-suppressed waveform samples from the 110 PMTs of the LSV and the 80 PMTs of the WCV. The veto DAQ system has proven its performance and reliability. This electronics and DAQ system can be scaled and used as it is for the veto of the next generation DarkSide-20k detector.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.

    DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles. It utilizes a liquid argon time projection chamber for the inner main detector, surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors. The system is made of a custom built front end electronics and commercial National Instruments high speed digitizers. The front end electronics, the DAQ, and the trigger systemmore » have been used to acquire data in the form of zero-suppressed waveform samples from the 110 PMTs of the LSV and the 80 PMTs of the WCV. The veto DAQ system has proven its performance and reliability. This electronics and DAQ system can be scaled and used as it is for the veto of the next generation DarkSide-20k detector. Abstract (arXiv)« less

  19. Optical and scintillation properties of Nd-doped complex garnet

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Sato, Hiroki

    2014-12-01

    Nd 1% doped complex garnet scintillators were prepared by Furukawa and their optical and scintillation properties were investigated on a comparison with previously reported Nd-doped YAG. Chemical compositions of newly developed complex garnets were Lu2Y1Al5O12, Lu2Y1Ga3Al2O12, Lu2Gd1Al5O12, Lu2Gd1Ga3Al2O12, Gd1Y2Al5O12, Gd1Y2Ga3Al2O12, and Gd3Ga3Al2O12. They all showed 50-80% transmittance from ultraviolet to near infrared wavelengths with several absorption bands due to Gd3+ or Nd3+ 4f-4f transition. In X-ray induced radioluminescence spectra, all samples exhibited intense lines at 310 nm due to Gd3+ or 400 nm due to Nd3+ depending on their chemical composition. Among them, the highest scintillation light yield was achieved by Lu2Y1Al5O12. Typical scintillation decay times of them resulted 1.5-3 μs. Thermally stimulated glow curve after 1 Gy exposure and X-ray induced afterglow were also investigated.

  20. Novel Scintillating Materials Based on Phenyl-Polysiloxane for Neutron Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Degerlier, M.; Carturan, S.; Gramegna, F.; Marchi, T.; Palma, M. Dalla; Cinausero, M.; Maggioni, G.; Quaranta, A.; Collazuol, G.; Bermudez, J.

    Neutron detectors are extensively used at many nuclear research facilities across Europe. Their application range covers many topics in basic and applied nuclear research: in nuclear structure and reaction dynamics (reaction reconstruction and decay studies); in nuclear astrophysics (neutron emission probabilities); in nuclear technology (nuclear data measurements and in-core/off-core monitors); in nuclear medicine (radiation monitors, dosimeters); in materials science (neutron imaging techniques); in homeland security applications (fissile materials investigation and cargo inspection). Liquid scintillators, widely used at present, have however some drawbacks given by toxicity, flammability, volatility and sensitivity to oxygen that limit their duration and quality. Even plastic scintillators are not satisfactory because they have low radiation hardness and low thermal stability. Moreover organic solvents may affect their optical properties due to crazing. In order to overcome these problems, phenyl-polysiloxane based scintillators have been recently developed at Legnaro National Laboratory. This new solution showed very good chemical and thermal stability and high radiation hardness. The results on the different samples performance will be presented, paying special attention to a characterization comparison between synthesized phenyl containing polysiloxane resins where a Pt catalyst has been used and a scintillating material obtained by condensation reaction, where tin based compounds are used as catalysts. Different structural arrangements as a result of different substituents on the main chain have been investigated by High Resolution X-Ray Diffraction, while the effect of improved optical transmittance on the scintillation yield has been elucidated by a combination of excitation/fluorescence measurements and scintillation yield under exposure to alpha and γ-rays.

  1. Flexible scintillator autoradiography for tumor margin inspection using 18F-FDG

    NASA Astrophysics Data System (ADS)

    Vyas, K. N.; Grootendorst, M.; Mertzanidou, T.; Macholl, S.; Stoyanov, D.; Arridge, S. R.; Tuch, D. S.

    2018-03-01

    Autoradiography potentially offers high molecular sensitivity and spatial resolution for tumor margin estimation. However, conventional autoradiography requires sectioning the sample which is destructive and labor-intensive. Here we describe a novel autoradiography technique that uses a flexible ultra-thin scintillator which conforms to the sample surface. Imaging with the flexible scintillator enables direct, high-resolution and high-sensitivity imaging of beta particle emissions from targeted radiotracers. The technique has the potential to identify positive tumor margins in fresh unsectioned samples during surgery, eliminating the processing time demands of conventional autoradiography. We demonstrate the feasibility of the flexible autoradiography approach to directly image the beta emissions from radiopharmaceuticals using lab experiments and GEANT-4 simulations to determine i) the specificity for 18F compared to 99mTc-labeled tracers ii) the sensitivity to detect signal from various depths within the tissue. We found that an image resolution of 1.5 mm was achievable with a scattering background and we estimate a minimum detectable activity concentration of 0.9 kBq/ml for 18F. We show that the flexible autoradiography approach has high potential as a technique for molecular imaging of tumor margins using 18F-FDG in a tumor xenograft mouse model imaged with a radiation-shielded EMCCD camera. Due to the advantage of conforming to the specimen, the flexible scintillator showed significantly better image quality in terms of tumor signal to whole-body background noise compared to rigid and optimally thick CaF2:Eu and BC400. The sensitivity of the technique means it is suitable for clinical translation.

  2. Functionalization of Polymers with Fluorescent and Neutron Sensitive Groups for Efficient Neutron and Gamma Detection

    NASA Astrophysics Data System (ADS)

    Mahl, Adam; Yemam, Henok; Remedes, Tyler; Stuntz, Jack; Koldemir, Unsal; Sellinger, Alan; Greife, Uwe

    2015-10-01

    This presentation will review the efforts made by an interdisciplinary development project aimed at cost-effective, thermal neutron sensitive, plastic scintillators as part of the communities efforts towards replacing 3He based detectors. Colorado School of Mines researchers with backgrounds in Physics and Chemistry have worked on the incorporation of 10B in plastics through admixture of various commercial and novel dopants developed at CSM. In addition, new fluorescent dopants have been developed for plastic scintillators in an effort towards better understanding quenching effects and scintillator response to thermal neutrons via pulse shape discrimination methods. Results on transparent samples using fluorescent spectroscopy and gamma/neutron excitation will be presented. Funded via Department of Homeland Security - Domestic Nuclear Detection Office.

  3. Estimation of channel parameters and background irradiance for free-space optical link.

    PubMed

    Khatoon, Afsana; Cowley, William G; Letzepis, Nick; Giggenbach, Dirk

    2013-05-10

    Free-space optical communication can experience severe fading due to optical scintillation in long-range links. Channel estimation is also corrupted by background and electrical noise. Accurate estimation of channel parameters and scintillation index (SI) depends on perfect removal of background irradiance. In this paper, we propose three different methods, the minimum-value (MV), mean-power (MP), and maximum-likelihood (ML) based methods, to remove the background irradiance from channel samples. The MV and MP methods do not require knowledge of the scintillation distribution. While the ML-based method assumes gamma-gamma scintillation, it can be easily modified to accommodate other distributions. Each estimator's performance is compared using simulation data as well as experimental measurements. The estimators' performance are evaluated from low- to high-SI areas using simulation data as well as experimental trials. The MV and MP methods have much lower complexity than the ML-based method. However, the ML-based method shows better SI and background-irradiance estimation performance.

  4. Scintillation properties of a 2-inch diameter KCa0.8Sr0.2I3:Eu2+ single crystal

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Lindsey, Adam C.; Loyd, Matthew; Stand, Luis; Zhuravleva, Mariya; Koschan, Merry; Melcher, Charles L.

    2017-09-01

    Inch-sized scintillating crystals are required for practical radiation detectors such as hand-held radio-isotope identification devices. In this work, a transparent and colorless 2-inch diameter KCa0.8Sr0.2I3: 0 . 5 mo% Eu2+ single crystal was grown by the vertical Bridgman method, and the scintillation properties of a ∅ 50 mm × 45 mm long sample were evaluated. The Eu2+ 5d1- 4 f emission under X-ray excitation is centered at 472 nm. Its scintillation decay time under 137 Cs source irradiation is 2 . 37 μs, and the absolute light output is 51,000 ± 3000 photons/MeV. The energy resolution at 662 keV was evaluated for different orientations of the crystals with respect to the PMT, and the effect of 40 K background subtraction on energy resolution was evaluated. The performance of the packaged crystal was also investigated.

  5. Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Dolan; M. J. Marcath; M. Flaska

    2012-07-01

    Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a sample’s mass and enrichment. Using MCNPX-PoliMi, amore » system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5” by 5” EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX-PoliMi code when used for active-interrogation simulations.« less

  6. California GAMA Special Study. Development of a Capability for the Analysis of Krypton-85 in Groundwater Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Ate; Bibby, Richard K.; Moran, Jean E.

    A capability for the analysis of krypton-85 ( 85Kr) in groundwater samples was developed at LLNL. Samples are collected by extracting gas from 2000-4000 L of groundwater at the well, yielding approximately 0.2 cm 3 STP krypton. Sample collection takes 1 to 4 hours. Krypton is purified in the laboratory using a combination of molecular sieve and activated charcoal traps, and transferred to a liquid scintillation vial. The 85Kr activity is measured by liquid scintillation on a Quantulus 1220 liquid scintillation counter from PerkinElmer. The detection limit for a typical 0.2 cm 3Kr sample size is 11% of the presentmore » day activity in air, corresponding to the decay corrected activity in air in 1987. The typical measurement uncertainty is below 10% for recently recharged samples. Six groundwater samples were collected, purified and counted. 85Kr was not detected in any of the samples counted at LLNL. 85Kr was detected by the low level counting laboratory of Bern University in all samples between 1.5 and 6.6 decays per minute per cm 3 krypton, corresponding to decay corrected activities in air between 1971 and 1985. The new capability is an excellent complement to tritium-helium, expanding the existing suite of age dating tools available to the GAMA program ( 35S, 3H/ 3He, 14C and radiogenic helium). 85Kr can replace 3H/ 3He in settings where 3H/ 3He ages are impossible to determine (for example where terrigenic helium overwhelms tritiogenic helium) and provides additional insight into travel time distributions in complex mixed groundwater systems.« less

  7. Alpha/beta pulse shape discrimination in plastic scintillation using commercial scintillation detectors.

    PubMed

    Bagán, H; Tarancón, A; Rauret, G; García, J F

    2010-06-18

    Activity determination in different types of samples is a current need in many different fields. Simultaneously analysing alpha and beta emitters is now a routine option when using liquid scintillation (LS) and pulse shape discrimination. However, LS has an important drawback, the generation of mixed waste. Recently, several studies have shown the capability of plastic scintillation (PS) as an alternative to LS, but no research has been carried out to determine its capability for alpha/beta discrimination. The objective of this study was to evaluate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape analysis (PSA). The results obtained show that PS pulses had lower energy than LS pulses. As a consequence, a lower detection efficiency, a shift to lower energies and a better discrimination of beta and a worst discrimination of alpha disintegrations was observed for PS. Colour quenching also produced a decrease in the energy of the particles, as well as the effects described above. It is clear that in PS, the discrimination capability was correlated with the energy of the particles detected. Taking into account the discrimination capabilities of PS, a protocol for the measurement and the calculation of alpha and beta activities in mixtures using PS and commercial scintillation detectors has been proposed. The new protocol was applied to the quantification of spiked river water samples containing a pair of radionuclides ((3)H-(241)Am or (90)Sr/(90)Y-(241)Am) in different activity proportions. The relative errors in all determinations were lower than 7%. These results demonstrate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape and to quantify mixtures without generating mixed waste. 2010 Elsevier B.V. All rights reserved.

  8. Measurements of NaI(Tl) Electron Response: Comparison of Different Samples

    NASA Astrophysics Data System (ADS)

    Hull, Giulia; Choong, Woon-Seng; Moses, William W.; Bizarri, Gregory; Valentine, John D.; Payne, Stephen A.; Cherepy, Nerine J.; Reutter, Bryan W.

    2009-02-01

    This paper measures the sample to sample variation in the light yield proportionality of NaI(Tl), and so explores whether this is an invariant characteristic of the material or whether it depends on the chemical and physical properties of the tested samples. We report on the electron response of nine crystals of NaI(Tl), differing in shape, volume, age, manufacturer and quality. The proportionality has been measured at the SLYNCI facility in the energy range between 3.5 to 460 keV. We observe that while samples produced by the same manufacturer at approximately the same time have virtually identical electron response curves, there are significant sample to sample variations among crystals produced by different manufacturers or at different times. In an effort to correlate changes in the electron response with details of the scintillation mechanism, we characterized other scintillation properties, including the gamma response and the x-ray excited emission spectra and decay times, for the nine crystals. While sample to sample differences in these crystals were observed, we have been unable to identify the underlying fundamental mechanisms that are responsible for these differences.

  9. Radiation detection and wireless networked early warning

    NASA Astrophysics Data System (ADS)

    Burns, David A.; Litz, Marc S.; Carroll, James J.; Katsis, Dimosthenis

    2012-06-01

    We have designed a compact, wireless, GPS-enabled array of inexpensive radiation sensors based on scintillation counting. Each sensor has a scintillator, photomultiplier tube, and pulse-counting circuit that includes a comparator, digital potentiometer and microcontroller. This design provides a high level of sensitivity and reliability. A 0.2 m2 PV panel powers each sensor providing a maintenance-free 24/7 energy source. The sensor can be mounted within a roadway light-post and monitor radiological activity along transport routes. Each sensor wirelessly transmits real-time data (as counts per second) up to 2 miles with a XBee radio module, and the data is received by a XBee receive-module on a computer. Data collection software logs the information from all sensors and provides real-time identification of radiation events. Measurements performed to-date demonstrate the ability of a sensor to detect a 20 μCi source at 3.5 meters when packaged with a PVT (plastic) scintillator, and 7 meters for a sensor with a CsI crystal (more expensive but ~5 times more sensitive). It is calculated that the sensor-architecture can detect sources moving as fast as 130 km/h based on the current data rate and statistical bounds of 3-sigma threshold detection. The sensor array is suitable for identifying and tracking a radiation threat from a dirty bomb along roadways.

  10. Sampling and analysis for radon-222 dissolved in ground water and surface water

    USGS Publications Warehouse

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  11. Investigation of Deuterium Loaded Materials Subject to X-Ray Exposure

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.; Steinetz, Bruce M.; Hendricks, Robert C.; Martin, Richard E.; Forsley, Lawrence P.; Daniels, Christopher C.; Chait, Arnon; Pines, Vladimir; Pines, Marianna; Penney, Nicholas; hide

    2017-01-01

    Results are presented from an exploratory study involving x-ray irradiation of select deuterated materials. Titanium deuteride plus deuterated polyethylene, deuterated polyethylene alone, and for control, hydrogen-based polyethylene samples and nondeuterated titanium samples were exposed to x-ray irradiation. These samples were exposed to various energy levels from 65 to 280 kV with prescribed electron flux from 500 to 9000 µA impinging on a tungsten braking target, with total exposure times ranging from 55 to 280 min. Gamma activity was measured using a high-purity germanium (HPGe) detector, and for all samples no gamma activity above background was detected. Alpha and beta activities were measured using a gas proportional counter, and for select samples beta activity was measured with a liquid scintillator spectrometer. The majority of the deuterated materials subjected to the microfocus x-ray irradiation exhibited postexposure beta activity above background and several showed short-lived alpha activity. The HPE and nondeuterated titanium control samples exposed to the x-ray irradiation showed no postexposure alpha or beta activities above background. Several of the samples (SL10A, SL16, SL17A) showed beta activity above background with a greater than 4s confidence level, months after exposure. Portions of SL10A, SL16, and SL17A samples were also scanned using a beta scintillator and found to have beta activity in the tritium energy band, continuing without noticeable decay for over 12 months. Beta scintillation investigation of as-received materials (before x-ray exposure) showed no beta activity in the tritium energy band, indicating the beta emitters were not in the starting materials.

  12. NE-213-scintillator-based neutron detection system for diagnostic measurements of energy spectra for neutrons having energies greater than or equal to 0. 8 MeV created during plasma operations at the Princeton Tokamak Fusion Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickens, J.K.; Hill, N.W.; Hou, F.S.

    1985-08-01

    A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in themore » detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report.« less

  13. Improvement of light extraction of LYSO scintillator by using a combination of self-assembly of nanospheres and atomic layer deposition.

    PubMed

    Zhu, Zhichao; Liu, Bo; Zhang, Haifeng; Ren, Weina; Cheng, Chuanwei; Wu, Shuang; Gu, Mu; Chen, Hong

    2015-03-23

    The self-assembled monolayer periodic array of polystyrene spheres conformally coated with TiO₂ layer using atomic layer deposition is designed to obtain a further enhancement of light extraction for LYSO scintillator. The maximum enhancement is 149% for the sample with polystyrene spheres conformally coated with TiO₂ layer, while the enhancement is only 76% for the sample with only polystyrene spheres. Such further enhancement could be contributed from the additional modes forming by TiO₂ layer due to its high refractive index, which can be approved by the simulation of electric field distribution. The experimental results are agreement with the simulated results. Furthermore, the prepared structured layer exhibits an excellent combination with the surface of scintillator, which is in favor of the practical application. Therefore, it is safely concluded that the combination of self-assembly method and atomic layer deposition is a promising approach to obtain a significant enhancement of light extraction for a large area. This method can be extended to many other luminescent materials and devices.

  14. Triple-Label β Liquid Scintillation Counting

    PubMed Central

    Bukowski, Thomas R.; Moffett, Tyler C.; Revkin, James H.; Ploger, James D.; Bassingthwaighte, James B.

    2010-01-01

    The detection of radioactive compounds by liquid scintillation has revolutionized modern biology, yet few investigators make full use of the power of this technique. Even though multiple isotope counting is considerably more difficult than single isotope counting, many experimental designs would benefit from using more than one isotope. The development of accurate isotope counting techniques enabling the simultaneous use of three β-emitting tracers has facilitated studies in our laboratory using the multiple tracer indicator dilution technique for assessing rates of transmembrane transport and cellular metabolism. The details of sample preparation, and of stabilizing the liquid scintillation spectra of the tracers, are critical to obtaining good accuracy. Reproducibility is enhanced by obtaining detailed efficiency/quench curves for each particular set of tracers and solvent media. The numerical methods for multiple-isotope quantitation depend on avoiding error propagation (inherent to successive subtraction techniques) by using matrix inversion. Experimental data obtained from triple-label β counting illustrate reproducibility and good accuracy even when the relative amounts of different tracers in samples of protein/electrolyte solutions, plasma, and blood are changed. PMID:1514684

  15. Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.

    1997-01-01

    The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.

  16. A method of extending the depth of focus of the high-resolution X-ray imaging system employing optical lens and scintillator: a phantom study.

    PubMed

    Li, Guang; Luo, Shouhua; Yan, Yuling; Gu, Ning

    2015-01-01

    The high-resolution X-ray imaging system employing synchrotron radiation source, thin scintillator, optical lens and advanced CCD camera can achieve a resolution in the range of tens of nanometers to sub-micrometer. Based on this advantage, it can effectively image tissues, cells and many other small samples, especially the calcification in the vascular or in the glomerulus. In general, the thickness of the scintillator should be several micrometers or even within nanometers because it has a big relationship with the resolution. However, it is difficult to make the scintillator so thin, and additionally thin scintillator may greatly reduce the efficiency of collecting photons. In this paper, we propose an approach to extend the depth of focus (DOF) to solve these problems. We develop equation sets by deducing the relationship between the high-resolution image generated by the scintillator and the degraded blur image due to defect of focus first, and then we adopt projection onto convex sets (POCS) and total variation algorithm to get the solution of the equation sets and to recover the blur image. By using a 20 μm thick unmatching scintillator to replace the 1 μm thick matching one, we simulated a high-resolution X-ray imaging system and got a degraded blur image. Based on the algorithm proposed, we recovered the blur image and the result in the experiment showed that the proposed algorithm has good performance on the recovery of image blur caused by unmatching thickness of scintillator. The method proposed is testified to be able to efficiently recover the degraded image due to defect of focus. But, the quality of the recovery image especially of the low contrast image depends on the noise level of the degraded blur image, so there is room for improving and the corresponding denoising algorithm is worthy for further study and discussion.

  17. A method of extending the depth of focus of the high-resolution X-ray imaging system employing optical lens and scintillator: a phantom study

    PubMed Central

    2015-01-01

    Background The high-resolution X-ray imaging system employing synchrotron radiation source, thin scintillator, optical lens and advanced CCD camera can achieve a resolution in the range of tens of nanometers to sub-micrometer. Based on this advantage, it can effectively image tissues, cells and many other small samples, especially the calcification in the vascular or in the glomerulus. In general, the thickness of the scintillator should be several micrometers or even within nanometers because it has a big relationship with the resolution. However, it is difficult to make the scintillator so thin, and additionally thin scintillator may greatly reduce the efficiency of collecting photons. Methods In this paper, we propose an approach to extend the depth of focus (DOF) to solve these problems. We develop equation sets by deducing the relationship between the high-resolution image generated by the scintillator and the degraded blur image due to defect of focus first, and then we adopt projection onto convex sets (POCS) and total variation algorithm to get the solution of the equation sets and to recover the blur image. Results By using a 20 μm thick unmatching scintillator to replace the 1 μm thick matching one, we simulated a high-resolution X-ray imaging system and got a degraded blur image. Based on the algorithm proposed, we recovered the blur image and the result in the experiment showed that the proposed algorithm has good performance on the recovery of image blur caused by unmatching thickness of scintillator. Conclusions The method proposed is testified to be able to efficiently recover the degraded image due to defect of focus. But, the quality of the recovery image especially of the low contrast image depends on the noise level of the degraded blur image, so there is room for improving and the corresponding denoising algorithm is worthy for further study and discussion. PMID:25602532

  18. A proposed method to minimize waste from institutional radiation safety surveillance programs through the application of expected value statistics.

    PubMed

    Emery, R J

    1997-03-01

    Institutional radiation safety programs routinely use wipe test sampling and liquid scintillation counting analysis to indicate the presence of removable radioactive contamination. Significant volumes of liquid waste can be generated by such surveillance activities, and the subsequent disposal of these materials can sometimes be difficult and costly. In settings where large numbers of negative results are regularly obtained, the limited grouping of samples for analysis based on expected value statistical techniques is possible. To demonstrate the plausibility of the approach, single wipe samples exposed to varying amounts of contamination were analyzed concurrently with nine non-contaminated samples. Although the sample grouping inevitably leads to increased quenching with liquid scintillation counting systems, the effect did not impact the ability to detect removable contamination in amounts well below recommended action levels. Opportunities to further improve this cost effective semi-quantitative screening procedure are described, including improvements in sample collection procedures, enhancing sample-counting media contact through mixing and extending elution periods, increasing sample counting times, and adjusting institutional action levels.

  19. Radioactive threat detection using scintillant-based detectors

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2004-09-01

    An update to the performance of AS&E's Radioactive Threat Detection sensor technology. A model is presented detailing the components of the scintillant-based RTD system employed in AS&E products aimed at detecting radiological WMD. An overview of recent improvements in the sensors, electrical subsystems and software algorithms are presented. The resulting improvements in performance are described and sample results shown from existing systems. Advanced and future capabilities are described with an assessment of their feasibility and their application to Homeland Defense.

