Science.gov

Sample records for dihydrofolate reductase-thymidylate synthase

  1. Cloning and heterologous expression of Plasmodium ovale dihydrofolate reductase-thymidylate synthase gene

    PubMed Central

    Tirakarn, Srisuda; Riangrungroj, Pinpunya; Kongsaeree, Palangpon; Imwong, Mallika; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree

    2012-01-01

    Plasmodial bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a validated antimalarial drug target. In this study, expression of the putative dhfr-ts of Plasmodium ovale rescued the DHFR chemical knockout and a TS null bacterial strain, demonstrating its DHFR and TS catalytic functions. PoDHFR-TS was expressed in Escherichia coli BL21 (DE3) and affinity purified by Methotrexate Sepharose column. Biochemical and enzyme kinetics characterizations indicated that PoDHFR-TS is similar to other plasmodial enzymes, albeit with lower catalytic activity but better tolerance of acidic pH. Importantly, the PoDHFR from Thai isolate EU266602 remains sensitive to the antimalarials pyrimethamine and cycloguanil, in contrast to P. falciparum and P. vivax isolates where resistance to these drugs is widespread. PMID:22234170

  2. Primary structure of the dihydrofolate reductase-thymidylate synthase gene from Toxoplasma gondii.

    PubMed

    Roos, D S

    1993-03-25

    We have determined the primary genomic and cDNA sequences encoding the bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) enzyme of the protozoan parasite Toxoplasma gondii (dihydrofolate reductase, EC 1.5.1.3; thymidylate synthase EC 2.1.1.45). The DHFR-TS gene of T. gondii (strain RH) spans more than 6 kilobases of genomic DNA. Unlike the DHFR-TS genes of other protists, sequences encoding the Toxoplasma protein are interrupted by numerous intervening sequences. Analysis of processed T. gondii DHFR-TS cDNAs reveals a single open reading frame of 1830 nucleotides, predicting a 610-amino acid protein of molecular mass of 69 kilodaltons. Because its nucleotide composition and codon usage are roughly comparable to those observed in "higher" eukaryotes, the Toxoplasma DHFR-TS sequence is particularly useful for assessing evolutionary relationships between eukaryotic species. The predicted amino acid sequence for the DHFR-TS protein shows conservation of the major structural features identified in other DHFR and TS enzymes, while revealing certain differences which may be exploited for the design of novel antifolates for treatment of toxoplasmosis associated with AIDS.

  3. Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major.

    PubMed Central

    Beverley, S M; Ellenberger, T E; Cordingley, J S

    1986-01-01

    We have determined the nucleotide sequence of the dihydrofolate reductase-thymidylate synthetase (DHFR-TS) gene of the protozoan parasite Leishmania major (dihydrofolate reductase, EC 1.5.1.3 and thymidylate synthase, EC 2.1.1.45). The DHFR-TS protein is encoded by a single 1560-base-pair open reading frame within genomic DNA, in contrast to vertebrate DHFRs or mouse and phage T4 TSs, which contain intervening sequences. Comparisons of the DHFR-TS sequence with DHFR and TS sequences of other organisms indicate that the order of enzymatic activities within the bifunctional polypeptide chain is DHFR followed by TS, the Leishmania bifunctional DHFR-TS evolved independently and not through a phage T4-related intermediate, and the rate of evolution of both the DHFR and TS domains has not detectably changed despite the acquisition of new functional properties by the bifunctional enzyme. The Leishmania gene is 86% G+C in the third codon position, in contrast to genes of the parasite Plasmodium falciparum, which exhibit an opposite bias toward A+T. The DHFR-TS locus is encoded within a region of DNA amplified in methotrexate-resistant lines, as previously proposed. PMID:3458220

  4. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria.

    PubMed Central

    Peterson, D S; Walliker, D; Wellems, T E

    1988-01-01

    Analysis of a genetic cross of Plasmodium falciparum and of independent parasite isolates from Southeast Asia, Africa, and South America indicates that resistance to pyrimethamine, an antifolate used in the treatment of malaria, results from point mutations in the gene encoding dihydrofolate reductase-thymidylate synthase (EC 1.5.1.3 and EC 2.1.1.45, respectively). Parasites having a mutation from Thr-108/Ser-108 to Asn-108 in DHFR-TS are resistant to the drug. The Asn-108 mutation occurs in a region analogous to the C alpha-helix bordering the active site cavity of bacterial, avian, and mammalian enzymes. Additional point mutations (Asn-51 to Ile-51 and Cys-59 to Arg-59) are associated with increased pyrimethamine resistance and also occur at sites expected to border the active site cavity. Analogies with known inhibitor/enzyme structures from other organisms suggest that the point mutations occur where pyrimethamine contacts the enzyme and may act by inhibiting binding of the drug. Images PMID:2904149

  5. Two crystal structures of dihydrofolate reductase-thymidylate synthase from Cryptosporidium hominis reveal protein–ligand interactions including a structural basis for observed antifolate resistance

    SciTech Connect

    Anderson, Amy C.

    2005-03-01

    An analysis of the protein–ligand interactions in two crystal structures of DHFR-TS from C. hominis reveals a possible structural basis for observed antifolate resistance in C. hominis DHFR. A comparison with the structure of human DHFR reveals residue substitutions that may be exploited for the design of species-selective inhibitors. Cryptosporidium hominis is a protozoan parasite that causes acute gastrointestinal illness. There are no effective therapies for cryptosporidiosis, highlighting the need for new drug-lead discovery. An analysis of the protein–ligand interactions in two crystal structures of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from C. hominis, determined at 2.8 and 2.87 Å resolution, reveals that the interactions of residues Ile29, Thr58 and Cys113 in the active site of C. hominis DHFR provide a possible structural basis for the observed antifolate resistance. A comparison with the structure of human DHFR reveals active-site differences that may be exploited for the design of species-selective inhibitors.

  6. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate

    SciTech Connect

    Senkovich, Olga; Schormann, Norbert; Chattopadhyay, Debasish

    2010-11-22

    The flagellate protozoan parasite Trypanosoma cruzi is the pathogenic agent of Chagas disease (also called American trypanosomiasis), which causes approximately 50 000 deaths annually. The disease is endemic in South and Central America. The parasite is usually transmitted by a blood-feeding insect vector, but can also be transmitted via blood transfusion. In the chronic form, Chagas disease causes severe damage to the heart and other organs. There is no satisfactory treatment for chronic Chagas disease and no vaccine is available. There is an urgent need for the development of chemotherapeutic agents for the treatment of T. cruzi infection and therefore for the identification of potential drug targets. The dihydrofolate reductase activity of T. cruzi, which is expressed as part of a bifunctional enzyme, dihydrofolate reductase-thymidylate synthase (DHFR-TS), is a potential target for drug development. In order to gain a detailed understanding of the structure-function relationship of T. cruzi DHFR, the three-dimensional structure of this protein in complex with various ligands is being studied. Here, the crystal structures of T. cruzi DHFR-TS with three different compositions of the DHFR domain are reported: the folate-free state, the complex with the lipophilic antifolate trimetrexate (TMQ) and the complex with the classical antifolate methotrexate (MTX). These structures reveal that the enzyme is a homodimer with substantial interactions between the two TS domains of neighboring subunits. In contrast to the enzymes from Cryptosporidium hominis and Plasmodium falciparum, the DHFR and TS active sites of T. cruzi lie on the same side of the monomer. As in other parasitic DHFR-TS proteins, the N-terminal extension of the T. cruzi enzyme is involved in extensive interactions between the two domains. The DHFR active site of the T. cruzi enzyme shows subtle differences compared with its human counterpart. These differences may be exploited for the development of

  7. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase

    PubMed Central

    Gibson, Marc W.; Dewar, Simon; Ong, Han B.; Sienkiewicz, Natasha

    2016-01-01

    Bifunctional dihydrofolate reductase–thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed. PMID:27175479

  8. Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening

    PubMed Central

    2011-01-01

    Background Plasmodium vivax is the most prevalent cause of human malaria in tropical regions outside the African continent. The lack of a routine continuous in vitro culture of this parasite makes it difficult to develop specific drugs for this disease. To facilitate the development of anti-P. vivax drugs, bacterial and yeast surrogate models expressing the validated P. vivax target dihydrofolate reductase-thymidylate synthase (DHFR-TS) have been generated; however, they can only be used as primary screening models because of significant differences in enzyme expression level and in vivo drug metabolism between the surrogate models and P. vivax parasites. Methods Plasmodium falciparum and Plasmodium berghei parasites were transfected with DNA constructs bearing P. vivax dhfr-ts pyrimethamine sensitive (wild-type) and pyrimethamine resistant (mutant) alleles. Double crossover homologous recombination was used to replace the endogenous dhfr-ts of P. falciparum and P. berghei parasites with P. vivax homologous genes. The integration of Pvdhfr-ts genes via allelic replacement was verified by Southern analysis and the transgenic parasites lines validated as models by standard drug screening assays. Results Transgenic P. falciparum and P. berghei lines stably expressing PvDHFR-TS replacing the endogenous parasite DHFR-TS were obtained. Anti-malarial drug screening assays showed that transgenic parasites expressing wild-type PvDHFR-TS were pyrimethamine-sensitive, whereas transgenic parasites expressing mutant PvDHFR-TS were pyrimethamine-resistant. The growth and sensitivity to other types of anti-malarial drugs in the transgenic parasites were otherwise indistinguishable from the parental parasites. Conclusion With the permanent integration of Pvdhfr-ts gene in the genome, the transgenic Plasmodium lines expressing PvDHFR-TS are genetically stable and will be useful for screening anti-P. vivax compounds targeting PvDHFR-TS. A similar approach could be used to generate

  9. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase

    SciTech Connect

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan; Senkovich, Olga; Walker, Kiera; Chenna, Bala C.; Shinkre, Bidhan; Desai, Amar; Chattopadhyay, Debasish

    2010-09-17

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.

  10. Point mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum isolates from Venezuela.

    PubMed

    Urdaneta, L; Plowe, C; Goldman, I; Lal, A A

    1999-09-01

    The present study was designed to characterize mutations in dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) genes of Plasmodium falciparum in the Bolivar region of Venezuela, where high levels of clinical resistance to sulfadoxine-pyrimethamine (SP, Fansidar; F. Hoffman-La Roche, Basel, Switzerland) has been documented. We used a nested mutation-specific polymerase chain reaction and restriction digestion methods to measure 1) the prevalence of DHFR mutations at 16, 50, 51, 59, 108, and 164 codon positions, and 2) the prevalence of mutations in the 436, 437, 581, and 613 codon sites in DHPS gene. In the case of the DHFR gene, of the 54 parasite isolates analyzed, we detected the presence of Asn-108 and Ile-51 in 96% of the isolates and Arg-50 mutation in 64% of the isolates. Each of these mutations has been associated with high level of resistance to pyrimethamine. Only 2 samples (4%) showed the wild type Ser-108 mutation and none showed Thr-108 and Val-16 mutations that are specific for resistance to cycloguanil. In the case of DHPS gene, we found a mutation at position 437 (Gly) in 100% of the isolates and Gly-581 in 96% of the isolates. The simultaneous presence of mutations Asn-108 and Ile-51 in the DHFR gene and Gly-437 and Gly-581 in the DHPS gene in 96% of the samples tested suggested that a cumulative effect of mutations could be the major mechanism conferring high SP resistance in this area. PMID:10497990

  11. Dihydrofolate Reductase and Thymidylate Synthase Transgenes Resistant to Methotrexate Interact to Permit Novel Transgene Regulation*

    PubMed Central

    Rushworth, David; Mathews, Amber; Alpert, Amir; Cooper, Laurence J. N.

    2015-01-01

    Methotrexate (MTX) is an anti-folate that inhibits de novo purine and thymidine nucleotide synthesis. MTX induces death in rapidly replicating cells and is used in the treatment of multiple cancers. MTX inhibits thymidine synthesis by targeting dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS). The use of MTX to treat cancer also causes bone marrow suppression and inhibits the immune system. This has led to the development of an MTX-resistant DHFR, DHFR L22F, F31S (DHFRFS), to rescue healthy cells. 5-Fluorouracil-resistant TYMS T51S, G52S (TYMSSS) is resistant to MTX and improves MTX resistance of DHFRFS in primary T cells. Here we find that a known mechanism of MTX-induced increase in DHFR expression persists with DHFRFS and cis-expressed transgenes. We also find that TYMSSS expression of cis-expressed transgenes is similarly decreased in an MTX-inducible manner. MTX-inducible changes in DHFRFS and TYMSSS expression changes are lost when both genes are expressed together. In fact, expression of the DHFRFS and TYMSSS cis-expressed transgenes becomes correlated. These findings provide the basis for an unrecognized post-transcriptional mechanism that functionally links expression of DHFR and TYMS. These findings were made in genetically modified primary human T cells and have a clear potential for use in clinical applications where gene expression needs to be regulated by drug or maintained at a specific expression level. We demonstrate a potential application of this system in the controlled expression of systemically toxic cytokine IL-12. PMID:26242737

  12. Sulfa and trimethoprim-like drugs - antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors.

    PubMed

    Capasso, Clemente; Supuran, Claudiu T

    2014-06-01

    Recent advances in microbial genomics, synthetic organic chemistry and X-ray crystallography provided opportunities to identify novel antibacterial targets for the development of new classes of antibiotics and to design more potent antimicrobial compounds derived from existing antibiotics in clinical use for decades. The antimetabolites, sulfa drugs and trimethoprim (TMP)-like agents, are inhibitors of three families of enzymes. One family belongs to the carbonic anhydrases, which catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. The other two enzyme families are involved in the synthesis of tetrahydrofolate (THF), i.e. dihydropteroate synthase (DHPS) and dihydrofolate reductase. The antibacterial agents belonging to the THF and DHPS inhibitors were developed decades ago and present significant bacterial resistance problems. However, the molecular mechanisms of drug resistance both to sulfa drugs and TMP-like inhibitors were understood in detail only recently, when several X-ray crystal structures of such enzymes in complex with their inhibitors were reported. Here, we revue the state of the art in the field of antibacterials based on inhibitors of these three enzyme families.

  13. A nanotherapy strategy significantly enhances anticryptosporidial activity of an inhibitor of bifunctional thymidylate synthase-dihydrofolate reductase from Cryptosporidium.

    PubMed

    Mukerjee, Anindita; Iyidogan, Pinar; Castellanos-Gonzalez, Alejandro; Cisneros, José A; Czyzyk, Daniel; Ranjan, Amalendu Prakash; Jorgensen, William L; White, A Clinton; Vishwanatha, Jamboor K; Anderson, Karen S

    2015-01-01

    Cryptosporidiosis, a gastrointestinal disease caused by protozoans of the genus Cryptosporidium, is a common cause of diarrheal diseases and often fatal in immunocompromised individuals. Bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis (C. hominis) has been a molecular target for inhibitor design. C. hominis TS-DHFR inhibitors with nM potency at a biochemical level have been developed however drug delivery to achieve comparable antiparasitic activity in Cryptosporidium infected cell culture has been a major hurdle for designing effective therapies. Previous mechanistic and structural studies have identified compound 906 as a nM C. hominis TS-DHFR inhibitor in vitro, having μM antiparasitic activity in cell culture. In this work, proof of concept studies are presented using a nanotherapy approach to improve drug delivery and the antiparasitic activity of 906 in cell culture. We utilized PLGA nanoparticles that were loaded with 906 (NP-906) and conjugated with antibodies to the Cryptosporidium specific protein, CP2, on the nanoparticle surface in order to specifically target the parasite. Our results indicate that CP2 labeled NP-906 (CP2-NP-906) reduces the level of parasites by 200-fold in cell culture, while NP-906 resulted in 4.4-fold decrease. Moreover, the anticryptosporidial potency of 906 improved 15 to 78-fold confirming the utility of the antibody conjugated nanoparticles as an effective drug delivery strategy.

  14. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function

    SciTech Connect

    Schormann, N.; Senkovich, O.; Walker, K.; Wright, D.L.; Anderson, A.C.; Rosowsky, A.; Ananthan, S.; Shinkre, B.; Velu, S.; Chattopadhyay, D.

    2009-07-10

    We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.

  15. Use of bacterial surrogates as a tool to explore antimalarial drug interaction: Synergism between inhibitors of malarial dihydrofolate reductase and dihydropteroate synthase.

    PubMed

    Talawanich, Yuwadee; Kamchonwongpaisan, Sumalee; Sirawaraporn, Worachart; Yuthavong, Yongyuth

    2015-09-01

    Interaction between antimalarial drugs is important in determining the outcome of chemotherapy using drug combinations. Inhibitors of dihydrofolate reductase (DHFR) such as pyrimethamine and of dihydropteroate synthase (DHPS) such as sulfa drugs are known to have synergistic interactions. However, studies of the synergism are complicated by the fact that the malaria parasite can also salvage exogenous folates, and the salvage may also be affected by the drugs. It is desirable to have a convenient system to study interaction of DHFR and DHPS inhibitors without such complications. Here, we describe the use of Escherichia coli transformed with malarial DHFR and DHPS, while its own corresponding genes have been inactivated by optimal concentration of trimethoprim and genetic knockout, respectively, to study the interaction of the inhibitors. Marked synergistic effects are observed for all combinations of pyrimethamine and sulfa inhibitors in the presence of trimethoprim. At 0.05μM trimethoprim, sum of fractional inhibitory concentrations, ΣFIC of pyrimethamine with sulfadoxine, pyrimethamine with sulfathiazole, pyrimethamine with sulfamethoxazole, and pyrimethamine with dapsone are in the range of 0.24-0.41. These results show synergism between inhibitors of the two enzymes even in the absence of folate transport and uptake. This bacterial surrogate system should be useful as a tool for assessing the interactions of drug combinations between the DHFR and DHPS inhibitors.

  16. Declining trend of Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant alleles after the withdrawal of Sulfadoxine-Pyrimethamine in North Western Ethiopia.

    PubMed

    Tessema, Sofonias K; Kassa, Moges; Kebede, Amha; Mohammed, Hussein; Leta, Gemechu Tadesse; Woyessa, Adugna; Guma, Geremew Tasew; Petros, Beyene

    2015-01-01

    Antimalarial drug resistance is one of the major challenges in global efforts of malaria control and elimination. In 1998, chloroquine was abandoned and replaced with sulfadoxine/pyrimethamine, which in turn was replaced with artemether/lumefantrine for the treatment of uncomplicated falciparum malaria in 2004. Sulfadoxine/pyrimethamine resistance is associated with mutations in dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes. The prevalence of mutation in Pfdhfr and Pfdhps genes were evaluated and compared for a total of 159 isolates collected in two different time points, 2005 and 2007/08, from Pawe hospital, in North Western Ethiopia. The frequency of triple Pfdhfr mutation decreased significantly from 50.8% (32/63) to 15.9% (10/63) (P<0.001), while Pfdhps double mutation remained high and changed only marginally from 69.2% (45/65) to 55.4% (40/65) (P = 0.08). The combined Pfdhfr/Pfdhps quintuple mutation, which is strongly associated with sulfadoxine/pyrimethamine resistance, was significantly decreased from 40.7% (24/59) to 13.6% (8/59) (P<0.0001). On the whole, significant decline in mutant alleles and re-emergence of wild type alleles were observed. The change in the frequency is explained by the reduction of residual drug-resistant parasites caused by the strong drug pressure imposed when sulfadoxine/pyrimethamine was the first-line drug, followed by lower fitness of these resistant parasites in the absence of drug pressure. Despite the decrease in the frequency of mutant alleles, higher percentages of mutation remain prevalent in the study area in 2007/08 in both Pfdhfr and Pfdhps genes. Therefore, further multi-centered studies in different parts of the country will be required to assess the re-emergence of sulfadoxine/pyrimethamine sensitive parasites and to monitor and prevent the establishment of multi drug resistant parasites in this region. PMID:26431464

  17. Declining trend of Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant alleles after the withdrawal of Sulfadoxine-Pyrimethamine in North Western Ethiopia

    PubMed Central

    Tessema, Sofonias K.; Kassa, Moges; Kebede, Amha; Mohammed, Hussein; Leta, Gemechu Tadesse; Woyessa, Adugna; Guma, Geremew Tasew; Petros, Beyene

    2015-01-01

    Antimalarial drug resistance is one of the major challenges in global efforts of malaria control and elimination. In 1998, chloroquine was abandoned and replaced with sulfadoxine/pyrimethamine, which in turn was replaced with artemether/lumefantrine for the treatment of uncomplicated falciparum malaria in 2004. Sulfadoxine/pyrimethamine resistance is associated with mutations in dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes. The prevalence of mutation in Pfdhfr and Pfdhps genes were evaluated and compared for a total of 159 isolates collected in two different time points, 2005 and 2007/08, from Pawe hospital, in North Western Ethiopia. The frequency of triple Pfdhfr mutation decreased significantly from 50.8% (32/63) to 15.9% (10/63) (P<0.001), while Pfdhps double mutation remained high and changed only marginally from 69.2% (45/65) to 55.4% (40/65) (P = 0.08). The combined Pfdhfr/Pfdhps quintuple mutation, which is strongly associated with sulfadoxine/pyrimethamine resistance, was significantly decreased from 40.7% (24/59) to 13.6% (8/59) (P<0.0001). On the whole, significant decline in mutant alleles and re-emergence of wild type alleles were observed. The change in the frequency is explained by the reduction of residual drug-resistant parasites caused by the strong drug pressure imposed when sulfadoxine/pyrimethamine was the first-line drug, followed by lower fitness of these resistant parasites in the absence of drug pressure. Despite the decrease in the frequency of mutant alleles, higher percentages of mutation remain prevalent in the study area in 2007/08 in both Pfdhfr and Pfdhps genes. Therefore, further multi-centered studies in different parts of the country will be required to assess the re-emergence of sulfadoxine/pyrimethamine sensitive parasites and to monitor and prevent the establishment of multi drug resistant parasites in this region. PMID:26431464

  18. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  19. Design, synthesis, biological evaluation and X-ray crystal structure of novel classical 6,5,6-tricyclic benzo[4,5]thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors

    PubMed Central

    Zhang, Xin; Zhou, Xilin; L.Kisliuk, Roy; Piraino, Jennifer; Cody, Vivian

    2011-01-01

    Classical antifolates (4-7) with a tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold and a flexible and rigid benzoylglutamate were synthesized as dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. Oxidative aromatization of ethyl 2-amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (±)-9 to ethyl 2-amino-4-methyl-1-benzothiophene-3-carboxylate 10 with 10% Pd/C was a key synthetic step. Compounds with 2-CH3 substituents inhibited human (h) TS (IC50 = 0.26-0.8 μM), but not hDHFR. Substitution of the 2-CH3 with a 2-NH2 increases hTS inhibition by more than 10-fold and also affords excellent hDHFR inhibition (IC50 = 0.09-0.1 μM). This study shows that the tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold is highly conducive to single hTS or dual hTS-hDHFR inhibition depending on the 2-position substituents. The X-ray crystal structures of 6 and 7 with hDHFR reveal, for the first time, that tricyclics 6 and 7 bind with the benzo[4,5]thieno[2,3-d]pyrimidine ring in the folate binding mode with the thieno S mimicking the 4-amino of methotrexate. PMID:21550809

  20. Molecular epidemiology of malaria in Cameroon. XXX. sequence analysis of Plasmodium falciparum ATPase 6, dihydrofolate reductase, and dihydropteroate synthase resistance markers in clinical isolates from children treated with an artesunate-sulfadoxine-pyrimethamine combination.

    PubMed

    Menemedengue, Virginie; Sahnouni, Khalifa; Basco, Leonardo; Tahar, Rachida

    2011-07-01

    Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are reliable molecular markers for antifolate resistance. The P. falciparum ATPase 6 (pfatp6) gene has been proposed to be a potential marker for artemisinin resistance. In our previous clinical study, we showed that artesunate-sulfadoxine-pyrimethamine is highly effective against uncomplicated malaria in Yaoundé, Cameroon. In the present study, dhfr, dhps, and pfatp6 mutations in P. falciparum isolates obtained from children treated with artesunate-sulfadoxine-pyrimethamine were determined. All 61 isolates had wild-type Pfatp6 263, 623, and 769 alleles, and 11 (18%) had a single E431K substitution. Three additional mutations, E643Q, E432K, and E641Q, were detected. The results did not indicate any warning signal of serious concern (i.e., no parasites were seen with quintuple dhfr-dhps, DHFR Ile164Leu, or pfatp6 mutations), as confirmed by the high clinical efficacy of artesunate-sulfadoxine-pyrimethamine. Further studies are required to identify a molecular marker that reliably predicts artemisinin resistance.

  1. Multiparameter Screening on SlipChip Used for Nanoliter Protein Crystallization Combining Free Interface Diffusion and Microbatch Methods

    SciTech Connect

    Li, Liang; Du, Wenbin; Ismagilov, Rustem F.

    2010-08-04

    This paper describes two SlipChip-based approaches to protein crystallization: a SlipChip-based free interface diffusion (FID) method and a SlipChip-based composite method that simultaneously performs microbatch and FID crystallization methods in a single device. The FID SlipChip was designed to screen multiple reagents, each at multiple diffusion equilibration times, and was validated by screening conditions for crystallization of two proteins, enoyl-CoA hydratase from Mycobacterium tuberculosis and dihydrofolate reductase/thymidylate synthase from Babesia bovis, against 48 different reagents at five different equilibration times each, consuming 12 {micro}L of each protein for a total of 480 experiments using three SlipChips. The composite SlipChip was designed to screen multiple reagents, each at multiple mixing ratios and multiple equilibration times, and was validated by screening conditions for crystallization of two proteins, enoyl-CoA hydratase from Mycobacterium tuberculosis and dihydrofolate reductase/thymidylate synthase from Babesia bovis. To prevent cross-contamination while keeping the solution in the neck channels for FID stable, the plates of the SlipChip were etched with a pattern of nanowells. This nanopattern was used to increase the contact angle of aqueous solutions on the surface of the silanized glass. The composite SlipChip increased the number of successful crystallization conditions and identified more conditions for crystallization than separate FID and microbatch screenings. Crystallization experiments were scaled up in well plates using conditions identified during the SlipChip screenings, and X-ray diffraction data were obtained to yield the protein structure of dihydrofolate reductase/thymidylate synthase at 1.95 {angstrom} resolution. This free-interface diffusion approach provides a convenient and high-throughput method of setting up gradients in microfluidic devices and may find additional applications in cell-based assays.

  2. Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase.

    PubMed

    Duff, Michael R; Chopra, Shaileja; Strader, Michael Brad; Agarwal, Pratul K; Howell, Elizabeth E

    2016-01-12

    Homotetrameric R67 dihydrofolate reductase possesses 222 symmetry and a single active site pore. This situation results in a promiscuous binding site that accommodates either the substrate, dihydrofolate (DHF), or the cofactor, NADPH. NADPH interacts more directly with the protein as it is larger than the substrate. In contrast, the p-aminobenzoyl-glutamate tail of DHF, as monitored by nuclear magnetic resonance and crystallography, is disordered when bound. To explore whether smaller active site volumes (which should decrease the level of tail disorder by confinement effects) alter steady state rates, asymmetric mutations that decreased the half-pore volume by ∼35% were constructed. Only minor effects on k(cat) were observed. To continue exploring the role of tail disorder in catalysis, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide-mediated cross-linking between R67 DHFR and folate was performed. A two-folate, one-tetramer complex results in the loss of enzyme activity where two symmetry-related K32 residues in the protein are cross-linked to the carboxylates of two bound folates. The tethered folate could be reduced, although with a ≤30-fold decreased rate, suggesting decreased dynamics and/or suboptimal positioning of the cross-linked folate for catalysis. Computer simulations that restrain the dihydrofolate tail near K32 indicate that cross-linking still allows movement of the p-aminobenzoyl ring, which allows the reaction to occur. Finally, a bis-ethylene-diamine-α,γ-amide folate adduct was synthesized; both negatively charged carboxylates in the glutamate tail were replaced with positively charged amines. The K(i) for this adduct was ∼9-fold higher than for folate. These various results indicate a balance between folate tail disorder, which helps the enzyme bind substrate while dynamics facilitates catalysis. PMID:26637016

  3. Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum.

    PubMed Central

    Crabb, B S; Cowman, A F

    1996-01-01

    Genetic studies of the protozoan parasite Plasmodium falciparum have been severely limited by the inability to introduce or modify genes. In this paper we describe a system of stable transfection of P. falciparum using a Toxoplasma gondii dihydrofolate reductase-thymidylate synthase gene, modified to confer resistance to pyrimethamine, as a selectable marker. This gene was placed under the transcriptional control of the P. falciparum calmodulin gene flanking sequences. Transfected parasites generally maintained plasmids episomally while under selection; however, parasite clones containing integrated forms of the plasmid were obtained. Integration occurred by both homologous and nonhomologous recombination. In addition to the flanking sequence of the P. falciparum calmodulin gene, the 5' sequences of the P. falciparum and P. chabaudi dihydrofolate reductase-thymidylate synthase genes were also shown to be transcriptionally active in P. falciparum. The minimal 5' sequence that possessed significant transcriptional activity was determined for each gene and short sequences containing important transcriptional control elements were identified. These sequences will provide considerable flexibility in the future construction of plasmid vectors to be used for the expression of foreign genes or for the deletion or modification of P. falciparum genes of interest. Images Fig. 4 Fig. 5 PMID:8692985

  4. Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression.

    PubMed Central

    Kapler, G M; Coburn, C M; Beverley, S M

    1990-01-01

    To delineate segments of the genome of the human protozoan parasite Leishmania major necessary for replication and expression, we developed a vector (pR-NEO) which can be reproducibly introduced into L. major. This DNA was derived from a 30-kilobase extrachromosomal amplified DNA bearing the dihydrofolate reductase-thymidylate synthase gene, with the coding region for neomycin phosphotransferase substituted for that of dihydrofolate reductase-thymidylate synthase and a bacterial origin of replication and selectable marker added. G418-resistant lines were obtained at high efficiency by electroporation of pR-NEO (approaching 10(-4) per cell), while constructs bearing an inverted neo gene or lacking Leishmania sequences did not confer resistance. pR-NEO replicated in L. major and gave rise to correctly processed transcripts bearing the trans-spliced miniexon. Molecular karyotype analysis showed that in some lines pR-NEO DNA exists exclusively as an extrachromosomal circle, a finding supported by the rescue of intact pR-NEO after transformation of Escherichia coli. These data genetically localize all elements required in cis for DNA replication, transcription, and trans splicing to the Leishmania DNA contained within pR-NEO DNA and signal the advent of stable transfection methodology for addressing molecular phenomena in trypanosomatid parasites. Images PMID:2304458

  5. Over-production of dihydrofolate reductase leads to sulfa-dihydropteroate resistance in yeast.

    PubMed

    Patel, Onisha; Karnik, Kuldeep; Macreadie, Ian G

    2004-07-15

    Dihydropteroate synthase (DHPS) can metabolise sulfa drugs into sulfa-dihydropteroate (sulfa-DHP), which inhibits cell growth through competition with dihydrofolate (DHF), possibly indicating dihydrofolate reductase (DHFR) as the target of sulfa-DHP. The effect of over-production of DHFR on sulfa-DHP resistance was examined in Saccharomyces cerevisiae using a strain that requires DHF for growth. This strain was transformed with a plasmid which encodes over-production of DHFR in the presence of CuSO4. Over-production led to resistance to sulfa-DHP suggesting that sulfa-DHP targets DHFR. Spontaneous mutants hyper-resistant to sulfa-DHP did not show any changes within DHFR.

  6. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  7. Synthesis and incorporation of [6,7]-selenatryptophan into dihydrofolate reductase.

    PubMed

    Boles, Jeffrey O; Henderson, James; Hatch, Duane; Silks, Louis A

    2002-10-25

    Until recently, the only selenium containing amino acid which could be used to completely substitute for a wild type amino acid was selenomethionine (SeMet). In the last decade the preparation of SeMet containing proteins has proved to be valuable tools in the determination of three-dimensional structure by multiwavelength anomalous diffraction (MAD) techniques. The potential utility of a selenium containing tryptophan analog, beta-seleno[3,2-b]pyrrolyl-L-alanine ([4,5]selenatryptophan), has recently been demonstrated in the literature. This finding shows promise for the bioincorporation of its positional isomer, beta-selenolo[2,3-b]pyrrolyl-L-alanine ([6,7]selenatryptophan), thereby adding to the essential arsenal of selenium-containing amino acids for use in the characterization of proteins. The synthesis of [6,7]selenatryptophan by enzymatic biotransformation with tryptophan synthase from selenolo[2,3-b]pyrrole was carried out as well as its characterization by NMR spectroscopy and thin layer chromatography. Selenatryptophyl dihydrofolate reductase ([6,7]SeTrp-DHFR) was then synthesized in vivo, purified, and found to exhibit no perturbations to enzymatic activity.

  8. Expression, purification and enzymatic characterization of Brugia malayi dihydrofolate reductase.

    PubMed

    Perez-Abraham, Romy; Sanchez, Karla Garabiles; Alfonso, Melany; Gubler, Ueli; Siekierka, John J; Goodey, Nina M

    2016-12-01

    Brugia malayi (B. malayi) is one of the three causative agents of lymphatic filariasis, a neglected parasitic disease. Current literature suggests that dihydrofolate reductase is a potential drug target for the elimination of B. malayi. Here we report the recombinant expression and purification of a ∼20 kDa B. malayi dihydrofolate reductase (BmDHFR). A His6-tagged construct was expressed in E. coli and purified by affinity chromatography to yield active and homogeneous enzyme for steady-state kinetic characterization and inhibition studies. The catalytic activity kcat was found to be 1.4 ± 0.1 s(-1), the Michaelis Menten constant KM for dihydrofolate 14.7 ± 3.6 μM, and the equilibrium dissociation constant KD for NADPH 25 ± 24 nM. For BmDHFR, IC50 values for a six DHFR inhibitors were determined to be 3.1 ± 0.2 nM for methotrexate, 32 ± 22 μM for trimethoprim, 109 ± 34 μM for pyrimethamine, 154 ± 46 μM for 2,4-diaminoquinazoline, 771 ± 44 μM for cycloguanil, and >20,000 μM for 2,4-diaminopyrimidine. Our findings suggest that antifolate compounds can serve as inhibitors of BmDHFR. PMID:27544923

  9. Optical observation of correlated motions in dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2015-03-01

    Enzyme function relies on its structural flexibility to make conformational changes for substrate binding and product release. An example of a metabolic enzyme where such structural changes are vital is dihydrofolate reductase (DHFR). DHFR is essential in both prokaryotes and eukaryotes for the nucleotide biosynthesis by catalyzing the reduction of dihydrofolate to tetrahydrofolate. NMR dynamical measurements found large amplitude fast dynamics that could indicate rigid-body, twisting-hinge motion for ecDHFR that may mediate flux. The role of such long-range correlated motions in function was suggested by the observed sharp decrease in enzyme activity for the single point mutation G121V, which is remote from active sites. This decrease in activity may be caused by the mutation interfering with the long-range intramolecular vibrations necessary for rapid access to functional configurations. We use our new technique of crystal anisotropy terahertz microscopy (CATM), to observe correlated motions in ecDHFR crystals with the bonding of NADPH and methotrexate. We compare the measured intramolecular vibrational spectrum with calculations using normal mode analysis.

  10. Loop interactions during catalysis by dihydrofolate reductase from Moritella profunda.

    PubMed

    Behiry, Enas M; Evans, Rhiannon M; Guo, Jiannan; Loveridge, E Joel; Allemann, Rudolf K

    2014-07-29

    Dihydrofolate reductase (DHFR) is often used as a model system to study the relation between protein dynamics and catalysis. We have studied a number of variants of the cold-adapted DHFR from Moritella profunda (MpDHFR), in which the catalytically important M20 and FG loops have been altered, and present a comparison with the corresponding variants of the well-studied DHFR from Escherichia coli (EcDHFR). Mutations in the M20 loop do not affect the actual chemical step of transfer of hydride from reduced nicotinamide adenine dinucleotide phosphate to the substrate 7,8-dihydrofolate in the catalytic cycle in either enzyme; they affect the steady state turnover rate in EcDHFR but not in MpDHFR. Mutations in the FG loop also have different effects on catalysis by the two DHFRs. Despite the two enzymes most likely sharing a common catalytic cycle at pH 7, motions of these loops, known to be important for progression through the catalytic cycle in EcDHFR, appear not to play a significant role in MpDHFR. PMID:25014120

  11. Correlated Protein Motion Measurements of Dihydrofolate Reductase Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2014-03-01

    We report the first direct measurements of the long range structural vibrational modes in dihydrofolate reductase (DHFR). DHFR is a universal housekeeping enzyme that catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetra-hydrofolate, with the aid of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). This crucial enzymatic role as the target for anti-cancer [methotrexate (MTX)], and other clinically useful drugs, has made DHFR a long-standing target of enzymological studies. The terahertz (THz) frequency range (5-100 cm-1), corresponds to global correlated protein motions. In our lab we have developed Crystal Anisotropy Terahertz Microscopy (CATM), which directly measures these large scale intra-molecular protein vibrations, by removing the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for mouse DHFR with the ligand binding of NADPH and MTX single crystals as well as Escherichia coli DHFR with the ligand binding of NADPH and MTX single crystals. This work is supported by NSF grant MRI2 grant DBI2959989.

  12. Evolution Alters the Enzymatic Reaction Coordinate of Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    How evolution has affected enzyme function is a topic of great interest in the field of biophysical chemistry. Evolutionary changes from Escherichia coli dihydrofolate reductase (ecDHFR) to human dihydrofolate reductase (hsDHFR) have resulted in increased catalytic efficiency and an altered dynamic landscape in the human enzyme. Here, we show that a subpicosecond protein motion is dynamically coupled to hydride transfer catalyzed by hsDHFR but not ecDHFR. This motion propagates through residues that correspond to mutational events along the evolutionary path from ecDHFR to hsDHFR. We observe an increase in the variability of the transition states, reactive conformations, and times of barrier crossing in the human system. In the hsDHFR active site, we detect structural changes that have enabled the coupling of fast protein dynamics to the reaction coordinate. These results indicate a shift in the DHFR family to a form of catalysis that incorporates rapid protein dynamics and a concomitant shift to a more flexible path through reactive phase space. PMID:25369552

  13. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line

    SciTech Connect

    Kaufman, R.J.; Schimke, R.T.

    1981-12-01

    During stepwise increases in the methotrexate concentration in culture medium, the authors selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). The authors studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.

  14. Inactivation kinetics of dihydrofolate reductase from Chinese hamster during urea denaturation.

    PubMed Central

    Wu, J W; Wang, Z X; Zhou, J M

    1997-01-01

    The kinetic theory of substrate reaction during modification of enzyme activity has been applied to the study of inactivation kinetics of Chinese hamster dihydrofolate reductase by urea [Tsou (1988) Adv. Enzymol. Relat. Areas Mol. Biol. 61, 381-436]. On the basis of the kinetic equation of substrate reaction in the presence of urea, all microscopic kinetic constants for the free enzyme and enzyme-substrate binary and ternary complexes have been determined. The results of the present study indicate that the denaturation of dihydrofolate reductase by urea follows single-phase kinetics, and changes in enzyme activity and tertiary structure proceed simultaneously in the unfolding process. Both substrates, NADPH and 7,8-dihydrofolate, protect dihydrofolate reductase against inactivation, and enzyme-substrate complexes lose their activity less rapidly than the free enzyme. PMID:9182696

  15. A calibration curve for immobilized dihydrofolate reductase activity assay.

    PubMed

    Singh, Priyanka; Morris, Holly; Tivanski, Alexei V; Kohen, Amnon

    2015-09-01

    An assay was developed for measuring the active-site concentration, activity, and thereby the catalytic turnover rate (k cat) of an immobilized dihydrofolate reductase model system (Singh et al., (2015), Anal. Biochem). This data article contains a calibration plot for the developed assay. In the calibration plot rate is plotted as a function of DHFR concentration and shows linear relationship. The concentration of immobilized enzyme was varied by using 5 different size mica chips. The dsDNA concentration was the same for all chips, assuming that the surface area of the mica chip dictates the resulting amount of bound enzyme (i.e. larger sized chip would have more bound DHFR). The activity and concentration of each chip was measured.

  16. Pseudouridine synthases.

    PubMed

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  17. A second target of benzamide riboside: dihydrofolate reductase.

    PubMed

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth. PMID:22954684

  18. Stimulation of dihydrofolate reductase promoter activity by antimetabolic drugs.

    PubMed Central

    Eastman, H B; Swick, A G; Schmitt, M C; Azizkhan, J C

    1991-01-01

    Dihydrofolate reductase (DHFR; EC 1.5.1.3) is required in folate metabolism for the synthesis of purines, thymidine, and glycine. Although there have been several reports of induction of DHFR enzyme by methotrexate (MTX), a drug that competitively inhibits DHFR, there are no studies reported that examine the effect of MTX on DHFR gene transcription. We have examined the effect of MTX and other inhibitors of DNA synthesis on DHFR transcription using a transient expression assay. MTX stimulates transient expression in a concentration-dependent manner from a hamster DHFR promoter construct containing 150 base pairs 5' to the start of transcription. Addition of either tetrahydrofolate or hypoxanthine plus thymidine prevents the promoter induction in response to MTX, suggesting that stimulation by MTX results from inhibition of these metabolites. Furthermore, two other antimetabolic drugs--fluorodeoxyuridine and hydroxyurea--also stimulate the DHFR promoter in a concentration-dependent manner. In contrast, aphidicolin, which blocks cell growth through inhibition of DNA polymerase alpha, has no effect on the DHFR promoter. The potential relevance of these results to cross-resistance to chemotherapeutic agents and to the process of gene amplification is discussed. Images PMID:1833762

  19. Ligand-Dependent Conformational Dynamics of Dihydrofolate Reductase

    PubMed Central

    Reddish, Michael J.; Vaughn, Morgan B.; Fu, Rong; Dyer, R. Brian

    2016-01-01

    Enzymes are known to change among several conformational states during turnover. The role of such dynamic structural changes in catalysis is not fully understood. The influence of dynamics in catalysis can be inferred, but not proven, by comparison of equilibrium structures of protein variants and protein–ligand complexes. A more direct way to establish connections between protein dynamics and the catalytic cycle is to probe the kinetics of specific protein motions in comparison to progress along the reaction coordinate. We have examined the enzyme model system dihydrofolate reductase (DHFR) from Escherichia coli with tryptophan fluorescence-probed temperature-jump spectroscopy. We aimed to observe the kinetics of the ligand binding and ligand-induced conformational changes of three DHFR complexes to establish the relationship among these catalytic steps. Surprisingly, in all three complexes, the observed kinetics do not match a simple sequential two-step process. Through analysis of the relationship between ligand concentration and observed rate, we conclude that the observed kinetics correspond to the ligand binding step of the reaction and a noncoupled enzyme conformational change. The kinetics of the conformational change vary with the ligand's identity and presence but do not appear to be directly related to progress along the reaction coordinate. These results emphasize the need for kinetic studies of DHFR with highly specific spectroscopic probes to determine which dynamic events are coupled to the catalytic cycle and which are not. PMID:26901612

  20. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.

    PubMed

    Loveridge, E Joel; Tey, Lai-Hock; Allemann, Rudolf K

    2010-01-27

    Hydride transfer catalyzed by dihydrofolate reductase (DHFR) has been described previously within an environmentally coupled model of hydrogen tunneling, where protein motions control binding of substrate and cofactor to generate a tunneling ready conformation and modulate the width of the activation barrier and hence the reaction rate. Changes to the composition of the reaction medium are known to perturb protein motions. We have measured kinetic parameters of the reaction catalyzed by DHFR from Escherichia coli in the presence of various cosolvents and cosolutes and show that the dielectric constant, but not the viscosity, of the reaction medium affects the rate of reaction. Neither the primary kinetic isotope effect on the reaction nor its temperature dependence were affected by changes to the bulk solvent properties. These results are in agreement with our previous report on the effect of solvent composition on catalysis by DHFR from the hyperthermophile Thermotoga maritima. However, the effect of solvent on the temperature dependence of the kinetic isotope effect on hydride transfer catalyzed by E. coli DHFR is difficult to explain within a model, in which long-range motions couple to the chemical step of the reaction, but may indicate the existence of a short-range promoting vibration or the presence of multiple nearly isoenergetic conformational substates of enzymes with similar but distinct catalytic properties.

  1. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    PubMed Central

    Beierlein, Jennifer M.; Frey, Kathleen M.; Bolstad, David B.; Pelphrey, Phillip M.; Joska, Tammy M.; Smith, Adrienne E.; Priestley, Nigel D.; Wright, Dennis L.; Anderson, Amy C.

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 Å resolution. The structure reveals several features that can be exploited for further development of this lead series. PMID:19007108

  2. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    SciTech Connect

    Beierlein, J.; Frey, K; Bolstad, D; Pelphrey, P; Joska, T; Smith, A; Priestley, N; Wright, D; Anderson, A

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 A resolution. The structure reveals several features that can be exploited for further development of this lead series.

  3. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase.

    PubMed

    Francis, Kevin; Sapienza, Paul J; Lee, Andrew L; Kohen, Amnon

    2016-02-23

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general.

  4. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase.

    PubMed

    Francis, Kevin; Sapienza, Paul J; Lee, Andrew L; Kohen, Amnon

    2016-02-23

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general. PMID:26813442

  5. Loss and stabilization of amplified dihydrofolate reductase genes in mouse sarcoma S-180 cell lines

    SciTech Connect

    Kaufman, R.J.; Brown, P.C.; Schimke, R.T.

    1981-12-01

    The authors studied the loss and stabilization of dihydrofolate reductase genes in clones of a methotrexate-resistant murine S-180 cell line. These cells contained multiple copies of the dihydrofolate reductase gene which were associated with double minute chromosomes. The growth rate of these cells in the absence of methotrexate was inversely related to the degree of gene amplification (number of double minute chromosomes). Cells could both gain and lose genes as a result of an unequal distribution of double minute chromosomes into daughter cells at mitosis. The loss of amplified dihydrofolate reductase genes during growth in the absence of methotrexate resulted from the continual generation of cells containing lower numbers of double minute chromosomes. Because of the growth advantage of these cells, they became dominant in the population. They also studied an unstably resistant S-180 cell line (clone) that, after 3 years of continuous growth in methotrexate, generated cells containing stably amplified dihydrofolate reductase genes. These genes were present on one or more chromosomes, and they were retained in a stable state.

  6. Assignment of the human dihydrofolate reductase gene to the q11. -->. q22 region of chromosome 5

    SciTech Connect

    Funanage, V.L.; Myoda, T.T.; Moses, P.A.; Cowell, H.R.

    1984-10-01

    Cells from a dihydrofolate reductase-deficit Chinese hamster ovary cell line were hybridized to human fetal skin fibroblast cells. Nineteen dihydrofolate reductase-positive hybrid clones were isolated and characterized. Cytogenetic and biochemical analyses of these clones have shown that the human dihydrofolate reductase (DHFR) gene is located on chromosome 5. Three of these hybrid cell lines contained different terminal deletions of chromosome 5. An analysis of the breakpoints of these deletions has demonstrated that the DHFR gene resides in the q11..-->..q22 region.

  7. Side chain conformational averaging in human dihydrofolate reductase.

    PubMed

    Tuttle, Lisa M; Dyson, H Jane; Wright, Peter E

    2014-02-25

    The three-dimensional structures of the dihydrofolate reductase enzymes from Escherichia coli (ecDHFR or ecE) and Homo sapiens (hDHFR or hE) are very similar, despite a rather low level of sequence identity. Whereas the active site loops of ecDHFR undergo major conformational rearrangements during progression through the reaction cycle, hDHFR remains fixed in a closed loop conformation in all of its catalytic intermediates. To elucidate the structural and dynamic differences between the human and E. coli enzymes, we conducted a comprehensive analysis of side chain flexibility and dynamics in complexes of hDHFR that represent intermediates in the major catalytic cycle. Nuclear magnetic resonance relaxation dispersion experiments show that, in marked contrast to the functionally important motions that feature prominently in the catalytic intermediates of ecDHFR, millisecond time scale fluctuations cannot be detected for hDHFR side chains. Ligand flux in hDHFR is thought to be mediated by conformational changes between a hinge-open state when the substrate/product-binding pocket is vacant and a hinge-closed state when this pocket is occupied. Comparison of X-ray structures of hinge-open and hinge-closed states shows that helix αF changes position by sliding between the two states. Analysis of χ1 rotamer populations derived from measurements of (3)JCγCO and (3)JCγN couplings indicates that many of the side chains that contact helix αF exhibit rotamer averaging that may facilitate the conformational change. The χ1 rotamer adopted by the Phe31 side chain depends upon whether the active site contains the substrate or product. In the holoenzyme (the binary complex of hDHFR with reduced nicotinamide adenine dinucleotide phosphate), a combination of hinge opening and a change in the Phe31 χ1 rotamer opens the active site to facilitate entry of the substrate. Overall, the data suggest that, unlike ecDHFR, hDHFR requires minimal backbone conformational rearrangement as

  8. Inducible Knockdown of Plasmodium Gene Expression Using the glmS Ribozyme

    PubMed Central

    Prommana, Parichat; Uthaipibull, Chairat; Wongsombat, Chayaphat; Kamchonwongpaisan, Sumalee; Yuthavong, Yongyuth; Knuepfer, Ellen; Holder, Anthony A.; Shaw, Philip J.

    2013-01-01

    Conventional reverse genetic approaches for study of Plasmodium malaria parasite gene function are limited, or not applicable. Hence, new inducible systems are needed. Here we describe a method to control P. falciparum gene expression in which target genes bearing a glmS ribozyme in the 3′ untranslated region are efficiently knocked down in transgenic P. falciparum parasites in response to glucosamine inducer. Using reporter genes, we show that the glmS ribozyme cleaves reporter mRNA in vivo leading to reduction in mRNA expression following glucosamine treatment. Glucosamine-induced ribozyme activation led to efficient reduction of reporter protein, which could be rapidly reversed by removing the inducer. The glmS ribozyme was validated as a reverse-genetic tool by integration into the essential gene and antifolate drug target dihydrofolate reductase-thymidylate synthase (PfDHFR-TS). Glucosamine treatment of transgenic parasites led to rapid and efficient knockdown of PfDHFR-TS mRNA and protein. PfDHFR-TS knockdown led to a growth/arrest mutant phenotype and hypersensitivity to pyrimethamine. The glmS ribozyme may thus be a tool for study of essential genes in P. falciparum and other parasite species amenable to transfection. PMID:24023691

  9. Global phylogeographic limits of Hawaii's avian malaria

    USGS Publications Warehouse

    Beadell, J.S.; Ishtiaq, F.; Covas, R.; Melo, M.; Warren, B.H.; Atkinson, C.T.; Bensch, S.; Graves, G.R.; Jhala, Y.V.; Peirce, M.A.; Rahmani, A.R.; Fonseca, D.M.; Fleischer, R.C.

    2006-01-01

    The introduction of avian malaria (Plasmodium relictum) to Hawaii has provided a model system for studying the influence of exotic disease on naive host populations. Little is known, however, about the origin or the genetic variation of Hawaii's malaria and traditional classification methods have confounded attempts to place the parasite within a global ecological and evolutionary context. Using fragments of the parasite mitochondrial gene cytochrome b and the nuclear gene dihydrofolate reductase-thymidylate synthase obtained from a global survey of greater than 13 000 avian samples, we show that Hawaii's avian malaria, which can cause high mortality and is a major limiting factor for many species of native passerines, represents just one of the numerous lineages composing the morphological parasite species. The single parasite lineage detected in Hawaii exhibits a broad host distribution worldwide and is dominant on several other remote oceanic islands, including Bermuda and Moorea, French Polynesia. The rarity of this lineage in the continental New World and the restriction of closely related lineages to the Old World suggest limitations to the transmission of reproductively isolated parasite groups within the morphological species. ?? 2006 The Royal Society.

  10. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer

    NASA Astrophysics Data System (ADS)

    Nilsson, Roland; Jain, Mohit; Madhusudhan, Nikhil; Sheppard, Nina Gustafsson; Strittmatter, Laura; Kampf, Caroline; Huang, Jenny; Asplund, Anna; Mootha, Vamsi K.