  20. Increase in the light collection from a scintillation strip with a hole for the WLS fiber using filling materials of various types

    NASA Astrophysics Data System (ADS)

    Artikov, A. M.; Baranov, V. Yu.; Budagov, J. A.; Glagolev, V. V.; Davydov, Yu. I.; Kolomoets, V. I.; Simonenko, A. V.; Tereschenko, V. V.; Kharzheev, Yu. N.; Chokheli, D.; Shalyugin, A. N.

    2017-01-01

    The light collection of extruded scintillation strip samples with the help of WLS fibers placed in a longitudinal hole inside of the plates has been measured. The holes are filled with various liquid fillers. Measurements are performed under irradiation by cosmic muons. A method for pumping a liquid filler with a viscosity of more than 10 Pa s into the strip hole with a WLS fiber inside is devised and successfully tested.

  1. Radon measurement of natural gas using alpha scintillation cells.

    PubMed

    Kitto, Michael E; Torres, Miguel A; Haines, Douglas K; Semkow, Thomas M

    2014-12-01

    Due to their sensitivity and ease of use, alpha-scintillation cells are being increasingly utilized for measurements of radon ((222)Rn) in natural gas. Laboratory studies showed an average increase of 7.3% in the measurement efficiency of alpha-scintillation cells when filled with less-dense natural gas rather than regular air. A theoretical calculation comparing the atomic weight and density of air to that of natural gas suggests a 6-7% increase in the detection efficiency when measuring radon in the cells. A correction is also applicable when the sampling location and measurement laboratory are at different elevations. These corrections to the measurement efficiency need to be considered in order to derive accurate concentrations of radon in natural gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Gadolinium-loaded Plastic Scintillators for Thermal Neutron Detection using Compensation

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Hamel, Matthieu; Carrel, Frédérick; Sguerra, Fabien; Normand, Stéphane; Méchin, Laurence; Bertrand, Guillaume H. V.

    2016-06-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by Gd-155 and Gd-157, alternative treatment to pulse-shape discrimination has to be proposed in order to display a count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon and fast neutron radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a not-gadolinium loaded compensation scintillator solely interacts with the fast neutron and photon part of incident radiation. After the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate post-background response compensation falls into statistical fluctuations or provides a robust indication of neutron activity. Laboratory samples are tested under both photon and neutron irradiations, allowing the authors to investigate the performance of the overall detection system in terms of sensitivity and detection limits, especially with regards to a similar-active volume He-3 based commercial counter. The study reveals satisfactory figures of merit in terms of sensitivity and directs future investigation toward promising paths.

  3. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  4. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy.

    PubMed

    Ji, J; Colosimo, A M; Anwand, W; Boatner, L A; Wagner, A; Stepanov, P S; Trinh, T T; Liedke, M O; Krause-Rehberg, R; Cowan, T E; Selim, F A

    2016-08-23

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  5. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  6. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    PubMed Central

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-01-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials. PMID:27550235

  7. Scintillation properties of rare-earth doped NaPO3-Al(PO3)3 glasses

    NASA Astrophysics Data System (ADS)

    Kuro, Tomoaki; Okada, Go; Kawaguchi, Noriaki; Fujimoto, Yutaka; Masai, Hirokazu; Yanagida, Takayuki

    2016-12-01

    We systematically investigated photoluminescence (PL), scintillation and dosimeter properties of rare-earth (RE) doped NaPO3-Al(PO3)3 (NAP) glasses. The NAP glasses doped with a series of RE ions (La-Yb, except Pm) with a consistent concentration (0.3 wt%) were prepared by the conventional melt-quenching method. The PL and scintillation decay time profiles showed fast (ns) and slow (μs or ms) components: the fast components from 15 to 100 ns were due to the host or 5d-4f transition emission, and the slow components from 15 μs to 5 ms were due to the 4f-4f transitions of RE. The thermally stimulated luminescence (TSL) was evaluated as a dosimeter property, and glow peaks appeared around 400 °C in all the samples. The TSL dose response function was examined in the dose range from 10 mGy to 10 Gy. Among the samples tested, Nd and Tb doped glasses showed higher signal by at least one order of magnitude than those of non-doped and other RE-doped samples. Over the dose range tested, the TSL signals are linearly related with the incident X-ray dose, showing a potential for practical applications.

  8. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie

    2016-10-01

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  9. Simultaneous determination of gross alpha, gross beta and ²²⁶Ra in natural water by liquid scintillation counting.

    PubMed

    Fons, J; Zapata-García, D; Tent, J; Llauradó, M

    2013-11-01

    The determination of gross alpha, gross beta and (226)Ra activity in natural waters is useful in a wide range of environmental studies. Furthermore, gross alpha and gross beta parameters are included in international legislation on the quality of drinking water [Council Directive 98/83/EC]. In this work, a low-background liquid scintillation counter (Wallac, Quantulus 1220) was used to simultaneously determine gross alpha, gross beta and (226)Ra activity in natural water samples. Sample preparation involved evaporation to remove (222)Rn and its short-lived decay daughters. The evaporation process concentrated the sample ten-fold. Afterwards, a sample aliquot of 8 mL was mixed with 12 mL of Ultima Gold AB scintillation cocktail in low-diffusion vials. In this study, a theoretical mathematical model based on secular equilibrium conditions between (226)Ra and its short-lived decay daughters is presented. The proposed model makes it possible to determine (226)Ra activity from two measurements. These measurements also allow determining gross alpha and gross beta simultaneously. To validate the proposed model, spiked samples with different activity levels for each parameter were analysed. Additionally, to evaluate the model's applicability in natural water, eight natural water samples from different parts of Spain were analysed. The eight natural water samples were also characterised by alpha spectrometry for the naturally occurring isotopes of uranium ((234)U, (235)U and (238)U), radium ((224)Ra and (226)Ra), (210)Po and (232)Th. The results for gross alpha and (226)Ra activity were compared with alpha spectrometry characterization, and an acceptable concordance was obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A novel method for rapid in vitro radiobioassay

    NASA Astrophysics Data System (ADS)

    Crawford, Evan Bogert

    Rapid and accurate analysis of internal human exposure to radionuclides is essential to the effective triage and treatment of citizens who have possibly been exposed to radioactive materials in the environment. The two most likely scenarios in which a large number of citizens would be exposed are the detonation of a radiation dispersal device (RDD, "dirty bomb") or the accidental release of an isotope from an industrial source such as a radioisotopic thermal generator (RTG). In the event of the release and dispersion of radioactive materials into the environment in a large city, the entire population of the city -- including all commuting workers and tourists -- would have to be rapidly tested, both to satisfy the psychological needs of the citizens who were exposed to the mental trauma of a possible radiation dose, and to satisfy the immediate medical needs of those who received the highest doses and greatest levels of internal contamination -- those who would best benefit from rapid, intensive medical care. In this research a prototype rapid screening method to screen urine samples for the presence of up to five isotopes, both individually and in a mixture, has been developed. The isotopes used to develop this method are Co-60, Sr-90, Cs-137, Pu-238, and Am-241. This method avoids time-intensive chemical separations via the preparation and counting of a single sample on multiple detectors, and analyzing the spectra for isotope-specific markers. A rapid liquid-liquid separation using an organic extractive scintillator can be used to help quantify the activity of the alpha-emitting isotopes. The method provides quantifiable results in less than five minutes for the activity of beta/gamma-emitting isotopes when present in the sample at the intervention level as defined by the Centers for Disease Control and Prevention (CDC), and quantifiable results for the activity levels of alpha-emitting isotopes present at their respective intervention levels in approximately 30 minutes of sample preparation and counting time. Radiation detector spectra -- e.g. those from high-purity germanium (HPGe) gamma detectors and liquid scintillation detectors -- which contain decay signals from multiple isotopes often have overlapping signals: the counts from one isotope's decay can appear in energy channels associated with another isotope's decay, complicating the calculation of each isotope's activity. The uncertainties associated with analyzing these spectra have been traced in order to determine the effects of one isotope's count rate on the sensitivity and uncertainty associated with each other isotope. The method that was developed takes advantage of activated carbon filtration to eliminate quenching effects and to make the liquid scintillation spectra from different urine samples comparable. The method uses pulse-shape analysis to reduce the interference from beta emitters in the liquid scintillation spectrum and improve the minimum detectable activity (MDA) and minimum quantifiable activity (MQA) for alpha emitters. The method uses an HPGe detector to quantify the activity of gamma emitters, and subtract their isotopes' contributions to the liquid scintillation spectra via a calibration factor, such that the pure beta and pure alpha emitters can be identified and quantified from the resulting liquid scintillation spectra. Finally, the method optionally uses extractive scintillators to rapidly separate the alpha emitters from the beta emitters when the activity from the beta emitters is too great to detect or quantify the activity from the alpha emitters without such a separation. The method is able to detect and quantify all five isotopes, with uncertainties and biases usually in the 10-40% range, depending upon the isotopic mixtures and the activity ratios between each of the isotopes.

  11. Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation.

    PubMed

    Borghi, Giacomo; Tabacchini, Valerio; Schaart, Dennis R

    2016-07-07

    Gamma-ray detectors based on thick monolithic scintillator crystals can achieve spatial resolutions  <2 mm full-width-at-half-maximum (FWHM) and coincidence resolving times (CRTs) better than 200 ps FWHM. Moreover, they provide high sensitivity and depth-of-interaction (DOI) information. While these are excellent characteristics for clinical time-of-flight (TOF) positron emission tomography (PET), the application of monolithic scintillators has so far been hampered by the lengthy and complex procedures needed for position- and time-of-interaction estimation. Here, the algorithms previously developed in our group are revised to make the calibration and operation of a large number of monolithic scintillator detectors in a TOF-PET system practical. In particular, the k-nearest neighbor (k-NN) classification method for x,y-position estimation is accelerated with an algorithm that quickly preselects only the most useful reference events, reducing the computation time for position estimation by a factor of ~200 compared to the previously published k-NN 1D method. Also, the procedures for estimating the DOI and time of interaction are revised to enable full detector calibration by means of fan-beam or flood irradiations only. Moreover, a new technique is presented to allow the use of events in which some of the photosensor pixel values and/or timestamps are missing (e.g. due to dead time), so as to further increase system sensitivity. The accelerated methods were tested on a monolithic scintillator detector specifically developed for clinical PET applications, consisting of a 32 mm  ×  32 mm  ×  22 mm LYSO : Ce crystal coupled to a digital photon counter (DPC) array. This resulted in a spatial resolution of 1.7 mm FWHM, an average DOI resolution of 3.7 mm FWHM, and a CRT of 214 ps. Moreover, the possibility of using events missing the information of up to 16 out of 64 photosensor pixels is shown. This results in only a small deterioration of the detector performance.

  12. Time correlated measurements using plastic scintillators with neutron-photon pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Richardson, Norman E., IV

    Since the beginning of the nuclear age, there has been a strong demand for the development of efficient technologies for the detection of ionizing radiation. According to the United States' Department of Energy, the accurate assessment of fissile materials is essential in achieving the nonproliferation goals of enhancing safety and security of nuclear fuel cycle and nuclear energy facilities. Nuclear materials can be characterized by the measurement of prompt and delayed neutrons and gamma rays emitted in spontaneous or induced fission reactions and neutrons emitted in fission reactions are the distinctive signatures of nuclear materials. Today, the most widely used neutron detection technologies rely on thermal neutron capture reactions using a moderating material to cause the neutron to lose its energy prior to the detection event. This is necessary because as the fission event occurs, neutrons are emitted carrying high amounts of energy, typically on the order of mega electron volts (MeV). These energetic particles are classified as "fast" neutrons. For detecting the thermal neutrons, the Helium-3 (3He) gas-filled counters are arguably the most widely used technology of neutron detection. 3He counters have been the scientific standard for the nuclear engineering community for several decades, and have earned their place as a reliable technique for the detection of neutrons. However, 3He gas-filled counters have several disadvantages. First, gas-filled counters are not rigid and are sensitive to vibrations. Secondly, gas-filled counters are prone to the count rate limitations due to the physical processes of charge multiplication and transport in the gas medium in the electric field. Lastly, 3He gas-filled counters suffer from a supply shortage of the 3He isotope. As it is stated in [3], this shortage is created by the new demand for Helium-3 due to the deployment of neutron detectors at the borders after the 9/11 attack to help secure the nation against smuggled nuclear and radiological material. Moreover, the production of 3He isotope as a byproduct of security programs was drastically decreased. This isotope shortage coupled with the disadvantages of relying on a detector that requires neutron moderation before the detection of fission neutrons, poses a significant challenge in supporting the existing detection systems and the development of future technologies. To address this problem, a reliable and accurate alternative technology to detect neutrons emitted in fissions must be developed. One such alternative technology that shows promise in this application is the use of scintillators based on solid state materials (plastics) which are sensitive to fast neutrons. However, plastic scintillators are also sensitive to photons. Hence, it is necessary to separate the neutron signals from the photon signals, using the pulse shape discrimination (PSD) analysis. The PSD is based on the comparison of the pulse shapes of digitized signal waveforms. This approach allows for the measurement of fast neutrons without the necessity of their moderation. Because the fission spectrum neutrons are mainly fast, methods employing fast neutron detection are applicable for the assay of fissile materials. In addition, the average time of scintillation of the plastic medium is much shorter than those of the gaseous counters, thus allowing scintillation detectors to be used in high count rate environments. Furthermore, the temporal information of the fast neutron detection using multiple sensors enables the time correlation analysis of the fission neutron multiplicity. The study of time correlation measurements of fast neutrons using the array of plastic scintillators is the basis of this work. The array of four plastic scintillator detectors equipped with the digital data acquisition and analysis system was developed. The digital PSD analysis of detector signals "on-the-fly" was implemented for the array. The time coincidence measurement technique using the list mode was employed for two detectors operating on the single time scale. This was necessary as no fission source was available to be used as a fast neutron multiplicity source. The detection technology was tested using isotopic photon sources and a plutonium-beryllium neutron source. It was shown that the system can be effectively used for fast-neutron multiplicity measurements, through a "proof-of-concept" model, enabling a shorter width of the time coincidence window compared to the 3He counters. This result opens prospects to reduce the false coincidence rates in the neutron multiplicity measurements, thus increasing the sensitivity of nuclear material detection.

  13. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting.

    PubMed

    Cassette, Philippe

    2016-03-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Signal processing and electronic noise in LZ

    NASA Astrophysics Data System (ADS)

    Khaitan, D.

    2016-03-01

    The electronics of the LUX-ZEPLIN (LZ) experiment, the 10-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), consists of low-noise dual-gain amplifiers and a 100-MHz, 14-bit data acquisition system for the TPC PMTs. Pre-prototypes of the analog amplifiers and the 32-channel digitizers were tested extensively with simulated pulses that are similar to the prompt scintillation light and the electroluminescence signals expected in LZ. These studies are used to characterize the noise and to measure the linearity of the system. By increasing the amplitude of the test signals, the effect of saturating the amplifier and the digitizers was studied. The RMS ADC noise of the digitizer channels was measured to be 1.19± 0.01 ADCC. When a high-energy channel of the amplifier is connected to the digitizer, the measured noise remained virtually unchanged, while the noise added by a low-energy channel was estimated to be 0.38 ± 0.02 ADCC (46 ± 2 μV). A test facility is under construction to study saturation, mitigate noise and measure the performance of the LZ electronics and data acquisition chain.

  15. Simulation study of communication link for Pioneer Saturn/Uranus atmospheric entry probe. [signal acquisition by candidate modem for radio link

    NASA Technical Reports Server (NTRS)

    Hinrichs, C. A.

    1974-01-01

    A digital simulation is presented for a candidate modem in a modeled atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the radio link conditions for an outer planets atmospheric entry probe. The results indicate that the signal acquisition characteristics and the channel error rate are acceptable for the system requirements of the radio link. The simulation also outputs data for calculating other error statistics and a quantized symbol stream from which error correction decoding can be analyzed.

  16. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  17. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  18. Time-correlated neutron analysis of a multiplying HEU source

    NASA Astrophysics Data System (ADS)

    Miller, E. C.; Kalter, J. M.; Lavelle, C. M.; Watson, S. M.; Kinlaw, M. T.; Chichester, D. L.; Noonan, W. A.

    2015-06-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.

  19. Development of receiving-detecting circuit for digital radiographic systems with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Volodymir D.; Opolonin, Oleksandr D.; Galkin, Serhiy M.; Voronkin, Yevheniy F.; Lysetska, Olena K.; Kostyukevych, Serhiy A.

    2009-08-01

    Detection of X-ray radiation by digital radiographic systems (DRS) is realized using multi-element detector arrays of scintillator-photodiode (S-PD) type. Accounting for our experience in development of X-ray introscopy systems, possibilities can be found for improvement of DRS detection efficiency. Namely, a more efficient use of the dynamic range of the analog-to-digit converter by means of instrumental compensation of scatter of detector characteristics and smaller apertures of individual detection channels. However, smaller apertures lead to lower levels of useful signals, and a problem emerges of signal interference over neighboring channels, which is related to optical separation of the scintillation elements. Also, more compact arrangement of electronic components of preamplifiers is achieved. The latter problem is solved by using multi-channel (from 32 to 1024 channels) photoreceiving devices (PRD). PRD has a set of photosensitive elements formed on one crystal, as well as shift registers ensuring preliminary amplification of signals and series connection to one outlet. The work envisages creation of receiving-detecting circuit (RDC) with improved spatial resolution (ISR) with the aim of producing advanced DRS with improved characteristics: density resolution better than 0.9%, and detecting ability allowing detection of θ 0.5 mm steel wire behind 6 mm steel. The work will result in the development of RDC with ISR (800-200 microns). In combination with various ionizing radiation sources and scanning mechanisms this will allow creation of DRS for many tasks of non-destructive testing (NDT) and technical diagnostics (TD), in particular, for check-up of pipelines, objects of oil and gas industries, etc. This work was supported by the Ministry of Education and Science of Ukraine, the U.S. Civilian Research and Development Foundation (CRDF), and by the NATO Science for Peace and Security Program (Project SfP-982823).

  20. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    ERIC Educational Resources Information Center

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  1. Synthesis of bulk-size transparent gadolinium oxide–polymer nanocomposites for gamma ray spectroscopy

    PubMed Central

    Cai, Wen; Chen, Qi; Cherepy, Nerine; Dooraghi, Alex; Kishpaugh, David; Chatziioannou, Arion; Payne, Stephen; Xiang, Weidong

    2015-01-01

    Heavy element loaded polymer composites have long been proposed to detect high energy X- and γ-rays upon scintillation. The previously reported bulk composite scintillators have achieved limited success because of the diminished light output resulting from fluorescence quenching and opacity. We demonstrate the synthesis of a transparent nanocomposite comprising gadolinium oxide nanocrystals uniformly dispersed in bulk-size samples at a high loading content. The strategy to avoid luminescence quenching and opacity in the nanocomposite was successfully deployed, which led to the radioluminescence light yield of up to 27 000/MeV, about twice as much as standard commercial plastic scintillators. Nanocomposites monoliths (14 mm diameter by 3 mm thickness) with 31 wt% loading of nanocrystals generated a photoelectric peak for Cs-137 gamma (662 keV) with 11.4% energy resolution. PMID:26478816

  2. Investigation of non-uniform radiation damage observed in the ZEUS Beam Pipe Calorimeter at HERA

    NASA Astrophysics Data System (ADS)

    Bohnet, I.; Fricke, U.; Surrow, B.; Wick, K.

    1999-08-01

    The ZEUS Beam Pipe Calorimeter (BPC) is a small tungsten/scintillator sampling calorimeter. It is positioned at a distance of approximately 4 cm from the HERA beams and approximately 3 m from the interaction point. The accumulated doses measured at the front side of the BPC during the HERA runs 1995, 1996 and 1997 were 12 kGy, 11 kGy and 2.5 kGy, respectively. The radiation dose influenced the optical components of the BPC. The degradation of some of the scintillators due to radiation damage has been examined using different monitoring systems. A simulation code was developed which describes quantitatively the effects of non-uniform radiation damage. The following report describes the radiation monitoring, the effects on the scintillator material and the impact on the energy linearity of the BPC.

  3. Positron annihilation study on ZnO-based scintillating glasses

    NASA Astrophysics Data System (ADS)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  4. An ultrafast X-ray scintillating detector made of ZnO(Ga)

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Yan, Jun; Deng, Bangjie; Zhang, Jingwen; Lv, Jinge; Wen, Xin; Gao, Keqing

    2017-12-01

    Owing to its ultrafast scintillation, quite high light yield, strong radiation resistance, and non-deliquescence, ZnO(Ga) is a highly promising choice for an ultrafast X-ray detector. Because of its high deposition rate, good production repeatability and strong adhesive force, reactive magnetron sputtering was used to produce a ZnO(Ga) crystal on a quartz glass substrate, after the production conditions were optimized. The fluorescence lifetime of the sample was 173 ps. An ultrafast X-ray scintillating detector, equipped with a fast microchannel plate (MCP) photomultiplier tube (PMT), was developed and the X-ray tests show a signal full width at half maximum (FWHM) of only 385.5 ps. Moreover, derivation from the previous measurement shows the ZnO(Ga) has an ultrafast time response (FWHM = 355.1 ps) and a high light yield (14740 photons/MeV).

  5. Determination of Low Level Alpha and Beta Emitters Using Liquid-Liquid Extraction and a Liquid Scintillation Spectrometer

    NASA Astrophysics Data System (ADS)

    Yu, Yu-Fu; BjØRnstad, H. E.; Salbu, B.

    Two radiochemical procedures for determination of low level strontium-90 and plutonium-239+240 in environmental and biological materials using combined selective solvent extraction with low level liquid scintillation counting have been presented. Y-90, the daughter nuclide of Sr-90, and Pu-239+240 are selectively extracted from nitric acid solution into 5% di(-2ethylhexyl)phosphoric acid (HDEHP) in toluene and the radionuclides of interest in organic phase are counted with an ultra low level scintillation counter "Quantulus". The lower detection limits for Sr-90 and Pu-239+240 are estimated to be 20 mBq and 0.3 mBq respectively. The developed procedures have been tested for soma environmental and biological samples and the preminarly results show that they are more simple and time-saving than traditional methods.

  6. A comparison of TEC fluctuations and scintillations at Ascension Island

    NASA Astrophysics Data System (ADS)

    Basu, S.; Groves, K. M.; Quinn, J. M.; Doherty, P.

    1999-11-01

    With increasing reliance on space-based platforms for global navigation and communication, concerns about the impact of ionospheric scintillation on these systems have become a high priority. Recently, the Air Force Research Laboratory (AFRL) performed amplitude scintillation measurements of L1 (1.575 MHz) signals from GPS satellites at Ascension Island (14.45° W, 7.95° S; magnetic latitude 16° S) during February-April, 1998, to compare amplitude scintillations with fluctuations of the total electron content (TEC). Ascension Island is located in the South Atlantic under the southern crest of the equatorial anomaly of F2 ionization where scintillations will be much enhanced during the upcoming solar maximum period. Ascension Island is included in the global network of the International GPS Service (IGS) and the GPS receivers in this network report the carrier to noise (C/N) ratio, the dual frequency carrier phase and pseudorange data at 30-s intervals. Such data with a sampling interval of 30 s were analyzed to determine TEC, the rate of change of TEC (ROT) and also ROTI, defined as the standard deviation of ROT. The spatial scale of ROTI, sampled at 30 s interval, will correspond to 6 km when the vector sum of the ionospheric projection of the satellite velocity and the irregularity drift orthogonal to the propagation path is of the order of 100 m/s. On the other hand, the scale-length of the amplitude scintillation index corresponds to the Fresnel dimension which is about 400 m for the GPS L1 frequency and an ionospheric height of 400 km. It is shown that, in view of the co-existence of large and small scale irregularities in equatorial irregularity structures, during the early evening hours, and small magnitude of irregularity drifts, ROTI measurements can be used to predict the presence of scintillation causing irregularities. The quantitative relationship between ROTI and S4, however, varies considerably due to variations of the ionospheric projection of the satellite velocity and the ionospheric irregularity drift. During the post-midnight period, due to the decay of small scale irregularities leading to a steepening of irregularity power spectrum, ROTI, on occasions, may not be associated with detectable levels of scintillation. In view of the power law type of irregularity power spectrum, ROTI will, in general, be larger than S4 and the ratio, ROTI/S4, in the present dataset is found to vary between 2 and 10. At high latitudes, where the ionospheric motion, driven by large electric fields of magnetospheric origin, is much enhanced during magnetically active periods, ROTI/S4 may be considerably larger than that in the equatorial region.

  7. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  8. Observed light yield of scintillation pixels: Extending the two-ray model

    NASA Astrophysics Data System (ADS)

    Kantorski, Igor; Jurkowski, Jacek; Drozdowski, Winicjusz

    2016-09-01

    In this paper we propose an extended, two dimensional model describing the propagation of scintillation photons inside a cuboid crystal until they reach a PMT window. In the simplest approach the model considers two main reasons for light losses: standard absorption obeying the classical Lambert-Beer law and non-ideal reflectivity of the "mummy" covering formed by several layers of Teflon tape wrapping the sample. Results of the model calculations are juxtaposed with experimental data as well as with predictions of an earlier, one dimensional model.

  9. Operation and performance of the LHCb calorimeters

    NASA Astrophysics Data System (ADS)

    Chefdeville, M.

    2018-03-01

    The LHCb calorimeters play a key role in the hardware trigger of the experiment. They also serve the measurement of radiative heavy flavor decays and the identification of electrons. Located at twelve meters from the interaction region, they are composed of a plane of scintillating tiles, a preshower detector, an electromagnetic and a hadronic sampling calorimeters using scintillators as active elements. In these proceedings, technical and operational aspects of these detectors are described. Emphasis is then put on calorimeter reconstruction and calibration. Finally, performance for benchmark physics modes are briefly reported.

  10. New Opportunities in Decay Spectroscopy with the GRIFFIN and DESCANT Arrays

    NASA Astrophysics Data System (ADS)

    Bildstein, V.; Andreoiu, C.; Ball, G. C.; Ballast, T.; Bartlett, C.; Bender, P. C.; Bernier, N.; Bianco, L.; Bishop, D.; Brennan, D.; Bruhn, T.; Cheeseman, A.; Churchman, R.; Ciccone, S.; Davids, B.; Demand, G.; Dillmann, I.; Garnsworthy, A. B.; Garrett, P. E.; Georges, S.; Hackman, G.; Hadinia, B.; Kokke, R.; Krücken, R.; Linn, Y.; Lim, C.; Martin, J.-P.; Miller, D.; Mills, W. J.; Morrison, L. N.; Ohlmann, C. A.; Park, J.; Pearson, C. J.; Pore, J. L.; Rajabali, M. M.; Rand, E. T.; Rizwan, U.; Sarazin, F.; Shaw, B.; Starosta, K.; Svensson, C. E.; Sumithrarachchi, C.; Unsworth, C.; Voss, P.; Wang, Z. M.; Williams, J.; Wong, J.; Wong, S.

    The GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei) project is a major upgrade of the decay spectroscopy capabilities at TRIUMF-ISAC. GRIFFIN will replace the 8π spectrometer with an array of up to 16 large-volume HPGe clover detectors and use a state-of-the-art digital data acquisition system. The existing ancillary detector systems that had been developed for 8π, such as the SCEPTAR array for β-tagging, PACES for high-resolution internal conversion electron spectroscopy, and the DANTE array of LaBr3/BaF2 scintillators for fast γ-ray timing, will be used with GRIFFIN. GRIFFIN can also accommodate the new neutron detector array DESCANT (Deuterated Scintillator Array for Neutron Tagging), enabling the study of β-delayed neutron emitters. DESCANT consists of up to 70 detectors, each filled with approximately 2 liters of deuterated benzene, a liquid scintillator that provides pulse-shape discrimination (PSD) capabilities to distinguish between neutrons and γ-rays interacting with the detector. In addition, the anisotropic nature of n-d scattering as compared to the isotropic n-p scattering allows for the determination of the neutron energy spectrum directly from the pulse-height spectrum, complementing the time-of-flight (TOF) information. The installation of GRIFFIN is under way and first experiments are planned for the fall of 2014. The array will be completed in 2015 with the full complement of 16 clovers. DESCANT will be tested coupled with GRIFFIN in spring of 2015.

  11. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE PAGES

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  12. Photodetection Characterization of SiPM Technologies for their Application in Scintillator based Neutron Detectors

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Durini, D.; Degenhardt, C.; van Waasen, S.

    2018-01-01

    Small-angle neutron scattering (SANS) experiments have become one of the most important techniques in the investigation of the properties of material on the atomic scale. Until 2001, nearly exclusively 3He-based detectors were used for neutron detection in these experiments, but due to the scarcity of 3He and its steeply rising price, researchers started to look for suitable alternatives. Scintillation based solid state detectors appeared as a prominent alternative. Silicon photomultipliers (SiPM), having single photon resolution, lower bias voltages compared to photomultiplier tubes (PMT), insensitivity to magnetic fields, low cost, possibility of modular design and higher readout rates, have the potential of becoming a photon detector of choice in scintillator based neutron detectors. The major concerns for utilizing the SiPM technology in this kind of applications are the increase in their noise performance and the decrease in their photon detection efficiency (PDE) due to direct exposure to neutrons. Here, a detailed comparative analysis of the PDE performance in the range between UV and NIR parts of the spectra for three different SiPM technologies, before and after irradiation with cold neutrons, has been carried out. For this investigation, one digital and two analog SiPM arrays were irradiated with 5Å wavelength cold neutrons and up to a dose of 6×1012 n/cm2 at the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.

  13. The MASIV Survey - IV. Relationship between intra-day scintillation and intrinsic variability of radio AGNs

    NASA Astrophysics Data System (ADS)

    Koay, J. Y.; Macquart, J.-P.; Jauncey, D. L.; Pursimo, T.; Giroletti, M.; Bignall, H. E.; Lovell, J. E. J.; Rickett, B. J.; Kedziora-Chudczer, L.; Ojha, R.; Reynolds, C.

    2018-03-01

    We investigate the relationship between 5 GHz interstellar scintillation (ISS) and 15 GHz intrinsic variability of compact, radio-selected active galactic nuclei (AGNs) drawn from the Microarcsecond Scintillation-Induced Variability (MASIV) Survey and the Owens Valley Radio Observatory blazar monitoring program. We discover that the strongest scintillators at 5 GHz (modulation index, m5 ≥ 0.02) all exhibit strong 15 GHz intrinsic variability (m15 ≥ 0.1). This relationship can be attributed mainly to the mutual dependence of intrinsic variability and ISS amplitudes on radio core compactness at ˜ 100 μas scales, and to a lesser extent, on their mutual dependences on source flux density, arcsec-scale core dominance and redshift. However, not all sources displaying strong intrinsic variations show high amplitude scintillation, since ISS is also strongly dependent on Galactic line-of-sight scattering properties. This observed relationship between intrinsic variability and ISS highlights the importance of optimizing the observing frequency, cadence, timespan and sky coverage of future radio variability surveys, such that these two effects can be better distinguished to study the underlying physics. For the full MASIV sample, we find that Fermi-detected gamma-ray loud sources exhibit significantly higher 5 GHz ISS amplitudes than gamma-ray quiet sources. This relationship is weaker than the known correlation between gamma-ray loudness and the 15 GHz variability amplitudes, most likely due to jet opacity effects.

  14. Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens; Sato, Hiroatsu; Wassaie Mersha, Mogese

    2017-01-01

    Small-scale ionospheric disturbances may cause severe radio scintillations of signals transmitted from global navigation satellite systems (GNSSs). Consequently, small-scale plasma irregularities may heavily degrade the performance of current GNSSs such as GPS, GLONASS or Galileo. This paper presents analysis results obtained primarily from two high-rate GNSS receiver stations designed and operated by the German Aerospace Center (DLR) in cooperation with Bahir Dar University (BDU) at 11.6° N, 37.4° E. Both receivers collect raw data sampled at up to 50 Hz, from which characteristic scintillation parameters such as the S4 index are deduced. This paper gives a first overview of the measurement set-up and the observed scintillation events over Bahir Dar in 2015. Both stations are located close to one another and aligned in an east-west, direction which allows us to estimate the zonal drift velocity and spatial dimension of equatorial ionospheric plasma irregularities. Therefore, the lag times of moving electron density irregularities and scintillation patterns are derived by applying cross-correlation analysis to high-rate measurements of the slant total electron content (sTEC) along radio links between a GPS satellite and both receivers and to the associated signal power, respectively. Finally, the drift velocity is derived from the estimated lag time, taking into account the geometric constellation of both receiving antennas and the observed GPS satellites.

  15. Electrokinetic removal of radionuclides contained in scintillation liquids absorbed in soil type Phaeozem.

    PubMed

    Valdovinos, V; Monroy-Guzmán, F; Bustos, E

    2016-10-01

    Control samples of scintillation liquids - Phaeozem soil mixtures were prepared with different scintillation liquids as the support electrolyte, Install Gel ® XF, (Ultima Gold AB™ and Ultima Gold XR™), to construct the polarization curves, and to select the cell potential with the highest mass transfer to remove 24 Na (15 h) and 99m Tc (6 h) as radiotracers from polluted Phaeozem soil. During the electrokinetic treatment (EKT), the removal of radionuclides contained in scintillation liquids absorbed in Phaeozem soil, liquid phase was characterized by Gas Chromatography coupled with a Flame Ionization Detector (GC-FID) and Fourier Transform Infrared Spectrometry (FTIR), solids by FTIR, before and after the application of cell potential. In this sense, the support electrolyte was selected based on the highest current generated (1 mA), as in the case of scintillation liquid 50% Ultima Gold XR™ + 50% Water (1:1), which was used for 6 h in the presence of a mesh and a titanium rod, as anode and cathode, respectively. Finally, the removal percentage accumulated in the liquid phase after the EKT of Phaeozem soil polluted by 99m Tc was 61% close to the anode after 4 h. It was also 61% for 24 Na close to cathode after 2 h, and after 4 h it was 71.8%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    DOE PAGES

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; ...

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less

  17. Improved format for radiocardiographic data

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Sevelius, G.

    1973-01-01

    Technique involves introduction of radioactive sample into antecubital vein. Scintillation crystal mounted in collimating housing views portion of right and left hearts. As radioactive sample passes through heart, counting rate is measured by crystal and recorded on strip chart. Data is insensitive to geometric effects and other parameters.

  18. Cryogenic scintillation properties of n-type GaAs for the direct detection of MeV/c2 dark matter

    NASA Astrophysics Data System (ADS)

    Derenzo, S.; Bourret, E.; Hanrahan, S.; Bizarri, G.

    2018-03-01

    This paper is the first report of n-type GaAs as a cryogenic scintillation radiation detector for the detection of electron recoils from interacting dark matter (DM) particles in the poorly explored MeV/c2 mass range. Seven GaAs samples from two commercial suppliers and with different silicon and boron concentrations were studied for their low temperature optical and scintillation properties. All samples are n-type even at low temperatures and exhibit emission between silicon donors and boron acceptors that peaks at 1.33 eV (930 nm). The lowest excitation band peaks at 1.44 eV (860 nm), and the overlap between the emission and excitation bands is small. The X-ray excited luminosities range from 7 to 43 photons/keV. Thermally stimulated luminescence measurements show that n-type GaAs does not accumulate metastable radiative states that could cause afterglow. Further development and use with cryogenic photodetectors promises a remarkable combination of large target size, ultra-low backgrounds, and a sensitivity to electron recoils of a few eV that would be produced by DM particles as light as a few MeV/c2.

  19. Development of ZnO:Ga as an Ultrafast Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourret-Courchesne, E.D.; Derenzo, S.E.; Weber, M.J.

    We report on several methods for synthesizing the ultra-fast scintillator ZnO(Ga), and measurements of the resulting products. This material has characteristics that make it an excellent alpha detector for tagging the time and direction of individual neutrons produced by t-d and d-d neutron generators (associated particle imaging). The intensity and decay time are strongly dependent on the method used for dopant incorporation. We compare samples made by diffusion of Ga metal to samples made by solid state reaction between ZnO and Ga2O3 followed by reduction in hydrogen. The latter is much more successful and has a pure, strong near-band-edge fluorescencemore » and an ultra-fast decay time of the x-ray-excited luminescence. The luminescence increases dramatically as the temperature is reduced to 10K. We also present results of an alternate low-temperature synthesis that produces luminescent particles with a more uniform size distribution. We examine possible mechanisms for the bright near-band-edge scintillation and favor the explanation that it is due to the recombination of Ga3+ donor electrons with ionization holes trapped on H+ ion acceptors.« less

  20. Mixture quantification using PLS in plastic scintillation measurements.

    PubMed

    Bagán, H; Tarancón, A; Rauret, G; García, J F

    2011-06-01

    This article reports the capability of plastic scintillation (PS) combined with multivariate calibration (Partial least squares; PLS) to detect and quantify alpha and beta emitters in mixtures. While several attempts have been made with this purpose in mind using liquid scintillation (LS), no attempt was done using PS that has the great advantage of not producing mixed waste after the measurements are performed. Following this objective, ternary mixtures of alpha and beta emitters ((241)Am, (137)Cs and (90)Sr/(90)Y) have been quantified. Procedure optimisation has evaluated the use of the net spectra or the sample spectra, the inclusion of different spectra obtained at different values of the Pulse Shape Analysis parameter and the application of the PLS1 or PLS2 algorithms. The conclusions show that the use of PS+PLS2 applied to the sample spectra, without the use of any pulse shape discrimination, allows quantification of the activities with relative errors less than 10% in most of the cases. This procedure not only allows quantification of mixtures but also reduces measurement time (no blanks are required) and the application of this procedure does not require detectors that include the pulse shape analysis parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Apparatuses for large area radiation detection and related method

    DOEpatents

    Akers, Douglas W; Drigert, Mark W

    2015-04-28

    Apparatuses and a related method relating to radiation detection are disclosed. In one embodiment, an apparatus includes a first scintillator and a second scintillator adjacent to the first scintillator, with each of the first scintillator and second scintillator being structured to generate a light pulse responsive to interacting with incident radiation. The first scintillator is further structured to experience full energy deposition of a first low-energy radiation, and permit a second higher-energy radiation to pass therethrough and interact with the second scintillator. The apparatus further includes a plurality of light-to-electrical converters operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator exhibit at least one mutually different characteristic for an electronic system to determine whether a given light pulse is generated by the first scintillator or the second scintillator.

  2. Fabrication and characterization of Gd2O2SO4:Tb3+ phosphors by sol-gel method

    NASA Astrophysics Data System (ADS)

    Aritman, I.; Yildirim, S.; Kisa, A.; Guleryuz, L. F.; Yurddaskal, M.; Dikici, T.; Celik, E.

    2017-02-01

    The objective of the innovative approaches of the scintillation materials to be used in the digital portal imaging systems in the radiotherapy applications is to research the GOS material production that has been activated with the rare earth elements (RE), to produce the scintillation detectors that have a rapid imaging process with a lesser radiation and higher image quality from these materials and to apply the radiographic imaging systems. The GOS: Tb3+ showed high emission peak and high x-ray absorption properties which have been determined for application to mammography and dental radiography. In this study, Gd2O2SO4:Tb3+ phosphors were fabricated by the sol-gel method that is a unique technique and not previously applied. Besides, the structural characterization of GOS: Tb3+ has been investigated. The strongest emission peak located at 549 nm under 312 nm UV light excitation was appeared on the GOS: Tb3+ phosphor particles. The characterization processing optimized by using FTIR, DTA-TG, XRD, XPS, SEM and the luminescence spectroscopy.

  3. Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project

    NASA Astrophysics Data System (ADS)

    Frisch, Benjamin

    2013-12-01

    The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype detector system with a CTR better than 240 ps FWHM. We discuss the challenges in simulating such a system and introduce reconstruction algorithms based on graphics processing units (GPU).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalla Palma, M.; Quaranta, A.; INFN, Laboratori Nazionali di Legnaro,Viale dell'Universita, 2, 35020 Legnaro - Padova

    In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worsemore » handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non-toxic liquid scintillator (EJ309). The results have been related to the optical characterization of these materials, especially as regarding the fluorescence response, and the best performing material (1,1,5,5-Tetraphenyl 1,3,3,5-Tetramethyl Trisiloxane) showed a scintillation light-yield only slightly lower than EJ309, proving to be a promising candidate for the production of an efficient polysiloxane based liquid scintillator. The results as regarding the neutron-gamma pulse shape discrimination capability of the best performing materials are also reported in this work and the scintillation decay time of these materials are compared to the results of fluorescence lifetime analysis. PSD tests have been performed at CN accelerator in Legnaro National Laboratories with a 2.2 MeV pulsed neutron beam using TOF procedure and the pulses have been analyzed in order to evidence the PSD capability of every sample. The reported results pave the way to the development of a new promising class of non-toxic liquid scintillating materials for neutron detection, with good light output and interesting PSD characteristics. (authors)« less

  5. Application of Synchrotron Radiation Imaging for Non-destructive Monitoring of Mouse Rheumatoid Arthritis Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Chang-Hyuk; Kim, Hong-Tae; Choe, Jung-Yoon

    This study was performed to observe microstructures of the rheumatoid arthritis induced mouse feet using a synchrotron radiation beam and to compare findings with histological observations. X-ray refraction images from ex-vivo rheumatoid arthritis induced mouse feet were obtained with an 8KeV white (unmonochromatic) beam and 20 micron thick CsI(Tl) scintillation crystal. The visual image was magnified using a x 10 microscope objective and captured using digital CCD camera. Experiments were performed at 1B2 bending magnet beamline of the Pohang Accelerator Laboratory (PAL) in Korea. Obtained images were compared with histopathologic findings from same sample. Cartilage destruction and thickened joint capsulemore » with joint space narrowing were clearly identified at each grade of rheumatoid model with spatial resolution of as much as 1.2 micron and these findings were directly correlated with histopathologic findings. The results suggest that x-ray microscopy study of the rheumatoid arthritis model using synchrotron radiation demonstrates the potential for clinically relevant micro structure of mouse feet without sectioning and fixation.« less

  6. Anti-Neutrino Charged-Current Reactions on Scintillator with Low Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gran, R.; et al.

    2018-03-25

    We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less

  7. Light-Based Triggering and Reconstruction of Michel Electrons in LArIAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foreman, W.

    2016-01-19

    The LArIAT Experiment aims to calibrate the liquid argon time projection chamber (LArTPC) using a beam of charged particles at the Fermilab Test Beam Facility. It is equipped with a novel scintillation light readout system using PMTs and custom SiPM preamplifier boards to detect light from reflector foils coated with wavelength-shifting TPB. A trigger on delayed secondary flashes of light captures events containing stopping cosmic muons together with the Michel electrons coming from their subsequent decay. This dedicated Michel trigger supplies an abundant sample of low-energy electrons throughout the detector's active volume, providing opportunities to study the combined calorimetric capabilitiesmore » of the light system and the TPC. Preliminary results using scintillation light to study properties of the Michel electron sample are presented.« less

  8. Anti-Neutrino Charged-Current Reactions on Scintillator with Low Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gran, R.; et al.

    2018-06-01

    We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less

  9. Theoretical and Monte Carlo optimization of a stacked three-layer flat-panel x-ray imager for applications in multi-spectral diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Lopez Maurino, Sebastian; Badano, Aldo; Cunningham, Ian A.; Karim, Karim S.

    2016-03-01

    We propose a new design of a stacked three-layer flat-panel x-ray detector for dual-energy (DE) imaging. Each layer consists of its own scintillator of individual thickness and an underlying thin-film-transistor-based flat-panel. Three images are obtained simultaneously in the detector during the same x-ray exposure, thereby eliminating any motion artifacts. The detector operation is two-fold: a conventional radiography image can be obtained by combining all three layers' images, while a DE subtraction image can be obtained from the front and back layers' images, where the middle layer acts as a mid-filter that helps achieve spectral separation. We proceed to optimize the detector parameters for two sample imaging tasks that could particularly benefit from this new detector by obtaining the best possible signal to noise ratio per root entrance exposure using well-established theoretical models adapted to fit our new design. These results are compared to a conventional DE temporal subtraction detector and a single-shot DE subtraction detector with a copper mid-filter, both of which underwent the same theoretical optimization. The findings are then validated using advanced Monte Carlo simulations for all optimized detector setups. Given the performance expected from initial results and the recent decrease in price for digital x-ray detectors, the simplicity of the three-layer stacked imager approach appears promising to usher in a new generation of multi-spectral digital x-ray diagnostics.

  10. Development of an X-ray imaging system to prevent scintillator degradation for white synchrotron radiation.

    PubMed

    Zhou, Tunhe; Wang, Hongchang; Connolley, Thomas; Scott, Steward; Baker, Nick; Sawhney, Kawal

    2018-05-01

    The high flux of the white X-ray beams from third-generation synchrotron light sources can significantly benefit the development of high-speed X-ray imaging, but can also bring technical challenges to existing X-ray imaging systems. One prevalent problem is that the image quality deteriorates because of dust particles accumulating on the scintillator screen during exposure to intense X-ray radiation. Here, this problem has been solved by embedding the scintillator in a flowing inert-gas environment. It is also shown that the detector maintains the quality of the captured images even after days of X-ray exposure. This modification is cost-efficient and easy to implement. Representative examples of applications using the X-ray imaging system are also provided, including fast tomography and multimodal phase-contrast imaging for biomedical and geological samples. open access.

  11. Validation of GEANT4 Monte Carlo models with a highly granular scintillator-steel hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Uzhinskiy, V.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Götze, M.; Hartbrich, O.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-07-01

    Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8 GeV to 100 GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.

  12. Scintillation properties of Gd3Al2Ga3O12:Ce3+ single crystal scintillators

    NASA Astrophysics Data System (ADS)

    Sakthong, Ongsa; Chewpraditkul, Weerapong; Wanarak, Chalerm; Kamada, Kei; Yoshikawa, Akira; Prusa, Petr; Nikl, Martin

    2014-07-01

    The scintillation properties of Gd3Al2Ga3O12:Ce3+ (GAGG:Ce) single crystals grown by the Czochralski method with 1 at% cerium in the melt were investigated and results were compared with so far published results in the literature. The light yield (LY) and energy resolution were measured using a XP5200B photomultiplier. Despite about twice higher LY for GAGG:Ce, the energy resolution is only slightly better than that of LuAG:Ce due to its worse intrinsic resolution and non-proportionality of LY. The LY dependences on the sample thickness and amplifier shaping time were measured. The estimated photofraction in pulse height spectra of 320 and 662 keV γ-rays and the total mass attenuation coefficient at 662 keV γ-rays were also determined and compared with the theoretical ones calculated using the WinXCom program.

  13. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    DOE PAGES

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; ...

    2015-06-10

    In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less

  14. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    NASA Astrophysics Data System (ADS)

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D. D. S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G.; Kamto, J.

    2015-09-01

    A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.