    2014-01-01

    Metabolic remodeling is now widely regarded as a hallmark of cancer, but it is not clear whether individual metabolic strategies are frequently exploited by many tumours. Here we compare messenger RNA profiles of 1,454 metabolic enzymes across 1,981 tumours spanning 19 cancer types to identify enzymes that are consistently differentially expressed. Our meta-analysis recovers established targets of some of the most widely used chemotherapeutics, including dihydrofolate reductase, thymidylate synthase and ribonucleotide reductase, while also spotlighting new enzymes, such as the mitochondrial proline biosynthetic enzyme PYCR1. The highest scoring pathway is mitochondrial one-carbon metabolism and is centred on MTHFD2. MTHFD2 RNA and protein are markedly elevated in many cancers and correlated with poor survival in breast cancer. MTHFD2 is expressed in the developing embryo, but is absent in most healthy adult tissues, even those that are proliferating. Our study highlights the importance of mitochondrial compartmentalization of one-carbon metabolism in cancer and raises important therapeutic hypotheses.

  11. A foreign dihydrofolate reductase gene in transgenic mice acts as a dominant mutation.

    PubMed Central

    Gordon, J W

    1986-01-01

    We have produced 17 lines of transgenic mice by microinjecting a full-length cDNA clone of an altered dihydrofolate reductase (dhfr) gene. The protein specified by this gene carries a point mutation which triples its Km for dihydrofolate and reduces substrate turnover 20-fold relative to the wild-type enzyme. Transgenic mice from different pedigrees, several of which carry a single copy of this gene in different integration sites, manifest an array of similar developmental abnormalities including growth stunting, reduced fertility, pigmentation changes, and skeletal defects. These defects appear in animals heterozygous for the foreign gene. RNA analyses demonstrate significant expression of the cDNA in newborn mice and adult tissues. These findings show that the additional dhfr gene exerts its mutational effects in a dominant fashion, and therefore the data indicate that transgenic mice can serve as models for elucidating mechanisms of dominant mutagenesis. Images PMID:3785192

  12. Molecular modeling toward selective inhibitors of dihydrofolate reductase from the biological warfare agent Bacillus anthracis.

    PubMed

    Giacoppo, Juliana O S; Mancini, Daiana T; Guimarães, Ana P; Gonçalves, Arlan S; da Cunha, Elaine F F; França, Tanos C C; Ramalho, Teodorico C

    2015-02-16

    In the present work, we applied docking and molecular dynamics techniques to study 11 compounds inside the enzymes dihydrofolate reductase (DHFR) from the biological warfare agent Bacillus anthracis (BaDHFR) and Homo sapiens sapiens (HssDHFR). Six of these compounds were selected for a study with the mutant BaF96IDHFR. Our results corroborated with experimental data and allowed the proposition of a new molecule with potential activity and better selectivity for BaDHFR.

  13. The kinetic mechanism of wild-type and mutant mouse dihydrofolate reductases.

    PubMed

    Thillet, J; Adams, J A; Benkovic, S J

    1990-05-29

    A kinetic mechanism is presented for mouse dihydrofolate reductase that predicts all the steady-state parameters and full time-course kinetics. This mechanism was derived from association and dissociation rate constants and pre-steady-state transients by using stopped-flow fluorescence and absorbance measurements. The major features of this kinetic mechanism are as follows: (1) the two native enzyme conformers, E1 and E2, bind ligands with varying affinities although only one conformer, E1, can support catalysis in the forward direction, (2) tetrahydrofolate dissociation is the rate-limiting step under steady-state turnover at low pH, and (3) the pH-independent rate of hydride transfer from NADPH to dihydrofolate is fast (khyd = 9000 s-1) and favorable (Keq = 100). The overall mechanism is similar in form to the Escherichia coli kinetic scheme (Fierke et al., 1987), although several differences are observed: (1) substrates and products predominantly bind the same form of the E. coli enzyme, and (2) the hydride transfer rate from NADPH to either folate or dihydrofolate is considerably faster for the mouse enzyme. The role of Glu-30 (Asp-27 in E. coli) in mouse DHFR has also been examined by using site-directed mutagenesis as a potential source of these differences. While aspartic acid is strictly conserved in all bacterial DHFRs, glutamic acid is conserved in all known eucaryotes. The two major effects of substituting Asp for Glu-30 in the mouse enzyme are (1) a decreased rate of folate reduction and (2) an increased rate of hydride transfer from NADPH to dihydrofolate.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors.

    PubMed

    Shelke, Rupesh U; Degani, Mariam S; Raju, Archana; Ray, Mukti Kanta; Rajan, Mysore G R

    2016-08-01

    Fragment-based drug design was used to identify Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitors. Screening of ligands against the Mtb DHFR enzyme resulted in the identification of multiple fragment hits with IC50 values in the range of 38-90 μM versus Mtb DHFR and minimum inhibitory concentration (MIC) values in the range of 31.5-125 μg/mL. These fragment scaffolds would be useful for anti-tubercular drug design.

  15. Screening for inhibitors of dihydrofolate reductase using pulsed ultrafiltration mass spectrometry.

    PubMed

    Nikolic, D; van Breemen, R B

    1998-04-01

    A method of screening combinatorial libraries for inhibitors of eukaryotic dihydrofolate reductase has been developed using pulsed ultra-filtration electrospray mass spectrometry, which is a continuous-flow affinity separation system for extracting and identifying high affinity ligands in combinatorial libraries. In this application, pulsed ultrafiltration conditions were optimized for the isolation and identification of inhibitors of dihydrofolate reductase from a 22 compound library containing six known inhibitors of the enzyme including trimethoprim, aminopterin, methotrexate, pyrimethamine, folic acid, and folinic acid, and 16 compounds without known affinity. In order to optimize the screening method, sources of non-specific binding were identified and minimized. A significant source of non-specific binding for this set of library compounds was hydrophobic interaction with the surfaces of the ultrafiltration chamber. After affinity separation of bound (high affinity) versus free (low affinity) library compounds during pulsed ultrafiltration, receptor-bound ligands were released and eluted using either organic solvent or acidified mobile phase. Although 80% methanol easily disrupted the receptor-ligand complexes, organic solvent had the undesirable effect of releasing non-specifically bound compounds from the chamber and thereby increasing the background noise. Interference from non-specific binding was minimized by releasing bound ligands using a low pH mobile phase eluent instead of organic solvent. Under the conditions used, pulsed ultrafiltration mass spectrometry selectively identified the two library compounds with the highest affinity for dihydrofolate reductase, methotrexate and aminopterin.

  16. Human leukemia and normal leukocytes contain a species of immunoreactive but nonfunctional dihydrofolate reductase.

    PubMed Central

    Rothenberg, S P; Iqbal, M P

    1982-01-01

    A quantitative radioimmunoassay has been developed for human dihydrofolate reductase (tetrahydrofolate dehydrogenase; 5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3) by using antiserum raised in rabbits against the active enzyme purified from calf liver. An immunoreactive protein could be identified in the cytoplasm of chronic myelogenous leukemia cells, which contained no functional dihydrofolate reductase activity. Its concentration was stoichiometric to the volume of cytoplasm assayed and paralleled the standard curve obtained with purified enzyme, indicating that this protein in the human cells is antigenically similar to the homologous antigen. The concentration of this immunoreactive protein in the cytoplasm of human leukemia and normal leukocytes in all instances greatly exceeded the concentration of functional dihydrofolate reductase, which was measured by the binding of [3H]methotrexate. This nonfunctional immunoreactive protein in the cytoplasm and cytosol from two different samples of chronic myelogenous leukemia cells analyzed by gel filtration had an apparent molecular weight of 41,000, which is twice the molecular weight of the functional enzyme. Images PMID:6952216

  17. Two parallel pathways in the kinetic sequence of the Dihydrofolate Reductase from Mycobacterium tuberculosis

    PubMed Central

    Czekster, Clarissa M.; Vandemeulebroucke, An; Blanchard, John S.

    2011-01-01

    Dihydrofolate reductase from Mycobacterium tuberculosis catalyzes the NAD(P)H dependent reduction of dihydrofolate, yielding NAD(P)+ and tetrahydrofolate, the primary one carbon unit carrier in biology. Tetrahydrofolate needs to be recycled so that reactions involved in dTMP synthesis and purine metabolism are maintained. Previously, steady-state studies revealed that the chemical step significantly contributes to the steady state turnover number, but that a step after the chemical step was likely limiting the reaction rate. Here, we report the first pre-steady state investigation of the kinetic sequence of the MtDHFR aiming to identify kinetic intermediates, and the identity of the rate limiting steps. This kinetic analysis suggests a kinetic sequence comprising two parallel pathways with a rate determining product release. Although product release is likely occurring in a random fashion, there is a slight preference for the release of THF first, a kinetic sequence never observed for a wild type dihydrofolate reductase of any organism studied to date. Temperature studies were conducted to determine the magnitude of the energetic barrier posed by the chemical step, and the pH dependence of the chemical step was studied, demonstrating an acidic shift from the pKa observed under steady-state. The rate constants obtained here were combined with the activation energy for the chemical step to compare energy profiles for each kinetic sequence. The two parallel pathways are discussed, as well as their implications on the catalytic cycle of this enzyme. PMID:21744813

  18. Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans

    PubMed Central

    Liu, C. Tony; Hanoian, Philip; French, Jarrod B.; Pringle, Thomas H.; Hammes-Schiffer, Sharon; Benkovic, Stephen J.

    2013-01-01

    With the rapidly growing wealth of genomic data, experimental inquiries on the functional significance of important divergence sites in protein evolution are becoming more accessible. Here we trace the evolution of dihydrofolate reductase (DHFR) and identify multiple key divergence sites among 233 species between humans and bacteria. We connect these sites, experimentally and computationally, to changes in the enzyme’s binding properties and catalytic efficiency. One of the identified evolutionarily important sites is the N23PP modification (∼mid-Devonian, 415–385 Mya), which alters the conformational states of the active site loop in Escherichia coli dihydrofolate reductase and negatively impacts catalysis. This enzyme activity was restored with the inclusion of an evolutionarily significant lid domain (G51PEKN in E. coli enzyme; ∼2.4 Gya). Guided by this evolutionary genomic analysis, we generated a human-like E. coli dihydrofolate reductase variant through three simple mutations despite only 26% sequence identity between native human and E. coli DHFRs. Molecular dynamics simulations indicate that the overall conformational motions of the protein within a common scaffold are retained throughout evolution, although subtle changes to the equilibrium conformational sampling altered the free energy barrier of the enzymatic reaction in some cases. The data presented here provide a glimpse into the evolutionary trajectory of functional DHFR through its protein sequence space that lead to the diverged binding and catalytic properties of the E. coli and human enzymes. PMID:23733948

  19. Construction of a dihydrofolate reductase-deficient mutant of Escherichia coli by gene replacement.

    PubMed Central

    Howell, E E; Foster, P G; Foster, L M

    1988-01-01

    The dihydrofolate reductase (fol) gene in Escherichia coli has been deleted and replaced by a selectable marker. Verification of the delta fol::kan strain has been accomplished using genetic and biochemical criteria, including Southern analysis of the chromosomal DNA. The delta fol::kan mutation is stable in E. coli K549 [thyA polA12 (Ts)] and can be successfully transduced to other E. coli strains providing they have mutations in their thymidylate synthetase (thyA) genes. A preliminary investigation of the relationship between fol and thyA gene expression suggests that a Fol- cell (i.e., a dihydrofolate reductase deficiency phenotype) is not viable unless thymidylate synthetase activity is concurrently eliminated. This observation indicates that either the nonproductive accumulation of dihydrofolate or the depletion of tetrahydrofolate cofactor pools is lethal in a Fol- ThyA+ strain. Strains containing the thyA delta fol::kan lesions require the presence of Fol end products for growth, and these lesions typically increase the doubling time of the strain by a factor of 2.5 in rich medium. Images PMID:2838456

  20. Genetic Polymorphisms in Plasmodium vivax Dihydrofolate Reductase and Dihydropteroate Synthase in Isolates from the Philippines, Bangladesh, and Nepal.

    PubMed

    Thongdee, Pimwan; Kuesap, Jiraporn; Rungsihirunrat, Kanchana; Dumre, Shyam Prakash; Espino, Effie; Noedl, Harald; Na-Bangchang, Kesara

    2015-04-01

    Genetic polymorphisms of pvdhfr and pvdhps genes of Plasmodium vivax were investigated in 83 blood samples collected from patients in the Philippines, Bangladesh, and Nepal. The SNP-haplotypes of the pvdhfr gene at the amino acid positions 13, 33, 57, 58, 61, 117, and 173, and that of the pvdhps gene at the positions 383 and 553 were analyzed by nested PCR-RFLP. Results suggest diverse polymorphic patterns of pvdhfr alone as well as the combination patterns with pvdhps mutant alleles in P. vivax isolates collected from the 3 endemic countries in Asia. All samples carried mutant combination alleles of pvdhfr and pvdhps. The most prevalent combination alleles found in samples from the Philippines and Bangladesh were triple mutant pvdhfr combined with single mutant pvdhps allele and triple mutant pvdhfr combined with double wild-type pvdhps alleles, respectively. Those collected from Nepal were quadruple mutant pvdhfr combined with double wild-type pvdhps alleles. New alternative antifolate drugs which are effective against sulfadoxine-pyrimethamine (SP)-resistant P. vivax are required.

  1. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    PubMed

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  2. Design, synthesis and evaluation of 2,4-diaminoquinazolines as inhibitors of trypanosomal and leishmanial dihydrofolate reductase.

    PubMed

    Khabnadideh, Soghra; Pez, Didier; Musso, Alexander; Brun, Reto; Pérez, Luis M Ruiz; González-Pacanowska, Dolores; Gilbert, Ian H

    2005-04-01

    This paper describes the design, synthesis and evaluation of a series of 2,4-diaminoquinazolines as inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Compounds were designed by a generating virtual library of compounds and docking them into the enzyme active site. Following their synthesis, they were found to be potent and selective inhibitors of leishmanial dihydrofolate reductase. The compounds were also found to have potent activity against Trypanosoma brucei rhodesiense, a causative organism of African trypanosomiasis and also against Trypanosoma cruzi, the causative organism of Chagas disease. There was significantly lower activity against Leishmania donovani, one of the causative organisms of leishmaniasis. PMID:15755663

  3. Stilbene Synthase and Chalcone Synthase 1

    PubMed Central

    Rolfs, Claus-Henning; Kindl, Helmut

    1984-01-01

    Cultured cells of Picea excelsa capable of forming stilbenes and flavanoids have been established. Unlike needles of intact plants containing piceatannol (3,3′,4′,5-tetrahydroxystilbene) and stilbene glycosides the cultured cells converted phenylalanine and p-coumaric acid primarily into resveratrol monomethyl ether (3,4′-dihydroxy-5-methoxystilbene) and naringenin. Partially purified enzyme preparations were assayed for chalcone synthase as well as for stilbene synthase activity converting malonyl-CoA plus p-coumaroyl-CoA into 3,4′,5-trihydroxystilbene (resveratrol). Although stilbene synthase and chalcone synthase use the same substrates and exhibit similar molecular properties, i.e. molecular weight and subunit molecular weight, they are two different proteins. This difference was demonstrated by gel electrophoresis and by means of monospecific antibodies. PMID:16663649

  4. Ribosome display for selection of active dihydrofolate reductase mutants using immobilized methotrexate on agarose beads.

    PubMed

    Takahashi, Fumio; Ebihara, Takashi; Mie, Masayasu; Yanagida, Yasuko; Endo, Yaeta; Kobatake, Eiry; Aizawa, Masuo

    2002-03-01

    Ribosome display was applied to the selection of an enzyme. As a model, we selected and amplified the dihydrofolate reductase (DHFR) gene by ribosome display utilizing a wheat germ cell-free protein synthesis system based on binding affinity to its substrate analog, methotrexate, immobilized on agarose beads. After three rounds of selection, the DHFR gene could be effectively selected and preferentially amplified from a small proportion in a mixture also containing competitive genes. Active enzymes were expressed and amplified and by sequence analysis, four mutants of DHFR were identified. These mutants showed as much activity as the wild-type enzyme.

  5. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors.

    PubMed

    Shelke, Rupesh U; Degani, Mariam S; Raju, Archana; Ray, Mukti Kanta; Rajan, Mysore G R

    2016-08-01

    Fragment-based drug design was used to identify Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitors. Screening of ligands against the Mtb DHFR enzyme resulted in the identification of multiple fragment hits with IC50 values in the range of 38-90 μM versus Mtb DHFR and minimum inhibitory concentration (MIC) values in the range of 31.5-125 μg/mL. These fragment scaffolds would be useful for anti-tubercular drug design. PMID:27320965

  6. Selective killing of methotrexate-resistant cells carrying amplified dihydrofolate reductase genes

    SciTech Connect

    Urlaub, G.; Landzberg, M.; Chasin, L.A.

    1981-05-01

    A method for the selective killing of methotrexate (MTX)-resistant cells has been developed. The selection is based on the incorporation of tritiated deoxyuridine into the DNA of MTX-resistant cells but not normal MTX-sensitive cells in the presence of the drug. A Chinese hamster ovary cell mutant that overproduces dihydrofolate reductase was used as an example of a MTX-resistant cell line. In this system, a 10,000-fold enrichment for wild-type MTX-sensitive cells could be achieved after 24 hr of exposure to the drug combination. This selection technique was applied to the isolation of MTX-sensitive segregants from hybrid cells formed between the MTX-resistant mutant and wild-type cells. The loss of MTX resistance and dihydrofolate reductase overproduction was always accompanied by the loss of a homogeneously staining region on chromosome 2 of the resistant parent that contains the amplified genes specifying this enzyme. While this region is always lost, other parts of chromosome 2 are almost always retained, suggesting that deletion rather than chromosome loss underlies marker segregation in this case. When the selection was applied to the resistant mutant itself, no MTX-sensitive revertants were obtained among 10(5) cells screened, attesting to the stability of gene amplification in this clone. It is suggested that this combination of drugs may be useful for the elimination of MTX-resistant tumor cells that develop after MTX chemotherapy.

  7. Low Trimethoprim Susceptibility of Anaerobic Bacteria Due to Insensitive Dihydrofolate Reductases

    PubMed Central

    Then, Rudolf L.; Angehrn, Peter

    1979-01-01

    All the 28 Bacteroides fragilis strains investigated were susceptible to sulfamethoxazole (minimal inhibitory concentration < 16 μg/ml) and resistant to trimethoprim (TMP; minimal inhibitory concentration > 4 μg/ml). Synergism between sulfamethoxazole and TMP was present in all strains at a ratio of 1:1. The few clostridia investigated proved more resistant to both compounds. Dihydrofolate reductases from B. fragilis, C. perfringens, and some other anaerobic species were isolated. Inhibition profiles with six structurally different inhibitors revealed major differences in all enzymes. For 50% inhibition, the enzyme from B. fragilis and all clostridia required concentrations of TMP which were between several hundredfold and 1,000-fold higher than those required for the enzyme of Escherichia coli, whereas the enzyme from Propionibacterium acnes only needed a threefold higher concentration. In vitro activities of TMP were seen to correspond to the activity at the enzymatic level in B. fragilis and P. acnes, but correspond to a much lesser extent to the activity at the enzymatic level in clostridia, where a poor penetration is assumed to be involved. Dihydrofolate reductase inhibitors other than TMP were found to be as active as TMP both at the enzyme and in vitro. In B. fragilis, higher concentrations of exogenous thymidine were required for increasing the minimal inhibitory concentration of TMP than in E. coli and probably also in C. perfringens. PMID:218496

  8. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections.

  9. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    PubMed

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections. PMID:26407876

  10. Role of Lysine-54 in determining cofactor specificity and binding in human dihydrofolate reductase

    SciTech Connect

    Huang, Shaoming; Tan, Xuehai; Thompson, P.D.; Freisheim, J.H. ); Appleman, J.R.; Blakley, R.L. ); Sheridan, R.P.; Venkataraghavan, R. )

    1990-09-04

    Lysine-54 of human dihydrofolate reductase (hDHFR) appears to be involved in the interaction with the 2{prime}-phosphate of NADPH and is conserved as a basic residue in other species. Studies have suggested that in Lactobacillus casei dihydrofolate reductase Arg-43, the homologous residue at this position, plays an important role in the binding of NADPH and in the differentiation of K{sub m} values for NADPH and NADH. A Lys-54 to Gln-54 mutant (K54Q) of hDHFR has been constructed by oligodeoxynucleotide-directed mutagenesis in order to study the role of Lys-54 in differentiating K{sub m} and k{sub cat} values for NADPH and NADH as well as in other functions of hDHFR. The purpose of this paper is to delineate in quantitative terms the magnitude of the effect of the Lys-54 to Gln-54 replacement on the various kinetic parameters of hDHFR. Such quantitative effects cannot be predicted solely on the basis of X-ray structures. The ratio of K{sub m}(NADH)/K{sub m}(NADPH) decreases from 69 in the wild-type enzyme to 4.7 in the K54Q enzyme, suggesting that Lys-54, among other interactions between protein side-chain residues and the 2{prime}-phosphate, makes a major contribution in terms of binding energy and differentiation of K{sub m} values for NADPH and NADH. Agents at concentrations that show activating effects on the wild-type enzyme such as potassium chloride and urea all inactivate the K54Q enzyme. There appear to be no gross conformational differences between wild-type and K54Q enzyme molecules as judged by competitive ELISA using peptide-specific antibodies against human dihydrofolate reductase and from protease susceptibility studies on both wild-type and K54Q mutant enzymes. The pH-rate profiles using NADPH for K54Q and wild-type enzymes show divergences at certain pH values, suggesting the possibility of alteration(s) in the steps of the catalytic pathway for the K54Q enzyme.

  11. Thermal adaptation of dihydrofolate reductase from the moderate thermophile Geobacillus stearothermophilus.

    PubMed

    Guo, Jiannan; Luk, Louis Y P; Loveridge, E Joel; Allemann, Rudolf K

    2014-05-01

    The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is ~30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 °C. PMID:24730604

  12. Analysis and in vitro localization of internal methylated adenine residues in dihydrofolate reductase mRNA.

    PubMed

    Rana, A P; Tuck, M T

    1990-08-25

    A T7 RNA transcript coding for mouse dihydrofolate reductase (DHFR) was utilized as a substrate for the N6-methyladenosine mRNA methyltransferase isolated from HeLa cell nuclei. This transcript acted as a 3 fold better substrate than either prolactin mRNA or a synthetic RNA substrate which contained multiple methylation consensus sequences. Formation of internal N6-methyladenine (m6A) residues in the DHFR transcript was shown to increase slightly by the absence of a 7-methylguanine-2'-O-methyl cap structure. Using T7 transcripts from different regions of the DHFR gene, the majority of the m6A residues were localized to the coding region and a segment of the transcript just 3' to the coding region. This data suggests that DHFR mRNA contains multiple methylation sites with most of these sites concentrated in the coding region of the transcript. PMID:2395644

  13. Internal 6-methyladenine residues increase the in vitro translation efficiency of dihydrofolate reductase messenger RNA.

    PubMed

    Heilman, K L; Leach, R A; Tuck, M T

    1996-07-01

    N6-Methyladenosine (m6A) is found internally in a number of mRNA molecules from higher eucaryotic cells. In these investigations, it was found that the presence of m6A residues increase the in vitro translation efficiency of capped T7 transcripts of mouse dihydrofolate reductase (DHFR) mRNA. Using an in vitro rabbit reticulocyte translation system, the formation of internal m6A residues in the DHFR transcripts resulted in a 1.5-fold increase in translated DHFR compared to transcripts void of internal m6A residues. Translation in a wheat germ system, however, resulted in no increase in translation efficiency upon m6A formation, suggesting that the mechanism may be species-specific. PMID:8925412

  14. Isolation of the amplified dihydrofolate reductase domain from methotrexate-resistant Chinese hamster ovary cells.

    PubMed Central

    Looney, J E; Hamlin, J L

    1987-01-01

    We isolated overlapping recombinant cosmids that represent the equivalent of two complete dihydrofolate reductase amplicon types from the methotrexate-resistant CHO cell line CHOC400. The type I amplicons are 260 kilobases long, are arranged in head-to-tail fashion, and represent 10 to 15% of the amplicons in the CHOC400 genome. The type II amplicons are 220 kilobases long, are arranged in head-to-head and tail-to-tail configurations, and constituted the majority of the remaining amplicons in CHOC400 cells. The type II amplicon sequences are represented entirely within the type I unit. These are the first complete amplicons to be cloned from a mammalian cell line. Images PMID:3821723

  15. 2,4-Diaminopyrimidines as inhibitors of Leishmanial and Trypanosomal dihydrofolate reductase.

    PubMed

    Pez, Didier; Leal, Isabel; Zuccotto, Fabio; Boussard, Cyrille; Brun, Reto; Croft, Simon L; Yardley, Vanessa; Ruiz Perez, Luis M; Gonzalez Pacanowska, Dolores; Gilbert, Ian H

    2003-11-01

    This paper describes the synthesis of 4'-substituted and 3',4'-disubstituted 5-benzyl-2,4-diaminopyrimidines as selective inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Compounds were then assayed against the recombinant parasite and human enzymes. Some of the compounds showed good activity. They were also tested against the intact parasites using in vitro assays. Good activity was found against Trypanosoma cruzi, moderate activity against Trypanosoma brucei and Leishmania donovani. Molecular modeling was undertaken to explain the results. The leishmanial enzyme was found to have a more extensive lipophilic binding region in the active site than the human enzyme. Compounds which bound within the pocket showed the highest selectivity. PMID:14556785

  16. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target

    PubMed Central

    Yuthavong, Yongyuth; Tarnchompoo, Bongkoch; Vilaivan, Tirayut; Chitnumsub, Penchit; Kamchonwongpaisan, Sumalee; Charman, Susan A.; McLennan, Danielle N.; White, Karen L.; Vivas, Livia; Bongard, Emily; Thongphanchang, Chawanee; Taweechai, Supannee; Vanichtanankul, Jarunee; Rattanajak, Roonglawan; Arwon, Uthai; Fantauzzi, Pascal; Yuvaniyama, Jirundon; Charman, William N.; Matthews, David

    2012-01-01

    Malarial dihydrofolate reductase (DHFR) is the target of antifolate antimalarial drugs such as pyrimethamine and cycloguanil, the clinical efficacy of which have been compromised by resistance arising through mutations at various sites on the enzyme. Here, we describe the use of cocrystal structures with inhibitors and substrates, along with efficacy and pharmacokinetic profiling for the design, characterization, and preclinical development of a selective, highly efficacious, and orally available antimalarial drug candidate that potently inhibits both wild-type and clinically relevant mutated forms of Plasmodium falciparum (Pf) DHFR. Important structural characteristics of P218 include pyrimidine side-chain flexibility and a carboxylate group that makes charge-mediated hydrogen bonds with conserved Arg122 (PfDHFR-TS amino acid numbering). An analogous interaction of P218 with human DHFR is disfavored because of three species-dependent amino acid substitutions in the vicinity of the conserved Arg. Thus, P218 binds to the active site of PfDHFR in a substantially different fashion from the human enzyme, which is the basis for its high selectivity. Unlike pyrimethamine, P218 binds both wild-type and mutant PfDHFR in a slow-on/slow-off tight-binding mode, which prolongs the target residence time. P218, when bound to PfDHFR-TS, resides almost entirely within the envelope mapped out by the dihydrofolate substrate, which may make it less susceptible to resistance mutations. The high in vivo efficacy in a SCID mouse model of P. falciparum malaria, good oral bioavailability, favorable enzyme selectivity, and good safety characteristics of P218 make it a potential candidate for further development. PMID:23035243

  17. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes

    PubMed Central

    Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A. P.; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J.; Sullivan, David J.; Thuma, Philip E.; Liu, Kun; Agre, Peter

    2011-01-01

    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections—S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30–80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples—S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2–12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent—S108T (90%), with A16V and the 108T+16V double mutant (49–57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788

  18. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  19. The Tail Wagging the Dog: Insights into Catalysis in R67 Dihydrofolate Reductase

    SciTech Connect

    Kamath, Ganesh K; Agarwal, Pratul K

    2010-01-01

    Plasmid-encoded R67 dihydrofolate reductase (DHFR) catalyzes a hydride transfer reaction between substrate dihydrofolate (DHF) and its cofactor, nicotinamide adenine dinucleotide phosphate (NADPH). R67 DHFR is a homotetramer that exhibits numerous characteristics of a primitive enzyme, including promiscuity in binding of substrate and cofactor, formation of nonproductive complexes, and the absence of a conserved acid in its active site. Furthermore, R67's active site is a pore, which is mostly accessible by bulk solvent. This study uses a computational approach to characterize the mechanism of hydride transfer. Not surprisingly, NADPH remains fixed in one-half of the active site pore using numerous interactions with R67. Also, stacking between the nicotinamide ring of the cofactor and the pteridine ring of the substrate, DHF, at the hourglass center of the pore, holds the reactants in place. However, large movements of the p-aminobenzoylglutamate tail of DHF occur in the other half of the pore because of ion pair switching between symmetry-related K32 residues from two subunits. This computational result is supported by experimental results that the loss of these ion pair interactions (located >13 {angstrom} from the center of the pore) by addition of salt or in asymmetric K32M mutants leads to altered enzyme kinetics [Hicks, S. N., et al. (2003) Biochemistry 42, 10569-10578; Hicks, S. N., et al. (2004) J. Biol. Chem. 279, 46995?47002]. The tail movement at the edge of the active site, coupled with the fixed position of the pteridine ring in the center of the pore, leads to puckering of the pteridine ring and promotes formation of the transition state. Flexibility coupled to R67 function is unusual as it contrasts with the paradigm that enzymes use increased rigidity to facilitate attainment of their transition states. A comparison with chromosomal DHFR indicates a number of similarities, including puckering of the nicotinamide ring and changes in the DHF tail

  20. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase

    PubMed Central

    Swanwick, Richard S.; Maglia, Giovanni; Tey, Lai-hock; Allemann, Rudolf K.

    2005-01-01

    The enzyme DHFR (dihydrofolate reductase) catalyses hydride transfer from NADPH to, and protonation of, dihydrofolate. The physical basis of the hydride transfer step catalysed by DHFR from Escherichia coli has been studied through the measurement of the temperature dependence of the reaction rates and the kinetic isotope effects. Single turnover experiments at pH 7.0 revealed a strong dependence of the reaction rates on temperature. The observed relatively large difference in the activation energies for hydrogen and deuterium transfer led to a temperature dependence of the primary kinetic isotope effects from 3.0±0.2 at 5 °C to 2.2±0.2 at 40 °C and an inverse ratio of the pre-exponential factors of 0.108±0.04. These results are consistent with theoretical models for hydrogen transfer that include contributions from quantum mechanical tunnelling coupled with protein motions that actively modulate the tunnelling distance. Previous work had suggested a coupling of a remote residue, Gly121, with the kinetic events at the active site. However, pre-steady-state experiments at pH 7.0 with the mutant G121V-DHFR, in which Gly121 was replaced with valine, revealed that the chemical mechanism of DHFR catalysis was robust to this replacement. The reduced catalytic efficiency of G121V-DHFR was mainly a consequence of the significantly reduced pre-exponential factors, indicating the requirement for significant molecular reorganization during G121V-DHFR catalysis. In contrast, steady-state measurements at pH 9.5, where hydride transfer is rate limiting, revealed temperature-independent kinetic isotope effects between 15 and 35 °C and a ratio of the pre-exponential factors above the semi-classical limit, suggesting a rigid active site configuration from which hydrogen tunnelling occurs. The mechanism by which hydrogen tunnelling in DHFR is coupled with the environment appears therefore to be sensitive to pH. PMID:16241906

  1. Genetic variation and exchange in Trypanosoma cruzi isolates from the United States.

    PubMed

    Roellig, Dawn M; Savage, Mason Y; Fujita, A Wendy; Barnabé, Christian; Tibayrenc, Michel; Steurer, Frank J; Yabsley, Michael J

    2013-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is a multiclonal parasite with high levels of genetic diversity and broad host and geographic ranges. Molecular characterization of South American isolates of T. cruzi has demonstrated homologous recombination and nuclear hybridization, as well as the presence of 6 main genetic clusters or "discrete typing units" (DTUs). Few studies have extensively investigated such exchange events and genetic diversity in North American isolates. In the current study, we genetically characterized over 50 US isolates from wildlife reservoirs (e.g., raccoons, opossums, armadillos, skunks), domestic dogs, humans, nonhuman primates, and reduviid vectors from nine states (TX, CA, OK, SC, FL, GA, MD, LA, TN) using a multilocus sequencing method. Single nucleotide polymorphisms were identified in sequences of the mismatch-repair class 2 (MSH2) and Tc52 genes. Typing based on the two genes often paralleled genotyping by classic methodologies using mini-exon and 18S and 24Sα rRNA genes. Evidence for genetic exchange was obtained by comparing sequence phylogenies of nuclear and mitochondrial gene targets, dihydrofolate reductase-thymidylate synthase (DHFR-TS) and the cytochrome oxidase subunit II- NADH dehydrogenase subunit I region (COII-ND1), respectively. We observed genetic exchange in several US isolates as demonstrated by incongruent mitochondrial and nuclear genes phylogenies, which confirms a previous finding of a single genetic exchange event in a Florida isolate. The presence of SNPs and evidence of genetic exchange illustrates that strains from the US are genetically diverse, even though only two phylogenetic lineages have been identified in this region. PMID:23457528

  2. New developments in malaria diagnostics

    PubMed Central

    Versteeg, Inge; Migchelsen, Stephanie J; González, Iveth J; Perkins, Mark D; Mens, Petra F; Schallig, Henk DFH

    2012-01-01

    Currently available rapid diagnostic tests (RDTs) for malaria show large variation in sensitivity and specificity, and there are concerns about their stability under field conditions. To improve current RDTs, monoclonal antibodies (mAbs) for novel malaria antigens have been developed and screened for their possible use in new diagnostic tests. Three antigens, glutamate rich protein (GLURP), dihydrofolate reductase-thymidylate synthase (DHFR-TS) and heme detoxification protein (HDP), were selected based on literature searches. Recombinant antigens were produced and used to immunize mice. Antibody-producing cell lines were subsequently selected and the resulting antibodies were screened for specificity against Plasmodium falciparum and Plasmodium vivax. The most optimal antibody couples were selected based on antibody affinity (expressed as dissociation constants, KD) and detection limit of crude antigen extract from P. falciparum 3D7 culture. The highest affinity antibodies have KD values of 0.10 nM ± 0.014 (D5) and 0.068 ± 0.015 nM (D6) for DHFR-TS mAbs, 0.10 ± 0.022 nM (H16) and 0.21 ± 0.022 nM (H18) for HDP mAbs and 0.11 ± 0.028 nM (G23) and 0.33 ± 0.093 nM (G22) for GLURP mAbs. The newly developed antibodies performed at least as well as commercially available histidine rich protein antibodies (KD of 0.16 ± 0.13 nM for PTL3 and 1.0 ± 0.049 nM for C1–13), making them promising reagents for further test development. PMID:22327435

  3. Down-regulation of dihydrofolate reductase inhibits the growth of endothelial EA.hy926 cell through induction of G1 cell cycle arrest via up-regulating p53 and p21waf1/cip1 expression

    PubMed Central

    Fei, Zhewei; Gao, Yong; Qiu, Mingke; Qi, Xianqin; Dai, Yuxin; Wang, Shuqing; Quan, Zhiwei; Liu, Yingbin; Ou, Jingmin

    2016-01-01

    Folic acid supplementation may meliorate cardiovascular disease risk by improving vascular endothelial structure and function. However, the underlying mechanisms are still lack of a global understanding. To be used, folic acid must be converted to 7,8-dihydrofolate by dihydrofolate reductase to generate one-carbon derivatives serving as important cellular cofactors in the synthesis of nucleotides and amino acids required for cell growth. Therefore, this study explored the effect of dihydrofolate reductase knockdown on endothelial EA.hy926 cell growth and the mechanism involved. We found that down-regulation of dihydrofolate reductase inhibited EA.hy926 cell proliferation, and induced G1 phase arrest. Meanwhile, the expression of regulators necessary for G1/S phase transition, such as cyclin-dependent kinases CDK2, CDK4 and CDK6, were remarkably down-regulated; by contrast, the cell cycle inhibitors p21waf/cip1, p27Kip1 and p53 were significantly up-regulated after dihydrofolate reductase knockdown. Furthermore, supplementation of 5-methyltetrahydrofolate to the dihydrofolate reductase knockdown cells could weaken the inhibitory effect of dihydrofolate reductase knockdown on cell proliferation, simultaneously, inducing the expression of p53 and p21waf/cip1 falling back moderately. Our findings suggest that attenuating dihydrofolate reductase may cause imbalanced expression of cell cycle regulators, especially up-regulation of p53-p21waf/cip1 pathway, leading to G1 cell cycle arrest, thereby inhibiting the growth of endothelial EA.hy926 cells. PMID:27013776

  4. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  5. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  6. Prospective Screening of Novel Antibacterial Inhibitors of Dihydrofolate Reductase for Mutational Resistance

    PubMed Central

    Frey, Kathleen M.; Viswanathan, Kishore; Wright, Dennis L.

    2012-01-01

    Resistance to trimethoprim (TMP) resulting from point mutations in the enzyme drug target dihydrofolate reductase (DHFR) drives the development of new antifolate inhibitors effective against methicillin-resistant Staphlococcus aureus (MRSA). For the past several years we have used structure-based design to create propargyl-linked antifolates that are highly potent antibacterial agents. In order to focus priority on the development of lead compounds with a low propensity to induce resistance, we prospectively evaluated resistance profiles for two of these inhibitors in an MRSA strain. By selection with the lead inhibitors, we generated resistant strains that contain single point mutations F98Y and H30N associated with TMP resistance and one novel mutation, F98I, in DHFR. Encouragingly, the pyridyl propargyl-linked inhibitor selects mutants at low frequency (6.85 × 10−10 to 1.65 × 10−9) and maintains a low MIC (2.5 μg/ml) and a low mutant prevention concentration (1.25 μg/ml), strongly supporting its position as a lead compound. Results from this prospective screening method inform the continued design of antifolates effective against mutations at the Phe 98 position. Furthermore, the method can be used broadly to incorporate ideas for overcoming resistance early in the development process. PMID:22491688

  7. NMR studies of multiple conformations in complexes of Lactobacillus casei dihydrofolate reductase with analogues of pyrimethamine

    SciTech Connect

    Birdsall, B.; Tendler, S.J.B.; Feeney, J.; Carr, M.D. ); Arnold, J.R.P.; Thomas, J.A.; Roberts, G.C.K. ); Griffin, R.J.; Stevens, M.F.G. )

    1990-10-01

    {sup 1}H and {sup 19}F NMR signals from bound ligands have been assigned in one- and two-dimensional NMR spectra of complexes of Lactobacillus casei dihydrofolate reductase with various pyrimethamine analogues. The signals were identified mainly by correlating signals from bound and free ligands by using 2D exchange experiments. Analogues with symmetrically substituted phenyl rings give rise to {sup 1}H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotation about the pyrimidine-phenyl bond. Analogues with symmetrically substituted phenyl rings give rise to {sup 1}H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotation about the pyrimidine-phenyl bond. Analogues containing asymmetrically substituted aromatic rings exist as mixtures of two rotational isomers (an enantiomeric pair) because of this hindered rotation and the NMR spectra revealed that both isomers (forms A and B) bind to the enzyme with comparable, though unequal, binding energies. In this case two complete sets of bound proton signals were observed. The relative orientations of the two forms have been determined from NOE through-space connections between protons on the ligand and protein. Ternary complexes with NADP{sup {plus}} were also examined.

  8. Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure-Activity Relationships

    SciTech Connect

    J Beierlein; N Karri; A Anderson

    2011-12-31

    Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure-activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.

  9. Evidence for two interconverting protein isomers in the methotrexate complex of dihydrofolate reductase from Escherichia coli

    SciTech Connect

    Falzone, C.J.; Benkovic, S.J. ); Wright, P.E. )

    1991-02-26

    Two-dimensional {sup 1}H NMR methods and a knowledge of the X-ray crystal structure have been used to make resonance assignments for the amino acid side chains of dihydrofolate reductase from Escherichia coli complexed with methotrexate. The H7 proton on the pteridine ring of methotrexate was found to have NOEs to the methyl protons of Leu-28 which were assigned by using the L28F mutant. These NOEs indicated that the orientation of the methotrexate pteridine ring is similar in both solution and crystal structures. During the initial assignment process, it became evident that many of the resonances in this complex, unlike those of the folate complex, are severally broadened or doubled. The observation of two distinct sets of resonances in a ratio of approximately 2:1 was attributed to the presence of two protein isomers. Many of the side chains with clearly doubled resonances were located in the {beta}-sheet and the active site. Preliminary studies on the apoprotein also revealed doubled resonances in the absence of the inhibitor, indicating the existence of the protein isomers prior to methotrexate binding. In contrast to the methotrexate complex, the binary complex with folate and the ternary MTX-NADPH-DHFR complex presented a single enzyme form. These results are proposed to reflect the ability of folate and NADPH to bind predominantly to one protein isomer.

  10. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    SciTech Connect

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  11. Investigation of the effects of some drugs and phenolic compounds on human dihydrofolate reductase activity.

    PubMed

    Aslan, Erdem; Adem, Sevki

    2015-03-01

    Dihydrofolate reductase (DHFR) plays a fundamental role in cellular metabolism and cell growth. Inhibition of this enzyme will cause a decrease in the amount of folate that occurs in many metabolic processes, and the deficiency of which may cause various diseases. This study investigated the effects of some drugs and phenolic compounds on DHFR activity in vitro. To determine the inhibitory effect of compounds, enzyme activity was measured with a final concentration of an inhibitor ranging from 10 μM to 51 mM. DHFR was inhibited effectively by naringin, ferulic acid, and levofloxacin with IC50 values under 660 μM. Syringic acid, cefepime, ceftizoxime, cefazolin, ceftriaxone, and ceftazidime exhibited inhibitory effects on the enzyme activity with IC50 values in the range of 3.840-30.224 mM. K(i) constants were calculated using the Cheng-Prusoff equation. K(i) constants calculated in the range of 0.009-2.024 mM with respect to nicotinamide adenine dinucleotide phosphate oxidase (NADPH) and in the range of 0.060-5.830 mM about FH2.

  12. A novel dihydrofolate reductase cassette inserted in an integron borne on a Tn21-like element.

    PubMed Central

    Heikkilä, E; Skurnik, M; Sundström, L; Huovinen, P

    1993-01-01

    In this study, a 498-bp dhfrXII gene coding for trimethoprim resistance was found inserted in a cassette-like manner in the recombinationally active locus, the integron, borne on a transposon Tn21-like element. The dhfrXII cassette is distinct from those cassettes earlier observed in integrons and was found here upstream of two similarly inserted cassettes. The second one carried the new unidentified orfF, which is 85% identical to the orfD cassette in R46. The third cassette contained the aadA2 gene mediating spectinomycin resistance. The plasmid carrying this Tn21-like element was originally isolated from a trimethoprim-resistant urinary tract pathogen, Escherichia coli, from Turku City Hospital, Turku, Finland. By colony hybridization and polymerase chain reaction, this group of three cassettes, including dhfrXII, was detected in four additional E. coli strains of similar origin and in four Shigella strains isolated in Finland but originating from Asia. The dihydrofolate reductase produced from dhfrXII showed an unusual drug resistance in that 50% of the enzymatic activity remained at a trimethoprim concentration of 1 mM. PMID:8392309

  13. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase†

    PubMed Central

    Luk, Louis Y. P.; Ruiz‐Pernía, J. Javier; Adesina, Aduragbemi S.; Loveridge, E. Joel

    2015-01-01

    Abstract Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N‐terminal segment containing heavy isotopes (2H, 13C, 15N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C‐terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N‐terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C‐terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C‐terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis. PMID:26079622

  14. Increased Dynamic Effects in a Catalytically Compromised Variant of Escherichia coli Dihydrofolate Reductase

    PubMed Central

    2013-01-01

    Isotopic substitution (15N, 13C, 2H) of a catalytically compromised variant of Escherichia coli dihydrofolate reductase, EcDHFR-N23PP/S148A, has been used to investigate the effect of these mutations on catalysis. The reduction of the rate constant of the chemical step in the EcDHFR-N23PP/S148A catalyzed reaction is essentially a consequence of an increase of the quasi-classical free energy barrier and to a minor extent of an increased number of recrossing trajectories on the transition state dividing surface. Since the variant enzyme is less well set up to catalyze the reaction, a higher degree of active site reorganization is needed to reach the TS. Although millisecond active site motions are lost in the variant, there is greater flexibility on the femtosecond time scale. The “dynamic knockout” EcDHFR-N23PP/S148A is therefore a “dynamic knock-in” at the level of the chemical step, and the increased dynamic coupling to the chemical coordinate is in fact detrimental to catalysis. This finding is most likely applicable not just to hydrogen transfer in EcDHFR but also to other enzymatic systems. PMID:24252106

  15. Free energy simulations of active-site mutants of dihydrofolate reductase.

    PubMed

    Doron, Dvir; Stojković, Vanja; Gakhar, Lokesh; Vardi-Kilshtain, Alexandra; Kohen, Amnon; Major, Dan Thomas

    2015-01-22

    This study employs hybrid quantum mechanics-molecular mechanics (QM/MM) simulations to investigate the effect of mutations of the active-site residue I14 of E. coli dihydrofolate reductase (DHFR) on the hydride transfer. Recent kinetic measurements of the I14X mutants (X = V, A, and G) indicated slower hydride transfer rates and increasingly temperature-dependent kinetic isotope effects (KIEs) with systematic reduction of the I14 side chain. The QM/MM simulations show that when the original isoleucine residue is substituted in silico by valine, alanine, or glycine (I14V, I14A, and I14G DHFR, respectively), the free energy barrier height of the hydride transfer reaction increases relative to the wild-type enzyme. These trends are in line with the single-turnover rate measurements reported for these systems. In addition, extended dynamics simulations of the reactive Michaelis complex reveal enhanced flexibility in the mutants, and in particular for the I14G mutant, including considerable fluctuations of the donor-acceptor distance (DAD) and the active-site hydrogen bonding network compared with those detected in the native enzyme. These observations suggest that the perturbations induced by the mutations partly impair the active-site environment in the reactant state. On the other hand, the average DADs at the transition state of all DHFR variants are similar. Crystal structures of I14 mutants (V, A, and G) confirmed the trend of increased flexibility of the M20 and other loops. PMID:25382260

  16. Enhanced Degradation of Dihydrofolate Reductase through Inhibition of NAD Kinase by Nicotinamide Analogs

    PubMed Central

    Hsieh, Yi-Ching; Tedeschi, Philip; AdeBisi Lawal, Rialnat; Banerjee, Debabrata; Scotto, Kathleen; Kerrigan, John E.; Lee, Kuo-Chieh; Johnson-Farley, Nadine; Bertino, Joseph R.

    2013-01-01

    Dihydrofolate reductase (DHFR), because of its essential role in DNA synthesis, has been targeted for the treatment of a wide variety of human diseases, including cancer, autoimmune diseases, and infectious diseases. Methotrexate (MTX), a tight binding inhibitor of DHFR, is one of the most widely used drugs in cancer treatment and is especially effective in the treatment of acute lymphocytic leukemia, non-Hodgkin’s lymphoma, and osteosarcoma. Limitations to its use in cancer include natural resistance and acquired resistance due to decreased cellular uptake and decreased retention due to impaired polyglutamylate formation and toxicity at higher doses. Here, we describe a novel mechanism to induce DHFR degradation through cofactor depletion in neoplastic cells by inhibition of NAD kinase, the only enzyme responsible for generating NADP, which is rapidly converted to NADPH by dehydrogenases/reductases. We identified an inhibitor of NAD kinase, thionicotinamide adenine dinucleotide phosphate (NADPS), which led to accelerated degradation of DHFR and to inhibition of cancer cell growth. Of importance, combination treatment of NADPS with MTX displayed significant synergy in a metastatic colon cancer cell line and was effective in a MTX-transport resistant leukemic cell line. We suggest that NAD kinase is a valid target for further inhibitor development for cancer treatment. PMID:23197646

  17. Effect of pH on hydride transfer by Escherichia coli dihydrofolate reductase.

    PubMed

    Loveridge, E Joel; Allemann, Rudolf K

    2011-05-16

    The kinetic isotope effect (KIE) on hydride transfer in the reaction catalysed by dihydrofolate reductase from Escherichia coli (EcDHFR) is known to be temperature dependent at pH 7, but essentially independent of temperature at elevated pH. Here, we show that the transition from the temperature-dependent regime to the temperature-independent regime occurs sharply between pH 7.5 and 8. The activation energy for hydride transfer is independent of pH. The mechanism leading to the change in behaviour of the KIEs is not clear, but probably involves a conformational change in the enzyme brought about by deprotonation of a key residue (or residues) at high pH. The KIE on hydride transfer at low pH suggests that the rate constant for the reaction is not limited by a conformational change to the enzyme under these conditions. The effect of pH on the temperature dependence of the rate constants and KIEs for hydride transfer catalysed by EcDHFR suggests that enzyme motions and conformational changes do not directly influence the chemistry, but that the reaction conditions affect the conformational ensemble of the enzyme prior to reaction and control the reaction though this route.

  18. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    PubMed

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.

  19. Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands.

    PubMed Central

    Uversky, V. N.; Kutyshenko, V. P.; Protasova NYu; Rogov, V. V.; Vassilenko, K. S.; Gudkov, A. T.

    1996-01-01

    It is obvious that functional activity of a protein molecule is closely related to its structure. On the other hand, the understanding of structure-function relationship still remains one of the intriguing problems of molecular biology. There is widespread belief that mutagenesis presents a real way to solve this problem. Following this assumption, we have investigated the effect of circular permutation in dihydrofolate reductase from E. coli on protein structure and functioning. It has been shown that in the absence of ligands two circularly permuted variants of dihydrofolate reductase possess all the properties of the molten globule state. However, after addition of ligands they gain the native-like structural properties and specific activity. This means that the in vitro folding of permuted dihydrofolate reductase is terminated at the stage of the molten globule formation. Interaction of permuted protein with ligands leads to the structural adjustment and formation of active protein molecules. PMID:8880908

  20. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  1. Direct selection for mutations affecting specific splice sites in a hamster dihydrofolate reductase minigene.