  15. Effects of Ga substitution in Ce:Tb3Ga x Al5- x O12 single crystals for scintillator applications

    NASA Astrophysics Data System (ADS)

    Nakauchi, Daisuke; Okada, Go; Kawano, Naoki; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-02-01

    Bulk single crystals of Ce-doped Tb3Ga x Al5- x O12 (x = 0-4) were successfully synthesized by the floating zone method. The samples exhibit photoluminescence and scintillation with an intense broad emission due to the 5d-4f transitions of Ce3+ peaking around 550 nm as well as a few sharp peaks due to the 4f-4f transitions of Tb3+. Pulse height spectrum measurements under 137Cs γ-ray irradiation demonstrated a clear photoabsorption peak, in which the scintillation light yields were estimated to be 57,000 (x = 0), 28,000 (x = 1), 19,000 (x = 2), and 10,000 (x = 3) photons/MeV. Afterglow level can be suppressed with an appropriate addition of Ga, in which the optimum concertation is x = 2 leading an afterglow level of 23 ppm.

  16. Mg,Ce co-doped Lu2Gd1(Ga,Al)5O12 by micro-pulling down method and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Yamaguchi, Hiroaki; Yoshino, Masao; Kurosawa, Shunsuke; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Pejchal, Jan; Nikl, Martin; Yoshikawa, Akira

    2018-04-01

    The effects of Mg co-doping on the scintillation properties of Ce:Lu2Gd1(Ga,Al)5O12 (LGGAG) single crystals with different Ga/Al ratios were investigated. Mg co-doped and non co-doped Ce:LGGAG single crystals were grown by the micro-pulling down (µ-PD) method and then cut, polished and annealed for each measurement. Absorption spectra, radioluminescence (RL) spectra, pulse height spectra, and scintillation decay were measured to reveal the effect of Mg co-doping. Ce4+ charge transfer (CT) absorption band peaking at ∼260 nm was observed in Mg co-doped samples, which is in good agreement with previous reports for the Ce4+ CT absorption band in other garnet-based crystals. The scintillation decay time tended to be accelerated and the light yield tended to be decreased by Mg co-doping at higher Ga concentrations.

  17. Development of an X-ray imaging system to prevent scintillator degradation for white synchrotron radiation

    PubMed Central

    Zhou, Tunhe; Wang, Hongchang; Scott, Steward

    2018-01-01

    The high flux of the white X-ray beams from third-generation synchrotron light sources can significantly benefit the development of high-speed X-ray imaging, but can also bring technical challenges to existing X-ray imaging systems. One prevalent problem is that the image quality deteriorates because of dust particles accumulating on the scintillator screen during exposure to intense X-ray radiation. Here, this problem has been solved by embedding the scintillator in a flowing inert-gas environment. It is also shown that the detector maintains the quality of the captured images even after days of X-ray exposure. This modification is cost-efficient and easy to implement. Representative examples of applications using the X-ray imaging system are also provided, including fast tomography and multimodal phase-contrast imaging for biomedical and geological samples. PMID:29714191

  18. On the response of Y 3Al 5O 12: Ce (YAG: Ce) powder scintillating screens to medical imaging X-rays

    NASA Astrophysics Data System (ADS)

    Kandarakis, I.; Cavouras, D.; Sianoudis, I.; Nikolopoulos, D.; Episkopakis, A.; Linardatos, D.; Margetis, D.; Nirgianaki, E.; Roussou, M.; Melissaropoulos, P.; Kalivas, N.; Kalatzis, I.; Kourkoutas, K.; Dimitropoulos, N.; Louizi, A.; Nomicos, C.; Panayiotakis, G.

    2005-02-01

    The aim of this study was to examine Y 3Al 5O 12:Ce (also known as YAG:Ce) powder scintillator under X-ray imaging conditions. This material shows a very fast scintillation decay time and it has never been used in X-ray medical imaging. In the present study various scintillator layers (screens) with coating thickness ranging from 13 to 166 mg/cm 2 were prepared in our laboratory by sedimentation of Y 3Al 5O 12: Ce powder. Optical emission spectra and light emission efficiency (spectrum area over X-ray exposure) of the layers were measured under X-ray excitation using X-ray tube voltages (80-120 kVp) often employed in general medical radiography and fluoroscopy. Spectral compatibility with various optical photon detectors (photodiodes, photocathodes, charge coupled devices, films) and intrinsic conversion efficiency values were determined using emission spectrum data. In addition, parameters related to X-ray detection, energy absorption efficiency and K-fluorescence characteristic emission were calculated. A theoretical model describing radiation and light transfer through scattering media was used to fit experimental data. Intrinsic conversion efficiency (η≈0.03-0.05) and light attenuation coefficients (σ≈26.5 cm/g) were derived through this fitting. Y 3Al 5O 12:Ce showed peak emission in the wavelength range 530-550 nm. The light emission efficiency was found to be maximum for the 107 mg/cm 2 layer. Due to its "green" emission spectrum, Y 3Al 5O 12:Ce showed excellent compatibility (of the order of 0.9) with the sensitivity of many currently used photodetectors. Taking into account its very fast response Y 3Al 5O 12:Ce could be considered for application in X-ray imaging especially in various digital detectors.

  19. A comparative investigation of Lu2SiO5:Ce and Gd2O2S:Eu powder scintillators for use in x-ray mammography detectors

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Fountos, G. P.; David, S. L.; Valais, I. G.; Toutountzis, A. E.; Kalyvas, N. E.; Kandarakis, I. S.; Panayiotakis, G. S.

    2009-10-01

    The dominant powder scintillator in most medical imaging modalities for decades has been Gd2O2S:Tb due to the very good intrinsic properties and overall efficiency. Apart from Gd2O2S:Tb, there are alternative powder phosphor scintillators such as Lu2SiO5:Ce and Gd2O2S:Eu that have been suggested for use in various medical imaging modalities. Gd2O2S:Eu emits red light and can be combined mainly with digital mammography detectors such as CCDs. Lu2SiO5:Ce emits blue light and can be combined with blue sensitivity films, photocathodes and some photodiodes. For the purposes of the present study, two scintillating screens, one from Lu2SiO5:Ce and the other from Gd2O2S:Eu powders, were prepared using the method of sedimentation. The screen coating thicknesses were 25.0 and 33.1 mg cm-2 respectively. The screens were investigated by evaluating the following parameters: the output signal, the modulation transfer function, the noise equivalent passband, the informational efficiency, the quantum detection efficiency and the zero-frequency detective quantum efficiency. Furthermore, the spectral compatibility of those materials with various optical detectors was determined. Results were compared to published data for the commercially employed 'Kodak Min-R film-screen system', based on a 31.7 mg cm-2 thick Gd2O2S:Tb phosphor. For Gd2O2S:Eu, MTF data were found comparable to those of Gd2O2S:Tb, while the MTF of Lu2SiO5:Ce was even higher resulting in better spatial resolution and image sharpness properties. On the other hand, Gd2O2S:Eu was found to exhibit higher output signal and zero-frequency detective quantum efficiency than Lu2SiO5:Ce.

  20. Small system for tritium accelerator mass spectrometry

    DOEpatents

    Roberts, M.L.; Davis, J.C.

    1993-02-23

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  1. Small system for tritium accelerator mass spectrometry

    DOEpatents

    Roberts, Mark L.; Davis, Jay C.

    1993-01-01

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel ofmore » our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.« less

  3. PANDORA, a large volume low-energy neutron detector with real-time neutron-gamma discrimination

    NASA Astrophysics Data System (ADS)

    Stuhl, L.; Sasano, M.; Yako, K.; Yasuda, J.; Baba, H.; Ota, S.; Uesaka, T.

    2017-09-01

    The PANDORA (Particle Analyzer Neutron Detector Of Real-time Acquisition) system, which was developed for use in inverse kinematics experiments with unstable isotope beams, is a neutron detector based on a plastic scintillator coupled to a digital readout. PANDORA can be used for any reaction study involving the emission of low energy neutrons (100 keV-10 MeV) where background suppression and an increased signal-to-noise ratio are crucial. The digital readout system provides an opportunity for pulse shape discrimination (PSD) of the detected particles as well as intelligent triggering based on PSD. The figure of merit results of PANDORA are compared to the data in literature. Using PANDORA, 91 ± 1% of all detected neutrons can be separated, while 91 ± 1% of the detected gamma rays can be excluded, reducing the gamma ray background by one order of magnitude.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haudebourg, Raphael; Fichet, Pascal; Goutelard, Florence

    The detection (location and quantification) of nuclear facilities to be dismantled possible contamination with low-range particles emitters ({sup 3}H, other low-energy β emitters, a emitters) remains a tedious and expensive task. Indeed, usual remote counters show a too low sensitivity to these non-penetrating radiations, while conventional wipe tests are irrelevant for fixed radioactivity evaluation. The only method to accurately measure activity levels consists in sampling and running advanced laboratory analyses (spectroscopy, liquid scintillation counting, pyrolysis...). Such measurements generally induce sample preparation, waste production (destructive analyses, solvents), nuclear material transportation, long durations, and significant labor mobilization. Therefore, the search for themore » limitation of their number and cost easily conflicts with the necessity to perform a dense screening for sampling (to maximize the representativeness of the samples), in installations of thousands of square meters (floors, wells, ceilings), plus furniture, pipes, and other wastes. To overcome this contradiction, Digital Autoradiography (D. A.) was re-routed from bio molecular research to radiological mapping of nuclear installations under dismantling and to waste and sample analysis. After in-situ exposure to the possibly-contaminated areas to investigate, commercial reusable radiosensitive phosphor screens (of a few 100 cm{sup 2}) were scanned in the proper laboratory device and sharp quantitative images of the radioactivity could be obtained. The implementation of geostatistical tools in the data processing software enabled the exhaustive characterization of concrete floors at a rate of 2 weeks / 100 m{sup 2}, at lowest costs. Various samples such as drilled cores, or tank and wood pieces, were also successfully evaluated with this method, for decisive results. Thanks to the accurate location of potential contamination spots, this approach ensures relevant and representative sampling for further laboratory analyses and should be inserted in the range of common tools used in dismantling. (authors)« less

  5. Method, apparatus and system for low-energy beta particle detection

    DOEpatents

    Akers, Douglas W.; Drigert, Mark W.

    2012-09-25

    An apparatus, method, and system relating to radiation detection of low-energy beta particles are disclosed. An embodiment includes a radiation detector with a first scintillator and a second scintillator operably coupled to each other. The first scintillator and the second scintillator are each structured to generate a light pulse responsive to interaction with beta particles. The first scintillator is structured to experience full energy deposition of low-energy beta particles, and permit a higher-energy beta particle to pass therethrough and interact with the second scintillator. The radiation detector further includes a light-to-electrical converter operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator have at least one mutually different characteristic to enable an electronic system to determine whether a given light pulse is generated in the first scintillator or the second scintillator.

  6. Lithium indium diselenide: A new scintillator for neutron imaging

    DOE PAGES

    Lukosi, Eric; Herrera, Elan; Hamm, Daniel; ...

    2016-05-20

    Lithium indium diselenide, 6LiInSe 2 or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. The 24% atomic density of 6Li yields a thermal neutron mean free path of only 920 μm. This paper reports on the performance of LISe crystals in scintillation mode for its potential use as a converter screen for thermal/cold neutron imaging. The spatial resolution of LISe, determined using a 10% value of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 μm or larger resulted in an average spatialmore » resolution of 67 μm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 μm thick LISe (27 μm) outperforms a commercial 50 μm thick ZnS(Cu): 6LiF scintillation screen (100 μm) by more than a factor of three. For the thicknesses considered in this study, it has been found that the light yield of LISe did not scale with its thickness, suggesting the need for optimizing the synthesis to enhance the scintillation mechanism. Absorption measurements indicate that the 6Li concentration is uniform throughout the samples and its absorption efficiency as a function of thickness follows general nuclear theory, indicating that the variation in apparent brightness is likely due to a combination of particle escape, light transport, and activation of the scintillation mechanisms. As a result, the presence of 115In and its long-lived 116In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential for using LISe for imaging transient systems.« less

  7. Staged Z-pinch Experiments at the 1MA Zebra pulsed-power generator: Neutron measurements

    NASA Astrophysics Data System (ADS)

    Ruskov, Emil; Darling, T.; Glebov, V.; Wessel, F. J.; Anderson, A.; Beg, F.; Conti, F.; Covington, A.; Dutra, E.; Narkis, J.; Rahman, H.; Ross, M.; Valenzuela, J.

    2017-10-01

    We report on neutron measurements from the latest Staged Z-pinch experiments at the 1MA Zebra pulsed-power generator. In these experiments a hollow shell of argon or krypton gas liner, injected between the 1 cm anode-cathode gap, compresses a deuterium plasma target of varying density. Axial magnetic field Bz <= 2 kGs, applied throughout the pinch region, stabilizes the Rayleigh-Taylor instability. The standard silver activation diagnostics and 4 plastic scintillator neutron Time of Flight (nTOF) detectors are augmented with a large area ( 1400 cm2) liquid scintillator detector to which fast gatedPhotek photomultipliers are attached. Sample data from these neutron diagnostics systems is presented. Consistently high neutron yields YDD >109 are measured, with highest yield of 2.6 ×109 . A pair of horizontally and vertically placed plastic scintillator nTOFs suggest isotropic i.e. thermonuclear origin of the neutrons produced. nTOF data from the liquid scintillator detector was cross-calibrated with the silver activation detector, and can be used for accurate calculation of the neutron yield. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.

  8. Li+, Na+ and K+ co-doping effects on scintillation properties of Ce:Gd3Ga3Al2O12 single crystals

    NASA Astrophysics Data System (ADS)

    Yoshino, Masao; Kamada, Kei; Kochurikhin, Vladimir V.; Ivanov, Mikhail; Nikl, Martin; Okumura, Satoshi; Yamamoto, Seiichi; Yeom, Jung Yeol; Shoji, Yasuhiro; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2018-06-01

    Ce0.5%: Ce:Gd3Ga3Al2O12(GGAG) single crystals co-doped with 500at.ppm Li+, Na+ and K+ were grown by using the micro-pulling down method. The smooth Ce4+ charge transfer absorption below 350 nm and decay time acceleration were observed in Li co-doped sample. Na+ and K+ co-doping did not show a large effect on the acceleration of decay time compared with Li co-doping. Ce0.5%:GGAG single crystals co-doped with 500 at.ppm Li+ were also grown by the Czochralski method. Optical, scintillation properties and timing performance were evaluated to investigate the effect of univalent alkali metal ions co-doping on Ce:GGAG scintillators. The scintillation decay curves were accelerated by Li co-doping: the decay time was significantly accelerated to 54.8 ns (47%) for the faster component and 158 ns (53%) for the slower component. The light output was 94% of the non co-doped Ce:GGAG standard. The coincidence time resolution was improved to 258 ps by Li co-doping.

  9. Luminescence properties and scintillation response in Ce3+-doped Y2Gd1Al5-xGaxO12 (x = 2, 3, 4) single crystals

    NASA Astrophysics Data System (ADS)

    Chewpraditkul, Warut; Pánek, Dalibor; Brůža, Petr; Chewpraditkul, Weerapong; Wanarak, Chalerm; Pattanaboonmee, Nakarin; Babin, Vladimir; Bartosiewicz, Karol; Kamada, Kei; Yoshikawa, Akira; Nikl, Martin

    2014-08-01

    The compositional dependence of luminescence properties and scintillation response were investigated in Ce3+-doped Y2Gd1Al5-xGaxO12 (x = 2, 3, 4) single crystals. The Gd3+ → Ce3+ energy transfer was evidenced by photoluminescence excitation spectra of Ce3+ emission. With increasing Ga content in the garnet host, the Ce3+ luminescence from the lowest 5d level (5d1) is shifted toward higher energy due to the decrease in the crystal field splitting of the 5d levels. Light yield (LY) and its dependence on the amplifier shaping time were measured under excitation with γ-rays. High LY value of ˜38 000 ph/MeV was obtained for a Y2Gd1Al3Ga2O12:Ce sample. Scintillation decay was measured with an extended dynamical and temporal scale under the nanosecond pulse soft X-ray excitation. The decrease of both LY value and relative contribution of slower decay component in the scintillation response was observed with increasing Ga content in the garnet host.

  10. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation.

    PubMed

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A; Bouquerel, Hélène

    2016-06-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L(-1) and 10% for 10 mBq L(-1). While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L(-1), a conservative experimental estimate is rather 5 mBq L(-1), corresponding to 0.14 fg g(-1). The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Digital carrier demodulator employing components working beyond normal limits

    NASA Technical Reports Server (NTRS)

    Hurd, William J. (Inventor); Sadr, Ramin (Inventor)

    1990-01-01

    In a digital device, having an input comprised of a digital sample stream at a frequency F, a method is disclosed for employing a component designed to work at a frequency less than F. The method, in general, is comprised of the following steps: dividing the digital sample stream into odd and even digital samples streams each at a frequency of F/2; passing one of the digital sample streams through the component designed to work at a frequency less than F where the component responds only to the odd or even digital samples in one of the digital sample streams; delaying the other digital sample streams for the time it takes the digital sample stream to pass through the component; and adding the one digital sample stream after passing through the component with the other delayed digital sample streams. In the specific example, the component is a finite impulse response filter of the order ((N + 1)/2) and the delaying step comprised passing the other digital sample streams through a shift register for a time (in sampling periods) of ((N + 1)/2) + r, where r is a pipline delay through the finite impulse response filter.

  12. Characterization of large TSV MPPC arrays (4 × 4 ch and 8 × 8 ch) in scintillation spectrometry

    NASA Astrophysics Data System (ADS)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.; Korolczuk, S.; Baszak, J.; Kapusta, M.

    2017-10-01

    The main objective of this work was to characterize the new multi-pixel photon counter (MPPC) arrays with a 12 × 12mm2 and a 24 × 24mm2 active area, made using through-silicon via (TSV) technology and with trenches introduced between the cells, in gamma-ray spectrometry with five different scintillators: CsI:Tl, NaI:Tl, LSO/LYSO, BGO, and LaBr3. The results of the study are compared to those obtained previously with the older sample of the 12 × 12mm2 MPPC array made as a monolithic device. TSV MPPC array with the size of 24 × 24mm2 is one of the first commercially available SiPM with such a large active area and with the dead space between channels minimized to only 0.2 mm. Moreover, in these devices, Hamamatsu introduced trenches between cells to reduce cross-talk. Hence excess noise factor (ENF) was also reduced from a value of 1.7 to 1.2 in comparison to the "old" monolithic sample (data for the same overvoltage of 1.3V). Whereby for the new MPPCs, the optimum operating voltage is higher by about 0.6V. In consequence, this higher optimal overvoltage means a higher photon detection efficiency (PDE) and number of photoelectrons, and leads to improved energy resolution. Energy resolution measured for the 662keV full energy peak in a 137 Csγ-source spectrum recorded with 12 × 12mm2 TSV MPPC and two CsI:Tl scintillators (12 × 12 × 12mm3 and 1 × 1 in) equals to 5.8% and 6.8%, respectively. For the "old" MPPC with the same CsI:Tl scintillators energy resolution is equal to 6.4% and 7.1%, respectively. These improved TSV MPPC arrays can be commercially used for scintillation light readout of "large" crystals with a diameter of 1 × 1 in or 2 × 2 in, suitable for gamma spectrometry in a wide range of applications. The combination of new 8 × 8 ch (24 × 24mm2) TSV MPPC and 2 × 2 in NaI:Tl gives an excellent energy resolution below 8%, despite the incomplete match of the scintillator surface to the active area of MPPC and loss of the part of the light.

  13. Method and apparatus for data sampling

    DOEpatents

    Odell, Daniel M. C.

    1994-01-01

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium.

  14. Design, construction, characterization and use of a detector to measure time of flight of cosmic rays

    NASA Astrophysics Data System (ADS)

    Araujo, A. C.; Félix, J.

    2016-10-01

    In the study of cosmic rays, measurements of time of flight and momentum have been used to identify incident particles from its physical properties, like mass. In this poster we present the design, construction, characterization, and operation of a detector to measure time of flight of cosmic rays. The device is comprised of three plates of plastic scintillator arranged in vertical straight line, they are coupled to one photomultiplier tube. The analogical output has been connected to a data acquisition system to obtain the number of digital pulses per millisecond. We present preliminary results.

  15. Kinesonde observations of ionosphere modification by intense electromagnetic fields from Platteville, Colorado.

    NASA Technical Reports Server (NTRS)

    Wright, J. W.

    1973-01-01

    Observations by the Kinesonde (a multifrequency, spaced antenna, digitized complex-amplitude radio sounding system) of ionospheric responses to excitation by the high-power transmitter at Platteville, Colo., are described. Increases of echo scintillation rate and intensity at frequencies reflected near and far from the excitation level are shown. Significant onset delays of these responses suggest disturbance propagation velocities of a few kilometers per second. Calculated echolocations show a time-dependent development toward the excitation region, again with a delayed response. Comments are offered regarding the relative utility of ionogram and Kinesonde observations for study of these phenomena.

  16. A Cerenkov-Range analysis of the isotopic composition of cosmic rays with Z from 6 to 26

    NASA Technical Reports Server (NTRS)

    Fisher, A. J.; Hagen, F. A.; Maehl, R.; Ormes, J. F.

    1975-01-01

    High-altitude balloon data on the isotopic composition of heavy cosmic rays are reported. The experiment used a Cerenkov detector, arrays of scintillators, and a digitized wire spark chamber. Peaks assigned to the mono-isotopic elements F and Na indicate that an absolute mass scale can be derived from the data. Even-Z elements in the Z range from 12 through 16 are represented mainly by alpha-particle nuclei. Neutron-rich components dominate in the case of neon present. Mass histograms are plotted for C, O, N, Ne, Mg, and Fe.

  17. Energy spectrum of medium energy gamma-rays from the galactic center region. [experimental design

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Ramanujarao, K.; Dutra, S. L. G.; Bertsch, D. L.; Kniffen, D. A.; Morris, D. J.

    1978-01-01

    A balloon-borne magnetic core digitized spark chamber with two assemblies of spark-chambers above and below the scintillation counters was used to measure the medium energy gamma ray flux from the galactic center region. Gamma ray calculations are based on the multiple scattering of the pair electrons in 15 aluminum plates interleaved in the spark chamber modules. Counting rates determined during ascent and at ceiling indicate the presence of diffuse component in this energy range. Preliminary results give an integral flux between 15 and 70 MeV compared to the differential points in other results.

  18. Device and Method of Scintillating Quantum Dots for Radiation Imaging

    NASA Technical Reports Server (NTRS)

    Burke, Eric R. (Inventor); DeHaven, Stanton L. (Inventor); Williams, Phillip A. (Inventor)

    2017-01-01

    A radiation imaging device includes a radiation source and a micro structured detector comprising a material defining a surface that faces the radiation source. The material includes a plurality of discreet cavities having openings in the surface. The detector also includes a plurality of quantum dots disclosed in the cavities. The quantum dots are configured to interact with radiation from the radiation source, and to emit visible photons that indicate the presence of radiation. A digital camera and optics may be used to capture images formed by the detector in response to exposure to radiation.

  19. Kinetic Monte Carlo Simulations of Scintillation Processes in NaI(Tl)

    NASA Astrophysics Data System (ADS)

    Kerisit, Sebastien; Wang, Zhiguo; Williams, Richard T.; Grim, Joel Q.; Gao, Fei

    2014-04-01

    Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this paper to simulate the kinetics of scintillation for a range of temperatures and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.

  20. Water Vapor Permeation in Plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Paul E.; Kouzes, Richard T.

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors,more » and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.« less

  1. Effect of quench on alpha/beta pulse shape discrimination of liquid scintillation cocktails.

    PubMed

    DeVol, Timothy A; Theisen, Christopher D; DiPrete, David P

    2007-05-01

    The objectives of this paper are (1) to illustrate that knowledge of the external quench parameter is insufficient to properly setup a pulse shape discriminating liquid scintillation counter (LSC) for quantitative measurement, (2) to illustrate dependence on pulse shape discrimination on the radionuclide (more than just radiation and energy), and (3) to compare the pulse shape discrimination (PSD) of two commercial instruments. The effects various quenching agents, liquid scintillation cocktails, radionuclides, and LSCs have on alpha/beta pulse shape discriminating liquid scintillation counting were quantified. Alpha emitting radionuclides (239)Pu and (241)Am and beta emitter (90)Sr/(90)Y were investigated to quantify the nuclide dependence on alpha/beta pulse shape discrimination. Also, chemical and color quenching agents, nitromethane, nitric acid, and yellow dye impact on alpha/beta pulse shape discrimination using PerkinElmer Optiphase "HiSafe" 2 and 3, and Ultima Gold AB liquid scintillation cocktails were determined. The prepared samples were counted on the PerkinElmer Wallac WinSpectral 1414 alpha/beta pulse shape discriminating LSC. It was found that for the same level of quench, as measured by the external quench parameter, different quench agents influenced the pulse shape discrimination and the pulse shape discrimination parameters differently. The radionuclide also affects alpha/beta pulse shape discrimination. By comparison with the PerkinElmer Tri-carb 3150 TR/AB, the Wallac 1414 exhibited better pulse shape discrimination capability under the same experimental conditions.

  2. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  3. Analysis of radioactive strontium-90 in food by Čerenkov liquid scintillation counting.

    PubMed

    Pan, Jingjing; Emanuele, Kathryn; Maher, Eileen; Lin, Zhichao; Healey, Stephanie; Regan, Patrick

    2017-08-01

    A simple liquid scintillation counting method using DGA/TRU resins for removal of matrix/radiometric interferences, Čerenkov counting for measuring 90 Y, and EDXRF for quantifying Y recovery was validated for analyzing 90 Sr in various foods. Analysis of samples containing energetic β emitters required using TRU resin to avoid false detection and positive bias. Additional 34% increase in Y recovery was obtained by stirring the resin while eluting Y with H 2 C 2 O 4 . The method showed acceptable accuracy (±10%), precision (10%), and detectability (~0.09Bqkg -1 ). Published by Elsevier Ltd.

  4. State of the Art and Development Trends of the Digital Radiography Systems for Cargo Inspection

    NASA Astrophysics Data System (ADS)

    Udod, V.; Van, J.; Osipov, S.; Chakhlov, S.; Temnik, A.

    2016-01-01

    Increasing requirements for technical parameters of inspection digital radiography systems are caused by increasing incidences of terrorism, drug trafficking and explosives via variety of transport. These requirements have determined research for new technical solutions that enable to ensure the safety of passengers and cargos in real-time. The main efforts in the analyzed method of testing are aimed at the creation of new and modernization of operated now systems of digital radiography as a whole and their main components and elements in particular. The number of these main components and elements includes sources of X-ray recording systems and transformation of radiometric information as well as algorithms and software that implements these algorithms for processing, visualization and results interpretation of inspection. Recent developments of X-ray units and betatrons used for inspection of small- and large-sized objects that are made from different materials are deserve special attention. The most effective X-ray detectors are a line and a radiometric detector matrix based on various scintillators. The most promising methods among the algorithms of material identification of testing objects are dual-energy methods. The article describes various models of digital radiography systems applied in Russia and abroad to inspection of baggage, containers, vehicles and large trucks.

  5. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, Lowell; Funk, Loren L; Hannan, Bruce W

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52%more » higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.« less

  6. Method and apparatus for data sampling

    DOEpatents

    Odell, D.M.C.

    1994-04-19

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples is described. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium. 6 figures.

  7. Determination of (210)Pb and (210)Po in water using the extractive scintillation cocktail Polex™.

    PubMed

    Landstetter, Claudia; Hiegesberger, Bernd; Sinojmeri, Merita; Katzlberger, Christian

    2014-11-01

    Method validation was performed to achieve the accreditation for our determination method of (210)Pb and (210)Po in water. A Pb(NO3)2 carrier is added to the sample and lead is precipitated with Na2SxH2O. (210)Po is co-precipitated and the extractive scintillation cocktail Polex(™) is used to determine (210)Po and (210)Pb. Uranium is also extracted by Polex(™). It can be removed by washing the precipitate with 1% HNO3. The ingrowth of (210)Pb from (222)Rn during transportation time must be calculated. It has to be subtracted from the original (210)Pb in the sample and taken into account for the calculation of the lower limit of detection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Analysis of (210)Pb in water samples with plastic scintillation resins.

    PubMed

    Lluch, E; Barrera, J; Tarancón, A; Bagán, H; García, J F

    2016-10-12

    (210)Pb is a radioactive lead isotope present in the environment as member of the (238)U decay chain. Since it is a relatively long-lived radionuclide (T1/2 = 22.2 years), its analysis is of interest in radiation protection and the geochronology of sediments and artwork. Here, we present a method for analysing (210)Pb using plastic scintillation resins (PSresins) packaged in solid-phase extraction columns (SPE cartridge). The advantages of this method are its selectivity, the low limit of detection, as well as reductions in the amount of time and reagents required for analysis and the quantity of waste generated. The PSresins used in this study were composed of a selective extractant (4',4″(5″)-Di-tert-butyldicyclohexano-18-crown-6 in 1-octanol) covering the surface of plastic scintillation microspheres. Once the amount of extractant (1:1/4) and medium of separation (2 M HNO3) were optimised, PSresins in SPE cartridges were calibrated with a standard solution of (210)Pb. (210)Pb could be fully separated from its daughters, (210)Bi and (210)Po, with a recovery value of 91(3)% and detection efficiency of 44(3)%. Three spiked water samples (one underground and two river water samples) were analysed in triplicates with deviations lower than 10%, demonstrating the validity of the PS resin method for (210)Pb analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Kinetic Monte Carlo simulations of scintillation processes in NaI(Tl)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien N.; Wang, Zhiguo; Williams, Richard

    2014-04-26

    Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this work to simulate the kinetics of scintillation for a range of temperaturesmore » and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.« less

  10. Analysis of Ionospheric Scintillation Characteristics in Sub-Antarctica Region with GNSS Data at Macquarie Island.

    PubMed

    Guo, Kai; Liu, Yang; Zhao, Yan; Wang, Jinling

    2017-01-12

    Ionospheric scintillation has a great impact on radio propagation and electronic system performance, thus is extensively studied currently. The influence of scintillation on Global Navigation Satellite System (GNSS) is particularly evident, making GNSS an effective medium to study characteristics of scintillation. Ionospheric scintillation varies greatly in relation with temporal and spatial distribution. In this paper, both temporal and spatial characteristics of scintillation are investigated based on Macquarie Island's GNSS scintillation data collected from 2011 to 2015. Experiments demonstrate that occurrence rates of amplitude scintillation have a close relationship with solar activity, while phase scintillation is more likely to be generated by geomagnetic activity. In addition, scintillation distribution behaviors related to elevation and azimuth angles are statistically analyzed for both amplitude and phase scintillation. The proposed work is valuable for a deeper understanding of theoretical mechanisms of ionospheric scintillation in this region, and provides a reference for GNSS applications in certain regions around sub-Antarctica.

  11. Bio-inspired digital signal processing for fast radionuclide mixture identification

    NASA Astrophysics Data System (ADS)

    Thevenin, M.; Bichler, O.; Thiam, C.; Bobin, C.; Lourenço, V.

    2015-05-01

    Countries are trying to equip their public transportation infrastructure with fixed radiation portals and detectors to detect radiological threat. Current works usually focus on neutron detection, which could be useless in the case of dirty bomb that would not use fissile material. Another approach, such as gamma dose rate variation monitoring is a good indication of the presence of radionuclide. However, some legitimate products emit large quantities of natural gamma rays; environment also emits gamma rays naturally. They can lead to false detections. Moreover, such radio-activity could be used to hide a threat such as material to make a dirty bomb. Consequently, radionuclide identification is a requirement and is traditionally performed by gamma spectrometry using unique spectral signature of each radionuclide. These approaches require high-resolution detectors, sufficient integration time to get enough statistics and large computing capacities for data analysis. High-resolution detectors are fragile and costly, making them bad candidates for large scale homeland security applications. Plastic scintillator and NaI detectors fit with such applications but their resolution makes identification difficult, especially radionuclides mixes. This paper proposes an original signal processing strategy based on artificial spiking neural networks to enable fast radionuclide identification at low count rate and for mixture. It presents results obtained for different challenging mixtures of radionuclides using a NaI scintillator. Results show that a correct identification is performed with less than hundred counts and no false identification is reported, enabling quick identification of a moving threat in a public transportation. Further work will focus on using plastic scintillators.

  12. Polycrystalline scintillators for large area detectors in HEP experiments

    NASA Astrophysics Data System (ADS)

    Dosovitskiy, G.; Fedorov, A.; Karpyuk, P.; Kuznetsova, D.; Mikhlin, A.; Kozlov, D.; Dosovitskiy, A.; Korjik, M.

    2017-06-01

    After significant increase of the accelerator luminosity throughout the High Luminosity phase of LHC, charged hadrons and neutrons with fluences higher than 1014 p/cm2 per year in the largest pseudo-rapidity regions of the detectors will cause increased radiation damage of materials. Increasing activation of the experimental equipment will make periodical maintenance and replacement of detector components difficult. Therefore, the selected materials for new detectors should be tolerant to radiation damage. Y3Al5O12:Ce (YAG:Ce) crystal was found to be one of the most radiation hard scintillation materials. However, production of YAG:Ce in a single crystalline form is costly, because crystal growth is performed at temperature near 1900°C with a very low rate of transformation of a raw material into a crystal. We propose translucent YAG:Ce ceramics as an alternative cheaper solution. Ceramic samples were sintered up to density ~98% of the theoretical value and were translucent. The samples have demonstrated light yield of 2200 phot./MeV under 662 keV γ-quanta, which gives the expected response to minimum ionizing particle around 3000 phot. for 2 mm thick plate. Scintillation light yield, registered under surface layer excitation with α-particles, was 50-70% higher than for the reference single crystal YAG:Ce.

  13. Quality control assurance of strontium-90 in foodstuffs by LSC.

    PubMed

    Lopes, I; Mourato, A; Abrantes, J; Carvalhal, G; Madruga, M J; Reis, M

    2014-11-01

    A method based on the separation of Sr-90 by extraction chromatography and beta determination by Liquid Scintillation Counting (LSC) technique was used for strontium analysis in food samples. The methodology consisted in prior sample treatment (drying and incineration) followed by radiochemical separation of Sr-90 by extraction chromatography, using the Sr-resin. The chemical yield was determined by gravimetric method, adding stable strontium to the matrix. Beta activity (Sr-90/Y-90) was determined using a low background liquid scintillation spectrometer (Tri-Carb 3170 TR/SL, Packard). The accuracy and the precision of the method, was performed previously through recovery trials with Sr-90 spiked samples, using the same type of matrices (milk, complete meals, meat and vegetables). A reference material (IAEA_321) was now used to measure the accuracy of the procedure. Participation in interlaboratory comparison exercises was also performed in order to establish an external control on the measurements and to ensure the adequacy of the method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Method to determine 226Ra in small sediment samples by ultralow background liquid scintillation.

    PubMed

    Sanchez-Cabeza, Joan-Albert; Kwong, Laval Liong Wee; Betti, Maria

    2010-08-15

    (210)Pb dating of sediment cores is a widely used tool to reconstruct ecosystem evolution and historical pollution during the last century. Although (226)Ra can be determined by gamma spectrometry, this method shows severe limitations which are, among others, sample size requirements and counting times. In this work, we propose a new strategy based on the analysis of (210)Pb through (210)Po in equilibrium by alpha spectrometry, followed by the determination of (226)Ra (base or supported (210)Pb) without any further chemical purification by liquid scintillation and with a higher sample throughput. Although gamma spectrometry might still be required to determine (137)Cs as an independent tracer, the effort can then be focused only on those sections dated around 1963, when maximum activities are expected. In this work, we optimized the counting conditions, calibrated the system for changing quenching, and described the new method to determine (226)Ra in small sediment samples, after (210)Po determination, allowing a more precise determination of excess (210)Pb ((210)Pb(ex)). The method was validated with reference materials IAEA-384, IAEA-385, and IAEA-313.

  15. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  16. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy.

    PubMed

    Ingram, W Scott; Robertson, Daniel; Beddar, Sam

    2015-03-11

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator's stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent.

  17. Ionospheric Scintillations from Conjugate Stations during the 2015 St. Patrick Storm.

    NASA Astrophysics Data System (ADS)

    D'angelo, G.; Piersanti, M.; Alfonsi, L.; Spogli, L.

    2016-12-01

    The storm onset on the St. Patrick day of March 2015 triggered several fluctuations of the electron density causing severe scintillations at polar latitudes of both hemispheres. L-band monitoring of the ionosphere can be accomplished by means of specially modified GNSS (Global Navigation Satellite Systems) receivers capable to sample the received signals at 50 Hz. Thanks to the availability of data acquired by such kind of devices, we had the opportunity to investigate the ionospheric response, in terms of GPS phase scintillations, recorded at ground in Antarctica and in the Arctic. In particular, we analyzed data from Eureka (79.99°N, 274.10°E) and Concordia (75.10°S, 123.35°E) stations to look at the conjugate response of the ionosphere to the most intense storm of the current solar cycle. We found an asymmetric response of the intensity of the phase scintillations recorded at the same Universal Time (UT) by the two stations during the main phase of the storm. While we found a completely asymmetric response (in terms of hemisphere, UT and intensity) during the recovery phase. By using the POES and GOES magnetospheric field and electron density data, we evaluated the magnetospheric field and the electron flux responses to the storm. We used the TS04 (Tsyganenko and Sitnov, 2005) model prevision to estimate the current configurations that better reproduce the actual magnetospheric observations. Additionally, we adopted the Rankine-Hugoniot conditions, applied to L1 satellites measurements, to assess the normal direction of the interplanetary shock. The proposed multi-disciplinary approach revealed to be a powerful tool to explain the symmetric/asymmetric response of the scintillations occurrence over the two conjugated stations. The storm onset on the St. Patrick day of March 2015 triggered several fluctuations of the electron density causing severe scintillations at polar latitudes of both hemispheres. L-band monitoring of the ionosphere can be accomplished by means of specially modified GNSS (Global Navigation Satellite Systems) receivers capable to sample the received signals at 50 Hz. Thanks to the availability of data acquired by such kind of devices, we had the opportunity to investigate the ionospheric response, in terms of GPS phase scintillations, recorded at ground in Antarctica and in the Arctic. In particular, we analyzed data from Eureka (79.99°N, 274.10°E) and Concordia (75.10°S, 123.35°E) stations to look at the conjugate response of the ionosphere to the most intense storm of the current solar cycle. We found an asymmetric response of the intensity of the phase scintillations recorded at the same Universal Time (UT) by the two stations during the main phase of the storm. While we found a completely asymmetric response (in terms of hemisphere, UT and intensity) during the recovery phase. By using the POES and GOES magnetospheric field and electron density data, we evaluated the magnetospheric field and the electron flux responses to the storm. We used the TS04 (Tsyganenko and Sitnov, 2005) model prevision to estimate the current configurations that better reproduce the actual magnetospheric observations. Additionally, we adopted the Rankine-Hugoniot conditions, applied to L1 satellites measurements, to assess the normal direction of the interplanetary shock. The proposed multi-disciplinary approach revealed to be a powerful tool to explain the symmetric/asymmetric response of the scintillations occurrence over the two conjugated stations.

  18. Development of the new trigger for VANDLE neutron detector

    NASA Astrophysics Data System (ADS)

    Hasse, Adam; Taylor, Steven; Daugherty, Hadyn; Grzywacz, Robert

    2014-09-01

    Beta-delayed neutron emission (βn) is the dominant decay channel for the majority of very neutron-rich nuclei. In order to study these decays a new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed. A critical part of this neutron time of flight detector is a trigger unit. This trigger is sensitive to electron from beta decay down to very low energies, insensitive to gamma rays and have a good timing performance, better than 1 ns. In order to satisfy these condition, we have developed a new system, which utilizes plastic scintillator but uses recently developed light readout technique, based on the so called Silicon Photomultiplier, manufactured by Sensl. New system has been developed and performance tested using digital data acquisition system at the University of Tennessee and will be utilized in future experiments involving VANDLE. Beta-delayed neutron emission (βn) is the dominant decay channel for the majority of very neutron-rich nuclei. In order to study these decays a new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed. A critical part of this neutron time of flight detector is a trigger unit. This trigger is sensitive to electron from beta decay down to very low energies, insensitive to gamma rays and have a good timing performance, better than 1 ns. In order to satisfy these condition, we have developed a new system, which utilizes plastic scintillator but uses recently developed light readout technique, based on the so called Silicon Photomultiplier, manufactured by Sensl. New system has been developed and performance tested using digital data acquisition system at the University of Tennessee and will be utilized in future experiments involving VANDLE. Department of Physics and Astronomy, University of Tennessee, Knoxville, USA.

  19. Development of signal processing system of avalanche photo diode for space observations by Astro-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Goto, K.; Hanabata, Y.; Takahashi, H.; Fukazawa, Y.; Yoshino, M.; Saito, T.; Nakamori, T.; Kataoka, J.; Sasano, M.; Torii, S.; Uchiyama, H.; Nakazawa, K.; Watanabe, S.; Kokubun, M.; Ohta, M.; Sato, T.; Takahashi, T.; Tajima, H.

    2013-01-01

    Astro-H is the sixth Japanese X-ray space observatory which will be launched in 2014. Two of onboard instruments of Astro-H, Hard X-ray Imager and Soft Gamma-ray Detector are surrounded by many number of large Bismuth Germanate (Bi4Ge3O12; BGO) scintillators. Optimum readout system of scintillation lights from these BGOs are essential to reduce the background signals and achieve high performance for main detectors because most of gamma-rays from out of field-of-view of main detectors or radio-isotopes produced inside them due to activation can be eliminated by anti-coincidence technique using BGO signals. We apply Avalanche Photo Diode (APD) for light sensor of these BGO detectors since their compactness and high quantum efficiency make it easy to design such large number of BGO detector system. For signal processing from APDs, digital filter and other trigger logics on the Field-Programmable Gate Array (FPGA) is used instead of discrete analog circuits due to limitation of circuit implementation area on spacecraft. For efficient observations, we have to achieve as low threshold of anti-coincidence signal as possible by utilizing the digital filtering. In addition, such anti-coincident signals should be sent to the main detector within 5 μs to make it in time to veto the A-D conversion. Considering this requirement and constraint from logic size of FPGA, we adopt two types of filter, 8 delay taps filter with only 2 bit precision coefficient and 16 delay taps filter with 8 bit precision coefficient. The data after former simple filter provides anti-coincidence signal quickly in orbit, and the latter filter is used for detail analysis after the data is down-linked.

  20. Isotopic response with small scintillator based gamma-ray spectrometers

    DOEpatents

    Madden, Norman W [Sparks, NV; Goulding, Frederick S [Lafayette, CA; Asztalos, Stephen J [Oakland, CA

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  1. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  2. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  3. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processingmore » to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.« less

  4. Assessment of scintillation proxy maps for a scintillation study during geomagnetically quiet and disturbed conditions over Uganda

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2017-02-01

    The objective of this paper is demonstrate the validity and usefulness of scintillation proxies derived from IGS data, through its comparison with data from dedicated scintillation monitors and its application to GNSS scintillation patterns. The paper presents scintillation patterns developed by using data from the dedicated scintillation monitors of the scintillation network decision aid (SCINDA) network, and proxy maps derived from IGS GPS data for 2011 and 2012 over low latitude stations in Uganda. The amplitude and phase scintillation indicies (S4 and σΦ) were obtained from the Novatel GSV4004B ionospheric scintillation and total electron content (TEC) monitor managed by SCINDA at Makerere (0.340N, 32.570E). The corresponding IGS GPS proxy data were obtained from the receivers at Entebbe (0.040N, 32.440E) and Mbarara (0.600S, 30.740E). The derived amplitude (S4p) and phase (sDPR) scintillation proxy maps were compared with maps of S4 and σΦ during geomagnetic storms (moderate and strong) and geomagnetically quiet conditions. The scintillation patterns using S4 and σΦ and their respective proxies revealed similar diurnal and seasonal patterns of strong scintillation occurrence. The peaks of scintillation occurrence with mean values in the range 0.3 < (S4p , sDPR) ≤ 0.6 were observed during nighttime (17:00-22:00 UT) and in the months of March-April and September-October. The results also indicate that high level scintillations occur during geomagnetically disturbed (moderate and strong) and quiet conditions over the Ugandan region. The results show that SCINDA and IGS based scintillation patterns reveal the same nighttime and seasonal occurrence of irregularities over Uganda irrespective of the geomagnetic conditions. Therefore, the amplitude and phase scintillation proxies presented here can be used to fill gaps in low-latitude data where there are no data available from dedicated scintillation receivers, irrespective of the geomagnetic conditions.

  5. Test of a single module of the J-PET scanner based on plastic scintillators

    NASA Astrophysics Data System (ADS)

    Moskal, P.; Niedźwiecki, Sz.; Bednarski, T.; Czerwiński, E.; Kapłon, Ł.; Kubicz, E.; Moskal, I.; Pawlik-Niedźwiecka, M.; Sharma, N. G.; Silarski, M.; Zieliński, M.; Zoń, N.; Białas, P.; Gajos, A.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.; Molenda, M.; Pałka, M.; Raczyński, L.; Rudy, Z.; Salabura, P.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.

    2014-11-01

    A Time of Flight Positron Emission Tomography scanner based on plastic scintillators is being developed at the Jagiellonian University by the J-PET collaboration. The main challenge of the conducted research lies in the elaboration of a method allowing application of plastic scintillators for the detection of low energy gamma quanta. In this paper we report on tests of a single detection module built out from the BC-420 plastic scintillator strip (with dimensions of 5×19×300 mm3) read out at two ends by Hamamatsu R5320 photomultipliers. The measurements were performed using collimated beam of annihilation quanta from the 68Ge isotope and applying the Serial Data Analyzer (Lecroy SDA6000A) which enabled sampling of signals with 50 ps intervals. The time resolution of the prototype module was established to be better than 80 ps (σ) for a single level discrimination. The spatial resolution of the determination of the hit position along the strip was determined to be about 0.93 cm (σ) for the annihilation quanta. The fractional energy resolution for the energy E deposited by the annihilation quanta via the Compton scattering amounts to σ(E) / E ≈ 0.044 /√{ E(MeV) } and corresponds to the σ(E) / E of 7.5% at the Compton edge.