    PubMed Central

    Chen, I T; Chasin, L A

    1993-01-01

    A Chinese hamster cell line containing an extra exon 2 (50 bp) inserted into a single intron of a dihydrofolate reductase (dhfr) minigene was constructed. The extra exon 2 was efficiently spliced into the RNA, resulting in an mRNA that is incapable of coding for the DHFR enzyme. Mutations that decreased splicing of this extra exon 2 caused it to be skipped and so produced normal dhfr mRNA. In contrast to the parental cell line, the splicing mutants display a DHFR-positive growth phenotype. Splicing mutants were isolated from this cell line after treatment with four different mutagens (racemic benzo[c]phenanthrene diol epoxide, ethyl methanesulfonate, ethyl nitrosourea, and UV irradiation). By polymerase chain reaction amplification and direct DNA sequencing, we determined the base changes in 66 mutants. Each of the mutagens generated highly specific base changes. All mutations were single-base substitutions and comprised 24 different changes distributed over 16 positions. Most of the mutations were within the consensus sequences at the exon 2 splice donor, acceptor, and branch sites. The RNA splicing patterns in the mutants were analyzed by quantitative reverse transcription-polymerase chain reaction. The recruitment of cryptic sites was rarely seen; simple exon skipping was the predominant mutant phenotype. The wide variety of mutations that produced exon skipping suggests that this phenotype is the typical consequence of splice site damage and supports the exon definition model of splice site selection. A few mutations were located outside the consensus sequences, in the exon or between the branch point and the polypyrimidine tract, identifying additional positions that play a role in splice site definition. That most of these 66 mutations fell within consensus sequences in this near-saturation mutagenesis suggests that splicing signals beyond the consensus may consist of robust RNA structures. Images PMID:8417332

  2. Cloning and characterization of dihydrofolate reductases from deep-sea bacteria.

    PubMed

    Murakami, Chiho; Ohmae, Eiji; Tate, Shin-Ichi; Gekko, Kunihiko; Nakasone, Kaoru; Kato, Chiaki

    2010-04-01

    Enzymes from organisms living in deep-sea are thought to have characteristic pressure-adaptation mechanisms in structure and function. To better understand these mechanisms in dihydrofolate reductase (DHFR), an essential enzyme in living cells, we cloned, overexpressed and purified four new DHFRs from the deep-sea bacteria Shewanella violacea (svDHFR), Photobacterium profundum (ppDHFR), Moritella yayanosii (myDHFR) and Moritella japonica (mjDHFR), and compared their structure and function with those of Escherichia coli DHFR (ecDHFR). These deep-sea DHFRs showed 33-56% primary structure identity to ecDHFR while far-ultraviolet circular dichroism and fluorescence spectra suggested that their secondary and tertiary structures were not largely different. The optimal temperature and pH for deep-sea DHFRs activity were lower than those of ecDHFR and different from each other. Deep-sea DHFRs kinetic parameters K(m) and k(cat) were larger than those of ecDHFR, resulting in 1.5-2.8-fold increase of k(cat)/K(m) except for mjDHFR which had a 28-fold decrease. The enzyme activity of ppDHFR and mjDHFR (moderate piezophilic bacteria) as well as ecDHFR decreased as pressure increased, while svDHFR and myDHFR (piezophilic bacteria) showed a significant tolerance to pressure. These results suggest that DHFRs from deep-sea bacteria possess specific enzymatic properties adapted to their life under high pressure. PMID:20040594

  3. Protein Mass-Modulated Effects in the Catalytic Mechanism of Dihydrofolate Reductase: Beyond Promoting Vibrations

    PubMed Central

    2015-01-01

    The role of fast protein dynamics in enzyme catalysis has been of great interest in the past decade. Recent “heavy enzyme” studies demonstrate that protein mass-modulated vibrations are linked to the energy barrier for the chemical step of catalyzed reactions. However, the role of fast dynamics in the overall catalytic mechanism of an enzyme has not been addressed. Protein mass-modulated effects in the catalytic mechanism of Escherichia coli dihydrofolate reductase (ecDHFR) are explored by isotopic substitution (13C, 15N, and non-exchangeable 2H) of the wild-type ecDHFR (l-DHFR) to generate a vibrationally perturbed “heavy ecDHFR” (h-DHFR). Steady-state, pre-steady-state, and ligand binding kinetics, intrinsic kinetic isotope effects (KIEint) on the chemical step, and thermal unfolding experiments of both l- and h-DHFR show that the altered protein mass affects the conformational ensembles and protein–ligand interactions, but does not affect the hydride transfer at physiological temperatures (25–45 °C). Below 25 °C, h-DHFR shows altered transition state (TS) structure and increased barrier-crossing probability of the chemical step compared with l-DHFR, indicating temperature-dependent protein vibrational coupling to the chemical step. Protein mass-modulated vibrations in ecDHFR are involved in TS interactions at cold temperatures and are linked to dynamic motions involved in ligand binding at physiological temperatures. Thus, mass effects can affect enzymatic catalysis beyond alterations in promoting vibrations linked to chemistry. PMID:24820793

  4. Extension and limits of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase.

    PubMed

    Singh, Priyanka; Sen, Arundhuti; Francis, Kevin; Kohen, Amnon

    2014-02-12

    Enzyme catalysis has been studied extensively, but the role of enzyme dynamics in the catalyzed chemical conversion is still an enigma. The enzyme dihydrofolate reductase (DHFR) is often used as a model system to assess a network of coupled motions across the protein that may affect the catalyzed chemical transformation. Molecular dynamics simulations, quantum mechanical/molecular mechanical studies, and bioinformatics studies have suggested the presence of a "global dynamic network" of residues in DHFR. Earlier studies of two DHFR distal mutants, G121V and M42W, indicated that these residues affect the chemical step synergistically. While this finding was in accordance with the concept of a network of functional motions across the protein, two residues do not constitute a network. To better define the extent and limits of the proposed network, the current work studied two remote residues predicted to be part of the same network: W133 and F125. The effect of mutations in these residues on the nature of the chemical step was examined via measurements of the temperature-dependence of the intrinsic kinetic isotope effects (KIEs) and other kinetic parameters, and double mutants were used to tie the findings to G121 and M42. The findings indicate that residue F125, which was implicated by both calculations and bioinformatic methods, is a part of the same global dynamic network as G121 and M42, while W133, implicated only by bioinformatics, is not. These findings extend our understanding of the proposed network and the relations between functional and genomic couplings. Delineating that network illuminates the need to consider remote residues and protein structural dynamics in the rational design of drugs and of biomimetic catalysts. PMID:24450297

  5. Identification of Cryptosporidium parvum Dihydrofolate Reductase Inhibitors by Complementation in Saccharomyces cerevisiae

    PubMed Central

    Brophy, Victoria Hertle; Vasquez, John; Nelson, Richard G.; Forney, John R.; Rosowsky, Andre; Sibley, Carol Hopkins

    2000-01-01

    There is a pressing need for drugs effective against the opportunistic protozoan pathogen Cryptosporidium parvum. Folate metabolic enzymes and enzymes of the thymidylate cycle, particularly dihydrofolate reductase (DHFR), have been widely exploited as chemotherapeutic targets. Although many DHFR inhibitors have been synthesized, only a few have been tested against C. parvum. To expedite and facilitate the discovery of effective anti-Cryptosporidium antifolates, we have developed a rapid and facile method to screen potential inhibitors of C. parvum DHFR using the model eukaryote, Saccharomyces cerevisiae. We expressed the DHFR genes of C. parvum, Plasmodium falciparum, Toxoplasma gondii, Pneumocystis carinii, and humans in the same DHFR-deficient yeast strain and observed that each heterologous enzyme complemented the yeast DHFR deficiency. In this work we describe our use of the complementation system to screen known DHFR inhibitors and our discovery of several compounds that inhibited the growth of yeast reliant on the C. parvum enzyme. These same compounds were also potent or selective inhibitors of the purified recombinant C. parvum DHFR enzyme. Six novel lipophilic DHFR inhibitors potently inhibited the growth of yeast expressing C. parvum DHFR. However, the inhibition was nonselective, as these compounds also strongly inhibited the growth of yeast dependent on the human enzyme. Conversely, the antibacterial DHFR inhibitor trimethoprim and two close structural analogs were highly selective, but weak, inhibitors of yeast complemented by the C. parvum enzyme. Future chemical refinement of the potent and selective lead compounds identified in this study may allow the design of an efficacious antifolate drug for the treatment of cryptosporidiosis. PMID:10722506

  6. Substituted Pyrrolo[2,3-d]pyrimidines as Cryptosporidium hominis Thymidylate Synthase Inhibitors

    PubMed Central

    Kumar, Vidya P.; Frey, Kathleen M.; Wang, Yiqiang; Jain, Hitesh K.; Gangjee, Aleem; Anderson, Karen S.

    2013-01-01

    Cryptosporidiosis, a gastrointestinal disease caused by a protozoan Cryptosporidium hominis is often fatal in immunocompromised individuals. There is little clinical data to show that the existing treatment by nitazoxanide and paromomycin is effective in immunocompromised individuals1, 2. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer and malaria. A novel series of classical antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines have been evaluated as Cryptosporidium hominis thymidylate synthase (ChTS) inhibitors. Crystal structure in complex with the most potent compound, a 2’-chlorophenyl with a sulfur bridge with a Ki of 8.83 ± 0.67 nM is discussed in terms of several Van de Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate. Of these interactions, two interactions with the non-conserved residues (A287 and S290) offer an opportunity to develop ChTS specific inhibitors. Compound 6 serves as a lead compound for analog design and its crystal structure provides clues for the design of ChTS specific inhibitors. PMID:23927969

  7. Probing the Active Site of Candida Glabrata Dihydrofolate Reductase with High Resolution Crystal Structures and the Synthesis of New Inhibitors

    SciTech Connect

    Liu, J.; Bolstad, D; Smith, A; Priestley, N; Wright, D; Anderson, A

    2009-01-01

    Candida glabrata, a fungal strain resistant to many commonly administered antifungal agents, has become an emerging threat to human health. In previous work, we validated that the essential enzyme, dihydrofolate reductase, is a drug target in C. glabrata. Using a crystal structure of dihydrofolate reductase from C. glabrata bound to an initial lead compound, we designed a class of biphenyl antifolates that potently and selectively inhibit both the enzyme and the growth of the fungal culture. In this work, we explore the structure-activity relationships of this class of antifolates with four new high resolution crystal structures of enzyme:inhibitor complexes and the synthesis of four new inhibitors. The designed inhibitors are intended to probe key hydrophobic pockets visible in the crystal structure. The crystal structures and an evaluation of the new compounds reveal that methyl groups at the meta and para positions of the distal phenyl ring achieve the greatest number of interactions with the pathogenic enzyme and the greatest degree of selectivity over the human enzyme. Additionally, antifungal activity can be tuned with substitution patterns at the propargyl and para-phenyl positions.

  8. A 19-base pair deletion polymorphism in dihydrofolate reductase is associated with increased unmetabolized folic acid in plasma and decreased red blood cell folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dihydrofolate reductase (DHFR) catalyzes the reduction of folic acid to tetrahydrofolate (THF). A 19-bp noncoding deletion allele maps to intron 1, beginning 60 bases from the splice donor site, and has been implicated in neural tube defects and cancer, presumably by influencing folate metabolism. T...

  9. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  10. Induction of methotrexate resistance by retroviral-mediated transfer of a mutant dihydrofolate reductase gene

    SciTech Connect

    Ricciardone, M.D.

    1986-01-01

    Methotrexate (MTX), a folate analog which inhibits the enzyme dihydrofolate reductase (DHFR), is an effective antineoplastic drug. However, MTX-induced myelosuppression limits the effectiveness of this agent. Selective induction of MTX resistance in bone marrow stem cells, prior to treatment with MTX, might prevent this toxicity and improve the therapeutic index of the drug. In these studies drug resistance was transferred to mouse and human bone marrow stem cells by retroviral expression vectors containing coding sequences of a mutant DHFR with a decreased affinity for MTX. Three retroviral expression vectors were analyzed. The CIS DR vector contained the mutant DHFR gene inserted into the replication-defective amphotropic 4070 virus, Cistor. The other vectors contained the mutant DHFR inserted into either the env region (SDHT1) or gag-pol region (SDHT2) of a replication-defective spleen focus-forming virus. All three constructs induced approximately a 200-fold resistance to MTX when transfected into NIH3T3 cells. Amphotropic infectious retroviruses were obtained by transfecting the mutant DHFR vectors into a packaging cell line, which supplied the gag, pol, and env proteins for virus production. Virus titers of 4.5 x 10/sup 3/ colony-forming units (CFU)/ml (CIS DR), 1.5 x 10/sup 4/ CFU/ml (SDHT2), and 5 x 10/sup 5/ CFU/ml (SDHT1) were measured by the transfer of MTX resistance to NIH3T3 cells. The amphotropic SDHT1 virus efficiently induced MTX resistance in cells of several species, including mouse NIH3T3 cells (5 x 10/sup 5/ CFU/ml), monkey CV1 cells (4 x 10/sup 3/ CFU/ml), and human MCF-7 cells (6 x 10/sup 4/ CFU/ml). When cocultured with SDHT1 virus-producing cells, both mouse and human bone marrow cells could be infected and rendered resistant to MTX. Mouse cytotoxic T lymphocytes and mouse helper T lymphocytes can also be made resistant to MTX.

  11. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    DOE PAGES

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E.; Dealwis, Chris

    2014-12-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP+ from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm3 crystal with the quasi-Laue technique, and the structuremore » reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.« less

  12. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    SciTech Connect

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E.; Dealwis, Chris

    2014-12-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP+ from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm3 crystal with the quasi-Laue technique, and the structure reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.

  13. Structure-Based Approach to the Development of Potent and Selective Inhibitors of Dihydrofolate Reductase from Cryptosporidium

    PubMed Central

    Bolstad, David B.; Bolstad, Erin S. D.; Frey, Kathleen M.; Wright, Dennis L.; Anderson, Amy C.

    2008-01-01

    Cryptosporidiosis is an emerging infectious disease that can be life-threatening in an immune-compromised individual and causes gastrointestinal distress lasting up to 2 weeks in an immune-competent individual. There are few therapeutics available for effectively treating this disease. We have been exploring dihydrofolate reductase (DHFR) as a potential target in Cryptosporidium. On the basis of the structure of the DHFR enzyme from C. hominis, we have developed a novel scaffold that led to the discovery of potent (38 nM) and efficient inhibitors of this enzyme. Recently, we have advanced these inhibitors to the next stage of development. Using the structures of both the protozoal and human enzymes, we have developed inhibitors with nanomolar potency (1.1 nM) against the pathogenic enzyme and high levels (1273-fold) of selectivity over the human enzyme. PMID:18834108

  14. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim

    SciTech Connect

    Heaslet, Holly; Harris, Melissa; Fahnoe, Kelly; Sarver, Ronald; Putz, Henry; Chang, Jeanne; Subramanyam, Chakrapani; Barreiro, Gabriela; Miller, J. Richard; Pfizer

    2010-09-02

    Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed 'S1 DHFR.' To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.

  15. Biosynthetic incorporation of telluromethionine into dihydrofolate reductase and crystallographic analysis of the distribution of tellurium atoms in the protein molecule

    SciTech Connect

    Kunkle, M.G.; Lewinski, K.; Boles, J.O.; Dunlap, R.B.; Odom, J.D.; Lebioda, L.

    1994-12-01

    Recent successes in crystallographic studies of proteins with methionine (Met) residues replaced with SeMet, pioneered by Hendrickson and coworkers, inspired us to replace Met with TeMet in Escherichia coli dihydrofolate reductase (DHFR). E. coli DHFR, which catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate, consists of 159 residues, 5 of which are Met. TeMet was incorporated into DHFR using the Met auxotroph, E. coli DL41, carrying the expression vector pWT8 with an IPTG inducible promoter and ampicillin resistance gene. The enzyme was purified by successive chromatography on Q-Sepharose and PHenyl Sepharose resins, yielding milligram quantities of homogeneous enzyme with a specific activity of 40 units/mg. TeMet DHFR exhibits kinetic properties similar to those of wt DHFR. Amino acid analysis indicated 3 authentic Met residues in TeMet DHFR, whereas atomic absorption spectroscopy detected 2 Te per protein molecule. Amino acid sequence analysis results suggested that only authentic Met was present in the first three Met positions (1,16,and 20). Crystals of Te-DHFR were grown in the presence of methotrexate from PEG 4000 and were isomorphous with wt-DHFR crystals grown from ethanol. Difference Fourier maps and restrained least-squares refinement show very little, if any, Te in the first three Met positions: Met{sup 1}, Met{sup 16}, and Met{sup 20}, whereas the occupancy of Te in positions 42 and 92 is 0.64. Apparently, the process of folding, subsequent purification, and crystallization select DHFR molecules with Te in Met{sup 42} and Met{sup 92}. Replacing Met with TeMet provides an internal probe that should facilitate structural and mechanistic studies of proteins.

  16. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway

    PubMed Central

    2016-01-01

    The enzyme dihydrofolate reductase (DHFR, E) from Escherichia coli is a paradigm for the role of protein dynamics in enzyme catalysis. Previous studies have shown that the enzyme progresses through the kinetic cycle by modulating the dynamic conformational landscape in the presence of substrate dihydrofolate (DHF), product tetrahydrofolate (THF), and cofactor (NADPH or NADP+). This study focuses on the quantitative description of the relationship between protein fluctuations and product release, the rate-limiting step of DHFR catalysis. NMR relaxation dispersion measurements of millisecond time scale motions for the E:THF:NADP+ and E:THF:NADPH complexes of wild-type and the Leu28Phe (L28F) point mutant reveal conformational exchange between an occluded ground state and a low population of a closed state. The backbone structures of the occluded ground states of the wild-type and mutant proteins are very similar, but the rates of exchange with the closed excited states are very different. Integrated analysis of relaxation dispersion data and THF dissociation rates measured by stopped-flow spectroscopy shows that product release can occur by two pathways. The intrinsic pathway consists of spontaneous product dissociation and occurs for all THF-bound complexes of DHFR. The allosteric pathway features cofactor-assisted product release from the closed excited state and is utilized only in the E:THF:NADPH complexes. The L28F mutation alters the partitioning between the pathways and results in increased flux through the intrinsic pathway relative to the wild-type enzyme. This repartitioning could represent a general mechanism to explain changes in product release rates in other E. coli DHFR mutants. PMID:26147643

  17. Aliphatic (1)H, (13)C and (15)N chemical shift assignments of dihydrofolate reductase from the psychropiezophile Moritella profunda in complex with NADP(+) and folate.

    PubMed

    Loveridge, E Joel; Matthews, Stella M; Williams, Christopher; Whittaker, Sara B-M; Günther, Ulrich L; Evans, Rhiannon M; Dawson, William M; Crump, Matthew P; Allemann, Rudolf K

    2013-04-01

    Dihydrofolate reductase from the deep-sea bacterium Moritella profunda (MpDHFR) has been (13)C/(15)N isotopically labelled and purified. Here, we report the aliphatic (1)H, (13)C and (15)N resonance assignments of MpDHFR in complex with NADP(+) and folate. The spectra of MpDHFR suggest considerably greater conformational heterogeneity than is seen in the closely related DHFR from Escherichia coli.

  18. sup 13 C and sup 15 N nuclear magnetic resonance evidence of the ionization state of substrates bound to bovine dihydrofolate reductase

    SciTech Connect

    Selinsky, B.S.; Perlman, M.E.; London, R.E. ); Unkefer, C.J. ); Mitchell, J. ); Blakley, R.L. Univ. of Tennessee, Memphis )

    1990-02-06

    The state of protonation of substrates bound to mammalian dihydrofolate reductase (DHFR) has significance for the mechanism of catalysis. To investigate this, dihydrofolate and dihydropteroylpentaglutamate have been synthesized with {sup 15}N enrichment at N-5. {sup 15}N NMR studies have been performed on the binary complexes formed by bovine DHFR with these compounds and with (5-{sup 15}N)dihydrobiopterin. The results indicate that there is no protonation at N-5 in the binary complexes, and this was confirmed by {sup 13}C NMR studies with folate and dihydrofolate synthesized with {sup 13}C enrichment at C-6. The chemical shift displacements produced by complex formation are in the same direction as those which result from deprotonation of the N-3/C-4-O amide group and are consistent with at least partial loss of the proton from N-3. This would be possible if, as crystallographic data indicate, there is interaction of N-3 and the 2-amino group of the bound ligands with the carboxylate of the active site glutamate residue (Glu{sup 30}).

  19. Functional nucleotide excision repair is required for the preferential removal of N-ethylpurines from the transcribed strand of the dihydrofolate reductase gene of Chinese hamster ovary cells.

    PubMed Central

    Sitaram, A; Plitas, G; Wang, W; Scicchitano, D A

    1997-01-01

    Transcription-coupled repair of DNA adducts is an essential factor that must be considered when one is elucidating biological endpoints resulting from exposure to genotoxic agents. Alkylating agents comprise one group of chemical compounds which modify DNA by reacting with oxygen and nitrogen atoms in the bases of the double helix. To discern the role of transcription-coupled DNA repair of N-ethylpurines present in discrete genetic domains, Chinese hamster ovary cells were exposed to N-ethyl-N-nitrosourea, and the clearance of the damage from the dihydrofolate reductase gene was investigated. The results indicate that N-ethylpurines were removed from the dihydrofolate reductase gene of nucleotide excision repair-proficient Chinese hamster ovary cells; furthermore, when repair rates in the individual strands were determined, a statistically significant bias in the removal of ethyl-induced, alkali-labile sites was observed, with clearance occurring 30% faster from the transcribed strand than from its nontranscribed counterpart at early times after exposure. In contrast, removal of N-ethylpurines was observed in the dihydrofolate reductase locus in cells that lacked nucleotide excision repair, but both strands were repaired at the same rate, indicating that transcription-coupled clearance of these lesions requires the presence of active nucleotide excision repair. PMID:9001209

  20. Allelic variation in the dihydrofolate reductase gene at amino acid position 95 contributes to antifolate resistance in Chinese hamster cells.

    PubMed

    Yu, M; Melera, P W

    1993-12-15

    The Chinese hamster lung cell line DC-3F contains two polymorphic dihydrofolate reductase (DHFR) alleles that are defined by an Asp-Asn amino acid sequence difference at position 95 in protein. Previously, we reported that the antifolate-resistant subline DC-3F/A3 overexpressed a Leu22-->Phe mutant of the Asp95 (21k) allele and that this was the basis of its resistance to methotrexate (MTX) and methasquin [P. W. Melera, J. P. Davide, C. A. Hession, and K. W. Scotto, Mol. Cell. Biol., 4: 38-48, 1984]. We now show that another independently selected antifolate-resistant subline of DC-3F, DC-3F8/A55, in addition to being severely compromised in its ability to accumulate MTX, overexpresses a Leu22-->Phe mutant form of the Asn95 (20k) allele. Characterization of purified DHFR from these cells showed that the enzyme displayed a 6-fold higher Kd for MTX (3.92 +/- 0.17 pM) than the wild type (0.58 +/- 0.10 pM), thus explaining its lowered sensitivity to drug. Unexpectedly, however, this value was 4-fold lower than that displayed by the DC-3F/A3 enzyme even though both contain the same (Leu22-->Phe) mutation and differ only at position 95. Indeed, we have also shown that the 21k and 20k wild type enzymes, both containing Leu at position 22, in fact differ by 3-fold (1.58 +/- 0.08 and 0.58 +/- 0.10 pM, respectively) in their Kd's for MTX. This demonstrates that the amino acid at position 95 has an effect on the ability of DHFR to bind MTX. On the other hand, these allelic variants are indistinguishable from each other in their catalytic properties and in their respective Kd's for dihydrofolate. Taken together, these characteristics are consistent with the observation that it is the wild type 21k allele which is preferentially overexpressed at a frequency of 3:1 in MTX-resistant Chinese hamster lung sublines derived by long-term selection in MTX. The results of these studies are novel in that they establish a role for allelic variation in the DHFR gene as a contributor to

  1. Study on Folate Binding Domain of Dihydrofolate Reductase in Different Plant species and Human beings.

    PubMed

    Samanta, Aveek; Datta, Animesh Kumar; Datta, Siraj

    2014-01-01

    Data base (NCBI and TIGR) searches are made to retrieve protein sequences of different plant species namely Medicago truncatula, Pisum sativum, Ricinus communis, Arabidopsis thaliana, Vitis vinifera, Glycine max, Daucus carota, Oryza sativa Japonica Group, Arabidopsis lyrata subsp. lyrata, Brachypodium distachyon, Oryza sativa Indica Group, Zea mays and careful alignment of derived sequences shows 95% or higher identity. Similarly, DHFR sequence of human being is also retrieved from NCBI. A phylogenetic tree is constructed from different plant and human DHFR domain using the Neighbour - Joining method in MEGA 5.05. Conservation score is performed by using PARALINE. Result suggests that folate binding domain of dihydrofolare reductase is conserved (score 8.06) and excepting some minor variations the basic structure of the domain in both plant species and human being is rather similar. Human DHFR domain contains PEKN sequence near active site, though proline is common for all the selected organisms but the other sequences are different in plants. The plant domain is always associated with TS (Thymidylate synthase). Plant based system is predicted to be an effective model for assessment of MTX (Methotrexate) and other antifolate drugs.

  2. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... diagnosis or management of GM3 synthase deficiency: American Epilepsy Society: Find a Doctor Clinic for Special Children ( ...

  3. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    PubMed

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  4. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine.

    PubMed

    Naithani, Manisha; Saxena, Vartika; Mirza, Anissa Atif; Kumari, Ranjeeta; Sharma, Kapil; Bharadwaj, Jyoti

    2016-01-01

    Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA), and dihydrofolate reductase (DHFR) were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p = 0.790). Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus.

  5. Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase.

    PubMed

    Frey, Kathleen M; Lombardo, Michael N; Wright, Dennis L; Anderson, Amy C

    2010-04-01

    Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affected by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.

  6. Dihydrofolate reductase: Sequential resonance assignments using 2D and 3D NMR and secondary structure determination in solution

    SciTech Connect

    Carr, M.D.; Birdsall, B.; Jimenez-Barbero, J.; Polshakov, V.I.; McCormick, J.E.; Feeney, J.; Frenkiel, T.A.; Bauer, C.J. ); Roberts, G.C.K. )

    1991-06-25

    Three-dimensional (3D) heteronuclear NMR techniques have been used to make sequential {sup 1}H and {sup 15}H resonance assignments for most of the residues of Lactobacillus casei dihydrofolate reductase (DHFR), a monomeric protein of molecular mass 18,300 Da. A uniformly {sup 15}N-labeled sample of the protein was prepared and its complex with methotrexate (MTX) studied by 3D {sup 15}N/{sup 1}H nuclear Overhauserheteronuclear multiple quantum coherence (NOESY-HMQC), Harmann-Hahn-heteronuclear multiple quantum coherence (HOHAHA-HMQC), and HMQC-NOESY-HMQC experiments. These experiments overcame most of the spectral overlap problems caused by chemical shift degeneracies in 2D spectra and allowed the {sup 1}H-{sup 1}H through-space and through-bond connectivities to be identified unambiguously, leading to the resonance assignments. The novel HMQC-NOESY-HMQC experiment allows NOE cross peaks to be detected between NH protons even when their {sup 1}H chemical shifts are degenerate as long as the amide {sup 15}N chemical shifts are nondegenerate. The 3D experiments, in combination with conventional 2D NOESY, COSY, and HOHAHA experiments on unlabelled and selectively deuterated DHFR, provide backbone assignments for 146 of the 162 residues and side-chain assignments for 104 residues of the protein. Data from the NOE-based experiments and identification of the slowly exchanging amide protons provide detailed information about the secondary structure of the binary complex of the protein with methotrexate.

  7. Simulations of Remote Mutants of Dihydrofolate Reductase Reveal the Nature of a Network of Residues Coupled to Hydride Transfer

    PubMed Central

    Roston, Daniel; Kohen, Amnon; Doron, Dvir; Major, Dan T.

    2014-01-01

    Recent experimental and theoretical studies have proposed that enzymes involve networks of coupled residues throughout the protein that participate in motions accompanying chemical barrier crossing. Here we have examined portions of a proposed network in dihydrofolate reductase (DHFR) using quantum mechanics/molecular mechanics simulations. The simulations employ a hybrid quantum mechanics-molecular mechanics approach with a recently developed semi-empirical AM1-SRP Hamiltonian that provides accurate results for this reaction. The simulations reproduce experimentally determined catalytic rates for the wild type and distant mutants of E. coli DHFR, underscoring the accuracy of the simulation protocol. Additionally the simulations provide detailed insight into how residues remote from the active site affect the catalyzed chemistry, through changes in the thermally averaged properties along the reaction coordinate. The mutations do not greatly affect the structure of the transition state near the bond activation, but we observe differences somewhat removed from the point of C-H cleavage that affect the rate. The mutations have global effects on the thermally averaged structure that propagate throughout the enzyme and the current simulations highlight several interactions that appear to be particularly important. PMID:24798860

  8. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine

    PubMed Central

    Saxena, Vartika; Mirza, Anissa Atif; Kumari, Ranjeeta; Sharma, Kapil; Bharadwaj, Jyoti

    2016-01-01

    Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA), and dihydrofolate reductase (DHFR) were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p = 0.790). Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus. PMID:27064332

  9. Survival and risk of relapse of acute lymphoblastic leukemia in a Mexican population is affected by dihydrofolate reductase gene polymorphisms

    PubMed Central

    GÓMEZ-GÓMEZ, YAZMÍN; ORGANISTA-NAVA, JORGE; SAAVEDRA-HERRERA, MÓNICA VIRGINIA; RIVERA-RAMÍREZ, ANA BERTHA; TERÁN-PORCAYO, MARCO ANTONIO; DEL CARMEN ALARCÓN-ROMERO, LUZ; ILLADES-AGUIAR, BERENICE; LEYVA-VÁZQUEZ, MARCO ANTONIO

    2012-01-01

    Dihydrofolate reductase (DHFR) is the major target of methotrexate, a key component in childhood acute lymphoblastic leukemia (ALL) treatment. Polymorphisms in the gene coding for DHFR have been associated with adverse event treatment. This study evaluated the effect of the -A317G and C829T polymorphisms in the DHFR gene on survival and risk of relapse of ALL. Seventy patients with ALL and 100 healthy individuals were genotyped by the polymerase chain reaction-restriction fragment length polymorphism method. An association between the polymorphisms and the risk of relapse was found (p<0.05); patients with the -317G/G genotype were found to have an 8.55 (95% CI 1.84–39.70) higher chance of relapse and carriers of the 829T/T genotype had a 14.0 (95% CI 1.13–172.63) higher chance of relapse. Other variables, such as age and leukocyte count, were associated (p<0.05) with the risk of relapse of the disease. Individuals with the G/G and T/T genotype of the -A317G and C829T polymorphisms had poorer survival compared to other genotype groups (log-rank test; p<0.05). Although preliminary, these data seem to suggest a role for the DHFR polymorphisms in the risk of relapse of ALL and the mortality risk in these patients. PMID:22969948

  10. Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments.

    PubMed

    Murakami, Chiho; Ohmae, Eiji; Tate, Shin-ichi; Gekko, Kunihiko; Nakasone, Kaoru; Kato, Chiaki

    2011-03-01

    To examine whether dihydrofolate reductase (DHFR) from deep-sea bacteria has undergone molecular evolution to adapt to high-pressure environments, we cloned eight DHFRs from Shewanella species living in deep-sea and ambient atmospheric-pressure environments, and subsequently purified six proteins to compare their structures, stabilities, and functions. The DHFRs showed 74-90% identity in primary structure to DHFR from S. violacea, but only 55% identity to DHFR from Escherichia coli (ecDHFR). Far-ultraviolet circular dichroism and fluorescence spectra suggested that the secondary and tertiary structures of these DHFRs were similar. In addition, no significant differences were found in structural stability as monitored by urea-induced unfolding and the kinetic parameters, K(m) and k(cat); although the DHFRs from Shewanella species were less stable and more active (2- to 4-fold increases in k(cat)/K(m)) than ecDHFR. Interestingly, the pressure effects on enzyme activity revealed that DHFRs from ambient-atmospheric species are not necessarily incompatible with high pressure, and DHFRs from deep-sea species are not necessarily tolerant of high pressure. These results suggest that the DHFR molecule itself has not evolved to adapt to high-pressure environments, but rather, those Shewanella species with enzymes capable of retaining functional activity under high pressure migrated into the deep-sea.

  11. Towards the Understanding of Resistance Mechanisms in Clinically Isolated Trimethoprim-resistant, Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase

    SciTech Connect

    Frey, K.; Lombardo, M; Wright, D; Anderson, A

    2010-01-01

    Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affected by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.

  12. Preparation, biological evaluation and molecular docking study of imidazolyl dihydropyrimidines as potential Mycobacterium tuberculosis dihydrofolate reductase inhibitors.

    PubMed

    Desai, N C; Trivedi, A R; Khedkar, Vijay M

    2016-08-15

    A series of novel dihydropyrimidine derivatives bearing an imidazole nucleus at C-4 position were synthesized in excellent yields via Biginelli multi-component reaction. The newly synthesized compounds were characterized by IR, (1)H NMR, (13)C NMR and Mass spectroscopy. In vitro antitubercular evaluation of all the newly synthesized compounds 4a-p against Mycobacterium tuberculosis (Mtb) H37Rv showed, 4j (MIC: 0.39μg/mL; SI: >25.64), 4m (MIC: 0.78μg/mL; SI: >12.82) and 4p (MIC: 0.39μg/mL; SI: 24.10) as the most promising lead analogues. Compounds 4j, 4m and 4p displayed effective reduction in residual Mtb growth within the tuberculosis-infected macrophage model. Further, molecular docking study of active molecules 4j, 4m and 4p against Mycobacterium tuberculosis dihydrofolate reductase (Mtb DHFR) proved their potency as Mtb DHFR inhibitors acting as potential leads for further development. Pharmacokinetic properties leading to drug-likeness were also predicted for most active molecules 4j, 4m and 4p. PMID:27397497

  13. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells.

    PubMed Central

    Kaufman, R J; Wasley, L C; Spiliotes, A J; Gossels, S D; Latt, S A; Larsen, G R; Kay, R M

    1985-01-01

    Expression of human tissue-type plasminogen activator (t-PA) at high levels has been achieved in Chinese hamster ovary (CHO) cells by cotransfection and subsequent coamplification of the transfected sequences. Expression vectors containing the t-PA cDNA gene and dihydrofolate reductase (DHFR) cDNA gene were cotransfected into CHO DHFR-deficient cells. Transformants expressing DHFR were selected by growth in media lacking nucleosides and contained low numbers of t-PA genes and DHFR genes. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate generated cells which had amplified both DHFR genes and t-PA genes over 100-fold. These cell lines expressed elevated levels of enzymatically active t-PA. To optimize both t-PA sequence amplification and t-PA expression, various modifications of the original procedure were used. These included alterations to the DHFR expression vector, optimization of the molar ratio of t-PA to DHFR sequences in the cotransfection, and modification of the methotrexate resistance selection procedure. The structure of the amplified DNA, its chromosomal location, and its stability during growth in the absence of methotrexate are reported. Images PMID:4040603

  14. Cloning, recombinant expression and inhibitor profiles of dihydrofolate reductase from the Australian sheep blow fly, Lucilia cuprina.

    PubMed

    Kotze, A C; Bagnall, N H; Ruffell, A P; Pearson, R

    2014-09-01

    While dihydrofolate reductase (DHFR) is an important drug target in mammals, bacteria and protozoa, no inhibitors of this enzyme have been developed as commercial insecticides. We therefore examined the potential of this enzyme as a drug target in an important ectoparasite of livestock, the Australian sheep blow fly, Lucilia cuprina (Diptera: Calliphoridae) (Wiedemann). The non-specific DHFR inhibitors aminopterin and methotrexate significantly inhibited the growth of L. cuprina larvae, with IC50 values at µg levels. Trimethoprim and pyrimethamine were 5-30-fold less active. Relative IC50 values for the inhibition of recombinant L. cuprina DHFR by various inhibitors were in accordance with their relative effects on larval growth. The active-site amino acid residues of L. cuprina DHFR differed by between 34% and 50% when compared with two mammalian species, as well as two bacteria and two protozoa. There were significant charge and size differences in specific residues between the blow fly and human DHFR enzymes, notably the L. cuprina Asn21, Lys31 and Lys63 residues. This study provides bioassay evidence to highlight the potential of blow fly DHFR as an insecticide target, and describes differences in active site residues between blow flies and other organisms which could be exploited in the design of blow fly control chemicals.

  15. Structure-Activity Relationships of Bacillus cereus and Bacillus anthracis Dihydrofolate Reductase: toward the Identification of New Potent Drug Leads

    PubMed Central

    Joska, Tammy M.; Anderson, Amy C.

    2006-01-01

    New and improved therapeutics are needed for Bacillus anthracis, the etiological agent of anthrax. To date, antimicrobial agents have not been developed against the well-validated target dihydrofolate reductase (DHFR). In order to address whether DHFR inhibitors could have potential use as clinical agents against Bacillus, 27 compounds were screened against this enzyme from Bacillus cereus, which is identical to the enzyme from B. anthracis at the active site. Several 2,4-diamino-5-deazapteridine compounds exhibit submicromolar 50% inhibitory concentrations (IC50s). Four of the inhibitors displaying potency in vitro were tested in vivo and showed a marked growth inhibition of B. cereus; the most potent of these has MIC50 and minimum bactericidal concentrations at which 50% are killed of 1.6 μg/ml and 0.09 μg/ml, respectively. In order to illustrate structure-activity relationships for the classes of inhibitors tested, each of the 27 inhibitors was docked into homology models of the B. cereus and B. anthracis DHFR proteins, allowing the development of a rationale for the inhibition profiles. A combination of favorable interactions with the diaminopyrimidine and substituted phenyl rings explains the low IC50 values of potent inhibitors; steric interactions explain higher IC50 values. These experiments show that DHFR is a reasonable antimicrobial target for Bacillus anthracis and that there is a class of inhibitors that possess sufficient potency and antibacterial activity to suggest further development. PMID:17005826

  16. Crystal structures of Klebsiella pneumoniae dihydrofolate reductase bound to propargyl-linked antifolates reveal features for potency and selectivity.

    PubMed

    Lamb, Kristen M; Lombardo, Michael N; Alverson, Jeremy; Priestley, Nigel D; Wright, Dennis L; Anderson, Amy C

    2014-12-01

    Resistance to the antibacterial antifolate trimethoprim (TMP) is increasing in members of the family Enterobacteriaceae, driving the design of next-generation antifolates effective against these Gram-negative pathogens. The propargyl-linked antifolates are potent inhibitors of dihydrofolate reductases (DHFR) from several TMP-sensitive and -resistant species, including Klebsiella pneumoniae. Recently, we have determined that these antifolates inhibit the growth of strains of K. pneumoniae, some with MIC values of 1 μg/ml. In order to further the design of potent and selective antifolates against members of the Enterobacteriaceae, we determined the first crystal structures of K. pneumoniae DHFR bound to two of the propargyl-linked antifolates. These structures highlight that interactions with Leu 28, Ile 50, Ile 94, and Leu 54 are necessary for potency; comparison with structures of human DHFR bound to the same inhibitors reveal differences in residues (N64E, P61G, F31L, and V115I) and loop conformations (residues 49 to 53) that may be exploited for selectivity. PMID:25288083

  17. Structural analysis of the active sites of dihydrofolate reductase from two species of Candida uncovers ligand-induced conformational changes shared among species

    PubMed Central

    Paulsen, Janet L.; Viswanathan, Kishore; Wright, Dennis L.; Anderson, Amy C.

    2013-01-01

    A novel strategy for targeting the pathogenic organisms Candida albicans and Candida glabrata focuses on the development of potent and selective antifolates effective against dihydrofolate reductase. Crystal structure analysis suggested that an essential loop at the active site (Thr 58-Phe 66) differs from the analogous residues in the human enzyme, potentially providing a mechanism for achieving selectivity. In order to probe the role of this loop, we employed chemical synthesis, crystal structure determination and molecular dynamics simulations. The results of these analyses show that the loop residues undergo ligand-induced conformational changes that are similar among the fungal and human species. PMID:23375226

  18. The effects of differential polyadenylation on expression of the dihydrofolate reductase-encoding gene in Chinese hamster lung cells.

    PubMed

    Yang, H; Hussain, A; Melera, P W

    1995-10-01

    Three differently sized mRNAs are expressed from each of two DHFR (encoding dihydrofolate reductase) alleles present in the Chinese hamster lung (CHL) cell line, DC-3F. The relative abundancy of the transcripts produced from each allele differs dramatically as a result of differential utilization of the multiple poly(A) sites present in the DHFR DHFR gene and a genetic polymorphism located within the third poly(A) signal of one allele. We sought to determine whether such differences in polyadenylation affect the steady-state levels of DHFR and mRNAs expressed from either allele and, in a more general sense, to ask whether differences in 3' end RNA processing in a gene containing multiple poly(A) sites affects the final level of gene expression. An SV40 promoter-based transient expression system producing chimeric cat::DHFR transcripts was developed to regenerate the in vivo mRNA polyadenylation patterns associated with each of the two DHFR alleles. The results demonstrate that the total amount of polyadenylated RNA expressed from each of these constructs in vitro is the same regardless of the differential utilization of the poly(A) signals that occurs between them. Moreover, measurement of the individual turnover rates of the DHFR mRNAs expressed in vivo from each allele, as determined by pulse-chase labeling and actinomycin D inhibition studies, revealed no significant allele-specific differences in transcript half-lives. Finally, measuring the steady-state levels of DHFR poly(A)+ mRNA in parental DC-3F cells demonstrated that both alleles are expressed to the same extent during normal growth. Thus, even though dramatic allele-specific differences in 3' end processing of DHFR transcripts occur in vivo, such differences do not appear to influence the steady-state levels of DHFR gene expression. PMID:7590264

  19. NMR studies of differences in the conformations and dynamics of ligand complexes formed with mutant dihydrofolate reductases

    SciTech Connect

    Birdsall, B.; Andrews, J.; Ostler, G.; Tendler, S.J.B.; Feeney, J.; Roberts, G.C.K.; Davies, R.W.; Cheung, H.T.A. )

    1989-02-07

    Two mutants of Lactobacillus casei dihydrofolate reductase, Trp 21 {yields} Leu and Asp 26 {yields} Glu, have been prepared by using site-directed mutagenesis methods, and their ligand binding and structural properties have been compared with those of the wild-type enzyme. {sup 1}H, {sup 13}C, and {sup 31}P NMR studies have been carried out to characterize the structural changes in the complexes of the mutant and wild-type enzymes. Replacement of the conserved Trp 21 by a Leu residue causes a decrease in activity of the enzyme and reduces the NADPH binding constant by a factor of 400. The binding of substrates and substrate analogues is only slightly affected. {sup 1}H NMR studies of the Trp 21 {yields} Leu enzyme complexes have confirmed the original resonance assignments for Trp 21. In complexes formed with methotrexate and the mutant enzyme, the results indicate some small changes in conformation occurring as much as 14 {angstrom} away from the site of substitution. For the enzyme-NADPH complexes, the chemical shifts of nuclei in the bound coenzyme indicate that the nicotinamide ring binds differently in complexes with the mutant and the wild-type enzyme. There are complexes where the wild-type enzyme has been shown to exist in solution as a mixture of conformations, and studies on the corresponding complexes with the Trp 21 {yields} Leu mutant indicate that the delicately poised equilibria can be perturbed. Some conformational adjustments are required to allow the carboxylate of Glu 26 to bind effectively to the N1 proton of inhibitors such as methotrexate and trimethoprim.

  20. Identification and characterization of a gene that is coamplified with dihydrofolate reductase in a methotrexate-resistant CHO cell line

    SciTech Connect

    Foreman, P.K.; Hamlin, J.L. . School of Medicine)

    1989-03-01

    As part of an effort to characterize the spatial and functional relationships among genetic elements within the amplified dihydrofolate reductase (DHFR) domain in Chinese hamster cells, the authors have used a variation of the differential hybridization approach to identify cDNA clones whose genes are coamplified with DHFR in the methotrexate-resistant cell line, CHOC 400. Their initial screen was successful in isolating both DHFR and non-DHFR cDNAs. One of the non-DHFR cDNA clones, 2BE2121, hybridizes on Northern (RNA) blots to abundant 1,200- and 1,500-nucleotide (nt) transcripts which differ in the lengths of their 3' untranslated regions. The clone 2BE2121 contains a 789-nt open reading frame but does not appear to be related to any members of the protein or nucleic acid sequence databases. A second larger non-DHFR cDNA, II-19-211, was isolated that is transcribed from the same gene as 2BE2121 but contains only a small carboxyl-terminal portion of the open reading frame. II-19-211 may, therefore, represent either a splicing intermediate or an mRNA transcribed from a cryptic intragenic promoter. Hybridization to cosmids from DHFr domain shows that 2BE2121 is encoded by a gene --34 kilobases (kb) long. The 5'-most genomic fragment is less than 4 kb from an interamplicon injection. The 3' end of the 2BE2121 gene lies --75 kb downstream from the DHFR gene and --25 kb downstream from the proximal replication initiation site, and the transcriptional polarity is opposite to that of the leading strand of replication. Thus, both the DHFR and 2BE2121 genes are exceptions to the theory that transcription proceeds in the same direction as the leading strand of the replication fork.

  1. Construction of a modular dihydrofolate reductase cDNA gene: Analysis of signals utilized for efficient expression

    SciTech Connect

    Kaufman, J.; Sharp, P.A.

    1982-11-01

    Dihydrofolate reductase (DHFR) modular genes have been constructed with segments containing the adenovirus major late promoter, a 3' splice site from a variable region immunoglobulin gene, a DHFR cDNA, and portions of the simian virus 40 (SV40) genome, DNA-mediated transfer of these genes transformed Chinese hamster ovary DHFR/sup -/ cells to the DHFR/sup +/ phenotype. Transformants contained one to several copies of the transfected DNA integrated into the host genome. Clones subjected to growth in increasing concentrations of methotrexate eventually gave rise to lines containing several hundred copies of the transforming DNA. Analysis of the DHFr mRNA produced in amplified lines indicated the following: (i) All clones utilize the adenovirus major late promoter for transcription initiation. (ii) A hybrid intron formed by the 5' splice site of the adenovirus major late leader and a 3' splice site from a variable-region immunoglobulin gene is properly excised. (iii) The mRNA is not efficiently polyadenylated at sequences in the 3' end of the DHFR cDNA but rather uses polyadenylation signals downstream from the DHFR cDNA. Three independent clones produce a DHFR mRNA containing SV40 or pBR322 and SV40 sequences, and the RNA is polyadenylated at the SV40 late polyadenylation site. Another clone has recombined into cellular DNA and apparently uses a cellular sequence for polyadenylation. Introduction of a segment containing the SV40 early polyadenylation signal into the 3' end of the DHFR cDNA generated a recombinant capable of transforming cells to the DHFR/sup +/ phenotype with at least a 10-fold increase in efficiency, demonstrating the necessity for an efficient polyadenylation signal. Attachment of a DNA segment containing the transcription enhancer 72-base pair repeat) of SV40 further increased the biological activity of the modular DHFR gene 50- to 100-fold.

  2. The structure and competitive substrate inhibition of dihydrofolate reductase from Enterococcus faecalis reveal restrictions to cofactor docking.

    PubMed

    Bourne, Christina R; Wakeham, Nancy; Webb, Nicole; Nammalwar, Baskar; Bunce, Richard A; Berlin, K Darrell; Barrow, William W

    2014-02-25

    We are addressing bacterial resistance to antibiotics by repurposing a well-established classic antimicrobial target, the dihydrofolate reductase (DHFR) enzyme. In this work, we have focused on Enterococcus faecalis, a nosocomial pathogen that frequently harbors antibiotic resistance determinants leading to complicated and difficult-to-treat infections. An inhibitor series with a hydrophobic dihydrophthalazine heterocycle was designed from the anti-folate trimethoprim. We have examined the potency of this inhibitor series based on inhibition of DHFR enzyme activity and bacterial growth, including in the presence of the exogenous product analogue folinic acid. The resulting preferences were rationalized using a cocrystal structure of the DHFR from this organism with a propyl-bearing series member (RAB-propyl). In a companion apo structure, we identify four buried waters that act as placeholders for a conserved hydrogen-bonding network to the substrate and indicate an important role in protein stability during catalytic cycling. In these structures, the nicotinamide of the nicotinamide adenine dinucleotide phosphate cofactor is visualized outside of its binding pocket, which is exacerbated by RAB-propyl binding. Finally, homology models of the TMP(R) sequences dfrK and dfrF were constructed. While the dfrK-encoded protein shows clear sequence changes that would be detrimental to inhibitor binding, the dfrF-encoded protein model suggests the protein would be relatively unstable. These data suggest a utility for anti-DHFR compounds for treating infections arising from E. faecalis. They also highlight a role for water in stabilizing the DHFR substrate pocket and for competitive substrate inhibitors that may gain advantages in potency by the perturbation of cofactor dynamics.

  3. Structure and dynamics in solution of the complex of Lactobacillus casei dihydrofolate reductase with the new lipophilic antifolate drug trimetrexate.

    PubMed Central

    Polshakov, V. I.; Birdsall, B.; Frenkiel, T. A.; Gargaro, A. R.; Feeney, J.

    1999-01-01

    We have determined the three-dimensional solution structure of the complex of Lactobacillus casei dihydrofolate reductase and the anticancer drug trimetrexate. Two thousand seventy distance, 345 dihedral angle, and 144 hydrogen bond restraints were obtained from analysis of multidimensional NMR spectra recorded for complexes containing 15N-labeled protein. Simulated annealing calculations produced a family of 22 structures fully consistent with the constraints. Several intermolecular protein-ligand NOEs were obtained by using a novel approach monitoring temperature effects of NOE signals resulting from dynamic processes in the bound ligand. At low temperature (5 degrees C) the trimethoxy ring of bound trimetrexate is flipping sufficiently slowly to give narrow signals in slow exchange, which give good NOE cross peaks. At higher temperature these broaden and their NOE cross peaks disappear thus allowing the signals in the lower-temperature spectrum to be identified as NOEs involving ligand protons. The binding site for trimetrexate is well defined and this was compared with the binding sites in related complexes formed with methotrexate and trimethoprim. No major conformational differences were detected between the different complexes. The 2,4-diaminopyrimidine-containing moieties in the three drugs bind essentially in the same binding pocket and the remaining parts of their molecules adapt their conformations such that they can make effective van der Waals interactions with essentially the same set of hydrophobic amino acids, the side-chain orientations and local conformations of which are not greatly changed in the different complexes (similar chi1 and chi2 values). PMID:10091649

  4. Prevalence of a plasmid-mediated type II dihydrofolate reductase gene among trimethoprim-resistant urinary pathogens in Greek hospitals.

    PubMed

    Tsakris, A; Vatopoulos, A C; Johnson, A P; Pitt, T L; Legakis, N J; Tzouvelekis, L S

    1992-04-01

    The genetic basis of trimethoprim resistance was examined in 24 Klebsiella pneumoniae, 27 Enterobacter cloacae, five Enterobacter aerogenes and nine Serratia marcescens urinary isolates from five hospitals in Greece. Analysis of the 65 isolates by serotyping and phage-typing identified 53 distinct strains. Thirty-eight isolates (15 K. pneumoniae, 19 E. cloacae, two E. aerogenes and two S. marcescens) hybridized with a probe specific for a gene encoding type II dihydrofolate reductase (DHFR). Three of the K. pneumoniae and four of the E. cloacae isolates which reacted with this probe also hybridized with probes specific for type I DHFR and transposon Tn7. Two E. cloacae isolates hybridized only with the probe for type I DHFR, while a further three isolates hybridized only with the type I DHFR and Tn7 probes. None of the isolates hybridized with a probe for type V DHFR. The plasmids in transconjugants derived from 40 isolates were analysed by digestion with restriction enzymes and Southern blotting. Eighteen (45%) of the donors (12 K. pneumoniae and 6 E. cloacae) produced transconjugants containing plasmids of about 95 kb in size, while transconjugants from the other donors had plasmids in the range 100-185 kb. Of the 18 transconjugants containing a 95 kb plasmid, 15 had similar restriction endonuclease digest patterns, although they varied in terms of the range of antimicrobial resistances which they encoded. When EcoRI digests of these 15 plasmids were hybridized with the type II DHFR probe, a 23 kb common band reacted with the probe.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate constant.