  6. 950 keV X-Band Linac For Material Recognition Using Two-Fold Scintillator Detector As A Concept Of Dual-Energy X-Ray System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kiwoo; Natsui, Takuya; Hirai, Shunsuke

    2011-06-01

    One of the advantages of applying X-band linear accelerator (Linac) is the compact size of the whole system. That shows us the possibility of on-site system such as the custom inspection system in an airport. As X-ray source, we have developed X-band Linac and achieved maximum X-ray energy 950 keV using the low power magnetron (250 kW) in 2 {mu}s pulse length. The whole size of the Linac system is 1x1x1 m{sup 3}. That is realized by introducing X-band system. In addition, we have designed two-fold scintillator detector in dual energy X-ray concept. Monte carlo N-particle transport (MCNP) code wasmore » used to make up sensor part of the design with two scintillators, CsI and CdWO4. The custom inspection system is composed of two equipments: 950 keV X-band Linac and two-fold scintillator and they are operated simulating real situation such as baggage check in an airport. We will show you the results of experiment which was performed with metal samples: iron and lead as targets in several conditions.« less

  7. Performance of a Facility for Measuring Scintillator Non-Proportionality

    NASA Astrophysics Data System (ADS)

    Choong, Woon-Seng; Hull, Giulia; Moses, William W.; Vetter, Kai M.; Payne, Stephen A.; Cherepy, Nerine J.; Valentine, John D.

    2008-06-01

    We have constructed a second-generation Compton coincidence instrument, known as the Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI), to characterize the electron response of scintillating materials. While the SLYNCI design includes more and higher efficiency HPGe detectors than the original apparatus (five 25%-30% detectors versus one 10% detector), the most novel feature is that no collimator is placed in front of the HPGe detectors. Because of these improvements, the SLYNCI data collection rate is over 30 times higher than the original instrument. In this paper, we present a validation study of this instrument, reporting on the hardware implementation, calibration, and performance. We discuss the analysis method and present measurements of the electron response of two different NaI:Tl samples. We also discuss the systematic errors of the measurement, especially those that are unique to SLYNCI. We find that the apparatus is very stable, but that careful attention must be paid to the energy calibration of the HPGe detectors.

  8. Measurement of fast neutron detection efficiency with 6Li and 7Li enriched CLYC scintillators

    NASA Astrophysics Data System (ADS)

    Mentana, A.; Camera, F.; Giaz, A.; Blasi, N.; Brambilla, S.; Ceruti, S.; Gini, L.; Groppi, F.; Manenti, S.; Million, B.; Riboldi, S.

    2016-10-01

    The CLYC (Cs2LiYC6:Ce) crystal belongs to the elpasolite scintillator family, discovered about 15 years ago. It is a very interesting material because of its good energy resolution and its capability to identify and measure gamma rays and fast/thermal neutrons. In the present work, the fast neutron detection efficiency for two different CLYC cylindrical samples has been measured. These two crystals, both with dimension (thickness x diameter) 1”×1”, were respectively enriched with more than 99% of 7Li (CLYC-7) and with ∼ 95% of 6Li (CLYC-6). The presence of the 6Li isotope makes the CLYC-6 ideal to detect thermal neutrons. In order to compare the two scintillators, only the detection efficiency for fast neutrons was considered, neglecting the energy region associated to thermal neutrons in both the crystals. The measurement was performed at the L.A.S.A. Laboratory of INFN and University of Milano (Italy), using a 241Am-Be source.

  9. Gross beta determination in drinking water using scintillating fiber array detector.

    PubMed

    Lv, Wen-Hui; Yi, Hong-Chang; Liu, Tong-Qing; Zeng, Zhi; Li, Jun-Li; Zhang, Hui; Ma, Hao

    2018-04-04

    A scintillating fiber array detector for measuring gross beta counting is developed to monitor the real-time radioactivity in drinking water. The detector, placed in a stainless-steel tank, consists of 1096 scintillating fibers, both sides of which are connected to a photomultiplier tube. The detector parameters, including working voltage, background counting rate and stability, are tested, and the detection efficiency is calibrated using standard potassium chloride solution. Water samples are measured with the detector and the results are compared with those by evaporation method. The results show consistency with those by evaporation method. The background counting rate of the detector is 38.131 ± 0.005 cps, and the detection efficiency for β particles is 0.37 ± 0.01 cps/(Bq/l). The MDAC of this system can be less than 1.0 Bq/l for β particles in 120 min without pre-concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Preparation of New Scintillation Imaging Material Composed of Scintillator-Silica Fine Powders and its Imaging of Tritium.

    PubMed

    Miyoshi, Hirokazu; Hiroura, Mitsunori; Tsujimoto, Kazunori; Irikura, Namiko; Otani, Tamaki; Shinohara, Yasuo

    2017-05-01

    A new scintillation imaging material [scintillator-silica fine powder (FP)] was prepared using silica FPs and scintillator-encapsulating silica nanoparticles (NPs) (scintillator-silica NPs). The wt% values of scintillator-silica NPs on the scintillator-silica FPs were 38, 43, 36 and 44%. Scintillation images of 3H, 63Ni, 35S, 33P, 204Tl, 89Sr and 32P dropped on the scintillator-silica FPs were obtained at about 37 kBq per 0.1-10 µl with a charge-coupled device (CCD) imager for a 5 min exposure. In particular, high-intensity CCD images of 35S were selectively obtained using the 2.25, 4.77 and 10 µm silica FPs with scintillator-silica NPs owing to the residual S of dimethyl sulfoxide in the preparation. Scintillation images of 3H at 1670 ± 9 Bq/0.5 µl and 347 ± 6 Bq/0.5 µl dropped in a 2 mm hole on the scintillator-silica FPs (6.78 and 10 µm) were also obtained using the CCD imager for a 2 h exposure. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy

    PubMed Central

    Ingram, W. Scott; Robertson, Daniel; Beddar, Sam

    2015-01-01

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent. PMID:25705066

  12. Study on the Characteristics of a Scintillator for Beta-ray Detection using Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2017-09-01

    A thin plate of a plastic scintillator for detecting a beta-ray was developed. The plastic scintillator was made using epoxy resin and organic scintillators such as 2.5-diphenyloxazole (PPO) and 1,4-bis [5-phenyl-2-oxazole] benzene (POPOP). The mixture ratio of epoxy resin and the organic scintillators was determined using their absorbance, transmittance, emission spectra, and transparency. Their optimal weight percentage of PPO and POPOP in the organic scintillators was adjusted to 0.2 wt%:0.01 wt%. The prepared plastic scintillator was used to measure the standard source of Sr-90. The pulse height spectra and total counts of the prepared plastic scintillator were similar to a commercial plastic scintillator. Based on the above results, a large-area plastic scintillator was prepared for rapid investigation of a site contaminated with Sr-90. The prepared large-area plastic scintillator was evaluated for the characteristics in the laboratory. The evaluation results are expected to be usefully utilized in the development of a large-area plastic scintillation detector. The large-area plastic scintillation detector developed on the basis of the evaluation results is expected to be utilized to quickly measure the contamination of Sr-90 in the grounds used as a nuclear power facility.

  13. Preparation of paper scintillator for detecting 3H contaminant.

    PubMed

    Miyoshi, Hirokazu; Ikeda, Toshiji

    2013-09-01

    Liquid scintillator (LS)-encapsulated silica was prepared by the sol-gel method and then was added dropwise onto a wipe paper to form a paper scintillator. First, the efficiencies of wipe were determined for both the paper scintillator and the wipe paper using a liquid scintillation counter (LSC). The efficiencies of wipe using the paper scintillator and the wipe paper were 88 and 36 %, respectively. The detection efficiencies were 5.5 % for the paper scintillator, 46 % for the wipe paper using an LS and 0.08 % for the (3)H/(14)C survey meter, respectively, compared with that of a melt-on scintillator of 47 %. Second, an (3)H contaminant on the paper scintillator was successfully detected using a photomultiplier without an LSC or an (3)H/(14)C survey meter. Finally, the paper scintillator was able to detect beta rays of the (3)H contaminant easily without an LS.

  14. LYSO-based precision timing detectors with SiPM readout

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Hassanshahi, M. H.; Griffioen, M.; Mao, J.; Mangu, A.; Peña, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2018-07-01

    Particle detectors based on scintillation light are particularly well suited for precision timing applications with resolutions of a few 10's of ps. The large primary signal and the initial rise time of the scintillation light result in very favorable signal-to-noise conditions with fast signals. In this paper we describe timing studies using a LYSO-based sampling calorimeter with wavelength-shifting capillary light extraction and silicon photomultipliers as photosensors. We study the contributions of various steps of the signal generation to the total time resolution, and demonstrate its feasibility as a radiation-hard technology for calorimeters at high intensity hadron colliders.

  15. Design and performance of a large area neutron sensitive anger camera

    DOE PAGES

    Visscher, Theodore; Montcalm, Christopher A.; Donahue, Jr., Cornelius; ...

    2015-05-21

    We describe the design and performance of a 157mm x 157mm two dimensional neutron detector. The detector uses the Anger principle to determine the position of neutrons. We have verified FWHM resolution of < 1.2mm with distortion < 0.5mm on over 50 installed Anger Cameras. The performance of the detector is limited by the light yield of the scintillator, and it is estimated that the resolution of the current detector could be doubled with a brighter scintillator. Data collected from small (<1mm 3) single crystal reference samples at the single crystal instrument TOPAZ provide results with low R w(F) values

  16. Tests of the MICE Electron Muon Ranger frontend electronics with a small scale prototype

    NASA Astrophysics Data System (ADS)

    Bolognini, D.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Giannini, G.; Graulich, J. S.; Lietti, D.; Masciocchi, F.; Prest, M.; Rothenfusser, K.; Vallazza, E.; Wisting, H.

    2011-08-01

    The MICE experiment is being commissioned at RAL to demonstrate the feasibility of the muon ionization cooling technique for future applications such as the Neutrino Factory and the Muon Collider. The cooling will be evaluated by measuring the emittance before and after the cooling channel with two 4 T spectrometers; to distinguish muons from the background, a multi-detector particle identification system is foreseen: three Time of Flight stations, two Cherenkov counters and a calorimetric system consisting of a pre-shower layer and a fully active scintillator detector (EMR) are used to discriminate muons from pions and electrons. EMR consists of 48 planes of triangular scintillating bars coupled to WLS fibers readout by single PMTs on one side and MAPMTs on the other; each plane sensible area is 1 m 2. This article deals with a small scale prototype of the EMR detector which has been used to test the MAPMT frontend electronics based on the MAROC ASIC; the tests with cosmic rays using both an analog mode and a digital readout mode are presented. A very preliminary study on the cross talk problem is also shown.

  17. The Low Energy Neutrino Spectrometry (LENS) Experiment and LENS prototype, μLENS, initial results

    NASA Astrophysics Data System (ADS)

    Yokley, Zachary

    2012-03-01

    LENS is a low energy solar neutrino detector that will measure the solar neutrino spectrum above 115 keV, >95% of the solar neutrino flux, in real time. The fundamental neutrino reaction in LENS is charged-current based capture on 115-In detected in a liquid scintillator medium. The reaction yields the prompt emission of an electron and the delayed emission of 2 gamma rays that serve as a time & space coincidence tag. Sufficient spatial resolution is used to exploit this signature and suppress background, particularly due to 115-In beta decay. A novel design of optical segmentation (Scintillation Lattice or SL) channels the signal light along the three primary axes. The channeling is achieved via total internal reflection by suitable low index gaps in the segmentation. The spatial resolution of a nuclear event is obtained digitally, much more precisely than possible by common time of flight methods. Advanced Geant4 analysis methods have been developed to suppress adequately the severe background due to 115-In beta decay, achieving at the same time high detection efficiency. LENS physics and detection methods along with initial results characterizing light transport in the as built μLENS prototype will be presented.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, S. D.; Hamel, M. C.; Bourne, M. M.

    Active interrogation creates an environment that is particularly challenging from a radiation-detection standpoint: the elevated background levels from the source can mask the desired signatures from the SNM. Neutron based interrogation experiments have shown that nanosecond-level timing is required to discriminate induced-fission neutrons from the scattered source neutrons. Previous experiments using high-energy bremsstrahlung X-rays have demonstrated the ability to induce and detect prompt photofission neutrons from single target materials; however, a real-world application would require spectroscopic capability to discern between photofission neutrons emitted by SNM and neutrons emitted by other reactions in non-SNM. Using digital pulseshape discrimination, organic liquid scintillatorsmore » are capable of reliably detecting neutrons in an intense gamma-ray field. Photon misclassification rates as low as 1 in 10 6 have been achieved, which is approaching the level of gaseous neutron detectors such as 3He without the need for neutron moderation. These scintillators also possess nanosecond-timing resolution, making them candidates for both neutron-and photon-driven active interrogation systems. Lastly, we have applied an array of liquid and NaI(Tl) scintillators to successfully image 13.7 kg of HEU interrogated by a DT neutron generator; the system was in the direct presence of the accelerator during the experiment.« less

  19. DIII-D Neutron Measurement: Status and Plan for Simplification and Upgrade

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Heidbrink, W. W.; Taylor, P. L.; Finkenthal, D.

    2017-10-01

    Neutron diagnostics play key essential roles on DIII-D. Historically an 18-channel 2.45MeV D-D neutron measurement system based on 3He and BF3 proportional counters was inherited from Doublet-III including associated electronics and CAMAC data acquisition. Three fission chambers and two neutron scintillators were added in the 1980s and middle 1990s respectively. For Tritium burn-up studies, two 14MeV D-T neutron measurement systems were installed in 2009 and 2010. Operation and maintenance experience have led to a plan to simplify and upgrade these aging systems to provide a more economical and reliable solution for future DIII-D experiments. On simplification, most conventional expensive NIM and CAMAC modules will be removed. Advanced technologies like ultra-fast data acquisition and software-based pulse identification have been successfully tested. Significant data reduction and efficiency improvement will be achieved by real-time digital pulse identification with a field-programmable gate array. The partly renewed system will consist of 4 neutron counters for absolute calibration and 4 relatively calibrated neutron scintillators covering a wide measurement range. Work supported by US DOE under DE-FC02-04ER54698.

  20. KLauS: an ASIC for silicon photomultiplier readout and its application in a setup for production testing of scintillating tiles

    NASA Astrophysics Data System (ADS)

    Briggl, K.; Dorn, M.; Hagdorn, R.; Harion, T.; Schultz-Coulon, H. C.; Shen, W.

    2014-02-01

    KLauS is an ASIC produced in the AMS 0.35 μm SiGe process to read out the charge signals from silicon photomultipliers. Developed as an analog front-end for future calorimeters with high granularity as pursued by the AHCAL concept in the CALICE collaboration, the ASIC is designed to measure the charge signal of the sensors in a large dynamic range and with low electronic noise contributions. In order to tune the operation voltage of each sensor individually, an 8-bit DAC to tune the voltage at the input terminal within a range of 2V is implemented. Using an integrated fast comparator with low jitter, the time information can be measured with sub-nanosecond resolution. The low power consumption of the ASIC can be further decreased using power gating techniques. Future versions of KLauS are under development and will incorporate an ADC with a resolution of up to 12-bits and blocks for digital data transmission. The chip is used in a setup for mass testing and characterization of scintillator tiles for the AHCAL test beam program.

  1. A 32 mm  ×  32 mm  ×  22 mm monolithic LYSO:Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI

    NASA Astrophysics Data System (ADS)

    Borghi, Giacomo; Peet, Bart Jan; Tabacchini, Valerio; Schaart, Dennis R.

    2016-07-01

    New applications for positron emission tomography (PET) and combined PET/magnetic resonance imaging (MRI) are currently emerging, for example in the fields of neurological, breast, and pediatric imaging. Such applications require improved image quality, reduced dose, shorter scanning times, and more precise quantification. This can be achieved by means of dedicated scanners based on ultrahigh-performance detectors, which should provide excellent spatial resolution, precise depth-of-interaction (DOI) estimation, outstanding time-of-flight (TOF) capability, and high detection efficiency. Here, we introduce such an ultrahigh-performance TOF/DOI PET detector, based on a 32 mm  ×  32 mm  ×  22 mm monolithic LYSO:Ce crystal. The 32 mm  ×  32 mm front and back faces of the crystal are coupled to a digital photon counter (DPC) array, in so-called dual-sided readout (DSR) configuration. The fully digital detector offers a spatial resolution of ~1.1 mm full width at half maximum (FWHM)/~1.2 mm mean absolute error, together with a DOI resolution of ~2.4 mm FWHM, an energy resolution of 10.2% FWHM, and a coincidence resolving time of 147 ps FWHM. The time resolution closely approaches the best results (135 ps FWHM) obtained to date with small crystals made from the same material coupled to the same DPC arrays, illustrating the excellent correction for optical and electronic transit time spreads that can be achieved in monolithic scintillators using maximum-likelihood techniques for estimating the time of interaction. The performance barely degrades for events with missing data (up to 6 out of 32 DPC dies missing), permitting the use of almost all events registered under realistic acquisition conditions. Moreover, the calibration procedures and computational methods used for position and time estimation follow recently made improvements that make them fast and practical, opening up realistic perspectives for using DSR monolithic scintillator detectors in TOF-PET and TOF-PET/MRI systems.

  2. Light yield of Kuraray SCSF-78MJ scintillating fibers for the Gluex barrel calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beattie, T D; Fischer, A P; Krueger, S T

    Over three quarters of a million 1-mm-diameter 4-m-long Kuraray double-clad SCSF-78MJ (blue-green) scintillating fibers have been used in the construction of the GlueX electromagnetic barrel calorimeter for the Hall D experimental program at Jefferson Lab. The quality of a random sample of 4,750 of these fibers was evaluated by exciting the fibers at their mid point using a 90Sr source in order to determine the light yield using a calibrated vacuum photomultiplier as the photosensor. A novel methodology was developed to extract the number of photoelectrons detected for measurements where individual photoelectron peaks are not discernible. The average number ofmore » photoelectrons from this sample of fibers was 9.17±0.6 at a source distance of 200 cm from the PMT.« less

  3. X-ray microbeam stand-alone facility for cultured cells irradiation

    NASA Astrophysics Data System (ADS)

    Bożek, Sebastian; Bielecki, Jakub; Wiecheć, Anna; Lekki, Janusz; Stachura, Zbigniew; Pogoda, Katarzyna; Lipiec, Ewelina; Tkocz, Konrad; Kwiatek, Wojciech M.

    2017-03-01

    The article describes an X-ray microbeam standalone facility dedicated for irradiation of living cultured cells. The article can serve as an advice for such facilities construction, as it begins from engineering details, through mathematical modeling and experimental procedures, ending up with preliminary experimental results and conclusions. The presented system consists of an open type X-ray tube with microfocusing down to about 2 μm, an X-ray focusing system with optical elements arranged in the nested Kirckpatrick-Baez (or Montel) geometry, a sample stand and an optical microscope with a scientific digital CCD camera. For the beam visualisation an X-ray sensitive CCD camera and a spectral detector are used, as well as a scintillator screen combined with the microscope. A method of precise one by one irradiation of previously chosen cells is presented, as well as a fast method of uniform irradiation of a chosen sample area. Mathematical models of beam and cell with calculations of kerma and dose are presented. The experiments on dose-effect relationship, kinetics of DNA double strand breaks repair, as well as micronuclei observation were performed on PC-3 (Prostate Cancer) cultured cells. The cells were seeded and irradiated on Mylar foil, which covered a hole drilled in the Petri dish. DNA lesions were visualised with γ-H2AX marker combined with Alexa Fluor 488 fluorescent dye.

  4. Scintillation properties of polycrystalline LaxY1-xO3 ceramic

    NASA Astrophysics Data System (ADS)

    Sahi, Sunil; Chen, Wei; Kenarangui, Rasool

    2015-03-01

    Scintillators are the material that absorbs the high-energy photons and emits visible photons. Scintillators are commonly used in radiation detector for security, medical imaging, industrial applications and high energy physics research. Two main types of scintillators are inorganic single crystals and organic (plastic or liquid) scintillators. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, some efficient inorganic scintillator such as NaI and CsI are not environmental friendly. But on the other hand, organic scintillators have low density and hence poor energy resolution which limits their use in gamma spectroscopy. Polycrystalline ceramic can be a cost effective alternative to expensive inorganic single crystal scintillators. Here we have fabricated La0.2Y1.8O3 ceramic scintillator and studied their luminescence and scintillation properties. Ceramic scintillators were fabricated by vacuum sintering of La0.2Y1.8O3 nanoparticles at temperature below the melting point. La0.2Y1.8O3 ceramic were characterized structurally using XRD and TEM. Photoluminescence and radioluminescence studies were done using UV and X-ray as an excitation source. We have used gamma isotopes with different energy to studies the scintillation properties of La0.2Y1.8O3 scintillator. Preliminary studies of La0.2Y1.8O3 scintillator shows promising result with energy resolution comparable to that of NaI and CsI.

  5. Solubility testing of actinides on breathing-zone and area air samples

    NASA Astrophysics Data System (ADS)

    Metzger, Robert Lawrence

    The solubility of inhaled radionuclides in the human lung is an important characteristic of the compounds needed to perform internal dosimetry assessments for exposed workers. A solubility testing method for uranium and several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALSsp°ler ) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of Usb3Osb8. This makes it possible to characterize solubility profiles in every section of operating facilities where airborne nuclides are found using common breathing zone air samples. The new method was evaluated by analyzing uranium compounds from two uranium mills whose product had been previously analyzed by in vitro solubility testing in the laboratory and in vivo solubility testing in rodents. The new technique compared well with the in vivo rodent solubility profiles. The method was then used to evaluate the solubility profiles in all process sections of an operating in situ uranium plant using breathing zone and area air samples collected during routine plant operations. The solubility profiles developed from this work showed excellent agreement with the results of the worker urine bioassay program at the plant and identified a significant error in existing internal dose assessments at this facility.

  6. Optical imaging of airglow structure in equatorial plasma bubbles at radio scintillation scales

    NASA Astrophysics Data System (ADS)

    Holmes, J. M.; Pedersen, T.; Parris, R. T.; Stephens, B.; Caton, R. G.; Dao, E. V.; Kratochvil, S.; Morton, Y.; Xu, D.; Jiao, Y.; Taylor, S.; Carrano, C. S.

    2015-12-01

    Imagery of optical emissions from F-region plasma is one of the few means available todetermine plasma density structure in two dimensions. However, the smallest spatial scalesobservable with this technique are typically limited not by magnification of the lens or resolutionof the detector but rather by the optical throughput of the system, which drives the integrationtime, which in turn causes smearing of the features that are typically moving at speeds of 100m/s or more. In this paper we present high spatio-temporal imagery of equatorial plasma bubbles(EPBs) from an imaging system called the Large Aperture Ionospheric Structure Imager(LAISI), which was specifically designed to capture short-integration, high-resolution images ofF-region recombination airglow at λ557.7 nm. The imager features 8-inch diameter entranceoptics comprised of a unique F/0.87 lens, combined with a monolithic 8-inch diameterinterference filter and a 2x2-inch CCD detector. The LAISI field of view is approximately 30degrees. Filtered all-sky images at common airglow wavelengths are combined with magneticfield-aligned LAISI images, GNSS scintillation, and VHF scintillation data obtained atAscension Island (7.98S, 14.41W geographic). A custom-built, multi-constellation GNSS datacollection system was employed that sampled GPS L1, L2C, L5, GLONASS L1 and L2, BeidouB1, and Galileo E1 and E5a signals. Sophisticated processing software was able to maintainlock of all signals during strong scintillation, providing unprecedented spatial observability ofL band scintillation. The smallest-resolvable scale sizes above the noise floor in the EPBs, as viewed byLAISI, are illustrated for integration times of 1, 5 and 10 seconds, with concurrentzonal irregularity drift speeds from both spaced-receiver VHF measurements and single-stationGNSS measurements of S4 and σφ. These observable optical scale sizes are placed in thecontext of those that give rise to radio scintillation in VHF and L band signals.