    PubMed

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Dawson, William M; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vicent; Allemann, Rudolf K

    2014-12-10

    Catalysis by dihydrofolate reductase from the moderately thermophilic bacterium Geobacillus stearothermophilus (BsDHFR) was investigated by isotope substitution of the enzyme. The enzyme kinetic isotope effect for hydride transfer was close to unity at physiological temperatures but increased with decreasing temperatures to a value of 1.65 at 5 °C. This behavior is opposite to that observed for DHFR from Escherichia coli (EcDHFR), where the enzyme kinetic isotope effect increased slightly with increasing temperature. These experimental results were reproduced in the framework of variational transition-state theory that includes a dynamical recrossing coefficient that varies with the mass of the protein. Our simulations indicate that BsDHFR has greater flexibility than EcDHFR on the ps-ns time scale, which affects the coupling of the environmental motions of the protein to the chemical coordinate and consequently to the recrossing trajectories on the reaction barrier. The intensity of the dynamic coupling in DHFRs is influenced by compensatory temperature-dependent factors, namely the enthalpic barrier needed to achieve an ideal transition-state configuration with minimal nonproductive trajectories and the protein disorder that disrupts the electrostatic preorganization required to stabilize the transition state. Together with our previous studies of other DHFRs, the results presented here provide a general explanation why protein dynamic effects vary between enzymes. Our theoretical treatment demonstrates that these effects can be satisfactorily reproduced by including a transmission coefficient in the rate constant calculation, whose dependence on temperature is affected by the protein flexibility. PMID:25396728

  6. High pressure NMR reveals active-site hinge motion of folate-bound Escherichia coli dihydrofolate reductase.

    PubMed

    Kitahara, R; Sareth, S; Yamada, H; Ohmae, E; Gekko, K; Akasaka, K

    2000-10-24

    A high-pressure (15)N/(1)H two-dimensional NMR study has been carried out on folate-bound dihydrofolate reductase (DHFR) from Escherichia coli in the pressure range between 30 and 2000 bar. Several cross-peaks in the (15)N/(1)H HSQC spectrum are split into two with increasing pressure, showing the presence of a second conformer in equilibrium with the first. Thermodynamic analysis of the pressure and temperature dependencies indicates that the second conformer is characterized by a smaller partial molar volume (DeltaV = -25 mL/mol at 15 degrees C) and smaller enthalpy and entropy values, suggesting that the second conformer is more open and hydrated than the first. The splittings of the cross-peaks (by approximately 1 ppm on (15)N axis at 2000 bar) arise from the hinges of the M20 loop, the C-helix, and the F-helix, all of which constitute the major binding site for the cofactor NADPH, suggesting that major differences in conformation occur in the orientations of the NADPH binding units. The Gibbs free energy of the second, open conformer is 5.2 kJ/mol above that of the first at 1 bar, giving an equilibrium population of about 10%. The second, open conformer is considered to be crucial for NADPH binding, and the NMR line width indicates that the upper limit for the rate of opening is 20 s(-)(1) at 2000 bar. These experiments show that high pressure NMR is a generally useful tool for detecting and analyzing "open" structures of a protein that may be directly involved in function.

  7. STRUCTURAL ENZYMOLOGY OF POLYKETIDE SYNTHASES

    PubMed Central

    Tsai, Shiou-Chuan (Sheryl); Ames, Brian Douglas

    2010-01-01

    This chapter describes structural and associated enzymological studies of polyketide synthases, including isolated single domains and multidomain fragments. The sequence–structure–function relationship of polyketide biosynthesis, compared with homologous fatty acid synthesis, is discussed in detail. Structural enzymology sheds light on sequence and structural motifs that are important for the precise timing, substrate recognition, enzyme catalysis, and protein–protein interactions leading to the extraordinary structural diversity of naturally occurring polyketides. PMID:19362634

  8. Increased thymidylate synthase in L1210 cells possessing acquired resistance to N10-propargyl-5,8-dideazafolic acid (CB3717): development, characterization, and cross-resistance studies

    SciTech Connect

    Jackman, A.L.; Alison, D.L.; Calvert, A.H.; Harrap, K.R.

    1986-06-01

    The properties are described of a mutant L1210 cell line (L1210:C15) with acquired resistance (greater than 200-fold) to the thymidylate synthase (TS) inhibitor N10-propargyl-5,8-dideazafolic acid. TS was overproduced 45-fold and was accompanied by a small increase in the activity of dihydrofolate reductase (2.6-fold). Both the level of resistance and enzyme activities were maintained in drug-free medium (greater than 300 generations). Failure of N10-propargyl-5,8-dideazafolic acid to suppress the (/sup 3/H)-2'-deoxyuridine incorporation into the acid-precipitable material of the resistant line supported the evidence that TS overproduction was the mechanism of resistance; consequently the L1210:C15 cells were largely cross-resistant to another (but weaker) TS inhibitor, 5,8-dideazafolic acid. Minimal cross-resistance was observed to the dihydrofolate reductase inhibitors methotrexate and 5-methyl-5,8-dideazaaminopterin (5- and 2-fold, respectively). L1210 and L1210:C15 cells were, however, equally sensitive to 5-fluorodeoxyuridine (FdUrd), an unexpected finding since a metabolite, 5-fluorodeoxyuridine monophosphate, is a potent TS inhibitor; however, this cytotoxicity against the L1210:C15 cells was antagonized by coincubation with 5 microM folinic acid although folinic acid potentiated the cytotoxicity of FdUrd to the N10-propargyl-5,8-dideazafolic acid-sensitive L1210 line. Thymidine was much less effective as a FdUrd protecting agent in the L1210:C15 when compared with the L1210 cells; however, a combination of thymidine plus hypoxanthine was without any additional effect (compared with thymidine alone) against the sensitive line but effectively protected L1210:C15 cells.

  9. Proton nuclear magnetic resonance studies of the effects of ligand binding on ryptophan residues of selectively deuterated dihydrofolate reductase from Lactobacillus casei

    SciTech Connect

    Feeney, J.; Roberts, G.C.; Thomson, J.W.; King, R.W; Griffiths, D.V.; Burgen, A.S.

    1980-05-01

    We have prepared a selectively deuterated dihydrofolate reductase in which all the aromatic protons except the C(2) protons of tryptophan have been replaced by deuterium and have examined the 1H NMR spectra of its complexes with folate, trimethoprim, methotrexate, NADP+, and NADPH. One of the four Trp C(2)-proton resonance signals (signal P at 3.66 ppm from dioxane) has been asigned to Trp-21 by examining the NMR spectrum of a selectively deuterated N-bromosuccinimide-modified dihydrofolate reductase. This signal is not perturbed by NADPH, indicating that the coenzyme is not binding close to the 2 position of Trp-21. This contrasts markedly with the 19F shift (2.7 ppm) observed for the 19F signal of Trp-21 in the NADPH complex with the 6-fluorotryptophan-labeled enzyme. In fact the crystal structure of the enzyme . methotrexate . NADPH shows that the carboxamide group of the reduced nicotinamide ring is near to the 6 position of Trp-21 but remote from its 2 position. The nonadditivity of the 1H chemical-shift contributions for signals tentatively assigned to Trp-5 and -133 indicates that these residues are influenced by ligand-induced conformational changes.

  10. Partial sup 1 H NMR assignments of the Escherichia coli dihydrofolate reductase complex with folate: Evidence for a unique conformation of bound folate

    SciTech Connect

    Falzone, C.J.; Benkovic, S.J. ); Wright, P.E. )

    1990-10-01

    Sequence-specific {sup 1}H assignments have been made for over 25% of the amino acid side chains of Escherichia coli dihydrofolate reductase complexed with folate by using a variety of two-dimensional techniques. Proton resonances were assigned by using a combination of site-directed mutagenesis and a knowledge of the X-ray crystal structure. Unique sets of NOE connectivities present in hydrophobic pockets were matched with the X-ray structure and used to assign many of the residues. Other residues, particularly those near or in the active site, were assigned by site-directed mutagenesis. The ability to assign unambiguosly the proton resonances of these catalytically important residues allowed for extensive networks of NOE connectivities to follow from these assignments. As a consequence of these assignments, the orientation of the pterin ring of folate could be determined, and its conformation is similar to that of the productive dihydrofolate complex. Under these experimental conditions, only one bound form of the pterin ring could be detected.

  11. Photoaffinity analogues of methotrexate as folate antagonist binding probes. 1. Photoaffinity labeling of murine L1210 dihydrofolate reductase and amino acid sequence of the binding region

    SciTech Connect

    Price, E.M.; Smith, P.L.; Klein, T.E.; Freisheim, J.H.

    1987-07-28

    N/sup ..cap alpha../-(4-Amino-4-deoxy-10-methylpteroyl)-N/sup epsilon/-(4-azido-5-(/sup 125/I)iodosalicylyl)-L-lysine, a photoaffinity analogue of methotrexate, is only 2-fold less potent than methotrexate in the inhibition of murine L1210 dihydrofolate reductase. Irradiation of the enzyme in the presence of an equimolar concentration of the /sup 125/I-labeled analogue ultimately leads to an 8% incorporation of the photoprobe. A 100-fold molar excess of methotrexate essentially blocks this incorporation. Cyanogen bromide digestion of the labeled enzyme, followed by high-pressure liquid chromatography purification of the generated peptides, indicates that greater than 85% of the total radioactivity is incorporated into a single cyanogen bromide peptide. Sequence analysis revealed this peptide to be residues 53-111, with a majority of the radioactivity centered around residues 63-65 (Lys-Asn-Arg). These data demonstrate that the photoaffinity analogue specifically binds to dihydrofolate reductase and covalently modifies the enzyme following irradiation and is therefore a photolabeling agent useful for probing the inhibitor binding domain of the enzyme.

  12. Persistent nicotine treatment potentiates amplification of the dihydrofolate reductase gene in rat lung epithelial cells as a consequence of Ras activation.

    PubMed

    Guo, Jinjin; Chu, Michelle; Abbeyquaye, Tetteh; Chen, Chang-Yan

    2005-08-26

    Although nicotine has been suggested to promote lung carcinogenesis, the mechanism of its action in this process remains unknown. The present investigation demonstrates that the treatment of rat lung epithelial cells with nicotine for various periods differentially mobilizes multiple intracellular pathways. Protein kinase C and phosphoinositide 3-OH-kinase are transiently activated after the treatment. Also, Ras and its downstream effector ERK1/2 are activated after long term exposure to nicotine. The activation of Ras by nicotine treatment is responsible for the subsequent perturbation of the methotrexate (MTX)-mediated G1 cell cycle restriction as well as an increase in production of reactive oxygen species. When p53 expression is suppressed by introducing E6, persistent exposure to nicotine enables dihydrofolate reductase gene amplification in the presence of methotrexate (MTX) and the formation of the MTX-resistant colonies. Altering the activity of phosphoinositide 3-OH-kinase has no effect on dihydrofolate reductase amplification. However, the suppression of protein kinase C dramatically affects the colony formation in soft agar. Thus, our data suggest that persistent exposure to nicotine perturbs the G1 checkpoint and causes DNA damage through the increase of the production of reactive oxygen species. However, a third element rendered by loss of p53 is required for the initiation of the process of gene amplification. Under p53-deficient conditions, the establishment of a full oncogenic transformation, in response to long term nicotine exposure, is achieved through the cooperation of multiple signaling pathways. PMID:15983034

  13. Trimethoprim resistance in urinary pathogens in northern Scotland: epidemic spread of a resistance plasmid encoding the type Ib trimethoprim-resistant dihydrofolate reductase.

    PubMed

    Young, H K; Hillyear, J K

    1994-11-01

    The prevalence of trimethoprim resistance in enterobacterial urinary pathogens from hospitalised patients in the Angus district of northern Scotland (22.8%) was twice that found in similar isolates from patients attending general practitioners (11.2%). Thirty-three of the 143 trimethoprim-resistant strains were shown to harbour transferable plasmids conferring high-level trimethoprim resistance. In total, 17 different plasmid types were distinguished. Two plasmids, pUK1184 and pUK1185, accounted for 36% of the trimethoprim resistance plasmids and were shown by restriction endonuclease digestion fingerprints to be closely related to plasmid pUK28, previously demonstrated to be endemic in urinary pathogens in the Edinburgh area. Only 21% of the plasmids were shown to encode the type Ia trimethoprim-resistant dihydrofolate reductase, whereas 70% of the trimethoprim resistance plasmids were found to encode the type Ib dihydrofolate reductase. Hybridisation of the trimethoprim resistance plasmids identified in this study with gene probes specific for the integrase genes of transposons Tn7 and Tn21 indicates that the dhfrIa is rarely present within Tn7 or related transposons in these plasmids and may be more prevalent within Tn21-like transposons. In contrast, with the exception of the two endemic plasmids that harboured the dhfrIb gene within a Tn7-like transposon, the majority of dhfrIb genes were not found to be associated with either Tn7- or Tn21-like structures.

  14. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized. PMID:27576495

  15. Producing biofuels using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  16. Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH.

    PubMed

    Meiering, E M; Wagner, G

    1995-03-24

    The locations of long-lived bound water molecules in the binary complex of human dihydrofolate reductase (hDHFR) with methotrexate (MTX) and the ternary complex of hDHFR with MTX and NADPH have been investigated using 15N-resolved, three-dimensional ROESY-HMQC and NOESY-HSQC spectra acquired at 25 degrees C and 8 degrees C. NOEs with NH groups of the protein are detected for five bound water molecules in the binary complex and six bound water molecules in the ternary complex. Inspection of crystal structures of hDHFR reveals that the bound water molecules perform structural and functional roles in the complexes. Two water molecules located outside the active site, WatA and WatB, have similar NOEs in the binary and ternary complexes. These water molecules from multiple hydrogen bonds bridging loops and/or secondary structural elements in crystal structures of hDHFR and so stabilize the tertiary fold of the enzyme. Two water molecules in the active site, WatC and WatD, also have similar NOEs in both complexes. In crystal structures of hDHFR, WatC is involved in MTX binding by forming hydrogen bonds to the ligand and protein, while WatD stabilizes WatC by hydrogen bonding to it and the protein. A third active-site water molecule, WatE, has a markedly stronger NOE in the ternary complex than in the binary complex. Differences in the binding of WatE in the binary and ternary complexes are important for understanding the mechanism of DHFR, since this water molecule is believed to be involved in substrate protonation. Although the increased NOE intensity for WatE could be caused by a change in the position of water molecule, it may also be caused by an increase in its lifetime, since structural fluctuations in the active site are decreased upon cofactor binding. NOEs for one other water molecule, WatF, may be observed in the ternary complex but not the binary complex. WatF forms hydrogen bonds bridging the cofactor and the protein in crystal structures of hDHFR.

  17. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  18. Trichodiene synthase. Substrate specificity and inhibition.

    PubMed

    Cane, D E; Yang, G; Xue, Q; Shim, J H

    1995-02-28

    The substrate specificity of the sesquiterpene synthase trichodiene synthase was examined by determining the Vmax and Km parameters for the natural substrate, trans,trans-farnesyl diphosphate (1), its stereoisomer, cis,trans-farnesyl diphosphate, and the tertiary allylic isomer, (3R)-nerolidyl diphosphate (3), using both the native fungal and recombinant enzymes. A series of farnesyl diphosphate analogs, 15, 16, 20, 7, 8, and 9, was also tested as inhibitors of trichodiene synthase. 10-Fluorofarnesyl diphosphate (15) was the most effective competitive inhibitor, with a K1 of 16 nM compared to the Km for 1 of 87 nM, while the ether analog of farnesyl diphosphate, 8, an extremely potent inhibitor of squalene synthase, showed only modest inhibition of trichodiene synthase, with a K1/Km of 70. PMID:7873526

  19. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  20. Protein Dynamics and Stability: The Distribution of Atomic Fluctuations in Thermophilic and Mesophilic Dihydrofolate Reductase Derived Using Elastic Incoherent Neutron Scattering

    SciTech Connect

    Meinhold, Lars; Clement, David; Tehei, M; Daniel, R. M.; Finney, J.L.; Smith, Jeremy C

    2008-11-01

    The temperature dependence of the dynamics of mesophilic and thermophilic dihydrofolate reductase is examined using elastic incoherent neutron scattering. It is demonstrated that the distribution of atomic displacement amplitudes can be derived from the elastic scattering data by assuming a (Weibull) functional form that resembles distributions seen in molecular dynamics simulations. The thermophilic enzyme has a significantly broader distribution than its mesophilic counterpart. Furthermore, although the rate of increase with temperature of the atomic mean-square displacements extracted from the dynamic structure factor is found to be comparable for both enzymes, the amplitudes are found to be slightly larger for the thermophilic enzyme. Therefore, these results imply that the thermophilic enzyme is the more flexible of the two.

  1. Kinetics of the inhibition of bovine liver dihydrofolate reductase by tea catechins: origin of slow-binding inhibition and pH studies.

    PubMed

    Navarro-Perán, Enma; Cabezas-Herrera, Juan; Hiner, Alexander N P; Sadunishvili, Tinatin; García-Cánovas, Francisco; Rodríguez-López, José Neptuno

    2005-05-24

    Dihydrofolate reductase (DHFR) is the subject of intensive investigation since it appears to be the primary target enzyme for "antifolate" drugs, such as methotrexate and trimethoprim. Fluorescence quenching and stopped-flow fluorimetry show that the ester bond-containing tea polyphenols (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) are potent and specific inhibitors of DHFR with inhibition constants (K(I)) of 120 and 82 nM, respectively. Both tea compounds showed the characteristics of slow-binding inhibitors of bovine liver DHFR. In this work, we have determined a complete kinetic scheme to explain the slow-binding inhibition and the pH effects observed during the inhibition of bovine liver DHFR by these tea polyphenols. Experimental data, based on fluorimetric titrations, and transient phase and steady-state kinetic studies confirm that EGCG and ECG are competitive inhibitors with respect to 7,8-dihydrofolate, which bind preferentially to the free form of the enzyme. The origin of their slow-binding inhibition is proposed to be the formation of a slow dissociation ternary complex by the reaction of NADPH with the enzyme-inhibitor complex. The pH controls both the ionization of critical catalytic residues of the enzyme and the protonation state of the inhibitors. At acidic pH, EGCG and ECG are mainly present as protonated species, whereas near neutrality, they evolve toward deprotonated species due to ionization of the ester-bonded gallate moiety (pK = 7.8). Although DHFR exhibits different affinities for the protonated and deprotonated forms of EGCG and ECG, it appears that the ionization state of Glu-30 in DHFR is critical for its inhibition. The physiological implications of these pH dependencies are also discussed. PMID:15895994

  2. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    PubMed

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  3. Unique animal prenyltransferase with monoterpene synthase activity

    NASA Astrophysics Data System (ADS)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  4. Nitric oxide synthases in pregnant rat uterus.

    PubMed

    Farina, M; Ribeiro, M L; Franchi, A

    2001-03-01

    The conversion of [14C]arginine into [14C]citrulline as an indicator of nitric oxide synthesis was studied in uteri isolated from rats on different days of gestation, after labour and during dioestrus. Nitric oxide synthesis was present in uterine tissues isolated at each stage of gestation and also in tissues collected during dioestrus and after labour. Expression of neuronal nitric oxide synthase was not detectable at any of the stages studied. Endothelial nitric oxide synthase was present at all the stages studied, but there was a significant increase on day 13 of gestation and a decrease thereafter, with the lowest expression recorded on the day after labour. Inducible nitric oxide synthase expression in rat uteri increased substantially during pregnancy, with the highest expression on day 13 of gestation; expression decreased at term and after labour. The changes in expression of inducible nitric oxide synthase were coincident with the changes in nitric oxide synthase activity in uteri treated with aminoguanidine. Thus, these findings indicate that an increase in expression of inducible nitric oxide synthase in the uterus may be important for maintenance of uterine quiescence during pregnancy and its decrease near the time of labour could have an effect on the start of uterine contractility. PMID:11226066

  5. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  6. Dihydrodipicolinate synthase from Thermotoga maritima.

    PubMed

    Pearce, F Grant; Perugini, Matthew A; McKerchar, Hannah J; Gerrard, Juliet A

    2006-12-01

    DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike the Escherichia coli enzyme. The active site is very similar to that of the E. coli enzyme, and at mesophilic temperatures the two enzymes have similar kinetic constants. Like other forms of the enzyme, T. maritima DHDPS is a tetramer in solution, with a sedimentation coefficient of 7.2 S and molar mass of 133 kDa. However, the residues involved in the interface between different subunits in the tetramer differ from those of E. coli and include two cysteine residues poised to form a disulfide bond. Thus the increased heat and chemical stability of the T. maritima DHDPS enzyme is, at least in part, explained by an increased number of inter-subunit contacts. Unlike the plant or E. coli enzyme, the thermophilic DHDPS enzyme is not inhibited by (S)-lysine, suggesting that feedback control of the lysine biosynthetic pathway evolved later in the bacterial lineage. PMID:16872276

  7. Identification of avian wax synthases

    PubMed Central

    2012-01-01

    Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities. PMID:22305293

  8. Energy transduction in ATP synthase

    NASA Astrophysics Data System (ADS)

    Elston, Timothy; Wang, Hongyun; Oster, George

    1998-01-01

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning Fo portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through Fo is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil γ-subunit. This acts as a rotating `cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this protonmotive force biases the rotor's diffusion so that Fo constitutes a rotary motor turning the γ shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility - supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump - can also be explained by our model.

  9. Critical aspartic acid residues in pseudouridine synthases.

    PubMed

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  10. Terpene synthases are widely distributed in bacteria

    PubMed Central

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  11. Properties of phosphorylated thymidylate synthase.

    PubMed

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent.

  12. Nuclear genetic defects of mitochondrial ATP synthase.

    PubMed

    Hejzlarová, K; Mráček, T; Vrbacký, M; Kaplanová, V; Karbanová, V; Nůsková, H; Pecina, P; Houštěk, J

    2014-01-01

    Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting as early-onset mitochondrial encephalo-cardiomyopathies. Up to now, mutations in four nuclear genes were associated with isolated deficiency of ATP synthase. Two of them, ATP5A1 and ATP5E encode enzyme's structural subunits alpha and epsilon, respectively, while the other two ATPAF2 and TMEM70 encode specific ancillary factors that facilitate the biogenesis of ATP synthase. All these defects share a similar biochemical phenotype with pronounced decrease in the content of fully assembled and functional ATP synthase complex. However, substantial differences can be found in their frequency, molecular mechanism of pathogenesis, clinical manifestation as well as the course of the disease progression. While for TMEM70 the number of reported patients as well as spectrum of the mutations is steadily increasing, mutations in ATP5A1, ATP5E and ATPAF2 genes are very rare. Apparently, TMEM70 gene is highly prone to mutagenesis and this type of a rare mitochondrial disease has a rather frequent incidence. Here we present overview of individual reported cases of nuclear mutations in ATP synthase and discuss, how their analysis can improve our understanding of the enzyme biogenesis.

  13. An investigation into eukaryotic pseudouridine synthases.

    PubMed

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  14. Exploring biosynthetic diversity with trichodiene synthase.

    PubMed

    Vedula, L Sangeetha; Zhao, Yuxin; Coates, Robert M; Koyama, Tanetoshi; Cane, David E; Christianson, David W

    2007-10-15

    Trichodiene synthase is a terpenoid cyclase that catalyzes the cyclization of farnesyl diphosphate (FPP) to form the bicyclic sesquiterpene hydrocarbon trichodiene (89%), at least five sesquiterpene side products (11%), and inorganic pyrophosphate (PP(i)). Incubation of trichodiene synthase with 2-fluorofarnesyl diphosphate or 4-methylfarnesyl diphosphate similarly yields sesquiterpene mixtures despite the electronic effects or steric bulk introduced by substrate derivatization. The versatility of the enzyme is also demonstrated in the 2.85A resolution X-ray crystal structure of the complex with Mg(2+) (3)-PP(i) and the benzyl triethylammonium cation, which is a bulkier mimic of the bisabolyl carbocation intermediate in catalysis. Taken together, these findings show that the active site of trichodiene synthase is sufficiently flexible to accommodate bulkier and electronically-diverse substrates and intermediates, which could indicate additional potential for the biosynthetic utility of this terpenoid cyclase. PMID:17678871

  15. Cellulose Synthase Complexes: Composition and Regulation

    PubMed Central

    Lei, Lei; Li, Shundai; Gu, Ying

    2012-01-01

    Live cell imaging has greatly advanced our knowledge on the molecular mechanism by which cellulose is deposited. Both the actin and microtubule cytoskeleton are involved in assuring the proper distribution, organization, and dynamics of cellulose synthase complexes (CSCs). This review is an update on the most recent progress on the characterization of the composition, regulation, and trafficking of CSCs. With the newly identified cellulose synthase interactive protein 1 (CSI1) on hand, we begin to unveil the mystery of an intimate relationship between cellulose microfibrils and microtubules. PMID:22639663

  16. Homology study of two polyhydroxyalkanoate (PHA) synthases from Pseudomonas aureofaciens.

    PubMed

    Umeda, F; Nishikawa, T; Miyasaka, H; Maeda, I; Kawase, M; Yagi, K

    2001-11-01

    Recently, we have cloned and analyzed two polyhydroxyalkanoate (PHA) synthase genes (phaC1 and phaC2 in the pha cluster) from Pseudomonas aureofaciens. In this report, the deduced amino acid (AA) sequences of PHA synthase 1 and PHA synthase 2 from P. aureofaciens are compared with those from three other bacterial strains (Pseudomonas sp. 61-3, P. oleovorans and P. aeruginosa) containing the homologous pha cluster. The level of homology of either PHA synthase 1 or PHA synthase 2 was high with each enzyme from these three bacterial strains. Furthermore, multialignment of PHA synthase AA sequences implied that both enzymes of PHA synthase 1 and PHA synthase 2 were highly conserved in the four strains including P. aureofaciens. PMID:11916262

  17. The promoter of the Chinese hamster ovary dihydrofolate reductase gene regulates the activity of the local origin and helps define its boundaries.

    PubMed

    Saha, Swati; Shan, Yujie; Mesner, Larry D; Hamlin, Joyce L

    2004-02-15

    The dihydrofolate reductase (DHFR) and 2BE2121 genes in the Chinese hamster are convergently transcribed in late G1 and ea ly S phase, and bracket an early-firing origin of replication that consists of a 55-kb zone of potential initiation sites. To test whether transcription through the DHFR gene is required to activate this origin in early S phase, we examined the two-dimension (2D) gel patterns of replication intermediates from several variants in which parts or all of the DHFR promote had been deleted. In those variants in which transcription was undetectable, initiation in the intergenic space was markedly suppressed (but not eliminated) in early S phase. Further more, replication of the locus required virtually the entire S period, as opposed to the usual 3-4 h. However, restoration of transcription with either the wild-type Chinese hamster promote or a Drosophila-based construct restored origin activity to the wild-type pattern. Surprisingly, 2D gel analysis of promote less variants revealed that initiation occurs at a low level in ea ly S phase not only in the intergenic region, but also in the body of the DHFR gene. The latter phenomenon has never been observed in the wild-type locus. These studies suggest that transcription through the gene normally increases the efficiency of origin firing in early S phase, but also suppresses initiation in the body of the gene, thus helping to define the boundaries of the downstream origin. PMID:14977920

  18. Towards understanding the origins of the different specificities of binding the reduced (NADPH) and oxidised (NADP +) forms of nicotinamide adenine dinucleotide phosphate coenzyme to dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Polshakov, Vladimir I.; Biekofsky, Rodolfo R.; Birdsall, Berry; Feeney, James

    2002-01-01

    Lactobacillus casei dihydrofolate reductase (DHFR) binds more than a thousand times tighter to NADPH than to NADP +. The origins of the difference in binding affinity to DHFR between NADPH and NADP + are investigated in the present study using experimental NMR data and hybrid density functional, B3LYP, calculations. Certain protein residues (Ala 6, Gln 7, Ile 13 and Gly 14) that are directly involved in hydrogen bonding with the nicotinamide carboxamide group show consistent differences in 1H and 15N chemical shift between NADPH and NADP + in a variety of ternary complexes. B3LYP calculations in model systems of protein-coenzyme interactions show differences in the H-bond geometry and differences in charge distribution between the oxidised and reduced forms of the nicotinamide ring. GIAO isotropic nuclear shieldings calculated for nuclei in these systems reproduce the experimentally observed trends in magnitudes and signs of the chemical shifts. The experimentally observed reduction in binding of NADP + compared with NADPH results partly from NADP + having to change its nicotinamide amide group from a cis- to a trans-conformation on binding and partly from the oxidised nicotinamide ring of NADP + being unable to take up its optimal hydrogen bonding geometry in its interactions with protein residues.

  19. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii.

    PubMed

    Sato, Tsutomu; Yamaga, Hiroaki; Kashima, Shoji; Murata, Yusuke; Shinada, Tetsuro; Nakano, Chiaki; Hoshino, Tsutomu

    2013-05-10

    Basic enzyme: The tetraprenyl-β-curcumene synthase homologue from the alkalophilic Bacillus clausii catalyses conversions of a geranylfarnesyl diphosphate and a hexaprenyl diphosphate into novel head-to-tail acyclic sesterterpene and triterpene. Tetraprenyl-β-curcumene synthase homologues represent a new family of terpene synthases that form not only sesquarterpene but also sesterterpene and triterpene. PMID:23554321

  20. Lessons from 455 Fusarium polyketide synthases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  1. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  2. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  3. Re-Citrate Synthase from Clostridium kluyveri Is Phylogenetically Related to Homocitrate Synthase and Isopropylmalate Synthase Rather Than to Si-Citrate Synthase† ▿

    PubMed Central

    Li, Fuli; Hagemeier, Christoph H.; Seedorf, Henning; Gottschalk, Gerhard; Thauer, Rudolf K.

    2007-01-01

    The synthesis of citrate from acetyl-coenzyme A and oxaloacetate is catalyzed in most organisms by a Si-citrate synthase, which is Si-face stereospecific with respect to C-2 of oxaloacetate. However, in Clostridium kluyveri and some other strictly anaerobic bacteria, the reaction is catalyzed by a Re-citrate synthase, whose primary structure has remained elusive. We report here that Re-citrate synthase from C. kluyveri is the product of a gene predicted to encode isopropylmalate synthase. C. kluyveri is also shown to contain a gene for Si-citrate synthase, which explains why cell extracts of the organism always exhibit some Si-citrate synthase activity. PMID:17400742

  4. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  5. 2,4-Diamino-5-(2′-arylpropargyl)pyrimidine derivatives as new nonclassical antifolates for human dihydrofolate reductase inhibition

    PubMed Central

    Algul, Oztekin; Paulsen, Janet L.; Anderson, Amy C.

    2010-01-01

    Dihydrofolate reductase (DHFR) has been a well-recognized target for the development of therapeutics for human cancers for several decades. Classical inhibitors of DHFR use an active transport mechanism to gain access to the cell; disabling this mechanism creates a pathway for resistance. In response, recent research focuses on nonclassical lipid-soluble DHFR inhibitors that are designed to passively diffuse through the membrane. Here, a new series of propargyl-linked antifolates are investigated as potential nonclassical human DHFR inhibitors. Several of these compounds exhibit potent enzyme inhibition with 50% inhibition concentration values under 500 nM. Molecular docking investigations show that the compounds maintain conserved hydrogen bonds between the pyrimidine ring and the enzyme as well as form van der Waals interactions with critical residues in the active site. Interestingly, the most potent compound, 2,4-diamino-5-(3-(3,4,5-trimethoxyphenyl)prop-1-ynyl)-6-ethylpyrimidine (compound 35), is 3,500-fold more potent than trimethoprim, a potent inhibitor of bacterial DHFR but weak inhibitor of human DHFR. The two structural differences between compound 35 and trimethoprim show that the propargyl linkage and the substitution at C6 of the pyrimidine ring are critical to the formation of contacts with Thr 56, Ser 59, Ile 60, Leu 22, Phe 31 and Phe 34 and hence, to enhancing potency. The propargyl-linked antifolates are efficient ligands with a high ratio of potency to the number of non-hydrogen atoms and represent a potentially fruitful avenue for future development of antineoplastic agents. PMID:21146434

  6. Nuclear magnetic resonance study of interaction of ligands with Streptococcus faecium dihydrofolate reductase labeled with (. gamma. -/sup 13/C)tryptophan

    SciTech Connect

    London, R.E.; Groff, J.P.; Cocco, L.; Blakley, R.L.

    1982-01-01

    Dihydrofolate reductase from Streptococcus faecium has been labeled with (..gamma..-/sup 13/C)tryptophan. We have determined changes occurring in the chemical shifts and line widths of the four resonances of the /sup 13/C NMR spectrum of the labeled enzyme, due to its interaction with various ligands. These include the coenzyme, NPDPH and related nucleotides, folate and its polyglutamate derivatives, and many inhibitors including methotrexate and trimethoprim. In addition, paramagnetic relaxation effects produced by a bound spin-labeled analogue of 2'-phosphoadenosine-5'-diphosphoribose on the tryptophan C/sup ..gamma../ carbons have been measured. Distances calculated from the relaxation data have been compared with corresponding distances in the crystallographic model of the NADPH-methotrexate ternary complex of Lactobacillus casei reductase. The paramagnetic relaxation data indicate that the two downfield resonances (1 and 2) correspond to tryptophans (W/sub A/ and W/sub B/) that are more remote from the catalytic site, and from the crystallographic model these are seen to be Trp-115 and Trp-160. The upfield resonances (3 and 4) that show broadening due to chemical exchange correspond to closer residues (W/sub C/ and W/sub D/), and these are identified with Trp-6 and Trp-22. However, the relaxation data do not permit specific assignments within the nearer and farther pairs. Although resonance 3, which is split due to chemical exchange, was formerly assigned to Trp-6, data obtained for the enzyme in the presence of various ligands are better interpreted if resonance 3 is assigned to Trp-22, which is located on a loop that joins elements of secondary structure and forms one side of the ligand-binding cavity.

  7. X-ray structure of the ternary MTX·NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design

    SciTech Connect

    Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz; Langan, Paul; Dealwis, Chris G.

    2009-11-18

    For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of B. anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90 deg. and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3{angstrom} resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low {mu}M concentrations. The apparent K{sub d} for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 {mu}M.

  8. The 19-bp deletion polymorphism of dihydrofolate reductase (DHFR) and nonsyndromic cleft lip with or without cleft palate: evidence for a protective role

    PubMed Central

    RAFIGHDOOST, Firoozeh; RAFIGHDOOST, Amir; RAFIGHDOOST, Houshang; RIGI-LADEZ, Mohammad-Ayoob; HASHEMI, Mohammad; ESKANDARI-NASAB, Ebrahim

    2015-01-01

    Objective Nonsyndromic cleft lip with or without cleft palate (NS-CL/P) are among the most common congenital birth defects worldwide. Several lines of evidence point to the involvement of folate, as well as folate metabolizing enzymes in risk reduction of orofacial clefts. Dihydrofolate reductase (DHFR) enzyme participates in the metabolic cycle of folate and has a crucial role in DNA synthesis, a fundamental feature of gestation and development. A functional polymorphic 19-bp deletion within intron-1 of DHFR has been associated with the risk of common congenital malformations. The present study aimed to evaluate the possible association between DHFR 19-bp deletion polymorphism and susceptibility to NS-CL/P in an Iranian population. Material and Methods The current study recruited 100 NS-CL/P patients and 100 healthy controls. DHFR 19-bp deletion was determined using an allele specific-PCR method. Results We observed the DHFR 19-bp homozygous deletion genotype (D/D) vs. homozygous wild genotype (WW) was more frequent in controls than in NS-CL/P patients (25% vs. 13%), being associated with a reduced risk of NS-CL/P in both codominant (OR=0.33, P=0.027) and recessive (OR=0.45, P=0.046) tested inheritance models. We also stratified the cleft patients and reanalyzed the data. The association trend for CL+CL/P group compared to the controls revealed that the DD genotype in both codominant (OR=0.30, P=0.032) and recessive models (OR=0.35, P=0.031) was associated with a reduced risk of CL+CL/P. Conclusions Our results for the first time suggested the DHFR 19-bp D/D genotype may confer a reduced risk of NS-CL/P and might act as a protective factor against NS-CL/P in the Iranian subjects. PMID:26221921

  9. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    SciTech Connect

    Frey, K.; Liu, J; Lombardo, M; Bolstad, D; Wright, D; Anderson, A

    2009-01-01

    Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.

  10. A 19-base pair deletion polymorphism in dihydrofolate reductase is associated with increased unmetabolized folic acid in plasma and decreased red blood cell folate.

    PubMed

    Kalmbach, Renee D; Choumenkovitch, Silvina F; Troen, Aron P; Jacques, Paul F; D'Agostino, Ralph; Selhub, Jacob

    2008-12-01

    Dihydrofolate reductase (DHFR) catalyzes the reduction of folic acid to tetrahydrofolate (THF). A 19-bp noncoding deletion allele maps to intron 1, beginning 60 bases from the splice donor site, and has been implicated in neural tube defects and cancer, presumably by influencing folate metabolism. The functional impact of this polymorphism has not yet been demonstrated. The objective of this research was to determine the effects of the DHFR mutation with respect to folate status and assess influence of folic acid intake on these relations. The relationship between DHFR genotype and plasma concentrations of circulating folic acid, total folate, total homocysteine, and concentrations of RBC folate was determined in 1215 subjects from the Framingham Offspring Study. There was a significant interaction between DHFR genotype and folic acid intake with respect to the prevalence of high circulating unmetabolized folic acid (defined as >85th percentile). Folic acid intake of >or=500 microg/d increased the prevalence of high circulating unmetabolized folic acid in subjects with the deletion (del/del genotype (47.0%) compared with the wild type (WT)/del (21.4%) and wild type (WT)/WT genotypes (24.4%) (P for interaction = 0.03). Interaction between the DHFR polymorphism and folic acid intake was also seen with respect to RBC folate (P for interaction = 0.01). When folic acid intake was <250 microg/d, the del/del genotype was associated with significantly lower RBC folate (732.3 nmol/L) compared with the WT/WT genotype (844.4 nmol/L). Our results suggest the del/del polymorphism in DHFR is a functional polymorphism, because it limits assimilation of folic acid into cellular folate stores at high and low folic acid intakes.

  11. Crystal structure determination at 2.3 A of recombinant human dihydrofolate reductase ternary complex with NADPH and methotrexate-gamma-tetrazole.

    PubMed

    Cody, V; Luft, J R; Ciszak, E; Kalman, T I; Freisheim, J H

    1992-12-01

    The crystal structure of the methotrexate-gamma-tetrazole (MTXT)-NADPH ternary complex with recombinant human dihydrofolate reductase (DHFR) has been determined and refined to R = 15.9% for 7003 data from 10.0 to 2.3 A resolution for the R3 lattice. Interpretation of difference Fourier electron density maps revealed that the cofactor NADPH is bound in an extended conformation, and the closest contact between cofactor and inhibitor is 3.1 A, between N(5) of the MTXT pteridine ring and the nicotinamide C(4) which transfers a hydride during the enzyme-catalyzed reaction. As in other DHFR complexes, MTXT is interpreted as protonated at N(1) by Glu-30, and the 2-amino group is hydrogen bonded to a structurally conserved water which also interacts with Glu-30 and Thr-136. The 4-amino group of MTXT hydrogen bonds to the carbonyl of Ile-7 and the phenolic hydroxyl of Tyr-121, and the alpha-carboxylate forms a salt bridge with the conserved Arg-70. In this structure, the amide carbonyl forms two hydrogen bonds with Asn-64 and a water molecule, whereas the gamma-tetrazole ring does not interact directly with the enzyme. The largest changes in the secondary structure on formation of the ternary complex involve the fold of a flexible loop near residues 40-46, and to a lesser extent the helical region near residues 102-109 and the beta-sheet regions near residues 71-75 and 157-159.

  12. The Solution Structure of Bacillus anthracis Dihydrofolate Reductase Yields Insight into the Analysis of Structure–Activity Relationships for Novel Inhibitors†,‡

    PubMed Central

    Beierlein, Jennifer M.; Deshmukh, Lalit; Frey, Kathleen M.; Vinogradova, Olga; Anderson, Amy C.

    2010-01-01

    There is a significant need for new therapeutics to treat infections caused by the biodefense agent Bacillus anthracis. In pursuit of drug discovery against this organism, we have developed novel propargyl-linked inhibitors that target the essential enzyme dihydrofolate reductase (DHFR) from B. anthracis. Previously, we reported an initial series of these inhibitors and a high-resolution crystal structure of the ternary complex of the enzyme bound to its cofactor and one of the most potent inhibitors, UCP120B [Beierlein, J., Frey, K., Bolstad, D., Pelphrey, P., Joska, T., Smith, A., Priestley, N., Wright, D., and Anderson, A. (2008) J. Med. Chem. 51, 7532–7540]. Herein, we describe a three-dimensional solution structure of the ternary complex as determined by NMR. A comparison of this solution structure to the crystal structure reveals a general conservation of the DHFR fold and cofactor interactions as well as differences in the location of an active site helix and specific ligand interactions. In addition to data for the fully assigned ternary complex, data for the binary (enzyme–cofactor) complex were collected, providing chemical shift comparisons and revealing perturbations in residues that accommodate ligand binding. Dynamics of the protein, measured using 15N T1 and T2 relaxation times and {1H}–15N heteronuclear NOEs, reveal residue flexibility at the active site that explains enzyme inhibition and structure–activity relationships for two different series of these propargyl-linked inhibitors. The information obtained from the solution structure regarding active site flexibility will be especially valuable in the design of inhibitors with increased potency. PMID:19323450

  13. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    PubMed Central

    Frey, Kathleen M.; Liu, Jieying; Lombardo, Michael N.; Bolstad, David B.; Wright, Dennis L.; Anderson, Amy C.

    2009-01-01

    SUMMARY Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance. PMID:19249312

  14. Benzophenone synthase from Garcinia mangostana L. pericarps.

    PubMed

    Nualkaew, Natsajee; Morita, Hiroyuki; Shimokawa, Yoshihiko; Kinjo, Keishi; Kushiro, Tetsuo; De-Eknamkul, Wanchai; Ebizuka, Yutaka; Abe, Ikuro

    2012-05-01

    The cDNA of a benzophenone synthase (BPS), a type III polyketide synthase (PKS), was cloned and the recombinant protein expressed from the fruit pericarps of Garcinia mangostana L., which contains mainly prenylated xanthones. The obtained GmBPS showed an amino acid sequence identity of 77-78% with other plant BPSs belonging to the same family (Clusiaceae). The recombinant enzyme produced 2,4,6-trihydroxybenzophenone as the predominant product with benzoyl CoA as substrate. It also accepted other substrates, such as other plant PKSs, and used 1-3 molecules of malonyl CoA to form various phloroglucinol-type and polyketide lactone-type compounds. Thus, providing GmBPS with various substrates in vivo might redirect the xanthone biosynthetic pathway.

  15. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    PubMed

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  16. Building-block selectivity of polyketide synthases.

    PubMed

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  17. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    PubMed

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  18. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  19. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity[S

    PubMed Central

    Ding, Tingbo; Kabir, Inamul; Li, Yue; Lou, Caixia; Yazdanyar, Amirfarbod; Xu, Jiachen; Dong, Jibin; Zhou, Hongwen; Park, Taesik; Boutjdir, Mohamed; Li, Zhiqiang; Jiang, Xian-Cheng

    2015-01-01

    Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide as well as other sphingolipid levels. Because SMS2 also has CPE synthase activity, we prepared Smsr/Sms2 double KO mice. We found that CPE levels were not significantly changed in macrophages, suggesting that CPE levels are not exclusively dependent on SMSr and SMS2 activities. We then measured CPE levels in Sms1 KO mice and found that Sms1 deficiency also reduced plasma CPE levels. Importantly, we found that expression of Sms1 or Sms2 in SF9 insect cells significantly increased not only SM but also CPE formation, indicating that SMS1 also has CPE synthase activity. Moreover, we measured CPE synthase Km and Vmax for SMS1, SMS2, and SMSr using different NBD ceramides. Our study reveals that all mouse SMS family members (SMSr, SMS1, and SMS2) have CPE synthase activity. However, neither CPE nor SMSr appears to be a critical regulator of ceramide levels in vivo. PMID:25605874

  20. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  1. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  2. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  3. Regulation of mitochondrial ATP synthase in cardiac pathophysiology.

    PubMed

    Long, Qinqiang; Yang, Kevin; Yang, Qinglin

    2015-01-01

    Mitochondrial function is paramount to energy homeostasis, metabolism, signaling, and apoptosis in cells. Mitochondrial complex V (ATP synthase), a molecular motor, is the ultimate ATP generator and a key determinant of mitochondrial function. ATP synthase catalyzes the final coupling step of oxidative phosphorylation to supply energy in the form of ATP. Alterations at this step will crucially impact mitochondrial respiration and hence cardiac performance. It is well established that cardiac contractility is strongly dependent on the mitochondria, and that myocardial ATP depletion is a key feature of heart failure. ATP synthase dysfunction can cause and exacerbate human diseases, such as cardiomyopathy and heart failure. While ATP synthase has been extensively studied, essential questions related to how the regulation of ATP synthase determines energy metabolism in the heart linger and therapies targeting this important mechanism remain scarce. This review will visit the main findings, identify unsolved issues and provide insights into potential future perspectives related to the regulation of ATP synthase and cardiac pathophysiology.

  4. Surrogate splicing for functional analysis of sesquiterpene synthase genes.

    PubMed

    Wu, Shuiqin; Schoenbeck, Mark A; Greenhagen, Bryan T; Takahashi, Shunji; Lee, Sungbeom; Coates, Robert M; Chappell, Joseph

    2005-07-01

    A method for the recovery of full-length cDNAs from predicted terpene synthase genes containing introns is described. The approach utilizes Agrobacterium-mediated transient expression coupled with a reverse transcription-polydeoxyribonucleotide chain reaction assay to facilitate expression cloning of processed transcripts. Subsequent expression of intronless cDNAs in a suitable prokaryotic host provides for direct functional testing of the encoded gene product. The method was optimized by examining the expression of an intron-containing beta-glucuronidase gene agroinfiltrated into petunia (Petunia hybrida) leaves, and its utility was demonstrated by defining the function of two previously uncharacterized terpene synthases. A tobacco (Nicotiana tabacum) terpene synthase-like gene containing six predicted introns was characterized as having 5-epi-aristolochene synthase activity, while an Arabidopsis (Arabidopsis thaliana) gene previously annotated as a terpene synthase was shown to possess a novel sesquiterpene synthase activity for alpha-barbatene, thujopsene, and beta-chamigrene biosynthesis. PMID:15965019

  5. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  6. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries.

    PubMed

    Lücker, Joost; Bowen, Pat; Bohlmann, Jörg

    2004-10-01

    Valencene is a volatile sesquiterpene emitted from flowers of grapevine, Vitis vinifera L. A full-length cDNA from the cultivar Gewürztraminer was functionally expressed in Escherichia coli and found to encode valencene synthase (VvVal). The two major products formed by recombinant VvVal enzyme activity with farnesyl diphosphate (FPP) as substrate are (+)-valencene and (-)-7-epi-alpha-selinene. Grapevine valencene synthase is closely related to a second sesquiterpene synthase from this species, (-)-germacrene D synthase (VvGerD). VvVal and VvGerD cDNA probes revealed strong signals in Northern hybridizations with RNA isolated from grapevine flower buds. Transcript levels were lower in open pre-anthesis flowers, flowers after anthesis, or at early onset of fruit development. Similar results were obtained using a third probe, (-)-alpha-terpineol synthase, a monoterpenol synthase. Sesquiterpene synthase and monoterpene synthase transcripts were not detected in the mesocarp and exocarp during early stages of fruit development, but transcripts hybridizing with VvVal appeared during late ripening of the berries. Sesquiterpene synthase transcripts were also detected in young seeds. PMID:15464152

  7. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  8. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  9. Analysis of three crystal structure determinations of a 5-methyl-6-N-methylanilino pyridopyrimidine antifolate complex with human dihydrofolate reductase.

    PubMed

    Cody, Vivian; Luft, Joseph R; Pangborn, Walter; Gangjee, Aleem

    2003-09-01

    Structural data are reported for the first example of the potent antifolate inhibitor 2,4-diamino-5-methyl-6-[(3',4',5'-trimethoxy-N-methylanilino)methyl]pyrido[2,3-d]pyrimidine (1) in complex with human dihydrofolate reductase (hDHFR) and NADPH. Small differences in crystallization conditions resulted in the growth of two different forms of a binary complex. The structure determination of an additional crystal of a ternary complex of hDHFR with NADPH and (1) grown under similar conditions is also reported. Diffraction data were collected to 2.1 A resolution for an R3 lattice from a hDHFR ternary complex with NADPH and (1) and to 2.2 A resolution from a binary complex. Data were also collected to 2.1 A resolution from a binary complex with hDHFR and (1) in the first example of a tetragonal P4(3)2(1)2 lattice. Comparison of the intermolecular contacts among these structures reveals differences in the backbone conformation (1.9-3.2 A) for flexible loop regions (residues 40-46, 77-83 and 103-107) that reflect differences in the packing environment between the rhombohedral and tetragonal space groups. Analysis of the packing environments shows that the tetragonal lattice is more tightly packed, as reflected in its smaller V(M) value and lower solvent content. The conformation of the inhibitor (1) is similar in all structures and is also similar to that observed for TMQ, the parent quinazoline compound. The activity profile for this series of 5-deaza N-substituted non-classical trimethoxybenzyl antifolates shows that the N10-CH(3) substituted (1) has the greatest potency and selectivity for Toxoplasma gondii DHFR (tgDHFR) compared with its N-H or N-CHO analogs. Models of the tgDHFR active site indicate preferential contacts with (1) that are not present in either the human or Pneumocystis carinii DHFR structures. Differences in the acidic residue (Glu30 versus Asp for tgDHFR) affect the precise positioning of the diaminopyridopyrimidine ring, while changes in other

  10. Kinetic and Structural Analysis for Potent Antifolate Inhibition of Pneumocystis jirovecii, Pneumocystis carinii, and Human Dihydrofolate Reductases and Their Active-Site Variants

    PubMed Central

    Cody, Vivian; Pace, Jim; Adair, Ona O.; Gangjee, Aleem

    2013-01-01

    A major concern of immunocompromised patients, in particular those with AIDS, is susceptibility to infection caused by opportunistic pathogens such as Pneumocystis jirovecii, which is a leading cause of pneumonia in immunocompromised patients. We report the first kinetic and structural data for 2,4-diamino-6-[(2′,5′-dichloro anilino)methyl]pyrido[2,3-d]pyrimidine (OAAG324), a potent inhibitor of dihydrofolate reductase (DHFR) from P. jirovecii (pjDHFR), and also for trimethoprim (TMP) and methotrexate (MTX) with pjDHFR, Pneumocystis carinii DHFR (pcDHFR), and human DHFR (hDHFR). OAAG324 shows a 9.0-fold selectivity for pjDHFR (Ki, 2.7 nM) compared to its selectivity for hDHFR (Ki, 24.4 nM), whereas there is only a 2.3-fold selectivity for pcDHFR (Ki, 6.3 nM). In order to understand the determinants of inhibitory potency, active-site mutations of pj-, pc-, and hDHFR were explored to make these enzymes more like each other. The most unexpected observations were that the variant pcDHFR forms with K37Q and K37Q/F69N mutations, which made the enzyme more like the human form, also made these enzymes more sensitive to the inhibitory activity of OAAG324, with Ki values of 0.26 and 0.71 nM, respectively. A similar gain in sensitivity was also observed for the hDHFR N64F variant, which showed a lower Ki value (0.58 nM) than native hDHFR, pcDHFR, or pjDHFR. Structural data are reported for complexes of OAAG324 with hDHFR and its Q35K and Q35S/N64F variants and for the complex of the K37S/F69N variant of pcDHFR with TMP. These results provide useful insight into the role of these residues in the optimization of highly selective inhibitors of DHFR against the opportunistic pathogen P. jirovecii. PMID:23545530

  11. Structural comparison of complexes of methotrexate analogues with Lactobacillus casei dihydrofolate reductase by two-dimensional /sup 1/H NMR at 500 MHz

    SciTech Connect

    Hammond, S.J.; Birdsall, B.; Feeney, J.; Searle, M.S.; Roberts, G.C.K.; Cheung, H.T.A.

    1987-12-29

    The authors have used two-dimensional (2D) NMR methods to examine complexes of Lactobacillus casei dihydrofolate reductase and methotrexate (MTX) analogues having structural modifications of the benzoyl ring and also the glutamic acid moiety. Assignments of the /sup 1/H signals in the spectra of the various complexes were made by comparison of their 2D spectra with those complexes containing methotrexate where we have previously assigned resonances from 32 of the 162 amino acid residues. In the complexes formed with the dihalomethotrexate analogues, the glutamic acid and pteridine ring moieties were shown to bind to the enzyme in a manner similar to that found in the methotrexate-enzyme complex. Perturbations in /sup 1/H chemical shifts of protons in Phe-49, Leu-54, and Leu-27 and the methotrexate H7 and NMe protons were observed in the different complexes and were accounted for by changes in orientation of the benzoyl ring in the various complexes. Binding of oxidized or reduced coenzyme to the binary complexes did not result in different shifts for Leu-27, Leu-54, or Leu-19 protons, and thus, the orientation of the benzoyl ring of the methotrexate analogues is not perturbed greatly by the presence of either oxidized or reduced coenzyme. In the complex with the ..gamma..-monoamide analog, the /sup 1/H signals of assigned residues in the protein had almost identical shifts with the corresponding protons in the methotrexate-enzyme complex for all residues except His-28 and, to a lesser extent, Leu-27. This indicates that while the His-28 interaction with the MTX ..gamma..-CO/sub 2//sup -/ is no longer present in this complex with the ..gamma..-amide, there has not been a major change in the overall structure of the two complexes. This behavior contrasts to that of the ..cap alpha..-amide complex where /sup 1/H signals from protons in several amino acid residues are different compared with their values in the complex formed with methotrexate.

  12. Dihydrofolate reductase 19-bp deletion polymorphism modifies the association of folate status with memory in a cross-sectional multi-ethnic study of adults123

    PubMed Central

    Philip, Dana; Buch, Assaf; Moorthy, Denish; Scott, Tammy M; Parnell, Laurence D; Lai, Chao-Qiang; Ordovás, José M; Selhub, Jacob; Rosenberg, Irwin H; Tucker, Katherine L; Troen, Aron M

    2015-01-01

    Background: Folate status has been positively associated with cognitive function in many studies; however, some studies have observed associations of poor cognitive outcomes with high folate. In search of an explanation, we hypothesized that the association of folate with cognition would be modified by the interaction of high-folate status with a common 19-bp deletion polymorphism in the dihydrofolate reductase (DHFR) gene. To our knowledge, the cognitive effects of this gene have not been studied previously. Objective: We examined the association between cognitive outcomes with the 19-bp deletion DHFR polymorphism, folate status, and their interaction with high or normal plasma folate. Design: This was a pooled cross-sectional study of the following 2 Boston-based cohorts of community living adults: the Boston Puerto Rican Health Study and the Nutrition, Aging, and Memory in Elders study. Individuals were genotyped for the DHFR 19-bp deletion genotype, and plasma folate status was determined. Cognitive outcomes included the Mini-Mental State Examination, Center for Epidemiologic Studies Depression Scale, and factor scores for the domains of memory, executive function, and attention from a set of cognitive tests. Results: The prevalence of the homozygous deletion (del/del) genotype was 23%. In a multivariable analysis, high folate status (>17.8 ng/mL) was associated with better memory scores than was normal-folate status (fourth–fifth quintiles compared with first–third quintiles: β ± SE = −0.22 ± 0.06, P < 0.01). Carriers of the DHFR del/del genotype had worse memory scores (β ± SE = −0.24 ± 0.10, P < 0.05) and worse executive scores (β = −0.19, P < 0.05) than did those with the del/ins and ins/ins genotypes. Finally, we observed an interaction such that carriers of the del/del genotype with high folate had significantly worse memory scores than those of both noncarriers with high-folate and del/del carriers with normal-folate (β-interaction = 0

  13. Enhanced expression of dihydrofolate reductase by bovine kidney epithelial cells results in altered cell morphology, IGF-I responsiveness, and IGF binding protein-3 expression.

    PubMed

    Cohick, W S; Clemmons, D R

    1994-10-01

    The kidney epithelial cell line (MDBK) secretes primarily insulin-like growth factor binding protein (IGFBP)-2 under basal conditions, but exposure to forskolin decreases the synthesis of and induces IGFBP-3. Since IGFBP-3 has been shown to both potentiate and inhibit insulin-like growth factor (IGF) bioactivity, MDBK cells were transfected with an expression vector containing bovine IGFBP-3 cDNA and the dihydrofolate reductase (DHFR) gene as a selectable marker, with the goal of obtaining an epithelial cell line which constitutively secreted IGFBP-3. Stable clones which secreted greater than 100 ng/ml of IGFBP-3 were obtained and designated MDBKpMONBP-3. Northern blotting indicated that endogenous IGFBP-3 mRNA, which was undetectable in wild-type (WT) MDBK cells, was expressed in MDBKpMONBP-3 cells while the IGFBP-3 transgene did not appear to be expressed. DHFR mRNA transcripts were also expressed by MDBKp-MONBP-3 cells, whereas these transcripts were not detected in WT MDBK cells, suggesting that gene amplification of DHFR may have allowed cells to survive in methotrexate (MTX) without taking up the expression vector. In addition to the altered pattern of IGFBP-3 secretion, a marked alteration in cell morphology was observed. MDBKpMONBP-3 cells grew in distinct islands and exhibited dome formation (a characteristic of differentiated epithelial cells) whereas the WT cells did not. The alterations in morphology and IGFBP-3 expression were irreversible, since MDBKpMONBP-3 cells failed to revert to the WT phenotype upon removal of MTX and dialyzed serum. Since vectorial secretion of proteins is often associated with epithelial cell differentiation, cells were plated on tissue culture inserts which allowed conditioned media (CM) to be collected from both the apical and basal surfaces of confluent monolayers. Release of IGFBP-2 was approximately equal from apical and basal surfaces in WT MDBK cells. In contrast, release of both IGFBP-2 and IGFBP-3 was greater (3

  14. Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.

    PubMed

    Oven, Matjaz; Page, Jonathan E; Zenk, Meinhart H; Kutchan, Toni M

    2002-02-15

    The phytochelatin homologs homo-phytochelatins are heavy metal-binding peptides present in many legumes. To study the biosynthesis of these compounds, we have isolated and functionally expressed a cDNA GmhPCS1 encoding homo-phytochelatin synthase from Glycine max, a plant known to accumulate homo-phytochelatins rather than phytochelatins upon the exposure to heavy metals. The catalytic properties of GmhPCS1 were compared with the phytochelatin synthase AtPCS1 from Arabidopsis thaliana. When assayed only in the presence of glutathione, both enzymes catalyzed phytochelatin formation. GmhPCS1 accepted homoglutathione as the sole substrate for the synthesis of homo-phytochelatins whereas AtPCS1 did not. Homo-phytochelatin synthesis activity of both recombinant enzymes was significantly higher when glutathione was included in the reaction mixture. The incorporation of both glutathione and homoglutathione into homo-phytochelatin, n = 2, was demonstrated using GmhPCS1 and AtPCS1. In addition to bis(glutathionato)-metal complexes, various other metal-thiolates were shown to contribute to the activation of phytochelatin synthase. These complexes were not accepted as substrates by the enzyme, thereby suggesting that a recently proposed model of activation cannot fully explain the catalytic mechanism of phytochelatin synthase (Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (2000) J. Biol. Chem. 275, 31451-31459). PMID:11706029

  15. Engineering of chimeric class II polyhydroxyalkanoate synthases.

    PubMed

    Niamsiri, Nuttawee; Delamarre, Soazig C; Kim, Young-Rok; Batt, Carl A

    2004-11-01

    PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB(-)4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic

  16. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  17. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.

  18. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  19. Evolution and function of phytochelatin synthases.

    PubMed

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  20. Activities and regulation of peptidoglycan synthases

    PubMed Central

    Egan, Alexander J. F.; Biboy, Jacob; van't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-01-01

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein–protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein–protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN. PMID:26370943

  1. ATP synthase: a tentative structural model.

    PubMed

    Engelbrecht, S; Junge, W

    1997-09-15

    Adenosine triphosphate (ATP) synthase produces ATP from ADP and inorganic phosphate at the expense of proton- or sodium-motive force across the respective coupling membrane in Archaea, Bacteria and Eucarya. Cation flow through the intrinsic membrane portion of this enzyme (Fo, subunits ab2c9-12) and substrate turnover in the headpiece (F1, subunits alpha3beta3 gammadeltaepsilon) are mechanically coupled by the rotation of subunit gamma in the center of the catalytic hexagon of subunits (alphabeta)3 in F1. ATP synthase is the smallest rotatory engine in nature. With respect to the headpiece alone, it probably operates with three steps. Partial structures of six out of its at least eight different subunits have been published and a 3-dimensional structure is available for the assembly (alphabeta)3gamma. In this article, we review the available structural data and build a tentative topological model of the holoenzyme. The rotor portion is proposed to consist of a wheel of at least nine copies of subunits c, epsilon and a portion of gamma as a spoke, and another portion of gamma as a crankshaft. The stator is made up from a, the transmembrane portion of b2, delta and the catalytic hexagon of (alphabeta)3. As an educated guess, the model may be of heuristic value for ongoing studies on this fascinating electrochemical-to-mechanical-to-chemical transducer. PMID:9323021

  2. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  3. ATP synthases from archaea: the beauty of a molecular motor.

    PubMed

    Grüber, Gerhard; Manimekalai, Malathy Sony Subramanian; Mayer, Florian; Müller, Volker

    2014-06-01

    Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.

  4. [Four cases of aldosterone synthase deficiency in childhood].

    PubMed

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  5. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  6. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases.

    PubMed

    Aaron, Julie A; Christianson, David W

    2010-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure.

  7. Functional Contribution of Chorismate Synthase, Anthranilate Synthase, and Chorismate Mutase to Penetration Resistance in Barley-Powdery Mildew Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase alpha subunit 2 (HvASa2) and chorismate mutase 1 (HvCM1) occupy pivotal branch-points downstream of the s...

  8. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  9. Pseudouridines and pseudouridine synthases of the ribosome.

    PubMed

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  10. Hyaluronan synthases and hyaluronidases in nasal polyps.

    PubMed

    Panogeorgou, T; Tserbini, E; Filou, S; Vynios, D H; Naxakis, S S; Papadas, T A; Goumas, P D; Mastronikolis, N S

    2016-07-01

    Nasal polyps (NPs) are benign lesions of nasal and paranasal sinuses mucosa affecting 1-4 % of all adults. Nasal polyposis affects the quality of patient's life as it causes nasal obstruction, postnasal drainage, purulent nasal discharge, hyposmia or anosmia, chronic sinusitis, facial pain and snoring. Without treatment, the disease can alter the craniofacial skeleton in cases of extended growth of polyps. The development of NPs is caused by the hyperplasia of nasal or paranasal sinuses mucosa, and edema of extracellular matrix. This is usually the result of high concentration of high molecular mass hyaluronan (HA) which is either overproduced or accumulated from blood supply. The size of HA presents high diversity and, especially in pathologic conditions, chains of low molecular mass can be observed. In NPs, chains of about 200 kDa have been identified and considered to be responsible for the inflammation. The purpose of the present study was the investigation, in NPs and normal nasal mucosa (NM), of the expression of the wild-type and alternatively spliced forms of hyaluronidases, their immunolocalization, and the expression of HA synthases to examine the isoform(s) responsible for the increased amounts of HA in NPs. Hyaluronidases' presence was examined on mRNA (RT-PCR analysis) and protein (immunohistochemistry) levels. Hyaluronan synthases' presence was examined on mRNA levels. Hyaluronidases were localized in the cytoplasm of epithelial and inflammatory cells, as well as in the matrix. On mRNA level, it was found that hyal-1-wt was decreased in NPs compared to NM and hyal-1-v3, -v4 and -v5 were substantially increased. Moreover, HAS2 and HAS3 were the only hyaluronan synthases detected, the expression of which was almost similar in NPs and NM. Overall, the results of the present study support that hyaluronidases are the main enzymes responsible for the decreased size of hyaluronan observed in NPs; thus they behave as inflammatory agents. Therefore, they

  11. Structure of Aminodeoxychorismate Synthase from Stenotrophomonas maltophilia†

    PubMed Central

    Bera, Asim K.; Atanasova, Vesna; Dhanda, Anjali; Ladner, Jane E.; Parsons, James F.

    2012-01-01

    PabB, aminodeoxychorismate synthase, is the chorismic acid binding component of the heterodimeric PabAB complex that converts chorismic acid to 4-amino-4-deoxychorismate, a precursor of p-aminobenzoate and folic acid in microorganisms. The second component, a glutamine amidotransferase subunit, PabA, generates ammonia that is channeled to the PabB active site where it attacks the C4 carbon of a chorismate derived intermediate that is covalently bound, through C2, to an active site lysine residue. The presence of a PIKGT motif was, until recently, believed to be discriminate PabB enzymes from the closely related enzyme anthranilate synthase, which typically contains a PIAGT active site motif and does not form a covalent enzyme-substrate intermediate with chorismate. A subclass of PabB enzymes that employ an alternative mechanism requiring two equivalents of ammonia from glutamine and that feature a noncovalently bound 2-amino-2-deoxyisochorismate intermediate was recently identified. Here we report the 2.25 Å crystal structure of PabB from the emerging pathogen Stenotrophomonas maltophilia. It is the first reported structure of a PabB that features the PIAGT motif. Surprisingly, no dedicated pabA is evident in the genome of S. maltophilia suggesting that another cellular amidotransferase is able to fulfill the role of PabA in this organism. Evaluation of the ammonia-dependent aminodeoxychorismate synthase activity of S. maltophilia PabB alone revealed that it is virtually inactive. However, in the presence of a heterologous PabA surrogate, typical levels of activity were observed using either glutamine or ammonia as the nitrogen source. Additionally, the structure suggests that a key segment of the polypeptide can remodel itself to interact with a nonspecialized or shared amidotransferase partner in vivo. The structure and mass spectral analysis further suggest that S. maltophilia PabB, like Escherichia coli PabB, binds tryptophan in a vestigial regulatory site

  12. Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes.

    PubMed

    Plach, Maximilian G; Löffler, Patrick; Merkl, Rainer; Sterner, Reinhard

    2015-09-14

    Chorismate-utilizing enzymes play a vital role in the biosynthesis of metabolites in plants as well as free-living and infectious microorganisms. Among these enzymes are the homologous primary metabolic anthranilate synthase (AS) and secondary metabolic isochorismate synthase (ICS). Both catalyze mechanistically related reactions by using ammonia and water as nucleophiles, respectively. We report that the nucleophile specificity of AS can be extended from ammonia to water by just two amino acid exchanges in a channel leading to the active site. The observed ICS/AS bifunctionality demonstrates that a secondary metabolic enzyme can readily evolve from a primary metabolic enzyme without requiring an initial gene duplication event. In a general sense, these findings add to our understanding how nature has used the structurally predetermined features of enzyme superfamilies to evolve new reactions.

  13. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    PubMed

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  14. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  15. The Rotary Mechanism of the ATP Synthase

    PubMed Central

    Nakamoto, Robert K.; Scanlon, Joanne A. Baylis; Al-Shawi, Marwan K.

    2008-01-01

    The FOF1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous FO sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium. PMID:18515057

  16. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    PubMed

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  17. Prenyltransferases of the dimethylallyltryptophan synthase superfamily.

    PubMed

    Yu, Xia; Li, Shu-Ming

    2012-01-01

    Prenylated natural products often have interesting biological and pharmacological activities clearly distinct from their nonprenylated precursors. Prenyltransferases are responsible for the attachment of prenyl moieties to a number of acceptors and contribute significantly to structural and biological diversity of these compounds in nature. In the past 8 years, significant progress has been achieved in the molecular biological, biochemical, and structural biological investigation of the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. These soluble enzymes are involved in the biosynthesis of fungal secondary metabolites and mainly catalyze prenylation of diverse indole derivatives, including tryptophan and tryptophan-containing cyclic dipeptides. The members of the DMATS superfamily show promising flexibility toward their aromatic substrates and catalyze highly regio- and stereoselective prenyltransfer reactions. These features were successfully used for chemoenzymatic synthesis, not only for production of prenylated simple indoles and cyclic dipeptides but also for prenylated hydroxynaphthalenes and flavonoids, which are usually found in bacteria and plants, respectively.

  18. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    PubMed

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  19. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity

    PubMed Central

    Strittmatter, Laura; Li, Yang; Nakatsuka, Nathan J.; Calvo, Sarah E.; Grabarek, Zenon; Mootha, Vamsi K.

    2014-01-01

    CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown. PMID:24334609

  20. Role of cysteine residues in pseudouridine synthases of different families.

    PubMed

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  1. The Pseudouridine Synthases Proceed through a Glycal Intermediate

    PubMed Central

    2016-01-01

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2′. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases. PMID:27292228

  2. Colorimetric Coupled Enzyme Assay for Cystathionine β-Synthase.

    PubMed

    Rocchiccioli, Marco; Moschini, Roberta; Cappiello, Laura; Balestri, Francesco; Cappiello, Mario; Mura, Umberto; Del-Corso, Antonella

    2016-01-01

    A colorimetric coupled enzyme assay for the determination of cystathionine β-synthase activity is described. The method exploits cystathionine γ-lyase as an ancillary enzyme capable of transforming cystathionine, produced by cystathionine β-synthase, into cysteine. The cysteine is then spectrophotometrically detected at 560 nm, after its specific complexation with ninhydrin. This method was used to detect cystathionine β-synthase in crude extracts, and for the kinetic characterization of the enzyme partially purified from bovine kidney. A rapid two-step protocol is described for the partial purification of cystathionine γ-lyase from bovine kidney, aimed at a suitable and stable ancillary enzyme preparation. PMID:27506718

  3. Computational design and selections for an engineered, thermostable terpene synthase

    PubMed Central

    Diaz, Juan E; Lin, Chun-Shi; Kunishiro, Kazuyoshi; Feld, Birte K; Avrantinis, Sara K; Bronson, Jonathan; Greaves, John; Saven, Jeffery G; Weiss, Gregory A

    2011-01-01

    Terpenoids include structurally diverse antibiotics, flavorings, and fragrances. Engineering terpene synthases for control over the synthesis of such compounds represents a long sought goal. We report computational design, selections, and assays of a thermostable mutant of tobacco 5-epi-aristolochene synthase (TEAS) for the catalysis of carbocation cyclization reactions at elevated temperatures. Selection for thermostability included proteolytic digestion followed by capture of intact proteins. Unlike the wild-type enzyme, the mutant TEAS retains enzymatic activity at 65°C. The thermostable terpene synthase variant denatures above 80°C, approximately twice the temperature of the wild-type enzyme. PMID:21739507

  4. The Pseudouridine Synthases Proceed through a Glycal Intermediate.

    PubMed

    Veerareddygari, Govardhan Reddy; Singh, Sanjay K; Mueller, Eugene G

    2016-06-29

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2'. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases.

  5. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    PubMed

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. PMID:27480686

  6. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    PubMed

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  7. Rare structural variants of human and murine uroporphyrinogen I synthase.

    PubMed Central

    Meisler, M H; Carter, M L

    1980-01-01

    An isoelectric focusing method for detection of structural variants of the enzyme uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8] in mammalian tissues has been developed. Mouse and human erythrocytes contain one or two major isozymes of uroporphyrinogen I synthase, respectively. Other tissues contain a set of more acidic isozymes that are encoded by the same structural gene as the erythrocyte isozymes. Mouse populations studied with this method were monomorphic for uroporphyrinogen I synthase, with the exception of one feral mouse population. The pedigree of a human family with a rare structural variant is consistent with autosomal linkage of the structural gene. This system provides a convenient isozyme marker for genetic studies and will facilitate determination of the chromosomal location of the uroporphyrinogen I synthase locus. Images PMID:6930671

  8. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  9. Regulation of synthase phosphatase and phosphorylase phosphatase in rat liver.

    PubMed

    Tan, A W; Nuttall, F Q

    1976-08-12

    Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.

  10. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  11. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    PubMed Central

    Xu, Ting; Pagadala, Vijayakanth; Mueller, David M.

    2015-01-01

    The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs. PMID:25938092

  12. Linking pseudouridine synthases to growth, development and cell competition.

    PubMed

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  13. Citrate synthase from the liver fluke Fasciola hepatica.

    PubMed

    Zinsser, Veronika L; Moore, Catherine M; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J

    2013-06-01

    Citrate synthase catalyses the first step of the Krebs' tricarboxylic acid cycle. A sequence encoding citrate synthase from the common liver fluke, Fasciola hepatica, has been cloned. The encoded protein sequence is predicted to fold into a largely α-helical protein with high structural similarity to mammalian citrate synthases. Although a hexahistidine-tagged version of the protein could be expressed in Escherichia coli, it was not possible to purify it by nickel-affinity chromatography. Similar results were obtained with a version of the protein which lacks the putative mitochondrial targeting sequence (residues 1 to 29). However, extracts from bacterial cells expressing this version had additional citrate synthase activity after correcting for the endogenous, bacterial activity. The apparent K m for oxaloacetate was found to be 0.22 mM, which is higher than that observed in mammalian citrate synthases. Overall, the sequence and structure of F. hepatica citrate synthase are similar to ones from other eukaryotes, but there are enzymological differences which merit further investigation.

  14. Membrane localization and topology of leukotriene C4 synthase.

    PubMed

    Christmas, Peter; Weber, Brittany M; McKee, Mary; Brown, Dennis; Soberman, Roy J

    2002-08-01

    Leukotriene C(4) (LTC(4)) synthase conjugates LTA(4) with GSH to form LTC(4). Determining the site of LTC(4) synthesis and the topology of LTC(4) synthase may uncover unappreciated intracellular roles for LTC(4), as well as how LTC(4) is transferred to its export carrier, the multidrug resistance protein-1. We have determined the membrane localization of LTC(4) synthase by immunoelectron microscopy. In contrast to the closely related five-lipoxygenase-activating protein, LTC(4) synthase is distributed in the outer nuclear membrane and peripheral endoplasmic reticulum but is excluded from the inner nuclear membrane. We have combined immunofluorescence with differential membrane permeabilization to determine the topology of LTC(4) synthase. The active site of LTC(4) synthase is localized in the lumen of the nuclear envelope and endoplasmic reticulum. These results indicate that the synthesis of LTB(4) and LTC(4) occurs in different subcellular locations and suggests that LTC(4) must be returned to the cytoplasmic side of the membrane for export by multidrug resistance protein-1. The differential localization of two very similar integral membrane proteins suggests that mechanisms other than size-dependent exclusion regulate their passage to the inner nuclear membrane.

  15. Nitric Oxide Synthases in Heart Failure

    PubMed Central

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  16. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  17. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  18. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  19. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  20. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  1. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

  2. Reconstitution of Diphthine Synthase Activity In Vitro

    PubMed Central

    Zhu, Xuling; Kim, Jungwoo; Su, Xiaoyang; Lin, Hening

    2010-01-01

    Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on eukaryotic and archaeal translation elongation factor 2 (EF2). Although diphthamide modification was discovered three decades ago, in vitro reconstitution of diphthamide biosynthesis using purified proteins has not been reported. The proposed biosynthesis pathway of diphthamide involves three steps. Our laboratory has recently showed that in Pyrococcus horikoshii (P. horikoshii), the first step uses an [4Fe-4S] enzyme PhDph2 to generate a 3-amino-3-carboxypropyl radical from S-adenosyl-L-methionine (SAM) to form a C-C bond. The second step is the trimethylation of an amino group to form the diphthine intermediate. This step is catalyzed by a methyltransferase called diphthine synthase or Dph5. Here we report the in vitro reconstitution of the second step using P. horikoshii Dph5 (PhDph5). Our results demonstrate that PhDph5 is sufficient to catalyze the mono-, di-, and trimethylation of P. horikoshii EF2 (PhEF2). Interestingly, the trimethylated product from PhDph5-catalyzed reaction can easily eliminate the trimethylamino group. The potential implication of this unexpected finding on the diphthamide biosynthesis pathway is discussed. PMID:20873788

  3. Protein preparation, crystallization and preliminary X-ray analysis of Polygonum cuspidatum bifunctional chalcone synthase/benzalacetone synthase.

    PubMed

    Lu, Heshu; Yang, Mingfeng; Liu, Chunmei; Lu, Ping; Cang, Huaixing; Ma, Lanqing

    2013-08-01

    The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) generate the backbones of a variety of plant secondary metabolites. An active bifunctional chalcone synthase/benzalacetone synthase (CHS/BAS) from Polygonum cuspidatum was overexpressed in Escherichia coli as a C-terminally polyhistidine-tagged fusion protein, purified to homogeneity and crystallized using polyethylene glycol 4000 as a precipitant. The production of well shaped crystals of the complex between PcPKS1 and benzalacetone was dependent on the presence of sorbitol and barium chloride as additives. The crystals belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 80.23, b = 81.01, c = 122.89 Å, and diffracted X-rays to at least 2.0 Å resolution. PMID:23908031

  4. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars.

    PubMed

    Verma, A K; Upadhyay, S K; Verma, P C; Solomon, S; Singh, S B

    2011-03-01

    Sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13) are key enzymes in the synthesis and breakdown of sucrose in sugarcane. The activities of internodal SPS and SS, as well as transcript expression were determined using semi-quantitative RT-PCR at different developmental stages of high and low sucrose accumulating sugarcane cultivars. SPS activity and transcript expression was higher in mature internodes compared with immature internodes in all the studied cultivars. However, high sugar cultivars showed increased transcript expression and enzyme activity of SPS compared to low sugar cultivars at all developmental stages. SS activity was higher in immature internodes than in mature internodes in all cultivars; SS transcript expression showed a similar pattern. Our studies demonstrate that SPS activity was positively correlated with sucrose and negatively correlated with hexose sugars. However, SS activity was negatively correlated with sucrose and positively correlated with hexose sugars. The present study opens the possibility for improvement of sugarcane cultivars by increasing expression of the respective enzymes using transgene technology.

  5. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.).

    PubMed

    Lahuta, Lesław B; Pluskota, Wioletta E; Stelmaszewska, Joanna; Szablińska, Joanna

    2014-09-01

    The exposition of 7-day-old pea seedlings to dehydration induced sudden changes in the concentration of monosaccharides and sucrose in epicotyl and roots tissues. During 24h of dehydration, the concentration of glucose and, to a lesser extent, fructose in seedling tissues decreased. The accumulation of sucrose was observed in roots after 4h and in epicotyls after 8h of stress. Epicotyls and roots also began to accumulate galactinol and raffinose after 8h of stress, when small changes in the water content of tissues occurred. The accumulation of galactinol and raffinose progressed parallel to water withdrawal from tissues, but after seedling rehydration both galactosides disappeared. The synthesis of galactinol and raffinose by an early induction (during the first hour of treatment) of galactinol synthase (PsGolS) and raffinose synthase (PsRS) gene expression as well as a later increase in the activity of both enzymes was noted. Signals possibly triggering the induction of PsGolS and PsRS gene expression and accumulation of galactinol and raffinose in seedlings are discussed.

  6. Structural and functional organization of the animal fatty acid synthase.

    PubMed

    Smith, Stuart; Witkowski, Andrzej; Joshi, Anil K

    2003-07-01

    The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between

  7. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  8. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  9. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    PubMed Central

    Balabaskaran Nina, Praveen; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F1 sector catalyzes ATP synthesis, whereas the Fo sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F1 and Fo sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the Fo sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a

  10. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  11. Plasticity and Evolution of (+)-3-Carene Synthase and (−)-Sabinene Synthase Functions of a Sitka Spruce Monoterpene Synthase Gene Family Associated with Weevil Resistance*

    PubMed Central

    Roach, Christopher R.; Hall, Dawn E.; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    The monoterpene (+)-3-carene is associated with resistance of Sitka spruce against white pine weevil, a major North American forest insect pest of pine and spruce. High and low levels of (+)-3-carene in, respectively, resistant and susceptible Sitka spruce genotypes are due to variation of (+)-3-carene synthase gene copy number, transcript and protein expression levels, enzyme product profiles, and enzyme catalytic efficiency. A family of multiproduct (+)-3-carene synthase-like genes of Sitka spruce include the three (+)-3-carene synthases, PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and the (−)-sabinene synthase PsTPS-sab. Of these, PsTPS-3car2 is responsible for the relatively higher levels of (+)-3-carene in weevil-resistant trees. Here, we identified features of the PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and PsTPS-sab proteins that determine different product profiles. A series of domain swap and site-directed mutations, supported by structural comparisons, identified the amino acid in position 596 as critical for product profiles dominated by (+)-3-carene in PsTPS-3car1, PsTPS-3car2, and PsTPS-3car3, or (−)-sabinene in PsTPS-sab. A leucine in this position promotes formation of (+)-3-carene, whereas phenylalanine promotes (−)-sabinene. Homology modeling predicts that position 596 directs product profiles through differential stabilization of the reaction intermediate. Kinetic analysis revealed position 596 also plays a role in catalytic efficiency. Mutations of position 596 with different side chain properties resulted in a series of enzymes with different product profiles, further highlighting the inherent plasticity and potential for evolution of alternative product profiles of these monoterpene synthases of conifer defense against insects. PMID:25016016

  12. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry

    PubMed Central

    Hoffmann, Jan; Sokolova, Lucie; Preiss, Laura; Hicks, David B.; Krulwich, Terry A.; Morgner, Nina; Wittig, Ilka; Schägger, Hermann; Meier, Thomas; Brutschy, Bernd

    2010-01-01

    Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F1Fo-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F1Fo-ATP synthases. Under selected buffer conditions the mass of the intact F1Fo-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases. PMID:20820587

  13. Dimers of mitochondrial ATP synthase form the permeability transition pore

    PubMed Central

    Giorgio, Valentina; von Stockum, Sophia; Antoniel, Manuela; Fabbro, Astrid; Fogolari, Federico; Forte, Michael; Glick, Gary D.; Petronilli, Valeria; Zoratti, Mario; Szabó, Ildikó; Lippe, Giovanna; Bernardi, Paolo

    2013-01-01

    Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the FOF1 ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca2+ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca2+. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca2+, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg2+/ADP. These results indicate that the PTP forms from dimers of the ATP synthase. PMID:23530243

  14. The ATP synthase: the understood, the uncertain and the unknown.

    PubMed

    Walker, John E

    2013-02-01

    The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.

  15. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus.

    PubMed

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-06-01

    Fungi are a rich source of bioactive secondary metabolites, and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared with the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene-oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as an alpha-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes delta-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homologue but instead was found to catalyse the highly specific synthesis of alpha-cuprenene. Coexpression of cop6 and the two monooxygenase genes next to it yields oxygenated alpha-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  16. Understanding Plant Cellulose Synthases through a Comprehensive Investigation of the Cellulose Synthase Family Sequences

    PubMed Central

    Carroll, Andrew; Specht, Chelsea D.

    2011-01-01

    The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA) family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized clades and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair CesA function, and compare these sites to those observed in the closest cellulose synthase-like (Csl) families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments. PMID:22629257

  17. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  18. Evolutionary history of the chitin synthases of eukaryotes.

    PubMed

    Morozov, Alexey A; Likhoshway, Yelena V

    2016-06-01

    Chitin synthases are widespread among eukaryotes and known to have a complex evolutionary history in some of the groups. We have reconstructed the chitin synthase phylogeny using the most taxonomically comprehensive dataset currently available and have shown the presence of independently formed paralogous groups in oomycetes, ciliates, fungi, and all diatoms except raphid pennates. There were also two cases of horizontal gene transfer (HGT): transfer from fungus to early diatoms gave rise to diatom paralogous group, while transfer from raphid pennate diatom to Acantamoeba ancestor is, to our knowledge, restricted to a single gene in amoeba. Early evolution of chitin synthases is heavily obscured by paralogy, and further sequencing effort is necessary. PMID:26887391

  19. A functional map of the nopaline synthase promoter.

    PubMed Central

    Shaw, C H; Carter, G H; Watson, M D; Shaw, C H

    1984-01-01

    This paper describes the first functional map of a promoter expressed from the plant chromosome. We have constructed a series of overlapping deletion mutants within the region upstream of the Ti-plasmid encoded nopaline synthase (nos) gene. By monitoring nos expression in tumour tissue we have inferred a functional map of the nos promoter. The maximum length of sequence upstream of the transcription initiation point required to express wild type levels of nopaline synthase is 88 bp. Within this region, the "CAAT" box is essential for maximal activity; deletion of this sequence reduced apparent nos expression by over 80%. Presence of an intact or partial "TATA" box in the absence of the "CAAT" box supports a barely detectable level of nopaline synthase. Removal of all sequences upstream of the nos coding sequence results in no detectable activity. PMID:6493982

  20. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    PubMed

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  1. Mapping a kingdom-specific functional domain of squalene synthase.

    PubMed

    Linscott, Kristin B; Niehaus, Thomas D; Zhuang, Xun; Bell, Stephen A; Chappell, Joe

    2016-09-01

    Squalene synthase catalyzes the first committed step in sterol biosynthesis and consists of both an amino-terminal catalytic domain and a carboxy-terminal domain tethering the enzyme to the ER membrane. While the overall architecture of this enzyme is identical in eukaryotes, it was previously shown that plant and animal genes cannot complement a squalene synthase knockout mutation in yeast unless the carboxy-terminal domain is swapped for one of fungal origin. This implied a unique component of the fungal carboxy-terminal domain was responsible for the complementation phenotype. To identify this motif, we used Saccharomyces cerevisiae with a squalene synthase knockout mutation, and expressed intact and chimeric squalene synthases originating from fungi, plants, and animals. In contrast to previous observations, all enzymes tested could partially complement the knockout mutation when the genes were weakly expressed. However, when highly expressed, non-fungal squalene synthases could not complement the yeast mutation and instead led to the accumulation of a toxic intermediate(s) as defined by mutations of genes downstream in the ergosterol pathway. Restoration of the complete complementation phenotype was mapped to a 26-amino acid hinge region linking the catalytic and membrane-spanning domains specific to fungal squalene synthases. Over-expression of the C-terminal domain containing a hinge domain from fungi, not from animals or plants, led to growth inhibition of wild-type yeast. Because this hinge region is unique to and highly conserved within each kingdom of life, the data suggests that the hinge domain plays an essential functional role, such as assembly of ergosterol multi-enzyme complexes in fungi.

  2. Vacuum-Ultraviolet Circular Dichroism Spectra of Escherichia coli Dihydrofolate Reductase and Its Mutants: Contributions of Phenylalanine and Tyrosine Side Chains and Exciton Coupling of Two Tryptophan Side Chains.

    PubMed

    Ohmae, Eiji; Tanaka, Suguru; Miyashita, Yurina; Katayanagi, Katsuo; Matsuo, Koichi

    2015-10-15

    Vacuum-ultraviolet (VUV) circular dichroism (CD) spectroscopy has recently been used for secondary structure analysis of proteins; however, the contribution of aromatic side chains to protein VUV CD spectra is unresolved. In this report, VUV CD spectra of 10 Escherichia coli dihydrofolate reductase (DHFR) mutants, in which each phenylalanine or tyrosine residue was mutated to leucine, were measured down to 175 nm at 25 °C and pH 8.0 to elucidate the contributions of these aromatic side chains to the high-energy transitions of peptide bonds. The VUV CD spectra of these mutants were different from the spectrum of the wild-type protein, indicating that the contribution of the phenylalanine and tyrosine side chains of DHFR extends to the VUV region. Furthermore, the VUV CD spectrum and the folate- or NADP(+)-induced spectral change of F103L mutant DHFR indicated a modification and regeneration of exciton coupling between the Trp47 and Trp74 side chains, respectively, suggesting that exciton coupling may also contribute to the CD spectrum of DHFR in the VUV region. These results should be useful for theoretically characterizing the contribution of aromatic side chains to protein CD spectra, leading to the improvement of protein secondary-structure analysis by VUV CD spectroscopy.

  3. Comparative hydrogen-deuterium exchange for a mesophilic vs thermophilic dihydrofolate reductase at 25 °C: identification of a single active site region with enhanced flexibility in the mesophilic protein.

    PubMed

    Oyeyemi, Olayinka A; Sours, Kevin M; Lee, Thomas; Kohen, Amnon; Resing, Katheryn A; Ahn, Natalie G; Klinman, Judith P

    2011-09-27

    The technique of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been applied to a mesophilic (E. coli) dihydrofolate reductase under conditions that allow direct comparison to a thermophilic (B. stearothermophilus) ortholog, Ec-DHFR and Bs-DHFR, respectively. The analysis of hydrogen-deuterium exchange patterns within proteolytically derived peptides allows spatial resolution, while requiring a series of controls to compare orthologous proteins with only ca. 40% sequence identity. These controls include the determination of primary structure effects on intrinsic rate constants for HDX as well as the use of existing 3-dimensional structures to evaluate the distance of each backbone amide hydrogen to the protein surface. Only a single peptide from the Ec-DHFR is found to be substantially more flexible than the Bs-DHFR at 25 °C in a region located within the protein interior at the intersection of the cofactor and substrate-binding sites. The surrounding regions of the enzyme are either unchanged or more flexible in the thermophilic DHFR from B. stearothermophilus. The region with increased flexibility in Ec-DHFR corresponds to one of two regions previously proposed to control the enthalpic barrier for hydride transfer in Bs-DHFR [Oyeyemi et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 10074]. PMID:21859100

  4. Computer graphic modeling in drug design--conformational analysis of antifolate binding to avian dihydrofolate reductase: crystal and molecular structures of 2,4-diamino-5-cyclohexyl-6-methylpyrimidine and 5-cyclohexyl-6-methyluracil.

    PubMed

    Cody, V; Ciszak, E

    1991-05-01

    The results of crystal structure determinations of the antifolate 2,4-diamino-5-cyclohexyl-6-methylprimidine (I), and its uracil derivative (II), show that the 5-cyclohexyl ring is gauche to the planar pyrimidine ring with torsion angles 82.4 (3) degrees and 63.7 (3) degrees for (I) and (II), respectively. Hydrogen bond patterns observed for these free base pyrimidines indicate a preference for N...N or N...O dimer formation around inversion centers, as observed in other antifolate structures. Computer graphic modeling studies were carried out comparing the avian dihydrofolate reductase active site interactions of the cyclohexyl antifolate (I) with the more potent 5-adamantyl analog and the less potent 5-hexyl and 5-heptyl antifolates. These data showed that although the cyclohexyl ring fits into the same conformational space as adamantyl, it makes fewer hydrophobic contacts. Similarly, cyclohexyl fills the active site better than either the 5-n-hexyl or heptyl side chains. These data are consistent with the increased potency of the adamantyl and cyclohexyl antifolates compared to n-alkyl analogs with similar hydrophobicities. These data indicate that the rigid structure of these ring systems increases their hydrophobic interactions, thus enhancing their biochemical activity.

  5. Exploiting the Biosynthetic Potential of Type III Polyketide Synthases.

    PubMed

    Lim, Yan Ping; Go, Maybelle K; Yew, Wen Shan

    2016-01-01

    Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs) using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development. PMID:27338328

  6. An Unusual Chimeric Diterpene Synthase from Emericella variecolor and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping.

    PubMed

    Qin, Bin; Matsuda, Yudai; Mori, Takahiro; Okada, Masahiro; Quan, Zhiyang; Mitsuhashi, Takaaki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-26

    Di- and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene (1), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.

  7. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    PubMed Central

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  8. Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952.

    PubMed

    Ghimire, Gopal Prasad; Oh, Tae-Jin; Liou, Kwangkyoung; Sohng, Jae Kyung

    2008-10-31

    We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA). PMID:18612244

  9. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    PubMed

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  10. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... of reactions that occurs in liver cells. This cycle processes excess nitrogen, generated when protein is used by the body, to make a compound called urea that is excreted by the kidneys. The ... cycle. In people with N-acetylglutamate synthase deficiency , N- ...

  11. Incremental truncation of PHA synthases results in altered product specificity.

    PubMed

    Wang, Qian; Xia, Yongzhen; Chen, Quan; Qi, Qingsheng

    2012-05-10

    PHA synthase is the key enzyme involved in the biosynthesis of microbial polymers, polyhydroxyalkanoates (PHA). In this study, we created a hybrid library of PHA synthase gene with different crossover points by an incremental truncation method between the C-terminal fragments of the phaC(Cn) (phaC from Cupriavidus necator) and the N-terminal fragments of the phaC1(Pa) (phaC from Pseudomonas aeruginosa). As the truncation of the hybrid enzyme increased, the in vivo PHB synthesis ability of the hybrids declined gradually. PHA synthase PhaC(Cn) with a deletion on N-terminal up to 83 amino acid residues showed no synthase activity. While with the removal of up to 270 amino acids from the N-terminus, the activity of the truncated PhaC(Cn) could be complemented by the N-terminus of PhaC1(Pa). Three of the hybrid enzymes W188, W235 and W272 (named by the deleted nucleic acid number) were found to have altered product specificities. PMID:22500895

  12. Absence of Pneumocystis dihydropteroate synthase mutants in Brittany, France.

    PubMed

    Le Gal, Solène; Robert-Gangneux, Florence; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Damiani, Céline; Totet, Anne; Gangneux, Jean-Pierre; Nevez, Gilles

    2013-05-01

    Archival Pneumocystis jirovecii specimens from 84 patients monitored at Rennes University Hospital (Rennes, France) were assayed at the dihydropteroate synthase (DHPS) locus. No patient was infected with mutants. The results provide additional data showing that P. jirovecii infections involving DHPS mutants do not represent a public health issue in Brittany, western France.

  13. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    PubMed Central

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data. PMID:27721652

  14. A particular phenotype in a girl with aldosterone synthase deficiency.

    PubMed

    Williams, Tracy A; Mulatero, Paolo; Bosio, Maurizio; Lewicka, Sabina; Palermo, Mario; Veglio, Franco; Armanini, Decio

    2004-07-01

    Aldosterone synthase deficiency (ASD) usually presents in infancy as a life-threatening electrolyte imbalance. A 4-wk-old child of unrelated parents was examined for failure to thrive and salt-wasting. Notable laboratory findings were hyperkalemia, high plasma renin, and low-normal aldosterone levels. Urinary metabolite ratios of corticosterone/18-hydroxycorticosterone and 18-hydroxycorticosterone/aldosterone were intermediate between ASD type I and type II. Sequence analysis of CYP11B2, the gene encoding aldosterone synthase (P450c11AS), revealed that the patient was a compound heterozygote carrying a previously described mutation located in exon 4 causing a premature stop codon (E255X) and a further, novel mutation in exon 5 that also causes a premature stop codon (Q272X). The patient's unaffected father was a heterozygous carrier of the E255X mutation, whereas the unaffected mother was a heterozygous carrier of the Q272X mutation. Therefore, the patient's CYP11B2 encodes two truncated forms of aldosterone synthase predicted to be inactive because they lack critical active site residues as well as the heme-binding site. This case of ASD is of particular interest because despite the apparent lack of aldosterone synthase activity, the patient displays low-normal aldosterone levels, thus raising the question of its source. PMID:15240589

  15. Lipoxin synthase activity of human platelet 12-lipoxygenase.

    PubMed Central

    Romano, M; Chen, X S; Takahashi, Y; Yamamoto, S; Funk, C D; Serhan, C N

    1993-01-01

    Human platelets and megacaryocytes generate lipoxins from exogenous leukotriene A4 (LTA4). We examined the role of human 12-lipoxygenase (12-LO) in lipoxin generation with recombinant histidine-tagged human platelet enzyme (6His-12-LO), partially purified 12-LO from human platelets (HPL 12-LO) and, for the purposes of direct comparison, permeabilized platelets. Recombinant and HPL 12-LO catalysed the conversion of intact LTA4 into both lipoxin A4 (LXA4) and lipoxin B4 (LXB4). In contrast, only negligible quantities of LXA4 were generated when recombinant 12-LO was incubated with the non-enzymic hydrolysis products of LTA4.6His-12-LO also converted a non-allylic epoxide, 5(6)-epoxy-(8Z,11Z,14Z)-eicosatrienoic acid. The apparent Km and Vmax. for lipoxin synthase activity of 6His-12-LO were estimated to be 7.9 +/- 0.8 microM and 24.5 +/- 2.5 nmol/min per mg respectively, and the LXB4 synthase activity of this enzyme was selectively regulated by suicide inactivation. Aspirin gave a 2-fold increase in lipoxin formation by platelets but did not enhance the conversion of LTA4 by the recombinant 12-LO. These results provide direct evidence for LXA4 and LXB4 synthase activity of human platelet 12-LO. Moreover, they suggest that 12-LO is a dual-function enzyme that carries both oxygenase and lipoxin synthase activity. Images Figure 1 PMID:8250832

  16. Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation.

    PubMed

    Hooks, David O; Venning-Slater, Mark; Du, Jinping; Rehm, Bernd H A

    2014-01-01

    Polyhydroxyalkanoate (PHA) is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC). Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications. PMID:24962396

  17. Isoelectric focusing of wound-induced tomato ACC synthase

    SciTech Connect

    White, J.A.; Kende, H. )

    1990-05-01

    Several techniques of electrofocusing have been used to determine whether 1-aminocyclopropane-1-carboxylate (ACC) synthase isolated from wounded tomato pericarp tissue exists in different isoforms, each with its characteristic isoelectric point (pI). The pI of the native enzyme was found to be 6.0 {plus minus} 0.2. When radiolabeled, denatured ACC synthase was electrofocused by non-equilibrium pH gradient electrophoresis (NEpHGE), the enzyme separated into four discernible spots which, upon reaching equilibrium, ranged in pI from 6.6 to 6.9. Immunopurified ACC synthase from four tomato cultivars (Duke, Cornell, Mountain Pride and Pik Red) migrated in each case as a 50-kDa protein on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). We propose that native ACC synthase in extracts of tomato pericarp tissue exists in one single form and that the charge heterogeneities observed upon electrofocusing of denatured enzyme result from modifications of preexisting protein.

  18. Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase.

    PubMed

    Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2002-09-01

    The catalytic mechanism of the beta-ketoacyl synthase domain of the multifunctional fatty acid synthase has been investigated by a combination of mutagenesis, active-site titration, product analysis, and product inhibition. Neither the reactivity of the active-site Cys161 residue toward iodoacetamide nor the rate of unidirectional transfer of acyl moieties to Cys161 was significantly decreased by replacement of any of the conserved residues, His293, His331, or Lys326, with Ala. Decarboxylation of malonyl moieties in the fully-active Cys161Gln background generated equimolar amounts of acetyl-CoA and bicarbonate, rather than carbon dioxide, and was seriously compromised by replacement of any of the conserved basic residues. The ability of bicarbonate to inhibit decarboxylation of malonyl moieties in the Cys161Gln background was significantly reduced by replacement of His293 but less so by replacement of His331. The data are consistent with a reaction mechanism, in which the initial primer transfer reaction is promoted largely through a lowering of the pKa of the Cys161 thiol by a helix dipole effect and activation of the substrate thioester carbon atom by binding of the keto group in an oxyanion hole. The data also indicate that an activated water molecule is present at the active site that is required either for the rapid hydration of carbon dioxide, prior its release as bicarbonate or, alternatively, for an initial attack on the malonyl C3. In the alternative mechanism, a negatively-charged tetrahedral transition state could be generated, stabilized in part by interaction of His293 with the negatively charged oxygen at C3 and interaction of His331 with the negatively charged thioester carbonyl oxygen, that breaks down to generate bicarbonate directly. Finally, the carbanion at C2, attacks the electrophilic C1 of the primer, generating a second tetrahedral transition state, also stabilized through contacts with the oxyanion hole and His331, that breaks down to form

  19. Detailed characterization of the substrate specificity of mouse wax synthase.

    PubMed

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  20. Phytochelatin synthase: of a protease a peptide polymerase made.

    PubMed

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.

  1. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    SciTech Connect

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  2. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    PubMed

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender. PMID:24078339

  3. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  4. Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase.

    PubMed

    Gonzalez, Veronica; Touchet, Sabrina; Grundy, Daniel J; Faraldos, Juan A; Allemann, Rudolf K

    2014-10-15

    Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-(3)H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-(2)H6]-FDP support a germacrene-humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases. PMID:25230152

  5. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture.

    PubMed

    Grundy, Daniel J; Chen, Mengbin; González, Verónica; Leoni, Stefano; Miller, David J; Christianson, David W; Allemann, Rudolf K

    2016-04-12

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D(80)DQFD and N(218)DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H2(18)O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-(2)H2]FDP and (R)-[1-(2)H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues

  6. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    PubMed Central

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  7. NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions.

    PubMed

    Feeney, James; Birdsall, Berry; Kovalevskaya, Nadezhda V; Smurnyy, Yegor D; Navarro Peran, Emna M; Polshakov, Vladimir I

    2011-05-10

    In order to examine the origins of the large positive cooperativity (ΔG(0)(coop) = -2.9 kcal mol(-1)) of trimethoprim (TMP) binding to a bacterial dihydrofolate reductase (DHFR) in the presence of NADPH, we have determined and compared NMR solution structures of L. casei apo DHFR and its binary and ternary complexes with TMP and NADPH and made complementary thermodynamic measurements. The DHFR structures are generally very similar except for the A-B loop region and part of helix B (residues 15-31) which could not be directly detected for L. casei apo DHFR because of line broadening from exchange between folded and unfolded forms. Thermodynamic and NMR measurements suggested that a significant contribution to the cooperativity comes from refolding of apo DHFR on binding the first ligand (up to -0.95 kcals mol(-1) if 80% of A-B loop requires refolding). Comparisons of Cα-Cα distance differences and domain rotation angles between apo DHFR and its complexes indicated that generally similar conformational changes involving domain movements accompany formation of the binary complexes with either TMP or NADPH and that the binary structures are approaching that of the ternary complex as would be expected for positive cooperativity. These favorable ligand-induced structural changes upon binding the first ligand will also contribute significantly to the cooperative binding. A further substantial contribution to cooperative binding results from the proximity of the bound ligands in the ternary complex: this reduces the solvent accessible area of the ligand and provides a favorable entropic hydrophobic contribution (up to -1.4 kcal mol(-1)). PMID:21410224

  8. NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions

    PubMed Central

    2011-01-01

    In order to examine the origins of the large positive cooperativity (ΔG0coop = −2.9 kcal mol−1) of trimethoprim (TMP) binding to a bacterial dihydrofolate reductase (DHFR) in the presence of NADPH, we have determined and compared NMR solution structures of L. casei apo DHFR and its binary and ternary complexes with TMP and NADPH and made complementary thermodynamic measurements. The DHFR structures are generally very similar except for the A−B loop region and part of helix B (residues 15−31) which could not be directly detected for L. casei apo DHFR because of line broadening from exchange between folded and unfolded forms. Thermodynamic and NMR measurements suggested that a significant contribution to the cooperativity comes from refolding of apo DHFR on binding the first ligand (up to −0.95 kcals mol−1 if 80% of A−B loop requires refolding). Comparisons of Cα−Cα distance differences and domain rotation angles between apo DHFR and its complexes indicated that generally similar conformational changes involving domain movements accompany formation of the binary complexes with either TMP or NADPH and that the binary structures are approaching that of the ternary complex as would be expected for positive cooperativity. These favorable ligand-induced structural changes upon binding the first ligand will also contribute significantly to the cooperative binding. A further substantial contribution to cooperative binding results from the proximity of the bound ligands in the ternary complex: this reduces the solvent accessible area of the ligand and provides a favorable entropic hydrophobic contribution (up to −1.4 kcal mol−1). PMID:21410224

  9. Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase.

    PubMed

    Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji; Tsuge, Takeharu

    2014-05-01

    In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc.

  10. S-sulfocysteine synthase function in sensing chloroplast redox status

    PubMed Central

    Gotor, Cecilia; Romero, Luis C.

    2013-01-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus. PMID:23333972

  11. Structure of isochorismate synthase DhbC from Bacillus anthracis

    PubMed Central

    Domagalski, M. J.; Tkaczuk, K. L.; Chruszcz, M.; Skarina, T.; Onopriyenko, O.; Cymborowski, M.; Grabowski, M.; Savchenko, A.; Minor, W.

    2013-01-01

    The isochorismate synthase DhbC from Bacillus anthracis is essential for the biosynthesis of the siderophore bacillibactin by this pathogenic bacterium. The structure of the selenomethionine-substituted protein was determined to 2.4 Å resolution using single-wavelength anomalous diffraction. B. anthracis DhbC bears the strongest resemblance to the Escherichia coli isochorismate synthase EntC, which is involved in the biosynthesis of another siderophore, namely enterobactin. Both proteins adopt the characteristic fold of other chorismate-utilizing enzymes, which are involved in the biosynthesis of various products, including siderophores, menaquinone and tryptophan. The conservation of the active-site residues, as well as their spatial arrangement, suggests that these enzymes share a common Mg2+-dependent catalytic mechanism. PMID:23989140

  12. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls. PMID:26450210

  13. Defining the Product Chemical Space of Monoterpenoid Synthases

    PubMed Central

    Tian, Boxue; Poulter, C. Dale; Jacobson, Matthew P.