  7. Optimization of the Performance of Segmented Scintillators for Radiotherapy Imaging through Novel Binning Techniques

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Choroszucha, Richard B.; Zhao, Qihua; Jiang, Hao; Liu, Langechuan

    2014-01-01

    Thick, segmented crystalline scintillators have shown increasing promise as replacement x-ray converters for the phosphor screens currently used in active matrix flat-panel imagers (AMFPIs) in radiotherapy, by virtue of providing over an order of magnitude improvement in the DQE. However, element-to-element misalignment in current segmented scintillator prototypes creates a challenge for optimal registration with underlying AMFPI arrays, resulting in degradation of spatial resolution. To overcome this challenge, a methodology involving the use of a relatively high resolution AMFPI array in combination with novel binning techniques is presented. The array, which has a pixel pitch of 0.127 mm, was coupled to prototype segmented scintillators based on BGO, LYSO and CsI:Tl materials, each having a nominal element-to-element pitch of 1.016 mm and thickness of ~1 cm. The AMFPI systems incorporating these prototypes were characterized at a radiotherapy energy of 6 MV in terms of MTF, NPS, DQE, and reconstructed images of a resolution phantom acquired using a cone-beam CT geometry. For each prototype, the application of 8×8 pixel binning to achieve a sampling pitch of 1.016 mm was optimized through use of an alignment metric which minimized misregistration and thereby improved spatial resolution. In addition, the application of alternative binning techniques that exclude the collection of signal near septal walls resulted in further significant improvement in spatial resolution for the BGO and LYSO prototypes, though not for the CsI:Tl prototype due to the large amount of optical cross-talk resulting from significant light spread between scintillator elements in that device. The efficacy of these techniques for improving spatial resolution appears to be enhanced for scintillator materials that exhibit mechanical hardness, high density and high refractive index, such as BGO. Moreover, materials that exhibit these properties as well as offer significantly higher light output than BGO, such as CdWO4, should provide the additional benefit of preserving DQE performance. PMID:24487347

  8. X-ray imaging performance of scintillator-filled silicon pore arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Matthias; Engel, Klaus Juergen; Menser, Bernd

    2008-03-15

    The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 {mu}m. A very high aspect ratio was achieved with wall thicknesses of 4-7 {mu}m and pore depthsmore » of about 400 {mu}m. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore array structure. In addition, some x-ray images of technical and anatomical phantoms are shown. This work shows that scintillator-filled pore arrays can provide x-ray imaging with high spatial resolution, but are not suitable in their current state for most of the applications in medical imaging, where increasing the x-ray doses cannot be tolerated.« less

  9. Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J. (Compiler)

    1975-01-01

    The ATS-6 millimeter wave experiment, provided the first direct measurements of 20 and 30 GHz earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques. In addition to direct measurements on the 20 and 30 GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment from the major participating organizations are presented.

  10. DESCANT - Testing and Commissioning

    NASA Astrophysics Data System (ADS)

    Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Turko, J.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Ball, G. C.; Bishop, D. P.; Garnsworthy, A. B.; Hackman, G.; Pearson, C. J.; Shaw, B.; Sarazin, F.

    2017-09-01

    The DESCANT array at TRIUMF is designed to detect neutrons from RIB experiments. DESCANT is composed of 70 close-packed deuterated organic liquid scintillators coupled to digital fast read-out ADC modules. This configuration permits online pulse-shape discrimination between neutron and γ-ray events. A prototype detector was tested with monoenergetic neutrons at the University of Kentucky Accelerator Laboratory. The data from these tests was compared to Geant4 simulations. A first commissioning experiment of the full array, using the decay of Cs 145 - 146 , was performed in August 2016. The results of the tests and a preliminary analysis of the commissioning experiment will be presented.

  11. The improved scintillation crystal lead tungstate scintillation for PET

    NASA Astrophysics Data System (ADS)

    Wan, Youbao; WU, Rurong; Xiao, Linrong; Zhang, Jianxin; Yang, Peizhi; Yan, Hui

    2009-07-01

    As a valuable material for the detecting of γ-ray, PbWO4 and BaF2:PbWO4 crystals were grown by a novel multi-crucible temperature gradient system developed by ourselves. Utilizing a topical partial heating method, this system can form a topical partial high temperature in its hearth. Thus this system could melt raw materials in step by step as requirement. The advantage of this method is that there would be solid obstruct left on the melt in the procedure of the crystal growing up. The left obstruct could prevent the volatilization of the component in the melt. Hence it is helpful for the composition homogenization in the crystal. The system also offers a sustaining device for multi-crucibles and thus it can grow many crystals simultaneity. The optical properties and scintillation properties of the crystals were studied. The results reveal that the ions doping improves the scintillation properties of the crystal. The transmittance spectra show that the transmittance of BaF2:PbWO4 crystals are better than that of PbWO4 crystals. For the PbWO4 crystals, their absorption edge is at 325nm, and their maximum transmittance is 68%. For the BaF2:PbWO4 crystals, their absorption edge is at 325nm and their maximum transmittance is upto76%. The X-ray excited luminescence spectra shows that the luminescence peak is at 420nm for the samples of PbWO4 crystal while the peak is at 430nm for the samples of BaF2:PbWO4 crystal respectively. The luminescence intensity of the samples of BaF2:PbWO4 crystal is about two times than that of PbWO4 crystal. And their peak shape is different for the two kind of crystal. The light yield of BaF2:PbWO4 crystals is about 2.9 times than that of PbWO4 crystal Analyzing these scintillation properties, we find that the VPb 3+ and VO- defects do harm for the optical properties of the crystal. Ions doping method could reduce the defect concentration and improving its illumination performance of the crystal. Specially, the doped F- ions in O2- site can induce the aberrance of the [WO4]2- tetrahedron and form [WO3F]- tetrahedron which has more active blue light yield, thus improve the light yield of the crystal. The improved light yield of BaF2:PbWO4 crystals is valuable for the medical diagnosing instrument PET and CT with high resolving power

  12. Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

    NASA Astrophysics Data System (ADS)

    Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.

    2015-11-01

    Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.

  13. Day and nighttime L-Band amplitude scintillations during low solar activity at a low latitude station in the South Pacific region

    NASA Astrophysics Data System (ADS)

    Prasad, Ramendra; Kumar, Sushil

    2017-12-01

    A morphological study of GPS L-band amplitude scintillations observed at a low latitude station, Suva (18.1°S, 178.4°E), Fiji, during low solar activity year 2010 of solar cycle 24, has been presented. Out of a total of 480 scintillation events recorded during 2010, 84.4% were weak (0.2 ≤ S4 < 0.3), 14.6% moderate (0.3 ≤ S4 < 0.45) and only 1% strong (0.45 ≤ S4). The amplitude scintillations were most pronounced in the local daytime with January registering the highest occurrence. Seasonal analysis revealed maximum scintillation occurrence during summer as compared to winter and equinox seasons. The daytime scintillation with a maximum in the summer is consistent with localized blanketing sporadic E observations and could also be possibly due to lightning activity around the observing station. Annual percentage occurrence shows that scintillations occurred mostly in the daytime with peak occurrence at around 05:00-09:00 LT. The daytime strong scintillation events were not associated with vTEC depletions and phase scintillations, but the signal to noise ratio during the scintillation events decreased with increase in scintillation index (S4). However, the post-midnight strong amplitude scintillations were associated with vTEC depletions and phase scintillations indicative of large scale irregularities (spread-F). The geomagnetic activity effect showed enhanced occurrence on geomagnetically disturbed days as compared to quite conditions. The geomagnetic storm effect on scintillations for 17 storms of different strengths (Dst ≤ 50 nT) during 2010-2011 showed an increase in the occurrence of post-storm scintillations, on the days following the storm.

  14. In situ diagnostics of the crystal-growth process through neutron imaging: application to scintillators

    DOE PAGES

    Tremsin, Anton S.; Makowska, Małgorzata G.; Perrodin, Didier; ...

    2016-04-12

    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e.g.while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studiedin situduring the melting and solidification processes with a temporal resolution of 5–7 s.more » The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ~50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (~0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging forin situdiagnostics and the optimization of crystal-growth procedures.« less

  15. Composite solid-state scintillators for neutron detection

    DOEpatents

    Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.

    2006-09-12

    Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.

  16. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S [Alamo, CA; Oldaker, Mark E [Pleasanton, CA

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  17. Instrumentation effects on U and Pu CBNM standards spectra quality measured on a 500 mm3 CdZnTe and a 2×2 inch LaBr3 detectors

    NASA Astrophysics Data System (ADS)

    Meleshenkovskii, I.; Borella, A.; Van der Meer, K.; Bruggeman, M.; Pauly, N.; Labeau, P. E.; Schillebeeckx, P.

    2018-01-01

    Nowadays, there is interest in developing gamma-ray measuring devices based on the room temperature operated medium resolution detectors such as semiconductor detectors of the CdZnTe type and scintillators of the LaBr3 type. This is true also for safeguards applications and the International Atomic Energy Agency (IAEA) has launched a project devoted to the assessment of medium resolution gamma-ray spectroscopy for the verification of the isotopic composition of U and Pu bearing samples. This project is carried out within the Non-Destructive Assay Working Group of the European Safeguards Research and Development Association (ESARDA). In this study we analyze medium resolution spectra of U and Pu standards with the aim to develop an isotopic composition determination algorithm, particularly suited for these types of detectors. We show how the peak shape of a CdZnTe detector is influenced by the instrumentation parameters. The experimental setup consisted of a 500 mm3 CdZnTe detector, a 2×2 inch LaBr3 detector, two types of measurement instrumentation - an analogue one and a digital one, and a set of certified samples - a 207Bi point source and U and Pu CBNM standards. The results of our measurements indicate that the lowest contribution to the peak asymmetry and thus the smallest impact on the resolution of the 500 mm3 CdZnTe detector was achieved with the digital MCA. Analysis of acquired spectra allowed to reject poor quality measurement runs and produce summed spectra files with the least impact of instrumentation instabilities. This work is preliminary to further studies concerning the development of an isotopic composition determination algorithm particularly suited for CZT and LaBr3 detectors for safeguards applications.

  18. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  19. Cosmic Radiation Detection and Observations

    NASA Astrophysics Data System (ADS)

    Ramirez Chavez, Juan; Troncoso, Maria

    Cosmic rays consist of high-energy particles accelerated from remote supernova remnant explosions and travel vast distances throughout the universe. Upon arriving at earth, the majority of these particles ionize gases in the upper atmosphere, while others interact with gas molecules in the troposphere and producing secondary cosmic rays, which are the main focus of this research. To observe these secondary cosmic rays, a detector telescope was designed and equipped with two silicon photomultipliers (SiPMs). Each SiPM is coupled to a bundle of 4 wavelength shifting optical fibers that are embedded inside a plastic scintillator sheet. The SiPM signals were amplified using a fast preamplifier with coincidence between detectors established using a binary logic gate. The coincidence events were recorded with two devices; a digital counter and an Arduino micro-controller. For detailed analysis of the SiPM waveforms, a DRS4 sensory digitizer captured the waveforms for offline analysis with the CERN software package Physics Analysis Workstation in a Linux environment. Results from our experiments would be presented. Hartnell College STEM Internship Program.

  20. Readout Strategy of an Electro-optical Coupled PET Detector for Time-of-Flight PET/MRI

    PubMed Central

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-01-01

    Combining PET with MRI in a single system provides clinicians with complementary molecular and anatomical information. However, existing integrated PET/MRI systems do not have time-of-flight PET capabilities. This work describes an MRI-compatible front-end electronic system with ToF capabilities. The approach employs a fast arrival-time pickoff comparator to digitize the timing information, and a laser diode to drive a 10m fiber-optic cable to optically transmit asynchronous timing information to a photodiode receiver readout system. The comparator and this electo-optical link show a combined 11.5ps fwhm jitter in response to a fast digital pulse. When configured with LYSO scintillation crystals and Hamamatsu MPPC silicon photo-multipliers the comparator and electro-optical link achieved a 511keV coincidence time resolution of 254.7ps +/− 8.0ps fwhm with 3×3×20mm crystals and 166.5 +/− 2.5ps fwhm with 3×3×5mm crystals. PMID:24061218

  1. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation.

    PubMed

    Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong

    2017-06-01

    The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.

  2. FPGA-based Trigger System for the Fermilab SeaQuest Experimentz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ + and μ -produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is thenmore » examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less

  3. Characterization of on-site digital mammography systems: Direct versus indirect conversion detectors

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Yun, Seungman; Kam, Soohwa; Cho, Seungryong; Kim, Ho Kyung

    2015-06-01

    We investigated the performances of two digital mammography systems. The systems use a cesium-iodide (CsI) scintillator and an amorphous selenium ( a-Se) photoconductor for X-ray detection and are installed in the same hospital. As physical metrics, we measured the modulationtransfer function (MTF), the noise-power spectrum (NPS), and the detective quantum efficiency (DQE). In addition, we analyzed the contrast-detail performances of the two systems by using a commercial contrast-detail phantom. The CsI-based indirect conversion detector provided better MTF and DQE performances than the a-Se-based direct conversion detector whereas the former provided a poorer NPS performance than the latter. These results are explained by the fact that the CsI-based detector used an MTF restoration preprocessing algorithm. The a-Se-based detector showed better contrast-detail performance than the CsI-based detector. We believe that the highfrequency noise characteristic of a detector is more responsible for the visibility of small details than its spatial-resolution performance.

  4. FPGA-based trigger system for the Fermilab SeaQuest experimentz

    NASA Astrophysics Data System (ADS)

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu; Gilman, Ron; Nakano, Kenichi; Peng, Jen-Chieh; Wang, Su-Yin

    2015-12-01

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ+ and μ- produced in 120 GeV/c proton-nucleon interactions in a high rate environment. The trigger system consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.

  5. FPGA-based Trigger System for the Fermilab SeaQuest Experimentz

    DOE PAGES

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; ...

    2015-09-10

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ + and μ -produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is thenmore » examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less

  6. SU-F-T-559: High-Resolution Scintillating Fiber Array for In-Vivo Real-Time SRS and SBRT Patient QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knewtson, T; Pokhrel, S; University of Tennessee Health Science Center, Memphis, TN

    2016-06-15

    Purpose: A high-resolution scintillating fiber detector was built for in-vivo real-time patient specific quality assurance (QA). The detector is designed for stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) to monitor treatment delivery and detect real-time deviations from planned dose to increase patient safety and treatment accuracy. Methods: The detector consists of two high-density scintillating fiber arrays layered to form an X-Y grid which can be attached to the accessory tray of a medical linac for SBRT and cone SRS treatment QA. Fiber arrays consist of 128 scintillating fibers embedded within a precision-machined, high-transmission polymer substrate with 0.8mm pitch. Themore » fibers are coupled on both ends to high-sensitivity photodetectors and the output is recorded through a high-speed analog-to-digital converter to capture the linac pulse sequence as treatment delivery progresses. The detector has a software controlled 360 degree rotational system to capture angular beam projections for high-resolution beam profile reconstruction. Results: The detector was validated using SRS cone sizes from 6mm to 34mm and MLC defined field sizes from 5×5mm2 to 100×100mm2. The detector output response is linear with dose and is dose rate independent. Each field can be reconstructed accurately with a spatial resolution of 0.8mm and the current beam output is displayed every 50msec. Dosimetric errors of 1% with respect to the treatment plan can be identified and clinically significant deviations from the expected treatment can be displayed in real-time to alert the therapists. Conclusion: The high resolution detector is capable of reconstructing beam profiles in real-time with submillimeter resolution and 1% dose resolution. This system has the ability to project in-vivo both spatial and dosimetric errors during SBRT and SRS treatments when only a non-clinically significant fraction of the intended dose was delivered. The device has the potential to establish new standards for in-vivo patient specific QA.« less

  7. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurudirek, Sinem V.; Menkara, H.; Klein, Benjamin D. B.

    2018-01-01

    The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as determined by pulse height distribution of alpha particle irradiation, has been investigated for solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass for 22 h at 95 ◦ C as a substrate using a solution based hydrothermal technique. The samples were first annealed for different times (30, 60, 90 and 120 min) at 300 ◦ C and then at different temperatures (100 ◦ C–600 ◦ C) in order to determine the optimum annealing time and temperature, respectively. Before annealing, themore » ZnO nanorod arrays showed a broad yellow–orange visible and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity correspondingly increased (especially at temperatures higher than 100 ◦ C). Based on the ratio of the peak intensity ratio before and after annealing, it was concluded that samples at 350 ◦ C for 90 min resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height spectrum resulting from alpha particles revealed that ZnO nanorod arrays similarly annealed at 350 ◦ C for 90 min exhibited the highest scintillation response.« less

  8. Radioactive contamination of scintillators

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Tretyak, V. I.

    2018-03-01

    Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.

  9. Inorganic scintillating materials and scintillation detectors

    PubMed Central

    YANAGIDA, Takayuki

    2018-01-01

    Scintillation materials and detectors that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspection, are reviewed. The fundamental physics understood today is explained, and common scintillators and scintillation detectors are introduced. The properties explained here are light yield, energy non-proportionality, emission wavelength, energy resolution, decay time, effective atomic number and timing resolution. For further understanding, the emission mechanisms of scintillator materials are also introduced. Furthermore, unresolved problems in scintillation phenomenon are considered, and my recent interpretations are discussed. These topics include positive hysteresis, the co-doping of non-luminescent ions, the introduction of an aimed impurity phase, the excitation density effect and the complementary relationship between scintillators and storage phosphors. PMID:29434081

  10. Determination of the Interaction Position of Gamma Photons in Monolithic Scintillators Using Neural Network Fitting

    NASA Astrophysics Data System (ADS)

    Conde, P.; Iborra, A.; González, A. J.; Hernández, L.; Bellido, P.; Moliner, L.; Rigla, J. P.; Rodríguez-Álvarez, M. J.; Sánchez, F.; Seimetz, M.; Soriano, A.; Vidal, L. F.; Benlloch, J. M.

    2016-02-01

    In Positron Emission Tomography (PET) detectors based on monolithic scintillators, the photon interaction position needs to be estimated from the light distribution (LD) on the photodetector pixels. Due to the finite size of the scintillator volume, the symmetry of the LD is truncated everywhere except for the crystal center. This effect produces a poor estimation of the interaction positions towards the edges, an especially critical situation when linear algorithms, such as Center of Gravity (CoG), are used. When all the crystal faces are painted black, except the one in contact with the photodetector, the LD can be assumed to behave as the inverse square law, providing a simple theoretical model. Using this LD model, the interaction coordinates can be determined by means of fitting each event to a theoretical distribution. In that sense, the use of neural networks (NNs) has been shown to be an effective alternative to more traditional fitting techniques as nonlinear least squares (LS). The multilayer perceptron is one type of NN which can model non-linear functions well and can be trained to accurately generalize when presented with new data. In this work we have shown the capability of NNs to approximate the LD and provide the interaction coordinates of γ-photons with two different photodetector setups. One experimental setup was based on analog Silicon Photomultipliers (SiPMs) and a charge division diode network, whereas the second setup was based on digital SiPMs (dSiPMs). In both experiments NNs minimized border effects. Average spatial resolutions of 1.9 ±0.2 mm and 1.7 ±0.2 mm for the entire crystal surface were obtained for the analog and dSiPMs approaches, respectively.

  11. Single transmission-line readout method for silicon photomultiplier based time-of-flight and depth-of-interaction PET

    NASA Astrophysics Data System (ADS)

    Ko, Guen Bae; Lee, Jae Sung

    2017-03-01

    We propose a novel single transmission-line readout method for whole-body time-of-flight positron emission tomography applications, without compromising on performance. The basic idea of the proposed multiplexing method is the addition of a specially prepared tag signal ahead of the scintillation pulse. The tag signal is a square pulse that encodes photon arrival time and channel information. The 2D position of a silicon photomultiplier (SiPM) array is encoded by the specific width and height of the tag signal. A summing amplifier merges the tag and scintillation signals of each channel, and the final output signal can be acquired with a one-channel digitizer. The feasibility and performance of the proposed method were evaluated using a 1:1 coupled detector consisting of 4  ×  4 array of LGSO crystals and 16 channel SiPM. The sixteen 3 mm LGSO crystals were clearly separated in the crystal-positioning map with high reliability. The average energy resolution and coincidence resolving time were 11.31  ±  0.55% and 264.7  ±  10.7 ps, respectively. We also proved that the proposed method does not degrade timing performance with increasing multiplexing ratio. The two types of LGSO crystals (L0.95GSO and L0.20GSO) in phoswich detector were also clearly identified with the high-reliability using pulse shape discrimination, thanks to the well-preserved pulse shape information. In conclusion, the proposed multiplexing method allows decoding of the 3D interaction position of gamma rays in the scintillation detector with single-line readout.

  12. Single transmission-line readout method for silicon photomultiplier based time-of-flight and depth-of-interaction PET.

    PubMed

    Ko, Guen Bae; Lee, Jae Sung

    2017-03-21

    We propose a novel single transmission-line readout method for whole-body time-of-flight positron emission tomography applications, without compromising on performance. The basic idea of the proposed multiplexing method is the addition of a specially prepared tag signal ahead of the scintillation pulse. The tag signal is a square pulse that encodes photon arrival time and channel information. The 2D position of a silicon photomultiplier (SiPM) array is encoded by the specific width and height of the tag signal. A summing amplifier merges the tag and scintillation signals of each channel, and the final output signal can be acquired with a one-channel digitizer. The feasibility and performance of the proposed method were evaluated using a 1:1 coupled detector consisting of 4  ×  4 array of LGSO crystals and 16 channel SiPM. The sixteen 3 mm LGSO crystals were clearly separated in the crystal-positioning map with high reliability. The average energy resolution and coincidence resolving time were 11.31  ±  0.55% and 264.7  ±  10.7 ps, respectively. We also proved that the proposed method does not degrade timing performance with increasing multiplexing ratio. The two types of LGSO crystals (L 0.95 GSO and L 0.20 GSO) in phoswich detector were also clearly identified with the high-reliability using pulse shape discrimination, thanks to the well-preserved pulse shape information. In conclusion, the proposed multiplexing method allows decoding of the 3D interaction position of gamma rays in the scintillation detector with single-line readout.