    2016-01-01

    Terpenoid synthases create diverse carbon skeletons by catalyzing complex carbocation rearrangements, making them particularly challenging for enzyme function prediction. To begin to address this challenge, we have developed a computational approach for the systematic enumeration of terpenoid carbocations. Application of this approach allows us to systematically define a nearly complete chemical space for the potential carbon skeletons of products from monoterpenoid synthases. Specifically, 18758 carbocations were generated, which we cluster into 74 cyclic skeletons. Five of the 74 skeletons are found in known natural products; some of the others are plausible for new functions, either in nature or engineered. This work systematizes the description of function for this class of enzymes, and provides a basis for predicting functions of uncharacterized enzymes. To our knowledge, this is the first computational study to explore the complete product chemical space of this important class of enzymes. PMID:27517297

  14. S-sulfocysteine synthase function in sensing chloroplast redox status.

    PubMed

    Gotor, Cecilia; Romero, Luis C

    2013-03-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus.

  15. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls.

  16. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  17. Structural organization of the multifunctional animal fatty-acid synthase.

    PubMed

    Witkowski, A; Rangan, V S; Randhawa, Z I; Amy, C M; Smith, S

    1991-06-15

    The amino acid sequence of the multifunctional fatty-acid synthase has been examined to investigate the exact location of the seven functional domains. Good agreement in predicting the location of interdomain boundaries was obtained using three independent methods. First, the sites of limited proteolytic attack that give rise to relatively stable, large polypeptide fragments were identified; cryptic sites for protease attack at the subunit interface were unmasked by first dissociating the dimer into its component subunits. Second, polypeptide regions exhibiting higher-than-average rates of non-conservative mutation were identified. Third, the sizes of putative functional domains were compared with those of related monofunctional proteins that exhibit similar primary or secondary structure. Residues 1-406 were assigned to the oxoacyl synthase, residues 430-802 to the malonyl/acetyl transferase, residues 1630-1850 to the enoyl reductase, residues 1870-2100 to the oxyreductase, residues 2114-2190 to the acyl-carrier protein and residues 2200-2505 to the thioesterase. The 47-kDa transferase and 8-kDa acyl-carrier-protein domains, which are situated at opposite ends of the multifunctional subunit, were nevertheless isolated from tryptic digests as a non-covalently associated complex. Furthermore, a centrally located domain encompassing residues 1160-1545 was isolated as a nicked dimer. These findings, indicating that interactions between the head-to-tail juxtaposed subunits occur in both the polar and equatorial regions, are consistent with previously derived electron-micrograph images that show subunit contacts in these areas. The data permit refinement of the model for the fatty-acid synthase dimer and suggest that the malonyl/acetyl transferase and oxoacyl synthase of one subunit cooperate with the reductases, acyl carrier protein and thioesterase of the companion subunit in the formation of a center for fatty-acid synthesis.

  18. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    SciTech Connect

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.

    2008-01-01

    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  19. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

  20. The cellulose synthase superfamily in fully sequenced plants and algae

    PubMed Central

    2009-01-01

    Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants. PMID:19646250

  1. QSAR modeling of the inhibition of glycogen synthase kinase-3.

    PubMed

    Katritzky, Alan R; Pacureanu, Liliana M; Dobchev, Dimitar A; Fara, Dan C; Duchowicz, Pablo R; Karelson, Mati

    2006-07-15

    Quantitative structure-activity relationship (QSAR) models of the biological activity (pIC50) of 277 inhibitors of Glycogen Synthase Kinase-3 (GSK-3) are developed using geometrical, topological, quantum mechanical, and electronic descriptors calculated by CODESSA PRO. The linear (multilinear regression) and nonlinear (artificial neural network) models obtained link the structures to their reported activity pIC50. The results are discussed in the light of the main factors that influence the inhibitory activity of the GSK-3 enzyme.

  2. Trichodiene synthase: mechanism-based inhibition of a sesquiterpene cyclase.

    PubMed

    Cane, D E; Bowser, T E

    1999-04-19

    The 10-cyclopropylidene analog of farnesyl diphosphate was shown to be a mechanism-based inhibitor of trichodiene synthase with an inactivation rate (k(inact)) of 0.010 +/- 0.0003 min(-1) and an apparent Ki of 663 +/- 75 nM. The presence of three anomalous sesquiterpene products detected in incubation mixtures indicate that the compound also serves as a substrate of the enzyme. PMID:10328298

  3. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, Eran

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  4. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    PubMed Central

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  5. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research. PMID:26638491

  6. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  7. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    PubMed Central

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase.

  8. Virus-Induced Silencing of a Plant Cellulose Synthase Gene

    PubMed Central

    Burton, Rachel A.; Gibeaut, David M.; Bacic, Antony; Findlay, Kim; Roberts, Keith; Hamilton, Andrew; Baulcombe, David C.; Fincher, Geoffrey B.

    2000-01-01

    Specific cDNA fragments corresponding to putative cellulose synthase genes (CesA) were inserted into potato virus X vectors for functional analysis in Nicotiana benthamiana by using virus-induced gene silencing. Plants infected with one group of cDNAs had much shorter internode lengths, small leaves, and a “dwarf” phenotype. Consistent with a loss of cell wall cellulose, abnormally large and in many cases spherical cells ballooned from the undersurfaces of leaves, particularly in regions adjacent to vascular tissues. Linkage analyses of wall polysaccharides prepared from infected leaves revealed a 25% decrease in cellulose content. Transcript levels for at least one member of the CesA cellulose synthase gene family were lower in infected plants. The decrease in cellulose content in cell walls was offset by an increase in homogalacturonan, in which the degree of esterification of carboxyl groups decreased from ∼50 to ∼33%. The results suggest that feedback loops interconnect the cellular machinery controlling cellulose and pectin biosynthesis. On the basis of the phenotypic features of the infected plants, changes in wall composition, and the reduced abundance of CesA mRNA, we concluded that the cDNA fragments silenced one or more cellulose synthase genes. PMID:10810144

  9. Cloning and characterization of a mammalian pseudouridine synthase.

    PubMed Central

    Chen, J; Patton, J R

    1999-01-01

    This report describes the cloning and characterization of a pseudouridine (psi) synthase from mouse that we have named mouse pseudouridine synthase 1 (mpus1p). The cDNA is approximately 1.5 kb and when used as a probe on a Northern blot of mouse RNA from tissues and cultured cells, several bands were detected. The open reading frame is 393 amino acids and has 35% identity over its length with yeast psi synthase 1 (pus1p). The recombinant protein was expressed in Escherichia coli and the purified protein converted specific uridines to psi in a number of tRNA substrates. The positions modified in stoichiometric amounts in vitro were 27/28 in the anticodon stem and also positions 34 and 36 in the anticodon of an intron containing tRNA. A human cDNA was also cloned and the smaller open reading frame (348 amino acids) was 92% identical over its length with mpus1p but is shorter by 45 amino acids at the amino terminus. The expressed recombinant human protein has no activity on any of the tRNA substrates, most probably the result of the truncated open reading frame. PMID:10094309

  10. [Progress and application prospects of glutamine synthase in plants].

    PubMed

    Feng, Wanjun; Xing, Guofang; Niu, Xulong; Dou, Chen; Han, Yuanhuai

    2015-09-01

    Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation. PMID:26955708

  11. [Progress and application prospects of glutamine synthase in plants].

    PubMed

    Feng, Wanjun; Xing, Guofang; Niu, Xulong; Dou, Chen; Han, Yuanhuai

    2015-09-01

    Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation.

  12. Mechanism of Action and Inhibition of dehydrosqualene Synthase

    SciTech Connect

    F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

    2011-12-31

    'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

  13. Rotation and structure of FoF1-ATP synthase.

    PubMed

    Okuno, Daichi; Iino, Ryota; Noji, Hiroyuki

    2011-06-01

    F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background.

  14. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    PubMed Central

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  15. Dynamics of meso and thermo citrate synthases with implicit solvation

    NASA Astrophysics Data System (ADS)

    Cordeiro, J. M. M.

    The dynamics of hydration of meso and thermo citrate synthases has been investigated using the EEF1 methodology implemented with the CHARMM program. The native enzymes are composed of two identical subunits, each divided into a small and large domain. The dynamics behavior of both enzymes at 30°C and 60°C has been compared. The results of simulations show that during the hydration process, each subunit follows a different pathway of hydration, in spite of the identical sequence. The hydrated structures were compared with the crystalline structure, and the root mean square deviation (RMSD) of each residue along the trajectory was calculated. The regions with larger and smaller mobility were identified. In particular, helices belonging to the small domain are more mobile than those of the large domain. In contrast, the residues that constitute the active site show a much lower displacement compared with the crystalline structure. Hydration free energy calculations point out that Thermoplasma acidophilum citrate synthase (TCS) is more stable than chicken citrate synthase (CCS), at high temperatures. Such result has been ascribed to the higher number of superficial charges in the thermophilic homologue, which stabilizes the enzyme, while the mesophilic homologue denatures. These results are in accord with the experimental found that TCS keeps activity at temperatures farther apart from the catalysis regular temperature than the CCS.

  16. The pseudouridine synthases: revisiting a mechanism that seemed settled.

    PubMed

    Spedaliere, Christopher J; Ginter, Joy M; Johnston, Murray V; Mueller, Eugene G

    2004-10-13

    RNA containing 5-fluorouridine, [f 5U]RNA, has been used as a mechanistic probe for the pseudouridine synthases, which convert uridine in RNA to its C-glycoside isomer, pseudouridine. Hydrated products of f 5U were attributed to ester hydrolysis of a covalent complex between an essential aspartic acid residue and f 5U, and the results were construed as strong support for a mechanism involving Michael addition by the aspartic acid residue. Labeling studies with [18O]water are now reported that rule out such ester hydrolysis in one pseudouridine synthase, TruB. The aspartic acid residue does not become labeled, and the hydroxyl group in the hydrated product of f 5U derives directly from solvent. The hydrated product, therefore, cannot be construed to support Michael addition during the conversion of uridine to pseudouridine, but the results do not rule out such a mechanism. A hypothesis is offered for the seemingly disparate behavior of different pseudouridine synthases toward [f 5U]RNA.

  17. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance.

    PubMed

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  18. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase.

    PubMed

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng; Cui, Jianxiu

    2016-09-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10(-8)~10(-6) mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10(-9) mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  19. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance

    PubMed Central

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  20. The structural basis of Erwinia rhapontici isomaltulose synthase.

    PubMed

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations.

  1. From bacterial to human dihydrouridine synthase: automated structure determination

    SciTech Connect

    Whelan, Fiona Jenkins, Huw T.; Griffiths, Samuel C.; Byrne, Robert T.; Dodson, Eleanor J.; Antson, Alfred A.

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  2. [Preparation and crystallization of Polygonum cuspidatum benzalacetone synthase].

    PubMed

    Ma, Wenrui; Liu, Chunmei; Yang, Mingfeng; Xue, Feiyan; Chen, Qing; Ma, Lanqing; Lü, Heshu

    2016-02-01

    The chalcone synthase (CHS) superfamily of the type III polyketide synthases (PKSs) generates backbones of a variety of plant secondary metabolites. Benzalacetone synthase (BAS) catalyzes a condensation reaction of decarboxylation between the substrates of 4-coumaric coenzyme A and malonyl coenzyme A to generate benzylidene acetone, whose derivatives are series of compounds with various biological activities. A BAS gene Pcpks2 and a bifunctional CHS/BAS PcPKSI were isolated from medicinal plant P. cuspidatum. Crystallographic and structure-based mutagenesis studies indicate that the functional diversity of the CHS-superfamily enzymes is principally derived from small modifications of the active site architecture. In order to obtain an understanding of the biosynthesis of polyketides in P. cuspidatum, which has been poorly described, as well as of its activation mechanism, PcPKS2 was overexpressed in Escherichia coli as a C-terminally poly-His-tagged fusion protein, purified to homogeneity and crystallized, which is helpful for the clarification of the catalytic mechanism of the enzyme and lays the foundation for its genetic engineering manipulation. PMID:27382775

  3. The Spatial Distribution of Sucrose Synthase Isozymes in Barley.

    PubMed Central

    Guerin, J.; Carbonero, P.

    1997-01-01

    The sucrose (Suc) synthase enzyme purified from barley (Hordeum vulgare L.) roots is a homotetramer that is composed of 90-kD type 1 Suc synthase (SS1) subunits. Km values for Suc and UDP were 30 mM and 5 [mu]M, respectively. This enzyme can also utilize ADP at 25% of the UDP rate. Anti-SS1 polyclonal antibodies, which recognized both SS1 and type 2 Suc synthase (SS2) (88-kD) subunits, and antibodies raised against a synthetic peptide, LANGSTDNNFV, which were specific for SS2, were used to study the spatial distribution of these subunits by immunoblot analysis and immunolocalization. Both SS1 and SS2 were abundantly expressed in endosperm, where they polymerize to form the five possible homo- and heterotetramers. Only SS1 homotetramers were detected in young leaves, where they appeared exclusively in phloem cells, and in roots, where expression was associated with cap cells and the vascular bundle. In the seed both SS1 and SS2 were present in endosperm, but only SS1 was apparent in the chalazal region, the nucellar projection, and the vascular bundle. The physiological implications for the difference in expression patterns observed are discussed with respect to the maize (Zea mays L.) model. PMID:12223688

  4. Energy transduction in the F1 motor of ATP synthase

    NASA Astrophysics Data System (ADS)

    Wang, Hongyun; Oster, George

    1998-11-01

    ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis, after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central `shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.

  5. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    PubMed Central

    Lei, Lei; Bashline, Logan; Li, Shundai

    2015-01-01

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasma membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress. PMID:26443667

  6. Localization of beta-glucan synthases on the membranes of cultured Lolium multiflorum (ryegrass) endosperm cells.

    PubMed Central

    Henry, R J; Schibeci, A; Stone, B A

    1983-01-01

    The distribution of beta-glucan synthases between plasma membranes and intracellular membranes of suspension-cultured Italian-ryegrass (Lolium multiflorum Lam.) endosperm cells was examined. Highly purified plasma membranes prepared from protoplasts were only slightly enriched in beta-glucan synthases assayed at 10 microM- and 1 mM-UDP-glucose. Most beta-glucan synthase was associated with intracellular membranes. These membranes were fractionated on a linear sucrose density gradient and were resolved into different membrane fractions containing beta-glucan synthases. Beta-Glucan synthases assayed at 10 microM-UDP-glucose were found in a fraction banding at a density of 1.11 g . cm-3, but most of the beta-glucan synthase assayed at 1 mM-DDP-glucose was at a density of 1.04 g . cm-3. PMID:6223621

  7. Surrogate Splicing for Functional Analysis of Sesquiterpene Synthase Genes1[w

    PubMed Central

    Wu, Shuiqin; Schoenbeck, Mark A.; Greenhagen, Bryan T.; Takahashi, Shunji; Lee, Sungbeom; Coates, Robert M.; Chappell, Joseph

    2005-01-01

    A method for the recovery of full-length cDNAs from predicted terpene synthase genes containing introns is described. The approach utilizes Agrobacterium-mediated transient expression coupled with a reverse transcription-polydeoxyribonucleotide chain reaction assay to facilitate expression cloning of processed transcripts. Subsequent expression of intronless cDNAs in a suitable prokaryotic host provides for direct functional testing of the encoded gene product. The method was optimized by examining the expression of an intron-containing β-glucuronidase gene agroinfiltrated into petunia (Petunia hybrida) leaves, and its utility was demonstrated by defining the function of two previously uncharacterized terpene synthases. A tobacco (Nicotiana tabacum) terpene synthase-like gene containing six predicted introns was characterized as having 5-epi-aristolochene synthase activity, while an Arabidopsis (Arabidopsis thaliana) gene previously annotated as a terpene synthase was shown to possess a novel sesquiterpene synthase activity for α-barbatene, thujopsene, and β-chamigrene biosynthesis. PMID:15965019

  8. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    PubMed Central

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  9. Stabilization and enhanced reactivity of actinorhodin polyketide synthase minimal complex in polymer-nucleotide coacervate droplets.

    PubMed

    Crosby, John; Treadwell, Tom; Hammerton, Michelle; Vasilakis, Konstantinos; Crump, Matthew P; Williams, David S; Mann, Stephen

    2012-12-18

    Compartmentalization of the minimal complex of actinorhodin polyketide synthase in coacervate liquid droplets produces enhanced yields of shunt polyketides under conditions of low and high ionic strength.

  10. The type I fatty acid and polyketide synthases: a tale of two megasynthases

    PubMed Central

    Tsai, Shiou-Chuan

    2008-01-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897

  11. The type I fatty acid and polyketide synthases: a tale of two megasynthases.

    PubMed

    Smith, Stuart; Tsai, Shiou-Chuan

    2007-10-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity.

  12. Design, synthesis, and antifolate activity of new analogues of piritrexim and other diaminopyrimidine dihydrofolate reductase inhibitors with omega-carboxyalkoxy or omega-carboxy-1-alkynyl substitution in the side chain.

    PubMed

    Chan, David C M; Fu, Hongning; Forsch, Ronald A; Queener, Sherry F; Rosowsky, Andre

    2005-06-30

    As part of a search for dihydrofolate reductase (DHFR) inhibitors combining the high potency of piritrexim (PTX) with the high antiparasitic vs mammalian selectivity of trimethoprim (TMP), the heretofore undescribed 2,4-diamino-6-(2',5'-disubstituted benzyl)pyrido[2,3-d]pyrimidines 6-14 with O-(omega-carboxyalkyl) or omega-carboxy-1-alkynyl groups on the benzyl moiety were synthesized and tested against Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium DHFR vs rat DHFR. Three N-(2,4-diaminopteridin-6-yl)methyl)-2'-(omega-carboxy-1-alkynyl)dibenz[b,f]azepines (19-21) were also synthesized and tested. The pyridopyrimidine with the best combination of potency and selectivity was 2,4-diamino-5-methyl-6-[2'-(5-carboxy-1-butynyl)-5'-methoxy]benzyl]pyrimidine (13), with an IC(50) value of 0.65 nM against P. carinii DHFR, 0.57 nM against M. avium DHFR, and 55 nM against rat DHFR. The potency of 13 against P. carinii DHFR was 20-fold greater than that of PTX (IC(50) = 13 nM), and its selectivity index (SI) relative to rat DHFR was 85, whereas PTX was nonselective. The activity of 13 against P. carinii DHFR was 20 000 times greater than that of TMP, with an SI of 96, whereas that of TMP was only 14. However 13 was no more potent than PTX against M. avium DHFR, and its SI was no better than that of TMP. Molecular modeling dynamics studies using compounds 10 and 13 indicated a slight binding preference for the latter, in qualitative agreement with the IC(50) data. Among the pteridines, the most potent against P. carinii DHFR and M. avium DHFR was the 2'-(5-carboxy-1-butynyl)dibenz[b,f]azepinyl derivative 20 (IC(50) = 2.9 nM), whereas the most selective was the 2'-(5-carboxy-1-pentynyl) analogue 21, with SI values of >100 against both P. carinii and M. avium DHFR relative to rat DHFR. The final compound, 2,4-diamino-5-[3'-(4-carboxy-1-butynyl)-4'-bromo-5'-methoxybenzyl]pyrimidine (22), was both potent and selective against M. avium DHFR (IC(50) = 0.47 nM, SI

  13. Structural analysis of a holoenzyme complex of mouse dihydrofolate reductase with NADPH and a ternary complex with the potent and selective inhibitor 2, 4-diamino-6-(2′-hydroxydibenz[b, f]azepin-5-yl)methylpteridine

    SciTech Connect

    Cody, Vivian; Pace, Jim; Rosowsky, Andre

    2008-09-01

    The structures of mouse DHFR holo enzyme and a ternary complex with NADPH and a potent inhibitor are described. It has been shown that 2, 4-diamino-6-arylmethylpteridines and 2, 4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure–activity profile observed for a series of substituted dibenz[b, f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2, 4-diamino-6-(2′-hydroxydibenz[b, f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 Å resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed no electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2′-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59–64) by 0.6 Å compared with pcDHFR ternary complexes. These data are consistent with the

  14. Ligand binding studies, preliminary structure-activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase.

    PubMed

    Srinivasan, Bharath; Tonddast-Navaei, Sam; Skolnick, Jeffrey

    2015-10-20

    Gram-negative bacteria are implicated in the causation of life-threatening hospital-acquired infections. They acquire rapid resistance to multiple drugs and available antibiotics. Hence, there is the need to discover new antibacterial agents with novel scaffolds. For the first time, this study explores the 1,3,5-triazine-2,4-diamine and 1,2,4-triazine-2,4-diamine group of compounds as potential inhibitors of Escherichia coli DHFR, a pivotal enzyme in the thymidine and purine synthesis pathway. Using differential scanning fluorimetry, DSF, fifteen compounds with various substitutions on either the 3rd or 4th positions on the benzene group of 6,6-dimethyl-1-(benzene)-1,3,5-triazine-2,4-diamine were shown to bind to the enzyme with varying affinities. Then, the dose dependence of inhibition by these compounds was determined. Preliminary quantitative structure-activity relationship analysis and docking studies implicate the alkyl linker group and the sulfonyl fluoride group in increasing the potency of inhibition. 4-[4-[3-(4,6-diamino-2,2-dimethyl-1,3,5-triazin-1-yl)phenyl]butyl]benzenesulfonyl fluoride (NSC120927), the best hit from the study and a molecule with no reported inhibition of E. coli DHFR, potently inhibits the enzyme with a Ki value of 42.50 ± 5.34 nM, followed by 4-[6-[4-(4,6-diamino-2,2-dimethyl-1,3,5-triazin-1-yl)phenyl]hexyl]benzenesulfonyl fluoride (NSC132279), with a Ki value of 100.9 ± 12.7 nM. Detailed kinetic characterization of the inhibition brought about by five small-molecule hits shows that these inhibitors bind to the dihydrofolate binding site with preferential binding to the NADPH-bound binary form of the enzyme. Furthermore, in search of novel diaminotriazine scaffolds, it is shown that lamotrigine, a 1,2,4-triazine-3,5-diamine and a sodium-ion channel blocker class of antiepileptic drug, also inhibits E. coli DHFR. This is the first comprehensive study on the binding and inhibition brought about by diaminotriazines of a gram

  15. Structural Analysis of a Holoenzyme Complex of Mouse Dihydrofolate Reductase With NADPH And a Ternary Complex With the Potent And Selective Inhibitor 2,4-Diamino-6-(2'-Hydroxydibenz[b,F]azepin-5-YI)

    SciTech Connect

    Cody, V.; Pace, J.; Rosowsky, A.

    2009-05-12

    It has been shown that 2,4-diamino-6-arylmethylpteridines and 2,4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure-activity profile observed for a series of substituted dibenz[b,f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2,4-diamino-6-(2{prime}-hydroxydibenz[b,f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 A resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed no electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2{prime}-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59-64) by 0.6 A compared with pcDHFR ternary complexes. These data are consistent with the greater inhibitory potency against pcDHFR.

  16. Contributions of tryptophan 24 and glutamate 30 to binding long-lived water molecules in the ternary complex of human dihydrofolate reductase with methotrexate and NADPH studied by site-directed mutagenesis and nuclear magnetic resonance spectroscopy.

    PubMed

    Meiering, E M; Li, H; Delcamp, T J; Freisheim, J H; Wagner, G

    1995-03-24

    Previous NMR studies on the ternary complex of human dihydrofolate reductase (hDHFR) with methotrexate (MTX) and NADPH detected six long-lived bound water molecules. Two of the water molecules, WatA and WatB, stabilize the structure of the protein while the other four, WatC, WatD, WatE and WatF, are involved in substrate binding and specificity. WatE may also act as a proton shuttle during catalysis. Here, the contributions of individual residues to the binding of these water molecules are investigated by performing NMR experiments on ternary complexes of mutant enzymes, W24F, E30A and E30Q. W24 and E30 are conserved residues that form hydrogen bonds with WatE in crystal structures of DHFR. Nuclear Overhauser effects (NOEs) are detected between WatE and the protein in all the mutant complexes, hence WatE still has a long lifetime bound to the complex when one of its hydrogen-bonding partners is deleted or altered by mutagenesis. The NOEs for WatE are much weaker, however, in the mutants than in wild-type. The NOEs for the other water molecules in and near the active site, WatA, WatC, WatD and WatF, also tend to be weaker in the mutant complexes. Little or no change is apparent in the NOEs for WatB, which is located outside the active site, farthest from the mutated residues. The decreased NOE intensities for the bound water molecules could be caused by changes in the positions and/or lifetimes of the water molecules. Chemical shift and NOE data indicate that the mutants have structures very similar to that of wild-type hDHFR, with possible conformational changes occurring only near the mutated residues. Based on the lack of structural change in the protein and evidence for increased structural fluctuations in the active sites of the mutant enzymes, it is likely that the NOE changes are caused, at least in part, by decreases in the lifetimes of the bound water molecules.

  17. Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH.

    PubMed

    Cody, Vivian; Luft, Joe R; Pangborn, Walt

    2005-02-01

    Structural data are reported to 2.5 A resolution for the first full analysis of the methotrexate-resistant Leu22Arg (L22R) variant of mouse dihydrofolate reductase (mDHFR) crystallized as a ternary complex with methotrexate (MTX) and the cofactor NADPH. These results are compared with the MTX and NADPH ternary complexes of L22R human DHFR (hDHFR) and those of mouse and human wild-type DHFR enzymes. The conformation of mDHFR Arg22 is such that it makes hydrogen-bonding contacts with Asp21, Trp24 and a structural water molecule, observations which were not made in the L22R hDHFR ternary complex. These data show that there is little difference between the structures of the wild type and L22R variant for either mouse or human DHFR; however, there are significant differences between the species. Comparison of these structures reveals that the active site of mDHFR is larger than that in the hDHFR structure. In mDHFR, the position of MTX is shifted 0.6 A toward helix C (residues 59-65), which in turn is shifted 1.2 A away from the active site relative to that observed in the hDHFR ternary complexes. In the L22R variant mDHFR structure, MTX makes shorter contacts to the conserved residues Ile7, Val115 and Tyr121 than in the L22R variant human DHFR structure. These contacts are comparable in both wild-type enzymes. The unexpected results from this comparison of the mouse and human DHFR complexes bound with the same ligand and cofactor illustrate the importance of detailed study of several species of enzyme, even when there is a high sequence homology between them. These data suggest that the differences in binding interactions of the L22R variant are in agreement with the weaker binding affinity for MTX in the variant enzymes; the larger size of the binding site in mDHFR supports the observation that the binding affinity of MTX for L22R mDHFR is significantly weaker than that of the L22R hDHFR enzyme.

  18. Structural analysis of human dihydrofolate reductase as a binary complex with the potent and selective inhibitor 2,4-diamino-6-{2'-O-(3-carboxypropyl)oxydibenz[b,f]-azepin-5-yl}methylpteridine reveals an unusual binding mode.

    PubMed

    Cody, Vivian; Pace, Jim; Nowak, Jessica

    2011-10-01

    In order to understand the structure-activity profile observed for a series of substituted dibenz[b,f]azepine antifolates, the crystal structure of the binary complex of human dihydrofolate reductase (hDHFR) with the potent and selective inhibitor 2,4-diamino-6-{2'-O-(3-carboxypropyl)oxydibenz[b,f]-azepin-5-yl}methylpteridine (PT684) was determined to 1.8 Å resolution. These data revealed that the carboxylate side chain of PT684 occupies two alternate positions, neither of which interacts with the conserved Arg70 in the active-site pocket, which in turn hydrogen bonds to water. These observations are in contrast to those reported for the ternary complex of mouse DHFR (mDHFR) with NADPH [Cody et al. (2008), Acta Cryst. D64, 977-984], in which the 3-carboxypropyl side chain of PT684 was hydrolyzed to its hydroxyl derivative, PT684a. The crystallization conditions differed for the human and mouse DHFR crystals (100 mM K2HPO4 pH 6.9, 30% ammonium sulfate for hDHFR; 15 mM Tris pH 8.3, 75 mM sodium cacodylate, PEG 4K for mDHFR). Additionally, the side chains of Phe31 and Gln35 in the hDHFR complex have a single conformation, whereas in the mDHFR complex they occupied two alternative conformations. These data show that the hDHFR complex has a decreased active-site volume compared with the mDHFR complex, as reflected in a relative shift of helix C (residues 59-64) of 1.2 Å, and a shift of 1.5 Å compared with the ternary complex of Pneumocystis carinii DHFR (pcDHFR) with the parent dibenz[b,f]azepine PT653. These data suggest that the greater inhibitory potency of PT684 against pcDHFR is consistent with the larger active-site volume of pcDHFR and the predicted interactions of the carboxylate side chain with Arg75.

  19. Polymorphism and expression of isoflavone synthase genes from soybean cultivars.

    PubMed

    Kim, Hyo-Kyoung; Jang, Yun-Hee; Baek, Il-Sun; Lee, Jeong-Hwan; Park, Min Joo; Chung, Young-Soo; Chung, Jong-Il; Kim, Jeong-Kook

    2005-02-28

    Isoflavones are synthesized by isoflavone synthases via the phenylpropanoid pathway in legumes. We have cloned two isoflavone synthase genes, IFS1 and IFS2, from a total of 18 soybean cultivars. The amino acid residues of the proteins that differed between cultivars were dispersed over the entire coding region. However, amino acid sequence variation did not occur in conserved domains such as the ERR triad region, except that one conserved amino acid was changed in the IFS2 protein of the GS12 cultivar (R374G) and the IFS1 proteins of the 99M06 and Soja99s65 cultivars (A109T, F105I). In three cultivars (99M06, 99M116, and Simheukpi), most of amino acid changes were such that the difference between the amino acid sequences of IFS1 and IFS2 was reduced. The expression profiles of three enzymes that convert naringenin to the isoflavone, genistein, chalcone isomerase (CHI), isoflavone synthase (IFS) and flavanone 3-hydroxylase (F3H) were examined. In general, IFS mRNA was more abundant in etiolated seedlings than mature plants whereas the levels of CHI and F3H mRNAs were similar in the two stages. During seed development, IFS was expressed a little later than CHI and F3H but expression of these three genes was barely detectable, if at all, during later seed hardening. In addition, we found that the levels of CHI, F3H, and IFS mRNAs were under circadian control. We also showed that IFS was induced by wounding and by application of methyl jasmonate to etiolated soybean seedlings. PMID:15750342

  20. Assembly Line Polyketide Synthases: Mechanistic Insights and Unsolved Problems

    PubMed Central

    2015-01-01

    Two hallmarks of assembly line polyketide synthases have motivated an interest in these unusual multienzyme systems, their stereospecificity and their capacity for directional biosynthesis. In this review, we summarize the state of knowledge regarding the mechanistic origins of these two remarkable features, using the 6-deoxyerythronolide B synthase as a prototype. Of the 10 stereocenters in 6-deoxyerythronolide B, the stereochemistry of nine carbon atoms is directly set by ketoreductase domains, which catalyze epimerization and/or diastereospecific reduction reactions. The 10th stereocenter is established by the sequential action of three enzymatic domains. Thus, the problem has been reduced to a challenge in mainstream enzymology, where fundamental gaps remain in our understanding of the structural basis for this exquisite stereochemical control by relatively well-defined active sites. In contrast, testable mechanistic hypotheses for the phenomenon of vectorial biosynthesis are only just beginning to emerge. Starting from an elegant theoretical framework for understanding coupled vectorial processes in biology [Jencks, W. P. (1980) Adv. Enzymol. Relat. Areas Mol. Biol. 51, 75–106], we present a simple model that can explain assembly line polyketide biosynthesis as a coupled vectorial process. Our model, which highlights the important role of domain–domain interactions, not only is consistent with recent observations but also is amenable to further experimental verification and refinement. Ultimately, a definitive view of the coordinated motions within and between polyketide synthase modules will require a combination of structural, kinetic, spectroscopic, and computational tools and could be one of the most exciting frontiers in 21st Century enzymology. PMID:24779441

  1. Obesity, insulin resistance, and skeletal muscle nitric oxide synthase

    PubMed Central

    Kraus, Raymond M.; Houmard, Joseph A.; Kraus, William E.; Tanner, Charles J.; Pierce, Joseph R.; Choi, Myung Dong

    2012-01-01

    The molecular mechanisms responsible for impaired insulin action have yet to be fully identified. Rodent models demonstrate a strong relationship between insulin resistance and an elevation in skeletal muscle inducible nitric oxide synthase (iNOS) expression; the purpose of this investigation was to explore this potential relationship in humans. Sedentary men and women were recruited to participate (means ± SE: nonobese, body mass index = 25.5 ± 0.3 kg/m2, n = 13; obese, body mass index = 36.6 ± 0.4 kg/m2, n = 14). Insulin sensitivity was measured using an intravenous glucose tolerance test with the subsequent modeling of an insulin sensitivity index (SI). Skeletal muscle was obtained from the vastus lateralis, and iNOS, endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) content were determined by Western blot. SI was significantly lower in the obese compared with the nonobese group (∼43%; P < 0.05), yet skeletal muscle iNOS protein expression was not different between nonobese and obese groups. Skeletal muscle eNOS protein was significantly higher in the nonobese than the obese group, and skeletal muscle nNOS protein tended to be higher (P = 0.054) in the obese compared with the nonobese group. Alternative analysis based on SI (high and low tertile) indicated that the most insulin-resistant group did not have significantly more skeletal muscle iNOS protein than the most insulin-sensitive group. In conclusion, human insulin resistance does not appear to be associated with an elevation in skeletal muscle iNOS protein in middle-aged individuals under fasting conditions. PMID:22797309

  2. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  3. [Nitric oxide and nitric oxide synthase related to male reproduction].

    PubMed

    Ji, Jiajia; Zhao, Yanfang; Chen, Guoyuan

    2007-09-01

    Nitric oxide (NO) may be a kind of signal molecule which may have multiplicate physiological function such as secondary messenger, neurotransmitter and effect molecule. NO may play a crucial role in organism. The production of NO can not get away from nitric oxide synthase (NOS) which may distribute in almost all kind of organs of male reproductive system. NO and NOS may have the function of bifunctional regulation for reproduction. In this paper, the regulatory function of NO and NOS on male reproductive system were reviewed.

  4. Human uroporphyrinogen III synthase: NMR-based mapping of the active site.

    PubMed

    Cunha, Luis; Kuti, Miklos; Bishop, David F; Mezei, Mihaly; Zeng, Lei; Zhou, Ming-Ming; Desnick, Robert J

    2008-05-01

    Uroporphyrinogen III synthase (URO-synthase) catalyzes the cyclization and D-ring isomerization of hydroxymethylbilane (HMB) to uroporphyrinogen (URO'gen) III, the cyclic tetrapyrrole and physiologic precursor of heme, chlorophyl, and corrin. The deficient activity of human URO-synthase results in the autosomal recessive cutaneous disorder, congenital erythropoietic porphyria. Mapping of the structural determinants that specify catalysis and, potentially, protein-protein interactions is lacking. To map the active site and assess the enzyme's possible interaction in a complex with hydroxymethylbilane-synthase (HMB-synthase) and/or uroporphyrinogen-decarboxylase (URO-decarboxylase) by NMR, an efficient expression and purification procedure was developed for these cytosolic enzymes of heme biosynthesis that enabled preparation of special isotopically-labeled protein samples for NMR characterization. Using an 800 MHz instrument, assignment of the URO-synthase backbone (13)C(alpha) (100%), (1)H(alpha) (99.6%), and nonproline (1)H(N) and (15)N resonances (94%) was achieved as well as 85% of the side-chain (13)C and (1)H resonances. NMR analyses of URO-synthase titrated with competitive inhibitors N(D)-methyl-1-formylbilane (NMF-bilane) or URO'gen III, revealed resonance perturbations of specific residues lining the cleft between the two major domains of URO synthase that mapped the enzyme's active site. In silico docking of the URO-synthase crystal structure with NMF-bilane and URO'gen III was consistent with the perturbation results and provided a 3D model of the enzyme-inhibitor complex. The absence of chemical shift changes in the (15)N spectrum of URO-synthase mixed with the homogeneous HMB-synthase holoenzyme or URO-decarboxylase precluded occurrence of a stable cytosolic enzyme complex. PMID:18004775

  5. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis

    PubMed Central

    Miyanaga, Akimasa; Funa, Nobutaka; Awakawa, Takayoshi; Horinouchi, Sueharu

    2008-01-01

    Alkylresorcinols and alkylpyrones, which have a polar aromatic ring and a hydrophobic alkyl chain, are phenolic lipids found in plants, fungi, and bacteria. In the Gram-negative bacterium Azotobacter vinelandii, phenolic lipids in the membrane of dormant cysts are essential for encystment. The aromatic moieties of the phenolic lipids in A. vinelandii are synthesized by two type III polyketide synthases (PKSs), ArsB and ArsC, which are encoded by the ars operon. However, details of the synthesis of hydrophobic acyl chains, which might serve as starter substrates for the type III polyketide synthases (PKSs), were unknown. Here, we show that two type I fatty acid synthases (FASs), ArsA and ArsD, which are members of the ars operon, are responsible for the biosynthesis of C22–C26 fatty acids from malonyl-CoA. In vivo and in vitro reconstitution of phenolic lipid synthesis systems with the Ars enzymes suggested that the C22–C26 fatty acids produced by ArsA and ArsD remained attached to the ACP domain of ArsA and were transferred hand-to-hand to the active-site cysteine residues of ArsB and ArsC. The type III PKSs then used the fatty acids as starter substrates and carried out two or three extensions with malonyl-CoA to yield the phenolic lipids. The phenolic lipids in A. vinelandii were thus found to be synthesized solely from malonyl-CoA by the four members of the ars operon. This is the first demonstration that a type I FAS interacts directly with a type III PKS through substrate transfer. PMID:18199837

  6. Conversion of aminodeoxychorismate synthase into anthranilate synthase with Janus mutations: mechanism of pyruvate elimination catalyzed by chorismate enzymes.

    PubMed

    Culbertson, Justin E; Chung, Dong hee; Ziebart, Kristin T; Espiritu, Eduardo; Toney, Michael D

    2015-04-14

    The central importance of chorismate enzymes in bacteria, fungi, parasites, and plants combined with their absence in mammals makes them attractive targets for antimicrobials and herbicides. Two of these enzymes, anthranilate synthase (AS) and aminodeoxychorismate synthase (ADCS), are structurally and mechanistically similar. The first catalytic step, amination at C2, is common between them, but AS additionally catalyzes pyruvate elimination, aromatizing the aminated intermediate to anthranilate. Despite prior attempts, the conversion of a pyruvate elimination-deficient enzyme into an elimination-proficient one has not been reported. Janus, a bioinformatics method for predicting mutations required to functionally interconvert homologous enzymes, was employed to predict mutations to convert ADCS into AS. A genetic selection on a library of Janus-predicted mutations was performed. Complementation of an AS-deficient strain of Escherichia coli grown on minimal medium led to several ADCS mutants that allow growth in 6 days compared to 2 days for wild-type AS. The purified mutant enzymes catalyze the conversion of chorismate to anthranilate at rates that are ∼50% of the rate of wild-type ADCS-catalyzed conversion of chorismate to aminodeoxychorismate. The residues mutated do not contact the substrate. Molecular dynamics studies suggest that pyruvate elimination is controlled by the conformation of the C2-aminated intermediate. Enzymes that catalyze elimination favor the equatorial conformation, which presents the C2-H to a conserved active site lysine (Lys424) for deprotonation and maximizes stereoelectronic activation. Acid/base catalysis of pyruvate elimination was confirmed in AS and salicylate synthase by showing incorporation of a solvent-derived proton into the pyruvate methyl group and by solvent kinetic isotope effects on pyruvate elimination catalyzed by AS. PMID:25710100

  7. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis.

    PubMed

    Miyanaga, Akimasa; Funa, Nobutaka; Awakawa, Takayoshi; Horinouchi, Sueharu

    2008-01-22

    Alkylresorcinols and alkylpyrones, which have a polar aromatic ring and a hydrophobic alkyl chain, are phenolic lipids found in plants, fungi, and bacteria. In the Gram-negative bacterium Azotobacter vinelandii, phenolic lipids in the membrane of dormant cysts are essential for encystment. The aromatic moieties of the phenolic lipids in A. vinelandii are synthesized by two type III polyketide synthases (PKSs), ArsB and ArsC, which are encoded by the ars operon. However, details of the synthesis of hydrophobic acyl chains, which might serve as starter substrates for the type III polyketide synthases (PKSs), were unknown. Here, we show that two type I fatty acid synthases (FASs), ArsA and ArsD, which are members of the ars operon, are responsible for the biosynthesis of C(22)-C(26) fatty acids from malonyl-CoA. In vivo and in vitro reconstitution of phenolic lipid synthesis systems with the Ars enzymes suggested that the C(22)-C(26) fatty acids produced by ArsA and ArsD remained attached to the ACP domain of ArsA and were transferred hand-to-hand to the active-site cysteine residues of ArsB and ArsC. The type III PKSs then used the fatty acids as starter substrates and carried out two or three extensions with malonyl-CoA to yield the phenolic lipids. The phenolic lipids in A. vinelandii were thus found to be synthesized solely from malonyl-CoA by the four members of the ars operon. This is the first demonstration that a type I FAS interacts directly with a type III PKS through substrate transfer.

  8. Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N-acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N-acetylglutamate synthase

    SciTech Connect

    Shi, Dashuang Caldovic, Ljubica; Jin, Zhongmin; Yu, Xiaolin; Qu, Qiuhao; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel

    2006-12-01

    Expression, crystallization and preliminary X-ray diffraction studies of a novel bifunctional N-acetylglutamate synthase/kinase from X. campestris homologous to vertebrate N-acetylglutamate synthase are reported. A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6{sub 2}22, with unit-cell parameters a = b = 134.60, c = 192.11 Å, and diffract to about 3.0 Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method.

  9. Tryptophan synthase: a multienzyme complex with an intramolecular tunnel.

    PubMed

    Miles, E W

    2001-01-01

    Tryptophan synthase is a classic enzyme that channels a metabolic intermediate, indole. The crystal structure of the tryptophan synthase alpha2beta2 complex from Salmonella typhimurium revealed for the first time the architecture of a multienzyme complex and the presence of an intramolecular tunnel. This remarkable hydrophobic tunnel provides a likely passageway for indole from the active site of the alpha subunit, where it is produced, to the active site of the beta subunit, where it reacts with L-serine to form L-tryptophan in a pyridoxal phosphate-dependent reaction. Rapid kinetic studies of the wild type enzyme and of channel-impaired mutant enzymes provide strong evidence for the proposed channeling mechanism. Structures of a series of enzyme-substrate intermediates at the alpha and beta active sites are elucidating enzyme mechanisms and dynamics. These structural results are providing a fascinating picture of loops opening and closing, of domain movements, and of conformational changes in the indole tunnel. Solution studies provide further evidence for ligand-induced conformational changes that send signals between the alpha and beta subunits. The combined results show that the switching of the enzyme between open and closed conformations couples the catalytic reactions at the alpha and beta active sites and prevents the escape of indole.

  10. Chromosomal localization of the human and mouse hyaluronan synthase genes

    SciTech Connect

    Spicer, A.P.; McDonald, J.A.; Seldin, M.F.

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  11. Inhibitors to Polyhydroxyalkanoate (PHA) Synthases: Synthesis, Molecular Docking, and Implications

    PubMed Central

    Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered as an ideal alternative to nonbiodegradable synthetic plastics. However, study of PhaC has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty along with lack of a structure has become the main hurdle to understand and engineer PhaCs for economical PHA production. Here we reported the synthesis of two carbadethia CoA analogs, sT-CH2-CoA 26a and sTet-CH2-CoA 26b as well as sT-aldehyde 29 as new PhaC inhibitors. Study of these analogs with PhaECAv revealed that 26a/b and 29 are competitive and mixed inhibitors, respectively. It was observed that CoA moiety and PHA chain extension can increase binding affinity, which is consistent with the docking study. Estimation from Kic of 26a/b predicts that a CoA analog attached with an octameric-HB chain may facilitate the formation of a kinetically well-behaved synthase. PMID:25394180

  12. Ack kinase regulates CTP synthase filaments during Drosophila oogenesis.

    PubMed

    Strochlic, Todd I; Stavrides, Kevin P; Thomas, Sam V; Nicolas, Emmanuelle; O'Reilly, Alana M; Peterson, Jeffrey R

    2014-11-01

    The enzyme CTP synthase (CTPS) dynamically assembles into macromolecular filaments in bacteria, yeast, Drosophila, and mammalian cells, but the role of this morphological reorganization in regulating CTPS activity is controversial. During Drosophila oogenesis, CTPS filaments are transiently apparent in ovarian germline cells during a period of intense genomic endoreplication and stockpiling of ribosomal RNA. Here, we demonstrate that CTPS filaments are catalytically active and that their assembly is regulated by the non-receptor tyrosine kinase DAck, the Drosophila homologue of mammalian Ack1 (activated cdc42-associated kinase 1), which we find also localizes to CTPS filaments. Egg chambers from flies deficient in DAck or lacking DAck catalytic activity exhibit disrupted CTPS filament architecture and morphological defects that correlate with reduced fertility. Furthermore, ovaries from these flies exhibit reduced levels of total RNA, suggesting that DAck may regulate CTP synthase activity. These findings highlight an unexpected function for DAck and provide insight into a novel pathway for the developmental control of an essential metabolic pathway governing nucleotide biosynthesis.

  13. Eugenol synthase genes in floral scent variation in Gymnadenia species.

    PubMed

    Gupta, Alok K; Schauvinhold, Ines; Pichersky, Eran; Schiestl, Florian P

    2014-12-01

    Floral signaling, especially through floral scent, is often highly complex, and little is known about the molecular mechanisms and evolutionary causes of this complexity. In this study, we focused on the evolution of "floral scent genes" and the associated changes in their functions in three closely related orchid species of the genus Gymnadenia. We developed a benchmark repertoire of 2,571 expressed sequence tags (ESTs) in Gymnadenia odoratissima. For the functional characterization and evolutionary analysis, we focused on eugenol synthase, as eugenol is a widespread and important scent compound. We obtained complete coding complementary DNAs (cDNAs) of two copies of putative eugenol synthase genes in each of the three species. The proteins encoded by these cDNAs were characterized by expression and testing for activity in Escherichia coli. While G. odoratissima and Gymnadenia conopsea enzymes were found to catalyze the formation of eugenol only, the Gymnadenia densiflora proteins synthesize eugenol, as well as a smaller amount of isoeugenol. Finally, we showed that the eugenol and isoeugenol producing gene copies of G. densiflora are evolutionarily derived from the ancestral genes of the other species producing only eugenol. The evolutionary switch from production of one to two compounds evolved under relaxed purifying selection. In conclusion, our study shows the molecular bases of eugenol and isoeugenol production and suggests that an evolutionary transition in a single gene can lead to an increased complexity in floral scent emitted by plants.

  14. Structural basis for glucose-6-phosphate activation of glycogen synthase

    SciTech Connect

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.

  15. GAPDH regulates cellular heme insertion into inducible nitric oxide synthase

    PubMed Central

    Chakravarti, Ritu; Aulak, Kulwant S.; Fox, Paul L.; Stuehr, Dennis J.

    2010-01-01

    Heme proteins play essential roles in biology, but little is known about heme transport inside mammalian cells or how heme is inserted into soluble proteins. We recently found that nitric oxide (NO) blocks cells from inserting heme into several proteins, including cytochrome P450s, hemoglobin, NO synthases, and catalase. This finding led us to explore the basis for NO inhibition and to identify cytosolic proteins that may be involved, using inducible NO synthase (iNOS) as a model target. Surprisingly, we found that GAPDH plays a key role. GAPDH was associated with iNOS in cells. Pure GAPDH bound tightly to heme or to iNOS in an NO-sensitive manner. GAPDH knockdown inhibited heme insertion into iNOS and a GAPDH mutant with defective heme binding acted as a dominant negative inhibitor of iNOS heme insertion. Exposing cells to NO either from a chemical donor or by iNOS induction caused GAPDH to become S-nitrosylated at Cys152. Expressing a GAPDH C152S mutant in cells or providing a drug to selectively block GAPDH S-nitrosylation both made heme insertion into iNOS resistant to the NO inhibition. We propose that GAPDH delivers heme to iNOS through a process that is regulated by its S-nitrosylation. Our findings may uncover a fundamental step in intracellular heme trafficking, and reveal a mechanism whereby NO can govern the process. PMID:20921417

  16. Phytochelatin synthase activity as a marker of metal pollution.

    PubMed

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina; Adam, Vojtech; Zehnalek, Josef; Beklova, Miroslava; Kizek, Rene

    2011-08-30

    The synthesis of phytochelatins is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO(3))(2) for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35°C for 30min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270fkat) in treated cells was more than seven times higher in comparison to control ones. K(m) for PCS was estimated as 2.3mM. PMID:21715087

  17. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.

    PubMed

    Zhang, Wei; Chen, Chao; Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase.

  18. INHIBITION OF NITRIC OXIDE SYNTHASE BY COBALAMINS AND COBINAMIDES*

    PubMed Central

    Weinberg, J. Brice; Chen, Youwei; Jiang, Ning; Beasley, Bethany E.; Salerno, John C.; Ghosh, Dipak K.

    2009-01-01

    Cobalamins (Cbl) are important co-factors for methionine synthase and methylmalonyl-coA mutase. Certain corrins also bind nitric oxide (NO), quenching its bioactivity. To determine if corrins would inhibit NO synthase (NOS), we measured their effects on 14-C-L-arginine-to-14-C-L-citrulline conversion by NOS1, NOS2, and NOS3. Hydroxocobalamin (OH-Cbl), cobinamide (Cbi), and dicyanocobinamide (CN2-Cbi) potently inhibited all isoforms, whfile cyanocobalamin, methylcobalamin, and adenosylcobalamin had much less effect. OH-Cbl and CN2-Cbi prevented binding of the oxygen analog carbon monoxide (CO) to the reduced NOS1 and NOS2 heme active site. CN2-Cbi did not react directly with NO or CO. Spectral perturbation analysis showed that CN2-Cbi interacted directly with the purified NOS1 oxygenase domain. NOS inhibition by corrins was rapid and not reversed by dialysis with L-arginine, tetrahydrobiopterin. Molecular modeling indicated that corrins could access the unusually large heme and substrate-binding pocket of NOS. Best fits were obtained in the “base-off” conformation of the lower axial dimethylbenzimidazole ligand. CN2-Cbi inhibited interferon-γ-activated Raw264.7 mouse macrophage NO production. We show for the first time that certain corrins directly inhibit NOS, suggesting that these agents (or their derivatives) may have pharmacological utility. Endogenous cobalamins and cobinamides might play important roles regulating NOS activity in normal and pathological conditions. PMID:19328848

  19. Preliminary crystallographic analysis of sugar cane phosphoribosylpyrophosphate synthase

    SciTech Connect

    Napolitano, H. B.; Sculaccio, S. A.; Thiemann, O. H.; Oliva, G.

    2005-01-01

    X-ray diffraction data have been collected from crystals of recombinant sugar cane phosphoribosylpyrophosphate synthase (PRS) and analysis has revealed its quaternary structure, localizing this PRS into the class of enzymes forming an hexameric oligomer of 223 kDa. Phosphoribosylpyrophosphate synthases (PRS; EC 2.7.6.1) are enzymes that are of central importance in several metabolic pathways in all cells. The sugar cane PRS enzyme contains 328 amino acids with a molecular weight of 36.6 kDa and represents the first plant PRS to be crystallized, as well as the first phosphate-independent PRS to be studied in molecular detail. Sugar cane PRS was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Using X-ray diffraction experiments it was determined that the crystals belong to the orthorhombic system, with space group P2{sub 1}2{sub 1}2 and unit-cell parameters a = 213.2, b = 152.6, c = 149.3 Å. The crystals diffract to a maximum resolution of 3.3 Å and a complete data set to 3.5 Å resolution was collected and analysed.

  20. The crystal structure of human GDP-L-fucose synthase.

    PubMed

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  1. In vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    PubMed Central

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian; Krucewicz, Katarzyna; Beeren, Sophie R.; Rydhal, Maja G.; Yoshimura, Yayoi; Striebeck, Alexander; Motawia, Mohammed S.; Willats, William G. T.; Palcic, Monica M.

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates. PMID:26858729

  2. Polyketide synthases from poison hemlock (Conium maculatum L.).

    PubMed

    Hotti, Hannu; Seppänen-Laakso, Tuulikki; Arvas, Mikko; Teeri, Teemu H; Rischer, Heiko

    2015-11-01

    Coniine is a toxic alkaloid, the biosynthesis of which is not well understood. A possible route, supported by evidence from labelling experiments, involves a polyketide formed by the condensation of one acetyl-CoA and three malonyl-CoAs catalysed by a polyketide synthase (PKS). We isolated PKS genes or their fragments from poison hemlock (Conium maculatum L.) by using random amplification of cDNA ends (RACE) and transcriptome analysis, and characterized three full-length enzymes by feeding different starter-CoAs in vitro. On the basis of our in vitro experiments, two of the three characterized PKS genes in poison hemlock encode chalcone synthases (CPKS1 and CPKS2), and one encodes a novel type of PKS (CPKS5). We show that CPKS5 kinetically favours butyryl-CoA as a starter-CoA in vitro. Our results suggest that CPKS5 is responsible for the initiation of coniine biosynthesis by catalysing the synthesis of the carbon backbone from one butyryl-CoA and two malonyl-CoAs.

  3. Aldosterone synthase inhibitors in hypertension: current status and future possibilities

    PubMed Central

    Hargovan, Milan

    2014-01-01

    The renin-angiotensin aldosterone system is a critical mechanism for controlling blood pressure, and exerts most of its physiological effects through the action of angiotensin II. In addition to increasing blood pressure by increasing vascular resistance, angiotensin II also stimulates aldosterone secretion from the adrenal gland. Aldosterone acts to cause an increase in sodium and water reabsorption, thus elevating blood pressure. Although treatment with angiotensin converting enzyme inhibitors initially lowers circulating aldosterone, with chronic treatment aldosterone levels increase back to baseline, a phenomenon termed aldosterone escape; aldosterone blockade may therefore give added value in the treatment of hypertension. The first mineralocorticoid receptor antagonist developed was spironolactone, but its use has been severely hampered by adverse (notably oestrogenic) effects. The more recently developed mineralocorticoid receptor antagonist eplerenone exhibits a better adverse effect profile, although it is not devoid of effects similar to spironolactone. In addition, aldosterone activates non-genomic receptors that are not inhibited by either eplerenone or spironolactone. It is believed that deleterious organ remodelling is mediated by aldosterone via such non-genomic pathways. A new class of drugs, the aldosterone synthase inhibitors, is currently under development. These may offer a novel therapeutic approach for both lowering blood pressure and preventing the non-genomic effects of aldosterone. Here, we will review the cardiovascular effects of aldosterone and review the drugs available that target this hormone, with a particular focus on the aldosterone synthase inhibitors. PMID:24570839

  4. Pterins inhibit nitric oxide synthase activity in rat alveolar macrophages.

    PubMed Central

    Jorens, P. G.; van Overveld, F. J.; Bult, H.; Vermeire, P. A.; Herman, A. G.

    1992-01-01

    1. The synthesis of nitrite and citrulline from L-arginine by immune-stimulated rat alveolar macrophages and the modulation of this synthesis were studied. 2,4-Diamino-6-hydroxypyrimidine (DAHP), 6R-5,6,7,8-tetrahydro-L-biopterin (BH4) and L-sepiapterin were potent inhibitors of the recombinant interferon-gamma induced production of nitrogen oxides in intact cultured cells with I50 values for BH4 and L-sepiapterin of approximately 10 microM. They were equally effective in inhibiting the induced production of citrulline. This inhibitory effect was concentration-dependent for all three modulators investigated. 2. The inhibitory effects were not dependent on incubation times of either 24 or 48 h, on the immune-stimulus used (lipopolysaccharide, interferon-gamma), or whether these stimuli were added during or after the induction period. 3. Pterin-6-carboxylic acid (PCA), which cannot be converted into BH4, and methotrexate (MTX), which inhibits dihydrofolatereductase but not de novo biosynthesis of BH4, did not change the production of nitrite. 4. The data indicate that DAHP, an inhibitor of the de novo biosynthesis of the co-factor BH4, blocks the nitric oxide synthase activity in intact cells. Since the pterins BH4 and L-sepiapterin blocked the L-arginine dependent production of nitrite and citrulline, the activity of nitric oxide synthase in phagocytic cells may be regulated by metabolic endproducts of the de novo biosynthesis of BH4. PMID:1281717

  5. Studies of inositol 1-phosphate analogues as inhibitors of the phosphatidylinositol phosphate synthase in mycobacteria.

    PubMed

    Morii, Hiroyuki; Okauchi, Tatsuo; Nomiya, Hiroki; Ogawa, Midori; Fukuda, Kazumasa; Taniguchi, Hatsumi

    2013-03-01

    We previously reported a novel pathway for the biosynthesis of phosphatidylinositol in mycobacteria via phosphatidylinositol phosphate (PIP) [Morii H., Ogawa, M., Fukuda, K., Taniguchi, H., and Koga, Y (2010) J. Biochem. 148, 593-602]. PIP synthase in the pathway is a promising target for the development of new anti-mycobacterium drugs. In the present study, we evaluated the characteristics of the PIP synthase of Mycobacterium tuberculosis. Four types of compounds were chemically synthesized based on the assumption that structural homologues of inositol 1-phosphate, a PIP synthase substrate, would act as PIP synthase inhibitors, and the results confirmed that all synthesized compounds inhibited PIP synthase activity. The phosphonate analogue of inositol 1-phosphate (Ino-C-P) had the greatest inhibitory effect among the synthesized compounds examined. Kinetic analysis indicated that Ino-C-P acted as a competitive inhibitor of inositol 1-phosphate. The IC(50) value for Ino-C-P inhibition of the PIP synthase activity was estimated to be 2.0 mM. Interestingly, Ino-C-P was utilized in the same manner as the normal PIP synthase substrate, leading to the synthesis of a phosphonate analogue of PIP (PI-C-P), which had a structure similar to that of the natural product, PIP. In addition, PI-C-P had high inhibitory activity against PIP synthase.

  6. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli.

    PubMed Central

    Del Campo, M; Kaya, Y; Ofengand, J

    2001-01-01

    There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work. PMID:11720289

  7. Ethylene-Enhanced 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Ripening Apples 1

    PubMed Central

    Bufler, Gebhard

    1984-01-01

    Apples (Malus sylvestris Mill, cv Golden Delicious) were treated before harvest with aminoethoxyvinylglycine (AVG). AVG is presumed to reversibly inhibit 1-aminocyclopropane-1-carboxylic acid (ACC) activity, but not the formation of ACC synthase. AVG treatment effectively blocked initiation of autocatalytic ethylene production and ripening of harvested apples. Exogenous ethylene induced extractable ACC synthase activity and ripening in AVG-treated apples. Removal of exogenous ethylene caused a rapid decline in ACC synthase activity and in CO2 production. The results with ripened, AVG-treated apples indicate (a) a dose-response relationship between ethylene and enhancement of ACC synthase activity with a half-maximal response at approximately 0.8 μl/l ethylene; (b) reversal of ethylene-enhanced ACC synthase activity by CO2; (c) enhancement of ACC synthase activity by the ethylene-activity analog propylene. Induction of ACC synthase activity, autocatalytic ethylene production, and ripening of preclimacteric apples not treated with AVG were delayed by 6 and 10% CO2, but not by 1.25% CO2. However, each of these CO2 concentrations reduced the rate of increase of ACC synthase activity. PMID:16663569

  8. Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria.

    PubMed

    Mühleip, Alexander W; Joos, Friederike; Wigge, Christoph; Frangakis, Achilleas S; Kühlbrandt, Werner; Davies, Karen M

    2016-07-26

    F1Fo-ATP synthases are universal energy-converting membrane protein complexes that synthesize ATP from ADP and inorganic phosphate. In mitochondria of yeast and mammals, the ATP synthase forms V-shaped dimers, which assemble into rows along the highly curved ridges of lamellar cristae. Using electron cryotomography and subtomogram averaging, we have determined the in situ structure and organization of the mitochondrial ATP synthase dimer of the ciliate Paramecium tetraurelia. The ATP synthase forms U-shaped dimers with parallel monomers. Each complex has a prominent intracrista domain, which links the c-ring of one monomer to the peripheral stalk of the other. Close interaction of intracrista domains in adjacent dimers results in the formation of helical ATP synthase dimer arrays, which differ from the loose dimer rows in all other organisms observed so far. The parameters of the helical arrays match those of the cristae tubes, suggesting the unique features of the P. tetraurelia ATP synthase are directly responsible for generating the helical tubular cristae. We conclude that despite major structural differences between ATP synthase dimers of ciliates and other eukaryotes, the formation of ATP synthase dimer rows is a universal feature of mitochondria and a fundamental determinant of cristae morphology. PMID:27402755

  9. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  10. Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria

    PubMed Central

    Mühleip, Alexander W.; Joos, Friederike; Wigge, Christoph; Frangakis, Achilleas S.; Kühlbrandt, Werner; Davies, Karen M.

    2016-01-01

    F1Fo-ATP synthases are universal energy-converting membrane protein complexes that synthesize ATP from ADP and inorganic phosphate. In mitochondria of yeast and mammals, the ATP synthase forms V-shaped dimers, which assemble into rows along the highly curved ridges of lamellar cristae. Using electron cryotomography and subtomogram averaging, we have determined the in situ structure and organization of the mitochondrial ATP synthase dimer of the ciliate Paramecium tetraurelia. The ATP synthase forms U-shaped dimers with parallel monomers. Each complex has a prominent intracrista domain, which links the c-ring of one monomer to the peripheral stalk of the other. Close interaction of intracrista domains in adjacent dimers results in the formation of helical ATP synthase dimer arrays, which differ from the loose dimer rows in all other organisms observed so far. The parameters of the helical arrays match those of the cristae tubes, suggesting the unique features of the P. tetraurelia ATP synthase are directly responsible for generating the helical tubular cristae. We conclude that despite major structural differences between ATP synthase dimers of ciliates and other eukaryotes, the formation of ATP synthase dimer rows is a universal feature of mitochondria and a fundamental determinant of cristae morphology. PMID:27402755

  11. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli.

    PubMed

    Del Campo, M; Kaya, Y; Ofengand, J

    2001-11-01

    There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work.

  12. ATP synthase in mycobacteria: special features and implications for a function as drug target.

    PubMed

    Lu, Ping; Lill, Holger; Bald, Dirk

    2014-07-01

    ATP synthase is a ubiquitous enzyme that is largely conserved across the kingdoms of life. This conservation is in accordance with its central role in chemiosmotic energy conversion, a pathway utilized by far by most living cells. On the other hand, in particular pathogenic bacteria whilst employing ATP synthase have to deal with energetically unfavorable conditions such as low oxygen tensions in the human host, e.g. Mycobacterium tuberculosis can survive in human macrophages for an extended time. It is well conceivable that such ATP synthases may carry idiosyncratic features that contribute to efficient ATP production. In this review genetic and biochemical data on mycobacterial ATP synthase are discussed in terms of rotary catalysis, stator composition, and regulation of activity. ATP synthase in mycobacteria is of particular interest as this enzyme has been validated as a target for promising new antibacterial drugs. A deeper understanding of the working of mycobacterial ATP synthase and its atypical features can provide insight in adaptations of bacterial energy metabolism. Moreover, pinpointing and understanding critical differences as compared with human ATP synthase may provide input for the design and development of selective ATP synthase inhibitors as antibacterials. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.

  13. The action of exogenous abscisic acid on malate-synthase synthesis in germinating castor-bean seeds.

    PubMed

    Dommes, J; Northcote, D H

    1985-12-01

    The presence of 30 μM abscisic acid inhibited development of malate-synthase activity in the endosperm of germinating castor-bean seeds. Malate synthase was purified from castor-bean endosperms and an antibody to it was prepared from rabbit serum. This antibody was used to measure the amounts of malate-synthase mRNA using an in-vitro translation system. The effect of abscisic acid appeared to be greater on malate-synthase mRNA than on the bulk of mRNA, indicating some specificity of abscisic-acid action. The extent of the inhibition of malate-synthase activity and of malate-synthase mRNA accumulation were similar. This indicates that abscisic acid inhibits malate-synthase activity by lowering levels of translatable malate-synthase mRNA rather than by affecting the translation rate of this mRNA.

  14. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris.

    PubMed

    Rudolph, Kristin; Parthier, Christoph; Egerer-Sieber, Claudia; Geiger, Daniel; Muller, Yves A; Kreis, Wolfgang; Müller-Uri, Frieder

    2016-01-01

    The biosynthesis of γ-terpinene, a precursor of the phenolic isomers thymol and carvacrol found in the essential oil from Thymus sp., is attributed to the activitiy of γ-terpinene synthase (TPS). Purified γ-terpinene synthase from T. vulgaris (TvTPS), the Thymus species that is the most widely spread and of the greatest economical importance, is able to catalyze the enzymatic conversion of geranyl diphosphate (GPP) to γ-terpinene. The crystal structure of recombinantly expressed and purified TvTPS is reported at 1.65 Å resolution, confirming the dimeric structure of the enzyme. The putative active site of TvTPS is deduced from its pronounced structural similarity to enzymes from other species of the Lamiaceae family involved in terpenoid biosynthesis: to (+)-bornyl diphosphate synthase and 1,8-cineole synthase from Salvia sp. and to (4S)-limonene synthase from Mentha spicata. PMID:26750479

  15. Cloning and characterization of the Dictyostelium discoideum cycloartenol synthase cDNA.

    PubMed

    Godzina, S M; Lovato, M A; Meyer, M M; Foster, K A; Wilson, W K; Gu, W; de Hostos, E L; Matsuda, S P

    2000-03-01

    Cycloartenol synthase converts oxidosqualene to cycloartenol, the first carbocyclic intermediate en route to sterols in plants and many protists. Presented here is the first cycloartenol synthase gene identified from a protist, the cellular slime mold Dictyostelium discoideum. The cDNA encodes an 81-kDa predicted protein 50-52% identical to known higher plant cycloartenol synthases and 40-49% identical to known lanosterol synthases from fungi and mammals. The encoded protein expressed in transgenic Saccharomyces cerevisiae converted synthetic oxidosqualene to cycloartenol in vitro. This product was characterized by 1H and 13C nuclear magnetic resonance and gas chromatography-mass spectrometry. The predicted protein sequence diverges sufficiently from the known cycloartenol synthase sequences to dramatically reduce the number of residues that are candidates for the catalytic difference between cycloartenol and lanosterol formation.

  16. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM.

    PubMed

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-10-06

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.

  17. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway

    PubMed Central

    Su, Ping; Tong, Yuru; Cheng, Qiqing; Hu, Yating; Zhang, Meng; Yang, Jian; Teng, Zhongqiu; Gao, Wei; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge is highly valued in traditional Chinese medicine for its roots and rhizomes. Its bioactive diterpenoid tanshinones have been reported to have many pharmaceutical activities, including antibacterial, anti-inflammatory, and anticancer properties. Previous studies found four different diterpenoid biosynthetic pathways from the universal diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) in S. miltiorrhiza. Here, we describe the functional characterization of ent-copalyl diphosphate synthase (SmCPSent), kaurene synthase (SmKS) and kaurene oxidase (SmKO) in the gibberellin (GA) biosynthetic pathway. SmCPSent catalyzes the cyclization of GGPP to ent-copalyl diphosphate (ent-CPP), which is converted to ent-kaurene by SmKS. Then, SmKO catalyzes the three-step oxidation of ent-kaurene to ent-kaurenoic acid. Our results show that the fused enzyme SmKS-SmCPSent increases ent-kaurene production by several fold compared with separate expression of SmCPSent and SmKS in yeast strains. In this study, we clarify the GA biosynthetic pathway from GGPP to ent-kaurenoic acid and provide a foundation for further characterization of the subsequent enzymes involved in this pathway. These insights may allow for better growth and the improved accumulation of bioactive tanshinones in S. miltiorrhiza through the regulation of the expression of these genes during developmental processes. PMID:26971881

  18. A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase

    PubMed Central

    Cocuron, Jean-Christophe; Lerouxel, Olivier; Drakakaki, Georgia; Alonso, Ana P.; Liepman, Aaron H.; Keegstra, Kenneth; Raikhel, Natasha; Wilkerson, Curtis G.

    2007-01-01

    Despite the central role of xyloglucan (XyG) in plant cell wall structure and function, important details of its biosynthesis are not understood. To identify the gene(s) responsible for synthesizing the β-1,4 glucan backbone of XyG, we exploited a property of nasturtium (Tropaeolum majus) seed development. During the last stages of nasturtium seed maturation, a large amount of XyG is deposited as a reserve polysaccharide. A cDNA library was produced from mRNA isolated during the deposition of XyG, and partial sequences of 10,000 cDNA clones were determined. A single member of the C subfamily from the large family of cellulose synthase-like (CSL) genes was found to be overrepresented in the cDNA library. Heterologous expression of this gene in the yeast Pichia pastoris resulted in the production of a β-1,4 glucan, confirming that the CSLC protein has glucan synthase activity. The Arabidopsis CSLC4 gene, which is the gene with the highest sequence similarity to the nasturtium CSL gene, is coordinately expressed with other genes involved in XyG biosynthesis. These and other observations provide a compelling case that the CSLC gene family encode proteins that synthesize the XyG backbone. PMID:17488821

  19. Biochemistry of prostaglandin endoperoxide H synthase-1 and synthase-2 and their differential susceptibility to nonsteroidal anti-inflammatory drugs.

    PubMed

    Smith, W L; DeWitt, D L

    1995-05-01

    The principal pharmacological effects of nonsteroidal anti-inflammatory drugs (NSAIDs) are due to their ability to inhibit prostaglandin synthesis. NSAIDs block the cyclooxygenase activities of the closely related PGH synthase-1 and PGH synthase-2 (PGHS-1 and PGHS-2) isozymes. NSAIDs are therapeutically useful due to their analgesic, anti-pyretic, anti-inflammatory, and anti-thrombogenic properties. Major side-effects of NSAIDs include their ulcerogenic and nephrotoxic activities. All clinically approved NSAIDs in general use today inhibit both PGHS-1 and PGHS-2. Recently, inhibitors have been identified that are selective toward PGHS-2 and that have potent analgesic and anti-inflammatory activities with minimal ulcerogenic activity. If the new PGHS-2 selective NSAIDs can effectively inhibit inflammatory prostaglandin synthesis by PGHS-2, without inhibiting PGHS-1 prostaglandin synthesis required to regulate sodium and water resorption, and renal blood flow, it is likely that these new drugs will also have significantly less renal toxicity than present-day NSAIDs. In this article, the mechanisms of actions of NSAIDs primarily at the biochemical level, including the reactions catalyzed by PGHSs, will be discussed. In addition, the biochemical properties of these isozymes, and the differential regulation of the PGHS-1 and PGHS-2 genes, will be examined. PMID:7631045

  20. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase.

    PubMed

    Smith, Amber Marie; Brown, William Clay; Harms, Etti; Smith, Janet L

    2015-02-27

    PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5'-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate. PMID:25568319

  1. Inhibition of nitric oxide synthase does not impair spatial learning.

    PubMed

    Bannerman, D M; Chapman, P F; Kelly, P A; Butcher, S P; Morris, R G

    1994-12-01

    Nitric oxide (NO), a putative intercellular messenger in the CNS, may be involved in certain forms of synaptic plasticity and learning. This article reports a series of experiments investigating the effects of N omega-nitro-L-arginine methyl ester (L-NAME) upon various forms of learning and memory in the watermaze. L-NAME (75 mg/kg, i.p., sufficient to bring about > 90% inhibition of NO synthesis in brain) produced an apparent impairment in spatial learning when given to naive rats during acquisition (3 d, six training trials per day). This impairment was dose related, stereoselective, and attenuated by coadministration of L-arginine. A second study showed that L-NAME did not affect the retention of a previously learned spatial task. In addition, in a visual discrimination task, the rate at which criterion levels of performance were reached was unaffected by L-NAME. Thus, inhibition of NO synthase may cause a selective impairment of spatial learning without effect upon retention. However, analysis of the early training trials of the visual discrimination task revealed significantly elevated escape latencies in the L-NAME-treated rats, suggesting that inhibition of NO synthase may have more general effects. As normal rats learn the spatial task very rapidly, the possibility arises that the apparent deficit in learning is due to a disruption of some process other than learning per se. A further series of experiments investigated this possibility. L-NAME was found not to impair the learning of a new platform position in the same spatial environment. Surprisingly, L-NAME also had no effect on spatial learning in a second watermaze located in a novel spatial environment by rats well practiced with all aspects of watermaze training. Finally, L-NAME had no effect on spatial learning in naive rats trained with just one trial per day. Thus, systemic injection of an NO synthase inhibitor impairs behavioral performance in two tasks during their initial acquisition, but the

  2. mRNA expressions of inducible nitric oxide synthase, endothelial nitric oxide synthase, and neuronal nitric oxide synthase genes in meningitis patients.

    PubMed

    Oztuzcu, Serdar; Igci, Yusuf Ziya; Arslan, Ahmet; Sivasli, Ercan; Ozkara, Esma; Igci, Mehri; Demiryürek, Seniz; Cengiz, Beyhan; Gogebakan, Bulent; Namiduru, Mustafa; Coskun, Mehmet Yavuz; Cakmak, Ecir Ali

    2011-03-01

    Meningitis is an inflammation of the protective membranes covering the brain and spinal cord caused by bacteria, fungi, or viruses with various clinical symptoms. Although meningitis is not so prevalent, it remains the most serious contagious disease. The aim of our study was to investigate the effect of gene expressions of nitric oxide synthases (NOS) on meningitis patients. Using samples taken from 61 meningitis patients, inducible NOS, endothelial NOS (eNOS), and neuronal NOS mRNA levels were assessed in both blood and cerebrospinal fluid (CSF). A control group was constructed of 64 healthy persons. The gene expression analysis was made using real-time polymerase chain reaction method. There was no neuronal NOS expression in either group, whereas inducible NOS expression was detected in 40 blood samples and 12 CSF samples from meningitis patients. However, there were no marked differences between groups (p=0.5104). eNOS expression was detected in all blood and CSF samples, which was markedly higher in patients (p=0.0367). Because the increase in eNOS expression increases NO production, eNOS expression in meningitis patients is of great importance. This increase of eNOS in meningitis patients compared with healthy subjects may lead to novel treatments for reducing the severity of the disease.

  3. The Interplay between Myc and CTP Synthase in Drosophila

    PubMed Central

    Aughey, Gabriel N.; Grice, Stuart J.; Liu, Ji-Long

    2016-01-01

    CTP synthase (CTPsyn) is essential for the biosynthesis of pyrimidine nucleotides. It has been shown that CTPsyn is incorporated into a novel cytoplasmic structure which has been termed the cytoophidium. Here, we report that Myc regulates cytoophidium formation during Drosophila oogenesis. We have found that Myc protein levels correlate with cytoophidium abundance in follicle epithelia. Reducing Myc levels results in cytoophidium loss and small nuclear size in follicle cells, while overexpression of Myc increases the length of cytoophidia and the nuclear size of follicle cells. Ectopic expression of Myc induces cytoophidium formation in late stage follicle cells. Furthermore, knock-down of CTPsyn is sufficient to suppress the overgrowth phenotype induced by Myc overexpression, suggesting CTPsyn acts downstream of Myc and is required for Myc-mediated cell size control. Taken together, our data suggest a functional link between Myc, a renowned oncogene, and the essential nucleotide biosynthetic enzyme CTPsyn. PMID:26889675

  4. Sphingomyelin Synthase 1 Is Essential for Male Fertility in Mice

    PubMed Central

    Scherthan, Harry; Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Ford, Steven J.; Burton, Neal C.; Razansky, Daniel; Trümbach, Dietrich; Aichler, Michaela; Walch, Axel Karl; Calzada-Wack, Julia; Neff, Frauke; Wurst, Wolfgang; Hartmann, Tobias; Floss, Thomas

    2016-01-01

    Sphingolipids and the derived gangliosides have critical functions in spermatogenesis, thus mutations in genes involved in sphingolipid biogenesis are often associated with male infertility. We have generated a transgenic mouse line carrying an insertion in the sphingomyelin synthase gene Sms1, the enzyme which generates sphingomyelin species in the Golgi apparatus. We describe the spermatogenesis defect of Sms1-/- mice, which is characterized by sloughing of spermatocytes and spermatids, causing progressive infertility of male homozygotes. Lipid profiling revealed a reduction in several long chain unsaturated phosphatidylcholins, lysophosphatidylcholins and sphingolipids in the testes of mutants. Multi-Spectral Optoacoustic Tomography indicated blood-testis barrier dysfunction. A supplementary diet of the essential omega-3 docosahexaenoic acid and eicosapentaenoic acid diminished germ cell sloughing from the seminiferous epithelium and restored spermatogenesis and fertility in 50% of previously infertile mutants. Our findings indicate that SMS1 has a wider than anticipated role in testis polyunsaturated fatty acid homeostasis and for male fertility. PMID:27788151

  5. Identification of sucrose synthase as an actin-binding protein

    NASA Technical Reports Server (NTRS)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  6. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering.

    PubMed

    Zerbe, Philipp; Bohlmann, Jörg

    2015-07-01

    Plants produce thousands of diterpenoid natural products; some of which are of significant industrial value as biobased pharmaceuticals (taxol), fragrances (sclareol), food additives (steviosides), and commodity chemicals (diterpene resin acids). In nature, diterpene synthase (diTPS) enzymes are essential for generating diverse diterpene hydrocarbon scaffolds. While some diTPSs also form oxygenated compounds, more commonly, oxygenation is achieved by cytochrome P450-dependent mono-oxygenases. Recent genome-, transcriptome-, and metabolome-guided gene discovery and enzyme characterization identified novel diTPS functions that form the core of complex modular pathway systems. Insights into diterpene metabolism may translate into the development of new bioengineered microbial and plant-based production systems.

  7. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging.

    PubMed

    Pandey, Mukesh K; DeGrado, Timothy R

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  8. Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase

    SciTech Connect

    Hevener, Kirk E.; Yun, Mi-Kyung; Qi, Jianjun; Kerr, Iain D.; Babaoglu, Kerim; Hurdle, Julian G.; Balakrishna, Kanya; White, Stephan W.; Lee, Richard E.

    2010-01-12

    Dihydropteroate synthase (DHPS) is a key enzyme in bacterial folate synthesis and the target of the sulfonamide class of antibacterials. Resistance and toxicities associated with sulfonamides have led to a decrease in their clinical use. Compounds that bind to the pterin binding site of DHPS, as opposed to the p-amino benzoic acid (pABA) binding site targeted by the sulfonamide agents, are anticipated to bypass sulfonamide resistance. To identify such inhibitors and map the pterin binding pocket, we have performed virtual screening, synthetic, and structural studies using Bacillus anthracis DHPS. Several compounds with inhibitory activity have been identified, and crystal structures have been determined that show how the compounds engage the pterin site. The structural studies identify the key binding elements and have been used to generate a structure-activity based pharmacophore map that will facilitate the development of the next generation of DHPS inhibitors which specifically target the pterin site.

  9. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    SciTech Connect

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W.

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  10. Farnesyl Diphosphate Synthase Inhibitors With Unique Ligand-Binding Geometries

    PubMed Central

    2015-01-01

    Farnesyl diphosphate synthase (FPPS) is an important drug target for bone resorption, cancer, and some infectious diseases. Here, we report five new structures including two having unique bound ligand geometries. The diamidine inhibitor 7 binds to human FPPS close to the homoallylic (S2) and allosteric (S3) sites and extends into a new site, here called S4. With the bisphosphonate inhibitor 8, two molecules bind to Trypanosoma brucei FPPS, one molecule in the allylic site (S1) and the other close to S2, the first observation of two bisphosphonate molecules bound to FPPS. We also report the structures of apo-FPPS from T. brucei, together with two more bisphosphonate-bound structures (2,9), for purposes of comparison. The diamidine structure is of particular interest because 7 could represent a new lead for lipophilic FPPS inhibitors, while 8 has low micromolar activity against T. brucei, the causative agent of human African trypanosomiasis. PMID:25815158

  11. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance.

    PubMed

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara; Benfield, Thomas; Miller, Robert; Rabodonirina, Meja; Helweg-Larsen, Jannik

    2004-10-01

    Pneumocystis pneumonia (PCP) remains a major cause of illness and death in HIV-infected persons. Sulfa drugs, trimethoprim-sulfamethoxazole (TMP-SMX) and dapsone are mainstays of PCP treatment and prophylaxis. While prophylaxis has reduced the incidence of PCP, its use has raised concerns about development of resistant organisms. The inability to culture human Pneumocystis, Pneumocystis jirovecii, in a standardized culture system prevents routine susceptibility testing and detection of drug resistance. In other microorganisms, sulfa drug resistance has resulted from specific point mutations in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim for PCP treatment remains unclear. We review studies of DHPS mutations in P. jirovecii and summarize the evidence for resistance to sulfamethoxazole and dapsone.

  12. Catalysis and sulfa drug resistance in dihydropteroate synthase.

    PubMed

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M Brett; Ferreira, Antonio M; Lee, Richard E; Bashford, Donald; White, Stephen W

    2012-03-01

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S(N)1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  13. Sulfa use, dihydropteroate synthase mutations, and Pneumocystis jirovecii pneumonia.

    PubMed

    Stein, Cheryl R; Poole, Charles; Kazanjian, Powel; Meshnick, Steven R

    2004-10-01

    A systematic review was conducted to examine the associations in Pneumocystis jirovecii pneumonia (PCP) patients between dihydropteroate synthase (DHPS) mutations and sulfa or sulfone (sulfa) prophylaxis and between DHPS mutations and sulfa treatment outcome. Selection criteria included study populations composed entirely of PCP patients and mutation or treatment outcome results for all patients, regardless of exposure status. Based on 13 studies, the risk of developing DHPS mutations is higher for PCP patients receiving sulfa prophylaxis than for PCP patients not receiving sulfa prophylaxis (p < 0.001). Results are too heterogeneous (p < 0.001) to warrant a single summary effect estimate. Estimated effects are weaker after 1996 and stronger in studies that included multiple isolates per patient. Five studies examined treatment outcome. The effect of DHPS mutations on treatment outcome has not been well studied, and the few studies that have been conducted are inconsistent even as to the presence or absence of an association.

  14. The Interplay between Myc and CTP Synthase in Drosophila.

    PubMed

    Aughey, Gabriel N; Grice, Stuart J; Liu, Ji-Long

    2016-02-01

    CTP synthase (CTPsyn) is essential for the biosynthesis of pyrimidine nucleotides. It has been shown that CTPsyn is incorporated into a novel cytoplasmic structure which has been termed the cytoophidium. Here, we report that Myc regulates cytoophidium formation during Drosophila oogenesis. We have found that Myc protein levels correlate with cytoophidium abundance in follicle epithelia. Reducing Myc levels results in cytoophidium loss and small nuclear size in follicle cells, while overexpression of Myc increases the length of cytoophidia and the nuclear size of follicle cells. Ectopic expression of Myc induces cytoophidium formation in late stage follicle cells. Furthermore, knock-down of CTPsyn is sufficient to suppress the overgrowth phenotype induced by Myc overexpression, suggesting CTPsyn acts downstream of Myc and is required for Myc-mediated cell size control. Taken together, our data suggest a functional link between Myc, a renowned oncogene, and the essential nucleotide biosynthetic enzyme CTPsyn. PMID:26889675

  15. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging

    PubMed Central

    Pandey, Mukesh K.; DeGrado, Timothy R.

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  16. Calmodulin-induced structural changes in endothelial nitric oxide synthase

    PubMed Central

    Persechini, Anthony; Tran, Quang-Kim; Black, D.J.; Gogol, Edward P.

    2013-01-01

    We have derived structures of intact calmodulin(CaM)-free and CaM-bound endothelial nitric oxide synthase (eNOS) by reconstruction from cryo-electron micrographs. The CaM-free reconstruction is well fitted by the oxygenase domain dimer, but the reductase domains are not visible, suggesting they are mobile and thus delocalized. Additional protein is visible in the CaM-bound reconstruction, concentrated in volumes near two basic patches on each oxygenase domain. One of these corresponds with a presumptive docking site for the reductase domain FMN-binding module. The other is proposed to correspond with a docking site for CaM. A model is suggested in which CaM binding and docking position the reductase domains near the oxygenase domains and promote docking of the FMN-binding modules required for electron transfer. PMID:23266515

  17. Rotary catalysis of FoF1-ATP synthase.

    PubMed

    Watanabe, Rikiya

    2013-01-01

    The synthesis of ATP, the key reaction of biological energy metabolism, is accomplished by the rotary motor protein; FoF1-ATP synthase (FoF1). In vivo, FoF1, located on the cell membrane, carries out ATP synthesis by using the proton motive force. This heterologous energy conversion is supposed to be mediated by the mechanical rotation of FoF1; however, it still remained unclear. Recently, we developed the novel experimental setup to reproduce the proton motive force in vitro and succeeded in directly observing the proton-driven rotation of FoF1. In this review, we describe the interesting working principles determined so far for FoF1 and then introduce results from our recent study.

  18. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    PubMed

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc. PMID:27017955

  19. New insight into the catalytic properties of rice sucrose synthase.

    PubMed

    Huang, Yu-Chiao; Hsiang, Erh-Chieh; Yang, Chien-Chih; Wang, Ai-Yu

    2016-01-01

    Sucrose synthase (SuS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. SuS belongs to family 4 of the glycosyltransferases (GT4) and contains an E-X7-E motif that is conserved in members of GT4 and two other GT families. To gain insight into the roles of this motif in rice sucrose synthase 3 (RSuS3), the two conserved glutamate residues (E678 and E686) in this motif and a phenylalanine residue (F680) that resides between the two glutamate residues were changed by site-directed mutagenesis. All mutant proteins maintained their tetrameric conformation. The mutants E686D and F680Y retained partial enzymatic activity and the mutants E678D, E678Q, F680S, and E686Q were inactive. Substrate binding assays indicated that UDP and fructose, respectively, were the leading substrates in the sucrose degradation and synthesis reactions of RSuS3. Mutations on E678, F680, and E686 affected the binding of fructose, but not of UDP. The results indicated that E678, F680, and E686 in the E-X7-E motif of RSuS3 are essential for the activity of the enzyme and the sequential binding of substrates. The sequential binding of the substrates implied that the reaction catalyzed by RSuS can be controlled by the availability of fructose and UDP, depending on the metabolic status of a tissue.

  20. Leishmania donovani Encodes a Functional Selenocysteinyl-tRNA Synthase.

    PubMed

    Manhas, Reetika; Gowri, Venkatraman Subramanian; Madhubala, Rentala

    2016-01-15

    The synthesis of selenocysteine, the 21st amino acid, occurs on its transfer RNA (tRNA), tRNA(Sec). tRNA(Sec) is initially aminoacylated with serine by seryl-tRNA synthetase and the resulting seryl moiety is converted to phosphoserine by O-phosphoseryl-tRNA kinase (PSTK) in eukaryotes. The selenium donor, selenophosphate is synthesized from selenide and ATP by selenophosphate synthetase. Selenocysteinyl-tRNA synthase (SepSecS) then uses the O-phosphoseryl-tRNA(Sec) and selenophosphate to form Sec-tRNA(Sec) in eukaryotes. Here, we report the characterization of selenocysteinyl-tRNA synthase from Leishmania donovani. Kinetoplastid SepSecS enzymes are phylogenetically closer to worm SepSecS. LdSepSecS was found to exist as a tetramer. Leishmania SepSecS enzyme was found to be active and able to complement the ΔselA deletion in Escherichia coli JS1 strain only in the presence of archaeal PSTK, indicating the conserved nature of the PSTK-SepSecS pathway. LdSepSecS was found to localize in the cytoplasm of the parasite. Gene deletion studies indicate that Leishmania SepSecS is dispensable for the parasite survival. The parasite was found to encode three selenoproteins, which were only expressed in the presence of SepSecS. Selenoproteins of L. donovani are not required for the growth of the promastigotes. Auranofin, a known inhibitor of selenoprotein synthesis showed the same sensitivity toward the wild-type and null mutants suggesting its effect is not through binding to selenoproteins. The three-dimensional structural comparison indicates that human and Leishmania homologs are structurally highly similar but their association modes leading to tetramerization seem different. PMID:26586914

  1. The Evolution of Function in Strictosidine Synthase-like Proteins

    PubMed Central

    Hicks, Michael A.; Barber, Alan E.; Giddings, Lesley-Ann; Caldwell, Jenna; O’Connor, Sarah E.; Babbitt, Patricia C.

    2013-01-01

    The exponential growth of sequence data provides abundant information for the discovery of new enzyme reactions. Correctly annotating the functions of highly diverse proteins can be difficult, however, hindering use of this information. Global analysis of large superfamilies of related proteins is a powerful strategy for understanding the evolution of reactions by identifying catalytic commonalities and differences in reaction and substrate specificity, even when only a few members have been biochemically or structurally characterized. A comparison of >2500 sequences sharing the six-bladed β-propeller fold establishes sequence, structural and functional links among the three subgroups of the functionally diverse N6P superfamily: the arylesterase-like and senescence marker protein-30/gluconolactonase/luciferin-regenerating enzyme-like (SGL) subgroups, representing enzymes that catalyze lactonase and related hydrolytic reactions, and the so-called “strictosidine synthase-like” (SSL) subgroup. Metal-coordinating residues were identified as broadly conserved in the active sites of all three subgroups except for a few proteins from the SSL subgroup, which have been experimentally determined to catalyze the quite different strictosidine synthase (SS) reaction, a metal-independent condensation reaction. Despite these differences, comparison of conserved catalytic features of the arylesterase-like and SGL enzymes with the SSs identified similar structural and mechanistic attributes between the hydrolytic reactions catalyzed by the former and the condensation reaction catalyzed by SS. The results also suggest that despite their annotations, the great majority of these >500 SSL sequences do not catalyze the SS reaction; rather, they likely catalyze hydrolytic reactions typical of the other two subgroups instead. This prediction was confirmed experimentally for one of these proteins. PMID:21948213

  2. Enzymatic and structural characterization of an archaeal thiamin phosphate synthase.

    PubMed

    Hayashi, Maria; Kobayashi, Kazuya; Esaki, Hiroyoshi; Konno, Hiroyuki; Akaji, Kenichi; Tazuya, Keiko; Yamada, Kazuko; Nakabayashi, Toshikatsu; Nosaka, Kazuto

    2014-04-01

    Studies on thiamin biosynthesis have so far been achieved in eubacteria, yeast and plants, in which the thiamin structure is formed as thiamin phosphate from a thiazole and a pyrimidine moiety. This condensation reaction is catalyzed by thiamin phosphate synthase, which is encoded by the thiE gene or its orthologs. On the other hand, most archaea do not seem to have the thiE gene, but instead their thiD gene, coding for a 2-methyl-4-amino-5-hydroxymethylpyrimidine (HMP) kinase/HMP phosphate kinase, possesses an additional C-terminal domain designated thiN. These two proteins, ThiE and ThiN, do not share sequence similarity. In this study, using recombinant protein from the hyperthermophile archaea Pyrobaculum calidifontis, we demonstrated that the ThiN protein is an analog of the ThiE protein, catalyzing the formation of thiamin phosphate with the release of inorganic pyrophosphate from HMP pyrophosphate and 4-methyl-5-β-hydroxyethylthiazole phosphate (HET-P). In addition, we found that the ThiN protein can liberate an inorganic pyrophosphate from HMP pyrophosphate in the absence of HET-P. A structure model of the enzyme-product complex of P. calidifontis ThiN domain was proposed on the basis of the known three-dimensional structure of the ortholog of Pyrococcus furiosus. The significance of Arg320 and His341 residues for thiN-coded thiamin phosphate synthase activity was confirmed by site-directed mutagenesis. This is the first report of the experimental analysis of an archaeal thiamin synthesis enzyme.

  3. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    PubMed

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc.

  4. Identification and characterization of the Populus sucrose synthase gene family.

    PubMed

    An, Xinmin; Chen, Zhong; Wang, Jingcheng; Ye, Meixia; Ji, Lexiang; Wang, Jia; Liao, Weihua; Ma, Huandi

    2014-04-10

    In this study, we indentified 15 sucrose synthase (SS) genes in Populus and the results of RT-qPCR revealed that their expression patterns were constitutive and partially overlapping but diverse. The release of the most recent Populus genomic data in Phytozome v9.1 has revealed the largest SS gene family described to date, comprising 15 distinct members. This information will now enable the analysis of transcript expression profiles for those that have not been previously reported. Here, we performed a comprehensive analysis of SS genes in Populus by describing the gene structure, chromosomal location and phylogenetic relationship of each family member. A total of 15 putative SS gene members were identified in the Populus trichocarpa (Torr. & Gray) genome using the SS domain and amino acid sequences from Arabidopsis thaliana as a probe. A phylogenetic analysis indicated that the 15 members could be classified into four groups that fall into three major categories: dicots, monocots & dicots 1 (M & D 1), and monocots & dicots 2 (M & D 2). In addition, the 15 SS genes were found to be unevenly distributed on seven chromosomes. The two conserved domains (sucrose synthase and glycosyl transferase) were found in this family. Meanwhile, the expression profiles of all 15 gene members in seven different organs were investigated in Populus tomentosa (Carr.) by using RT-qPCR. Additional analysis indicated that the poplar SS gene family is also involved in response to water-deficit. The current study provides basic information that will assist in elucidating the functions of poplar SS family. PMID:24508272

  5. Mechanism and Stereospecificity of a Fully Saturating Polyketide Synthase Module: Nanchangmycin Synthase Module 2 and Its Dehydratase Domain

    PubMed Central

    Guo, Xun; Liu, Tiangang; Valenzano, Chiara R.; Deng, Zixin; Cane, David E.

    2010-01-01

    Recombinant nanchangmycin synthase module 2 (NANS module 2), with the thioesterase domain from the 6-deoxyerythronolide B synthase (DEBS TE) appended to the C-terminus, was cloned and expressed in Escherichia coli. Incubation of NANS module 2+TE with (±)-2-methyl-3-keto-butyryl-N-acetylcysteamine thioester (1), the -SNAC analog of the natural ACP-bound substrate, with methylmalonyl-CoA (MM-CoA) in the absence of NADPH gave 3,5,6-trimethyl-4-hydroxylpyrone (2), identified by direct comparison with synthetic 2 by radio-TLC-phosphorimaging and LC-ESI(+)-MS-MS. The reaction showed kcat 0.5±0.1 min−1 and Km(1) 19±5 mM at 0.5 mM MM-CoA and kcat(app) 0.26±0.02 min−1 and Km(MM-CoA) 0.11 ±0.02 mM at 8 mM 1. Incubation in the presence of NADPH generated the fully saturated triketide chain elongation product as a 5:3 mixture of (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (3a) and the diastereomeric (2S,4S)-3b. The structure and stereochemistry of each product was established by comparison with synthetic 3a and 3b by a combination of radio-TLC-phosphorimaging and LC-ESI(−)-MS-MS, as well as chiral capillary GC-MS analysis of the corresponding methyl esters 3a-Me and 3b-Me. The recombinant dehydratase domain from NANS module 2, NANS DH2, was shown to catalyze the formation of an (E)-double bond by syn-dehydration of the ACP-bound substrate anti-(2R,3R,4S,5R)-2,4-dimethyl-3,5-dihydroxyheptanoyl-ACP6 (4), generated in situ by incubation of (2S,3R)-2-methyl-3-hydroxypentanoyl-SNAC (5), methylmalonyl-CoA, and NADPH with recombinant [KS6][AT6] didomain and ACP6 from DEBS module 6 along with the ketoreductase from the tylactone synthase module 1 (TYLS KR1). These results also indirectly establish the stereochemistry of the reactions catalyzed by the KR and enoylreductase (ER) domains of NANS module 2. PMID:20925339

  6. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album.

    PubMed

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S Shiva; Thulasiram, Hirekodathakallu V

    2015-01-01

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.

  7. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album.

    PubMed

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S Shiva; Thulasiram, Hirekodathakallu V

    2015-01-01

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems. PMID:25976282

  8. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album

    PubMed Central

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P.; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S. Shiva; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems. PMID:25976282

  9. Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues

    NASA Astrophysics Data System (ADS)

    Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.

    1991-09-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.

  10. Expression of the trichodiene synthase gene of Fusarium sporotrichioides in Escherichia coli results in sesquiterpene production.

    PubMed

    Hohn, T M; Plattner, R D

    1989-11-15

    Trichodiene synthase is a sesquiterpene cyclase involved in the biosynthesis of trichothecene mycotoxins. We report that insertion of the unaltered trichodiene synthase gene of Fusarium sporotrichioides into the Escherichia coli expression vector pDR540 produced an inactive polypeptide with a molecular weight approximately 2000 greater than that of trichodiene synthase. This result is consistent with the presence of an intron in the trichodiene synthase gene, and prompted us to specifically delete a putative 60-nucleotide intron sequence. Insertion of the intron-deleted open reading frame into pDR540 resulted in the production of active enzyme. Trichodiene synthase activity in crude extracts from induced cultures was 0.07 nmol/min/mg of protein and represented 0.05-0.10% of the total cell protein. A cross-reactive protein was present with the same apparent molecular weight as the subunit of native trichodiene synthase. The recombinant enzyme was partially purified and shown to have properties closely resembling those of the native enzyme. Trichodiene was detected in ethyl acetate extracts from induced cultures at a concentration of 60 micrograms/liter after 4.5 h. These findings support the primary structure recently reported for trichodiene synthase and demonstrate that the expression of a sesquiterpene cyclase in E. coli results in sesquiterpene production. PMID:2817906

  11. ATP Synthase: A Molecular Therapeutic Drug Target for Antimicrobial and Antitumor Peptides

    PubMed Central

    Ahmad, Zulfiqar; Okafor, Florence; Azim, Sofiya; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the role of ATP synthase as a molecular drug target for natural and synthetic antimi-crobial/antitumor peptides. We start with an introduction of the universal nature of the ATP synthase enzyme and its role as a biological nanomotor. Significant structural features required for catalytic activity and motor functions of ATP synthase are described. Relevant details regarding the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it a potential drug target with respect to antimicrobial peptides and other inhibitors such as dietary polyphenols, is also reviewed. ATP synthase is known to have about twelve discrete inhibitor binding sites including peptides and other inhibitors located at the interface of α/β subunits on the F1 sector of the enzyme. Molecular interaction of peptides at the β DEELSEED site on ATP synthase is discussed with specific examples. An inhibitory effect of other natural/synthetic inhibitors on ATP is highlighted to explore the therapeutic roles played by peptides and other inhibitors. Lastly, the effect of peptides on the inhibition of the Escherichia coli model system through their action on ATP synthase is presented. PMID:23432591

  12. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans.

    PubMed

    Mohanty, Soumya; Jobichen, Chacko; Chichili, Vishnu Priyanka Reddy; Velázquez-Campoy, Adrián; Low, Boon Chuan; Hogue, Christopher W V; Sivaraman, J

    2015-11-01

    ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase.

  13. Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold.

    PubMed

    Kaya, Yusuf; Del Campo, Mark; Ofengand, James; Malhotra, Arun

    2004-04-30

    TruD, a recently discovered novel pseudouridine synthase in Escherichia coli, is responsible for modifying uridine13 in tRNA(Glu) to pseudouridine. It has little sequence homology with the other 10 pseudouridine synthases in E. coli which themselves have been grouped into four related protein families. Crystal structure determination of TruD revealed a two domain structure consisting of a catalytic domain that differs in sequence but is structurally very similar to the catalytic domain of other pseudouridine synthases and a second large domain (149 amino acids, 43% of total) with a novel alpha/beta fold that up to now has not been found in any other protein.

  14. Effect of Combined Stress on Morphological Changes and Expression of NO Synthases in Rat Ventral Hippocampus.

    PubMed

    Smirnov, A V; Tyurenkov, I N; Shmidt, M V; Ekova, M R; Mednikov, D S; Borodin, D D

    2015-11-01

    Adult rats were subjected to 7-day combined stress with stochastic changes of stressors of different modalities (noise, vibration, pulsating bright light) along with mobility restriction and elevated temperature in the chamber during stress exposures (daily 30-min sessions). Circulatory disorders, inhibition of endothelial NO-synthase expression in endothelial cells of the microcirculatory bed, perivascular edema, pronounced degenerative changes, and enhanced expression of inducible NO synthase in CA3 pyramidal neurons in the ventral hippocampus of stressed 12-month-old rats were observed. These findings can attest to the involvement NOdependent mechanisms and different contribution of NO synthase isoforms into the formation of hippocampal neuronal damage. PMID:26608376

  15. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation.

    PubMed

    Peng, Gang; Wang, Chunyan; Song, Song; Fu, Xiumin; Azam, Muhammad; Grierson, Don; Xu, Changjie

    2013-10-01

    Three 1-deoxy-D-xylulose-5-phosphate synthases (DXS) and three phytoene synthases (PSY) were identified in citrus, from Affymetrix GeneChip Citrus Genome Array, GenBank and public orange genome databases. Tissue-specific expression analysis of these genes was carried out on fruit peel and flesh, flower and leaf of Satsuma mandarin (Citrus unshiu Marc.) in order to determine their roles in carotenoid accumulation in different tissues. Expression of CitDXS1 and CitPSY1 was highest in all test tissues, while that of CitDXS2 and CitPSY2 was lower, and that of CitDXS3 and CitPSY3 undetectable. The transcript profiles of CitDXS1 and CitPSY1 paralleled carotenoid accumulation in flesh of Satsuma mandarin and orange (Citrus sinensis Osbeck) during fruit development, and CitPSY1 expression was also associated with carotenoid accumulation in peel, while the CitDXS1 transcript level was only weakly correlated with carotenoid accumulation in peel. Similar results were obtained following correlation analysis between expression of CitDXS1 and CitPSY1 and carotenoid accumulation in peel and flesh of 16 citrus cultivars. These findings identify CitPSY1 and CitDXS1 as the main gene members controlling carotenoid biosynthesis in citrus fruit. Furthermore, chromoplasts were extracted from flesh tissue of these citrus, and chromoplasts of different shape (spindle or globular), different size, and color depth were observed in different cultivars, indicating chromoplast abundance, number per gram tissue, size and color depth were closely correlated with carotenoid content in most cultivars. The relationship between carotenoid biosynthesis and chromoplast development was discussed.

  16. Reduced expression of prostacyclin synthase and nitric oxide synthase in subcutaneous arteries of type 2 diabetic patients.

    PubMed

    Safiah Mokhtar, Siti; M Vanhoutte, Paul; W S Leung, Susan; Imran Yusof, Mohd; Wan Sulaiman, Wan Azman; Zaharil Mat Saad, Arman; Suppian, Rapeah; Ghulam Rasool, Aida Hanum

    2013-01-01

    Diabetic endothelial dysfunction is characterized by impaired endothelium-dependent relaxation. In this study, we measured the expression of endothelial nitric oxide synthase (eNOS), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS), and prostacyclin receptor (IP) in subcutaneous arteries of type-2 diabetic and non-diabetic patients. Subcutaneous arteries were dissected from tissues from seven diabetics (4 males and 3 females) and seven non-diabetics (5 males and 2 females) aged between 18 to 65 years, who underwent lower limb surgical procedures. Diabetics had higher fasting blood glucose compared to non-diabetics, but there were no differences in blood pressure, body mass index and age. Patients were excluded if they had uncontrolled hypertension, previous myocardial infarction, coronary heart disease, renal or hepatic failure and tumor. The relative expression levels of eNOS, COX-1, COX-2, PGIS and IP receptor were determined by Western blotting analysis, normalized with the β-actin level. Increased expression of COX-2 was observed in subcutaneous arteries of diabetics compared to non-diabetics, whereas the expression levels of eNOS and PGIS were significantly lower in diabetics. There were no significant differences in expression levels of COX-1 and IP receptor between the two groups. Immunohistochemical study of subcutaneous arteries showed that the intensities of eNOS and PGIS staining were lower in diabetics, with higher COX-2 staining. In conclusion, type-2 diabetes is associated with higher COX-2 expression, but lower eNOS and PGIS expression in subcutaneous arteries. These alterations may lead to impaired endothelium-dependent vasodilatation, and thus these proteins may be potential targets for protection against the microvascular complications of diabetes.