  13. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOEpatents

    Cole, Jerald D.; Drigert, Mark W.; Reber, Edward L.; Aryaeinejad, Rahmat

    2001-01-01

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  14. Liquid scintillation counting methodology for 99Tc analysis. A remedy for radiopharmaceutical waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Mumtaz; Um, Wooyong

    2015-08-13

    This paper presents a new approach for liquid scintillation counting (LSC) analysis of single-radionuclide samples containing appreciable organic or inorganic quench. This work offers better analytical results than existing LSC methods for technetium-99 ( 99gTc) analysis with significant savings in analysis cost and time. The method was developed to quantify 99gTc in environmental liquid and urine samples using LSC. Method efficiency was measured in the presence of 1.9 to 11,900 ppm total dissolved solids. The quench curve was proved to be effective in the case of spiked 99gTc activity calculation for deionized water, tap water, groundwater, seawater, and urine samples.more » Counting efficiency was found to be 91.66% for Ultima Gold LLT (ULG-LLT) and Ultima Gold (ULG). Relative error in spiked 99gTc samples was ±3.98% in ULG and ULG-LLT cocktails. Minimum detectable activity was determined to be 25.3 mBq and 22.7 mBq for ULG-LLT and ULG cocktails, respectively. A pre-concentration factor of 1000 was achieved at 100°C for 100% chemical recovery.« less

  15. Bright Lu2O3:Eu thin-film scintillators for high-resolution radioluminescence microscopy

    PubMed Central

    Sengupta, Debanti; Miller, Stuart; Marton, Zsolt; Chin, Frederick; Nagarkar, Vivek

    2015-01-01

    We investigate the performance of a new thin-film Lu2O3:Eu scintillator for single-cell radionuclide imaging. Imaging the metabolic properties of heterogeneous cell populations in real time is an important challenge with clinical implications. We have developed an innovative technique called radioluminescence microscopy, to quantitatively and sensitively measure radionuclide uptake in single cells. The most important component of this technique is the scintillator, which converts the energy released during radioactive decay into luminescent signals. The sensitivity and spatial resolution of the imaging system depend critically on the characteristics of the scintillator, i.e. the material used and its geometrical configuration. Scintillators fabricated using conventional methods are relatively thick, and therefore do not provide optimal spatial resolution. We compare a thin-film Lu2O3:Eu scintillator to a conventional 500 μm thick CdWO4 scintillator for radioluminescence imaging. Despite its thinness, the unique scintillation properties of the Lu2O3:Eu scintillator allow us to capture single positron decays with over fourfold higher sensitivity, a significant achievement. The thin-film Lu2O3:Eu scintillators also yield radioluminescence images where individual cells appear smaller and better resolved on average than with the CdWO4 scintillators. Coupled with the thin-film scintillator technology, radioluminescence microscopy can yield valuable and clinically relevant data on the metabolism of single cells. PMID:26183115

  16. State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs

    NASA Astrophysics Data System (ADS)

    Gundacker, S.; Acerbi, F.; Auffray, E.; Ferri, A.; Gola, A.; Nemallapudi, M. V.; Paternoster, G.; Piemonte, C.; Lecoq, P.

    2016-08-01

    Time of flight (TOF) in positron emission tomography (PET) has experienced a revival of interest after its first introduction in the eighties. This is due to a significant progress in solid state photodetectors (SiPMs) and newly developed scintillators (LSO and its derivatives). Latest developments at Fondazione Bruno Kessler (FBK) lead to the NUV-HD SiPM with a very high photon detection efficiency of around 55%. Despite the large area of 4×4 mm2 it achieves a good single photon time resolution (SPTR) of 180±5ps FWHM. Coincidence time resolution (CTR) measurements using LSO:Ce codoped with Ca scintillators yield best values of 73±2ps FWHM for 2×2×3 mm3 and 117±3ps for 2×2×20 mm3 crystal sizes. Increasing the crystal cross-section from 2×2 mm2 to 3×3 mm2 a non negligible CTR deterioration of approximately 7ps FWHM is observed. Measurements with LSO:Ce codoped Ca and LYSO:Ce scintillators with various cross-sections (1×1 mm2 - 4×4 mm2) and lengths (3mm - 30mm) will be a basis for discussing on how the crystal geometry affects timing in TOF-PET. Special attention is given to SiPM parameters, e.g. SPTR and optical crosstalk, and their measured dependency on the crystal cross-section. Additionally, CTR measurements with LuAG:Ce, LuAG:Pr and GGAG:Ce samples are presented and the results are interpreted in terms of their scintillation properties, e.g. rise time, decay time, light yield and emission spectra.

  17. Novel laser-processed CsI:Tl detector for SPECT

    PubMed Central

    Sabet, H.; Bläckberg, L.; Uzun-Ozsahin, D.; El-Fakhri, G.

    2016-01-01

    Purpose: The aim of this work is to demonstrate the feasibility of a novel technique for fabrication of high spatial resolution CsI:Tl scintillation detectors for single photon emission computed tomography systems. Methods: The scintillators are fabricated using laser-induced optical barriers technique to create optical microstructures (or optical barriers) inside the CsI:Tl crystal bulk. The laser-processed CsI:Tl crystals are 3, 5, and 10 mm in thickness. In this work, the authors focus on the simplest pattern of optical barriers in that the barriers are created in the crystal bulk to form pixel-like patterns resembling mechanically pixelated scintillators. The monolithic CsI:Tl scintillator samples are fabricated with optical barrier patterns with 1.0 × 1.0 mm2 and 0.625 × 0.625 mm2 pixels. Experiments were conducted to characterize the fabricated arrays in terms of pixel separation and energy resolution. A 4 × 4 array of multipixel photon counter was used to collect the scintillation light in all the experiments. Results: The process yield for fabricating the CsI:Tl arrays is 100% with processing time under 50 min. From the flood maps of the fabricated detectors exposed to 122 keV gammas, peak-to-valley (P/V) ratios of greater than 2.3 are calculated. The P/V values suggest that regardless of the crystal thickness, the pixels can be resolved. Conclusions: The results suggest that optical barriers can be considered as a robust alternative to mechanically pixelated arrays and can provide high spatial resolution while maintaining the sensitivity in a high-throughput and cost-effective manner. PMID:27147372

  18. Characterization of EJ-200 plastic scintillators as active background shield for cosmogenic radiation

    NASA Astrophysics Data System (ADS)

    Tkaczyk, A. H.; Saare, H.; Ipbüker, C.; Schulte, F.; Mastinu, P.; Paepen, J.; Pedersen, B.; Schillebeeckx, P.; Varasano, G.

    2018-02-01

    This paper describes the characterization of commercially available plastic scintillation detectors to be used as an active shield or veto system to reduce the neutron background resulting from atmospheric muon interactions in low-level nuclear waste assay systems. The shield consists of an array of scintillation detectors surrounding a neutron detection system. Scintillation detectors with different thicknesses are characterized for their response to gamma rays, neutrons, and muons. Response functions to gamma rays were determined and measured in the energy range from 0.6 MeV to 6.0 MeV using radionuclide sources. Neutron response functions were derived from results of time-of-flight measurements at the Van de Graaff accelerator of the INFN Legnaro and from measurements with quasi mono-energetic neutron beams produced at the Van de Graaff accelerator of the JRC Geel. From these data, the light output and resolution functions for protons and electrons were derived. The response to muons was verified by background measurements, i.e. without the presence of any neutron or gamma source. It was found that the muon peak is more pronounced when the detectors are placed horizontally. The results indicate that a scintillator with a minimum thickness of 20 mm is needed to separate events due to atmospheric muons from natural gamma ray background, and contributions due to neutron production in nuclear waste based on only the total energy deposition in the detector. In addition, it was shown that muons can be identified with a coincidence pattern when the detectors are stacked. The effectiveness of the proposed system was demonstrated based on muon induced spallation reactions in a lead sample.

  19. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  20. PSA discriminator influence on (222)Rn efficiency detection in waters by liquid scintillation counting.

    PubMed

    Stojković, Ivana; Todorović, Nataša; Nikolov, Jovana; Tenjović, Branislava

    2016-06-01

    A procedure for the (222)Rn determination in aqueous samples using liquid scintillation counting (LSC) was evaluated and optimized. Measurements were performed by ultra-low background spectrometer Quantulus 1220™ equipped with PSA (Pulse Shape Analysis) circuit which discriminates alpha/beta spectra. Since calibration procedure is carried out with (226)Ra standard, which has both alpha and beta progenies, it is clear that PSA discriminator has vital importance in order to provide precise spectra separation. Improvement of calibration procedure was done through investigation of PSA discriminator level and, consequentially, the activity of (226)Ra calibration standard influence on (222)Rn efficiency detection. Quench effects on generated spectra i.e. determination of radon efficiency detection were also investigated with quench calibration curve obtained. Radon determination in waters based on modified procedure according to the activity of (226)Ra standard used, dependent on PSA setup, was evaluated with prepared (226)Ra solution samples and drinking water samples with assessment of measurement uncertainty variation included. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Compressive sensing of signals generated in plastic scintillators in a novel J-PET instrument

    NASA Astrophysics Data System (ADS)

    Raczyński, L.; Moskal, P.; Kowalski, P.; Wiślicki, W.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz.; Pałka, M.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zieliński, M.; Zoń, N.

    2015-06-01

    The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The discussed detector offers improvement of the Time of Flight (TOF) resolution due to the use of fast plastic scintillators and dedicated electronics allowing for sampling in the voltage domain of signals with durations of few nanoseconds. In this paper we show that recovery of the whole signal, based on only a few samples, is possible. In order to do that, we incorporate the training signals into the Tikhonov regularization framework and we perform the Principal Component Analysis decomposition, which is well known for its compaction properties. The method yields a simple closed form analytical solution that does not require iterative processing. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This is the key to introduce and prove the formula for calculations of the signal recovery error. In this paper we show that an average recovery error is approximately inversely proportional to the number of acquired samples.

  2. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    PubMed

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Low background techniques and experimental challenges for Borexino and its nylon vessels

    NASA Astrophysics Data System (ADS)

    Pocar, Andrea Pietro

    Borexino is an experiment for low energy (<1 MeV) solar neutrino spectroscopy approaching completion at the underground Gran Sasso laboratories in Italy. It is specifically designed to measure in real time the flux of mono-energetic {berillium} neutrinos produced by fusion reactions in the Sun. Its 300-ton liquid scintillator target is contained in an 8.5 meter diameter nylon inner vessel (IV) and is surrounded by 1000 tons of buffer fluid. A second, 11.5 meter diameter concentric nylon outer vessel (OV) around the IV serves as a barrier for radon emanated at the periphery of the detector. Borexino requires unprecedented low levels of radioactive impurities to be a success (˜1 background event/day in the central 100-tons of scintillator). The IV, which is in direct contact with the scintillator, also has to meet extremely stringent radioactive and cleanliness requirements. Intrinsic levels ˜10 -12 g/g for U and Th and ˜10-8 g/g for K are needed. The vessels, assembled in a clean room in Princeton, made of a 125 micron-thick membrane, need to be leak tight at the 10-2 cc/s and 1 cc/s level for the IV and OV respectively, and have to withstand mechanical stresses due to density differences and temperature gradients between the fluids they contain. Their requirements and assembly process are presented in detail. An upper limit on the inner vessel leak rate of 10-3 cc/s was measured. The performance of a matrix of light sources, placed on both vessels for monitoring its shape with digital cameras, is demonstrated. The problem of surface contamination by radon in the air is extensively addressed, strategies for minimizing it are analysed and the effectiveness of their application evaluated. In particular, an original radon filter based on vacuum swing adsorption on activated charcoal has been developed for use in connection with the clean room. Such a technique yielded radon abatement factors in excess of 104 in a small-scale prototype, and ˜100 in the final system. Finally, trace scintillator radioactivity data are reported from CTF3, a counting test facility for Borexino now in its third data-taking phase. An intrinsic 14C isotopic contamination of the scintillator ˜5 x 10-18 has been measured. Upper limits of ˜3.5 x 10-16 g/g on {\\uranium} contamination and of ˜10 -4 Bq/ton for the 85Kr residual activity have also been set. (Abstract shortened by UMI.)

  4. Liquid scintillation counting for /sup 14/C uptake of single algal cells isolated from natural samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, R.B.; Seliger, H.H.

    1981-07-01

    Short term rates of /sup 14/C uptake for single cells and small numbers of isolated algal cells of five phytoplankton species from natural populations were measured by liquid scintillation counting. Regression analysis of uptake rates per cell for cells isolated from unialgal cultures of seven species of dinoflagellates, ranging in volume from ca. 10/sup 3/ to 10/sup 7/ ..mu..m/sup 3/, gave results identical to uptake rates per cell measured by conventional /sup 14/C techniques. Relative standard errors or regression coefficients ranged between 3 and 10%, indicating that for any species there was little variation in photosynthesis per cell.

  5. Properties of ZnO nanocrystals prepared by radiation method

    NASA Astrophysics Data System (ADS)

    Čuba, Václav; Gbur, Tomáš; Múčka, Viliam; Nikl, Martin; Kučerková, Romana; Pospíšil, Milan; Jakubec, Ivo

    2010-01-01

    Zinc oxide nanoparticles were prepared by irradiation of aqueous solutions containing zinc(II) ions, propan-2-ol, polyvinyl alcohol, and hydrogen peroxide. Zinc oxide was found in solid phase either directly after irradiation, or after additional heat treatment. Various physicochemical parameters, including scintillation properties of prepared materials, were studied. After decomposition of impurities and annealing of oxygen vacancies, the samples showed intensive emission in visible spectral range and well-shaped exciton luminescence at 390-400 nm. The best scintillating properties had zinc oxide prepared from aqueous solutions containing zinc formate as initial precursor and hydrogen peroxide. Size of the crystalline particles ranged from tens to hundreds nm, depending on type of irradiated solution and post-irradiation thermal treatment.

  6. Ionosphere scintillations associated with features of equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.; Murthy, B. S.

    1979-01-01

    Amplitude scintillations of radio beacons aboard the ATS-6 satellite on 40 MHz, 140 MHz and 360 MHz recorded during the ATS-6 phase II at an equatorial station Ootacamund (dip 4 deg N) and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for scintillation activity. Only sporadic E events, other than Es-q, Es-c or normal E are found to be associated with intense daytime scintillations. Scintillations are also observed during night Es conditions. The amplitude spread is associated with strong scintillations on all frequencies while frequency spread causes weaker scintillations and that mainly at 40 MHz.

  7. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M.

    2016-06-15

    Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency andmore » effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.« less

  8. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging.

    PubMed

    Larsson, Jakob C; Lundström, Ulf; Hertz, Hans M

    2016-06-01

    High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28-38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.

  9. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  10. An alternative method of OBT measurement for the limited quantity of environmental samples using a combustion bomb.

    PubMed

    Kim, Sang Bog; Stuart, Marilyne

    2013-12-01

    The measurement of organically bound tritium (OBT) in environmental samples is much more difficult than the measurement of tritiated water (HTO). This study describes an alternative method for OBT determination in plant materials in which tritium-free polyethylene beads are added to the plant sample prior to combustion in a combustion bomb. It is not always possible to collect large enough amounts of some plants (e.g. algae, plankton, grass) within a specific area or specific period. Excellent water recovery is achieved when dry plant materials are combusted with polyethylene beads. When Ultima Gold AB is used as the scintillation cocktail, it is possible to measure the combustion water directly without distillation. Correction factors were derived for the plants used in the study to account for the dilution of the combustion water due to addition of the polyethylene beads. The alternative method has a number of advantages, including an increased yield of combustion water for liquid scintillation counting, less color quenching, reduced sample size and decreased analysis time. Finally, accuracy tests comparing results of the conventional method with those of the alternative method were carried out using environmental samples. Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

  11. Cherenkov and scintillation light separation on the CheSS experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  12. Plastic Organic Scintillator Chemistry

    NASA Astrophysics Data System (ADS)

    Brightwell, C. R.; Temanson, E. S.; Febbraro, M. T.

    2017-09-01

    Due to their high light output, quick decay time, affordability, durability and ability to be molded, plastic organic scintillators are increasingly becoming a more viable method of particle detection. Since the plastic is composed entirely of single molecular chains with repeating units, scintillating properties remain stable despite changes in experimental conditions. Different scintillating plastics can be modified and tailored to suit specific experiments depending on a variety of requirements such as light output, scintillating wavelength, and PMT compatibility. The synthesis chemistry of a recent but well-known scintillating polyester, polyethylene naphthalate (PEN) will be presented to demonstrate how plastic organic scintillators can be modified for different particle detection experiments. PEN has been successfully synthesized at ORNL, and procedures are currently being investigated to modify PEN using different reactants and catalysts. The goal is to achieve a transparent scintillating plastic with an incorporated wavelength shifter in the chain that scintillates with a wavelength around 440 nm. The status of this project will be presented. This research is supported by the U. S. Department of Energy Office of Science.

  13. Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.

    PubMed

    Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng

    2013-11-20

    Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.

  14. Imaging probe for breast cancer localization

    NASA Astrophysics Data System (ADS)

    Soluri, A.; Scafè, R.; Capoccetti, F.; Burgio, N.; Schiaratura, A.; Pani, R.; Pellegrini, R.; Cinti, M. N.; Mechella, M.; Amanti, A.; David, V.; Scopinaro, F.

    2003-01-01

    High spatial resolution, small Field Of View (FOV), fully portable scintillation cameras are lower cost and obviously lower weight than large FOV, not transportable Anger gamma cameras. Portable cameras allow easy transfer of the detector, thus of radioisotope imaging, where the bioptical procedure takes place. In this paper we describe a preliminary experience on radionuclide Breast Cancer (BC) imaging with a 22.8×22.8 mm 2 FOV minicamera, already used by our group for sentinel node detection with the name of Imaging Probe (IP). In this work IP BC detection was performed with the aim of guiding biopsy, in particular open biopsy, or to help or modify fine needle or needle addressing when main driving method was echography or digital radiography. The IP prototype weight was about 1 kg. This small scintillation camera is based on the compact Position Sensitive Photomultiplier Tube Hamamatsu R7600-00-C8, coupled to a CsI(Tl) scintillation array 2.6×2.6×5.0 mm 3 crystal-pixel size. Spatial resolution of the IP was 2.5 mm Full-Width at Half-Maximum at laboratory tests. IP was provided with acquisition software allowing quick change of pixels number on the computer acquisition frame and an on-line image-smoothing program. Both these programs were developed in order to allow nuclear physicians to quickly get target source when the patient was anesthetized in the operator room, with sterile conditions. 99mTc Sestamibi (MIBI) was injected at the dose of 740 MBq 1 h before imaging and biopsy to 14 patients with suspicious or known BC. Scintigraphic images were acquired before and after biopsy in each patient. Operator was allowed to take into account scintigraphic images as well as previously performed X-ray mammograms and echographies. High-resolution IP images were able to guide biopsy toward cancer or washout zones of the cancer, that are thought to be chemoresistant in 7 patients out of 10. Four patients, in whom IP and MIBI were not able to guide biopsy, did not show cancer. Two patients in whom biopsy was performed in the high washout zone, did show Multi Drug Resistance (MDR) gene product at immunohistochemistry on bioptical samples. Specific radioactivity was measured on biopsy specimens and measurement confirmed the etherogeneous distribution of MIBI within cancers. Our study confirms the ability of IP to guide breast biopsy even when our mini-camera has to be manually handled by trained physicians during operation.

  15. CMOS cassette for digital upgrade of film-based mammography systems

    NASA Astrophysics Data System (ADS)

    Baysal, Mehmet A.; Toker, Emre

    2006-03-01

    While full-field digital mammography (FFDM) technology is gaining clinical acceptance, the overwhelming majority (96%) of the installed base of mammography systems are conventional film-screen (FSM) systems. A high performance, and economical digital cassette based product to conveniently upgrade FSM systems to FFDM would accelerate the adoption of FFDM, and make the clinical and technical advantages of FFDM available to a larger population of women. The planned FFDM cassette is based on our commercial Digital Radiography (DR) cassette for 10 cm x 10 cm field-of-view spot imaging and specimen radiography, utilizing a 150 micron columnar CsI(Tl) scintillator and 48 micron active-pixel CMOS sensor modules. Unlike a Computer Radiography (CR) cassette, which requires an external digitizer, our DR cassette transfers acquired images to a display workstation within approximately 5 seconds of exposure, greatly enhancing patient flow. We will present the physical performance of our prototype system against other FFDM systems in clinical use today, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and subjective criteria, such as a contrast-detail (CD-MAM) observer performance study. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for FFDM today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. This study promises to take advantage of these unique features to develop the first CMOS based FFDM upgrade cassette.

  16. Optical and Scintillation Properties of Polydimethyl-Diphenylsiloxane Based Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Quaranta, Alberto; Carturan, Sara Maria; Marchi, Tommaso; Kravchuk, Vladimir L.; Gramegna, Fabiana; Maggioni, Gianluigi; Degerlier, Meltem

    2010-04-01

    Polysiloxane based scintillators with high light yield have been synthesized. The polymer consists in cross-linked polydimethyl-co-diphenylsiloxane with different molar percentages of phenyl units. 2,5-diphenyl oxazole (PPO) and 2,5-bis(5-ter-butyl-2-benzoxazolyl)thiophene (BBOT) have been dispersed in the polymer as dopants. The energy transfer and scintillation capabilities have been investigated, for two different amounts of phenyl groups in the polymer network and for different concentrations of dye molecules, by means of fluorescence spectroscopy, ion beam induced luminescence (IBIL) and scintillation yield measurements with ¿ particles from an 241Am source. The luminescence features and the scintillation yields have been correlated to the composition of the scintillators.

  17. Subnanosecond Scintillation Detector

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael (Inventor); Hennessy, John (Inventor); Hitlin, David (Inventor)

    2017-01-01

    A scintillation detector, including a scintillator that emits scintillation; a semiconductor photodetector having a surface area for receiving the scintillation, wherein the surface area has a passivation layer configured to provide a peak quantum efficiency greater than 40% for a first component of the scintillation, and the semiconductor photodetector has built in gain through avalanche multiplication; a coating on the surface area, wherein the coating acts as a bandpass filter that transmits light within a range of wavelengths corresponding to the first component of the scintillation and suppresses transmission of light with wavelengths outside said range of wavelengths; and wherein the surface area, the passivation layer, and the coating are controlled to increase the temporal resolution of the semiconductor photodetector.

  18. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  19. PLASTIC SCINTILLATOR FOR RADIATION DOSIMETRY.

    PubMed

    Kim, Yewon; Yoo, Hyunjun; Kim, Chankyu; Lim, Kyung Taek; Moon, Myungkook; Kim, Jongyul; Cho, Gyuseong

    2016-09-01

    Inorganic scintillators, composed of high-atomic-number materials such as the CsI(Tl) scintillator, are commonly used in commercially available a silicon diode and a scintillator embedded indirect-type electronic personal dosimeters because the light yield of the inorganic scintillator is higher than that of an organic scintillator. However, when it comes to tissue-equivalent dose measurements, a plastic scintillator such as polyvinyl toluene (PVT) is a more appropriate material than an inorganic scintillator because of the mass energy absorption coefficient. To verify the difference in the absorbed doses for each scintillator, absorbed doses from the energy spectrum and the calculated absorbed dose were compared. From the results, the absorbed dose of the plastic scintillator was almost the same as that of the tissue for the overall photon energy. However, in the case of CsI, it was similar to that of the tissue only for a photon energy from 500 to 4000 keV. Thus, the values and tendency of the mass energy absorption coefficient of the PVT are much more similar to those of human tissue than those of the CsI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Study of a coincident observation between the ROCSAT-1 density irregularity and Ascension Island scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Chao, C. K.; Su, S.-Y.; Liu, C. H.

    2012-10-01

    A coincident observation that occurred on 24 March 2000 between the irregularity structure measured by ROCSAT-1 and the scintillation experiment at the Ascension Island has been studied. The study of scintillation statistics is carried out first, and the results show that the Nakagami distribution can portray the normalized intensity of the L-band scintillation at various S4 values, up to S4 equal to 1.4. Moreover, the departure of frequency dependence on S4 predicted by the weak scintillation is noticed due to multiple forward scattering effects. The coincident feature between the characteristics of irregularity structure and the scintillation variation are then studied. The causal relationship between the fluctuation of ion density and the scintillation variation is obtained. A numerical simulation using the parabolic wave equation has been carried out with the ROCSAT-1 data in space to compare with the ground scintillation observation. The results show the reasonable scintillation level at the coincident time to indicate a direct relationship between the irregularity structure and the scintillation in both temporal and amplitudinal variations. Finally, some assumptions and limitations of the simulation model are discussed.

Top