  17. Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress

    PubMed Central

    Téllez, Jair; Romanha, Alvaro José; Steindel, Mario

    2015-01-01

    Cysteine metabolism is considered essential for the crucial maintenance of a reducing environment in trypanosomatids due to its importance as a precursor of trypanothione biosynthesis. Expression, activity, functional rescue, and overexpression of cysteine synthase (CS) and cystathionine β-synthase (CβS) were evaluated in Leishmania braziliensis promastigotes and intracellular amastigotes under in vitro stress conditions induced by hydrogen peroxide (H2O2), S-nitroso-N-acetylpenicillamine, or antimonial compounds. Our results demonstrate a stage-specific increase in the levels of protein expression and activity of L. braziliensis CS (LbrCS) and L. braziliensis CβS (LbrCβS), resulting in an increment of total thiol levels in response to both oxidative and nitrosative stress. The rescue of the CS activity in Trypanosoma rangeli, a trypanosome that does not perform cysteine biosynthesis de novo, resulted in increased rates of survival of epimastigotes expressing the LbrCS under stress conditions compared to those of wild-type parasites. We also found that the ability of L. braziliensis promastigotes and amastigotes overexpressing LbrCS and LbrCβS to resist oxidative stress was significantly enhanced compared to that of nontransfected cells, resulting in a phenotype far more resistant to treatment with the pentavalent form of Sb in vitro. In conclusion, the upregulation of protein expression and increment of the levels of LbrCS and LbrCβS activity alter parasite resistance to antimonials and may influence the efficacy of antimony treatment of New World leishmaniasis. PMID:26033728

  18. Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase.

    PubMed

    Lozovaya, Vera V; Lygin, Anatoliy V; Zernova, Olga V; Ulanov, Alexander V; Li, Shuxian; Hartman, Glen L; Widholm, Jack M

    2007-02-01

    Soybean hairy roots, transformed with the soybean chalcone synthase (CHS6) or isoflavone synthase (IFS2) genes, with dramatically decreased capacity to synthesize isoflavones were produced to determine what effects these changes would have on susceptibility to a fungal pathogen. The isoflavone and coumestrol concentrations were decreased by about 90% in most lines apparently due to gene silencing. The IFS2 transformed lines had very low IFS enzyme activity in microsomal fractions as measured by the conversion of naringenin to genistein. The CHS6 lines with decreased isoflavone concentrations had 5 to 20-fold lower CHS enzyme activities than the appropriate controls. Both IFS2 and CHS transformed lines accumulated higher concentrations of both soluble and cell wall bound phenolic acids compared to controls with higher levels found in the CHS6 lines indicating alterations in the lignin biosynthetic branch of the pathway. Induction of the soybean phytoalexin glyceollin, of which the precursor is the isoflavone daidzein, by the fungal pathogen Fusarium solani f. sp. glycines (FSG) that causes soybean sudden death syndrome (SDS) showed that the low isoflavone transformed lines did not accumulate glyceollin while the control lines did. The (iso)liquritigenin content increased upon FSG induction in the IFS2 transformed roots indicating that the pathway reactions before this point can control isoflavonoid synthesis. The lowest fungal growth rate on hairy roots was found on the FSG partially resistant control roots followed by the SDS sensitive control roots and the low isoflavone transformants. The results indicate the importance of phytoalexin synthesis in root resistance to the pathogen. PMID:16924535

  19. Increase of 20-HETE synthase after brain ischemia in rats revealed by PET study with 11C-labeled 20-HETE synthase-specific inhibitor

    PubMed Central

    Kawasaki, Toshiyuki; Marumo, Toshiyuki; Shirakami, Keiko; Mori, Tomoko; Doi, Hisashi; Suzuki, Masaaki; Watanabe, Yasuyoshi; Chaki, Shigeyuki; Nakazato, Atsuro; Ago, Yukio; Hashimoto, Hitoshi; Matsuda, Toshio; Baba, Akemichi; Onoe, Hirotaka

    2012-01-01

    20-Hydroxyeicosatetraenoic acid (20-HETE), an arachidonic acid metabolite known to be produced after cerebral ischemia, has been implicated in ischemic and reperfusion injury by mediating vasoconstriction. To develop a positron emission tomography (PET) probe for 20-HETE synthase imaging, which might be useful for monitoring vasoconstrictive processes in patients with brain ischemia, we synthesized a 11C-labeled specific 20-HETE synthase inhibitor, N′(4-dimethylaminohexyloxy)phenyl imidazole ([11C]TROA). Autoradiographic study showed that [11C]TROA has high-specific binding in the kidney and liver consistent with the previously reported distribution of 20-HETE synthase. Using transient middle cerebral artery occlusion in rats, PET study showed significant increases in the binding of [11C]TROA in the ipsilateral hemisphere of rat brains after 7 and 10 days, which was blocked by co-injection of excess amounts of TROA (10 mg/kg). The increased [11C]TROA binding on the ipsilateral side returned to basal levels within 14 days. In addition, quantitative real-time PCR revealed that increased expression of 20-HETE synthase was only shown on the ipsilateral side on day 7. These results indicate that [11C]TROA might be a useful PET probe for imaging of 20-HETE synthase in patients with cerebral ischemia. PMID:22669478

  20. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase.

    PubMed

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D

    2015-04-24

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  1. Partial purification and characterization of the short-chain prenyltransferases, gernayl diphospate synthase and farnesyl diphosphate synthase, from Abies grandis (grand fir).

    PubMed

    Tholl, D; Croteau, R; Gershenzon, J

    2001-02-15

    In the conifer Abies grandis (grand fir), a secreted oleoresin rich in mono-, sesqui-, and diterpenes serves as a constitutive and induced defense against insects and pathogenic fungi. Geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) synthase, two enzymes which form the principal precursors of the oleoresin mono- and sesquiterpenes, were isolated from the stems of 2-year-old grand fir saplings. These enzymes were partially purified by sequential chromatography on DEAE-Sepharose, Mono-Q, and phenyl-Sepharose to remove competing phosphohydrolase and isopentenyl diphosphate (IPP) isomerase activities. GPP and FPP synthase formed GPP and E,E-FPP, respectively, as the sole products of the enzymatic condensation of IPP and dimethylallyl diphosphate (DMAPP). The properties of both enzymes are broadly similar to those of other prenyltransferases. The apparent native molecular masses are 54 +/- 3 kDa for GPP synthase and 110 +/- 6 kDa fo

  2. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    SciTech Connect

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.

  3. Isolation of the mature subunit of delta-aminolaevulinate synthase from embryonic chick liver.

    PubMed Central

    Ades, I Z; Harpe, K G

    1982-01-01

    We presented evidence indicating that the established procedure for purifying delta-aminolaevulinate (ALA) synthase from embryonic-chick liver yielded an enzyme with a partially degraded subunit of molecular weight 51000 [Ades & Harpe (1981) J. Biol. Chem. 256, 9329-9333]. We now report the purification from livers of porphyric embryos of a preparation of ALA synthase which consisted primarily of a 63000-Da polypeptide and a component migrating as a smear of polypeptides with a minimum molecular weight of 52 000. Neither component could be recovered from liver mitochondria of normal embryos, where the amounts of ALA synthase were relatively low. The 52 000-Da component had been established to be the partially degraded subunit of the enzyme. Peptide-mapping analyses indicated that the 63 000- and the 52 000-Da components possessed significant structural homologies, and it was concluded that the 63 000-Da polypeptide represented the mature subunit of ALA synthase. Images Fig. 1. Fig. 3. PMID:7138500

  4. Molecular cloning and characterization of drimenol synthase from valerian plant (Valeriana officinalis).

    PubMed

    Kwon, Moonhyuk; Cochrane, Stephen A; Vederas, John C; Ro, Dae-Kyun

    2014-12-20

    Drimenol, a sesquiterpene alcohol, and its derivatives display diverse bio-activities in nature. However, a drimenol synthase gene has yet to be identified. We identified a new sesquiterpene synthase cDNA (VoTPS3) in valerian plant (Valeriana officinalis). Purification and NMR analyses of the VoTPS3-produced terpene, and characterization of the VoTPS3 enzyme confirmed that VoTPS3 synthesizes (-)-drimenol. In feeding assays, possible reaction intermediates, farnesol and drimenyl diphosphate, could not be converted to drimenol, suggesting that the intermediate remains tightly bound to VoTPS3 during catalysis. A mechanistic consideration of (-)-drimenol synthesis suggests that drimenol synthase is likely to use a protonation-initiated cyclization, which is rare for sesquiterpene synthases. VoTPS3 can be used to produce (-)-drimenol, from which useful drimane-type terpenes can be synthesized. PMID:25447532

  5. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders.

    PubMed

    Aiyar, Raeka S; Bohnert, Maria; Duvezin-Caubet, Stéphane; Voisset, Cécile; Gagneur, Julien; Fritsch, Emilie S; Couplan, Elodie; von der Malsburg, Karina; Funaya, Charlotta; Soubigou, Flavie; Courtin, Florence; Suresh, Sundari; Kucharczyk, Roza; Evrard, Justine; Antony, Claude; St Onge, Robert P; Blondel, Marc; di Rago, Jean-Paul; van der Laan, Martin; Steinmetz, Lars M

    2014-01-01

    Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases. PMID:25519239

  6. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2010-07-01

    An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

  7. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications*

    PubMed Central

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael

    2011-01-01

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-Å resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets. PMID:21865170

  8. Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania.

    PubMed

    Detke, Siegfried; Elsabrouty, Rania

    2008-01-01

    The ATP synthasome is a macromolecular complex consisting of ATP synthase, adenine nucleotide translocator and phosphate carrier. To determine if this complex is evolutionary old or young, we searched for its presence in Leishmania, a mitochondria containing protozoan which evolved from the main eukaryote line soon after eukaryotes split from prokaryotes. Sucrose gradient centrifugation showed that the distribution of ANT among the fractions coincided with the distribution of ATP synthase. In addition, ATP synthase co-precipitated with FLAG tagged and wild type adenine nucleotide translocator isolated with anti FLAG and anti adenine nucleotide translocator antibodies, respectively. These data indicate that the adenine nucleotide translocator interacted with the ATP synthase to form a stable structure referred to as the ATP synthasome. The presence of the ATP synthasome in Leishmania, an organism branching off the main line of eukaryotes early in the development of eukaryotes, as well as in higher eukaryotes suggests that the ATP synthasome is a phylogenetically ancient structure. PMID:17920025

  9. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases

    PubMed Central

    Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-01-01

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure–function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids. PMID:26842837

  10. Architecture of the polyketide synthase module: surprises from electron cryo-microscopy

    PubMed Central

    Smith, Janet L; Skiniotis, Georgios; Sherman, David H

    2015-01-01

    Modular polyketide synthases produce a vast array of bioactive molecules that are the basis of many highly valued pharmaceuticals. The biosynthesis of these compounds is based on ordered assembly lines of multi-domain modules, each extending and modifying a specific chain-elongation intermediate before transfer to the next module for further processing. The first 3D structures of a full polyketide synthase module in different functional states were obtained recently by electron cryo-microscopy. The unexpected module architecture revealed a striking evolutionary divergence of the polyketide synthase compared to its metazoan fatty acid synthase homolog, as well as remarkable conformational rearrangements dependent on its biochemical state during the full catalytic cycle. The design and dynamics of the module are highly optimized for both catalysis and fidelity in the construction of complex, biologically active natural products. PMID:25791608

  11. Tight linkage of genes that encode the two glutamate synthase subunits of Escherichia coli K-12.

    PubMed Central

    Lozoya, E; Sanchez-Pescador, R; Covarrubias, A; Vichido, I; Bolivar, F

    1980-01-01

    A hybrid deoxyribonucleic acid molecule, plasmid pRSP20, which was isolated from the Clarke and Carbon Escherichia coli gene bank, was shown to complement the gltB31 mutation, which affects the synthesis of glutamate synthase in E. coli strain PA340. We present evidence which demonstrates that plasmid pRSP20 carries an 8-megadalton E. coli chromosomal fragment, including the genes encoding the two unequal glutamate synthase subunits. Polypeptides with molecular weights of about 135,000 and 53,000, which comigrated with purified E. coli glutamate synthase subunit polypeptides and immunoprecipitated with antibodies to E. coli glutamate synthase, were synthesized by minicells carrying the pRSP20 plasmid. Images PMID:6107287

  12. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders

    PubMed Central

    Aiyar, Raeka S.; Bohnert, Maria; Duvezin-Caubet, Stéphane; Voisset, Cécile; Gagneur, Julien; Fritsch, Emilie S.; Couplan, Elodie; von der Malsburg, Karina; Funaya, Charlotta; Soubigou, Flavie; Courtin, Florence; Suresh, Sundari; Kucharczyk, Roza; Evrard, Justine; Antony, Claude; St.Onge, Robert P.; Blondel, Marc; di Rago, Jean-Paul; van der Laan, Martin; Steinmetz, Lars M.

    2014-01-01

    Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases. PMID:25519239

  13. A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase

    PubMed Central

    Gay, Darren C.; Gay, Glen; Axelrod, Abram J.; Jenner, Matthew; Kohlhaas, Christoph; Kampa, Annette; Oldham, Neil J.; Piel, Jörn; Keatinge-Clay, Adrian T.

    2014-01-01

    SUMMARY The recently discovered trans-acyltransferase modular polyketide synthases catalyze the biosynthesis of a wide range of bioactive natural products in bacteria. Here we report the structure of the second ketosynthase from the bacillaene trans-acyltransferase polyketide synthase. This 1.95 Å-resolution structure provides the highest resolution view available of a modular polyketide synthase ketosynthase and reveals a flanking subdomain that is homologous to an ordered linker in cis-acyltransferase modular polyketide synthases. The structure of the cysteine-to-serine mutant of the ketosynthase acylated by its natural substrate provides high-resolution details of how a native polyketide intermediate is bound and helps explain the basis of ketosynthase substrate specificity. The substrate range of the ketosynthase was further investigated by mass spectrometry. PMID:24508341

  14. Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes.

    PubMed

    Heider, Johann; Szaleniec, Maciej; Martins, Berta M; Seyhan, Deniz; Buckel, Wolfgang; Golding, Bernard T

    2016-01-01

    The pathway of anaerobic toluene degradation is initiated by a remarkable radical-type enantiospecific addition of the chemically inert methyl group to the double bond of a fumarate cosubstrate to yield (R)-benzylsuccinate as the first intermediate, as catalyzed by the glycyl radical enzyme benzylsuccinate synthase. In recent years, it has become clear that benzylsuccinate synthase is the prototype enzyme of a much larger family of fumarate-adding enzymes, which play important roles in the anaerobic metabolism of further aromatic and even aliphatic hydrocarbons. We present an overview on the biochemical properties of benzylsuccinate synthase, as well as its recently solved structure, and present the results of an initial structure-based modeling study on the reaction mechanism. Moreover, we compare the structure of benzylsuccinate synthase with those predicted for different clades of fumarate-adding enzymes, in particular the paralogous enzymes converting p-cresol, 2-methylnaphthalene or n-alkanes.

  15. Head-to-head coiled arrangement of the subunits of the animal fatty acid synthase.

    PubMed

    Witkowski, Andrzej; Ghosal, Alokesh; Joshi, Anil K; Witkowska, H Ewa; Asturias, Francisco J; Smith, Stuart

    2004-12-01

    The role of the beta-ketoacyl synthase domains in dimerization of the 2505 residue subunits of the multifunctional animal FAS has been evaluated by a combination of crosslinking and characterization of several truncated forms of the protein. Polypeptides containing only the N-terminal 971 residues can form dimers, but polypeptides lacking only the N-terminal 422 residue beta-ketoacyl synthase domain cannot. FAS subunits can be crosslinked with spacer lengths as short as 6 A, via cysteine residues engineered near the N terminus of the full-length polypeptides. The proximity of the N-terminal beta-ketoacyl synthase domains and their essential role in dimerization is consistent with a revised model for the FAS in which a head-to-head arrangement of two coiled subunits facilitates functional interactions between the dimeric beta-ketoacyl synthase and the acyl carrier protein domains of either subunit.

  16. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases.

    PubMed

    Schrepfer, Patrick; Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-02-23

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids.

  17. Expression of inducible nitric oxide synthase in experimental viral myocarditis.

    PubMed

    Glück, B; Merkle, I; Dornberger, G; Stelzner, A

    2000-05-01

    Nitric oxide (NO) is an important bioactive molecule with regulatory, cytotoxic or cytoprotective properties. In virus-induced myocarditis, NO mediates host defense mechanisms against the infection or causes cardiac dysfunctions. NO is synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). The expression of the inducible form of the nitric oxide synthase (iNOS) is regulated by cytokines, involved in the complex myocardial immune response to enterovirus infections. The present study was undertaken to characterize the role of iNOS and NO in the murine model of viral myocarditis induced by coxsackievirus B3 (CVB3). In response to CVB3 infection we investigated the time course of iNOS induction in correlation with cytokine mRNA expression (TNF-alpha, IL-1 alpha, IFN-gamma, TGF-beta) in the heart of NMRI mice by RT-PCR. Positive PCR signals for viral RNA were found in the acute and chronic stage of disease by seminested PCR, indicating the persistence of viral genome. We found distinct expression of iNOS at all time points (1, 2, 3, 4, 7, 14, 28, 56, 98 days post infection [p.i.]). Higher iNOS mRNA levels were identified between days 4 until 28 p.i. in comparison to day 56 and 98 p.i. using densitometric values. The mRNA of the inflammatory cytokines TNF-alpha, IL-1 alpha, IFN-gamma appeared at days 1, 4, and 7 p.i., peaked at day 7 p.i. and persisted until day 98 p.i. Similar like the iNOS mRNA pattern was the expression profile of TGF-beta. Using in situ hybridization and immunohistochemistry iNOS was localized in infiltrates, vascular endothelial cells, smooth muscle cells, myocytes and throughout the interstitial spaces between myocardial fibers in the heart sections of NMRI mice. Increased levels of NO were measured as total nitrate/nitrite concentration in the sera of mice from day 7 until day 28 p.i.

  18. β-Carboline alkaloids from Galianthe ramosa inhibit malate synthase from Paracoccidioides spp.

    PubMed

    de Freitas, Carla S; Kato, Lucilia; de Oliveira, Cecília M A; Queiroz, Luiz H K; Santana, Mábio J; Schuquel, Ivânia T; Delprete, Piero G; da Silva, Roosevelt A; Quintino, Guilherme O; da Silva Neto, Benedito R; Soares, Célia M A; Pereira, Maristela

    2014-12-01

    As part of our continuing chemical and biological analyses of Rubiaceae species from Cerrado, we isolated novel alkaloids 1 and 2, along with known compounds epicatechin, ursolic acid, and oleanolic acid, from Galianthe ramosa. Alkaloid 2 inhibited malate synthase from the pathogenic fungus Paracoccidioides spp. This enzyme is considered an important molecular target because it is not found in humans. Molecular docking simulations were used to describe the interactions between the alkaloids and malate synthase.

  19. Inhibition of rabbit erythroid 15-lipoxygenase and sheep vesicular gland prostaglandin H synthase by gallic esters.

    PubMed

    Luther, H; Jordanov, D; Ludwig, P; Schewe, T

    1991-02-01

    Gallic acid esters possessing a varying chain length of their alcohol moiety were tested for their inhibitory potencies on 15-lipoxygenase from rabbit reticulocytes and prostaglandin H synthase from sheep vesicular glands. Octyl gallate and decyl gallate proved to be the most powerful inhibitors of both enzymes showing concentrations of half-inhibition of about 0.25 mumol/l for the reticulocyte lipoxygenase and of about 25 mumol/l for the prostaglandin H synthase.

  20. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    PubMed

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively).

  1. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Hwang, Paul M.; Glatt, Charles E.; Lowenstein, Charles; Reed, Randall R.; Snyder, Solomon H.

    1991-06-01

    Nitric oxide is a messenger molecule, mediating the effect of endothelium-derived relaxing factor in blood vessels and the cytotoxic actions of macrophages, and playing a part in neuronal communication in the brain. Cloning of a complementary DNA for brain nitric oxide synthase reveals recognition sites for NADPH, FAD, flavin mononucleotide and calmodulin as well as phosphorylation sites, indicating that the synthase is regulated by many different factors. The only known mammalian enzyme with close homology is cytochrome P-450 reductase.

  2. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes

    PubMed Central

    Göpfert, Jens C; MacNevin, Gillian; Ro, Dae-Kyun; Spring, Otmar

    2009-01-01

    Background Sesquiterpene lactones are characteristic metabolites of Asteraceae (or Compositae) which often display potent bioactivities and are sequestered in specialized organs such as laticifers, resin ducts, and trichomes. For characterization of sunflower sesquiterpene synthases we employed a simple method to isolate pure trichomes from anther appendages which facilitated the identification of these genes and investigation of their enzymatic functions and expression patterns during trichome development. Results Glandular trichomes of sunflower (Helianthus annuus L.) were isolated, and their RNA was extracted to investigate the initial steps of sesquiterpene lactone biosynthesis. Reverse transcription-PCR experiments led to the identification of three sesquiterpene synthases. By combination of in vitro and in vivo characterization of sesquiterpene synthase gene products in Escherichia coli and Saccharomyces cerevisiae, respectively, two enzymes were identified as germacrene A synthases, the key enzymes of sesquiterpene lactone biosynthesis. Due to the very low in vitro activity, the third enzyme was expressed in vivo in yeast as a thioredoxin-fusion protein for functional characterization. In in vivo assays, it was identified as a multiproduct enzyme with the volatile sesquiterpene hydrocarbon δ-cadinene as one of the two main products with α-muuorlene, β-caryophyllene, α-humulene and α-copaene as minor products. The second main compound remained unidentified. For expression studies, glandular trichomes from the anther appendages of sunflower florets were isolated in particular developmental stages from the pre- to the post-secretory phase. All three sesquiterpene synthases were solely upregulated during the biosynthetically active stages of the trichomes. Expression in different aerial plant parts coincided with occurrence and maturity of trichomes. Young roots with root hairs showed expression of the sesquiterpene synthase genes as well. Conclusion This

  3. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    PubMed

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group.

  4. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei.

    PubMed

    Woo, Patrick C Y; Tam, Emily W T; Chong, Ken T K; Cai, James J; Tung, Edward T K; Ngan, Antonio H Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2010-09-01

    Despite the unique phenotypic properties and clinical importance of Penicillium marneffei, the polyketide synthase genes in its genome have never been characterized. Twenty-three putative polyketide synthase genes and two putative polyketide synthase nonribosomal peptide-synthase hybrid genes were identified in the P. marneffei genome, a diversity much higher than found in other pathogenic thermal dimorphic fungi, such as Histoplasma capsulatum (one polyketide synthase gene) and Coccidioides immitis (10 polyketide synthase genes). These genes were evenly distributed on the phylogenetic tree with polyketide synthase genes of Aspergillus and other fungi, indicating that the high diversity was not a result of lineage-specific gene expansion through recent gene duplication. The melanin-biosynthesis gene cluster had gene order and orientations identical to those in the Talaromyces stipitatus (a teleomorph of Penicillium emmonsii) genome. Phylogenetically, all six genes of the melanin-biosynthesis gene cluster in P. marneffei were also most closely related to those in T. stipitatus, with high bootstrap supports. The polyketide synthase gene of the melanin-biosynthesis gene cluster (alb1) in P. marneffei was knocked down, which was accompanied by loss of melanin pigment production and reduced ornamentation in conidia. The survival of mice challenged with the alb1 knockdown mutant was significantly better than those challenged with wild-type P. marneffei (P < 0.005). The sterilizing doses of hydrogen peroxide, leading to a 50% reduction in survival of conidia, were 11 min for wild-type P. marneffei and 6 min for the alb1 knockdown mutant of P. marneffei, implying that the melanin-biosynthesis gene cluster contributed to virulence through decreased susceptibility to killing by hydrogen peroxide. PMID:20718860

  5. ATP synthase superassemblies in animals and plants: two or more are better.

    PubMed

    Seelert, Holger; Dencher, Norbert A

    2011-09-01

    ATP synthases are part of the sophisticated cellular metabolic network and therefore multiple interactions have to be considered. As discussed in this review, ATP synthases form various supramolecular structures. These include dimers and homooligomeric species. But also interactions with other proteins, particularly those involved in energy conversion exist. The supramolecular assembly of the ATP synthase affects metabolism, organellar structure, diseases, ageing and vice versa. The most common approaches to isolate supercomplexes from native membranes by use of native electrophoresis or density gradients are introduced. On the one hand, isolated ATP synthase dimers and oligomers are employed for structural studies and elucidation of specific protein-protein interactions. On the other hand, native electrophoresis and other techniques serve as tool to trace changes of the supramolecular organisation depending on metabolic alterations. Upon analysing the structure, dimer-specific subunits can be identified as well as interactions with other proteins, for example, the adenine nucleotide translocator. In the organellar context, ATP synthase dimers and oligomers are involved in the formation of mitochondrial cristae. As a consequence, changes in the amount of such supercomplexes affect mitochondrial structure and function. Alterations in the cellular power plant have a strong impact on energy metabolism and ultimately play a significant role in pathophysiology. In plant systems, dimers of the ATP synthase have been also identified in chloroplasts. Similar to mammals, a correlation between metabolic changes and the amount of the chloroplast ATP synthase dimers exists. Therefore, this review focusses on the interplay between metabolism and supramolecular organisation of ATP synthase in different organisms.

  6. Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data.

    PubMed

    Arisue, Nobuko; Hasegawa, Masami; Hashimoto, Tetsuo

    2005-03-01

    Extensive studies aiming to establish the structure and root of the Eukaryota tree by phylogenetic analyses of molecular sequences have thus far not resulted in a generally accepted tree. To re-examine the eukaryotic phylogeny using alternative genes, and to obtain a more robust inference for the root of the tree as well as the relationship among major eukaryotic groups, we sequenced the genes encoding isoleucyl-tRNA and valyl-tRNA synthetases, cytosolic-type heat shock protein 90, and the largest subunit of RNA polymerase II from several protists. Combined maximum likelihood analyses of 22 protein-coding genes including the above four genes clearly demonstrated that Diplomonadida and Parabasala shared a common ancestor in the rooted tree of Eukaryota, but only when the fast-evolving sites were excluded from the original data sets. The combined analyses, together with recent findings on the distribution of a fused dihydrofolate reductase-thymidylate synthetase gene, narrowed the possible position of the root of the Eukaryota tree on the branch leading to Opisthokonta or to the common ancestor of Diplomonadida/Parabasala. However, the analyses did not agree with the position of the root located on the common ancestor of Opisthokonta and Amoebozoa, which was argued by Stechmann and Cavalier-Smith [Curr. Biol. 13:R665-666, 2003] based on the presence or absence of a three-gene fusion of the pyrimidine biosynthetic pathway: carbamoyl-phosphate synthetase II, dihydroorotase, and aspartate carbamoyltransferase. The presence of the three-gene fusion recently found in the Cyanidioschyzon merolae (Rhodophyta) genome sequence data supported our analyses against the Stechmann and Cavalier-Smith-rooting in 2003.

  7. Discovery of two new inhibitors of Botrytis cinerea chitin synthase by a chemical library screening.

    PubMed

    Magellan, Hervé; Boccara, Martine; Drujon, Thierry; Soulié, Marie-Christine; Guillou, Catherine; Dubois, Joëlle; Becker, Hubert F

    2013-09-01

    Chitin synthases polymerize UDP-GlcNAC to form chitin polymer, a key component of fungal cell wall biosynthesis. Furthermore, chitin synthases are desirable targets for fungicides since chitin is absent in plants and mammals. Two potent Botrytis cinerea chitin synthase inhibitors, 2,3,5-tri-O-benzyl-d-ribose (compound 1) and a 2,5-functionalized imidazole (compound 2) were identified by screening a chemical library. We adapted the wheat germ agglutinin (WGA) test for chitin synthase activity detection to allow miniaturization and robotization of the screen. Both identified compounds inhibited chitin synthases in vitro with IC50 values of 1.8 and 10μM, respectively. Compounds 1 and 2 were evaluated for their antifungal activity and were found to be active against B. cinerea BD90 strain with MIC values of 190 and 100μM, respectively. Finally, we discovered that both compounds confer resistance to plant leaves against the attack of the fungus by reducing the propagation of lesions by 37% and 23%, respectively. Based on the inhibitory properties found in different assays, compounds 1 and 2 can be considered as antifungal hit inhibitors of chitin synthase, allowing further optimization of their pharmacological profile to improve their antifungal properties.

  8. Inhibition of E. coli CTP synthase by the "positive" allosteric effector GTP.

    PubMed

    MacDonnell, Jennifer E; Lunn, Faylene A; Bearne, Stephen L

    2004-06-01

    Cytidine 5'-triphosphate (CTP) synthase catalyzes the ATP-dependent formation of CTP from UTP using either ammonia or l-glutamine as the source of nitrogen. When glutamine is the substrate, GTP is required as a positive allosteric effector to promote catalysis of glutamine hydrolysis. We show that at concentrations exceeding approximately 0.15 mM, GTP actually behaves as a negative allosteric effector of E. coli CTP synthase, inhibiting glutamine-dependent CTP formation. In addition, GTP inhibits NH(3)-dependent CTP formation in a concentration-dependent manner. However, GTP does not inhibit the enzyme's intrinsic glutaminase activity. Although the activation of CTP synthase by GTP does not display cooperative behavior, inhibition of both CTP synthase-catalyzed ammonia- and glutamine-dependent CTP synthesis by GTP do exhibit positive cooperativity. These results suggest that GTP binding affects CTP synthase catalysis in two ways: it activates enzyme-catalyzed glutamine hydrolysis and it inhibits the utilization of NH(3) as a substrate by the synthase domain. PMID:15158730

  9. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    PubMed Central

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  10. Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.).

    PubMed

    Vickers, Claudia E; Possell, Malcolm; Nicholas Hewitt, C; Mullineaux, Philip M

    2010-07-01

    Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-D: -erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.

  11. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent. PMID:27278067

  12. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  13. Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial Peptides

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented. PMID:20586714

  14. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  15. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot.

    PubMed

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-11-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  16. Alcoholytic cleavage of polyhydroxyalkanoate chains by class IV synthases induced by endogenous and exogenous ethanol.

    PubMed

    Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Abe, Hideki; Tsuge, Takeharu

    2014-02-01

    Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature.

  17. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot.

    PubMed

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-11-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms.

  18. A High-Throughput Colorimetric Screening Assay for Terpene Synthase Activity Based on Substrate Consumption

    PubMed Central

    Furubayashi, Maiko; Ikezumi, Mayu; Kajiwara, Jun; Iwasaki, Miki; Fujii, Akira; Li, Ling; Saito, Kyoichi; Umeno, Daisuke

    2014-01-01

    Terpene synthases catalyze the formation of a variety of terpene chemical structures. Systematic mutagenesis studies have been effective in providing insights into the characteristic and complex mechanisms of C-C bond formations and in exploring the enzymatic potential for inventing new chemical structures. In addition, there is growing demand to increase terpene synthase activity in heterologous hosts, given the maturation of metabolic engineering and host breeding for terpenoid synthesis. We have developed a simple screening method for the cellular activities of terpene synthases by scoring their substrate consumption based on the color loss of the cell harboring carotenoid pathways. We demonstrate that this method can be used to detect activities of various terpene synthase or prenyltransferase genes in a high-throughput manner, irrespective of the product type, enabling the mutation analysis and directed evolution of terpene synthases. We also report the possibility for substrate-specific screening system of terpene synthases by taking advantage of the substrate-size specificity of C30 and C40 carotenoid pathways. PMID:24681801

  19. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease.

    PubMed Central

    Rachmilewitz, D; Stamler, J S; Bachwich, D; Karmeli, F; Ackerman, Z; Podolsky, D K

    1995-01-01

    Recent studies have suggested that nitric oxide (NO.), the product of nitric oxide synthase in inflammatory cells, may play a part in tissue injury and inflammation through its oxidative metabolism. In this study the colonic generation of oxides of nitrogen (NOx) and nitric oxide synthase activity was determined in ulcerative colitis and Crohn's disease. Colonic biopsy specimens were obtained from inflammatory bowel disease patients and from normal controls. Mucosal explants were cultured in vitro for 24 hours and NOx generation was determined. Nitric oxide synthase activity was monitored by the conversion of [3H]-L-arginine to citrulline. Median NOx generation by inflamed colonic mucosa of patients with active ulcerative colitis and Crohn's colitis was 4.2- and 8.1-fold respectively higher than that by normal human colonic mucosa. In ulcerative colitis and Crohn's colitis nitric oxide synthase activity was 10.0- and 3.8-fold respectively higher than in normal subjects. Colonic NOx generation is significantly decreased by methylprednisolone and ketotifen. The decrease in NOx generation by cultured colonic mucosa induced by methylprednisolone suggests that NO synthase activity is induced during the culture and the steroid effect may contribute to its therapeutic effect. Enhanced colonic NOx generation by stimulated nitric oxide synthase activity in ulcerative colitis and Crohn's disease may contribute to tissue injury. PMID:7541008

  20. The human liver glycogen synthase isozyme gene is located on the short arm of chromosome 12

    SciTech Connect

    Nuttall, F.Q.; Gannon, M.C. ); Kubic, V.L.; Hoyt, K.J. )

    1994-01-15

    Glycogen synthase catalyzes the rate-limiting step in glycogen synthesis. Its activity is regulated by a complex phosphorylation-dephosphorylation mechanism and by allosteric stimulators and inhibitors. Two isozymes of synthase, a skeletal muscle type and liver type, have been identified in rabbit and rat tissues using specific polyclonal antibodies. The skeletal muscle type isozyme is present in several organs in addition to skeletal muscle; the liver isozyme has been identified only in liver. Recently, we have purified and characterized the human liver synthase isozyme. We also have cloned and sequenced the gene from a human liver cDNA library. Using the entire cDNA coding sequence as a probe, we report here the localization of the liver synthase isozyme gene to the short arm of chromosome 12. These studies revealed a centromeric signal on chromosome 12 together with signal to glycogen synthase on the short arm of this chromosome in the p11.2-p12.2 region. Measurements of the relative distance from the midpoint of the centromere to the signal corresponding to glycogen synthase suggests that the locus is in the p12.2 band rather than in the more centromeric location.

  1. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site. PMID:17062013

  2. A single-vial analytical and quantitative gas chromatography-mass spectrometry assay for terpene synthases.

    PubMed

    O'Maille, Paul E; Chappell, Joe; Noel, Joseph P

    2004-12-15

    A quantitative assay for the analysis of sesquiterpene synthases, wherein each reaction mixture is formulated in glass gas chromatography vials, overlaid with organic solvent such as ethyl acetate, and subsequently vortexed to extract hydrocarbon reaction products into the organic phase after a suitable incubation period, was developed. The product-enriched organic phase is then sampled in an automated fashion and injected directly into a gas chromatograph-mass spectrometer without further workup for analysis and quantification of hydrocarbon products. Application of the vial assay to the analysis of amorpha-4,11-diene synthase (ADS), a sesquiterpene synthase, demonstrated the sensitivity of the assay for detection of major and minor reaction products and most notably for the identification of several sesquiterpene products that had escaped previous detection. A steady-state kinetic analysis of tobacco 5-epi-aristolochene synthase (TEAS), another sesquiterpene synthase, validated the quantitative nature of the assay, providing an alternative means to the established method of using radiolabeled substrate, extraction, and scintillation counting. This simplified assay provides a standardized method to facilitate analysis of terpene synthases and diverse mutant enzyme libraries by supplanting the common practice of using larger scale reactions, multiple extractions, and evaporative concentration of the organic phase prior to gas chromatography-mass spectrometry (GC-MS) analysis. PMID:15556559

  3. Characterization of Novel Sesquiterpenoid Biosynthesis in Tobacco Expressing a Fungal Sesquiterpene Synthase.

    PubMed

    Zook, M.; Hohn, T.; Bonnen, A.; Tsuji, J.; Hammerschmidt, R.

    1996-09-01

    The gene encoding trichodiene synthase (Tri5), a sesquiterpene synthase from the fungus Fusarium sporotrichioides, was used to transform tobacco (Nicotiana tabacum). Trichodiene was the sole sesquiterpene synthase product in enzyme reaction mixtures derived from unelicited transformant cell-suspension cultures, and both trichodiene and 5-epi-aristolochene were observed as reaction products following elicitor treatment. Immunoblot analysis of protein extracts revealed the presence of trichodiene synthase only in transformant cell lines producing trichodiene. In vivo labeling with [3H]mevalonate revealed the presence of a novel trichodiene metabolite, 15-hydroxytrichodiene, that accumulated in the transformant cell-suspension cultures. In a trichodiene-producing transformant, the level of 15-hydroxytrichodiene accumulation increased after elicitor treatment. In vivo labeling with [14C]acetate showed that the biosynthetic rate of trichodiene and 15-hydroxytrichodiene also increased after elicitor treatment. Incorporation of radioactivity from [14C]acetate into capsidiol was reduced following elicitor treatment of a trichodiene-producing transformant as compared with wild type. These results demonstrate that sesquiterpenoid accumulation resulting from the constitutive expression of a foreign sesquiterpene synthase is responsive to elicitation and that the farnesyl pyrophosphate present in elicited cells can be utilized by a foreign sesquiterpene synthase to produce high levels of novel sesquiterpenoids. PMID:12226394

  4. Not all pseudouridine synthases are potently inhibited by RNA containing 5-fluorouridine.

    PubMed

    Spedaliere, Christopher J; Mueller, Eugene G

    2004-02-01

    RNA containing 5-fluorouridine has been assumed to inhibit strongly or irreversibly the pseudouridine synthases that act on the RNA. RNA transcripts containing 5-fluorouridine in place of uridine have, therefore, been added to reconstituted systems in order to investigate the importance of particular pseudouridine residues in a given RNA by inactivating the pseudouridine synthase responsible for their generation. In sharp contradiction to the assumption of universal inhibition of pseudouridine synthases by RNA containing 5-fluorouridine, the Escherichia coli pseudouridine synthase TruB, which has physiologically critical eukaryotic homologs, is not inhibited by such RNA. Instead, the RNA containing 5-fluorouridine was handled as a substrate by TruB. The E. coli pseudouridine synthase RluA, on the other hand, forms a covalent complex and is inhibited stoichiometrically by RNA containing 5-fluorouridine. We offer a hypothesis for this disparate behavior and urge caution in interpreting results from reconstitution experiments in which RNA containing 5-fluorouridine is assumed to inhibit a pseudouridine synthase, as normal function may result from a failure to inactivate the targeted enzyme rather than from the absence of nonessential pseudouridine residues.

  5. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site.

  6. Cell Wall Polysaccharide Synthases Are Located in Detergent-Resistant Membrane Microdomains in Oomycetes ▿ †

    PubMed Central

    Briolay, Anne; Bouzenzana, Jamel; Guichardant, Michel; Deshayes, Christian; Sindt, Nicolas; Bessueille, Laurence; Bulone, Vincent

    2009-01-01

    The pathways responsible for cell wall polysaccharide biosynthesis are vital in eukaryotic microorganisms. The corresponding synthases are potential targets of inhibitors such as fungicides. Despite their fundamental and economical importance, most polysaccharide synthases are not well characterized, and their molecular mechanisms are poorly understood. With the example of Saprolegnia monoica as a model organism, we show that chitin and (1→3)-β-d-glucan synthases are located in detergent-resistant membrane microdomains (DRMs) in oomycetes, a phylum that comprises some of the most devastating microorganisms in the agriculture and aquaculture industries. Interestingly, no cellulose synthase activity was detected in the DRMs. The purified DRMs exhibited similar biochemical features as lipid rafts from animal, plant, and yeast cells, although they contained some species-specific lipids. This report sheds light on the lipid environment of the (1→3)-β-d-glucan and chitin synthases, as well as on the sterol biosynthetic pathways in oomycetes. The results presented here are consistent with a function of lipid rafts in cell polarization and as platforms for sorting specific sets of proteins targeted to the plasma membrane, such as carbohydrate synthases. The involvement of DRMs in the biosynthesis of major cell wall polysaccharides in eukaryotic microorganisms suggests a function of lipid rafts in hyphal morphogenesis and tip growth. PMID:19201970

  7. Ozone stress induces the expression of ACC synthase in potato plants

    SciTech Connect

    Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J. )

    1993-05-01

    When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACC synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.

  8. Design, synthesis, and enzyme kinetics of novel benzimidazole and quinoxaline derivatives as methionine synthase inhibitors.

    PubMed

    Elshihawy, Hosam; Helal, Mohamed A; Said, Mohamed; Hammad, Mohamed A

    2014-01-01

    Methionine synthase catalyzes the transfer of a methyl group from 5-methyltetrahydrofolate to homocysteine, producing methionine and tetrahydrofolate. Benzimidazole and deazatetrahydrofolates derivatives have been shown to inhibit methionine synthase by competing with the substrate 5-methyltetrahydrofolate. In this study, a novel series of substituted benzimidazoles and quinoxalines were designed and assessed for inhibitory activity against purified rat liver methionine synthase using a radiometric enzyme assay. Compounds 3g, 3j, and 5c showed the highest activity against methionine synthase (IC₅₀: 20 μM, 18 μM, 9 μM, respectively). Kinetic analysis of these compounds using Lineweaver-Burk plots revealed characteristics of mixed inhibition for 3g and 5c; and uncompetitive inhibition for 3j. Docking study into a homology model of the rat methionine synthase gave insights into the molecular determinants of the activity of this class of compounds. The identification of these drug-like inhibitors could lead the design of the next generation modulators of methionine synthase.

  9. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits

    SciTech Connect

    Olson, D.C.; White, J.A.; Edelman, L.; Kende, H. ); Harkins, R.N. )

    1991-06-15

    1-Aminocyclopropane-1-carboxylate synthase is the regulated enzyme in the biosynthetic pathway of the plant hormone ethylene. A full-length cDNA encoding this enzyme has been cloned from tomato fruits. The authors report here the complete nucleotide and derived amino acid sequences of a cDNA encoding a second isoform of ACC synthase from tomato fruits. The cDNAs coding for both isoforms contain highly conserved regions that are surrounded by regions of low homology, especially at the 5{prime} and 3{prime} ends. Gene-specific probes were constructed to examine the expression of transcripts encoding the two ACC synthase isoforms under two conditions of enhanced ethylene formation--namely, during fruit ripening and in response to mechanical stress (wounding). The level of mRNA encoding both isoforms, ACC synthase 1 and 2, increased during ripening. In contrast, wounding caused an increase in only the level of mRNA coding for ACC synthase 1. Blot analysis of genomic DNA digested with restriction enzymes confirmed that ACC synthase 1 and 2 are encoded by different genes.

  10. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene.

    PubMed

    Beekwilder, Jules; van Houwelingen, Adèle; Cankar, Katarina; van Dijk, Aalt D J; de Jong, René M; Stoopen, Geert; Bouwmeester, Harro; Achkar, Jihane; Sonke, Theo; Bosch, Dirk

    2014-02-01

    Nootkatone is one of the major terpenes in the heartwood of the Nootka cypress Callitropsis nootkatensis. It is an oxidized sesquiterpene, which has been postulated to be derived from valencene. Both valencene and nootkatone are used for flavouring citrus beverages and are considered among the most valuable terpenes used at commercial scale. Functional evaluation of putative terpene synthase genes sourced by large-scale EST sequencing from Nootka cypress wood revealed a valencene synthase gene (CnVS). CnVS expression in different tissues from the tree correlates well with nootkatone content, suggesting that CnVS represents the first dedicated gene in the nootkatone biosynthetic pathway in C. nootkatensis The gene belongs to the gymnosperm-specific TPS-d subfamily of terpenes synthases and its protein sequence has low similarity to known citrus valencene synthases. In vitro, CnVS displays high robustness under different pH and temperature regimes, potentially beneficial properties for application in different host and physiological conditions. Biotechnological production of sesquiterpenes has been shown to be feasible, but productivity of microbial strains expressing valencene synthase from Citrus is low, indicating that optimization of valencene synthase activity is needed. Indeed, expression of CnVS in Saccharomyces cerevisiae indicated potential for higher yields. In an optimized Rhodobacter sphaeroides strain, expression of CnVS increased valencene yields 14-fold to 352 mg/L, bringing production to levels with industrial potential. PMID:24112147

  11. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii.

    PubMed

    Sutton, Kristin A; Breen, Jennifer; Russo, Thomas A; Schultz, L Wayne; Umland, Timothy C

    2016-03-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate. PMID:26919521

  12. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    SciTech Connect

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S. )

    1991-03-15

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.

  13. Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc.

    PubMed

    Aryal, Rajindra P; Ju, Tongzhong; Cummings, Richard D

    2014-04-25

    Prior studies suggested that the core 1 β3-galactosyltransferase (T-synthase) is a specific client of the endoplasmic reticulum chaperone Cosmc, whose function is required for T-synthase folding, activity, and consequent synthesis of normal O-glycans in all vertebrate cells. To explore whether the T-synthase encodes a specific recognition motif for Cosmc, we used deletion mutagenesis to identify a cryptic linear and relatively hydrophobic peptide in the N-terminal stem region of the T-synthase that is essential for binding to Cosmc (Cosmc binding region within T-synthase, or CBRT). Using this sequence information, we synthesized a peptide containing CBRT and found that it directly interacts with Cosmc and also inhibits Cosmc-assisted in vitro refolding of denatured T-synthase. Moreover, engineered T-synthase carrying mutations within CBRT exhibited diminished binding to Cosmc that resulted in the formation of inactive T-synthase. To confirm the general recognition of CBRT by Cosmc, we performed a domain swap experiment in which we inserted the stem region of the T-synthase into the human β4GalT1 and found that the CBRT element can confer Cosmc binding onto the β4GalT1 chimera. Thus, CBRT is a unique recognition motif for Cosmc to promote its regulation and formation of active T-synthase and represents the first sequence-specific chaperone recognition system in the ER/Golgi required for normal protein O-glycosylation. PMID:24616093

  14. [Chitin Synthase 2 (CHS2) gene of Malassezia species].

    PubMed

    Kano, Rui

    2005-01-01

    Malassezia species have been recognized as members of the microbiological flora of human and animal skin; they are also considered to play an important role in the pathogenesis of folliculitis, atopic dermatitis and otitis externa. Therefore, the molecular characteristics were investigated to clarify the epidemiology and the pathogenesis of diseases associated with Malassezia species in human and animals. Molecular investigation was made of 105 clinical isolates of M. pachydermatis from dogs and cats by random amplification of polymorphic DNA (RAPD) and chitin synthase 2 (CHS2) gene sequence analyses. The RAPD analysis and CHS2 gene analysis indicated that clinical isolates of M. pachydermatis were divided into four distinct genetic types (A, B, C and D). Type A was isolated from lesions of atopic dermatitis, flea allergic dermatitis, otitis externa, pyoderma and seborrheic (dermatitidis) in dogs and cats, and might be predominant on this. The phylogenetic analysis of the nucleotide sequences of CHS2 gene fragments of standard strains of 11 Malassezia species showed 11 distinct clusters of this species. PMID:16094288

  15. Pharmacological Inhibition of Glucosylceramide Synthase Enhances Insulin Sensitivity

    PubMed Central

    Aerts, Johannes M.; Ottenhoff, Roelof; Powlson, Andrew S.; Grefhorst, Aldo; van Eijk, Marco; Dubbelhuis, Peter F.; Aten, Jan; Kuipers, Folkert; Serlie, Mireille J.; Wennekes, Tom; Sethi, Jaswinder K.; O’Rahilly, Stephen; Overkleeft, Hermen S.

    2015-01-01

    A growing body of evidence implicates ceramide and/or its glycosphingolipid metabolites in the pathogenesis of insulin resistance. We have developed a highly specific small molecule inhibitor of glucosylceramide synthase, an enzyme that catalyzes a necessary step in the conversion of ceramide to glycosphingolipids. In cultured 3T3-L1 adipocytes, the iminosugar derivative N-(5′-adamantane-1′-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM) counteracted tumor necrosis factor-α-induced abnormalities in glycosphingo-lipid concentrations and concomitantly reversed abnormalities in insulin signal transduction. When administered to mice and rats, AMP-DNM significantly reduced glycosphin-golipid but not ceramide concentrations in various tissues. Treatment of ob/ob mice with AMP-DNM normalized their elevated tissue glucosylceramide levels, markedly lowered circulating glucose levels, improved oral glucose tolerance, reduced A1C, and improved insulin sensitivity in muscle and liver. Similarly beneficial metabolic effects were seen in high fat-fed mice and ZDF rats. These findings provide further evidence that glycosphingolipid metabolites of ceramide may be involved in mediating the link between obesity and insulin resistance and that interference with glycosphingolipid biosynthesis might present a novel approach to the therapy of states of impaired insulin action such as type 2 diabetes. PMID:17287460

  16. Endothelial Caveolar Subcellular Domain Regulation of Endothelial Nitric Oxide Synthase

    PubMed Central

    Ramadoss, Jayanth; Pastore, Mayra B.; Magness, Ronald R.

    2015-01-01

    SUMMARY Complex regulatory processes alter the activity of endothelial nitric oxide synthase (eNOS) leading to nitric oxide (NO) production by endothelial cells under various physiological states. These complex processes require specific sub-cellular eNOS partitioning between plasma membrane caveolar domains and non-caveolar compartments.eNOS translocation from the plasma membrane to intracellular compartments is important for eNOS activation and subsequent NO biosynthesis. We present data reviewing and interpreting information: 1) the coupling of endothelial plasma membrane receptor systems in the caveolar structure relative to eNOS trafficking; 2) how eNOS trafficking relates to specific protein-protein interaction for inactivation and activation of eNOS; and 3) how these complex mechanisms confer specific subcellular location relative to eNOS multi-site phosphorylation and signaling.Dysfunction in regulation of eNOS activation may contribute to several disease states; in particular gestational endothelial abnormalities (preeclampsia, gestational diabetes, etc) that have life-long deleterious health consequences that predispose the offspring to develop hypertensive disease, type II diabetes and adiposity.1 PMID:23745825

  17. Renaturation of citrate synthase: influence of denaturant and folding assistants.

    PubMed Central

    Zhi, W.; Landry, S. J.; Gierasch, L. M.; Srere, P. A.

    1992-01-01

    Citrate synthase (CS), which has been denatured in either guanidine hydrochloride (GdnHCl) or urea can be assisted in its renaturation in a variety of ways. The addition of each of the assistants--bovine serum albumin (BSA), oxaloacetate (OAA), and glycerol--promotes renaturation. In combination, the effect of these substances is additive with respect to the yield of folded CS. The report of Buchner et al. (Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F.X., & Kiefhaber, T., 1991, Biochemistry 30, 1586-1591) that refolding of CS is facilitated by the GroE system (an Escherichia coli chaperonin [cpn] that is composed of GroEL [cpn60] and GroES [cpn10]) has been confirmed. However, we observed substantially higher yield of reactivated CS, 82%, and almost no reactivation in the absence of GroES, < 5%, whereas Buchner et al. reported 28% and 16%, respectively. In addition, we find that GroE-assisted refolding is more efficient for CS denatured in GdnHCl than for CS denatured in urea. This result is discussed in light of the known difference in the denatured states generated in GdnHCl and urea. Because GroEL inhibits the BSA/glycerol/OAA-assisted refolding, this system will be useful in future studies on the mechanism of GroE-facilitated refolding. PMID:1363914

  18. Inhibition studies of Mycobacterium tuberculosis salicylate synthase (MbtI).

    PubMed

    Manos-Turvey, Alexandra; Bulloch, Esther M M; Rutledge, Peter J; Baker, Edward N; Lott, J Shaun; Payne, Richard J

    2010-07-01

    Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate-based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI-catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3-dihydroxybenzoate scaffold, proved to be low-micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol-pyruvyl side chain found in chorismate and isochorismate. PMID:20512795

  19. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    NASA Astrophysics Data System (ADS)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hy